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Abstract

The purpose of this thesis 1s further the understanding of the electronic properties
of L1,CoO; using density functional theory (DFT) and the dynamical mean-field theory
(DMFT). Three main problems are addressed. First, the influence of hybridization
among the e; and oxygen orbitals 1s studied using DFT and a modified Hubbard model
which is solved within DMFT. It has long been known that doping holes into the t,,
bands are accompanied by a rehybridization which causes ¢lectron density to be added to
the e, states and hole density to the oxygen states. This so-called rehybridization
mechanism has been demonstrated to be a competition between the hybridization, which
prefers to occupy the e, orbitals, and the Co on-site coulomb repulsion, which prefers to
have the e, orbitals empty to avoid the strong coulomb interaction. It is also shown that
eg-oxygen hybridization effectively screens the low energy t;, excitations, which has
implications for the low energy Hamiltonian corresponding to hydrated Na,;;3Co0O,.
Second, the hereto anomalous first-order metal-insulator transition in Li,CoO; (0.75 < x
<0.95) is identified as a Mott transition of impurity states. DFT supercell calculations
indicate that for dilute Li vacancy concentrations ( ie x > 0.95 ), the vacancy potential
binds its hole and forms an impurity state which leads to a Mott insulator. We argue that
the first-order transition is due to a decomposition of the impurity band, and is perhaps
the only known example of a first-order Mott transition in a doped semiconductor. Third,
LiCoO; possesses a high energy photoemission satellite which hereto could not be
predicted by any first-principles method. LDA+DMFT solved within multi-band iterated
perturbation theory successfully predicts the satellite.
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Chapter 1

Strong Electronic Correlation in Transition-metal
Oxides

Transition-metal oxides (TMO) are an important class of materials both from a
fundamental and a technological perspective. Technologically, TMO are used as
magnetic materials, ferroelectrics, battery cathodes, and many other specialized
applications. The material studied within this thesis, LiCoO,, is the predominant material
used in rechargeable Li batteries, and thus it has a significant presence in everyday life by
powering cell phones and laptop computers. From a more fundamental point of view,
TMO play host to some of the more interesting theoretical topics within condensed
matter physics, such as high-temperature superconductivity and collosal magneto-
resistance. Therefore, it is important to have a fundamental understanding of the
electronic structure of TMO.

In any given material, one is faced with a complicated many-body problem which
must be solved in order to understand the behavior of the electrons. However, the TMQO
are particularly challenging given that the valence bandwidth is comparable or smaller
than the electron-electron interactions. Therefore, the lowering of the kinetic energy
which may be achieved via delocalization is comparable to the gain in energy due to the
resulting electron-electron interactions. This is the so-called “strongly correlated” regime,
and many standard electron structure tools fail within this regime. Specifically, density
functional theory (DFT) within any known approximation tends to fail qualitatively when
the correlation becomes too strong. DFT used within the local density approximation
(LDA) or the generalized gradient approximation (GGA) has emerged as the primary tool
to study the electronic structure of real materials. Although the LDA and the GGA are
now rather old developments, there does not yet appear to be new approximations for the

exchange-correlation potential which will allow DFT to successfully treat materials with







Chapter 2

Introduction to the Many-Body Problem
2.1 Introduction

In this section, we attempt to cover the highlights of many-body physics which
are pertinent to understanding electronic correlations'™. The goal is to give a feeling for
why the many-body problem is difficult, and what mathematical tools are typically used
in studying the many-body problem. We begin by discussing how the Hamiltonian is
diagonalized for the single-body and many-body case, illustrating the inherent difficulties
in diagonalizing the many-body problem and motivating the use of Greens functions.
Second quantization and the Fock space are then introduced, as they are standard
mathematical tools used in the many-body problem. The Hubbard model, which might be
considered the “standard model” of strongly correlated electrons, is introduced and
discussed. A summary of many-body Greens functions, Dysons equation, and Feynman

diagrams is given. Finally, a short discussion of density functional theory is given.

2.2 The Many-Body Hamiltonian

A many-body problem is one in which the Hamiltonian contains terms that couple
the coordinates of multiple particles. Much of modern physics is concerned with solving
some sort of many-body problem. Within condensed matter physics, interactions among
the electrons, the phonons, and between the ¢lectrons and phonons all give rise to many-
body problems. Within this thesis, the focus is primarily upon the electronic degrees of
freedom, and the many-body problem of interest arises from the electron-¢lectron
interactions. More specifically, it is assumed that the electron and phonon degrees of
freedom may be decoupled using the Bom-Oppenheimer approximation™ ®, resulting in

the following electronic Hamiltonian (equation 1):
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A=Y v (i) o3
o\ 2m it =T M

where m is the mass of the electron, N is the number of particles in the system, e is the

charge on the electron, 7 is the position operator for the electron, p is the momentum

operator for the electron, and V' is the potential due to the static nuclei. The first two
terms of the Hamiltonian are the kinetic energy of the electrons and the potential energy
due to the nuclei. Both of these terms are one-body terms in that each term only involves
the coordinates of one electron. The third term is the electron-electron interaction and this
is a many body term because it involves the coordinates of two electrons. Defining the
commutation relations in equation 2, a specific representation for the operators may be

chosen and the Hamiltonian may be written as a differential equation.
L7 By | =i, @
In general, this Hamiltonian is insolvable, and the details of this assertion shall be

discussed in depth.

2.3 Solving the One-Body Problem

For certain one-body Hamiltonians, such as the central field or positive
background, analytic solutions may be found, and these few cases are exactly solvable.
However, for a general one-body Hamiltonian, analytic solutions may not be obtained
and computational techniques must be used to solve the Hamiltonian. Perhaps the most
common computational procedure is to represent the Hamiltonian in some complete basis
set (equation 3) and diagonalize the Hamiltonian, yielding the exact eigenvalues and the

exact eigenvectors as some linear combination of the complete basis states.

fla)...|a)) €)
A=Ya)(aa,)(a|= Tfe)el Ale)e, )

6t

In reality, a complete basis set can rarely be used, and the basis set must be truncated

such that the Hamiltonian matrix can be diagonalized using some computational
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technique. Therefore, one might suggest that technically even most one-body problems
cannot be solved exactly. However, monitoring the convergence of the solution with
respect to the truncation of the basis set will demonstrate when the problem has been
solved for practical purposes. Additionally, clever basis sets have been developed, such
as FLAPW and LMTO, which are efficient and allow the Hamiltonian to be diaganolized
easily’. It should be clear that our ability to solve one-body problems directly relies on
available computational resources. In the early days of electronic structure (ie. ~1930s),
solving even a simple one-body problem with one atom per unit cell, such as Na metal,
was a major computational feat due to the primitive state of computation®, In the present
day, far more complicated one-body problems may be solved. For example, in this thesis
a calculation is performed for an effective one-body problem with 512 atoms per unit
cell. This dramatic difference is the result of the exponential manner in which computer

speed grows with time.

2.4 Solving the Many-Body Problem

The many-body problem is far more difticult to solve than the one-body problem,
and even fewer situations arise when an analytical solution is possible. Even in these
special situations, usually only certain aspects of the solution may be obtained. In order to
illustrate the difficulties of the many-body problem we shall follow the same approach as
in the one-body problem and represent the Hamiltonian in a truncated basis and
diagonalize it. The first step is to create a proper N-particle Hilbert space. In order to do

this, a truncated single particle basis set must first be chosen.

{|a)...|a,)} (5)

Each N-particle base state must be a product of N single-particle base states. For example,

if a 3 electron problem was being solved, a few possible 3 particle base states are the

following:

a)a)la) |a)las)|a) ©
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Additionally, the N-particle base state must be constructed such that it is antisymmetric
under the exchange of two ¢lectrons (ie. Fermi statistics). The first state given in equation

6 is antisymmetrized as follows.
|a\a2a])=ﬁ[|a,)|az>|a3>+‘az>|a3>|a|>+‘a3>|al>|a2)—|al)|a3)|a2>—|a2)|al>|a3>—|a])|a2)|a1>] ™)

If we project this state onto the position representation, we arrive at the familiar Slater

determinant,

|| (x) v, (%) v, (x)
<x1 |<x2 |<x3 Ha|a2a3> =¥, 00, (3,2 3) = —= ¥, (x,) V., (xz) V., (x,) (8)
\/_6_ Vo (xa) V., (x3) V., (x3)

Y., (xl) = <x1 ‘al> )

In order to make the N-particle basis set complete, all possible permutations of

antisymmetric products of N single-particle base states must be constructed. In other

words, all possible N-particle Slater determinants must be constructed. If we define n as

the number of single particle basis states we have retained, the number of N particle base
n!

states 18 m

. Clearly, even for small N and #, there may be an enormous number

of N-particle base states. In order to fully appreciate this, an example comparing an
interacting versus noninteracting problem is in order. Consider a Nitrogen molecule and a
truncated atomic basis set including /s, 2s, 2p, and 3s states. If electron interaction were
neglected, the Hamiltonian would be a 12x12 matrix. If interactions were included and
we constructed all possible N-particle base states for the given truncated single-particle
basis, the Hamiltonian would be a 792x792 matrix! Symmetry could be used to reduce
the number of independent elements in both cases, however the point is that creating a
Hilbert space for a many particle problem requires far more states than the for the single
particle problem. This simple example illustrates the root of why “brute force” cannot be
used on the many-body problem once any degree of sophistication is present. It should
also be pointed out that this is not merely a practical limit, Using simple estimates, Van
Vleck and others have shown that the wavefunction for a system of on the order 1000

959

electrons is not even a “scientifically legitimate concept’”. They estimate that the

wavefunction for such a system would contain more bits than there are particles in the
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universe! Barring any fundamental changes in our understanding of physics and/or
information theory, such a problem will never be managed by “brute force”. However,
we shall explain below that this is not necessarily a serious problem, given that
knowledge of the many-particle wave functions is not necessary for much of what one

would like to know about the many-body problem.

2.5 Second Quantization

When dealing with a many-body problem, it is extremely useful to introduce the
concepts of second quantization and the Fock space®. We shall begin by attempting to
give insight into what a Fock space is. In the one-body problem, the familiar Hilbert
space is used to represent the Hamiltonian. In our above example of a many-body
problem, we use antisymmetric products of single particle states to create an N-particle
Hilbert space. Therefore, both the Hilbert space and the Hamiltonian explicitly dep’end on
the number of particles in the system. This 1s inconvenient when studying an open
system, and it would be helpful to have a representation of the Hamiltonian which is
general to any number of particles. This is the purpose of the Fock space and second
(uantization in the many-body problem. Mathematically, the Fock space is defined as the
direct sum of all possible antisymmetric Hilbert spaces.

F=H,®@H ®H,®... (10)
H,, denotes the Hilbert space for a N-particle system. Within the Fock space, any base

state may be represented by the so called raising and lowering operators. There action

upon the vacuum (the state with no particles) may be defined as follows.

& 10)=la) e, la)=lo) an

The operator c; creates a particle in the single particle base state a;, while the operator

c, destroys a particle in the single-particle base state a;. Just as the position and

momentuin operators are related via commutation relations, the raising and lowering

operators are related with anit-commutation relations.

1) ot t_
{cj,c,.}—cichrcjci =9,

(12)

{cj,c,.}=0 (13)
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{cT c,.*}=0 (14)

j >
These anti-commutatiorn relations ensure that the many-particle state is anti-symmetric
under exchange of two electrons. To give an example, we shall build the anti-symmetric
three-particle state in equation 7, and demonstrate that it 1s anti-symmetric under
exchange using equation 14.

N R > —_ Attt
‘ a1a2a3> =c, ¢, ¢, |0)=—c,c,c,

a4 &

0)=-|a,aa,) (15)
Within the Fock space, any operator may also be represented by the raising and lowering
operators. For example, take the total kinetic energy operator from equation 1.

N n2 ~2

2o =2kl Jiiclc (16)
We see that the original operator explicitly depends on the number of particles, while the
second quantized form is simply a sum over the indices &,/ which go over all the elements
of some complete single-particle basis. Also, we note that kinetic energy is a single
particle operator and the corresponding second quantized operator is quadratic in the
raising and lowering operators. Considering the electron-electron interactions from
equation 1, the corresponding second quantized operator is guartic in the raising and
lowering operators.

NI

-
’;' =7y kimn

N 2

|mn)ClCC,C, (17)

>

1 e
2 i=l,j=1 ’:1 _’:2
To conclude, second quantization and the Fock space may be used to represent a
many-body problem with an arbitrary number of particles. The anti-symmetry of the
many-¢lectron state is automatically accounted for via the anti-commutation relations

which the raising and lowering operators satisfy.

2.6 Introducing the Hubbard Model

The Hubbard model is the standard approach which is used to model strongly
correlated electrons. It was introduced independently by Kanamorilo, Gutzwiller' ], and

Hubbard'> . All three authors proposed different approximations to solve the Hubbard
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model, and each approximation is tailored to a different aspect of the model. The one-
band Hubbard model is defined as follows:

H=Y1ClC +> UCC,CLC, (18)

if>ic ™ jo
o

where the operator C creates an electron in some localized basis orbital, which for
example might be an atomic orbital or a Wannier orbital. The indices i,j run over all the
sites of the lattice, and ¢ is the spin index which takes on values of T and | .The.
hopping parameters ¢; encompass all the one body operators such as the potential of the
crystal and the kinetic energy of the electrons. The first term of the Hamiltonian transfers
an electron from one site to another. The parameter U is the coulomb interaction between

electrons on a given site. The second term is simply a product of the number operators for
the up and down electrons on a given site (7, = C'C._), and a coulomb interaction of U is

felt if both spins are occupied. It should be understood that the Hubbard model is a
minimal model of strongly correlated electrons. For example, in a more realistic model
there will be a coulomb repulsion between electrons on neighboring sites, but this will be
smaller than the on-site repulsion and therefore it is neglected. Also, in a model of any
realistic material there would be other types of states which hybridize and interact with

the correlated states, but these are also left out or treated in some effective manner.

2.7 A modified Hubbard model

There are many variants of the Hubbard model which restore certain aspects of a
more realistic Hamiltonian. In this thesis, we introduce a two-band Hubbard model,
which also includes oxygen-like orbitals, in order to mimic the relevant physics of
Li,CoO; with the simplest possible model. In an effort to familiarize the reader with

second quantized Hamiltonians, we shall discuss this model in detail.

— t i t t t
H= Z l:gppi,crpi,c' + gee:',o'ei,a' + Tpfe (ei,api,cr + pi,a'el,o' ):| + Z w'\jti,at]ﬂ
Wed i,f.0

' £19)
<
E * t t t t i i t t
+U I:ei,crei,c'ti,ati.cr + ti,Ttx,Tri,lti,J, + eu‘,T‘ei,‘I“ei_J,ei,i] - NZ [pi,api.cr + € %o + tl',atr',a :|
Lo ia

This model contains three non-degenerate spin orbitals ( p, ¢, e ) which can be

analogously thought of as the oxygen p orbitals, the transition metal ty; orbitals, and the
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transition metal e, orbitals. The respective annihilation operators are denoted as p, e, and
t. Let us first concentrate on the unperturbed portion of the Hamiltonian which is the top
line of equation 19. The e and p orbitals are clearly localized with energies &, and &,
respectively, given that there is no operator which transfers an electron from an e orbital
on a given site to another site. However, there is an operator which allows the electron to
hop from the e orbital to the p orbital within a given site, and this is simply the
hybridization. Alternatively, the ¢ orbitals are allowed to hop as indicated by the last term
on the first line which transfers a 7 electron from one site to another. The first term on the

second line is the on-site coulomb repulsion among the ¢ and e electrons. The last term is
equal tc —uN , where 4 is the chemical potential and N is the fotal number of particles
in the system. This is simply a legendre transform of the Hamiltonian to a grand
canonical ensemble which is a function of x as opposed to N, and this is done as a

matter of convenience.

2.8 The Anderson Impurity Model

Below it will be demonstrated that the Hubbard model in the limit of infinite

spatial dimensions is actually equivalent to an Anderson impurity model (AIM) .

H oy =D 600,00 + 2V, (cld, +dlc, )+ Udld.d|d, (20)
ko ko

The AIM corresponds to a model with a single correlated site, d, which hybridizes with
band eléctrons, k. The band ¢lectrons have some dispersion, &, and they may hop onto
the correlated site via the matrix element V. The last term is the familia1 coulomb
interaction for the single correlated site. Within DMFT, the parameters &, and ¥ define
the effective electron bath which emulates lattice. The AIM is a nontrivial many body

problem, but it may be solved nearly exactly using numerical techniques.

2.9 Greens Functions

Above we demonstrated that the number of basis functions in a many-particle

system grows rapidly and that diagonalizing the Hamiltonian is often not possible.
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Additionally, we discussed the Van Vleck catastrophe, or the fact that the many-particle
wave function itself is not tractable once the number of particles becomes appreciable. In
the general case we will need a methodology which does not require direct knowledge of
the many-particle wave function. Therefore, we shall study the many-particle Greens
function, which in general only depends on two sets of electron coordinates and not N.
The Greens function is a mathematical object which contains much of the information
regarding the many-particle system that we would like to know'. The ground state encrgy
and the expectation value of any single-particle operator may be determined from the
Greens function. The eigenvalues of the N particle system may not be determined from
the Green'’s function, but the eigenvalues of the N-1 and N+1 particle system are given by
the poles of the Greens function. Knowledge of the eigenvalues of the A+1 and N-1
particle system is useful considering that these are directly probed in photoemission and

inverse photoemission experiments.

2.9.1 Definition

The Greens function is defined in kz-space as follows:
G(kst,ty) ==i{g|T[ e, (1,)e.} (1) ||8) Q1)

where |¢) is the exact many-particle ground state vector, ¢} (¢) destroys a particle in the

state k and time ¢, and T is an operator which orders the raising and lowering operators
such that the carliest time stands to the right . A simple interpretation of the Greens
function can be given. At t;, an electron is added to the ground state in the state & via the
creation operator. At t,, an electron in state & is removed from the system via the
destruction operator. Finally, the resulting state is projected back onto the ground state of
the system. Therefore, the greens function is the probability amplitude of adding a
particle in the state k at time #; to the ground state, and then observing the system in the
ground state with an added particle in state k at time #;. The Greens function can also be

defined in real space as opposed to k space

G(x|5t15xzat2) =—i<¢}T|:I//(x2,t2)y/T (xl’tl):“¢> (22)
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where ' (x, t) creates a particle at position x and time 7. An analogous physical

interpretation can be given as above.

An important point to notice is that the Greens function is simply the expectation
value of a creation and annihilation operator. Above we noted that it was convenient to
represent all operators in terms of creation and annthilation operators, and therefore the
expectation value of the creation and annihilation operators are needed to determine the
expectation value of some arbitrary operator. Given that any single-particle operator 1s
quadratic in the creation and annihilation operator, the expectation value of all single-
particle operators in the ground state are known once the Greens function is known.
Although not obvious, the expectation value of the product of two creation and two
annihilation operators may also be found from the Greens function for certain situations.
This allows the total ground state energy to be determined from the Greens function. For
example, we give the density in terms of the real space Greens function (equation 23),
and the functional relation between the total ground state energy and the real space

Greens function (equation 24).

p(r):—iG(x,tl;x,tf) (23)

, . . L0 RmV? o
E=-i Idx lim._ . lim,., {lhg_ . }G(x,t;x 1) (24)

2.9.2 Lehmann Representation

Much insight can be gained by fourier transforming the greens function to the
frequency domain and performing additional manipulations in order to attain the so-

called spectral or Lehmann representation.

Alk, e Blk, e
G(k,a)): jds a)—-g(+ ) — + ( )_ 25)
U+id w+e+u—id
(k)= X [(Becs |00 5(e-Eyo) (26)
B(k,8)= 3|, el 180 S(e+ Evar,) 27)
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where A (%, ) and B(k, ¢) are the so-called spectral functions, i is J-1 , 0 18 a positive
¢N> is

the ground state wave vector for the N particle system, and <¢N +1,j‘ is the eigenvector

infinitesimal, j is a label for the eigenvalues of the N+1 and N-1 particle systems,

corresponding to the eigenvalue j for the N+1 particle system. Inspecting the equations
for A(k,¢) and B(k, &), we see that the spectral functions are a summation of delta
functions shifted by a given eigenvalue and weighted by the square of the matrix element
of the raising (lowering) operator between the ground state wave vector and the
respective eigenfunction for the N+1 (N-1) particle system. Given that the Greens
function is an integral over & we see that each delta function in Ak, &) and Bk, &) will

give a term of the following form.

|<¢N—l,j ’ck |¢N >|2

a)—EN_l__j+u+i5

(28)

The Greens function contains one such term for each eigenvalue of the N+1 and N-1
particle system. Each of these terms has a pole for given by the respective eigenvalue and
the chemical potential. Hence the poles of the Greens function gives the eigenvalues of
the N-1 and N+1 particle system.

The spectral function A(k, &) is what is measured in a photoemission experiment,
while B(k, &) is measured in an inverse photoemission experiment. A(k, &) is interpreted as
the probability density that a hole added to the ground states in the state £ has an energy

& while B(k, &) is probability density that an electron added to the ground state in state k

has an energy & Summing the spectral functions over k, Y_ A(k, ), gives the probability
k

of finding a hole in the ground state with energy &, and this can be thought of as an
analogue of the density-of-states in a many-body system. For a non-interacting system,
A(k, 5) is simply a single delta function, meaning that there is a unique energy
associated with each & vector. This should be intuitive given that there is a dispersion
relation in a single particle system which relates & and &

We now wish to demonstrate that the spectral functions are given by the

imaginary part of the Greens function. We begin with the following identity.
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Im(;J _+5(x—a) 29)

x—a¥Fid

Applying this to the definition of the Greens function, we arrive at the following

cquation.
imG (k)= jde[A(k,e)é'(a)—g+ﬂ)+B(Ic,.s)é'(a)+£+u)] (30)
imG(k,w)— Lb@=H) @>u

—Blk,pt—@) w<p
Thus we see that the spectral function, which is an experimentally measurable quantity, is
given by the imaginary part of the Greens function.

To conclude, the spectral or Lehmann representation of the Greens function
allows one to transparently see the physical information contained within the Greens
function. The poles of the Greens function give the eigenvalues of the N-1 and N+1
particle system, while the imaginary part of the Greens function gives the spectral

function.

2.9.3 Perturbation Theory

Thus far we have discussed why the Greens function is such a useful quantity, but
we have not yet discussed how one calculates it. At first site, it may appear that
determining the Greens function will be prohibitively difficult given that the exact many-
electron ground-state vector appears in the Greens function. However, Feynman-Dyson
perturbation theory gives a prescription to determine the Greens function to arbitrary
order. A brief outline of the key elements shall be given.

We begin by splitting the Hamiltonian into the one-body operators, Hy, and the
many-body operators, H;. The many body portion of the Hamiltonian will be treated as
the perturbation.
H=H,+H, 31)
We begin by considering the Schrodinger equation and the formal solution to the
Schrédinger equation in which we have defined the time translation operator or the

propagator, U.
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2l ()=l (0) o

v (1)) =T (1)|w (0)) (33)

The formal solution can be substituted back into the Schrédinger equation to generate a

Schrédinger equation for the propagator.
L2 A s

where the formal solution to this equation may be written as
U ()= ¢

We now wish to perform an iterative solution of the differential equation for the
propagator. However, it is more convenient to have a Schrédinger equation in which only
the perturbation appears, as opposed to the entire Hamiltonian. This can be achieved by
performing a unitary transformation upon the propagator to what is known as the

interaction or Dirac representation.
j(t, t') = eil-'lor(} (f —t') eiiﬁot‘ (35)

We now have a new propagator, S, which is sometimes referred to as the scattering

matrix. Taking the time derivative of S, a new Schrédinger equation is found with the

desired properties.

B 4 .

IEES(t’tu)zHIS(t’to) (36)
where

H] (f) - eiH"rHle-iH"/ (37)

Equation 36 may now be solved by iteration. The differential equation may be integrated,

and the propagator itself appears in the solution.

.§(t,to)=1—ir_|'dt'H,(t')ﬁ(t',to) (38)

This results may be substituted back in an infinite number of times resulting in an infinite

series.

S(e,)=1-i[de'H, () + [de' [de" H, () H, (£)+ o 39)
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We now have a pertubative expression for the scattering matrix, and the Greens function

may be rewritten in terms of the scattering matrix.

)= <¢“§(_°°=‘2)Ck (n)e (4 )j(tnw)w)
e “

where |¢} is the unperturbed wave vector and the creation and annihilation have been

transformed to the interaction representation. Substituting the expression for the § matrix

into the greens function, we arrive at an infinite series for the Greens function.

i(‘f‘y Tar.. dtj_tj;<¢|Hl () H, (1)) (1)l (1))

Gkt ty) =22 =

i%?dq ...... dtjz[<¢|Hl(tl)....Hl(t})|¢>

(41)

2.9.4 Feynman Diagrams

Fortunately, the above complicated equation (41) for the perturbative expansion
of the Greens function often does not need to be dealt with directly given that any term in
this expansion can be designated with a clever symbol known as a Feynman diagram. We
shall begin by considering a simplest first-order Feynman diagram for the AIM, also

known as the Hartree diagram (sce Figure 1).

()

Bt
U

a,t) a,t ,t;y

Figure 1 First order Feynman diagram for the multi-orbital AIM
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Feynman diagrams are composed of interaction lines which are denoted by dotted or
squiggly lines, and propagator lines which are denoted by regular lines. The interaction
lines correspond to the electron-electron interaction, which in the case of the Hubbard
model or the AIM 1is simply U. The propagator lines correspond to the unperturbed
Greens function and they are labeled with an orbital index, an initial time, and a final
time (or simply a frequency if Fourier transformed). A vertex is defined as the endpoints
of the interaction lines, and there must be one propagator line entering and one leaving
each vertex. The order of the Feynman diagram is denoted by the number of interaction
lines which appear in the diagram. All of the different diagrams for a given order may be
obtained by drawing the corresponding number of interaction lines and connecting them
in all topologically distinct ways. Once the diagrams have been constructed, they may be
translated into equations. All of the individual pieces of the diagrams are simply
multiplied togethér, and any internal variables of the diagram (such as 3 and t’) are
summed over or integrated over. The above diagram is translated into equations as
follows.

J'a’r'GO,a (t, -G, (t-,)UD. G, ,(0)

r (42)

Feynman diagrams are often intuitively thought of as scattering events. In our
case, an electron begins in the o orbital at time t; and propagates to t’. Then the electron
scatters off an electron in the (3 orbital and propagates to time t. However, it should be
noted that any given Feynman diagram does not represent a physical event. Only the sum
over all Feynman diagrams, which gives the interacting Greens function, represents a
physical event. Nonetheless, the Feynman diagram is a useful tool which allows the
rather complicated expansion of the Greens function to be written and envisioned in a

very intuitive manner.

2.9.5 Finite Temperatures

Thus far we have been discussing Greens functions at zero temperature. Although
finite temperature effects are not specifically addressed in this thesis, it is often more

convenient to work at nonzero temperatures. This requires the introduction of the
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Matsabura formalism, in which the Greens function is studied in imaginary time and/or
frequency. Perhaps the easiest avenue towards understanding these concepts arises from
comparing the propagator and the density operator for the grand canonical ensemble.

O ()= @

o PlA-uN)

p= (44)
The trace over the density operator gives the partition function of the system, and
therefore all thermodynamic information. Clearly, these two operators bear a striking
resemblance, and the density operator can be obtained from the propagator by simply
replacing # by # - uN and continuing time to the imaginary axis. Therefore, one can
slightly modify the zero temperature procedure and obtain a perturbation expansion for
the imaginary time scattering matrix.

The imaginary time Matsabura Greens function can be defined analogously to the

real time Greens function.

Tl () (1))
tr {eﬁﬂ{ﬁ_w) }

where the raising and lowering operators are now a function of imaginary time, and we

G(k,t,—7)=

follow the usual procedure of constructing finite temperature averages of operators by
tracing over the density operator. Totally analogously to the zero temperature Greens
function, a Lehmann or spectral representation may be constructed for the finite
temperature Greens function on the imaginary frequency axis. Additionally, the Dyson
equation for the Matsabura Greens function is identical to the zero temperature Dysons
equation (see below). Therefore, these two functions are actually quite similar for our
purposes, with one important exception. As noted above, the eigenvalues of the N+1 and
N-1 particle system are given by the poles of the zero temperature Greens function.
However, the finite temperature Greens function is on the imaginary axis, and therefore it
must be “continued” back to the real axis in order to find the excitation energies. If the
ananlytical form of the Matsabura Greens function is known, the analytic continuation is
trivially replacing iw by o+id, where 8 is a positive infinitesimal. However, in realistic

calculations one often docs not have the analytic form of the Greens function, and then
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some numerical routine, such as the maximum entropy method, must be used to perform
the analytic continuation. This is a major drawback of some of the finite temperature

techniques, such as quantum Monte-Carlo.

2.9.6 Dysons Equation

The diagrammatic expansion of the Greens function in terms of Feynman
diagrams can be formally rewritten in order to give the so-called Dyson equation.

1 1
G, (k,iw,)-Z(k,iw,) - io, - &, - 2(k,iw,)

G(k,im, )= (45)

where X is the self-energy, G, is the unperturbed Greens function, and g are the

eigenvalues of the unperturbed Hamiltonian. The self-energy is the sum over all
irreducible Feynman diagrams. If the interactions are zero (ic. X =0), it should be clear
that poles of the Greens function are g, and are therefore the eigenvalues of the
unperturbed Hamiltonian. However, once the interactions are switched on, £ will be
nonzero and the poles of the Greens function will move away from g,. This suggests that

the self-energy is an effective potential which modifies the single particle dispersion

relation. Thus A + E(k, ia)n) can be thought of as an effective single-particle, frequency

(or time) dependent Hamiltonian which gives the eigenvalues of the interacting system.
Although the Feynman-Dyson prescription indicates how to construct the self-energy to
all orders, £ cannot usually be found exactly because the Feynman diagrams above a few
orders become intractable. DMFT can be viewed as a technique to obtain X . To
summarize, when dealing with a many-body problem, one may replace the many-body

term with the self-energy if a reliable approximation for the self-energy exists.

2.10 Density Functional Theory

Above it was noted that all of the ground state properties in addition to the
excitations of the system may be determined from the Greens function. Therefore, the
ground state energy is a functional of the Greens functional shown in equation 24.
However, if one is only interested in the ground state energy and not the excitations, the

Greens function contains excess information. This can be most easily understood by
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considering density functional theory'> '°

, Which indicates that the total energy may be
written as a functional of the density. As noted above, the density may be written as the
equal time and position limit of the Greens function (equation 23), and therefore only this
limit of the Greens function is required to know the total energy in principle. Therefore
we can view density functional theory as an alternative approach in which we work with
the density which a simpler quantity than the Greens function.

Density functional theory essentially consists of three main pieces. First and
foremost, the Hohenberg-Kohn theorem states that the total ground state energy is a
functional only of the density'’. Second, Kohn and Sham wrote the density in terms of a
set of single-particle wavefunctions'®, which may be thought of as a non-interacting

;
reference frame'”.

p(r) =2 (r)w,(r) (46)
The total energy functional may then be written as follows.
] N . _1
E[p]= [p(r)v(r)dr+e ”M drdr'+ ja,u,. (r)?sz/,. (r)dr+E_[p] 47
i=l

The first term is simply the potential due to the nuclei, the second term is the Hartree
potential, and the third term is the kinetic encrgy of the effective non-interacting particles
which the density is defined in terms of. The last term is called the exchange-correlation
energy and it contains everything else which has not been accounted for, such as the
remainder of the kinetic energy density and the electron interactions. No exact expression
is known for the exchange correlation functional. Minimizing the total energy functional

with respect to the single-particle wavefunctions yields the famous Kohn-Sham equation.

1
[‘EVZ“LVKSJWr(r):Ei'/’t(F) (48)
The Kohn-Sham potential is defined as follows.
VK5=v(r)+e jp( )dr "+v, ( ) (49)
r—r'

The last term is the exchange-correlation potential.

()= 21

50
50(r) (50
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Given that the exchange-correlation functional is unknown, approximations must be used
in order to obtain an expression for the exchange-correlation potential. One of the most
commonly used approximation is the local density approximation (LDA).

The Kohn-Sham equation is an effective single particle equation which yields a set of
single-particle wavefunctions that give the exact ground state density provided the exact
Kohn-Sham potential is known. The eigenvalues of the Kohn-Sham are often interpreted
as the eigenvalues of the N-1 and N+1 particle system, even though there is no formal
justification for this'”. However, experience has shown that this is often reasonable and

the errors are consistent.
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Chapter 3

The Dynamical Mean-Field Theory

3.1 Introduction

The DMFT is a powerful approximation used to solve models of strongly
correlated electrons'®. The concept of DMFT arose from probing the properties of the
Hubbard model in the limit of infinite spatial dimensions'®. The essence of infinite
dimensions is that the self-energy is local, meaning that it only depends on a single site
and is therefore independent of 4. However, the self-energy still retains frequency
dependence, and therefore the limit of infinite dimensions remains a nontrivial limit. Due
to the fact that the self-energy is local, the infinite dimensional Hubbard model may be
replaced by some effective model which also has a local self-energy. The Anderson
impurity model (AIM) satisfies this criterion given that there is only one site with
correlations in the model, and therefore the self-energy must be local. Thus an infinite
dimensional Hubbard model is equivalent to some AIM.

The DMFT is essentially the replacement of the true self-energy of the lattice model,
which is a function of k and @, by the corresponding infinite dimensional self-energy
which only depends on frequency. This local self-energy can then be identified with the
self-energy of some AIM, and the parameters of the AIM can be determined self-
consistently by demanding that the Greens function of the AIM be identical to the local
Greens function of the lattice. In other words, DMFT self-consistently maps the local
aspects of the Hubbard model onto an AIM which may be more easily solved, and the
non-local aspects are simply neglected.

The above description can be cast into a set of self-consistent equations. We begin

with the lattice model which is being solved, such as the Hubbard model.

29



— t Z T t

HH”b - Ztijdfgdjo' +U ddedeiwbdii (51)
ijor i

For this Hubbard model, there will be a corresponding Greens function which we can

write in the frequency and k-space domain, G (K, io,). Ultimately, this is the quantity

we would like to know, as detailed in chapter 2. We begin the DMFT solution by writing
the AIM.

Hp = Z gkclra-cka + Z Vi (thda +dlc, ) + UdiTTddeiid:J, (32)
ko ke

The parameters ¢, V; are not known a priori and they must be guessed for the first

iteration, These will ultimately be determined by the self-consistency conditions which
will be defined below. The on site interaction U/ is an input parameter which is defined in
the Hubbard model. Having defined all the parameters of the AIM, the AIM may now be
solved. The AIM is still a difficult many-body problem as it contains on-site interactions
on the impurity site, given by the quartic term. Therefore, some approximation or

numerical technique must be used to find the impurity Greens function for the AIM,

G (i®,) (see section 3.3). Once we have G, (im,), the self-energy of the AIM may

be determined via Dysons equation. However, we first need to construct the unperturbed
Greens function for the AIM, which is also known as the bath function. The bath function
emulates the lattice by allowing electrons to hop back forth between the impurity site and

the bath, and it may be written in the frequency domain as follows,

G; (z'a)n)z(ia)n +-”_Z- v ) (53)

k lCU" _51(

Dysons equation may now be used to construct the self-energy for the ATM.

2 (i0,)=G} (iw,) - G;), (iw,) (54)
Now the two self-consistency conditions shall be imposed. First, we demand that the self-
energy for the AIM be identical to the self-energy for the Hubbard model.

Lo (10,) = Z 4, (i) (55)
Now that we have a self-energy for the Hubbard model, we may construct the Greens

function for the Hubbard model using Dysons equation.
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Gl (k,la)n) (W, =&y T H— Ly, (ia)n) O

The local Greens function of the Hubbard model may now be constructed by averaging
the Greens function over k-space, and the second self-consistency condition is imposed
by setting the impurity Greens function of the AIM equal to the local Greens function for
the Hubbard model.

G (iwn) = Gﬁfﬁ’ = Z Ghu (k= ia)n) (57)
p

Dysons equation is then used to construct a new bath function.
Gy (i,) = Z 4y (iw,) + Gy, (i,) (58)
Therefore, one is left with a new bath function and therefore a new set of parameters for
the AIM. This procedure is then iterated until convergence is reached, meaning that the
self-energy, the local Greens function, and the bath function are no longer changing
appreciably. Once converged, the self-energy can be plugged into equation 56 yielding
the Greens function for the Hubbard model within the DMFT.

To summarize, the DMFT can be considered as mapping the lattice model onto a

AIM subject to the self-consistency conditions given by equations 55 and 57.
3.2 Detailed DMFT Algorithm for the Hubbard model

In order to appreciate the above general description, we shall outline the DMFT
equations for the Hubbard model for the specific case where quantum Monte-Carlo is

used to solve the impurity model.

g . Ve
1. Guess G} (za)")=(za)n +ﬂ_z,‘:ia)" "_Ek] (59)
2. Gy(r)=D.¢""G,(im,) (60)
3. G,(r)—¥>G,,, (1) (61)
B
4. Gy (io,)= jew"erM (r)dz (62)

0
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5. 2 (iw,)=Gy (iw,) - Gy, (i@,) (63)

6. Ty (ia)n) =2 (ia)n) (64)
1
7' Glocal —
e ; I, =y TH— Ly, (ia’n) ©>
8. Guu (ia)n) = G}ngl (ia)") (66)
9 G, (iw,)=2,,, (in,)+G, (iw,) (67)

10. Return to step 2 and iterate until converged.

The first step is to guess the parameters of the AIM. DMFT maps the local physics of the
Hubbard model onto an AIM model, but the parameters of the AIM are not known apriori

and must be determined ustng the above self consistent procedure. In practice, one
usually guesses the unperturbed Greens function, also known as the bath function, G, of

the AIM as it is a function of the unperturbed AIM parameters. In the second step the
bath function is transformed from frequency to time due to the fact that we are using
QMC which works in the time domain. In the third step, QMC takes the bath function as
input and solves the impurity model, giving the full Greens function of the AIM as
output. In the fourth step, the greens function of the AIM is Fourier transformed to
frequency because the Dyson equation is need in the fifth step to get the self-energy of
the AIM. This is done in the frequency domain because Dysons equation is algebraic in
frequency while it is an integral equation in time. In the sixth step, we demand that the
self-energy of the Hubbard model is identically the self-energy of the AIM. In the
seventh step, the local greens function for the Hubbard model is constructed, and then the
Greens function for the AIM is set equal to the local Greens function of the Hubbard
model in the eighth step. Finally, a new bath function is constructed using the new Greens
function for the AIM in addition to the self-energy. Now we have a new bath function
and therefore new parameters for the AIM. This procedure is then iterated until the bath

function converges.

32




3.3 Solving the AIM

As noted above, DMFT effectively maps the Hubbard model onto an effective
AIM, and therefore one is still left with a difficult many-body problem to solve.
Fortunately, the AIM has been studied intensively over the past 30 years, and a number
of approximations and numerical techniques exist. A few of the more prominent
techniques are QMC, exact diagonalization, and iterated perturbation theory (IPT)'®. In
this thesis, both the QMC method and IPT were used. We shall derive the IPT equations

below.

3.3.1 Iterated Perturbation Theory

Iterated perturbation theory corresponds to second order Feynman-Dyson
perturbation theory in which the Hartree-Fock contribution to the self-energy has been
shifted into the unperturbed Hamiltonian, This is equivalent to evaluating the second
order diagram where the free propagators are replaced by the Hartree-Fock Greens
function. Thus this procedure corresponds to perturbing around the Hartree-Fock solution
with the second order diagram, and it may be considered as the simplest approximation
beyond LDA+U which introduces frequency dependence to the self-energy. Specifically,

we are concemed with the following diagram.

B.v

o,T — > . o,t’

Figure 2 The second order contribution to the self-energy for the AIM. Within IPT, the

lines correspond to the Hartree-Fock Greens functions.

The diagram may be translated to an equation as follows.

33



T (e-1)=U’G,,(z-1) .G, 4( G, ('=1) (68)
f+a

where Go’a 1s the Hartree-Fock Greens function, as opposed to the usual unperturbed

Greens function.

G, (i0,) = (G (0, ) - 27 (i, )} (69)
This technique has been used extensively for the half-filled Hubbard model. When
applied to the particle-hole symmetric Hubbard model, this solution has the unusual
property that it is both the strong-coupling and the weak-coupling solution. Therefore, the
IPT acts as an interpolation scheme for this particular case, and QMC data is reproduced
with remarkable accuracy. This property does not hold when particle-hole symmetry is
lost, but nonetheless it still takes an important step beyond Hartree-Fock by introducing
frequency dependence to the self-energy.

3.4 LDA+DMFT

Although LDA is very successful in predicting properties of weakly correlated
materials, it is known to be qualitatively incorrect if strong correlations are presentzo. In
an effort to go beyond LDA, the LDA can be used to construct a Hamiltonian to which
correlations can be added, and then this new Hamiltonian can be solved in any number of
approximations® 2%, Practically speaking, LDA is being used to accurately construct a
Hubbard model, and it is therefore necessary to define a localized basis. This has made
the LMTO method a natural choice as the electronic structure technique used to solve the
Kohn-sham equations. In principle, any basis set may be used, but in the end it is
necessary to define a Hamiltonian in a localized basis. This is why plane wave basis sets
usually require additional work to implement beyond LDA techniques. For the time
being, we will take for granted that a localized basis may be constructed independent of
the basis set being used. The next decision to be made is which orbitals will be deﬁned as
the correlated orbitals (ie. perhaps the atomic-like d orbitals). Now the LDA Hamiltonian

may be written as follows:

H,py ZE CII:J ko (70)

nko

34




where the operators C create an electron in the eigenstate of the kohn-sham equation, and
¢,, are the eigenvalues of the Kohn-Sham for a given band » and &-point. Now on-site
correlations, referred to as the interaction term, can be added to Hamiltonian. However,
the LDA Hamiltonian already contains on-site coulomb interactions which need to be
removed. These shall be referred to as the double-counting terms, because they are
already present in LDA and need to be removed. Unfortunately, there is no exact way to
do this, and an approximation must be used. This is actually a significant limitation of the
entire approach. We are left with the following Hamiltonian:

H i =Hp, + Rzﬂ: Updh 1dyordidyy, U (Nd —%)Nd (71)
where the indices «,f run over the correlated orbitals and the index R runs over all the

sites of the lattice. The second term is the usual Hubbard interaction, while the third term
is the most commonly used double-counting, where N, , 1s the operator for the total
number of d electrons land N, 1s the expectation value.

Having defined H,,,,.,, , we now write the corresponding Dysons equation.

Hppy+ Z |da,R>(Za,ﬂ (iw) _Edc)<dﬂ,R| Vio = oo (72)

a,f.R
where the first term is simply the Kohn-Sham Hamiltonian and the second term is the self

energy operator for the correlated d states. The indices a and £ run over the ten spin
orbitals for the d states, while R runs over all the sites in the lattice. X, | (ia)) is the

frequency dependent self-energy for the d electrons calculated within DMFT on the

imaginary axis. 2y is the double-counting correction to the self-energy, and it is given by

1 .
6.4V [N _EJ , which corresponds to the double-counting term which was defined in

equation 71. ¢, , and y, , are the frequency dependent eigenvalues and quasiparticle

wavefunctions, respectively. This equation must be solved at every k-point for a grid of
imaginary frequencies. The self-energy is not known a priori, and DMFT is used to
calculate it. The same type of DMFT self-consistent equations are used as outlined

above. We use the following specific procedure, where we have assumed a diagonal self-
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energy for notational simplicity, and we solve the impurity model within the iterated

perturbation theory.
1. Guess Z(iw,) (73)
2. solve | H p, + z da,R)(Za,ﬂ (iw)-Z, )<dﬂ,R ’ Yio = Co¥ho (74)
a,0.R
. Vel i
3. G — I kaw7 kao
L (i@,) Z . (75)
4. G,,(iw,)=G, (i) +Z,(io,) (76)
5. n,=TY G,(iw,) (77)
6. TF=U> n, (78)
fra
7. G, (i0,)=(G. (i0,) -7 (in,)) (79)
A
8. ZfM(iw)=2" +U? J.(ei"’"’éo_a (2)>.G, ()G, ,(B- r)J dr (80)
0 Pra

9. Iterate
This procedure is very similar to the previous algorithm given for the Hubbard model, the
only major difference being that iterated perturbation theory is used to solve the impurity
model instead of QMC. Only the major differences shall be outlined. The third step
corresponds to the construction of the local Greens function for the Hubbard model,
where y ,wr  are the projections of the “left” and “right” eigenvectors of the Dysons
equation onto the localized orbital « . It should be noted that the self-energy is not
Hermitian and therefore /.,y are not simply complex conjugates. In the fifth step
the elements of the density matrix are constructed from the local Greens function, and T
is the temperature. In the sixth and seventh step, the Hartree-Fock sclf-energy and Greens
function are constructed. In the final step the self-energy is constructed within the IPT.

This procedure is then iterated to self-consistency.
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Chapter 4

Introduction to Metal-Insulator Transitions

4.1 Ictroduction

A portion of this thesis is concemed with a metal-insulator transition in Li,CoQa.
In order to fully appreciate this, the different types of metal-insulator transitions shall be
discussed and summarized. We begin by discussing the definition of a metal and an
insulator for our purposes (ie. excluding superconductivity). A metal is a system in which
the lowest energy electronic excitation is gapless, while an insulator is a system in which
some finite energy must be supplied to excite an electron. Rigorously, the gap is defined
as the difference of the first eigenvalue of the N+1 particle system and the first
eigenvalue of the N-1 particle system. The main goal of this discussion is to understand
what is causing the gap in the insulating state, and what parameters may be varied in

order to induce a transition to a metallic state where the gap is zero™™ %,

4.2 Types of Insulators

4.2.1 Band Insulator

The first and perhaps the simplest sort of insulator is the Bloch-Wilson or band
insulator. This is an insulator in which the crystal potential causes the bands to split,
inducing a gap. If the material has an even number of electrons which fill the bands up to
the gap, the system will be a band insulator. There are many examples of this sort of
insulator in nature, such as Si and pure LiCoO,. A metallic state may be induced by
doping the material with an element having a different valence which will induce holes
into the valence band or electrons into the conduction band. Additionally, mechanical

stress may sometimes by used to vary the crystal potential such that the gap closes.
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4.2.2 Mott Insulator

The second sort of insulator is the Mott insulator, which results when the electron-
electron interactions overwhelm the kinetic energy which would have been gained from
delocalizing. This transition can be most simply understood in terms of the single band,
half-filled Hubbard model. The Hubbard model contains two ingredients: the hopping
parameter ¢ which reflects the kinetic energy and the potential due to some external field,
and the on-site coulomb repulsion U which is felt whenever a site is doubly occupied.
When U = 0, one is simply left with a half-filled band which is metallic and the electron
1s delocalized. When the electron is delocalized, there is a relatively high probability that
a site will be found to be doubly occupied. As U is increased, the system will begin to
pay an increasingly larger penalty whenever a site is doubly occupied. Once U>>¢, the
electrons will localize with one per site in order to prevent double occupancy, which is
the Mott insulating state. In this case, the bands will now be split with a gap of roughly
U. In order to clearly illustrate this, the Hubbard model can be solved within DMFT for a

series of U/t and the resulting spectral density is shown in Figure 3.
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Figure 3 The spectral function for the one band Hubbard model'®. U/t is increasing from

top to bottom.

As U/t is increased, one can see the upper and lower Hubbard bands forming from
spectral weight which has been shifted away from the region near Fermi energy. Near the
transition on the metallic side, the Hubbard bands are well developed yet the system is
still metallic. This reflects the dual character of the electron in this region of parameter
space, displaying characteristics of both localized and delocalized states. DMFT is
perhaps the only practically manageable theory which can accurately describe the
insulating state, the metallic state, and the crossover between them. It should be noted
that the Mott insulating state can only occur for an integer number of electrons per site. If

this were not the case, the electron could always hop through the lattice while still
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avoiding double occupancy. There are essentially two ways to destroy a Mott insulating
state”®, The first is referred to as a bandwidth controlled (BC) metal insulator transition,
while the second is a filling controlled metal insulator transition (FC). These respectively
correspond to decreasing the ratio of U/, and doping the system away from integer
filling. V,0; exhibits a BC MIT which is induced via pressurem. Ca1.,.Sr, VO3 isnota
Mott insulator for any x, but it is in the strongly correlated regime®. In this material, both
Ca and Sr have the same valence but different sizes which distort the structure causing a
variation in the strength of the hopping parameters. La,Sr,,TiO5 is a Mott insulator for x
= ] and it displays a FC MIT as the composition is varied*’. This also can be illustrated
by solving the Hubbard model within DMFT for different dopings (see Figure 4). The
correlations can be seen to increase as the system tends towards half filling, evidenced by

the formation of the Hubbard gap.
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4.2.3 Slater Insulator

A third sort of insulator can be created via magnetic ordering. Slater pointed out
that if one is dealing with a half-filled band and antiferromagnetic spin ordering is
imposed, the unit cell will be doubled which will split the bands leaving a filled band and
empty band. This is known as a Slater insulator, and created an ambiguity with the Mott
insulator during the early days of strongly correlated electrons. The Mott insulator may
occur independently of the any magnetic ordering, but at a low enough temperature the
electron spins will order in the Mott insulating state. Therefore, many of the known
examples of Mott insulators are antiferromagnetic and it is not totally straightforward to
differentiate the two in experiment. However, the Mott insulator may be definitively
identified by heating above the Néel temperature or measuring the manner in which the
specific heat diverges at the doping induced MIT. Historically, Slater’s theory had the
advantage of simplicity in that a single-particle theory may be used to induce the Slater
insulator, while a many-body theory is required to produce the Mott insulator. The Slater
insulator may be destroyed by doping away from half filling or heating above the Néel

temperature.
4.2.4 Anderson Insulator

A fourth type of insulator is the Anderson insulator. Anderson demonstrated that a
random potential within an electronic system, such as impurities within a metal, may

.35 Qualitatively, this transition can be

cause localization and hence an insulating state
seen as a competition between the kinetic energy which prefers to delocalize the electron,
and the potential of the random impurities which prefer to localize the electron. Anderson
localization is fairly unique in that it is a one-electron phenomena. The impurity potential
prefers to bind the electron, but the fact that localization can be achieved relies on the fact
that the impurities are randomly place or have a random potential strength. Interestingly,

the Anderson insulator actually has a nonzero DOS at the Fermi level despite the fact that

the particles are localized. The DOS does not distinguish between states which are
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spatially localized or delocalized, and the two-particle Greens function is needed to

demonstrate the conductivity is zero.
4.2.5 Polarons

While on the topic of metal-insulator transitions, some attention should be given
to polarons. A polarons is an electron which has been dressed by phonons. Small polaron
theory can be used to show that the bandwidth will be narrowed exponentially by the
electron-phonon coupling®. If the electron phonon coupling is large, the bandwidth can
become small enough such that activated hopping will be the dominant transport mode.
Thus one expects band-like behavior at zero temperature for small polarons, and possibly
activated behavior at higher temperatures. It should be emphasized that the polaron itself
cannot actually localize an electron, as the polaron can still tunnel through the lattice via
the exponentially narrowed bands. However, polarons can greatly increase the effective

mass of an electron and make it far more susceptible to an impurity potential.

4.3 Metal-Insulator Transition Near a Band Insulator

In this thesis, we are specifically concemed with a metal-insulater transition near
a band insulator, and therefore it is useful to put the general discussion of MIT’s from
above within this context. Specifically, we shall address the role of the on-site coulomb

interaction, the vacancy potential, and polarons.

4.3.1 Impact of On-site 4 Interactions

We shall begin by considering the on-site coulomb interactions of the Co d states
and their effect as a function of doping. Given that the t,, states in LiCoO, are split and a
nearly isolated band exists near the Fermi energy, we study the energy as a function of
doping for the one band Hubbard model. Since the Hubbard model constitutes a many-
body problem, we shall need to employ an approximation. We use the Gutzwiller
approximation®® as it is not computationally demanding, yet it does an adequate job
describing strongly correlated metals.

We begin by defining the single band Hubbard model:
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H=>1ClC, + Z Uc!,c,CiCy (81)
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where the operator ¢ creates an electron in some localized orbital. We assume that the
unperturbed (i.e. U= 0) DOS has a Guassian form for simplicity.

e’ (82)

1
p(e)—t\/ﬁ

The number of particles and energy for the unperturbed case is defined as the usual

integral over the DOS.

—_ " de = 1 Ef
n-l ple)de = | Lrerf (1) (83)
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Gutzwiller’s approximation involves postulating a variational wavefunction, which is

defined as follows.

|'//GWF> =d '//0) = H(l_ (l_g)ciicileFQ‘T)

i

v,) (85)

where g is a variational parameter that varies between 0 and 1, and

w,) is the

unperturbed wavefunction. The Gutzwiller operator, G, is a projection operator which

projects out double occupancy. Therefore, for g = 0 we are left with no double

occupancies, and for g = 1 we are left with the unperturbed wavefunction |wo> . Now we

give the paramagnetic ground state energy as a function of the variational parameter.
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where n is the number of particles. In order to derive these relations some additional
approximations had to be made. Now we have an expression for the total energy as a
function of the variational parameter g and the number of particles. This expression can
be minimized using standard numerical techniques in order to get the energy as a function
of doping and U (see Figure 5). As shown, U substantially increases the energy near half-
filling. However, it is also clear that U has no appreciable effect at band fillings below
roughly 0.1. Therefore, we conclude that the on-site interactions are not directly relevant

in the dilute limit.
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-0.15
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Figure 5 Energy vs. particle number for given a hopping paramter ¢ = 1.

Another interesting question which can easily be addressed is the effect of a
doping dependent hopping parameter. LDA calculations show that the width of the a,,
band in Li,CoO; increases by a factor of two when all the Li is removed (see chapter 5).

Additionally, the a;, band begins to overlap substantially with the other bands. In order to
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show the potential effect of a doping dependent hopping parameter, a calculation was
performed with U = 0 and with a hopping parameter that varies lincarly from 1 to 4 as x
increases from 0 to 1 (see Figure 6). As shown, this in itself can cause a non-convexity
and hence phase separation. It must be remembered that the hopping parameter was
varied linearly in this example, and nonlinear behavior could make this effect more

dramatic.

0 T T

0.5 J

72-5 [ 1
0 05 1 18

Figure 6 Energy vs. particle number for a doping dependent hopping parameter. t =1 at

x=0andt=4atx=1.U=0.

It is interesting to calculate the kinetic energy for the A band in LiCoO;. In
order to do this, the DOS corresponding to the flat band is simply used to calculate the
kinetic energy gain due to band formation (see Figure 7). It is seen that the kinetic energy
per carrier is roughly 100 meV in the dilute limit, and therefore it is not difficult to
understand why the holes become localized. This is also consistent with the fact that the

binding energy is found to be roughly 150-300 meV in experiment.
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Figure 7 Kinetic energy versus filling for the LDA a,; band in LiCoO,. This is calculated

under the assumption that the band is rigid, which is only valid for small doping.

4.3.2 The Impurity Potential

Having shown that the on-site coulomb interactions are not relevant in the dilute
limit, we now turn to the impurity potential. In order to get some simple ideas of the
effect of the vacancy potential, some simple arguments of Mott’s shall be employed.

First, we shall apply Mott’s criterion for a metal-insulator transition®’.

1

nla=025 (90)
where 7 is the density of carriers and a is the radius of the impurity orbital. This equation
was originally obtained by determining what density destroys bound states of the Yukawa
potential. The constant 0.25 has been found empirically to apply well over a broad range

of materials®®. Plotting this equation for Li,CoO, demonstrates that a transition at 5%
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holes corresponds roughly to an impurity radius of 2 A (see Figure 8). Given that the
radius from the vacancy to the neighboring oxygen atoms is 2 A and to the nearest Co is

2.7 A, this estimate seems reasonable.

Simple Mott Criterion

fraction holes

Angstroms (impurity radius)

Figure 8 A plot of the simple Mott criterion for LiCoO,.

Another interesting estimate is the binding energy of the hole to the vacancy. In

materials with narrow bands, Mott recommended to calculate the binding energy of the

2
. e . . . .
polaron to the donor simply as —d where x is the dielectric constant and d is the
K

distance from the polaron center to the impurity site’”. The dielectric tensor has been
calculated using empirical potentials®® and if we average the different components we get
roughly 15. If we assume that the polaron sits on the Co site, this gives a binding energy

of 300 meV, which is also quite reasonable.

4.3.3 Polarons
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The other mechanism which can help localize the hole in the dilute limit is the
polaron. In LiCoO,, the symmetry is already broken, so one would not expect a Jahn-
Teller effect. Therefore, the most obvious local distortion would be the simple A, mode
(ie. the breathing mode). The relevant Hamiltonian for this situation is the Hubbard-

Holstein model.

i ie ™ jor o™ jo

H=31,CLC,, + Y UCIC,CC, + Y 8k, (ClC —(C,I,Cja>)+Z%kf(f+Zziméz 91)

=
where g is the linear electron-phonon coupling, X is the operator for the amplitude of the
local A, mode, P is the momentum operator of the A;, mode, k is the elastic constant,
and m 1s the mass of the A, mode. The electron phonon coupling is a linear coupling to
the density on the site minus the average density per site for the system, which will drive
the electron to localize.

Instead of solving this model, some simple estimates will be considered. We
know that in the dilute limit U does not have a large effect. Therefore, the kinetic energy
and the polaron will be competing with cach other. We know from experiment that the
holes are in fact localized with a binding energy of roughly 150-300 meV per carrier. If
we considered the extreme strong coupling limit (i.e. no kinetic energy), and if we
assume that all the binding energy arises from the polaron, we can calculate the size of
the distortion if we knew the elastic constant. We can estimate this using DFT by
calculating an elastic constant for the cooperative A, mode, and this was found to be 2.4
eV/ A’ If we conservatively assume the binding energy to be -100 meV, we get an
electron phonon coupling of -0.69 eV/A. This yields a distortion which changes the bond
lengths from 1.89 to 1.80 A. Given that these were all very conservative estimates, this is
a large distortion considering that the bond lengths in CoO; are calculated to be 1.84 A.
This simple estimate does not lend much support to the possibility of polarons, but it is a

rather crude estimate.

4.4 Overview

In this section, the different types of metal-insulator transitions are presented.

These different mechanisms are then discussed in the context of the metal-insulator
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transition in LixCoO;, which resides near a band insulator. Using Gutzwiller calculations,
it is demonstrated the on-site correlations are not directly relevant in this limit. Simple
estimates are used to gauge the potential importance of the impurity potential. Although
qualitative, the estimates suggest the impurity potential as a reasonable mechanism of
localization. These considerations lead to the calculations in chapter 6, which identify the

presence of an impurity band.
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Chapter 5

Introduction to Li,Co00O,

5.1 Relevance of LiCoO,

Li,CoO; is currently the predominant material used as a cathode in rechargeable Li
batteries. The utility of Li,CoQO; lies in the fact that Li may be reversibly intercalated.
Therefore, it is desirable to have a fundamental understanding of all the changes which

occur upon delithiation, and this has motivated a significant amount of experimental*'**

I***? work in the past. One of the outstanding mysteries in this material

and computationa
was the anomalous first-order MIT*, and this problem has been addressed within this
thesis. For x > 0.95, the system is insulating and for x < 0.75 the system is metallic, and
the compositions 0.75 < x < 0.95 consist of a two-phase mixture of the metallic and
insulating phases. The fact that Li,CoO; is insulating for x > 0.95 has negative
implications for battery operations, given that reasonable electronic conductivity is
necessary to operate a battery. This problem may be practically resolved by doping with a
small amount of impurities to recover the conductivity’ ™ *', but a fundamental
understanding of the insulating state and the transition has remained a mystery,

Aside from being an important battery material, LiyCoO; has a renewed sense of
fundamental importance due to the close relation to Na,CoQ;. Hydrated Na,CoO, was
recently found to be superconducting at very low temperatures, thus creating a strong
interest in all electronic aspects of the material*. Qualitatively speaking, Na,CoO, and
Li,CoO; are extremely similar materials given that Na and Li are both alkali metals, with
the only notable difference being that Na” is a larger ion than Li". Therefore, a detailed
understanding of the electronic structure of Li,CoO, will be useful in understanding

Na,CoO; and its hydrated counterpart.
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5.2 The Layered Structure

The layered structure is an ordered rock salt that can be envisioned as two
interpenetrating face centered cubic lattices, with one lattice consisting of oxygen and the

other lattice consisting of alternating (771) planes of L1 and Co (see Figure 9 and Figure

10). In the R 3 m space group the Li and the Co ions remain fixed in the ideal rock salt
positions, but the oxygen atoms have a degree of freedom allowing the whole (711)
oxygen plane to relax in the <//7> direction (Cubic cell notation). Physically, this
relaxation is caused by the broken symmetry induced by the Li-Co ordering. Because the
Li-Co ordering breaks the cubic symmetry and causes the oxygen atoms to relax, the
point group of the metal site is reduced from Oj to D3, upon ordering the rock salt lattice.
Both the Co and the Li sites are coordinated by distorted oxygen octahedron, and the Co-
O octahedron share edges.
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Figure 9 Layered LiCoO; (R§ m). Co-O bonds are designated with thick lines. In this
structure, each (111) plane is occupied by a single species. Every other (111)
plane consists of oxygen, while the planes in between the oxygen planes
alternate between metal and Li. The Co-O octahedra share edges half with Li-O
octahedra and half with other Co-O octahedra. Corners of the Co-O octahedra
are only shared with Li-O octahedra. The entire oxygen plane can relax along

the body diagonal. (Note that this is not a unit cell)

& Metal
O Lithium
@ Oxygen

Figure 10 Layered structure in the hexagonal unit cell. The oxygen layers can relax along

the c-axis.

5.3 Electronic Structure of LiCoQ;

From simple chemical considerations, one expects the two oxygen atoms in

LiCoO; will accept two electrons each, the Li will donate one electron, and the Co will
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donate three electrons. Therefore we expect Co’*, which has a total of six electrons in the
d shell. Due to the fact that the Co are coordinated by oxygen, the degeneracy of the five-
fold d levels will be split by the crystal field. As noted above, the octahedron in this
structure are distorted, and therefore the crystal field will have D34 symmetry as opposed
to Op. However, the distortion away from Oy, symmetry 1s relatively small and we shall
therefore first consider the effects of the Oy, crystal field. An Oy, crystal field will split the
five-fold degenerate orbitals into a set of three-fold orbitals, t,,, and two-fold orbitals, e,

with the e, orbitals being higher in energy®’. Although not obvious, the crystal field is

stronger than the Hunds coupling, and therefore Co™" is low spin with a configuration t .

as opposed to the high spin configuration t;ge; . LiCoQO; is therefore a band insulator

given that the t;, shell is filled and separated from the e, states due to the crystal field
splitting.

When considering the true D34 crystal field, the formerly three-fold degenerate t,
states of the Co atom will be split into a set of two-fold (E; symmetry) and one-fold (A,
symmetry) orbitals, while the e, orbitals remain unchanged. The Dj, states which
originated from the t,, states will be referred to as e’ and a;, (the prime is to prevent
confusion with the usual e, states). If one considers a coordinate system aligned along the

octahedral axes, the e,’ and the a;g orbitals are defined as follows **:

a,) :%ﬂxy>+lyz)+|zx>) (92)
| e;, (1)> = % q zx> - ’ yz)) (93)
) = 7 20)+b2) 4] 2) 9%

The forms of these symmetrized orbitals are found using standard group theoretical
techniques“. The a,, orbital is often discussed in the literature, so we shall discuss itin a
bit more detail. The A, irreducible representation is the identity representation, and
therefore the a,4 orbital rotates into itself under all the operations of the Dy4 point group.
It is straightforward to visualize the a;, orbital, as it is simply a d, orbital with its lobes
pointing along the three-fold rotation axis (ie. The c-axis in Figure 10). In other words, if

instead of choosing a coordinate system along the octahedral axis we chose a coordinate
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system as in Figure 10, the a, orbital is simply d,;. This immediately yields some
potential insight into how the a,, electrons may behave. Given that the lobes of the a,,
orbitals point in the z direction, there will be little overlap with their neighbors. This is
suggestive that these orbitals may have weak dispersion. This scenario also occurs in the
spinel-like structure LiV;Q,, in which the V atoms have D34 site symmetry. It has been
suggested that localized a4 clectrons interacting with ¢, electrons give rise to the
unsuspected heavy Fermion behavior in LiV,0,4 %

As Li is removed from Li,CoO, holes will be introduced into the t,, states

yielding a configuration 126;" . The electronic correlations among the t,, states will

continue to increase as the number of holes increases. CoO; will have one t;, hole per Co,

and it will likely be a Mott insulator.

5.4 Experimental Literature Review for Li,CoO;

In this section, we shall review the relevant experimental literature on LiCoOs.
Specifically, we shall be concerned with the Photoemission data, which is directly
calculated using LDA+DMFT in chapter 8. Additionally, the X-ray Absorption data is
reviewed given that it has implications for the rehybridization mechanism which is
studied in chapter 6. Finally, the X-ray diffraction, nuclear magnetic resonance, and
conductivity data pertaining to the metal-insulator transition, studied in chapter 7, is

reviewed.

5.4.1 Photoemission Experiments

Van Elp et al measured the XPS valence band spectra of LiCoO," (see Figure
11). The data consists of a narrow main line, a broad feature from -2 to -8 eV arising
from the oxygen states, a satellite from -9 to -14 eV, and the oxygen s states at -21 eV.
The main question is what states compose the main line and the satellite. One frequently
confronts this question when attempting to understand the spectrum of transition metal
oxides. In order to answer this question, van Elp et al performed cluster calculations®’,

and Czyzyk et al performed DFT calculations®. The cluster calculation involves writing
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down a many body Hamiltonian for a Co ion in an oxygen octahedron. This requirés the
knowledge of the Racah parameters, charge transfer energy, crystal field splitting, and the
Co-0 hybridizations. The ground state and excited states are then written as a sum of a
few Slater determinants, and the Hamiltonian is diagonalized for the N, N+1, and N-1
particle system. This yields the excitation spectra for N-1 and N+1 particle system. The
predicted spectra is shown to be in reasonable agreement with experiment (see Figure

12).The occupation numbers for the ground state, the first removal, and first addition

states are found to be roughly 0.47|d*)+0.44|d’L }+0.09|d°L*),

O.l7‘d5>+0.5‘d6L‘ )+0.3|d7L2>, and 0.77]d7)+0.22\d5L), where L designates a hole

in the oxygen states. The ground state is shown to be strongly mixed between d° and
d’L'. The d’L’ state arises due to the strong hybridization between the Co ¢, orbital and
the oxygen p orbitals. This is complementary to what our DFT calculations have
predicted for the ground state, showing 1.28 electrons in the e, orbitals due to
hybridization with the oxygen (discussed below). The cluster calculations show the first
addition state to be mainly d’ in nature.

Now the composition of the main line versus the satellite shall be reviewed. The
cluster calculations show that the first electron removal state (ie. the main line) is

composed mostly of d°L' followed by d’L*. More specifically, the state d°L' is

predominantly £; e, L' and the state d’L? is predominantly £, e;* (ref ). Thus we see
that the cluster calculation predicts that the main line arises from removing and electron
from the t,, states, followed by a backflow of electrons from the ligand to the ¢, orbital.

Roughly half of an electron is transferred from the e, to the oxygen. The authors claim

that the satellite is composed mainly of ¢; . » and that its formation is largely due to the

splitting of the £, state and #;,e, L as a result of the large hybridization.
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Figure 11 XPS spectrum of LiCoO; taken from van Elp*’ is given by the blue curve.

LDA calculations are given by the red curve.
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Figure 12 XPS spectrum predicted by the cluster calculations (lower curve) and the

experimental result (upper curve) ¢/
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Czyzyk et al compared the DOS from LDA calculations to the measured XPS
spectrum of LiCoO,*. We use our LDA calculations for comparison as they are more
accurate and there are no qualitative differences (see Figure 11). Before considering this
data we should recall that the DOS predicted by DFT have no formal association to the
removal or addition spectra®’. However, experience has shown that this often yield
reasonable results and consistent errors. The LDA spectrum successfully reproduces the
main line and the oxygen 2s states, but the oxygen Zs states and the band gap are under
predicted. Under predicting the band gap is a usual LDA error and is anticipated.
However, the satellite is totally absent, suggesting that perhaps correlations are important.

The satellite is predicted using LDA+DMFT in chapter 8.

5.4.2 XAS Experiments

Although the XAS spectrum is not directly predicted in this thesis, we believe that
the rehybridization mechanism may be responsible for some of the interesting behavior
scen experimentally, and therefore a review of the data is included. It should be
emphasized that this technique has an inherently coarse energy resolution, and
interpreting the data is often subtle. Two different types of XAS spectra are considered.
The first is the Co 2p spectra, which arises from exciting an electroﬁ from the Co 2p
levels to the unoccupied Co d states. There will be two main absorption peaks due to the
fact that the p orbitals are split via spin-orbit coupling. The second type of spectra is the
oxygen ls spectra, which arises from exciting an electron from the oxygen ls state to the
unoccupied oxygen states.

A number of studies present Co 2p XAS in order to determine if Co*" is formed
during deintercalation or if Co®” remains. Changes in the spectra as a function of lithium
are extremely subtle, and opposite conclusions are sometimes reached. Dupin et al
conclude that their data indicates that Co** is formed during deintercalation *' (see Figure
13). They state that the formation of the shoulder on the high energy side of the Co 2D 112
peak is the signature of the presence of Co*". Montoro et al have presented similar data
for a range of Li compositions®” (see Figure 14). All the curves are similar, but there are
small peak shifts and possibly the formation of subtle shoulders. However, Montoro et al

claim that all these curves are essentially identical and that this is evidence that Co
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remains Co®" through the entire deintercalation process. They suggest that the holes are

totally accommodated by the Oxygen. The experiments by Yoon et al show more
noticeable effects™ (see Figure 15). It should be noted that in this study a LiCoQO; thin
film was used, as opposed to the previous two studies which used bulk material. These

authors suggest both the Co and the oxygen may be involved in charge compensation.

Galakhov et al present data on a variety of materials >*, The most relevant comparison is

between that of LiCoQO, and Nag 7CoO,, which should be similar to the Li case. As

shown, the curves are rather similar. These authors conclude that the holes in Na,CoO-

must be on the oxygen orbitals and Co remains Co’".
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Figure 13 Co 2p XAS spectrum of LiCoQ; (top) and Lip sCoQ; (bottom)*'.
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Figure 14 Co 2p XAS spectrum of Li,CoO; 52 1 have added vertical lines as references

to help detect changes in the peaks.
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Figure 15 Co 2p XAS spectrum of Li,.,CoO, **.
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Figure 16 Co 2p XAS peak for various materials®.

The three preceding set of authors also present O /s XAS spectra for same cases.

Most of the data is similar, and therefore we only show the data of Montoro et al **

(see
Figure 17). The data clearly shows the growth of a shoulder on the low energy side of the
first peak, suggesting that hole density is being increased on the oxygen. The predicted O
Is XAS spectra from LDA is shown in the bottom panel, and it is in reasonable
agreement with experiment. One would expect band theory to predict a similar trend as of
function of delithiation given that we see the oxygen partial DOS above the Fermi level
increase in CoQO; as compared to LiCoO, (see Figure 27 and Figure 23). This is largely
due to the increased mixing of the oxygen and e, orbitals as the holes are doped into the

system.
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Figure 17 O 1s XAS peak for Li,CoO, >,

To summarize, XAS has shown that there is a notable change in the O /s data and
more subtle changes in the Co 2p data. It seems reasonable that these experiments are
consistent with the results of our DFT calculations. If hole formation in the t,, states is
accompanied by electron addition to the e, state, then the average change in valence is
indeed smaller than going from 3+ to 4+. Additionally, our calculations support the

formation of a hole on oxygen.

5.4.3 Metal-Insulator Transition

The metal-insulator phase transition in Li,CoO, occurs over the two phase region
for 0.75 < x < 0.95, and this is evidenced in the voltage profile, the x-ray diffraction
(XRD) data, the conductivity data, and the nuclear magnetic resonance (NMR) data*’.

The voltage profile displays a plateau, denoting a composition range of constant chemical

63



potential and therefore a two phase region. The XRD data indicates that the two phases
have the same symmetry and the structural parameters are very similar. In the hexagonal
setting, the a lattice parameter differ by a negligible amount while the ¢ lattice parameters

differ by roughly 0.7% (see Figure 18).
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Figure 18 C parameter (hexagonal unit cell) vs x in LixCoO; (ref 36). The two phase

region is clearly seen in the region 0.75 > x > 0.95.

Conductivity measurements indicate that there is a composition-dependent activation
barrier for x > 0.95 which increases as x approaches ong, ranging from a minimum of less
than 10 meV and a maximum of 100-300 meV** 7 (see Figure 19). Therefore the holes
are weakly bound in the insulating state. Given that pure LiCoQ is a band insulator with
a gap of roughly 2.7 eV, one can infer that the samples in this study contain dilute
concentrations of vacancies. For x < 0.75, no appreciable activation is present and the

conductivity is essentially metallic.
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Figure 19 Conductivity data for Li,CoOs.

’Li NMR measurements were performed over a range of compositions. The
nuclear spin on the Li is extremely sensitive to the local electronic spin density, and
therefore NMR is an excellent local probe of the electronic structure. Given that LiCoO»
is diamagnetic, one would expect a single peak centered about 8 = 0 since there is no
electrenic spin density to interact with the nuclear spin, and this is indeed observed (see
Figure 20). As holes are doped into the system within the insulating phase, the intensity
of the peak decreases while no shifting of the peak occurs. Although this behavior is not
totally transparent, there are several plausible reasons as to why it may occur™. As Li is
removed frem the sample, one would expect some decrease of intensity of the peak at § =
0 simply because there are fewer Li present. However, one would also expect to see some
shift of the signal due to the presence of the hole density which is created as Li is
removed, and this is not observed. One possible explanation is that the Fermi contact shift

and/or the dipolar interaction due to the hole density is so strong that a portion of the
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signal is shifted to a completely different frequency range which is not being considered
in the experiment. Given that we know from experiment that the holes are bound, it may
be reasonable to expect a strong interaction. The figure indicates that the original peak

has shrunk to 25% of its original value at the onset of the transition.
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Figure 20 'Li NMR spectra for Li,CoO, for x > 0.94.

Once x < 0.95, and additional Knight-shifted NMR peak corresponding to the x = 0.75
phase appears and grows at the expense of the x = 0.95 peak (see Figure 21). The Knight-
shifted peak of the x = 0.75 phase is indicative of metallic electrons. Therefore the NMR
data clearly supports the notion of a metal-insulator transition. A similar study was

performed by Imanishi et al which yielded comparable results™.
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Figure 21 "Li NMR spectra for Li,CoO,. The change from a paramagnetic contact shift

to a night shift is clearly observed.

5.5 LDA Calculations of the electronic structure of LiCoO; and CoO,

In this section, we present various LDA band structures and DOS calculations.
Many of these results have been published in some form, but there are a number of
interesting details which have not been yet received attention in the literature, such as the
relatively flat band near the Fermi surface in LiCoQ;. The band structure and DOS for
LiCoO; are shown in Figure 22 and Figure 23, respectively. The two bands above the
Fermi level are the e, states, which are clearly separated from the fully occupied t,, states
below the Fermi level. At the gamma point, one can clearly see that the tp, bands have
been significantly split by roughly 1.5 ¢V, with the a;, band above the e,” bands. The a;,
band is quite flat, with a total width of roughly 0.35 eV, while the €, bands show a larger
width of 0.9 eV. The oxygen bands are clearly separated from the t,, bands. The
decomposed DOS in Figure 23 illustrate that there is mixing between the oxygen p states
and the Co d states. The oxygen states are mixed more heavily with the ¢, states than the

tzg states, as one would expect considering the overlap. Also, this is evidenced by the e,
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peak in the oxygen states and the oxygen peak in the e, states. The bandstructure
calculations thus suggest that the ground state of this material contains filled t, states
with hybridization induced filling of the e, states and hole formation in the oxygen states,
in qualitative agreement with the cluster calculations. This statement can be made more
quantitative by calculating the orbital occupation numbers (see Table 1). The oxygen hole
has been defined as the integral of the oxygen partial DOS within the ¢, peak, which is
essentially the unoccupied portion of the oxygen states due to hybridization with the e,
states. The e, states have 1.28 electrons, while each oxygen atom has 0.52 holes (2 per
cell).

0 tog &g O hole
CoQ, 6.46 4.50 1.63 0.72
LiCoO, 6.71 4.90 1.28 0.52
Co0,+1 6.72 4.92 1.38 0.60

Table 1 Orbital occupation numbers. The oxygen hole is the integral of the oxygen

partial DOS within the ¢, peak (ie. above the Fermi level).

Although it is clear that there is a significant splitting of the t,, states, it is clear
that the a;, band and e;” band do cross in the X direction in k-space. This raises the
question of how often crossing occurs. In order to get a feel for this, it is instructive to
inspect the total DOS. The t;; DOS form a three peaked structure, and the top peak
correspond to the a;, band. It is fairly clear that the DOS is nearly zero between the top
peak and the middle peak, and this is very suggestive that crossing is a rare event, It is
also interesting how the e,’ bands form a two peak structure. This appears to occur
because one of the bands disperses more before leveling off. The three peak structure of
the DOS does appear to be a fairly generic quality in that it can also be seen in LiNiO;.
However, this structure is destroyed once this system is sufficiently doped, as we shall

see in CoQ,.
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Figure 22 Non spin polarized band structure for LiCoO, calculated within LDA. The

Fermi energy is zeroed. The e, bands are in blue, t,;, in red, and oxygen in green.
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Figure 23 DOS for LiCoO; calculated with LDA. The decomposition into oxygen p

states 1s also shown. The Fermi level is zeroed. All atomic sphere radii used in the DOS

projection are 1 A.
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Thus far we have been labeling each band by its symmetry at the gamma point,

but it is useful to project the DOS onto the symmetrized orbitals to see the composition of

each band (see Figure 24). It should be noted that the difference between the a;,

projection and the e,’ projection is an indication of how broken the symmetry is (ie. they

would be identical if the t;; symmetry was not broken), and therefore the symmetry 1s

clearly broken. At the same time, it should also be noted that the flat band clearly has a

mixed character between A, and e;’. Therefore we should not lose sight of the fact that

the “a;; band” is clearly of mixed character. However, the a,, state is clearly dominant at

the Fermi level, which is what is pertinent for small doping. Additionally, there 1s still a

strong presence of the a;, character at the bottom of the t, DOS.

16
14 -
12 -
10

8 |

LiCoO2 symmetrized

0 1

Figure 24 DOS for LiCoO; calculated with LDA. The decomposition into a), and e’

states is also shown. The Fermi level is zeroed. All atomic sphere radii used in the DOS

projection are 1 A.
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The total DOS for Lip sCoO; is shown in Figure 25. It is clear that the a;, band
and the e,” bands begin to overlap more once the system is doped with 50% holes, given

that the two peaks nearest the Fermi energy are significantly overlapping.

12

10 -

-8 -6 -4 -2 0 2 4
eV

Figure 25 DOS for Liy sCoO, calculated with LDA.

The band structure and DOS of CoO; show some noteworthy differences (see
Figure 26 and Figure 27). Several of the oxygen bands have crossed into the t;, bands,
demonstrating that the bands are behaving in a non-rigid fashion. The formerly flat band
near the Fermi surface has become much wider, with a width of about 1 eV. The Fermi
level now cuts through this band, indicating the formation of holes in this band. The
decomposed DOS clearly illustrate that the mixing between the oxygen p states and the
Co d states has increased. Projections onto the a,, orbital still shows a presence at the
Fermi level, although the mixing has increased and there is substantial band crossing
among the a;, band and the e,” band (see Figure 28). These calculations predict that the
ground state will have a hole in the ty, states, and increased hybridization has caused a

higher population of the e, states and a larger hole in the oxygen states (see Table 1).
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Figure 26 Non spin polarized band structure for CoO; calculated within LDA. The

Fermi energy is zeroed. The ¢, bands are in blue, t;, in red, and oxygen in green.
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Figure 27 DOS for CoO; calculated with LDA. The decomposition into oxygen p states

and Co d states is also shown. The Fermi level is zeroed. All atomic sphere radii used in

the DOS projection are 1 A.
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Figure 28 DOS for CoO; calculated with LDA. The decomposition into a;, and e,” states
1s also shown. The Fermi level is zeroed. All atomic sphere radii used in the DOS

projection are 1 A.

Rehybridization Mechanism

The rehybridization mechanism in Na,CoQO, 1s the subject of chapter 6. In this
section, we provide the same charge density difference plots for Li,CoO; in addition to a
plot of the total charge within spheres centered on the atoms versus sphere radius (Figure
29, Figure 30, and Figure 31). These figures clearly illustrate that the same type of

rehybridization occurs in LiCoO; (see chapter 6 for details).
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Figure 29 A plot of the change of the number of electrons within a sphere versus the
radius of the sphere (ie. adding Li to CoQ,) . The oxygen curve represents both oxygen

sites within the unit cell. Clearly, the oxygen accepts a majority of the charge.
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Figure 30 Total charge density difference of CoO; minus LiCoO;. The approximate
location of Li, Co, and O are denoted by white, black, and blue dots, respectively. The
dark colors (ie. blue, purple) denote electron removal while light colors (ie. green,
yellow, red) denote electron addition. Essentially, charge is removed from the t,, orbital

and the oxygen, and charge is added to the e, orbital.
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Figure 31 Total charge density difference of CoO; minus CoO,+1e. Same conventions as

previous figure.

5.6 Cluster Calculations

In this section, we reproduce the published configuration interaction cluster

47,60

calculations™ ™" in greater detail. These calculations are used to predict the high energy

satellite which is alternatively calculated using LDA+DMFT in Chapter 6. First we begin
by defining the many-body Hamiltonian for the cluster.

12
H= %Z(y] V|k)d; d;dd, +Zigdd,.*d‘. +Zigpp‘.+p,. +1, (p;'d,. +d,.+p,)—zg4Dq d/d, +
ifkl i i

3 6Dgd"d,
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where p; and 4, are the destruction operators for the symmetrized oxygen p and Co d
states, t; is the hopping matrix element between Co and Oxygen, 10Dq 1s the crystal field
splitting, and €, and g4 are the bare energies for the oxygen p and Co d states. The only
symmetrized p states used in this model are those with e, and 7,, symmetry.

In order to solve this Hamiltonian, we shall choose a suitable many-body basis set
in which the Hamiltonian will be diagonalized. For lucidity, we will begin by setting up
the problem in the absence of multiplets (ie. no exchange) and crystal field splitting, and
under the assumption that the different oxygen symmetries are equivalent. In this case,
the ground state wave function of the N, N-1, N+1 particle systems can be expanded as

follows:

[N)=a,

d")+b,

d"“_[i>+c"‘d"+2ﬁ>
(N-1)=a,,|d"")+b,,|d" Ly+c,, |d"™'L)

[N+1)=a,,|d"")+b,,|d"L)+c,,

dn+3é2>
where a, b, and ¢ are variational coefficients. This basis is by no means complete, but
higher order configurations will be high in energy and will not have a significant effect

on the spectrum. Given the above assumptions, we can now write a simple formula for

the energy of a given configuration.
1
Eld"L")=ne, +2U nln=1)+ me,

Using this simple formula, we can find the relative energies of the different basis

configurations for the respective systems.
E(a™' ") -E(d"L")=¢,-&,+Un=A
E(aL?)-E(d"L")=2¢,-26,+2Un+U = 2A+U
E(aL)-E(d'[")=g,-£,+Un-U=A-U
(

E(d™im?)-E(d"'L")=2¢, - 26, +2Un-U =24-U

The Hamiltonian matrix can now be constructed for the N and N-1 particle system.
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E@d") t 0

HWN)=| ¢t E@)+A t
0 ¢ E(@")+2A+U
E(d™) t 0
HIN-D)=| ¢  E@H)+a-U t
0 ¢ E@d"™)+2A-U

We see that up to a constant, the diagonal elements of the Hamiltonians are defined by A
and U, and therefore the absolute values of €, and g4 are not necessary. Only A is given in
reference *’, and therefore the spectrum can only be determined to within a constant. The
Hamiltonians can now be diagonalized to give the eigenvalues of the respective systems.
In order to get the photoemission spectra, one needs to construct the imaginary part of the

greens function, also known as the spectral function.

p(@)=Y (N-1Li|dIN)S(w-E, +E)+) (N+1,i

d'|N)s(w+E, —E)

In order to address this problem in a more realistic fashion, we will not introduce
the above simplifications. Therefore, one needs to construct all the relevant symmetrized
wavefunctions in order to create a realistic basis. This task is accomplished by following
the rules of group theory®'. The basis functions for the N-1 particle system are shown in
Figure 32, and for the N particle system in Figure 33. For the N-1 particle system, only
basis functions for the Zngg irreducible representation are considered because all 5 other
irreducible representations will be degenerate. Now the Hamiltonian matrix can be
constructed. As shown above, the average energies of the multiplets are defined in terms
of the charge transfer energy and U. A representative submatrix for the N and N-1

particle Hamiltonians using the generic basis from above is shown.

(11H'|1) kit 0

H(N)=| kt (2|H'|2)+A kjt
0 kt (3|H'|3)+2A+U

(1|H 1) kt 0

H(N-)=| &kt (2|H'|2)+A-U kt
0 kt B|H'|3)+28-U
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where

t2g

H':-;—Z<U,V,kl>di+d;d,d,( +Z]—;(pi+di +di+pi)_Z4Dq 'di+di

ikl

+§: 6Dq d;d, - %UNd (N, -1)

k is some constant which depends on the particular basis states used in the matrix
element, and Ny is the number operator for the d electrons. H’ does not contain €, or ¢4 as
these are contained within A. Addttionally, the last term in H’ removes the average
electron interaction, because this is already accounted for with A and U.

The resulting photoemission spectra for the N-1 particle system is shown in
Figure 34. The occupancies are shown in N-1 and N particle systems are shown in F igure
35 and Figure 36, respectively. The main line of the N-1 particle system is composed of

0.22 d*,0.56 d°L,and 0.22 d"I* . One of the reasons we repeated these calculations

was to determine the specific nature of the d’L state in the main line, which is not given

in ref*’. This configuration is overwhelmingly composed of the four different states

-0t 0 4

£ee > » as indicated in Figure 35. Additionally, we find that the satellite is roughly 0.5

d* and 0.4 4" 2
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Figure 32 Symmetrized wave functions for the N-1 particle system in the cluster
calculation for LiCOQ,. The Co d states are all in the electron representation, while the
oxygen p states are in either the electron or hole representation. O represents an p
electron, while ¢ represents a p hole. {=xy, n=xz, {=yz, u=z’, and V=x2-y2 . The presence

of a bar indicates low spin.
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Figure 33 Symmetrized wave functions for the N particle system in the cluster

calculation for LiCOO,. Same conventions as previous figure.

Figure 34 Calculated removal spectrum for LiCOQ,.
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E1 E2 E3 E4 E5 E6 E7 EB EY9 E10 E11 E12 E13 E14 E15 E16 E17
state1 022 000 001 000 002 049 006 000 000 003 0.00 002 000 001 001 000 0.00
state2 005 059 001 000 000 0.00 000 000 0.00 000 000 000 000 001 005 004 0.20
state3 0256 0.05 025 011 001 0.00 0.01 000 0.00 000 000 0.00 002 0.12 0.01 000 0.01
state4 018 001 006 040 001 0.00 001 000 000 001 0.00 004 003 001 001 006 0.02
state5 0.06 000 037 020 004 001 000 000 000 000 000 001 000 C.13 0.08 002 0.00
state6 €03 000 001 000 054 003 000 000 000 000 001 000 001 002 000 016 006
state? 0.01 0.03 004 000 000 000 0.19 051 005 004 000 000 001 Q03 0.03 001 0.04
state8 0.01 004 000 002 002 000 019 036 015 005 002 003 001 000 001 000 0.09
state9 0.01 0.11 000 002 001 001 018 0.00 012 022 001 004 002 003 001 002 013
state10 0.01 0.12 0.00 000 002 003 000 001 049 002 001 000 001 002 005 006 0.11
state11 0.09 0.04 (004 006 004 031 013 000 000 006 000 006 000 010 0.01 0.02 0.00
state12 0.02 0.00 009 004 007 €11 001 000 005 006 000 001 0.00 028 005 0.07 007
state13 0.03 0.01 000 0.00 0.0C ©€.01 007 0.00 001 012 022 008 030 005 003 000 0.01
state14 002 000 000 000 0O00C 000 001 001 0GO1 0.00 003 009 016 001 025 019 007
state15 0.00 000 001 009 003 000 000 002 Q04 007 007 009 021 003 020 003 0.00
state16 0.00 0.00 0.0t 0.05 002 0.00 001 001 0.00 002 008 004 003 000 003 002 0.09
state17 0.03 001 000 000 000 001 012 001 001 022 028 0.00 009 002 010 000 001
state18 0.00 0.00 006 000 009 000 001 006 006 003 013 025 003 009 004 012 0.04
state19 000 0.00 006 0.00 007 000 000 001 000 005 014 024 007 004 005 020 0.06

Figure 35 Occupancies for the N-1 system. The first column corresponds to the main

line, while the sixth column corresponds to the satellite.

E1 E2 E3 E4 ES
state1  0.491 0.469 0.006 0.006 0.027
state2 0435 0.268 0.025 0.036 0.235
state3  0.043 0.176 0.565 0.075 0.141
state4  0.009 0.021 0.021 0.56 0.389
state5  0.022 0.065 0.383 0.323 0.207

Figure 36 Occupancies for the N particle system.

5.7 Overview

In this chapter we presented background material on Li,CoO,. Photoemission data
displays a satellite which is not captured within LDA, but is predicted by empirical
cluster calculations which are repeated in detail within this chapter. Predicting this
satellite using LDA+DMFT, a nearly first-principles technique, 1s the focus of chapter 8.
XAS data indicates notable changes in the oxygen 2s absorption spectra while subtler
changes in the Co 2p absorption spectra as a function of Li removal. This appears to be
consistent with the rehybridization mechanism, in which hole density doped into the ty,
states is compensated by electron density in the e, states and hole density on the oxygen

states. The band structure and density of states are presented for LiCoO; and CoO,.
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Perhaps the most interesting feature is the flat a;, band in LiCoO;, which will greatly
enhance the localizability of a hole.

The experimental observation of the metal-insulator transition for 0.75 <x <0.95
is discussed in terms of the XRD, conductivity, and NMR data. Two distinct phases are
observed with the same symmetry and similar structural parameters. The x = 0.75 phase
displays a Knight-shifted NMR signal with essentially no activation in the conductivity,
while the x = 0.95 phase displays a non-shifted NMR peak and an activated conductivity.
This evidences a first order metal-insulator transition, although the mechanism of
insulating state and the transition has not yet been explained. This question is addressed

in chapter 7.
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Chapter 6

The Role of Hybridization in Na,CoQO, and the
Effect of Hydration

Abstract

Density functional theory (DFT) within the local density approximation (LDA) is
used to understand the electronic properties of Na,;sCo0- and Na;3C00,(H20)473, which
was recently found to be superconducting®. Comparing the LDA charge density of CoO,
and the Na doped phases indicates that doping does not simply add electrons to the t;,
states. In fact, the electron added in the t;, state is dressed by hole density in the e, state
and electron density in the oxygen states via rehybridization. In order to fully understand
this phenomenon, a simple extension of the Hubbard Hamiltonian is proposed and solved
using the dynamical mean-field theory (DMFT). This simple model confirms that the
rehybridization is driven by a competition between the on-site coulomb interaction and
the hybridization. In addition, we find that the presence of ¢,-oxygen hybridization
effectively screens the low energy excitations. To address the role that water plays in
creating the superconducting state, we compare the LDA band structure of Na,3;CoQO, and
its hydrated counterpart. This demonstrates that hydration does cause the electronic

structure to become more two-dimensional.
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Na,Co0, was originally investigated as a rechargeable battery material®’. More
recently, Na,CoO; and its hydrated counterpart are receiving renewed interest due to the
discovery of superconductivity*?, in addition to anomalous thermoelectric properties®.
Understanding these properties requires a detailed understanding of the low energy
Hamiltonian in this material. While there are many interesting parallels between the
cuprates and Na,CoQO,, the details of the electronic structure are quite different. In
Na,Co00s, the Fermi level lies within the t,, states, with x=1 corresponding to a band
insulator with filled t,, states and x=0 corresponding to one t;; hole per cobalt (possibly a
Mott insulator). One of the useful steps forward in understanding the cuprates was the
work of Zhang and Rice, in which they derived an effective one band model **. Initial

studies of the low energy physics of Na,CoO; have assumed a one band model®**’

, given
that the octahedra in this structure are distorted and the t, levels are split into a 1-fold a;,
level and a 2-fold e,” level (not to be confused with the usual e, levels) **. However, the
potential influence of the ¢, orbitals and the oxygen orbitals on the low energy physics
has not yet been addressed.

Na,CoO; crystallizes in a layered structure, in which the layers are two-
dimensional triangular lattices of a given species. The layers alternate as Na-O-Co-O and
this pattern is repeated. Both the Na and the Co reside in sites which are coordinated by
distorted oxygen octahedra. Insertion of water causes the oxygen layers o be pried apart,

resulting in an even more two-dimensional-like structure **. Co exists in the low spin

state due to the appreciable crystal field splitting. When x<1 Co is in a mixed valence

state, Co’"/Co™", yielding an average electronic configuration tZ’ . However, the large

overlap of the e, and the oxygen states creates strong hybridization and therefore an
appreciable occupation of the e, states and hole density on the oxygen states.

Previous density functional theory (DFT) calculations addressing Na,CoO»
focused on the magnetic properties, in addition to rationalizing the transport properties in
terms of the LDA density-of-states °* ¢°. However, hydration was not explicitly
considered. In this letter, we present first-principles calculations of Na,2CoO; and
Nay3C00,(H;0)43. We demonstrate that the naive picture of adding eleqtrons to the t,
states when doping CoO; with Na does not accurately describe the physics of Na,CoO,.
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DFT calculations within the local density approximation (LDA) predict that Na doping
adds electrons to the t, states, in addition to hole density in the ¢, state and electron
density in the oxygen states. Additionally, we demonstrate that the presence of the e,-
oxygen hybridization screens the low energy excitations of the system.

Ali LDA calculations were performed using the Vienna Ab-initio Simulation
Package (VASP) '*7'. VASP solves the Kohn-Sham equations using projector
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augmented wave pseudopotentials and a plane wave basis set. A cut-off energy of

600 eV was chosen and k-point meshes of 6x6x3 were used for all cells. Experimental
structural parameters were taken as a starting point for full structural relaxations’™ .
LDA calculations were performed for Na;;3Co0; and Na,3Co0,(H,0)4/3. The ordering of
the Na atoms has been determined for both structures, and the ordering of the water

™75 The Na atoms are four-fold

molecules has been narrowed to a few possibilities
coordinated by the water molecules, with two water molecules above and two below.
However, there are six possible sites above and below the Na atom which may
accommodate the water molecule. Two possibilitics were suggested by Jorgensen et al”
and we selected the more symmetric of the two configurations in which two opposing
sites above the Na and the mirror image of the sites below the Na are occupied.
Regardless of whether or not this particular ordering happens to be the ground state, the
qualitative effect should be similar.

The LDA bands for Na,3C00; and Na,;3C00,(H>0)45 are presented in Figure 37.
In both cases, a stable moment of 2/3 Bohr magnetons per formula unit is found. The
respective bandstructures demonstrate that the t;; bands are similar, illustrating that
hydration does not have any dramatic effect on the low energy physics. In both cases the
dispersion in the z direction is small, which is a result of the two-dimensional nature of
both the hydrated and non-hydrated compound. One notable difference is that the bands
in the hydrated case display less splitting due to interlayer coupling at any given k-point.
Given the supercell that we have chosen, only 9 t;; bands would be distinguishable at a
generic k-point if the layers did not interact (ie. the unit cell contains 3 Co basis atoms
per plane). Interlayer coupling will induce band splitting, and this is more pronounced for

Nay3Co0; than Na;3C00,(H20)4. This reflects the fact that the layers are more isolated

in the hydrated case, and hence more two-dimensional, which is commonly believed to
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be an important ingredient of superconductivity in the cuprates’®. It might be argued that
the difference in band the structures are small, but it may still be relevant considering that
the superconducting transition temperature is roughly 4 Kelvin.

Upon doping CoO, with Na, the Na will largely donate its electron at the Fermi
energy. Therefore the changes in the ground state upon doping should qualitatively
resemble the nature of the low energy excitations of the system. Given that the LDA DOS
for Na,CoO; shows the Fermi energy to lie within the t,, states, which only have a
relatively small mixing with oxygen, one might expect that the electron addition state
upon doping is some linear combination of tz orbitals in addition to some small oxygen
character. We shall demonstrate that this 1s not true, indicating that the LDA bands are
behaving in an extremely non-rigid fashion. In order to accurately characterize the
changes in the ground state upon doping CoQ,, it is useful to plot the charge density
which has been added to the system. This can be done by subtracting the charge density
of CoO, from that of Na,sCo0; calculated with the same structural parameters. This
approach has been used frequently in studies of Li,CoO, **,

The difference in charge density between CoO, and Na,;Co0; is shown in Figure
38, which illustrates that the addition states are not simply ty, orbitals. In fact, electron
density is added to the t,, states, hole density is added to the e, states, and electron
density is added to the oxygen states. This can be explained intuitively as a multi-step
process, and this hypothesis will be justified below. LDA predicts an appreciable
occupation of the e, orbitals for CoO,, roughly 1.6 electrons in a 1 A sphere around Co,
due to the large hybridization between the directly overlapping oxygen and e, states.
When charge 1s added to the system, ¢lectron density in the t,, orbitals will increase
causing an increase of the Co on-site coulomb repulsion. The on-site coulomb repulsion
can be minimized by unmixing the oxygen and ¢, orbitals in order to decrease the
occupation of the e, orbitals. Therefore, this rehybridization mechanism is a competition
between the e,-oxygen hybridization and the Co on-site coulomb interaction. Clearly, this
logic can be inverted to explain the behavior of Na,3C00, when Na is removed and holes
are introduced into the system. In this case, holes are introduced into the ty, States, in
addition to electrons in the e, states and holes in the oxygen states. The system increases

the hybridization, and therefore the occupation of the e, orbitals, because there is less ty,
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density to interact with e, denstty. One can think of the rehybridization as a quasiparticle
in which the particle (electron or hole) in the t,, states has been dressed by a
rehybridization cloud. A more quantitative analysis of the effect can be given by
integrating the change in charge density within a 1 A spheres centered on each atom. The
oxygens gain 0.73 electrons per unit cell, while Co only gains 0.12 electrons per unit cell
due to the rehybridization mechanism. It should be noted that the Na potential clearly
does have a notable effect on the rehybridization. The oxygen orbitals nearest the Ma are
preferentially occupied in order to more effectively screen the Na potential.

Hints of this rehybridization effect were first noticed computationally in a study
of Li, TiS; over 20 years ago’'. The authors note that most of the net incoming charge
ends up on the Sulfur as Li is added to the material. Studies of Li,CoO- characterized this
phenomena much more clearly”’ 78 Wolverton and Zunger made a key step in
understanding this phenomenon by suggesting that it is driven by a need to minimize the
potential effect of the strong on-site coulomb interactions and that it is similar to what is
observed for transition metal impurities in semiconductors’*. We wish to emphasize that
this phenomena is a competition between the on-site coulomb repulsion and the
hybridization, and that the degree to which the rehybridization occurs will depend on the
relative magnitudes of the parameters of the particular material at hand. This effect is
likely to occur in many other transition metal oxides in which electrons or holes are being
doped into the t, states, such as Na,Ti0;, Li,VO,. The results from X-ray Absorption
experiments for Li,CoO, and Na,CoO; are consistent with the rehybridization
mechanism® . The Co 2p signal shows little variation as a function of doping, while the
oxygen Is signal shows strong changes. This is in agreement with the observation that the
rehybridization mechanism causes the average valence of the transition metal to remain
relatively constant, while a net hole is formed on the oxygen.

While LDA gives an indication of the addition state, it cannot even qualitatively
characterize the loew energy excitations of the system when the electronic correlations are
strong. If the rehybridization mechanism is indeed the result of a competition between
hybridization and the on-site coulomb interaction, one should be able to capture this

effect within a Hubbard-like model. The qualitative effects of the hybridization on the
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low energy excitations may then be explored within the modified Hubbard model.

Consider the following model Hamiltonian:

H = Z[gppit,o-pz‘ led +£(’el ae1 Ned +T ( I:':O‘pl,a' + ptj:a'ei,a' )} Z W, jttTcr J.o
; i.j,o0
t t M)
+UZ|: !G’el atlTa io +tTTtl Tt, J,tl 4 +e, T Te:r_.l,e,'.",] —/JZ[p,"gp,‘ o +e| G’el el +tl a'tz a':|
o

This model contains three orbitals ( p, ¢, e ) which can be analogously thought of as the
oxygen p orbitals, the transition metal t;, orbitals, and the transition metal e, orbitals. The
respective annihilation operators are denoted as p, e, and 7. We only allow for
hybridization between the p orbital and the e orbital as the oxygen orbitals hybridize
much more strongly with the e, orbitals than the t;, for transition metals in an octahedral
site. A coulomb repulsion U is included for the e and ¢ electrons, and for simplicity we
only allow the ¢ electrons to hop. The hopping parameters for the ¢ electrons, w;;, are
chosen to yield a semicircular density of states of width 1 eV centered about zero.
Additionally, we choose €,=-1.5 ¢V, &.~1 eV, T;,..=2 eV, and U=3 eV. This model
contains all the necessary ingredients to qualitatively demonstrate the rehybridization
mechanism. It should be clear that if all the e and p terms were removed, we would be
left with a simple one-band Hubbard model for the ¢ electrons.

The above model is not solvable in general, and we shall therefore employ the
dynamical mean-field theory '® (DMFT) as an approximation. Using a path integral
representation of the partition function, the effective action for this model can be written

in infinite dimensions as follows:

Sy = j-j.a'rdrtT (r)G’ (f—r')t(r)+:[dref (r)G: (r)e(r)+

(2)
U ofdfi_Za[e,'.a (t)eo (7)a ()t ()42 (2) 62 (D)L (D)1, (F) + 1 (7)e 1 () el (), ()]
where
G; (T)=[5r—5ﬂ+ﬂ‘%} (3)

and G/ is the bath function for the ¢ electrons which has to be determined self

consistently using equation 4, where D is the quarter bandwidth.
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G’ (z‘mﬂ)=[ia),l +u-D'G, (z'a)n)]_l - 4
The Grassman variables for the oxygen states have been integrated out. Due to the fact
that we have assumed that the e electrons have no intersite hopping, G’ will remain

unchanged. The above effective action corresponds to a two orbital AIM, and we are still
left with a difficult many-body problem. In order to solve this, we follow the usual
procedure of decoupling the quartic terms using a discreet Hubbard-Stratonavitch
transformation’”, and evaluate the resulting summation using Hirsch-Fye quantum
Monte-Carlo'™ ®.

First, we demonstrate how the occupation of the ¢ and e orbitals change as the
total density is varied (see Figure 39). When the ¢ orbital is nearly empty, the e orbital has
an occupation of roughly 0.45 electrons due to the strong hybridization with the oxygen.
As the density increases and the ¢ orbital is filled, the e orbital empties and the p orbital is
filled. Thus we clearly observe the rehybridization mechanism in this simple model. It
does not appear to be as strong as in LDA calculation of Na,Co0O,, where the gain in
density in the t», orbitals is largely cancelled by the loss in ¢, occupation. However, this
is not totally surprising given the simple nature of the model we have chosen. Most
notably, we only provided one e orbital when there are two in the real material. This will
decrease the initial occupation of the total e, density.

In order to explore the effect of the hybridization on the low energy excitations of
the system, we have performed calculations at different values of 7},. while maintaining a
half filled ¢ band (see Figure 40). The parameters chosen for this model yield a Mott
insulator when the ¢ orbital is half filled, as seen by the gap in the spectral function. The
gap is shown to decrease as T, is increased. This demonstrates that the hybridization
among the e and p orbitals results in an effective screening of the ¢ electrons. This can be
understood considering that increasing the hybridization will increase the occupation of
the e orbital, resulting in an increased repulsion with the ¢ electron and hence driving it to
delocalize.

To conclude, we have shown that the states added to CoO; are not simply
electrons in the ty, states, but rather an electron in the t,, state dressed by hole density in

the e, state and electron density in the oxygen state. This rehybridization results from a
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competition between oxygen-e, hybridization and the Co on-site coulomb interactions.
The LDA result is corroborated with a modified Hubbard model which we proposed and
solved using DMFT. Our DMFT calculations indicate that the presence of e;-oxygen
hybridization effectively results in a screening of the low energy tz, excitations. This
indicates that the oxygen states and e, states should be considered when deriving a low
energy Hamiltonian for Na,CoQO; and its hydrated counterpart. We note that this behavior
can be seen in several other similar materials, and that this is a rather general
phenomenon. Comparing the LDA bands for Na;;;Co0; and Na;2Co0O>(H;0)4/; shows a
reduction in the band splitting due to a decrease of the interlayer coupling. This indicates
that hydration does result in a more two-dimensional electronic structure, and this fact
may be related to why hydration is required to create the superconducting state.

This research was supported with funding from The Department of Energy, Basic
Energy Science under contract DE-F602-96ER45571 and the National Partnership for
Advanced Computing (NPACI).
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Figure 37 LDA majority t;, bands for Na;;3CoO; (top panel) and Na;3CoO,(Hz0)43
(bottom panel). The Fermi energy is at zero. G=(0,0,0), M=(1/2,0,0), K=(2/3,1/3,0), and
7=(0,0,1/2).
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Figure 38 The total charge density difference of Na,3Co0; — CoO,. A plane which cuts
through the Co-Oxygen octahedral plane was chosen. The horizontal rows of
Na/vacancies, oxygen, and Co are clearly depicted (bottom and top edge of figure bisect

Na/vacancy layer). Units are electrons/A”.
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Chapter 7

A First-Order Mott Transition in Li,Co00,

Abstract

Despite many years of experimental searches for a first-order Mott transition in
crystalline doped semi-conductors, none have been found®' ™. Extensive experimental
work has characterized a first-order metal-insulator transition in Li,CoQO,, the classic
material for rechargeable Li batteries, with a metallic state for x < 0.75 and insulating for
x > 0.95*> Despite the fact that this transition has been well characterized
experimentally, the mechanism of the transition remains unidentified. Using large-scale
density functional theory (DFT) calculations, we identify this hereto anomalous metal-
insulator transition as a Mott transition of impurities. DFT demonstrates that for dilute Li
vacancy concentrations the vacancy binds a hole and forms impurity states yielding a
Mott insulator. The details of the transition are analyzed in terms a one-band Hubbard
model. We conclude that this transition is perhaps the first clear case of a first-order Mott
transition in a crystalline doped semi-conductor.

95



Alkali doped CoO; is continuing to prove itself as a material rich in both
fundamental physics and technological application. Na,CoO, and its hydrated counterpart
are receiving renewed interest due to the discovery of superconductivity*?, in addition to
anomalous thermoelectric properties®®. Li,CoO is the primary cathode material in
rechargeable Li batteries, sustaining a multibillion dollar market. As a result, it has been

the subject of intense experimental and theoretical study, including the prediction® ** ¥

and experimental verification®

of unusually complex phase behavior. In this paper we
use large-scale density functional theory (DFT) calculations to demonstrate that this
technologically important material also exhibits the first clear example of a first-order
Mott transition in a doped semi-conductor.

L1,CoO; crystallizes in a layered structure, which can be thought of as an
interpenetrating face-centered-cubic lattice with one sublattice containing oxygen and the
other containing alternating (111) planes of Li and Co. When Li,CoO; is fully lithiated, x
=1, Co is formally in the 3+ valence state. Due to the appreciable crystal field, the Co-3d
states are split into a lower manifold containing three levels (t, states) and a higher
manifold containing two states (¢, levels). Having six d ¢lectrons, Co exists in the low
spin £; geg configuration and LiCoO; is a band insulator. Because of the high mobility of

1% or electrochemical

Li in this material, it is possible to remove Li either by chemica
means® . This ability to exchange Li gives Li,CoO; its excellent properties as a Li storage
material in rechargeable Li batteries®” ®®, Li removal creates a variety of phase transitions
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in the material including order/disorder transitions™ ™ "', oxygen sliding®, and alkali

*8:84 Our focus in this paper is on the phase transition in the early stage of

staging
delithiation, which is believed to be a metal-insulator transition*’. Using DFT
calculations we provide evidence that this transition is a Mott transition of impurity
states. Although Mott predicted such transitions to be first-order, all known examples in
doped semi-conductors are continunous due to the random placement of the impurities.
The electronic changes that occur in LixCoO?2 as Li is removed are related to its
structural changes. Electronically, Li removal leads to the creation of holes in the
valence band of Li;CoQ, which is of t;, character. Conductivity measurements indicate

that there is a composition-dependent activation barrier for x > 0.95 which increases as x

approaches one, ranging from a minimum of less than 10 meV to a maximum of 100-300
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meV** " X-ray diffraction studies of Li,CoO; indicate that Li removal does not occur
continuously, but through two-phase coexistence for 0.75 < x < 0.95%. The two
coexisting phases are very similar, with the same symmetry but a 0.7 % difference in the
c lattice parameter, and no appreciable difference in the a lattice parameter (hexagonal
setting)*’. Li-NMR indicates there is a unique NMR signal for each phase, indicating an
electronically different Li environment in both phases’®. The signal for the phase with
low Li composition (x = 0.75) is Knight-shifted indicating metallic behavior, while Li has
no NMR shift in the phase with high Li content, indicating localized carriers. Based on
these experiments it has been concluded® that for x > 0.95 the system contains weakly
bound carriers and for x < 0.75 the system 1s metallic and that the two-phase coexistence
of phases with the same symmetry for 0.95 < x < (.75 is likely the result of a first-order
metal insulator transition. In this paper, we show that the mechanism of this transition is
a classical Mott transition, with an insulating impurity band at high lithium composition
decomposing into the valence band as the concentration of lithium vacancies increases.

The first step in understanding the transition is identifying what specific
mechanism is inducing the insulating state for high Li concentrations. LiCoQO, is band
insulator with the Fermi level between the filled t,, states and the unfilled e, states and
one could naively expect a metallic state for x < 1. Given that the insulating state only has
a dilute concentration of holes ( < 5%) the on-site Co t, interactions are not directly
relevant as the double occupation of holes on the same site is unlikely. The possible
physical phenomena which may be responsible for the localization of the hole are
polarons and the electrostatic potential of the Li vacancy. As will be shown below,
density-functional theory (DFT) calculations indicate that the vacancy potential is a
dominant factor in localizing the holes.

All DFT calculations were performed using the Vienna Ab-initio Simulation
Package (VASP)"" 7" within the local-density approximation (LDA). VASP solves the

Kohn-Sham equations using projector augmented wave pseudopotentials’

and a plane
wave basis set with a cut-off energy of 400 eV. In the present calculations, we are
investigating the nature of the insulating phase, x > 0.95, and therefore large supercells
are required to attain dilute concentration of vacancies. Large-scale parallel computation

was performed on the Blue Horizon supercomputer to reach a minimum concentration of
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0.78% vacancies, corresponding to a cell with 512 atoms. The effect of the impurity
potential can be seen by inspecting the top edge of the valence density-of-states (DOS). If
the vacancy potential is strong enough, it will bind the hole resulting in an impurity band
which breaks away from the top of the valence band. This is analogous to what occurs in
the classic doped semiconductors, such as Si:P*, and Figure 41 schematically illustrates
possible scenarios for this impurity band. For LiCoO,, the valence band is full (Figure
41A). When the system is lightly doped, an impurity band may form resulting in a small
peak separated from the top of the valence band, and this peak would be half-filled given
that there is one hole associated with each vacancy (Figure 41B). If an impurity band
forms, it is possible that the on-site correlations within the impurity band will be strong
enough to split the impurity band and form a Mott insulator (see Figure 41C and Figure
41D). Some of the previously described behavior is observed in the LDA calculations.
Inspecting the top edge of the LDA non-spin-polarized valence DOS, the formation of a
peak can clearly be observed as Li is removed (see Figure 42). The peak grows more
distinct as the vacancy concentration is decreased, culminating in an impurity band for
0.78% vacancies which is barely split off from the valence DOS. Therefore, LDA
calculations indicate the formation of an impurity band, similar to what is pictured in
Figure 41B. The non-spin-polarized LDA calculations will always give a metallic
impurity band, Figure 41B, as opposed to a Mott insulating impurity band, Figure 41C or
Figure 41D, given that LDA does not properly treat the electronic correlations. However,
allowing for spin polarization (LSDA) in the 1.4% vacancy calculation demonstrates that
the ferromagnetic interactions split the impurity band and produce a ferromagnetic
insulator (similar to Figure 41D), which is as close as LDA can come to the true
insulating state. The key result is that the LDA produces an impurity band. This band
would likely be split in the dilute limit considering that the impurity bandwidth at 0.78%
is roughly 20 meV, while the experimental conductivity demonstrates that the binding
energy of the hole is an order of magnitude larger.

In order to better characterize the nature of the impurity state, we can plot the hole
density which has been added to the system as Li is removed. This can be done by
subtracting the charge density of the structure with Li vacancies from that of

stoichiometric LiCoQ,, while holding all structural parameters constant. Figure 43 shows
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the result for Lig.969C00; (3.1% vacancies). The impurity state which is formed by the
vacancy potential can be seen as hole density which congregates around the vacancy, and
it displays a rather complex structure. The most notable feature is the dominant hole
character on the oxygen p orbitals which surround the vacancy. Additionally, electron
density can be identified within the e, orbitals and hole density within the t;, orbitals on
all the Co atoms which surround the L1 vacancy. Given that the projection of the DOS
indicates a predominant Co character within the impurity band (see Figure 42A green
curve), it is not immediately obvious why such a strong oxygen character is observed in
the charge density difference plot. This phenomenon has been previously observed in
LiC00;** 789! and studied in greater detail in Na,CoO, %2 1t is referred to as a
rehybridization mechanism, and it results from a competition between the eg-oxygen
hybridization and the on-site Co Coulomb interaction.

The above LDA calculations indicate that the insulating state is a Mott insulator
of impurity states, and therefore it is useful to represent the low energy physics of the
insulating phase as an effective half-filled Hubbard model of impurity states. As the
vacancy concentration within the insulating phase is varied, the effective Hubbard model
remains half-filled but two distinct effects will modify the electronic structure. First, the
center of gravity of the impurity band will move towards the t;; bands as the vacancy
concentration increases. This is due to the fact that the larger hole density will more
effectively screen the vacancy potential. Secondly, the hopping parameters among the
vacancy sites (ie. the impurity bandwidth) will increase as the increasing vacancy
concentration decreases the average inter-vacancy distance. This will reduce the splitting
between the upper and lower Hubbard impurity band. Both effects can independently
cause a transition to the metallic state though in a qualitatively different manner. In the
first case, the screening of the vacancy potential causes the impurity band to decompose
and its states to merge with the t;, bands once a sufficient hole density is achieved. We
refer to this as a classic Mott transition. In the second case, the intra-impurity band
hopping parameters will increase as a function of doping and will eventually overcome
the impurity on-site coulomb interaction, giving a metallic impurity band as in Figure
41A. Given that this is a metal-insulator transition within an always half-filled band we

refer to it as a Mott-Hubbard transition. Clearly, a necessary requirement for the Mott-

99



Hubbard transition is that the impurity band persists and is not first destroyed by the
classic Mott mechanism. The composition dependence of the activation energy in the
conductivity of Li,CoO; can be qualitatively understood in terms of the above
mechanisms. The excitation gap for carriers will either be between the upper and lower
Hubbard impurity band, or between the lower Hubbard band and the t,, states if the upper
Hubbard band lies within the t,, states (see Figure 41 C and D). In the first scenario the
increase in the intra-impurity hopping parameters will decrease the gap, while in the
second case both the increase in the intra-impurity hopping and the screening of the
impurity potential will reduce the gap.

Having established the nature of the insulating state and the different mechanisms
by which it may be destabilized, we now address the first-order transition to the metallic
state. If the metal-insulator transition in Li,CoO; is a Mott-Hubbard transition, it could be
modeled with a one-band Hubbard model. The one-band Hubbard model has been
extensively studied within the dynamical mean-field theory (DMFT), and a first-order
Mott transition is indeed observed as the relative magnitude of the hopping and the on-
site interaction is varied'®. However, this one-band assumption does not appear to be
valid in this material. The two-phase region spans 5-25% vacancies, and therefore once
more than 5% vacancies are present, a new metallic phase with 25% vacancies will
nucleate and grow at the expense of the insulating phase as the vacancy content is further
increased. It is therefore unlikely that the impurity band exists in the metallic phase given
that the metallic phase forms at 25% vacancies, and this is supported by our calculations.
Alternatively, the metallic phase can be well described with t, states at the Fermi level,
in which the impurity band has decomposed and the role of the vacancy has been reduced
due to screening. Therefore, the transition in Li,CoO, appears to be best characterized as
a classic Mott transition, in the sense that the transition 1s associated with a
decomposition of the impurity band due to screening of the vacancy potential by the long
range coulomb interaction of the hole density. Now that the qualitative nature of this
transition is understood, we investigate whether or not LDA shows any sign of predicting
a first-order transition by looking for a non-convexity in the energy as a function of
vacancy content. The LDA should do reasonably well in describing the energetics of

metallic phase, while it likely does not properly describe energetics of the Mott insulating
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state. We plot the formation energy for the cases of 3.1% and 5.6% vacancies along with
the previously published formation energies (see Figure 45). As shown, the formation
energy is nearly linear in the dilute limit and there is no sign of a non-convexity.
Therefore, although LDA produces an insulating state for low vacancy concentrations, it
fails in capturing the first-order nature of the MIT. Most likely this failure occurs because
LDA does not correctly describe the energetics of the Mott insulating phase correctly. In
terms of the effective Hubbard model of the impurity band, one might suggest that LDA
is similar to a Hartree-Fock solution of this Hubbard model whereas the true solution
would give a correlation induced splitting which would be lower in energy. Therefore the
LDA energies should be pulled down for x > 0.95 and this could create the non-convexity
and hence the two phase region. Another possible source of error in the insulating phase
is the possibility that the LDA does not properly describe the formation of the impurity
band due to the well known fact that LDA does not properly localize charge.
Additionally, a polaron would assist in forming the impurity band by enhancing the
effective mass of the holes. Although, there is no a-priori reason to expect the electron-
phonon coupling to be large in this situation, given that the symmetry of the t,, states is
already broken. All of the above factors will help stabilize the insulating phase and
therefore help create the non-convexity.

Now that the qualitative nature of this transition is understood and it is clear that
LDA fails, it is evident that capturing this transition within a first-principles approach
will be challenging. This is due to the fact that the low energy electronic degrees of
freedom exist on a different length scale for the metal and the insulator. The insulating
state 1s characterized in terms of coarse impurity states which span many oxygen and Co
ions, while the metallic phase is characterized in terms of finer Co t,, states. In order to
capture the transition, it would be necessary to write the Hamiltonian on the smaller
length scale (ie. in terms of the Co ty, states). Clearly, one would need to include the
impurity potential, perhaps in some average manner, in addition to the on-site and long
range coulomb interaction. Additionally, it is possible that the oxygen states may need to
be treated explicitly considering that the rehybridization mechanism plays a clear role in

forming the impurity state, as demonstrated above. Quantitatively describing this
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transition will serve as a great challenge to new theoretical techniques, such as cluster
DMFT*** GW+DMFT®> % and typical-medium theory®’.

One of Mott’s early suggestions was to search for the Mott transition in the classic
doped semiconductors®. Despite the extensive amount of experiments which have been
performed on crystalline doped semiconductors, all of the observed metal-insulator
transitions arc continuous transitions as opposed to first order®"®. This is typically
attributed to the random distribution of the impurity states, which creates Anderson
localization and destroys the first-order nature of the transition®'. Perhaps the only
exceptions occur in solutions such as Na-NH; where there are experimentally observed
first-order transitions which are believed to be associated with a Mott transition®'. Mott
suggested that the high mobility in these solutions may allow the impurities to form a
higher degree of order relative to the low mobility crsytalline materials such as Si:P, and
perhaps this suppresses the Anderson transition and gives a first-order Mott transition®’.
Therefore, the high mobility of the Li-vacancy may be a key difference relative to Si:P
which allows the transition to be first-order. Thus it appears that a very commonly used
material such as LiyCoO, may be the long awaited example of a first order Mott

transition in a crystalline doped semi-conductor.
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Figure 41 A schematic of the density-of-states for various realizations of the

impurity band. The blue curve is the valence band and the red curve is the impurity band.
A.) Pure band insulator. B.) Lightly doped band insulator with a metallic impurity band.
C.) Lightly doped band insulator with a Mott insulating impurity band in which the gap is
between the Lower and upper Hubbard impurity band. D.) Same as C except one of the
Hubbard bands has split into the valence band.
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impurity band is circled for clarity. All

plots are non-spin-polarized with the exception of panel F. A.) 4x4x2 unit cell, 3.13%
vacancies. Oxygen and Co partial DOS for the impurity band is shown in red and green,
respectively. B.) 5x5x2 unit cell, 2.00% vacancies. C.) 6x6x2 unit cell, 1.39% vacancies.
D.) 7x7x2 umit cell, 1.02% vacancies. E.) 8x8x2 unit cell, 0.78% vacancies. F.) 6x6x2

unit cell, 1.4% vacancies.
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Figure 43 The total charge density difference of Lij 960C00, — CoO,. A plane which cuts
through the Co-Oxygen octahedral plane was chosen. The vacancy is depicted by a black
dot, while selected Co and oxygen atoms are designated by red and white dots,
respectively. The vertical rows of Li/vacancies, oxygen, and Co can be seen. Units are
electrons/A’.
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Figure 44 A schematic of the Li (yellow), Co (blue), and oxygen (red) atoms which lie
within the black rectangle in the plane pictured in Figure 43. The Li vacancy is located in
the center.
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Figure 45 Total energy of Li,CoQ,. Previously published calculations by Van der Ven et
al’® are given by blue triangles, while our calculations are given by red squares.
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Chapter 8

Predicting High Energy Photoemission Satellites
Using LDA+DMFT

Abstract

LiCoO; is known to display a high energy photoemission satellite which is not
captured within the LDA. We show that LDA+U also fails to predict the satellite, while
LDA+DMEFT solved within multi-band iterated perturbation theory (IPT) successfully
recovers the satellite. The satellite is shown to be of t;; character, and results from a

combination of on-site Co coulomb repulsion and hybridization among the oxygen and d
states.
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Understanding the photoemission spectra of transition-metal oxides has been an
active area of research over the past 40 years and continues to this day. Typically,
experimental measurements are compared to density functional theory (DFT) calculations
and empirical configuration interaction cluster calculations (CICC)®. Both techniques
have there advantages and disadvantages. As is well known, DFT does not rigorously
predict the eigenvalues of the N-1 particle system, which are measured in a
photoemission experiment, even if the exact density functional were used. However,
experience has shown that DFT within the local density approximation (LDA) is usually
qualitative and systematic when the electronic correlations are not too strong. In the case
of strong correlation, LDA fails to predict features within the spectra that arise from
correlation effects, such as a Mott-Hubbard gap. Regardless, LDA is very useful in that it
is a first-principles method and it usually lends insight even when the correlation is
strong. CICC is an empirical technique which involves constructing a model Hamiltonian
for the transition metal and the nearest oxygen shell. The model Hamiltonian usually
includes the on-site coulomb repulsions between the 4 electrons in addition to
hybridization among the & and p electrons. The Hamiltonian is then diagonalized within
some truncated many-particle basis set. Some of the model parameters are usually fit to
the experimental results, while others are estimated or roughly calculated. The main
advantage of this technique is that can capture strong correlation effects, and it rigorously
gives eigenvalues of the N-1 particle system. The main disadvantage is that it is not a
first-principles technique. Additionally, the periodicity of the solid has been removed
which is usually not detrimental to the high energy physics, but can be detrimental on
lower energy scales.

Ideally, one would have a technique which shares the advantages and lacks the
disadvantages of the above techniques, and this is largely achieved within the
LDA+DMFT (dynamical mean-field theory) method*"**. DMFT is a powerful
approximation used to solve models of strongly correlated electrons'®. DMFT effectively
maps the many-body lattice problem onto a single-site many-body problem which
hybridizes with an effective bath function that emulates the lattice. Specifically, the
Hubbard model is mapped onto an Anderson impurity model subject to a self-consistency

condition, and thus a complicated many-body problem is replaced by simpler one at the
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expense of neglecting the A-dependence of the self-energy. Given that the CICC1s a
single site approach which simply ignores the rest of the lattice, DMFT can be viewed as
a direct extension of the CICC. DMFT by itself is solely a method to solve the many-
body problem, and it must be merged with the LDA in order to determine the parameters
which are fit or guessed in the CICC.

One begins by defining the orbitals to which the correlations will be explicitly
applied, such as the d or fatomic-like orbitals. In our calculations, we use a linear muffin-
tin orbital (LMTO) basis'®, and we define the 4 states within the muffin-tin as the
correlated state. The main idea of LDA+DMEFT is to replace the Kohn-Sham potential
within the correlated subspace with an accurate approximation for the self-energy of the d
states in order to recover correlation effects and the true excitation spectra. Explicitly, the

following Dyson-Kohn-Sham equation is solved.

|:HKS + Z |da,R>(za.ﬂ(iw) —Z, )<dﬂ‘R ‘:| Viw = St o (95)

a,f.R

where the first term is simply the Kohn-Sham Hamiltonian and the second term is the
self-energy operator for the correlated d states. The indices « and § run over the ten spin
orbitals for the d states, while R runs over all the sites in the lattice. Z_, (ie) is the
frequency dependent self-energy for the d electrons calculated within DMFT on the
imaginary axis, and ;. is the “double counting” correction to the self-energy. The double

counting self-energy is a static contribution which is supposed to be accounted for within

the LDA. No exact expression is known for this quantity and we use the conventional
expression L, =4, (N, —%) , where N, is the total number of electrons in the o shell®.
&, and y,  are the frequency dependent eigenvalues and quasiparticle wavefunctions,

respectively. This equation must be solved at every k-point for a grid of imaginary
frequencies. The self-energy is not known a priori, and DMFT is used to calculate it.
We begin by guessing the self energy, and solving the Dyson-Kohn-Sham

equation. Then, the local d Greens functions are computed with the following relation.
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Dysons equation is then used to construct the free local Greens function, also known as
the bath function, which is identically the unperturbed Greens function of the effective
Anderson impurity model. _

G, (im,) = G \(iw,) + $(iw,) (97)
where the Greens functions and self-energy have been written as /0x/0 matrices. Now
the resulting AIM must be solved in order to construct a new self-energy, and a variety of
techniques may be used. In this study we use both Hartree-Fock and multiband iterated
perturbation theory (IPT)'® on the imaginary axis to solve the impurity problem. It should
be noted that solving LDA+DMFT within Hartree-Fock is equivalent to performing
LDA+U. The IPT corresponds to the second order perturbation theory, with the important
difference that the Hartree-Fock Greens function is used in place of the free propagators.
This is motivated by the fact this approach reproduces both the weak-coupling and the
strong-coupling solution for a half-filled, particle-hole symmetric model. While this
property does not directly apply to the situation at hand, IPT is still a higher order
correction which goes beyond Hartree-Fock and introduces frequency dependence to the
self-energy. The self-energy within IPT is written in terms of the Hartree-Fock Greens

function as follows:

ﬂ —~— i~
¥ iw) =2 +U? )(e"“’"’f?o‘a (r) Z G, , (T) G, 4 (8- r)]dr (98)
0 Bra
where
G, (i@,) =(G;L (iw,) - 7 (im,))” (99)
and
F=UYn, (100)
A>a

The new self-energy is then put back into the Dyson-Kohn-Sham equation and the
procedure is iterated to self-consistency. We should note that in principle one should
iterate both the density and the Greens function to self consistency. This can be achieved

by simply updating the density every few iterations. However, if the changes in the d
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density matrix are small, updating the density will only be a small effect. Most
LDA+DMFT calculations to date have neglected this, and we also assume a static
density.

LiCoQ; is a low spin, band insulator with filled t;, states due to the appreciable
crystal field splitting induced by the octahedral oxygen environment. The strong
hybridization between the ¢, states and the oxygen states moves electron density into the
g, orbital and hole density into the oxygen states in the ground state. Both the
photoemission and inverse photoemission spectra for LiCoO; have been measured in
numerous studies*”*!. The spectrum has been compared to LDA calculations*®, and a
CICC calculation has been fit to the experimental spectrum®’. The removal spectrum
consists of the main line, the oxygen 2p states, the satellite, and the oxygen 2s states (see
Figure 46). The LDA spectrum successfully reproduces the main line and the oxygen 2s
states, but the oxygen 25 states and the band gap are under-predicted. Under-predicting
the band gap is a usual LDA error and is anticipated. However, the satellite is totally
absent, suggesting that perhaps correlations are important in producing it. The CICC was
able to reproduce the photoemission spectrum with reasonable parameters®’. The

occupation of the ground state is found to be roughly

0.47|15, ) +0.44

£ >+0.09

2gtg €,

tyerLs, >, where L designates a hole in the oxygen states.

The state

£ ge;L'eg > is higher in energy than |t§' g> due to the increased d coulomb

repulsion and the energy difference among the 4 and p electrons, but the configurations
mix strongly due to the strong hybridization between the e; and oxygen states. This is in

qualitative agreement to what is found using LDA. The occupation of the main line is

found roughly to be 0. 17( tjg> +0.5

2e7g e, 2g7g e,

£l >+0.3

Ler > , while the composition of the
satellite is only qualitatively described as predominantly |t§g> . Given that the energy

difference between '125 g> and

t ge;, LLK > is within a few eV, the authors point out that

hybridization plays a large role in the splitting of the states.
LDA+DMEFT calculations as described above were performed using both Hartree-
Fock (ie. LDA+U) and IPT solutions for the impurity model at a temperature of 70 meV.

The spectral function for the t,, and e, states are shown for each case (see Figure 47 and
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Figure 48). The U = 0 calculation is very similar to the LDA calculation in Figure 46, as
it should be, displaying a gap of roughly 0.9 eV, and mixing between the oxygen states
and both the t,; and e, states. It should be clear that there is no sign of the satellite in the
LDA spectrum, and the closest features are the spectral density for both the t;, and ¢,

states which results from hybridization with the oxygen.

The LDA+U results are straightforward to interpret,as £, -%, =U (% - na) for

the case of a diagonal density matrix, where » is the occupation of a given spin orbital.
Therefore, the potential which is added to the Kohn-Sham equation simply shift states

which project out a character down by & if ais occupied and upward by ¥ if «is

unoccupied. The e orbitals have an occupancy of roughly 0.35 within LDA while the t,,
orbitals are essentially full so the e, states will weakly shift upward and the t,, states will

shift downward by roughly £. As U is increased, the splitting among the t; and e, states

clearly increases, and thus the band gap is pushed closer to the experimental value of 2.7
eV V. Additionally, the ty¢ spectral density of the main line can be seen merging into the
t2 spectral density which resulted from hybridization with the oxygen. However, there is
no sign of the satellite in these results.

The band gap is decreased for the LDA+DMFT solution as compared to the
LDA+U solution for all U. This can be understood by examining the self-energy for the
IPT solution (see Figure 49). The frequency dependence of the t;; self-energy tendé
towards higher energies at low frequencies, while the opposite effect is observed for the
ey electrons. This effectively reduces the difference between the t;; and eg self-energy and
thus screens the gap. Therefore, we anticipate a smaller band gap for IPT as compared to
the HF solution.

The LDA+DMEFT calculations do produce the satellite. As U 1s increased, the
splitting between the t,; spectral density of the main line and the t,, spectral density
which was initially mixed with the oxygen increases and creates the satellite. Thus the
satellite is composed of Co ty, character. When we start with U = 0, there are no
correlations and as a result the only presence of the satellite is due to hybridization. As U
increases, the splitting among the configurations will increase which is what we observe

in our DMFT calculations. These results compliment the CICC as the importance of
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hybridization can clearly be seen. However, it should be noted that the satellite is not
captured by the Hartree-Fock solution within LDA+DMFT and therefore the correlations
or equivalently the frequency dependence of the self-energy is important in creating the
satellite.

In conclusion, we show that LDA+DMFT solved within [PT are able to predict
the high energy satellite in LiCoO; which is not predicted by LDA and LDA+U
calculations. Using ¢/ = 5eV, LDA+DMFT(IPT) produces the satellite, while improving
the band gap to 1.7 eV,
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Figure 46 Photoemission / Inverse Photoemission as measured in experiment®’ (blue)
and the LDA DOS (red).
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Figure 47 Spectral function for the eg (red) and ty; (blue) electrons calculated within
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Figure 48 Spectral function for the e, (red) and t, (blue) electrons calculated within
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Figure 49 Real part of the self-energy as a function of imaginary frequency for both the
t2 (blue) and e, (red) orbitals (U =5 eV).
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Chapter 9

Conclusions

In this thesis, the dynamical mean-field theory and the LDA are used to further
the understanding of the electronic properties of LixCoO;. The first problem addressed is
the rehybridization mechanism within Li,CoQ,. LDA calculations demonstrate that when
holes are doped into the t,; orbitals of LiCoO,, they are dressed by electron density in the
eg orbitals and hole density on the oxygen orbitals. The mechanism of this rehybridization
phenomena has been identified as a competition between the e,-oxygen hybridization and
the Co on-site coulomb repulsion. The hybridization prefers to occupy the e, orbital while
the Coulomb repulsion tends to empty the ¢, orbital to avoid the on-site repulsion with
the t;, orbitals which are already present. As holes are doped into the t,, orbitals, the
system can lower its energy by increasing the hybridization given that there is less
density within the t; orbitals to interact with the resulting increase in e; density. This
hypothesis was confirmed by postulating and solving a simple, modified Hubbard model
which is representative of Li,C0QO,. Additionally, we demonstrated that the presence of
hybridization screens the low energy excitations of the system. These findings should
qualitatively apply to any transition-metal-oxide in which holes (electrons) are being
doped into the t,, states. Specifically, these findings are useful in the context of hydrated
Na,Co0,, which was recently found to be superconducting.

The second topic of this thesis was the anomalous metal-insulator transition in
Li,Co0O,. Extensive experimental work has characterized a first-order metal-insulator
transition for 0.75 < x < 0.95, with an insulating state for x > 0.95 and a metallic state for
x < 0.75. However, neither the mechanism for the transition nor the mechanism for the
insulating state had been determined. In this thesis, LDA supercell calculations were used
to demonstrate that the Li vacancy potential binds a hole in the dilute limit and creates a

Mott insulator of impurity states. This result qualitatively explains why an insulator
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forms for x > 0.95, which was hereto unknown. Additionally, we conclude that the metal-
insulator transition is associated with a decomposition of the impurity band. This
transition is perhaps the first known example of a first-order Mott transition in a doped
semi-conductor.

The final topic involved a five band DMFT calculation for the photoemission
spectra of LiCoO,. Experimental measurement of the spectra indicated that the LDA
failed to reproduce a high energy satellite in the spectrum. Although this satellite was
successfully captured with an empirical cluster calculation, no first-princples methods
had been able to capture this. LDA+DMFT calculations were able to successfully capture
the satellite. Given the important role that the empirical cluster calculations have played
in understanding photoemission spectra over the last 20 years, it is promising that a
(nearly) first-principles technique is now available which can capture these sorts of
many-body effects.

In conclusion, the understanding of the electronic properties of Li,CoO; has been
furthered within this thesis. The DMFT has continued to prove itself as an invaluable tool
to study strongly correlated systems, and it appears to be on its way to becoming a

regular electronic structure tool.
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