
Performance and Functional Enhancement of

Artificial Market Psychology Simulator
By

MOHAN KUMAR AKULA
B. Tech, Civil Engineering, Institute of Technology, Banaras Hindu University, 2000

M. S, Civil and Environmental Engineering, University of Missouri, 2003

Submitted to the Department of Civil and Environmental Engineering

in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN CIVIL AND ENVIRONMENTAL
ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004
0 2004 Massachusetts Institute of Technology

All rights reserved

Author.......................................... ..... ..................

Department of Civil and Environmental Engineering
May 14, 2004

Certified by................................. ......
Andrew W. Lo

Harris and Harris Group Professor of Finance
Thesis Supervisor

C ertified by..... ....................................
Dmitry Repin

Postddctoral Associate, Laboratory for Financial Engineering
Thesis Supervisor

Certified by............
George Kocur

, Senior Lecty r of Civil And Environmental Engineering
Thesis Advisor

A ccepted by........ .......................
Heidi Nepf

Chairman, Committee for Graduate Students

MASSACHUSETTS INSTITUTE,
OF TECHNOLOGY

JUN o 7 2004 BARKER

LIBRARIES



Performance and Functional Enhancement of

Artificial Market Psychology Simulator
By

MOHAN KUMAR AKULA

Submitted to the Department of Civil and Environmental Engineering
on May 14,2004, in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN CIVIL AND ENVIRONMENTAL ENGINEERING

Abstract

Artificial Market Psychology Simulator (AMPS) is an adaptive and programmable
simulation system designed to assist researchers in the study of psychology of
securities traders. It forms a part of the larger system that includes the MIT Web
Market - a double-auction engine for securities trading and RStudio - a physiology
data acquisition software. The AMPS system controls price patterns and induces
market events in an adaptive fashion.

This research improves the performance and functioning of AMPS by generating
realistic market scenarios in response to the trading subject's physiological feedback
during the simulation process. Despite the subject's knowledge of the simulated
system, AMPS generates market scenarios such that the trading subject can attach
credibility to these events and respond accordingly. The adaptive nature of AMPS can
be attributed to its ability to adjust market response based on observed physiological
characteristics of the research subject. Another improvement is the integration of
AMPS with RStudio. The simulation system uses real-time market and physiology
data provided by the MIT Web Market and RStudio respectively. A prototypical
scenario that represents a research subject's typical emotional states in response to
market volatility during the simulation process has also been modeled.

One specific software challenge is the integration of RStudio - written in C++, and
AMPS - written in JAVA. Another challenge is that AMPS system needs to be
modified to reflect different rule sets for different class of users based on their
physiological response. The logging system for errors and events has been improved
while the error and exception handling has been structured and streamlined as well.

Thesis Supervisor: Andrew W. Lo
Title: Harris & Harris Group Professor of Finance

Thesis Supervisor: Dmitry Repin
Title: Postdoctoral Associate, Laboratory for Financial Engineering

Thesis Advisor: George Kocur
Title: Senior Lecturer of Civil and Environmental Engineering



Acknowledgements

I dedicate this thesis to my parents for their love, inspiration and guidance during my

entire academic career; my brother for always being supportive and encouraging and

finally my fiancee for being very patient and understanding with me during my

graduate study while enduring many months of separation.

This thesis is a culmination of my efforts and the guidance and support of

several people at MIT. I extend my sincere gratitude to:

Prof. Andrew Lo for providing me the wonderful opportunity to work on this

research project and agreeing to supervise my thesis.

Dr. Dmitry Repin for constantly guiding me through all the critical phases of

the project through his insightful feedback. His invaluable guidance and support in

understanding the functional requirements and design of the system were critical to

the success of the project.

Ms. Svetlana Sussman at the Lab for Financial Engineering for crucial

administrative support and encouragement.

Dr. George Kocur for his perceptive guidance in walking me through the

technological challenges I encountered.

Dr. Eric Adams, Prof. John Williams & Prof. Gerbrand Ceder for helping me

throughout my stay at MIT.

Lawrence Wang and Eric Ho for the remote support they provided in

understanding AMPS and RStudio respectively.

Adlar Kim for helping me understand with the MIT Web Market. Dr. Itzhak

"Gingi" Aharon for visualizing the prototypical scenario of emotions.

Finally, friends and colleagues at MIT whose support and encouragement

were invaluable.

3

I



Table of Contents

A B ST R A C T ......................................................................................... 2

ACKNOXWLEDGEMENTS..................................................................3

TABLE OF CONTENTS........................................................................4

LIST O F FIG U RE S.............................................................................7

LIST O F TA BLES ................................................................................ 8

1. Introduction 9

1.1. R esearch overview ....................................................................... 9

1.2. G oal of the T hesis......................................................................10

1.3. Requirem ents O verview ................................................................ 11

1.3.1. Data Synchronization Requirements.......................................12

1.3.2. Data Calibration Requirements.............................................13

1.3.3. Order Parameters Computation Requirements...........................13

1.3.4. AMPS & RStudio Integration Requirements..............................13

1.3.5. Relevant Test-Case Scenario Requirements...............................14

1.4. Solution M ethodology...................................................................14

1.4.1. Requirements Gathering and Specifications..............................14

1.4.2. Iterative Development......................................................15

1.4.3. T esting.........................................................................15

1.5. C onvention s...............................................................................16

1.6. T hesis O utline.......................................................................17

2. Background 19

2.1. M IT W eb M arket.......................................................................19

4



2.2. Artificial Market Psychology Simulator or AMPS...............................21

2.3. Real Time Studio or RStudio....................................................23

2.4. Machine or Informed Traders.....................................................24

3. Design Specifications & Usage 26

3.1. Changes to Architecture............................................................26

3.2. Changes to Process and Data Flow............................................28

3.3. System Usage Description..........................................................31

3.3.1. General Usage Model....................................................31

3.3.2. Summary of Startup and Exit Instructions.............................32

3.3.2.1. Running MIT Web Market........................................32

3.3.2.2. Running AMPS......................................................35

3.3.2.3. Running Machine and Informed Traders......................36

3.3.2.4. Running RStudio System...........................................37

4. System Enhancements 39

4.1. AMPS Improvements...........................................................39

4.1.1. Session Implementation...................................................40

4.1.2. Emotion Engine........................................................... 41

4.1.3. Bid-Ask Engine...........................................................44

4.1.4. RStudio CPP Client......................................................51

4.2. RStudio Improvements.............................................................51

4.2.1. Physiology Data Calibration................................................52

4.2.2. RStudioMonitorServer.................................................... 55

5



4.3. Integration of AMPS and RStudio............................................. 56

4.4. Prototypical Scenario............................................................. 58

5. Future Work 61

5.1. Logging System Enhancements.................................................. 61

5.2. Control of Multiple Traders.................................................... 61

5.3. Provision for Multiple Securities................................................ 62

5.4. Additional Logic Constructs....................................................62

6. Discussion 63

Bibliography 65

6

---N



List of Figures

2-1 User Interface for MIT Web Market...........................................20

2-2 User Interface of AMPS Client....................................................21

2-3 User Interface of RStudio Client....................................................24

2-4 AMPS and RStudio Component Architecture.....................................27

2-5 Simulation Process and Data Flow Diagram...................................29

3-1 Editing the <t ra der>. da t file...............................................36

4-1 Illustration of a Happy-Sell scenario.............................................. 46

4-2 Projected change in security price in a happy session........ ........49

4-3 Observed movement in security price (bid & ask prices) in a happy session..50

7

N



List of Tables

3.1 Configuration files for AMPS simulation..............................................32

4.1 Determination of target order type from physiology and trading data..........45

4.2 Determination of market movement from physiology and trading data........45

8



Chapter 1

Introduction

1.1. Research Overview

There are two schools of thought among financial researchers with differing views on

the rationality of investors. One believes in the Efficient Market Hypothesis and is

unflagging on the view that investors are rational provided that the information

dissemination is efficient. In such a market, there exists no ambiguity on the price of

the securities and the market can almost instantaneously move the price of securities

to its perceived economic value. One variant to this belief is the Random Walk

Hypothesis which states that the securities prices follow a random pattern and it is

impossible to use historical prices to predict future prices. Researchers in behavioral

finance, who have been critics of the above belief, argue that there are predictable

biases in the responses of investors to what is happening in the markets and that their

responses are not always rational from the traditional economic perspective. The

irrationality of these responses is mostly attributed to psychological factors that are

beyond the domain of fundamental economic value.

While much of the earlier research has provided a qualitative picture of the

relationship between decision making process and psychology of investors, the

research at the MIT Lab for Financial Engineering (LFE) headed by Prof. Andrew Lo

and Dr. Dmitry Repin is engaged in systematically investigating this relationship. A

study conducted at the LFE earlier used securities traders as research subjects because

9



of the real-time nature of their decision making in scenarios involving risk and the

inherent transient nature of their psychological responses. The study showed that

there was a significant statistical correlation between physiological responses that may

be manifestations of emotional states and market events.

1.2. Goal of the Thesis

To further strengthen the above argument, a research project at LFE is investigating

this link through a methodical simulation process. Artificial Market Psychology

Simulator (AMPS), implemented by Lawrence Wang, is a product of the research at

the LFE that provides the investigator with the basic framework for real-time

monitoring of trading activity of a selected human trader. RStudio, implemented by

Eric Ho, is another product that is used for real-time physiological data collection,

analysis and monitoring. The aim of this research is to combine the capabilities of

these two systems to work together as an adaptive simulation system that can

facilitate controlled market movements with the help of AMPS in response to real-

time monitoring of the trading subject's emotional states, using RStudio.

During a typical simulation experiment, the researcher can observe and record

the trader's decision making process as his/her response to specific market events.

These market events are simulated by this tool incorporating physiology information

reflecting the trader's transient emotional and cognitive states that are collected and

analyzed in real time. A prototypical scenario will involve monitoring of physiological

variables and specific market events (for example, a sharp rise or decline of the

10

-1



security price) will be generated if physiology values exhibit a predefined pattern (for

example, muscle tension going above a certain threshold). In other words, in such a

scenario, the magnitude and type of market movement is determined by the trading

activity and the physiological state of the research subject. These market movements

may in turn elicit another physiological response from the research subject and thus

the simulation progresses.

Due to the adaptive nature of this tool, it may be used for training

inexperienced traders as well as for monitoring a group of traders. This will involve

allowing traders to practice under the settings of a prototypical scenario described

above. This scenario serves as a basic framework for inexperienced traders to learn

about the trading process. This simulation system can also be tailored to provide

alerts to a trading supervisor in a trading environment.

1.3. Requirements Overview

The first version of AMPS, eponymous with its name, provides several promised

features including the basic design framework, process outline, response generation

sequence among many other characteristics required in a simulation setting. RStudio

also provided the basic features needed for independent monitoring of real time

physiology data. However, the two applications did not completely address several

important requirements that include the following:

1. Implementation of integration modules for AMPS and RStudio as

represented in the overall architecture.

11



2. Generation of AMPS market response in proportion to size of the trader's

current order;

3. Generation of AMPS market response as a feedback to the current

physiological states of the trader because the applications were not

integrated;

4. Generation of AMPS responses that seem indistinguishable compared to

actual trading environment;

5. Generation of relevant test-case scenarios for testing of the simulation

system

The above-mentioned characteristics are the ones that require utmost attention at this

stage of the project and require a clear understanding of the entire setup giving rise to

the following set of requirements

1.3.1. Data synchronization requirements

The AMPS and RStudio are designed to work in unison such that the simulation uses

the physiology data and trading data for creating market moving events that are

generated in real time. The fleeting nature of the physiological responses bears special

attention indicating the need for a real-time nature of the application. It must be

noted that the different physiological responses under study do not necessarily have

the same response time. This data must be collected and analyzed by RStudio,

calibrated and transferred to AMPS.

12



1.3.2. Data Calibration Requirements

The sampling rates as well as the response parameters for each of the physiological

variables collected by RStudio are different. Although there is a generic range

associated with the level of response for each of the variables like temperature, skin

conductance and electromyographic signals that reflect muscle activity, these levels

differ from person to person. The application must also be able to capture the

baseline physiological state to scale these variables. There must be a method for

standardizing and calibrating these variables so that they can be interpreted by the

AMPS.

1.3.3. Order Parameters Computation Requirements

The physiology data interpreted by AMPS is used to generate market events that

correspond to the expected emotional state of the research subject. AMPS must

respond to changes in the physiology variables by creating market events that depend

not only on the current physiological state but also the trading activity of the research

subject. AMPS creates these market events by connecting to MIT Web Market as a

"trader" and submitting large enough orders to move the market in the desired

direction. The exact size and nature of these orders must be driven by the two types

of monitored variables, namely physiology data and trading data.

1.3.4. AMPS and RStudio Integration Requirements

13



AMPS is written in JAVA and RStudio is written in VC++. This poses a

technological challenge of integrating the two applications considering that both are

multi-threaded real time applications. The primary aim of this integration would be a

seamless data transfer where both applications could work independently as well.

Several alternatives for integrating inter-process and inter-language applications must

be considered before choosing the one appropriate for our application.

1.3.5. Relevant Test Case Scenario Requirements

The design of a prototypical scenario is essential to testing the application against the

backdrop of a real trading scenario. The scenario must incorporate typical emotional

fluctuations experienced by a trader in a real trading scenario.

1.4. Solution Methodology

The scope of the project covers the development lifecycle of the second version of

the AMPS prototype. The basic steps of a software development lifecycle provided a

useful guideline to progress in the system enhancement process. However, an

iterative process of development with constant feedback on the requirements and

methodology considering time and effort constraints was followed.

1.4.1. Requirements Gathering and Specifications

Since this effort required building over existing components, the overall architectural

framework and high-level design features were made available. Based on research of

14



the earlier work done and interactions with the research staff at the Lab for Financial

Engineering, a detailed description of the existing problems and expected

improvements in the application was documented as described above. Modifications

and additions to the existing design were presented in the form of process flow

diagrams and use-case scenarios. A general idea of prioritizing the critical features,

level of effort and timeline was established being well aware of the iterative

development process.

1.4.2. Iterative Development

Addition of a new developer to any software development project entails cost in the

form of time and effort to learn and understand the features of the existing system in

great detail to the extent he/she can modify it. The iterative development was

approached in the learning mode until sufficient expertise of the application was

obtained. Enhancement of features was identified by challenging the existing design

through code review and iterative testing process. The additional features were

established by identifying the need and scope for glue code as well as modification of

existing code.

1.4.3. Testing

The development effort must be constantly tested for conformity with the overall

architecture and the requirements specifications. The iterative nature of the

15



development process and the need for building a prototypical scenario serve as

helpful guidelines in the overall testing process.

1.5. Conventions

The following typographic conventions and terminology is used in this thesis to

describe sections of code and the role of participants in the experiment respectively.

It may be noted that the writing convention is very similar to Wang's [1] description.

" Constant Width type is followed for Java and C++ code, with language

keywords italicized in the same font.

* Constant Width type is used for grammar and configuration file contents.

* Constant Width italicized type is used for filenames and descriptive

expressions like filenames, in variable names, and in values. The practice of

enclosing between '<' and '>' is reserved for descriptive expressions. For

instance, SESSION<number> is used to represent SESSION1 or SESSION2.

* Constant Width bold is used for command line input, variable names,

variable values and other symbols. When these expressions appear inline with

the body text, they are enclosed in single quotes ('') for clarity.

The terminology used in this thesis is described below to participants and simulations

states:

* Simulation or Experiment: These terms refer to an instance of running the

code for AMPS, RStudio, MIT Web Market, Machine and Informed Traders

16



by involving a person to act as a subject for the experiment and another

person overseeing the running of the experiment.

* Research Subject or Trading Subject: These terms represent the trader or

the subject participating in this simulation experiment.

* Trader: This term refers to human or simulated traders that can connect to

the MIT Web Market as clients and perform trading transactions.

* Financial Researcher, Research Administrator, User or End User: This

person oversees the running of the experiment.

* Developer: Person or group involved in the implementation of the code for

AMPS, RStudio, MIT Web Market, Machine and Informed Traders.

" Time Step and Clock Tick: This term represents one increment of the

internal timer thread in AMPS during the experiment.

" Runtime: This term refers to the time when the experiment is being

performed or the simulation is in progress.

1.6. Thesis Outline

The thesis is divided into three sections as described below. The first section in

Chapter 2 and 3 describes the earlier research done, the basic experimental setup and

the design level specifications of the existing code base and usage model

specifications. Chapter 4 describes the enhancements to the AMPS and RStudio

system including the integration framework and the relevant test-case scenario in.

17



Chapter 5 describes the scope for future work to improve the working of the

experimental system. Chapter 6 presents a brief discussion on the current version of

AMPS and challenges faced in its implementing changes to the existing system

18



Chapter 2

Background

The primary aim of this research is to provide the behavioral financial researchers

with the software tools necessary to understand the relationship between the

physiological factors and financial decision making in a systematic and adaptive

setting of a simulated environment. This is accomplished by enhancing existing

components of AMPS and RStudio. This chapter provides the basic framework for

understanding of the overall simulation setup which includes MIT Web Market,

AMPS, RStudio and Machine and Informed traders.

2.1. MIT Web Market

The MIT Web Market is an electronic market developed in collaboration with the

Artificial Intelligence Laboratory and the Center for Biological and Computation

Learning at MIT. It is a web-based system where several simulated and human traders

can connect to a central server as clients. The central server incorporates a double-

auction engine and serves as a market platform for securities trading. When several

traders are connected to the system and constantly transacting with the market, the

simulated reflects the dynamics of a trading market. The application, written in

JAVA, provides the server and the client as applet-based user interfaces. The

connecting machine traders are allowed to access the built-in functions to

continuously trade therefore creating trading activity noise in the market. The market-

19



Figure 2-1: User Interface for MIT Web Market

making functionality of this market is helpful in automating trade submission activity

of a simulated trader. The market making functionality gives the research subject or

automated traders the ability to submit trades with certain rules on its own clients for

transactions placed through the market. Typically, these rules include limit/market

20



buy orders or limit/market sell orders and canceling order before order execution. It

must be noted that since the MIT Web Market was enhanced at the same time that

AMPS was developed, the version of the market integrated with AMPS and the

machine traders is not the latest. The MIT Web Market logs all activity to the

database which can be accessed by other components in the simulation system that

act as market makers. Figure 2.1 shows the user interface for the MIT web server and

the client applet.

2.2. Artificial Market Psychology Simulator or AMPS

AMPS, developed by Lawrence Wang at the Lab for Financial Engineering, is a

software application for financial researchers for monitoring the trading activity as

X Artificial Market Psychology Simuldtor

Setup N W
Session Setup

Session Tvpe Session Length Message Pattern Emotion Pattern Bid/A~sk Pattern Target User
Trading -10 trading 01.mrs g CAPM.emo default. baa tWang*
Trading |30 1tradingO'1.msg- ha .ppyo1.emo defaull.baa IWang
Break 10 break0l.msg --- -- ---
Tra ing 300 trading0l.msg happv1.emo default.baa wang
Break 10 break02.msg --- - ---
Trading 60 tradin 02.ms sadlemo defauit.baa iwang -

Reload Configuratios Settings/Configurations

Shnnlatin Status : Not Started

Current Sessiun Tine Reinin iq: 0:10
Total Tine Renmainig : 7:10

Stat Simulation End Simulation

Erit

Figure 2-2: User Interface of AMPS Client

21



well as the physiological data of a selected research subject in real time and also

simulating controlled market movements. The tool must have an adaptive capability

to create market events as a response not only to the monitored trading activity

variables like type and volume of the current transaction but also the constantly

updated physiology variables like skin conductance, temperature, and

electromyographic signals.

The AMPS connects to the MIT Web Market as a client and has access to the

MIT Web Market database. The AMPS operates with MIT Web Market and RStudio

for monitoring and response generation. The data monitoring is done by constantly

querying Web Market database for trading activity and RStudio for physiology data.

The response from AMPS is in the form of market-moving trades within a certain

time-horizon, which is a function of these two monitored variables, namely trading

activity and physiology data.

This thesis addresses certain functional and performance issues with the earlier

version of AMPS. The issues include, but are not limited to, unfinished integration

with RStudio, the nature and size of trade submitted being independent of the

subject's trading activity and physiological state, inadequate control of market noise

and no presence of a relevant test-case scenario. These are explained in greater detail

later.

AMPS uses several features of object oriented programming (JAVA) including

multi-threading, networking and database access. Figure 2.2 shows the user interface

for AMPS.

22



2.3. Real Time Studio or RStudio

RStudio, developed by Eric Ho at the Lab for Financial Engineering, is a real time

physiology data collection software package. The software package can independently

collect the physiology data, analyze and relay the analyzed data over a network.

The activity of the autonomous nervous system (ANS) can be measured in

terms of its responses which can be detected by measuring the physiological

variables. The collected variables include the skin conductance response (SCR), blood

volume pulse (BVP), heart rate (HR), electromyographical signals (EMG), respiration

(RES) and body temperature (TEMP). These variables are measured using portable

biofeedback equipment - ProComp data acquisition unit - by placing sensors at

various points on the body of the research subject. Optical fibers are used to transfer

data from ProComp unit to the serial port of a computer. RStudio collects this data,

scales it down from a frequency of 256 Hz to about 30 Hz depending on the channel

frequency. This data is then analyzed and made available for monitoring and network

access. The user interface of RStudio is designed for graphically viewing data

variation with time, saving and logging data and connecting to a network server -

RStudioServer - that can relay data across the network. The RStudio system also

provides for RStudioMonitor, which is an independent monitoring application that

can be trained to identify the baseline physiology data patterns for a research subject.

It must be noted that RStudio is an MFC VC++ application written using

Visual Studio 6.0. Despite RStudio's claims of network connectivity and data relay, it

is of little use to AMPS because the network implementation works for other C or

23



VC++ applications

by AMPS, which is

network cannot be

for RStudio.

Figure 2-3: User Interface of RStudio Client

only. It must be modified in a way such that it may be accessed

a JAVA application. Moreover, the data it could relay across the

easily interpreted by AMPS. Figure 2.3 shows the user interface

2.4. Machine and Informed Traders

This is a set of automated traders written in JAVA that can connect to the MIT Web

Market as traders. These traders have access to the MIT Web Market database and

can act as market makers. The distinction between these two types of traders lies in

their manner of determining the price of an order before submitting it to the market.

24

'p

OV x *1~

C3I 0

+ +
x -SO

P 5 0 1 1 %5 10 11) Z 5

.115

3 G0

0 S t0 is 20 Z5 10 0 5 10 .5 20 15 0

0 S3 30

.0



The machine traders query the database for the best available orders on the market

and randomly decide on placing limit buy, limit sell, buy or sell orders. The informed

traders follow a random price pattern in placing their orders with the market. This

random price pattern generation is indicative of the market efficiency and it can be

supposed that these informed traders have their own information which guides their

judgment of prices. While each informed trader, guided by its own information of

prices, contributes to market noise, the machine traders constantly follow the market

in the direction of best available prices. Though the machine and informed traders

arrive at prices in a different manner, they decide on the kind of order to be placed in

a similar manner, that is, by placing orders randomly. The machine and informed

traders are the necessary components of the simulation system and guide the market

price change.

25



Chapter 3

Design Specifications & Usage

This chapter presents the design changes and the specific instructions to use and

modify the configurations of the system. This chapter also serves as a useful

addendum to the design described by Lawrence Wang and Eric Ho to understand the

overall architecture of the entire system when AMPS and RStudio are made to work

together.

3.1. Changes to Architecture

The three types of components used to build the architecture of the system are user

interface components, data components and business logic components [1]. These

major components are illustrated in the system architecture shown in Figure 3.1. The

figure also indicates the changes that were applied.

The Web Market provides two user interfaces (or simply UI) - MIT Web

Market Server UI and Trader UI. The Trader UI is of interest in this architecture

because of direct interaction with the trader in collecting market making activity. The

simulation UI of AMPS, used by the financial researcher, has been slightly modified

to reflect the presence of RStudio CPP Client and its connection to RStudio as a data

channel.

26

I



TCP:
RStudio CP1P RStudio RStudio

Olient Server Monitor Client Ul

Internal TCP:
Timer RS RStudio
Thread Connector Server RStudio

DB RStudio
Connector Monitor

Simulation RStudio
Ul Emotion Components ProComp

Physiology
Bid/Ask Data

----- -Enaine
AMPS L-JDBC
Trader
Thread ... AMPS Rsac---------- Traderesearch Trading

Subject

Message
Enaine""" " "" ""

WMVS MIT Web
-- Connector Market

AMPS Components MIT Web Market
.................... ..................... . HTTP Database

Machine Traders Web Market

Legend Client Applet Web Market
Components

User Interface ... "..... "".. """""""""""". "

Data/Business Logic

Thread

Changed/Added

System

Figure 3-1: AMPS and RStudio Component Architecture

The system is coordinated using several business and data components as

reflected in the figure and described by Wang[1] and Ho[2]. Several coordinated

internal changes were made in the Emotion engine and Bid/Ask engine of AMPS to

27



satisfy order parameters computation requirements described in chapter one. The

AMPS order parameters, as described earlier, must be adaptive in nature.

The notable changes are the addition of "RStudio CPP Client" to AMPS and

"RStudio Server Monitor" to RStudio. While RS Connector is used to send

timestamps from AMPS and RStudio, the channel is not configured to transfer data

back and forth. These two components help to establish inter-process data

communication channel between RStudio and AMPS. RStudio CPP Client is a java

based client for C++ applications built into AMPS. RStudio Server Monitor is a C++

application that acts both as a server and as a client built into RStudio system. While

this component acts as a client to the RStudio server as a variation of RStudio

Monitor, it also acts as a server for the JAVA-based RStudio CPP Client.

The fluctuation of share price observed in the market due to constant trading

by traders connected to the simulated market is termed as market noise. Machine

traders and informed traders have been slightly modified to control the market noise

parameters. The simulation model is very sensitive to market noise and choosing an

appropriate value was necessary to the success of the simulation. Wang[1] also

describes low-level data structures like "Session" and "Rule-Sets" that were used for

modularity. These data structures have also been modified to accommodate changes

in Emotion and Bid/Ask engines.

3.2. Changes to Process and Data Flow

28



Figure 3.2 shows the modified process and data flow diagram. The internal timer

thread runs the simulation session by invoking different business logic components in

a sequential order during the simulation. Earlier, this thread invoked the DB

Connector to retrieve the latest order placed by the research subject. This real time

market data is sent to the Emotion Engine and this data is used for computation of

RStudio CPP ,1 Physiology RStudio Baseline
S Client - uata Server Monitor Data

Internal , RS Event Tim
Timer Thread------- Connector Stamps Server RStudio

- - - - - - - -c - ---- - -Physiology Monitor

:UI & Simulation Start/Stop DB
Events Signals r --- Connector

RStudio

ProComp
Simulation _ Emotion

UI Engine
Physiology

Targe Prices Real time Data
Start/Stop & Target Order Size market data

Signals ,' 0

- - - - - Bid/Ask Engine
r -- .* ----- -'- Research Od

AMPS Trader Bid/As rders Subject

Thread AMPS Bid/Ask Orders

- - -- --- -- -- -- -- --- - Trader -- - -- -- -- -- -- -- -- - -- --- ---

MessaBrgedcas MITI WebIMessage WMS Messages Market ServerEngine Connector

.MIT Web Market:
Real time Database 1

market: data,
Informed Traders mesc, ages

Machine Traders
Web Market

Legend Client Applet Web Market

Component _ Components'

-4 Data Flow Real time market data
------ -0 Control/Method Invocation

L - Data Storage

Changes made appear in blue

Figure 3-2: Simulation Process and Data Flow Diagram

29

rs



target prices based only on the real-time market data. Currently, this process has been

modified such that the physiology data is also considered in determining the target

price.

The internal timer thread is modified to initialize the RStudio CPP Client and

collect physiology data apart from invoking several other business logic components.

The collected physiology data is used by the Emotion engine to derive or interpret

the physiological state of the research subject. The target order price and size are then

determined by the Emotion Engine and sent to the Bid/Ask Engine. The target price

and size are such that they can affect the market price; and the direction of market

movement is decided based on the underlying rule-sets of the current session. The

Bid/Ask Engine then generates the bid and ask prices by establishing a randomly

determined spread around the target price. These final bid/ask orders are then

submitted to the market.

Changes have also been made to the underlying rule sets and the manner in

which sessions are accessed. Currently, the use of multiple sessions during a

simulation has been relegated because it was found that the glue code in the JEP

parser scripting language could be utilized to mimic different sessions in a single

generic session. This generic session could accommodate all the differentiating

characteristics of each emotion session without loss of generality.

The next chapter describes specific enhancements applied to AMPS and

RStudio components and verifications of these changes on the simulation. However,

30



a brief incursion to describe how to use and modify the initial configurations of the

simulation is presented below.

3.3. System Usage Description

This description on usage and modification of system configurations can be taken as

an addendum to a similar discussion by Wang [1]. A brief summary of the general

system usage is followed by maintenance details not documented earlier.

3.3.1. General Usage Model

The general usage model is broken down into three kinds of tasks to be taken care of

by the research administrator. Prior to the simulation, the researcher has to set up the

configuration files. One important step is to initialize the share price, the number of

shares and the initial cash to be given to the trader at the beginning of the simulation.

This is explained in greater detail later in this chapter. The AMPS configuration files

can be edited using a text editor or the configuration editor in AMPS. The reference

to these configuration files can be changed in the SimUI. java file.

Filename Location Tasks

dbadmin.sh ~/afm/rst/market/ 1. Shell script to run
commands for database
administration. Also includes
command for setting the
initial share price and initial
number of shares.

amps. ini -/afm/rst/amps/config 1. Setting folder path for
emotion & Bid/Ask files,
message & RStudio log files

31



2. Configuration of simulation
sessions

3. Setting up RStudio
connection settings

4. Setting up database
connection settings

<emotion>.emo See amps.ini 1.Set up the .ini file for
<emotion>. ini configuration of the emotion

variables
2. Set up the .emo file for the

runtime configurations of the
emotion file.

<message>.msg See amps.ini 1.Set up and configure the
message files

<trader>. da t -/afm/rst/trader 1. Configuration file for
market and informed traders

Table 3.1. Configuration files for AMPS simulation

During the simulation run, the administrator has to exercise controls and precautions

to check for the smooth progress of the experiment. The administrator has to check

that there are no network routing problems to ensure that AMPS connects with

RStudio. An easy check is to telnet to the <ip address> and <port> of the

computer on which RStudio is running and listening from the computer on which

AMPS is running to ensure that there are no routing problems. The administrator

also has to reload configuration files in case there is a change in any of these files.

Please note that these configuration files can be reloaded only before the simulation

is started. The post-simulation processing will involve the analysis of the log files and

cleanup of the database files.

3.3.2. Summary of Startup & Exit Instructions

3.3.2.1. Running MIT Web Market

32

U



Before the experiment is run, the very first step for the administrator is to determine

the initial share price, number of shares and cash to be given to traders. This is a

three-step process. The first step is to empty or clean the database and change the

initial cash and the number of shares in the database. This step is necessary because

every time a trader connects to the market, it uses the values in the database to assign

initial number of shares and initial cash to the connecting trader. The administrator is

provided with a convenient functionality to act as a database administrator. The shell

script used to access this functionality in csh environment is given below

$>./dbadmin.sh <server name> <database prefix> <initial cash>

<initial # of shares>

$> initcrl

$> quit

While the <initial cash> and <initial # of shares> were variable, the

following settings applied during the development process.

<server name> Wang

<database prefix> Testmarket

These sets of commands are sufficient for the database to be cleaned up and

reconfigured with the given values. It was observed that the time taken to execute the

'initcrl' command is proportional to the number of rows in the database tables.

AMPS and machine traders constantly query the database for the subject trader's

latest trades and the best available trades respectively. Database cleanup before each

run of the simulation experiment ensures that the queries do not return illegal values,

33



in the form of trades submitted during previous experiments. In order to ensure that

the commands have emptied the database, a quick check may be performed using the

following commands.

$> bash
$> . oraenv
$> ?>OMKT
$> sqlplus

At the sqlplus prompt, enter the following query

> select count(*) from <database prefix> orders;

where <database prefix> is the same value that was used in the database

administration command earlier. This command must return 0 if successful.

Once the database was ready, the server may be started by running the

following shell scripts in the csh environment on a UNIX platform.

$> csh
$> cda
$> ./runserver.sh

Internally, this shell script runs the java file using the following command:

$> java rst.market. ServerMain jdbc:<subprotocol>:<subname> <jdbc

driver> <db username> <db user password> <database prefix>

<market port>

This assumes that the environment variables and paths are correctly set. The market

applet loads and can accept connections from machine and human traders. The

trading simulation cannot start until the market is opened. The market can be opened

clicking the "Open Market" button. After the simulation, the market must be closed

clicking the "Close Market" button and then close the market using the "Exit

Market" button. Since the MIT Web Market is a multi-threaded application, it is

34

J



necessary that all the threads be stopped, the port be freed and the application be

closed gracefully using the above-mentioned buttons. As a caveat, it must be

remembered that forcefully closing the application may leave the port open and not

stop all the threads.

3.3.2.2. Running AMPS

Once the MIT Web Market is run and the steps required prior to simulation are

performed, AMPS is ready to be run. One should be aware of the values for the

username of the trading subject and the initial share price. If these values are changed

at any time, the configuration file amps. ini and the <emotion>. emo should be

changed accordingly. A convenient shell script is made available to run AMPS. By

running the following shell script in the csh environment on a UNIX platform,

AMPS can be started:

$> csh
$> cda
$> ./runamps.sh

Internally, this shell script runs the java file using the following command:

$> java rst.amps.AMPSMain <server name> <port number>

The AMPS window appears and connects to the MIT Web Market. At this point,

clicking the "Start Simulation" button will begin the experiment. The administrator

must ensure that the research subject is also connected to the market. Starting the

experiment before the research subject connects will only reduce the available time

allotted in the current session and increase the data logging overhead. The

35



administrator must also connect with RStudio components to collect physiology data

and must ensure that RStudioMonitorServer is ready to accept connections before

attempting to connect. At each time step, AMPS queries the MIT Web Market

database for latest order parameters submitted by the research subject and gets the

latest available physiology data and analyzes these two data sets using available rule-

sets. The result of this analysis is used to determine the next market moving trade to

be submitted by AMPS. After the end of simulation, click "Exit" button or close the

application to exit. Exiting AMPS when the simulation is running will close the

session and exit AMPS.

3.3.2.3. Running Machine and Informed Traders

The administrator must configure the machine traders before the experiment is run.

Since the machine and informed traders control the market noise, it is necessary that

the initial orders from machine traders reflect this initial share price. The

configuration file for machine traders - <tra der>. da t - must be edited to include

the initial share price.

If the initial share price is $X, then the price is reflected as $X * 16, because

#Editing <trader>.dat
# price processes
# InitPrice interArrivalTime mu sigma
400 15000 0.001 0.001
380 15000 0.0001 0.0025
# special character "-" to indicate the end of price processes

Figure 3-3: Editing the <trader>. da t file

36



the price is reflected in 32nds . For example, a share price of $10 would be reflected as

$10*16 = 160. The value to be to be edited in <trader>. da t is shown below: A

value of 400 in the figure above represents $25 since 400 = $25*16. This value must

be replaced with 160 if the initial share price is set to $10.

The machine and informed traders can be initialized running the shell script -

populateMarket.sh. The shell script is in the same directory as the

<trader>. da t. Internally, this shell script runs the java file using the following

command:

java rst.trader.SimOrderFlow <server name> <trader>.dat <market

port>

The machine and informed traders can be stopped from trading using the Ctrl+C

keys.

3.3.2.4. Running RStudio system

Before the RStudio application is started, the administrator must ensure that the

research subject is prepared for the experiment. The research subject must be totally

unaware of the internal workings of this experiment so as to not affect his trading

characteristics. Collection of physiology data feeds must be verified using RStudio.

RStudio is a VC++ MFC application. RStudio . exe can be used to start the

application. The server application for C++ based clients - RStudioServer can then

be started using RStudioServer. exe. Then RStudio must connect to

RStudioServer to send data feeds about the trading subject's physiology. At this stage,

37



RStudioServer is ready to send these physiology data feeds to any client connecting as

RStudioMonitor.

The next step is to start the RStudioMonitor (RStudioMonitor . exe) and

connect to the RStudioServer to collect data feeds transmitted. It is necessary to

collect the values or physiology data during minimal autonomic activity for about five

minutes for the purpose of establishing the baseline.

When the baseline values are available, RStudioMonitorServer - an application

that acts as a client for RStudio and server for AMPS - must be started. It

immediately connects to RStudio. Since RStudioMonitorServer mimics

RStudioMonitor in its connection with RStudioServer, it gets data feeds similar to

RStudioMonitor. It also waits for a client connection from AMPS. This application

analyzes data packets and calibrates the data before transmitting it to AMPS. When

the AMPS connection is established, the calibrated data is transmitted to AMPS. The

application can be closed similar to any Windows application.

38

I



Chapter 4

System Enhancements

This chapter details the implementation of improvements and rectifications applied

to the experimental system in accordance with the design changes described in the

earlier chapter. The specific technological challenges faced while effecting additional

features and applying modifications to an already existing system using ongoing

regression testing are the focus of this chapter.

4.1. AMPS Improvements

The first version of AMPS was replete with several features including basic data

structures, process outline framework, response generation sequence, timer threads to

access central server and database functionalities and many other features required to

create a responsive simulation environment. However, the implementation of AMPS

was subject to time constraints due to which some of the key requirements were left

for future developers to work with.

The requirements clearly state that AMPS must be an adaptive response system.

The adaptive nature of the system depended on its information gathering and analysis

capabilities provided by two distinct data sources. While one data source was MIT

Web Market and provided trading activity information for the research subject, the

other data source was supposed to be RStudio which could constantly provide

physiology data. The first version of AMPS depended only on the trading activity data

39

I



to create a market moving response. It must be remembered that the market moving

responses that AMPS generates are in the form or target orders that are submitted to

the market. These target orders are submitted by AMPS itself which connects to the

market at a client level like a trader. Moreover, the size, price and type of these target

orders generated by AMPS must directly correspond to the nature of trading activity

and the physiology state of the research subject at every time step. This provided

sufficient opportunity to design, develop and implement changes to improve the

existing AMPS system. The design changes and cursory description of the changes

were described in chapter 3.

4.1.1. Session Implementation

The simulation is capable of running multiple sessions. Each of these sessions is an

instance of the Session data structure that has attributes and methods which are

invoked to run a series of simulation activities for a selected research subject over a

finite period of time. Typically, a session was characterized by only one particular

expected emotional state referenced by the emotion file attribute or

<emotion>. emo of the particular session instance. For example, a "happy" session

had happy. emo as its emotional file attribute representing happy emotional state

during the session and market movements are targeted towards achieving this state in

the trading subject. The rule sets included in <emotion>. emo are used to determine

the target order price and target order size depending on the characteristics of the

session.

40



The idea behind achieving the adaptive nature of AMPS was to dynamically

change the session depending on changes in the physiology data. The problem

associated with making this change was that the simulation was tightly integrated with

the running session object. This session object was not available for access by other

threads until the session was complete or in other words the session remained active

for the finite time period as specified by its attribute. Any attempt to modify the

current session variable was fraught with errors and exceptions. A deeper

understanding of these errors and exceptions could not be performed due to time

constraints and need for speeding up implementation. However, a solution to this

problem was established by loading emotion data for different sessions into a single

generic session. This was done by modifying its emotional file attribute or

<emotion>. emo to include all emotion rule sets in the emotional file attributes of

the different sessions. The modifications were applied using JEP parser [5] scripting

as a glue code to alter sessions in real time. Though the session data structure was not

modified, this approach worked effectively for the required simulation settings. The

two types of active sessions that have been provided an enhanced implementation as

part of this version are "happy session" and "sad session". The break session, though

available, has not been included as part of the trading session.

4.1.2. Emotion Engine

41



Wang[1] describes emotion engine as a component of AMPS that is used to generate

target prices that are market moving. The internal workings of the emotion engine

have been changed to accommodate the requirements described earlier in the chapter.

At any instant during the simulation, the emotion engine is guided by the

underlying session instance. It was described earlier that each session is driven by

emotion rule sets that are described in the <emotion>. emo files. Each of these files

is loaded when a session is loaded and the rule sets in these files are used for target

price computation as long as the session remains active.

The emotion engine component is driven by EmotionRuleSet . j ava and

EmotionProcessor. j ava. An important modification to the emotion engine

was the availability of processed physiology data derived from communication with

RStudio which necessitated some important internal changes. These physiology

variables were first processed using the prototypical scenario constraints and the

appropriate emotion to be elicited was determined. This emotion is represented by its

own emotional rule sets scripted as part of the generic session file. Thus, it is known

from this data as to which subset of rule sets in the generic session file will be used to

process the real time trading data to generate the target prices.

In the earlier design, emotion engine queried the database during each time

step for updated market variables. Then, the updated market variables were processed

using the corresponding emotion rule sets specific to the session domain and passed

to the Bid-Ask engine in a forever loop. It was observed that a better method to

42

U



process the updated market variables was to limit the emotion rule set based data

processing to a finite time horizon instead of an infinite loop.

A prerequisite to this step was to check during each time step if the queried

market variables, in fact, reflected a new order submission or not. The new orders are

now processed using emotion rule sets for a randomly designated finite time horizon

with a range of 20 + 10 seconds. As described earlier, the emotional rule sets that

must be used to process this data are determined using the physiology data. Within

this time period, the target prices are generated and sent to the Bid-Ask engine. If the

database query returns trading activity variables that have already been processed, the

emotion engine does not process the market variables again. However, within the

limited time horizon, the variables are passed to the Bid-Ask engine for processing of

market moving orders again.

The target prices are determined based on the fraction of the order size to the

total number of shares initially provided to the research subject multiplied by the

current share price. If P is the current share price, N is the initial number of shares

provided to the research subject initially and the order size of the most recent order

placed by the trading subject is n, then the target price is given by the following

equation.

Ptarget= P 

The target price is increased or decreased depending on the type of order submitted

and the underlying session, which is executed by the Bid-Ask engine and illustrated in

43



Table 4.2. Finally, the net effect of these changes is that the target prices are

determined for a finite time horizon based on the current physiological state of the

trading subject. However, the emotion engine does not determine the size and type of

the target order.

4.1.3. Bid-Ask Engine

The Bid-Ask engine generates actual buy or sell orders as well as bid and ask spreads.

The changes made to the Bid-Ask engine accomplish the task of computing the order

size based on the trading activity variables. After the emotion engine determines the

target price, the Bid-Ask engine gets control of the target order variable and its

attributes.

The earlier version of AMPS randomly determined whether a buy order or a

sell order was placed. The randomness associated with determining the type of order

to be placed was due to unavailability of physiology data which could be used as a

determinant for target order size. Since this version accommodated the gathering and

processing of physiology data, the randomness associated with determining the order

price could be eliminated. The determination of target order type depended not only

on the values of physiology variables but also on the trading activity data for the most

recent order. The Bid-Ask engine did not directly process the physiology data but

relied on this data processed by the emotion engine. The Bid-Ask engine derived

information about the underlying session for the current order from the Emotion

Engine which used the prototypical test-case scenario to determine the target

44



emotional state. The session could be "happy session" or "sad session". In addition

to the underlying session, the only information needed about the most recent trading

activity was the type of order placed. The type of order placed could be buy or sell.

Using this information, the target order type was determined as shown in Table 4.1.

I Underlying Session Hapy Sad

Buy Sell
Sell Buy

Table 4.1: Determination of target order type from physiology and trading data

In a similar fashion, the market movement is determined as shown in Table

4.2. Increasing indicates that the target orders are placed such that the market

movement is used to increase the share value and vice versa.

I Underlyine Session I Happy Sad

Increasing Decreasing
Decreasing Increasing

Table 4.2: Determination of market movement from physiology and trading data

The size of the target order is such that it is market moving and is a random

large number compared to the order size placed by the research subject. The order of

the type described in Table 4.1 is such that the market movement is of the type

shown in Table 4.2.

The implementation of this functionality was performed through ongoing

regression testing. Figure 4.1 illustrates the trading scenario during repeated selling

when the underlying session is a happy session using the screenshot of Web Market

45



MI - M Ike: .ana 11 in du 1
[ File II

01:08:56: Market is Closed
01:09:39: Market is Open

CRL 01:13:26 N/A
26.1875

24.1875 41

22.1875

20.1875--

1600

1200

BOO

400:

01:09:40 01:11:20 01:13:00

CRL

Cancel Order
Sell 25 shares of CRL at $25.

You bought 50 shares of CRL for $25 per share.
You bought 100 shares of CRL for $25 per share.
You sold 25 shares of CRL for $24 per share.
You sold 100 shares of CRL for $23 3/16 per shar
You sold 99 shares of CRL for $20 1/8 per share.

Last Low High Bid(Size) Asksize) Volume Quantity MrketVal4e
CRL 3/ 8 3/16 26 3/16 18 1/4 (100) 18 7/16 (650) 131625 226 4152.75
Cash 6161.12
Total 10313.86

Figure 4-1: Illustration of a Happy-Sell scenario

client for the trading subject. It can be seen that the net effect on market movement

for selling in a happy session is to decrease the share price as seen in the figure.

The effectiveness of this functionality was verified by querying the Web

Market database for the bid-ask spread values of the share price over the simulation

period. This behavior must be verified using the trade submission timestamp data for

the trades submitted by the trading subject. Several runs of the simulation were

performed for checking consistency of the results obtained and one such scenario

46

Yl .' f



was used for verification. The focus of this verification was first to establish that the

observed price increase was proportional to the ratio of the current order size (n) to

the total number of shares (N) initially provided. This also provided an opportunity

to double-check that the market events were not random and were a direct result of

the orders generated by AMPS in response to the subject's trading activity. After the

simulation, the Web Market database was queried for the bid and ask values of the

security price and the timestamps associated with these values over the time period of

the simulation. The database was also queried for the orders submitted by the

research subject and the times at which each order was submitted.

This verification process was aimed to verify that the price increase is driven

by the equation described earlier.

targ et =±
N

where the increase or decrease are guided by information in Table 4.2. The graph

shown in Figure 4.2 denotes current security price (P) and projected change in

security price ( ± n ) guided by the formula above for the orders placed during the
N

simulation run. The total number of shares initially provided is N = 300.

The graph shown in Figure 4.3 denotes the actual price variation as observed

during the simulation run. It may be observed that not only the market movement is

guided in the expected direction but also the magnitude of movement is within the

expected limits. It can also be seen that the market movements are dependent on the

trading activity of the research subject. It can be inferred from the analysis proposed

47



in this section that a similar analysis for a sad session would yield results which are

very similar in nature but differ in the type of the response. We must remember that

we have so far assumed that we know which underlying session is active and

described the computation of target order parameters. The underlying session is

determined dynamically depending on the physiological state of the trading subject.

The procedure to determine the underlying session is detailed in Section 4.4 in which

the prototypical test-case scenario is described.

48



a Current Security Price o Projected Change in Security Price

n = 200 n = 200 N = 300

n = 100
n=75 

OBu
n=5 Buy yn = 75

n =25 n =50 ID2 ms

n = 250
Sell

n = 100
Sell

n = 50 n = 125
Buy Buy

Bu

n = 25 Buy Buyy
Buy

C\J C\J (

-200 -

-400

-600 -

c\J

LO

C\

(D

C\

(0

C\J

CC)

C\J

LO

(0

(NI

LO

(NJ U(P

C)
(Y)

Timeline

Figure 4-2: Projected change in security price in a happy session

49

800 --

0Sell Sell

n = 100 Buy

Buy
400 _ I

0uucc

4)U)
A

n = 1001
Buy

CV)

C\J

--- --- ---

1, 1



T
im

e
lin

e
%

) 
C

O
 

-P
. 

L
 

0
) 

-4
 

C
0
 

0 
0 

0 
0 

0 
0 

0
o 

o
 

o
 

o
 

0
 

0
 

0
 

0
o 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
o 

0 
0
 

0 
0 

0 
0 

0 
0

12
:2

0:
55

12
:2

1:
25

12
:2

1:
55

12
:2

2:
25

12
:2

2:
55

c CD 
12

:2
3:

25
 -

12
:2

3:
55

0
12

:2
4:

25
 -

12
:2

4:
55

12
:2

5:
25

 -

0

12
:2

5:
55

 
C

o

12
:2

6:
25

 -

6
 

12
:2

6:
55

 
-

-

12
:2

7:
25

0C

12
:2

7:
55

 -

12
:2

8:
25

 -

-
12

:2
8:

55
 -

12
:2

9:
25

12
:2

9:
55

12
:3

0:
25

12
:3

0:
55

 -

12
:3

1:
25

12
:3

1:
55

12
:3

2:
25

ii



4.1.4. RStudio CPP Client

An important change to the AMPS system is the addition of RStudio CPP

Client, which is a JAVA based client for C++ server applications. This component is

responsible for inter-process data communication between AMPS and RStudio. The

applications communicate with each other using sockets that use the tcp protocol.

As proposed in the Chapter 2, the internal timer thread which is implemented

using the AMPSTraderThread. j ava is modified such that it initializes the

cppClient data component. An instance of this type is created when the researcher

tries to connect to the RStudio System. The specific challenges associated with

establishing the communication are explained later.

4.2. RStudio Improvements

RStudio is an independently built physiology data collection software that used

ProComp for the data collection process and used its own algorithms for data

processing and relaying across the networks. It is clear from the earlier discussion that

RStudio system's networking was built for communication with other C++

applications. The data processing algorithms were also not representative of the

actual physiological state of the trading subject under study because they considered a

default set of values for the physiological variables to scale the responses.

The improvements to be applied to the RStudio system had to be such that it

could also work independently. As described in Chapter 2, the design change had to

incorporate changes in the form of additional modules which used the existing

51

9



functionality and could also build on top of the existing code base without affecting

its basic functionality. The data processing algorithms required careful attention

because of the need for an easy interpretation of the processed data when transmitted

to connecting clients. Additional networking components for RStudio had to be

provided to deal with inter-process communication, specifically with Java based

clients like AMPS.

4.2.1. Physiology Data Calibration

Though RStudio could work independently and transmit data across the network to

many clients, the primary client for which it had been designed was AMPS. It follows

that the data to be transmitted across the network should be easily interpretable on

the AMPS side. RStudio processes the data on its end and provides some basic

algorithms to scale down several variables.

The scaling algorithm provided by Ho [2] in the earlier version of RStudio

considers a default set of values for the minimum and the maximum of the values for

each of the variables that are collected and scales each variable to a score of 100. This

score is then averaged for all the variables taken together. The average score is then

taken as representative of the physiological state of the trader.

This scaling method can be further improved to represent the true

physiological state. We also consider the fact that the different physiological states

have different sensitivities and the actual value of each variable is not uniformly

consistent with a particular physiological state. For example, a positive value for skin

52

a



I

conductance may only indicate physiological arousal while the value of forehead

temperature does not mean anything as long as we do not know its change over a

small period of time which could indicate a change in emotional state. Some of the

variables like skin conductance are transient in nature and a constant value of this

variable does not necessarily mean that the subject is not being attentive. It is also

possible to include individual sensitivities into the scaling methodology on a person-

by-person basis and it was not reasonable at the time to assume a default set of

maximum and minimum values.

A better scaling methodology would consider each physiology variable

separately and consider individual sensitivities. The current RStudio system

incorporates baseline calculations which compute the physiological sensitivities of the

person. A simple modification of this baseline methodology can provide us with

statistical measures like the mean and standard deviation of the physiology variable.

The modified baseline calculations for each physiology variable over a period of time

could be used as a useful benchmark to scale the variables. For the purpose of

baseline calculations, the trading subject is first connected to the ProComp data

collection kit and his physiology data is collected over a five-minute period. The

physiology state must be maintained such that there are no sudden fluctuations in

his/her emotional state during the baseline period. The baseline values, mean and

standard deviation, are collected for each physiology variable and stored in a log file.

When the experiment begins, the physiology data begin to show fluctuations

and are recorded at a sampling rate approximately equal to 32Hz and 256Hz

53



depending on the data channel and are processed into one data packet per time step.

A time step is approximately one second and each data packet is a struct of the

type 'datatransferjacket' that includes processed values of all collected

physiology variables for the time step. RStudioServer collects these data packets

from RStudio. The data packet from RStudioServer is transferred to

RStudioMonitorServer. Details about RStudioMonitorServer are provided

later in this chapter. For now, let us consider RStudioMonitorServer to be

similar to RStudioMonitor in terms of its connection with RStudioServer

and data collection. These data packets contain information about all physiology

variables as described in Ho[2]. The values of the variables are extracted from the

data packet and these values need to be scaled on an individual basis to gauge their

sensitivity. We use the mean and standard deviation computed during the baseline

calculations to scale these values. The formula for scaling vector (k,,,) derived for

each of the variables as a result of the scaling calculations is shown below.

kvar =X var
avar

where ft, denotes the mean of the variable as a result of the baseline calculations;

avar is the standard deviation; X is the value of the variable extracted from the data

packet for this time step. The subscript "var" indicates the particular physiology

variable under study. This could be temperature (TEMP) or electromyographic signal

(EMG) or any of the variables being collected. However, for the purpose of this

54

it



thesis, the three variables that have been used for scaling are temperature,

electromyographic signal and skin conductance.

The scaling vectors are easy to interpret on an individual basis by considering

the variations from the mean in terms of multiples of standard deviations. For

example, if the mean (pvar) is 3 and the standard deviation (o-w) is 2, it can be stated

that a value (X) of 2 for the variable is 0.5 or kvar times the standard deviation below

the mean. The scaling vectors for each of the variables are now ready to be

transmitted to AMPS.

4.2.2. RStudioMonitorServer

The networking architecture provided for the initial version of RStudio system

accommodated only C++ based clients in terms of its data dissemination. The

process of data dissemination was accomplished by the RStudioServer data

component. It was observed that other networked clients could connect to the

RStudioServer as RStudioMonitor and collect the data packets which contained the

information about the physiology data variables. This is assuming that RStudio client

is connected to RStudioServer and feeding it with processed physiology data.

There was also need for a server application on the RStudio side which could

communicate with Java based clients. It was thought that an amalgamation of a

RStudioMonitor's client-like functionality to extract data and an additional server to

communicate as mentioned above could handle the data transfer from RStudioServer

to AMPS. The result was RStudioMonitorServer which incorporated supported two
55

ID



functions. One was that it behaved similar to RStudioMonitor in its connection with

RStudioServer and extracted the required data packets, while the other was the server

like behavior in transmitting calibrated data over to AMPS. It must be noted that the

process of calibration happens after the data packet extraction and before data

transmission to AMPS. Details about integration with cppClient - a part of AMPS

- are described in the following section.

4.3. Integration of AMPS and RStudio

The implementation of RStudio CPP Client (cppClient. j ava) on the AMPS side

and RStudioMonitorServer (RStudioMonitorServer. cpp) on the RStudio side

were the building blocks to data level integration of the two applications. The

communication is using tcp based sockets and the data transmitted is processed by

these modules in these data components on each side for interpretation.

Several other alternatives were examined before choosing a socket based tcp

communication methodology. The other alternatives that were studied include Java

Native Interface GN1) and Named Pipes. The Java Native Interface is used to allow a

Java application to operate with applications and libraries written in other languages,

such as C/C++, and assembly [7]. The JNI implementation is specific to the

platform, in which it has been implemented. For example, in the future, if the AMPS

system is moved to Windows or any other platform from its current UNIX platform,

it will require developers to implement the section of JNI code all over again.

56

Is



Moreover, several online communities suggest that programmers have been averse to

using JNI when the application was to be made scalable over multiple platforms.

The trade-off between Named Pipes and TCP based communication was

based on their performance considerations. Khambatti [6] mentions that the

performance of Named Pipes over a network is interactive in nature. This interactive

communication can become costly over slow networks. The TCP based

communication has advantages of using socket performance enhancement

mechanisms like windowing and delayed acknowledgements [6]. A major criterion for

selection was also developer familiarity which can be critical to driving development

speed. In view of the reasons mentioned above, a socket based communication using

TCP was used.

The tasks of establishing a connection and data transfer were the primary

challenges during the implementation of cppClient.java and

RStudioMonitorServer. cpp. The establishment of connection happens

through a blocking call to acceptO function to initialize a socket object on the

RStudioMonitorServer side. The cppClient object establishes a connection by

initializing the socket and sending a message which conveys to the server side that the

client has requested byte reversal. Before proceeding further, a small interlude to

explain why byte reversal was needed is presented below.

When any data is represented with multiple bytes, the actual ordering of those

bytes in memory, or the sequence in which they are transmitted over some medium,

is subject to a convention called endianness [8]. The endianness can be either big-

57

R



endian or little-endian. C++ is little-endian meaning that the least significant byte is

stored at the memory location with the lowest address. However, Java is big-endian

meaning that the most significant byte is stored at the memory location with the

lowest address. When data transfer takes place between C++ and Java applications,

the data will be understood only when it is in a consistent format. For this reason, the

little-endian data from C++ must be converted at the byte level to big-endian data

and then transferred to the Java application. The process of conversion of data from

one form to the other, in our case big-endian to little-endian, is called byte-reversal.

This byte reversal in our application takes place on RStudioMonitorServer side before

transferring data to cppClient object. The data transfer takes place using array of

double to pass the scaling factors (k.) for each of the physiology variables for which

data is collected from C++ to Java side. The array of double are received on the

AMPS side and stored in an instance of the ScaleFactor. The

AMPSTraderThread component stores an array of ScaleFactor instances for

processing of the prototypical test-case scenario.

4.4. Prototypical Scenario

It was mentioned earlier in the document that AMPS computes the target order

parameters based on the trading activity and the physiological state of the trading

subject. It was also described, in Section 4.1.3, how the target order parameters were

computed assuming that we know which underlying session is active at each time step

in the simulation. In this section, the details of determining the target underlying

58

IN



session for the current time step of the AMPS internal timer thread are provided. The

information about the underlying session is needed to determine which rule sets are

used to process the target order price parameters and hence in which direction the

market movement must be adjusted to elicit a particular physiology response. In the

case, where we use a generic session file, this implies that we determine which subset

of rules listed in the session file is to be used.

The prototypical test case scenario is the key to determining the underlying

session or, in particular, the subset of rules to be used. The test case scenario has

Rule 1: If kEMG 1 for more than 3 seconds and current

session is a happy session, then switch the current

session to sad, where kEMG is the scaling factor for

electromyographic signal.

Rule 2: If kSCN !0.5 and T,-T,_,0 and current session is

happy session then switch the current session to sad

session, where kSCN is the average scaling factor for skin

conductance over 5 seconds and T, is the temperature at

time 't'.

Rule 3: If kSCN !0.5 and T,-T,_, 0 and current session is

sad session then switch the current session to happy

session, where kSCN and 7T are as described in Rule 2.

certain rules to compare the values of the physiology variables to the baseline

physiology variables and determine the target emotional state. The rules used in

prototypical test case scenario are described below.

59

'



Though the rules above point to happy and sad as discrete sessions, the generic

session includes these two sessions and we are referring to the specific subset of

rules. These rules can be changed as and when more physiological variables are

available for analysis. The use of the test case scenario helps to test the operation of

the whole AMPS system.

The rules in the test case scenario can be adjusted to suit the expected

tolerance in the emotional fluctuations of the research subject. The test case scenario

presented here provides a basic framework to use this application as a training tool

for inexperienced traders. Considering the risk and expense of allowing inexperienced

traders to trade on the exchange during their training period, this test case scenario in

the simulation provides an inexpensive alternative. Moreover, the simulation with this

test case scenario can also supplement other learning material used by them.

60

a



Chapter 5

Future Work

This prototype addresses some of the key issues of immediate interest to the research

at the MIT Lab for Financial Engineering. This chapter identifies the scope for future

work in terms of providing additional functionality, improving error and exception

handling, scalability and other performance relates issues.

5.1. Logging System Enhancements

The existing system of logging stores information about orders placed by the trading

subject, system information and other events in local files. These files may be

accessed after the simulation is run. These files as they stand need to be processed

before getting useful information about the orders placed by the subject.

A systematic logging system can be provided based on the current

requirements of the research administrator. The simulation is based on the set of

rules provided by the research administrator and the logged data must be made

custom viewable to cater to the administrator's need for understanding the trading

activity of the subject.

5.2. Control of Multiple Traders

The business model of AMPS can be made scalable to provide for controlled

monitoring of multiple traders in a trading environment. An enhanced version of

61

a.



K-

AMPS built on these business rules can be used by a manager in trading firm

controlling several traders and monitoring their trading activity using their physiology

data.

5.3. Provision for Multiple Securities

The current version of the AMPS system uses only one security to consider the

trading activity of the subject. It is interesting to note that in a real trading

environment, the price movement of several securities in the trader's portfolio

interacts with the trader's physiological characteristics. An updated version of MIT

Web Market which includes additional functionality for market making activity can be

used.

5.4. Additional Logic Constructs

The JEP parser constructs are implemented using the if-then constructs. This parsing

language includes several other mathematical and logical constructs which can be

used to build several intuitive test constructs. The test constructs might include

applying conditions on any of the physiology or trading activity variables. The

mathematical functions like sums, averages or polynomial functions and boolean

constructs that are provided by this scripting language can also be used.

62



Chapter 6

Discussion

The ability of traders to take rational decisions in their professions is often blurred in

the face of risk. However, this behavior arises from an evolutionary process and the

major factor that contributes to this is the emotional state of the trader. This

disciplined effort to develop the experimental setup that includes the MIT Web

Market, AMPS, RStudio and Machine and Informed Traders is to perform a

systematic study of the link between the emotional state of the trading subject and

his/her trading activity. Not only is this experimental study useful in understanding

this link but also helpful in applying this setup as a training tool for inexperienced

traders.

This experimental setup, which includes AMPS, MIT Web Market and

RStudio is a prototype simulation system designed to facilitate research on trading

and psychology by providing tools to systematically influence the trading experience

of the research subject by predictably manipulating his emotional state in an adaptive

setting. AMPS is a response generation system that considers the trading activity and

physiological state of the trading subject in generating its market moving orders or

responses that in turn may elicit physiological changes as well as changes in the

market making activity of the trading subject.

Given the set of requirements, the changes to be made to the existing system

design and the need for inter-process communication between applications posed

63



several implementation challenges. The major challenge was to reduce the cost of

introducing a new developer to the existing code base, who needs to understand the

existing system to the extent that it can be modified without compromising the

required functionality. Ongoing regression testing was used frequently to test each

and every change incorporated into the system. Modifications and enhancements

were planned and implemented by challenging the existing design components and

process flow sequence. Iterative development was another challenge in estimating the

effort considering time and development speed constraints.

The major changes that were applied include modification of AMPS to include

physiology variables into its decision variables used in generating market moving

response, especially considering the real time nature of the project. The redesign and

implementation of the target order parameters computation was also challenging,

taking into account the factors which contribute to the sensitivity of this simulated

environment.

AMPS has been installed and is being continuously tested at the MIT Lab for

Financial Engineering. The simulation system can definitely be improved by testing

several runs using different research subjects and preparing a clear documentation of

the improvements needed which can serve as requirements for the next version.

64

U,



Bibliography

[1] Wang, L., "AMPS - A Simulation System for Modeling and Analyzing the

Psychology of Risk-Taking," diss., Cambridge: Massachusetts Institute of

Technology, 2003

[2] Ho. E., "A Real-time System for Processing, Sharing, and Display of Physiology

Data," diss., Cambridge: Massachusetts Institute of Technology, 2003

[3] Lo, A. W. and Repin, D. V., "The Psychophysiology of Real-Time Financial Risk

Processing," Journal of Cogitive Neuroscience, 14, pp 323-339, 2002.

[4] Gamma, E. Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements of

Reusable Object-Oriented Software. Boston, MA: Addison-Wesley, 1995.

[5] Funk, N., "JEP - Java Math Expression Parser," [Online Document], 2000, [cited

2004 May 07], Available HTTP: http:/ /www.singlarsys.com/jep /doc/index.html

[6] Khambatti, M., "Named Pipes, Sockets and Other IPC," [Online Document],

[2004 May 07], Available HTTP:

http://www.public.asu.edu/~mutaba/Articles%/20and/o20Papers/cse532.pdf

[7] Stearns, B., "Java Native Interface," [Online Document], 2004, [cited 2004 May

07], Available HTTP: http:/ /java.sun.com/docs/books/tutorial/native1.1/

[8] Quinn, B. Shute, D., Windows Sockets Network Programming. Boston, MA:

Addison-Wesley, 1995

65


