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Abstract

We construct and describe compactified moduli stacks of Azumaya algebras on a
smooth projective morphism X -—+ S. These stacks are the algebro-geometric version
of the (suitably compactified) stacks of principal PGL,-bundles and they also have
strong connections to arithmetic. A geometric approach to the problem leads one
to study stacks of (semistable) twisted sheaves. We show that these stacks are very
similar to the stacks of semistable sheaves. This gives a way of understanding the
structure of the stack of principal PGL,-bundles and its coarse moduli space in terms
of fairly well-understood spaces. In particular, when X — S is a smooth projective
curve or surface over an algebraically closed field, our method yields concrete theorems
about the structure of these stacks (at least as certain natural invariants are allowed to
increase without bound). On the arithmetic side, we use the geometry and rationality
properties of these moduli spaces to study a classical question about the Brauer group
of a function field K, known as the “period-index problem”: for which classes & in
Br(K) of order n does there exist a division algebra D of rank n? with [D] = a? We
give an answer to this question when K is the function field of a curve or surface
over an algebraically closed, finite, or local field and when « is an unramified Brauer
class of order prime to the characteristic of K. In the general case, we relate the
unramified period-index problem to rationality questions on Galois twists of moduli
spaces of semistable sheaves.
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Chapter 1

Introduction

This thesis was originally motivated by the problem of constructing compactified
moduli of Azumaya algebras on projective algebraic surfaces. Despite its abstruse de-
scription, this problem brings together several strands of algebraic geometry, ranging
from the purely geometric techniques of complex algebraic geometry to the Frobenius-
laden methods of arithmetic geometers. Given a scheme X, an Azumaya algebra of
degree n on X is simply an étale form of the matrix algebra M, (€x). By the Skolem-
Noether theorem, the set of isomorphism classes of Azumaya algebras of degree n is
in bijection with the set of PGL,-torsors, i.e., principal PGIL,-bundles. Viewing these
objects as algebras yields a connection to arithmetic, while viewing them as PGL,,-
bundles gives an algebraic version of the study of holomorphic bundles, an active area
of complex geometry. We will describe in this introduction how these two viewpoints
interact and how we will use this interaction to relate the structure theory of moduli
spaces of bundles to the arithmetic of the Brauer group of function fields.

The set of Azumaya algebras on X admits an equivalence relation such that the
quotient is naturally a group, called the Brauer group of X. This generalizes to
schemes a classical construction first codified by Brauer in the 1930s, but ultimately
tracing its way back through Noether’s “crossed product algebras” to Hamilton’s
(temporarily) controversial quaternions and Frobenius’s study of central division al-
gebras over R. The Brauer group of a number field plays an essential role in class field
theory. In the 1960s, Grothendieck, building on earlier work of Auslander, Buchs-
baum, and Azumaya, extended the Brauer group to an invariant of schemes (in fact,
of ringed topoi) [34, 35, 36]. It was immediately observed that the Brauer group acts
as an algebraic repository for certain transcendental information. For example, one
can see that if X is a smooth, simply connected projective surface over the complex
numbers, then Br(X) = (Q/Z)*~, where b, = dim H*(X, Q) is the second Betti
number and p = rk NS(X) is the dimension of the image of Pic(X) ® Q in H*(X, Q).
Thus, the corank of Br(X') measures how many cohomology classes are non-algebraic.
(One can also prove similar statements using f-adic étale cohomology, as long as one
works with elements of the Brauer group of order prime to the characteristic of the
base field.) The fact that the Brauer group encodes non-algebraic cohomology classes
Is not special to surfaces; it is a general phenomenon.

Artin and Tate discovered that, over a finite field, the Brauer group of a sufficiently
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nice fibered surface m : X — C is isomorphic to the Tate-Shafarevich group of the
Jacobian of the generic fiber of 7. In particular, if 7 : F — P? is an elliptic surface
(with a section), then Br(F) =~ LI(k(P!), E,) [36, 72]. This connects the Tate-
Shafarevich conjecture for elliptic curves over equicharacteristic global fields with the
Brauer group. Artin conjectured that any scheme proper over Spec Z has finite Brauer
group, a conjecture which has proven to be extremely hard. It has been verified in
many special cases, but there is as yet no unified approach which is expected to work
universally (with enough effort}.

One might hope that studying Azumaya algebras and their moduli will shed light
on the Brauer group. For example, given a Brauer class « over a field K, it is natural
to ask how large a field extension I O K one must make to trivialize «. Similarly,
given a projective variety X and a Brauer class a on X, one can ask for the minimal
degree of a generically finite cover splitting «. When X is a surface, this number is
the same as the minimal degree of an Azumaya algebra in the class . This, in turn,
is a question about the existence of points in a moduli space of Azumaya algebras of
a given degree on X.

Of course, it is unlikely that such moduli spaces are compact. Thus, one should
seek from the start a compactification of the moduli problem. This is in general
a delicate task; one would like to add as few extra objects as possible. The most
naive approach to compactifying moduli of Azumaya algebras is to simply allow the
space to parametrize flat limits of Azumaya algebras. Unfortunately, it is difficult
to characterize such algebras. The model for this difficulty is given by considering
E = End(M), where M is the first syzygy module of the maximal ideal of A :=
k[x,y,z]. (In fact, this situation models what happens étale locally in general in
degenerate fibers of a flat limit of Azumaya algebras on a smooth surface.) In an
ideal world, one would hope that the natural map E/zF — End(M/zM) is an
isomorphism; unfortunately, it is casy to see that the cokernel is non-trivial. De Jong
observed, on the other hand, that the dream comes true in the derived category:

REnd(M) éA/a:A =~ REndy/,a(M/xM). He therefore suggested that one might
somehow glue these derived algebras together to arrive at a nice compactification.
Since gluing is notoriously difficult in the derived category, it takes a great deal of
work to translate this intuition into mathematics.

The underlying philosophy, that a “generalized Azumaya algebra” is given locally
by a module, with gluing only taking place up to maps which are trivial on endomor-
phism algebras, immediately brings one into contact with twisted sheaves. In order
to describe these objects, let us consider a different way of describing Azumaya alge-
bras. The Skolem-Noether theorem tells us that the automorphism sheaf of M,{&x)
is PGL, x (in the fpqc topology), so we see that the set of Azumaya algebras of de-
gree n is in bijection with the set H'(X, PGL,) of étale PGL,-torsors. Consider the
central extension 1 — G,, — GL, — PGL, — 1. Giraud’s non-abelian cohomology
[30] assigns to this exact sequence an exact sequence in cohomology, of which the
relevant segment is

H'(X,Gn) — H'(X,GL,) — H'(X,PGL,) — H*(X, Gn).

12



Given a class T ¢ H'(X,PGL,), the coboundary in H*(X, G,,) is interpretable in
Giraud’s theory as follows: thinking of T' as a PGL,-torsor, one can produce a G-
gerbe (in the étale topology) of lifts of T' to a GL,-torsor. This is a certain algebraic
stack 2~ — X, and one sees from its definition that it universally solves the problem
of reducing the structure group of 7' to GL,, in the sense that there is a GL,-torsor
¥* on Z and an isomorphism of the PGL,-torsor associated to #™* with T. The
left-hand side of the cohomology sequence says that 7™ is unique up to tensoring
with a G,,-torsor pulled back from X. The algebraic stack .2~ has inertia stack Gy,
so the sheaf ¥™* comes equipped with a G,,-action. In fact, one can see that this
action agrees with the natural action given by the inclusion G,, — GL,. Replacing
¥* with the associated locally free & 4-module ¥ of rank n, we see that the action
of G,, on ¥* becomes the action on ¥ by scalars. A locally free sheaf on 2 whose
inertial G,,-action equals the scalar action is called a twisted sheaf. (There is a more
elementary definition of these objects using Cech cohomology which we will discuss
in section 2.1.3.) The Azumaya algebra associated to T is then precisely the algebra
End(Y).

The observation that an Azumaya algebra is the endomorphism sheaf of a locally
free sheaf on a certain stack over X immediately suggests a globalization of de Jong’s
idea: a generalized Azumaya algebra should have the form Ré&nd(%#), where # is now
a torsion free twisted sheaf. This also yields a surjective 1-morphism from the stack
Twg of torsion free twisted sheaves to the stack GAzx of generalized Azumaya
algebras on X sending .# to Rénd(F). One then expects to deduce information
about GAz from corresponding information about Tw.

This connects the study of GAz with another approach to compactifying the
moduli of Azumaya algebras due to Artin. He made the observation that given
two Azumaya algebras & and & of the same rank and Brauer class, there is an
invertible right &/-module . such that & = éhdy(¥); furthermore, £ is unique
up to tensoring with an invertible sheaf I on X. This similarly yields a covering of
the stack of Azumaya algebras by the stack of ©/-modules. The compactification of
the stack of Azumaya algebras should come from the natural compactification of the
stack of invertible right &/-modules using torsion free &7-modules of rank 1, by taking
the quotient by the action of Pic(X) in an appropriate sense.

It is well-known that &/-modules are the same thing as twisted sheaves [6]. Thus,
the above discussion of Tw — GAz is displaying precisely the compactification sug-
gested by Artin. In other words, Artin and de Jong’s ideas are essentially the same.
What have we gained by rephrasing everything in terms of sheaves on gerbes? The
point is that a gerbe & — X is a mildly stacky version of X itself. Thus, one ex-
pects from this point of view that sheaves on 2" should behave similarly to sheaves
on X. Furthermore, by working with sheaves of &5 -modules, one can immediately
apply classical tools from the theory of sheaves: Chern classes, the Riemann-Roch
theorem, elementary transformations, the Harder-Narasimhan filtration, the defor-
mation theory of Illusie, formation of reflexive hulls, Quot schemes, the Bogomolov
inequality, and so on [40]. While it is true that many of these constructions have non-
commutative analogues, certain technical difficulties disappear when working with
& y-modules. We also have a large supply of theorems — about semistable sheaves
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on surfaces - that we can now try to translate to the category of (semistable) twisted
sheaves. This turns out to be entirely successful, so much so that at the time of this
writing we have not yet gotten close to exhausting the statements amenable to such
a translation.

While it is true that the geometry of the space of twisted sheaves is closely related
to that of the space of untwisted sheaves, it is useful to recall that these two spaces
capture different arithmetic information. This gives us a chance to apply the classical
geometric methods used to study vector bundles to arithmetic problems about the
Brauer group of a variety. In particular, in this thesis we will apply these techniques
to a class of problems known as “period-index problems” — determining how large a
function field extension one must make to trivialize a Brauer class.

Let us give a brief outline of the contents of this thesis: in chapter 2 we discuss
the theory of twisted sheaves on topoi. These objects were first discovered by Giraud
[30] and recently given an extensive treatment (when the base topos is a projective
variety) in the thesis of Céldiraru [6]. We present a more general approach than
Cildiraru which is less general than Giraud {and thus easier to apply), with an eye
toward studying twisted sheaves on stacks. We also discuss fibered Morita theory
and the Brauer group of a ringed topos. We warn the reader that section 2.1 is quite
abstract and is likely to be unpleasant; it exists primarily as a foundational section,
and we encourage the reader to skip it or skim it briefly for definitions.

In section 2.2, we study quasi-coherent twisted sheaves on schemes and we apply
the abstract theory to re-prove several classical results on the Brauer group [28, 35, 36,
39] as well as some basic lemmas on the derived category of twisted sheaves paralleling
the work of Neeman [14, 56]. We also discuss deformations and obstructions, in
preparation for the discussion of moduli.

In chapter 3 we develop the theory of generalized Azumaya algebras, including the
derived Skolem-Noether theorem. We then compare the stack of twisted sheaves with
the stack of generalized Azumaya algebras, realizing rigorously the intuition described
above.

In chapter 4, we use Artin’s representability theorem [9] to prove that the stacks of
twisted sheaves and generalized Azumaya algebras are algebraic stacks (in the sense
of Artin). We also lay the foundation for the study of semistable twisted sheaves and
generalized Azumaya algebras, and we show that semistability and stability define
open substacks. Along the way, we study Quot spaces for twisted sheaves and ap-
plications of Geometric Invariant Theory (GIT) when working with twisted sheaves
on surfaces. Using these results, we describe a scheme corepresenting the stack of
semistable generalized Azumaya algebras on a surface.

In chapter 5, we take up the study of moduli of twisted sheaves on curves and
surfaces. We prove a comparison theorem between the stack of semistable twisted
sheaves and a Galois twist of the stack of semistable “untwisted” sheaves on a curve.
We use this to realize the Artin-Tate isomorphism Br(X) = II(k(C), Picxc) (de-
scribed above) via twisted Picard spaces. Then we study moduli of twisted sheaves
on surfaces. Building on recent work of Langer {50, 51] in the untwisted context, we
prove a version of the Bogomolov inequality for twisted sheaves and some restriction
theorems for semistable twisted sheaves. We then study the asymptotic properties
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of the moduli stacks of twisted sheaves, culminating in a proof that these stacks are
eventually (for high enough second Chern class) irreducible generically smooth local
complete intersections.

Finally, in chapter 6, we apply the structure theory of chapter 5 to prove period-
index results for curves over function fields and local fields, and for surfaces over
finite fields and local fields, by reducing these questions to rationality questions on
the relevant moduli spaces.
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Notation

Following standard conventions, we use = for canonical isomorphisms.

Every locally free sheaf is assumed to have finite rank everywhere.

As should be universal by now, “algebraic stack” will mean “algebraic stack in the
sense of Artin.” Deligne-Mumford stacks will be called “DM stacks.” All algebraic
stacks are quasi-separated, as is any base scheme appearing in this thesis.

In order to prevent psychological problems, when given a topos X, we will write
U in place of X,y to stand for the restriction of X to the object U € X. For the sake
of intuition, we will also interchangeably refer to “sheaves on X and “objects in X”
depending upon the context.

Following Huybrechts and Lehn [40], we use the notation “hom” for “dim Hom”
and “ext” for “dim Ext.” In general, we have tried to keep notations in common with
their book when treating the twisted analogues of classical theorems so beautifully
discussed there.

There is one pedantic grammatical convention we adopt which we hope will spread:
a number with mathematical meaning is always written as a numeral, occasionally
in contradiction to accepted “rules” of grammar (e.g., “rank 1”7, “characteristic 07).
The underlying philosophy is that numbers, when used in a mathematical context,
are not “the same” as numbers when used in ordinary language. As such, they should
be distinguished from their real-life counterparts.

17
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Chapter 2

Twisted sheaves

2.1 Preliminaries: twisted sheaves on ringed topoi

In this section, we lay the foundations for the theory of twisted sheaves on algebraic
spaces and stacks. The reader will note that much of the first three sections is written
in the language of ringed topoi. We encourage those uncomfortable with this notion to
substitute “ringed site” or even “ringed space” for “ringed topos”; the exposition will
remain more or less the same after this substitution (but the reader should note that
sites larger than the Zariski site of a scheme are essential for the theory to actually
be interesting). One reason to write in this degree of generality is to make the theory
apply to algebraic stacks, where one can only really understand the theory of sheaves
from the topos-theoretic point of view.

In order to link Giraud’s ideas with subsequent devclopments in the theory of
algebraic stacks [52], we review foundations on the sites associated to a stack, sheaves
on those sites, and classifying topoi associated to gerbes on (ringed) topol. We only
consider stacks in groupoids in this thesis; the task of extending the results to stacks
in arbitrary (small) categories is left to the reader. (It will primarily consist of adding
the word “Cartesian” in a few places.)

2.1.1 Sheaves and gerbes on stacks

Let X be a topos and F' : % — X a stack on X. The topology on X naturally
induces a topology on .¥.

Definition 2.1.1.1. The site of ., denoted %%, has as underlying category

Objects: morphisms f : S — .% of fibered categories over X, where S ranges
over all sheaves on (=objects of} X

Morphisms: a morphism from f: S — . to g: S’ — .% is a pair (@, 9)) where
¢w:S — S’ is a morphism in X and % : f = g oy is a 2-isomorphism.

A covering is given by a morphism (g, ¥) with ¢ a covering.
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Remark 2.1.1.2. The site of % is also naturally a stack on X, and there is a 1-
isomorphism of stacks .¥* — %. The stack %° has the extra property that its
natural pullback functors commute exactly, rather than up to coherent homotopies,
lL.e, ° is split as a fibered category. ¢

Definition 2.1.1.3. The classifying topos of ., denoted 5’: is the topos of sheaves
on the site of ..

There is a morphism of topoi 7 : & = X given a sheaf % on X, one gets a
sheaf 7*.% on ¥ by assigning to f : § — % the object .#(S). The obvious exactness
properties show that this is the pullback of a morphism of topoi. In particular, when
X is ringed, say by €, % is naturally ringed by 7*&.

Remark 2.1.1.4. It is not difficult to check that the topos we have called the classifying

topos agrees with Giraud’s definition: = Cart(.%, FI(X)) [30, §5.1]. We leave this
to the interested reader. ¢

Lemma 2.1.1.5. Gwenamapp: & — %7 of X-stacks, there is an induced morphism
P T — S of topoi.

Proof. Given a sheaf F' on % and an object f: T — 7 in the site of &, set p*F(f) =
F(po f). It is immediate that this is a sheaf on 7. The requisite exactness properties
of this functor are readily checked, yielding a morphism of topoi as required. O

2.1.1.6. Given a stack .%¥ — X, there is an associated stack & (%) — % called
the inertia stack.

Lemma 2.1.1.7. There is a natural equivalence of categories between sheaves on #°
and stacks & on X with morphisms 7 — & whose fibers are essentially discrete
categories.

The last condition of the lemma is equivalent to the requirement that for any
object § — ., the fiber product .7 x » S is the stack associated to a sheaf on 5.

Proof Laumon and Moret-Bailly [52, §14]. (Note that they call a sheaf on 7 a
“construction locale.”) O

Definition 2.1.1.8. The assignment (f : § — %) +— &ut(f) is a sheaf. The
corresponding stack is denoted # (%) — % and called the inertia stack of %.

When X is the topos of sheaves on the big étale topology on affine schemes over a
fixed base B and .% is an algebraic stack, then one easily sees that .#(.%) is also an
algebraic stack and the morphism .# (%) — % is representable, quasi-compact, and
separated. In fact, it is easy to see that S (%) = . Xy ¥, the fiber self-square
of the diagonal of .%.

Lemma 2.1.1.9. Given a I-morphism f : F — " of stacks, there is an induced
map I () — f* I () in &.

20



Proof. As noted in 2.1.1.5, the sections of f*F over g : § — % are the sections
of F over fog. On the other hand, given an automorphism 7 of g, one gets an
automorphism f(n) of f o g by functoriality. Combining these statements results in
the lemma. d

Lemma 2.1.1.10. Let F be a sheaf on . There is a natural right group action
o Fx #(F)— F.

Proof. Let f : S — .% be an object of 5. A section of #(.%) over S is an
automorphism ¥ of f. Given a section s € F(f), the action of ¢ on s is given by
pulling back along the natural map v* : F(f) = F(f) (induced by the contravariant
nature of sheaves). Since automorphisms of f are deemed by those in charge to act
on the left, we are forced to have them act on the right on sections of F. (This will
cause a headache in a moment.) O

Example 2.1.1.11. If F = #(.%), then it is an easy exercise to see that the natural
action is given by conjugation. Thus, if for example every automorphism group is
abelian then the inertia stack acts trivially on itself. 4

There is actually a more general version of 2.1.1.10 which holds for stacks. We
will not have much use for it in the sequel, so we will not give a full proof.

Lemma 2.1.1.12. Let & — % be a 1-morphism of stacks. There is an action of
F(F) on T by 1-automorphisms which is strongly homotopy-commutative.

Proof. We may replace . and & by .#° and .7¢ and thus assume that both stacks
are split over X and the morphism & — . arises from a split stack on .%*. We may
mimic the construction of the action in 2.1.1.10 to get the desired result. Replacing
% and .7 as described gives enough rigidity to the pullback functors that the action
is homotopy-commutative. O

Thus, for example, one can see that a G-gerbe on & (see 2.1.1.13 below) with G
abelian gives rise to a G-torsor on the stack #(.%’). This local system arises in the
study of quantum cohomology [73].

2.1.1.13. We will be concerned throughout this thesis with gerbes.
Definition 2.1.1.14. The stack .% is a gerbe on X if
1. For any U € X there exists a covering U’ — U such that #y # 0.

2. For any U € X and any s,8 € %, there exists a covering U’ — U such that
8|y is isomorphic to §'|y.

In looser language, .% has local sections everywhere and any two sections are
locally isomorphic. There is a “moduli-theoretic” interpretation of this definition.

Definition 2.1.1.15. The sheaf associated to &, denoted Sh(.¥), is the sheafification
of the presheaf whose sections over U € X are isomorphism classes of objects in the
fiber category % .
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Lemma 2.1.1.16. The stack . is a gerbe on X if and only if the natural map
Sh(.¥) — ex is an isomorphism in X.

Here ex denotes the final object of the topos X. This will often be written as X
by abuse of notation.

Proof. Suppose % is a gerbe. By functoriality of the natural map, it is enough to
demonstrate the claim when .# has a global section ¢ over X. But then every local
section is locally isomorphic to ¢, hence Sh{.¥#) is a singleton and the natural map is
an isomorphism.

Suppose conversely that Sh(.#) — ex is an isomorphism. In particular,

Sh(#)(U) = {0}

for any U € X. By the definition of Sh(.%’) and of sheafification, this says precisely
that conditions 1 and 2 of 2.1.1.14 is satisfied. d

In moduli-theoretic terms, 2.1.1.16 roughly says that a stack is a gerbe over its
moduli space if and only if the moduli space represents the sheaf associated to the
moduli problem. This is not the same as the requirement that the moduli space be
fine; the stack of stable sheaves with fixed determinant is a gerbe over its moduli
space, but there is a well-known Brauer obstruction to the existence of a universal
object (from the non-abelian cohomological point of view, the obstruction is precisely
that gerbe!). In the Deligne-Mumford case, 2.1.1.16 may be interpreted as saying that
the stack is a gerbe over the moduli space iff the completion of the strict localization
of any point of the moduli space is identified via the projection with the universal
deformation space of a lift of that geometric point into the stack. Finally, this is
simply the statement that a universal object exist étale-locally on the moduli space.

Lemma 2.1.1.17. If ¥ — X is a gerbe and F is a sheaf on % such that the inertia
action F x #(¥) — F s trivial, then F is naturally the pullback of a unique sheaf
on X up to isomorphism.

Proof. We claim that 7*x,F — F is an isomorphism. To verify this, it suffices to
work locally on X, so we may assume that .% has a section. One can then check
using the hypothesis on the action that the pullback of F' along this section equals
the pushforward of F along the structure morphism. The result follows. O

Remark 2.1.1.18. This holds more generally when X is the coarse moduli space of
a Deligne-Mumford stack .% (with the action of inertia being studied in the big
étale topology), but the proof is slightly more difficult: it follows without too much
difficulty from the étale local structure of the stack as a finite group quotient stack
[52, §6), [43]. ¢

Lemma 2.1.1.19. If 7 : ¥ — X is a gerbe and S (%) is an abelian sheaf on 7,
then there is an abelian sheaf A on X and an isomorphism T*A = #(.¥) as objects

of 2
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Proof. This is an application of 2.1.1.17. O

2.1.1.20. Given a stack ., we can now try to think about stacks on the topos
. It turns out that this does not add any further complexity to the situation. We
first recall a basic fact.

Lemma 2.1.1.21. There is a natural I-equivalence between the 2-category of stacks
on the site of % and the 2-category of stacks on .

Proof. A full proof may be found in {30, I1.1.3.3]. The functor taking a stack on S and
giving a stack on the site of % is just the restriction functor. In the other direction
(assuming we work in a fixed universe), a stack on the site of .% gives a groupoid

object in .% in the usual way, thus giving rise to a stack on 7. O

Given a stack .7 — X and a 1-morphism f : .7 — %, we can construct a stack
T — .#° which i1s “the stack of sections of f.”

Definition 2.1.1.22. The stack of sections of f has as objects over ¢ : S — .% pairs
(1,m), where ¢ : § — 7 is an object of &° and 1 : ¢ — 1 o f is an isomorphism.
An isomorphism (1, 1) = (¥’ ') over  is a 2-isomorphism ¢ : ¢» ~» 9’ such that the
diagram

pof

commutes. Given a diagram

(3.8 g
\ 7
o
Z,

where 3 : ¢’ 5 pog is a 2-isomorphism, the pullback of (¥, 7n) along (g, A) is defined
to be (¥ o g, ), where

Sl

a;¢’1>¢og:>(fo¢)og:>f0(¢og)

is the composition of # with the translation of n by ¢ and the natural associativity
isomorphism.

It is immediate that 9 is a stack on .. The reader familiar with the con-
struction of the 1-fiber product given in [52, 2.2.2] will recognize the fibered category
underlying 75 as the natural 1-fiber product .7 x s .%°. We will use this fact to
simplify proofs below.
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Proposition 2.1.1.23. The functor {p : T — &) — (T — %) gives a I-
equivalence of 2-categories between X -stacks & over & and stacks on F°.

Lemma 2.1.1.24. Ifh:C — C" and g : C' — C" are categories fibered in groupoids,
then f: C — C” is naturally a category fibered in groupoids.

Proof. Up to equivalence, we may replace C' by a split fibered category over C”;
one can easily check that pulling back C along any equivalence yields an equivalent
category. We may then replace C by a split fibered category over C’. Once this
has been done, it is clear how to define the pullback functors for f : ¢ — C": for
c € C and ¢" — f(c), the pullbacks for g : C'" — C” vyield ¢ — g(c) Cartesian
over ¢ — f(c¢). Now the pullbacks for h : C — C’ yields ¢ — ¢ Cartesian over
¢’ — g(c). It now follows that ¢ is a pullback relative to f. (Note that the proof given
here has nothing to do with categories fibered in groupoids, but is in fact completely
general to fibered categories. The point is that if both fibered categories are fibered
in groupoids, then the composition is also fibered in groupoids.) O

Proof of 2.1.1.23. An inverse to the given functor is the forgetful functor {(which yields
an X-stack by 2.1.1.24). The rest follows from the fact that %#° — % is a 1-
isomorphism of stacks and that g = .7 x o 9. O

Remark 2.1.1.25. 1t is easy to see that the equivalence of 2.1.1.23 respects 1-fiber
products. In other words, given two stacks &, 7' — ., the stack on J° associated
to 7 xv J' — .7 is the pullback of the stack associated to &’ — % on .¥*. Thus,
for example, given a gerbe G — %, the morphism of stacks 4 — .# representing G
has the property that for any S — .%, the pullback 4 x » S — S is a gerbe (equivalent
to the restriction of G to S in the site .7%). ¢

2.1.2 Twisted sheaves

Let (X, &) be aringed topos, A a sheaf of commutative groupson X, and x : A — G,
a character.

Definition 2.1.2.1. An A-gerbe on X is a gerbe ¥ — X along with an isomorphism
Ay 5 I(F) in 7.

When A is non-commutative, this definition is not correct. One must instead
choose any isomorphism as in the definition in the category of liens on .% rather than
the category of sheaves. The basic reason for this may be seen by thinking about the
gerbe BG for a non-commutative group G. In general, the automorphism group of
a left G-torsor is an inner form of &, not G itself. (The stack of liens on a topos is
the universal stack receiving a l-morphism from the stack of groups on that topos
such that two inner forms naturally map to isomorphic objects.) This is of course
described in great detail in [30].

Given a cohomology class a € H?(X, A), there is a corresponding equivalence class
of A-gerbes on X. We will fix such a class o and an A-gerbe & — X in what follows.
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The goal of this section is to single out a subcategory of sheaves on 2 which will
play a fundamental role in what follows.

Given an &4 -module %, the resulting action m : G, Xx F — % yields an
associated right action m’ : & x G, — ZF with m'(s,¢) = m(p™',s). This will
always be called the associated right action.

Definition 2.1.2.2. A d-fold x-twisted sheaf on 2 is an €y -module % such that
the natural action u : &F x A — & given by the A-gerbe structure makes the diagram

FxA——F

)

F x Gngf

commute, where x%(s) = x(s)¢. A 1-fold twisted sheaf will be called simply a twisted
sheaf.

We will see below that if 2@ is a gerbe representing d - o € H*(X, A), then
twisted sheaves on 2@ are equivalent to d-fold twisted sheaves on 2.

An attentive reader may have noticed that the morphism x yields a “change of
structure group” for the gerbe Z:

Lemma 2.1.2.3. Let f : A — B be a morphism of abelian sheaves and o € H*(X, A)
a cohomology class with direct image f.(a) = B € H¥(X,B). Given gerbes 2, and
X3 representing a and 3, there is a I-morphism F : X, — 3 over X such that for
any section g : S — 2y, the induced morphism Ag = Aut(o) — Aut(F(o)) = Bg is
fs.

Proof. The existence of the morphism of stacks 2, — %7 is part of Giraud’s theory of
non-abelian cohomology. (Using 2.1.2.5 and 2.1.2.6 below, we may see this explicitly
(non-canonically): let U, be a hypercovering [5, Exposé V.7] which splits the gerbe
« (hence also 3). Change of structure group via f then gives rise to a functor on the
stack of twisted torsors which satisfies the conditions of the lemma.) 0

Under this identification, the stack of x-twisted sheaves is identified with the stack
of -twisted sheaves, where ¢ : im x — G, is the natural inclusion of the image. Thus,
we have gained very little but canonicity by our formalism. However, one might in
the future try something similar when .% is not a gerbe and the inertia stack .#(.%)
is not constant, in which case this setup is the correct one. Such a study is related to
moduli of ramified Azumaya algebras and the ramified period-index problem. These
issues will be explored in later work.

In preparation for the next section, we use the yoga of twisted sheaves to give an
alternative description of any A-gerbe in terms of certain sheaves of A-modules on
the associated site. Let & be an A-gerbe in what follows. We think of the inertia
stack as a sheaf of groups on .#.

Definition 2.1.2.4. A right A-torsor 7" on F is twisted if the action of the inertia
sheaf T' x A — T equals the A-torsor action. The fibered category that associates to
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S € X the category of twisted right A-torsors on & xx S = 5’7/15 is a stack & — X,
the stack of twisted right A-torsors.

The fact that .7 is a stack on X follows from the fact that any morphism of topoi
is a stack, along with the fact that being twisted is a local condition on the base of a
torsor.

Proposition 2.1.2.5. There is ¢ natural 1-isomorphisin ¥ — .

Proof. We assume .# is split as a fibered category for the sake of simplicity. Given
a section f : § — % we construct a section T of 7 over S € X, i.e. a twisted right
A-torsor on . xx S. Given any 7 : S’ — S and a lift p: 5" — .&, let T((nw,p)) be
the set of isomorphisms f o7 — p. Since .% is a stack, one sees that this defines a
sheaf on .% X x S. Furthermore, the inertia action on p makes T into a right A-torsor,
hence into a twisted right A-torsor!

This construction is clearly local on X, so to show that it defines a 1-isomorphism,
it suffices to do so under the assumption that % has a global section o : X — #.
In this case, given 7' : S — 7, we can construct an element of BA (an ordinary
right A-torsor on S) by taking Isom(P,T'), where P is the twisted right A-torsor on
X whose sections over g : 8' — % are Isom(o,g). This defines a 1-isomorphism
7 — BA. Composing the two 1-morphisms yields the natural map . — BA which
is known to be a 1-isomorphism. O

There is an alternative way to describe the stack 7 which will be of use for us in
comparing our definition of twisted sheaves with the earlier definition of Céldararu.
Let  : Uy — . be a section and Uy — Uy x x Uy a covering over which the two
pullbacks of z are isomorphic. Using the theory of hypercoverings [5, Exposé V], we
can find a simplicial object U, with an augmentation to X containing Uy and (an
appropriately refined) U;. Choosing an isomorphism 1) : 7y — x1, one finds that
Yorbor1th2 = a € A gives a 2-cocycle in A. In fact, as we will show below, one can
reconstruct the gerbe . {(up to equivalence) from this datum.

Lemma 2.1.2.6. A twisted right A-torsor on S € X 1is given by a right A-torsor
% on Upg and an isomorphism ¢ : & > % on Uy such that the coboundary
(,90_21(10()1tplg =q € Aut(.,?z)

Proof. Given a twisted right A-torsor, pulling back along zg gives .#. The isomor-
phism of £y — z; gives rise to ¢ and the twisted condition shows that the coboundary
acts as a. The other direction will be proven in 2.1.3.9 below. O

Remark 2.1.2.7. The results of the next section will show that any hypercovering
U, with a 2-cocycle a representing the cohomology class a has the property that
there is a section z : Uy — 2 and an isomorphism ¢ : 7o — z; whose coboundary
is a. Thus, the seemingly more general equivalence of 7 with the pairs (%, )
defined on an arbitrary hypercovering U, with 2-cocycle a such that [a] = a will be
demonstrated. ¢
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2.1.3 Comparison with the formulation of Caldararu

We explain in this section how our definition of twisted sheaves squares with that used
by Céldararu in [6]. The reader will note that this formulation seems more “user-
friendly.” We hope to make clear below, especially in our discussion of deformations
and obstructions, why the more abstract approach is useful.

Throughout, we retain the notation of the previous section: (X, &) is a ringed
topos and x : A — @,, is a character of a sheaf of commutative groups. Let a €
H?(X, A) be a fixed cohomology class. By a theorem of Verdier [5, Exposé V.7], there
is a hypercovering U, — X and a scalar a € ['(Us, A) whose coboundary on Uy is
trivial and which represents « in cohomology. We fix such a representative in this
section. We also fix a choice of A-gerbe £ representing the cohomology class .

Definition 2.1.3.1 (Caldararu). A y-twisted sheaf on X is a pair (F, g), where F
is an @y,-module and g : F| — Fy is a gluing datum on U; such that §g € Aut(Fp)
equals the cocycle x(a).

We will (temporarily) call such an object a Calddraru-y-twisted sheaf.

Example 2.1.3.2. Suppose A = G,,, ¥ = id, and X is a complex analytic space.
We may take the hypercovering U, to be the Cech hypercovering generated by an
open covering of X, i.e., we may replace U, by an open covering {U;} of X. Then a
x-twisted sheaf on X is given by

1. a sheaf of modules .%; on each U;
2. for each ¢ and j an isomorphism of modules g;; : #;|v,, = Filu,,

subject to the requirement that on Ui, g,;clgijgjk ; 5‘}|Ul.jk A Filu,,, is equal to
multiplication by the scalar a € p,, (U;;x) giving the 2-cocycle. O

Our first goal in this section is to show that the stack of Calddraru-y-twisted right
A-torsors is actually an A-gerbe with class a. This is not as trivial as it seems.

Definition 2.1.3.3. The stack of explicit twisted right A-torsors, denoted 2 (U,,a),
has as objects over S € X the groupoid of pairs (%, ), where .# is a right A-torsor
on Uy x S and ¢ : % — %, is an isomorphism of the pullbacks to U/; x S such that
d¢ = a|U; x S. Isomorphisms are isomorphisms of the . which commute with the
gluing data ¢.

Proposition 2.1.3.4. 2 (U,,a) is an A-gerbe representing [a].

We begin the proof by proving a series of results about explicit Cech 2-cohomology
on hypercoverings. First, a trivial lemma which will be useful below and which is not
easily extractable from the literature. It is a simple case of something more subtle
which does not clearly work as stated in higher indices without extra hypotheses (such
as working in the small étale site of a Deligne-Mumford stack).
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Lemma 2.1.3.5. Let X be a topos end U, a hypercovering of X. Given a covering
Uy — Uy, there is a hypercovering U, and a morphism U, — U, such that the map
U, — Uy is an isomorphism and U, — Uy has the form Uy [[Us — Uy, with the Us
summand mapping to U, via the degeneracy map.

Proof. Let U = Uy [[ Uy, U{ = Up. Then Uy’ and U} may be made into a 1-truncated
simplicial object UJ[1] with a map to sky U. (which sends the Uy summand of U}’ to
U, via the degeneracy map Uy — U;). Thus, we get a map cosk; U]'[1] — cosk; sk, U..
The pullback cosky UZ[1] X sk, sk, Us Us gives a hypercover mapping to U, whose term
in degree 1 is (5'1 11 Uo) v, Uy = U, I Uo. a

Proposition 2.1.3.6. There is a section x : Uy — 2 whose pullbacks xy,z, : U} —
X (U, a) are isomorphic. Firing an isomorphism ¢ : xg — x;, one has dp = a.

Proof. The content of this proposition lies in the fact that we are not changing the
hypercovering U,. We will make a descent-theoretic argument.

Changing the base of U, to Uy, we find that the augmentation has a section.
Using this section, we can make a morphism Up const — Ue X x Up of simplicial objects
augmented over Uy, where Uy onsy denotes the constant object, i.e., every object of
the simplicial object is Uy and all morphisms are the identity. Since we are now
augmented over Uy, the object Up const iS Now a hypercovering. Since hypercoverings
compute cohomology (in the limit) and the Cech cohomology of Upconst 15 clearly
trivial, we see that [a]|y, = 0 € H*(Uy, A). Thus, as [Z] = [a] € H*(X, A), we
find that there is a morphism z : Uy — &'. It is not a priori the case that the
pullbacks zy and z; are isomorphic on U;, but there will be a covering U; — U, such
that .’Eg'fjl = :E1|51. Furthermore, zo and z; are isomorphic when restricted to the
degeneracy map Uy — U,. By 2.1.3.5, there is a hypercovering U, and a morphism
h: U, — U, such that U} = U and Uj = U [1 Us; thus, zo|yr = 1|y, Consider the
diagram

Uy —=% U/ —= U[')' =1,
b
U —= U] —=Uj—="U,

|

U= U, ==,

where U" = U’ xy U'.
Choosing an isomorphism zo, — z; on U] and taking the coboundary yields a
2-cocycle @’ € A(U}) such that [o'] = [a] € H*(X, A). There is a spectral sequence

ERY = HP(UL, 5£7(A)) = HPYI(X, A)

from which we deduce that the kernel of the natural map I:I2(U:, A) — H*(X, A) is the

image of HO(U:, 1 A)). This is just the set of A-torsors & on U] such that 4, = .2
on Uj; choosing such an isomorphism yields the 2-cocycle which is cohomologically
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trivial. We know that A*a and o’ map to the same thing in H?(X, A). Thus, they
differ by the cocycle coming from some A-torsor on Uj. Since U] = Uy, we may
adjust the section z by . (using the fact that we are dealing with A-gerbes). Thus,
we may assume that h*a = o’. In other words, we may assume that there is a
section o of Isom(xy, z;) over U; whose coboundary is equal to a as an element of
Isom(zg, o) (U}). We wish to show that o will descend to U;. On the hypercovering
U!, we may consider the two pullbacks ¢y and o, of ¢ to U;'. Since Isom(zg, z1) is a
sheaf, it is enough to show that oo = ;. But we know that doo = doy = alyy. Thus,
o, ' o 0g is a section b € A(UY) such that §(b”) = 0. We conclude that there is an
A-torsor M on X with a trivialization « : Ay = Myy whose coboundary on Uy’ is
b. As Uy = Uy, we see that b is the pullback of a section b € A(U;). Now pulling
back the relation og = 0y o b along the diagonal U] — U, we find ¢ = 0 o b, whence
bly; = ida and we see that oo = 0. O

Lemma 2.1.3.7. Let X be a topos, Us a hypercover such that the augmentation has
a section, a a 2-cocycle for A. Then a is a coboundary.

Proof. By the argument above, [a] = 0 € H?(X, A), so there is an A-torsor L on U
and an isomorphism ¢ : Ly — L; whose coboundary is a. We wish to show that
Lo and I are trivial. In that case, choosing trivializations, ¢ gets identified with a
scalar b whose coboundary is a. Suppose first that the pullback of L along the section
to the augmentation is trivial. Then, as above, there is a refinement U, — U, such
that the pullbacks of Ly and L; are trivial on U]. Fix trivializations of both over Uj.
In this case, ¢ yields a section b € A(U;) such that 6(b) = a. We wish to show that b
descends to U;. As before, on U/, 6(bg) = a = &(b;). Thus, §(b; — by) = 0. Writing ¢
for by — by, we see that ¢ gives a descent datum for an A-torsor on X relative to the
covering U,'. Thus, there is some M on X such that M|yx is trivial, and choosing the

right trivialization A|U(',' S M |U6’ we see that the descent datum on M is identified
with ¢. As Uy = Uy, we see that ¢ comes by pullback from U;. Taking the coboundary
d of ¢ on U}", we see from the fact that c is a coboundary (being b; — &) that d = 0.
On the other hand, as ¢ € A(U;), we see that d = ¢. Thus ¢ = 0 and b descends,
making a a coboundary. O

Question 2.1.3.8. How much of this remains true for higher cohomology classes? In
other words, what do we need to know about the hypercover to conclude that a trivial
cocycle is a coboundary? The proof given here uses various special facts about the
index 2, among them the fact that for the constant simplicial object, the 2-coboundary
map is not zero! (All odd degree maps are zero; all even degree maps are the identity.)
One thing which is still clear is that when the augmentation has a section, the Cech
cohomology along the hypercover contributes nothing to the sheaf cohomology. Thus,
any cohomology class defined on U, will split on U.

Proof of 2.1.8.4. 1t is clear that the natural map from A — Aut(Z, ) is an isomor-
phism, so to see that 2 (U,,a) is an A-gerbe, it remains to check that it has local
sections everywhere and that any two sections are locally isomorphic. By 2.1.3.7, a
1s a coboundary after changing the base to Uy, say a = §(b). Thus, taking the trivial
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A-torsor and composing the descent datum with b yields a section (A4, b) of Z°(U,,a)
over Up. In fact, one easily sees that sending a pair (&, ) to (&, p o b !) yields
an equivalence of the fiber category .2 (U,, a)y, with the category of right A-torsors
on Uy (via the category of torsors on Uy x Uy with descent data for U. x Up). As
any A-torsor is locally isomorphic to A, we see that 2" (U,,a) is an A-gerbe. To see
that [2Z (U.,a)] = [a], note that in general one can compute the class of a gerbe by
choosing a hypercovering V, such that

(1) There is a section = : Vo — 2 with xo = z; on V.

(2) Choosing ¢ : To — i1, the coboundary &y will be a 2-cocycle for A which
represents the cohomology class of 2" in the Cech cohomology of V.

But this is precisely what 2.1.3.6 does for the hypercover U, with the 2-cocycle a. O

Arguing as in 2.1.2.6, one sees that there is a l-morphism of stacks ¢ : & —

Z (U,, a).
Corollary 2.1.3.9. ¢ s a I-tsomorphism.

Proof. Both are A-gerbes in the same cohomology class, so any 1-morphism between
them which is A-linear (i.e., such that the natural map of 2.1.1.9 is an isomorphism) is
a 1-isomorphism. (Indeed, the map is essentially surjective because any two sections
are locally isomorphic and it is fully faithful on fiber categories by the assumption on
A-linearity.) But it is clear that the natural map € is A-linear by construction. [

Let % be a y-twisted sheaf. Pulling back by the section x : Uy — £ of 2.1.3.6
we get an €p,-module F. The isomorphism ¢ : Tg = z; gives rise to an isomorphism
¥ . F} = Fy (where the first factor, to be completely rigorous, is the pullback of
F, along the identity map). The coboundary is multiplication by a (via the natural
right action) by the requirement on the character of the inertia action built into the
definition of y-twisted sheaf. In other words, we have defined a morphism from the
stack of x-twisted sheaves to the stack of Cildararu-y-twisted sheaves. We will refer
to this as the natural map.

Lemma 2.1.3.10. If & is trivial, the choice of a section X — Z identifies the
stack of x-twisted sheaves with the stack of sheaves on X.

Proof. The section induces an isomorphism BA = 27, which induces an isomorphism
of the stack of y-twisted sheaves on 2 with the stack of y-twisted sheaves on BA.
(We are implicitly identifying the inertia stacks using 2.1.1.9.) Given a sheaf on BA,
pullback along the section gives a sheaf on X. Given a sheaf I’ on X, associating to
every A-torsor L on U — X the sheaf F'® x(L) gives a x-twisted sheaf on BA. Here
x(L) means the right G,,-torsor associated to L via the character x. It is easy to
check that these define an equivalence of categories. O

Proposition 2.1.3.11. The natural map induces an equivalence between the stack of
x-twisted sheaves and the stack of Calddararu-x-twisted sheaves.
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Proof. By the naturality of the map, it suffices to work locally, so we may assume
that a is a coboundary by 2.1.3.7, say a = 4(b). Changing the gluing datum by b as
in 2.1.3.4, we see by 2.1.3.10 that the natural map is isomorphic to the map sending
a sheaf to its pullback to U, along with its descent datum. This is an equivalence by
the definition of a topos! (]

On the other hand, it is obvious that the Caldararu-y-twisted sheaves are equiv-
alent to twisted sheaves for the cocycle in G, induced by x. Let 2, — Zyq) be as
in 2.1.2.3, where x(a) € H*(X, G,.).

Definition 2.1.3.12. If x : A — G,, is the natural inclusion of a subsheaf (e.g., i,
or Gn,), a x-twisted sheaf on 2 will be called an 2" -twisted sheaf .

Corollary 2.1.3.13. The map Z, — Zy(a) induces by pullback a 1-isomorphism of
the stack of &) -twisted sheaves with the stack of x-twisted sheaves.

Proof. This is immediate once one chooses a hypercovering splitting «: the Caldiraru
forms are then identical, so we are done by 2.1.3.11. O

2.1.4 Fibered Morita theory

Our goal in this section is to provide a geometric version of Morita theory: we answer
the question “When are the fibered categories of modules for two rings in a topos
fibered-equivalent and how can the equivalences be described (up to 2-isomorphism)?”
This provides the correct framework for understanding the Brauer group of a ringed
topos, as developed in the next section. Throughout this section, (X, ) is a locally
ringed topos with enough points.

Let & and 2 be sheaves of (unital associative not-necessarily commutative) &-
algebras.

Definition 2.1.4.1. The assignment of any object U € X to the category of sheaves
of &f|y-modules on U defines a fibered &-linear category .#od,, — X. Two O-
algebras & and 2 are fibered Morita equivalent if there is an €-linear fibered equiv-
alence j[odff, — J//odfg‘?.

Here, the superscript “fp” denotes the sub-fibered category of (everywhere locally)
finitely presented modules. Our ad hoc proofs unfortunately seem to require this
condition (in the absence of any other conditions on X or the structure of the modules
being studied). Of course, any fibered Morita equivalence induces an equivalence
on the fibered category of all modules (as this is just the ind-category of finitely
presented modules). The condition of ¢-linearity on a functor F' means that given
any M, N € .#ody y, the natural map #omy,(M,N) — Homag(F(M), F(N)) is
¢-linear.

The following proposition will not be used in the sequel, but it is reassuring to
know that it is true. Given a point P of X, we define the stalk of ./ﬁodfg to be the
category Modi‘;P of finitely presented @p-modules.
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Lemma 2.1.4.2. Given an €-linear functor of fibered categories .//Zodff; — Mod?,
there is an induced functor on stalks.

Proof. Any M € Modi‘;P can be described by a matrix with entries in &/p. By the
usual properties of points in a topos (see Sga 4.1.6) there is a neighborhood of P over
which this matrix extends, i.e., a section of //{odg’, over some object V € X whose
stalk at a point lifting P is isomorphic to M. Taking the image by F' and taking the
stalk (which is the “germ” in the fibered category) yields an object Fp(M) € Modgzp.

More generally, from Mod® | one gets an ind-category indexed by the neighborhoods
of P, and one sees that this ind-category admits a functor to the constant ind-category
on Modgp which is an equivalence. The functor on stalks in question is then the
functor induced by the ind-functor associated to F'. £l

We will call a set of points of X dense if the corresponding functors X — Set
form a conservative family. See [4] for more information about this concept. The
reader unfamiliar with these terms is encouraged to think of the set of points of
a scheme: the behavior of a diagram of sheaves in the localizations determines its
global behavior. In other words, given a functor h : I — X from a small (resp. finite)
indexing category, a natural transformation from A to a constant diagram (resp. from
a constant diagram to h) is a colimit (resp. limit) in X if and only if it is in all the
stalks of the conservative family. For a down-to-earth example: a map of sheaves
F — @G is a surjection (resp. injection) if and only if Fp — Gp is a surjection (resp.
injection) for all P in the family. Caveat emptor: a set of a points of a scheme may
be dense in the topological sense without being dense in our sense (e.g., the generic
point).

Proposition 2.1.4.3. An €-linear functor of fibered categories F : /Zodg’, — ///odg;
15 an equivalence if and only if it is an equivalence in the stalk at o dense set of points
of X.

Proof. Given M, N € J%Odi};,U, F induces a map of sheaves of &-modules
Homg(M,N) — Fomg(F(M), F(N)).

Furthermore, as M, N, F(M), and F(N) are finitely presented, this map localizes to
give the map on stalks

Hom,y, (Mp, Np) — Homg,(F(M)p, F(N)p) = Homg, (Fp(Mp), Fp(Np)).

If F is an equivalence, then we see that the map of sheaves is an isomorphism,
whence the localized map is an isomorphism. Conversely, if the localizations are
isomorphisms at a dense set of points P, the original map is an isomorphism. Thus,
F is fully faithful (on fiber categories) if and only if Fp is fully faithful for a dense
set of points P. (We have implicitly used the fact that the restriction of a topos with
enough points to an object still has enough points.) It remains to check essential
surjectivity in fiber categories. Arguing as in 2.1.4.2 we see that if F' is essentially
surjective on fiber categories then Fp is essentially surjective for all P. Conversely,
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as the fibered categories of modules are stacks and we have just checked that F' is
fully faithful if it is at a dense set of points, it is enough to check that any section
N e .//[odg;U is locally in the essential image of F. But this is clear, again by an
argument, similar to that in 2.1.4.2. d

As in ordinary Morita theory, any fibered Morita equivalence is given by a Morita
context in the category of &-modules.

Proposition 2.1.4.4. Any fibered Morita equivalence F : .//{odfg — .///odfgg s 150-
morphic to a functor of the form Fom (P, - ), where P is a locally faithfully
projective & -module of finite presentation. In this case, B = End (D).

As X is locally ringed with enough points, the concept of “locally faithfully pro-
jective” is easily understood: Zp is a progenerator for Mod,, for a dense set of
points P.

Proof. One way to prove this would be to lift and glue local progenerators using
classical Morita theory [65]. We give a more global proof (which only reduces to the
local case once the global construction has been made).

First, let &2 be a locally faithfully projective &/-module of finite presentation.
Let B = &ndy(2?). Then & is naturally an (&7, %)-bimodule, and so ?* =
Hom (P, of) is naturally a (9, &)-bimodule. Furthermore, as 22 is finitely pre-
sented,

Homg (P, M)=P" @M
o

(and this isomorphism respects the left #-module structures). Thus, there is a natural
isomorphism #*®, P = %B. We claim that there is also a natural isomorphism
P Rp P* = of of (o, o )-bimodules. There is certainly a natural (&7, &)-bimodule
map given by “contraction”: p® ¢ — ¢(p) € & on sections. This is functorial, and
thus we may take stalks and reduce to the classical Morita theory, where the map
is known to be an isomorphism. One can now check that s#omg(2?*, -) defines a
quasi-inverse functor.

Conversely, suppose given an equivalence F as in the statement of the lemma,
and suppose & has the property that F(2?) & 2. Then, since F is fully faithful,
2 inherits an (&, %)-bimodule structure from a choice of isomorphism F{(4?) =
#B. We claim that F' = #omy (4, - ) via the following natural map: as F is a
fibered equivalence, given any two &/-modules M and N, Fy; induces an isomorphism
Hom y, (My, Ny) = Homg, (F(M)y, F(N)y). This means that F induces an isomor-
phism S#om (M, N) = H#omg(F(M), F(N)). Thus, using the chosen isomorphism
F(2) = 2, there is an induced isomorphism

Hooma (P, M) 5> Homg(F(P), F(M)) > Homy(B, F(M)) = F(M).

It remains to show that 42 is locally faithfully projective. It suffices to check this
on stalks, as & is already finitely presented by hypothesis. But any surjection of
finately presented modules on a stalk is a localization of a {local) surjection of finitely
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presented sheaves, so we may apply the fact that F is exact (being an equivalence) to
conclude that £ is locally projective. It is a local generator by a similar argument. O

Remark 2.1.4.5. T am not sure if the finite presentation hypothesis is necessary. (In
the topos of sets, of course, it is not.) ¢

The global version of Morita theory immediately gives us the following corollary.
A proof using more abstract methods (which works in the absence of sufficiently many
points globally) is indicated in 2.1.4.2 above.

Corollary 2.1.4.6. If & and % are fibered Morita equivalent then «/p is Morita
equivalent to Bp (in the sense of finitely presented modules) for any point P.

Given & and 4 as above, we can consider the fibered category of all fibered Morita
equivalences in the following sense: let . (&, %) be the category of triples (U, &, ¢)
where U € X, & is a locally faithfully projective & |;;-module, and ¢ : &ndy, (P) =
%B|y is an isomorphism of @-algebras. Isomorphisms (U, 2, ) = (U, 2,¢') in the
fiber categories are &/-linear isomorphisms 1 : &' = 2 such that woy* = ¢', where
P Endy(P) O Endy () is the induced isomorphism of &-algebras. We will
investigate this stack after a few non-commutative preliminaries.

Recall that a ring A is local if A/J is a simple ring, where J is the Jacobson
radical of A (i.e., A has a unique isomorphism class of simple left modules). We will
say that A is strongly local if A/J is a simple left-Artinian ring. This has the effect
of making the category of left A/J modules semisimple [24]. (Note that when A is
commutative, A/J will always be a ficld, so every local commutative ring is strongly
local.)

Definition 2.1.4.7. An &-algebra is locally (strongly) local if &7p is a (strongly) local
ring for a dense set of points P of X.

Remark 2.1.4.8. This definition is made only for the case when X has enough points. I
have not thought about what the correct condition should be when X is more general.
(By a theorem of Deligne, any coherent topos has enough points, so, in particular,
“any topos arising in algebraic geometry” will have enough points.) I am not even
sure if it is true that a locally local sheaf of algebras by our definition has local stalks
at every point. ¢

Lemma 2.1.4.9. Let A be a strongly local ring and P and Q finitely presented pro-
jective A-modules. Any isomorphism End4(P) = Enda(Q) of rings is induced by an
isomorphism P = Q. The autornorphisms of P inducing the trivial automorphism of
End,(P) are precisely the elements of Z(A*).

Proof. Let J be the Jacobson radical of A (which is the maximal left ideal and is in
fact a two-sided ideal.) Let v : Ends(P) = Enda(Q) be an isomorphism. Since P
is projective, the map Enda(P) — Enda,;(P/JP) is surjective, hence (as A is local)
is identified with the quotient of End4(P) by its Jacobson radical. Furthermore, the
number of idempotents of End 4,;(P/JP) is 2", where n is the number of simple sum-
mands of P/JP. Similar results hold for @, so we deduce that that P/JP and /JQ
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have the same number of simple summands and hence that there is an isomorphism
P — @ (using projectivity).

It remains to show that any automorphism of End 4(P) is induced by an automor-
phism of P. Since A/J is a simple left-Artinian ring, we see by reducing to the case
where A/J is a division ring (using Morita theory again) that any automorphism of
Endg4,,(P/JP) is induced by an automorphism of P/JP. Thus, since P is projective,
it suffices to show that any automorphism of End4(P) which reduces to the identity
modulo J is induced by an automorphism of P.

Write B = End4(P) and let ¢ : B = B be an automorphism. This results in
two right B-module structures on P: the natural structure and the natural structure
twisted by ¢. Denote the twisted structure by P’. By Morita theory, P with the right
B-structure projective right B-module [65]. (Indeed, one shows that P* is a projective
left B-module and that N — Hompg(P*, N) gives the inverse Morita equivalence to
M — Homu (P, M). Thus, P = (P*)* is the dual of a finitely presented projective
left B-module.) On the other hand, P and P’ are isomorphic modulo J, so there
is a B-linear map ¢ : P — P’ lifting such an isomorphism. Since twisting by ¢ is
an exact functor, we see that P’ is a finitely generated projective B-module, hence
finitely presented. We conclude by Nakayama’s Lemma that 1/ is an isomorphism.
This is easily seen to imply that ¢ is inner, as required.

The statement about the automorphisms ¢ : P = P inducing the trivial auto-
morphism follows from the fact that Z(A*) is the automorphism group of the identity
functor on Mod 4. d

In order to retain uniform notation, we will say that two rings A and B are “fibered
Morita equivalent” if they are Morita equivalent in such a way that finitely presented
modules are preserved.

Lemma 2.1.4.10. #(«/, %) is a stack. It has a section in a neighborhood of P
iff @p and Bp are fibered Morita equivalent. If &/p 1s strongly local then any two
sections of (<, B) are locally isomorphic around P. When & is locally strongly
local and @/p is fibered Morita equivalent to #p at a dense set of points P, # (o, B)
is a gerbe whose band is the center of the sheaf &/ of units of & .

Proof. That .# is a stack is immediate. The second statement is a consequence of
the definition of .# and 2.1.4.4. The third statement is 2.1.4.9. O

Remark 2.1.4.11. Suppose A is strongly local and let M be the simple left module.
A projective cover of M is a finitely generated projective left A-module P such that
P/JP = M. If a projective cover P exists then it is a progenerator for left A-modules,
and in fact every finitely generated progenerator is a direct sum of copies of P. We
conclude in this case that the fibered Morita equivalence class of A consists of the
matrix algebras M, (Enda(P)) for all n > 0 (with My(End 4(P)) := A). If A is a finite
algebra over a Noetherian local ring R (which we will assume to be excellent starting
with the next sentence), then there is a projective cover for M over the completion
of R [10, 1.1.5]. As the functor of Morita equivalence is locally of finite presentation,
we see by Popescu’s theorem [17, 59, 60] that the algebras which are fibered Morita
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equivalent to A are all étale locally isomorphic to matrix algebras over a fixed ring.
This structure is a mild generalization of the concept of an Azumaya algebra; see
2.1.5.

Corollary 2.1.4.12. If & is fibered Morita equivalent to €, then (', B) is fibered
equivalent to M (€, %B). Similarly for Morita equivalences in %.

Proof. Left to the reader. (I

As expected, the stack .# (&7, $) carries the “universal Morita equivalence of &
and #”.

Lemma 2.1.4.13. There is a finitely presented locally faithfully projective & -module
F on M, B) and an isomorphism p : Endy(F) > B in M (', B). The pullback
of the pair &, ¢ along any section s : U — (/| 9B) is isomorphic to the equivalence
on U associated to s.

Proof. Sending a triple (U, 22, ) to & defines the sheaf &#. The rest is a tautology.
Note that when .# is a Z(&/*)-gerbe, the sheaf &2 is twisted (in the obvious sense
generalizing the definitions above). O

Now suppose that both conditions of 2.1.4.10 are satisfied, so that .# (&, #) is a
Z (/' *)-gerbe. Note that the existence of local sections comes from the fibered Morita
structures of & and 4, while the description of the band only involves . Thus, the
conditions are invariant under Morita equivalences in &. Let % be another &-algebra
which is Morita equivalent to 98 on a dense set of stalks.

Lemma 2.1.4.14. The Z(&/*)-gerbes M (', B) and A (', %) are equivalent if and
only if B and € are fibered Morita equivalent.

Proof. The “if” direction follows from 2.1.4.12. Suppose that F : .# (<, B) =
M (&, €) is an equivalence of Z(&/™)-gerbes. Since & is the pullback of an algebra on
X to. (e, ), we see that F*«/ = &. Thus, the universal equivalence &nd (%) =
€ on #(«/,%) pulls back to give such an equivalence on #(&/, %), and F*&?
remains twisted as above by the condition that F' be a map of Z(&*)-gerbes. Let
Z be the twisted finitely presented locally faithfully projective &/-module giving the
fibered Morita equivalence of & with #. We see that 4 = (F*#)*®.% is an
untwisted finitely presented locally faithfully projective left €-module which defines
a fibered Morita equivalence of € and % on # (27, %8). As ¢4 has trivial stabilizer
action, it is the pullback of such a module on X by 2.1.1.17, and this defines a fibered

Morita equivalence of # and € on X. O

Remark 2.1.4.15. When & = &, we see that classifying Azumaya algebras on X in
a fixed fibered Morita class [#)] (see the following section) is essentially the same as
classifying locally free twisted sheaves on the G,-gerbe .# (€, %8). Thus, by absorb-
ing the fibered Morita structure into the stack .#, we have reduced the problem of
studying Azumaya algebras in a fixed Brauer class to studying moduli of ordinary
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sheaves (with a given stabilizer action) on .#. In other words, we can replace the non-
commutative aspect of this particular problem by a commutative stacky structure.
Having done this, all of the tools of commutative algebraic geometry may be brought
to bear on the situation, which thus becomes quite tractable. In the case of Azumaya
algebras, these ideas have applications outside of the world of non-commutative al-
gebra, as one is then classifying PGL,-bundles, one of the principal goals of this
thesis.

2.1.5 The Brauer group of a ringed topos
Let (X, €) be a ringed topos as above.

2.1.5.1. Recall that an Azumaya algebra on X is a sheaf o of &-algebras which
is locally isomorphic to M, (€), i.e., it is a form of a matrix algebra.

Definition 2.1.5.2. With the above notation, the number n is the degree of &

Lemma 2.1.5.3. If X is locally ringed, then the sheaf of automorphisms of M,,(€)
is neturally isomorphic to PGL, x.

Proof. When X has enough points, this follows from 2.1.4.9. The general case may
be found in {30, §V 4]. g

Thus, by the usual theory of descent in a topos, there is a bijection
{Azumaya algebras of degree n on X }/isom < H'(X, PGL,).

Given any Azumaya algebra & of degree n, we may apply the boundary map to its
class in H'(X, PGL,) to yield a class in H?*(X, G,,). On the other hand, by 2.1.4.10,
MO, ) is a Gp,-gerbe. We will denote this stack by 2 (&) and call it the gerbe

of trimalizations of o .

Remark 2.1.5.4. One should be very careful in keeping track of the directions of
morphisms in 2 (#). We have made a map (U, F,¢) — (U', F',¢") (using the
notation for sections of the stack from the previous section) consist of a morphism
@ : U — U and an isomorphism o*F' = F commuting with the trivializations. A
moment of thought shows that this is the most natural way to proceed, as a* is a left
adjoint. Thus, in the fiber category over U, the natural isomorphisms (U, F, ) —
(U, F',¢’) are isomorphisms F' = F commuting with the trivializations. ¢

Lemma 2.1.5.5. The 1-isomorphism class of Z (&) equals the boundary of the tor-
sor corresponding to o .

Proof. A complete proof is in [30, §V.4]. The point is that if 7" is the PGL,-torsor
associated to &7, & (&) is identified with the G,,-gerbe of lifts of T to a GL,-torsor,
which is the coboundary of [T"]. (The reader is encouraged to carefully pay attention
to the natural directions of arrows as in the remark above.) O
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Proposition 2.1.5.6. Two Azumaya clgebras & and # have the same cohomology
class in H*(X, G,,) if and only if they are fibered Morita equivalent.

Proof. This is an application of 2.1.4.14. O

Definition 2.1.5.7. The Brauer group of X, denoted Br(X), is the set of isomor-
phism classes of Azumaya algebras on X modulo fibered Morita equivalence. The
cohomological Brauer group of X, denoted Br'(X), is H*(X, Gy )tors-

Given two Azumaya algebras &/ and 4 on X, one sees that & ® 4 is an Azumaya
algebra. In fact, it is not hard to see that [ @ B| = [&] + [B] € H*(X, G,,) [30,
Lemme V.4.3]. Furthermore, [&]+[2/°] =0 (as & @ &° = éndy(7)). Thus, Br(X)
is a group as claimed above, and sending &7 to 2 (&) gives an injection of groups into
H*(X, G,,); in fact, the image lies in Br'(X). The question of when Br(X) < Br'(X)
is an isomorphism is a difficult question. We present some of the known results using
our techniques below in section 2.2.3.

The reader already familiar with the Brauer group will be happy to see the next
lemma.

Lemma 2.1.5.8. Two Azumayae algebras of and A are fibered Morita equivalent
iff there are locally free sheaves ¥ and W on X and an isomorphism of €-algebras
dQEA(VY S BREnd(W).

Proof. We know that & ~ £ if and only if & @ #8° ~ €. 1t is easy to see that it is
enough to show that if &/ ~ & then & = &nd, (V') for some locally free &-module
¥. Indeed, in this case the stack 2 (&), being equivalent to £ (&) = BG,,, has
a global section. By the definition of the stack of trivializations, this completes the
proof. O

There are a lot of interesting basic things to say about the Brauer group, most of
which we postpone until we have discussed the theory of twisted sheaves on a scheme.

2.2 The case of a scheme

When X is the flat or étale topos of a scheme, we can use the abstract machinery
developed above to re-prove several classical results about the Brauer group and its
relation to the cohomological Brauer group. Among the statements (re)proven below
are Gabber’s celebrated result on the relationship between the Brauer group and the
cohomological Brauer group of an affine scheme [28, 39|, and Grothendieck’s basic
results on this question for Noetherian schemes of low dimension [35]. We also sketch
a proof of a fact which we have not seen in the literature: the derived category of
quasi-coherent twisted sheaves on a separated quasi-compact scheme is compactly
generated by perfect complexes (of rank 0, unfortunately). This may be seen as
laying the groundwork for algebraic twisted K-theory, to be developed fully along
the lines of Thomason [74} in future work. Finally, we will specialize to the case of
p..-gerbes on X and develop the deformation theory necessary to analyze the moduli
of twisted sheaves in section 4
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2.2.1 Quasi-coherent twisted sheaves

Let X be a scheme, A a group scheme which is faithfully flat and locally of finite
presentation over X, a € Hz(Xfppf,A) a flat cohomology class, and x : A — G,,
an algebraic character. Fix a gerbe £ representing « in the big fppf topology on
X. When A is smooth, a theorem of Grothendieck [35, Appendix] says that the
restriction of 2 to the (big or small) étale topos of X is an A-gerbe (and this defines
an isomorphism H?(Xgp, A) = H?*(Xg, A)). (In fact, Grothendieck’s theorem holds
for the cohomology in all degrees.)

Lemma 2.2.1.1. The gerbe & is an algebraic stack locally of finite presentation over
X. If X s quasi-separated and A is finitely presented then 2 is finitely presented.
The scheme X is (locally) Noetherian if and only if & is (locally) Noetherian.

Proof. We apply [52, 10.1]: it is enough to check that 2 is an fppf stack, has repre-
sentable separated quasi-compact diagonal, and has a representable fppf cover by an
algebraic space. The first condition is a consequence of the definition of a gerbe. The
second and third conditions follow immediately once we note that 2" has a cover by
an fppf X-scheme and that the sheaf of isomorphisms of any two sections of 2" is an
fppf A-torsor (hence is representable by an algebraic space by [52, 10.4.1]). There is
a cover of & which is of finite presentation over X because any locally finitely pre-
sented morphism from an affine to a quasi-separated scheme is quasi-compact (hence
finitely presented). The last statement on the diagonal is left to the reader. O

Remark 2.2.1.2. In our study of twisted sheaves on surfaces (when we actually want
to say something!), we will take A = p1,, with n prime to the characteristics of X. In
this casc, the reader will immediately verify that any A-gerbe 1s in fact a DM stack.

As usunal, when X is Noetherian we may define quasi-coherent and coherent twisted
sheaves. To be careful, one should first check that this is independent of the topology
chosen.

Lemma 2.2.1.3. The obvious morphism I : %pf — ﬁs_ét mduces by pullback an
equivalence of the stacks of quasi-coherent sheaves. In fact, the map F — F,F*% is
an isomorphism (for any sheaf on Zjis & ).

Proof. When & is a scheme, both are naturally the same as Zariski quasi-coherent
sheaves. We will use this fact repeatedly. For a proof, one could consult [1, Exposé
VIII]. A sheaf .# on Zjise is quasi-coherent if and only if there is a smooth cover
f:8 — 4 with S a scheme such that f*.# is quasi-coherent (in the lisse-étale site
of S) [52, §12]. Similarly, a sheaf on Zyp is quasi-coherent if and only if there is
an fppf cover § — % such that the pullback is quasi-coherent on the fppf site of S.
A consideration of this fact combined with classical descent theory shows that it is
enough to prove the lemma when 2 is a scheme. (For a host of arguments of this
flavor, see [52, §13].) The last statement is a simple computation. a

The notion of quasi-coherence is also independent of the group chosen.
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Lemma 2.2.1.4. Under the equivalence of 2.1.3.13, quasi-coherent sheaves are taken
to quasi-coherent sheaves.

Proof. This follows from the fact that a sheaf is quasi-coherent if and only if it pulls
back to a quasi-coherent lisse-étale sheaf on some smooth cover and the fact that any
smooth cover of Z, maps to a smooth cover of 2,4y under the map Z, — 2. O

It is natural to wonder if a quasi-coherent twisted sheaf is the colimit of its coherent
twisted subsheaves. With the proper foundation, this is now a triviality, as any
subsheaf of a twisted sheaf is twisted and any quasi-coherent sheaf on a Noetherian
algebraic stack is the colimit of its coherent subsheaves. We have shown the following.

Proposition 2.2.1.5. Suppose X is Noetherian and A is group scheme faithfully flat
of finite presentation over X. A quasi-coherent x-twisted sheaf is the colimit of its
coherent x-twisted subsheaves.

In fact, when A is special, we can split up the category of quasi-coherent sheaves
into pieces indexed by characters. Suppose D is a diagonalizable affine group scheme
(i.e., the Cartier dual of D is a constant finitely generated abelian group). Write C
for the dual group of D, which is the group of homomorphisms D — G,,. Let £ be
a D-gerbe and % a quasi-coherent sheaf on 2. Given x € C, there is a x-eigensheaf
F CF.

Proposition 2.2.1.6. Suppose F is a quasi-coherent sheaf on £ . The natural maps

induce an isomorphism
b #s°>5%
x€C(X)

The eigensheaves #, are quast-coherent.

Proof. By functoriality, it is enough to check this when 2" has a section, hence when
Z = BD. Applying descent theory to the covering X — BD given by the trivial
torsor, we see that a quasi-coherent sheaf in the fppf topology on BD is naturally
identified with a quasi-coherent comodule for the group algebra of D on X. By the
elementary theory of algebraic representations for diagonalizable group schemes (78],
we are done. O

Remark 2.2.1.7. Note that since %, may now be defined as the image of a certain
morphism & — %, we see a posteriors that it is quasi-coherent. Since the summands
are quasi-coherent, we see that if we work in the lisse-étale topology set on £, we
get a similar decomposition. It is not entirely clear if the eigensheaves can be defined
as equalizers in the lisse-étale topology when D has non-smooth factors. ¢

Let Y — X be a quasi-compact morphism of schemes and 2" a D-gerbe on X.
Define &% := Y xx & ; this is naturally a D-gerbe on Y. Denote the morphism
Y — X by

Lemma 2.2.1.8. 7 respects the decomposition of 2.2.1.6. In other words, if F is a
quasi-coherent sheaf on %, then the natural map m.(F#,) — mF identifies T .(Fy)
with (T, % )y.
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Proof. Since 7 is quasi-compact, 7, sends quasi-coherent sheaves to quasi-coherent
sheaves. It is easy to see (because of the easy explicit description of the direct sum
of modules) that 7, commutes with the formation of direct sums (but not colimits in
general!). Thus, 7. = @ r,.%,. It is therefore enough to show that the action of
D on m,.%#, is via x. To see this, consider the action on sections. Since 7 is D-linear,
we see that for any U — 4, the diagram

T Fy (U) x D(U)

l

F (U x9 %) x D(U)

l

ﬁX(U X Q/) XD(U X g)—’-ﬁx(U X_Q*Oy)

e Fy (U)

commutes. Thus, if D is acting by x on %,, it follows that it acts by x on m,%,.
(One can also see this last statement by working in Cildararu form, but that is less
natural than the approach taken here.) (]

Remark 2.2.1.9. When A = p,, with n invertible on X, one can show without too
much trouble that in fact all €4 -modules decompose as a sum of eigensheaves. The
point is that an action of p, is étale locally (say over U) the same on sections as
an action of the ring &(U)[z]/(z™ — 1) on the &(U)-module % (U). When U is fine
enough, " — 1 factors as [[(z — ¢*), which will split the module .#(U) into factors
which are seen to be precisely the sections of the eigensheaves. This trick does not
work when n has zeros on X, unfortunately. ¢

Question 2.2.1.10. The natural question is “What happens when n is not invertible
but .# is required to be Cartesian?” One could ask this question on the lisse-étale
topos or the fppf topos. (In either case, one must be careful about the definition
of “Cartesian.” Laumon and Moret-Bailly only require a Cartesian module on the
lisse-étale site to have the property that f*My = My for f: U — V over 2 when f
is smooth. In the case of quasi-coherent sheaves, this actually implies that condition
for all f, making this distinction disappear.) It is quite confusing to think about this,
and I do not recommend doing it for very long. (But if you figure it out, please tell
me!)

2.2.2 Elementary applications

Here we investigate the applications of the theory we have developed so far to the
study of the Brauer group. While seemingly vacuous, the theory of twisted sheaves
yields many of the basic results on the Brauer group without requiring recourse to
¢tale cohomology. For a sketch of a result on the structure of the derived category,
see 2.2.4.

Fix a Noetherian scheme X and a G,,-gerbe 2. Note that the condition that
n[Z] = 0 € H*(X, G,,) is equivalent to the existence of an n-fold twisted invertible
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sheaf on 2.

Lemma 2.2.2.1. Let n C X be the scheme of generic points. Any coherent X |,-
twisted sheaf extends to a coherent & -twisted sheaf.

Proof. That such a sheaf extends to a quasi-coherent sheaf follows immediately from
the expression in Caldararu form 2.1.3.11. Applying 2.2.1.5 will complete the proof
(as the generic fiber is coherent, the colimit will fill the generic fiber at some finite
stage, yielding a coherent extension.) O

Lemma 2.2.2.2. There exists a non-zero coherent twisted sheaf on X .

Proof. Over the reduced structure on the generic scheme of X, we have a G,,-gerbe
over the spectrum of a finite product of fields. Thus, if we can produce a non-zero
coherent twisted sheaf when X is the spectrum of a field, we can push it forward to
get a such an object on the generic scheme of X and then apply 2.2.2.1. When X
is Spec K, any étale covering is finite over X. Thus, there is a finite free morphism
Y — X such that the gerbe & := Y xx &£ has a section. Once there is a section,
there is a natural equivalence between sheaves and twisted sheaves. Thus, there is
a non-zero (in fact, locally free) twisted sheaf on #. Pushing forward along the
morphism % — & yields a non-zero coherent (in fact, locally free) 2 -twisted sheaf
by 2.2.1.8. (For a generalization of this argument, see 2.2.3.5 below.) A reader who
is uncomfortable with this argument is invited to make it in Caldararu form. Cl

Proposition 2.2.2.3. If X is reqular and quasi-compact then H*(X, G,,) is torsion.

Proof. We may assume X is connected (and therefore irreducible). By 2.2.2.2, there
exists a coherent 2 -twisted sheaf F' of rank n > 0. As X is regular and G, is
smooth and connected, the algebraic stack & is also regular and irreducible. Thus, ¥
is perfect as an object of D(QCoh(%")) with globally bounded amplitude. Applying
the Mumford-Knudsen determinant to F is easily seen to yield an n-fold twisted
invertible sheaf on 2°. Thus, n[Z] = 0 € H*(X,G,,). As 2 was an arbitrary
G,,-gerbe, we are done. O

Remark 2.2.2.4. Tt is natural to conjecture that the order of [£7] in Br(X) is equal
to the minimal positive rank of a coherent & -twisted sheaf on X. The problem
of deciding whether or not this is true is a special case of what is known as the
period-index problem. We will study this problem below in chapter 6.

Proposition 2.2.2.5. If X is reqular and integral with generic scheme 0, then the

restriction map

H2(X, Gp) — H%(n, Gp)
18 an injection.
Proof. Let 2 xx n represent the trivial cohomology class. This means that there is
an invertible Z,-twisted sheaf L,. By 2.2.1.5, L, has a coherent extension L on all
of 2. In fact, there is a reflexive such extension. On the other hand, this extension
has rank 1 by construction. But X, and therefore 27, is regular. As any reflexive

module of rank 1 over a regular local ring of arbitrary dimension is free [15, §VIL.4],
we conclude that L is an invertible twisted sheaf, whence [27] = 0 € H*(X,G,). O

42




Proposition 2.2.2.6. If X s local of dimension at most 1 then there exists a locally
free & -twisted sheaf of positive rank.

Proof. This will be subsumed by 2.2.3.3 below; thus, we only give a sketch here.

First suppose X has dimension 0, so that X is the spectrum of an Artinian semilo-
cal ring R. There is certainly a locally free twisted sheaf of positive rank over the
residue field of R, and its deformations are unobstructed, yielding a locally free twisted
sheaf on all of Spec R. In fact, one can check that there is a unique locally free twisted
sheaf of a given rank.

Applying 2.2.3.5 and 2.2.3.6 below, we may replace X by a finite semi-local ex-
tension ¥ — X such that & = 2 xx Y is trivial over every localization of Y.
Choosing trivializations at each closed point of Y, it is immediate that there exists
an integer N such that for any closed point ¥ € Y, there is a locally free twisted sheaf
on Spec &,y of rank N. By the previous paragraph, these are all isomorphic on the
generic scheme of Y (as y varies). It follows (since Y is of dimension 1 at each closed
point) that we can glue the local twisted sheaves to produce a locally free #-twisted
sheaf. O

Corollary 2.2.2.7. If X is a local 1-dimensional Noetherian scheme, H*(X, G,,) is
torsion and equals Br(X).

Proof. As usual, once one has a locally free 4 -twisted sheaf of positive rank n, one
sees by taking the determinant that n[Z2] = 0 € H*(X, G,,). Applying 2.2.2.6, we
are done. O

Proposition 2.2.2.8. If X s wntegral and Noetherian there is a coherent twisted
sheaf which is locally free at every point of codimension 1. If X is reqular, there is a
coherent twisted sheaf which is locally free at every point of codimension 2.

Proof. There is certainly some open V' C X over which there is a locally free twisted
sheaf I'. Suppose p € X \ V has codimension 1 in X. Let ¢ : Spec &, x — X and
J V= X. By 2226, there exists a locally free twisted sheaf G' on Spec &, x
such that G, = F, (identifying the generic schemes of Spec €, x and V with 7 using
i and j, respectively). Consider Q := i,G N j,F C F,. This is a quasi-coherent
twisted sheaf on X which equals F' when restricted to V and G when pulled back
by ¢. Applying 2.2.1.5 and the fact that localization commutes with colimits, we see
that there is a coherent subsheaf PP C @ such that Ply = F and P|specs, , = G. The
locus where P is locally free is thus an open set containing V' U {p}. By Noetherian
induction, the first statement is proven. (More concretely, there can only be finitely
many codimension 1 points p not in V', as they must be generic points of irreducible
components of X \ V.) The second statement follows from the fact that any reflexive
module over a regular local ring of dimension at most 2 is free. Thus, the reflexive
hull of any coherent twisted sheaf will be locally free in codimension 2. 0

Corollary 2.2.2.9. If X is regular of dimension at most 2 everywhere then the in-
clusion Br(X) «— H*(X,G,,) is an isomorphism.

43



Proof. This follows from 2.2.2.8 and the fact that [27] € Br{X) if and only if there
is a locally free 2 -twisted sheaf of positive rank. a

2.2.2.10. Let & be an Azumaya algebra on X of degree n. In general, there is
an exact sequence in the flat topology

1—p, —SL, - PGL, — 1
which maps to the sequence
1—-G, —»GL, —»PGL, — 1.

(When n is invertible on X, everything also holds as described in the étale topol-
ogy.) Thus, the coboundary H'(X,PGL,) — H*(X,G,,) giving the Brauer class
of an Azumaya algebra of degree n factors through the natural map H?*(X, u,)) —
H%(X, G.). We will call the image of [/] in H*(X, u,) the class of &/ and write
cl(#) € H3(X, p,,). There is an explicit construction of a g,,-gerbe with this class.

Definition 2.2.2.11. The gerbe of trivialized trivializations of & has as sections over
V — X triples (¥, ¢, ), where ¥ is locally free of rank n on ¥, ¢ : &nd(¥) S &
is an isomorphism, and 1 : & *> det ¥ is a trivialization. The isomorphisms of pairs
(¥, p,0) S (¥',¢',9') are isomorphisms ¥’ = ¥ which are compatible with the
given maps, just as in 2.1.5.

The reader can easily check that this is a p,,-gerbe representing the class of o.
Let 2 be a fixed p,,-gerbe. Note that the determinant of any 2 -twisted sheaf
of rank n naturally lies in Pic(X).

Proposition 2.2.2.12. If ¥ is a locally free 2 -twisted sheaf of rank n, then
cl(&nd(¥)) — [Z] = é[det ¥,

where § is the natural inclusion Pic X/nPic X — H*(X, ).

Proof. We work in Caldararu form, i.e., we work with explicit cocycles on coverings.
It is easy to see that the p,-gerbe corresponding to an Azumaya algebra &/ has as
its sections over U triples (¥, ¢, T) where # is a locally free sheaf, ¢ : &nd(#) =
&/ is an isomorphism of &-algebras, and 7 : det # — & is a trivialization of the
determinant. We may assume without loss of generality that & is associated to a
cocycle a for u,, on a hypercovering U, of X such that ¥ is a free sheaf on U, with
a global isomorphism of %, and % on U;. Since ¥ is free on Uy, it has a trivial
determinant. Fixing an isomorphism 7 : det ¥ = &y,, we see that the gluing datum
© 1 ¥ = ¥, yields via T a gluing datum 7y : & = € on the trivial line bundle. By the
multiplicative property of the determinant and the fact that o is in p,,, v is actually a
descent datum, and the resulting invertible sheaf L on X is just (the pushforward of)
the determinant of #". To construct the cocycle corresponding to the p,,-gerbe of &,
we need to alter ¢ so that v = 1. In other words, we need to multiply ¢ by a chosen
nth root of . Writing this out shows exactly that this changes the cohomology class

by adding the coboundary of L. O]
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Corollary 2.2.2.13. Let & be a p,,-gerbe. An Azumaya algebra o/ of degree n has
class [ 2] if and only if there 1s a locally free & -twisted sheaf ¥ of rank n and trivial
determinant such that o = &End(¥).

2.2.3 Gabber’s theorems

It is well-known that the Brauer group and cohomological Brauer group of an affine
scheme coincide. This result is originally in Gabber’s thesis [28]. We wish to show how
twisted sheaves may be used to give an especially streamlined proof. Our argument
is a simplification of the argument of Hoobler [39] which is itself a simplification of
Gabber’s proof. The point here is that using twisted sheaves allows one to “think in
modules” from the beginning, making the final recourse to K-theory completely nat-
ural and eliminating certain invertible annoyances which appear when one is always
working with endomorphism algebras. Our approach notably also avoids the com-
parison of the “Mayer-Vietoris sequence” in non-Abelian flat cohomology with that
in ordinary Abelian flat cohomology, by absorbing all of the cohomology (Abelian
and otherwise) into the underlying gertbe 2°. The outline of our proof comes from
Hoobler’s paper [:bid.].

Let R be a commutative unital ring. Following Hoobler, let M{R) denote the set
of faithfully projective R-modules modulo the equivalence relation P ~ @ if there are

positive integers n and e such that P®* = Q%™ The tensor power operation induces
a Z-action on M(R).

Proposition 2.2.3.1. M(R) s a Q-vector space.

Proof. The proof of the proposition is non-trivial. See [39] for a (slightly cryptic)
reference. L

Corollary 2.2.3.2. Gwen a faithfully projective R-module P and a positive nteger
n, there exist positive integers m and m’ and a faithfully projective R-module P such
that (P P°")®" =~ gom’,

Theorem 2.2.3.3. Let X be an affine scheme and £ an fppf p,,-gerbe on X . There
exists an X -twisted locally free sheaf of constant finite non-zero rank.

Corollary 2.2.3.4. If X is an affine scheme then the natural injection Br(X) —
Br'(X) is an isomorphism.

Proof. Any torsion class a € H?(X, G,,) (taken in the flat topology or étale topology)
has a lift to a flat cohomology class in H*(X, p,,). The theorem gives a twisted vector
bundle on a gerbe in any such class. Taking its endomorphism algebra vyields an
Azumaya algebra with class a. (]

To prove 2.2.3.3 we first need a few lemmas.

Lemma 2.2.3.5. If Y — X 1s a finite locally free covering and o € H?(X,Gp), then
there is a nowhere zero locally free twisted sheaf on Y if and only if there is such
a twisted sheaf on X. If X is quasi-compact, the same holds for locally free twisted
sheaves of finite constant non-zero rank.
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Proof. Fixing a gerbe & representing «, we see that # = 2 xyx Y represents the
pullback of @ to Y. Furthermore, 7 : % — % isa finite locally free morphism. Thus,
given any locally free twisted sheaf F on &, 7, F will be a locally free twisted sheaf
on & . The second statement is left to the reader. 0O

Lemma 2.2.3.6. Given a local ring A and a local-étale A-algebra B, there exists
a finite free A-algebra C such that for all mazimal ideals m C C, there is a map
B —C,.

Proof. The proof uses the local structure of étale morphisms: B is a localization of
Alz]/f(z) at a prime not containing f’ (z). The algebra C is then the “universal
splitting algebra” of f. See [28, 39] for details of the lemma and [63] for the local
structure of étale maps. O

Combining 2.2.3.6 and 2.2.3.5, we see that to prove 2.2.3.3 it is enough to prove
the following,

Proposition 2.2.3.7. Let X = Spec A be affine, & a W, -gerbe such that there is
everywhere Zariski-locally on X a locally free 2 -twisted sheaf. Then there is a global
X -twisted sheaf

Proof. By Quillen induction, this reduces to the following: we have X = U UV with
U,V,and UNV all affine and locally free twisted sheaves on each of I/ , Vyand UNV.
(The words “Quillen induction” are Jjust meant to intimidate the reader. The point
is that it is enough to show that

J = {f € A| there is a locally free twisted sheaf on Spec A}

is an ideal. The Zariski-local existence hypothesis shows that J cannot be contained
in any maximal ideal, hence if it is an ideal J = A. The situation above arises from
the only non-trivial part of checking that .J is an ideal, namely that it is closed under
addition.)
Let & be a locally free twisted sheaf on U/ and .2 a locally free twisted sheaf on

V. Since 2 is a u,_-gerbe, we see that F2®" is naturally identified with a locally
free untwisted sheaf, and similarly for 2. By 2.2.3.2, we see that there are non-gero
locally free sheaves P on UJ , @ on V and non-zero finite free modules Fy, Fy on U ,
Go, Gy on V such that

9®R®F®R®Fo =R
and

Q®”®@®"®Go = Gl
Thus, replacing 22 by 2@ P® F, and 2 by 2@ Q® Gy, we may assume that o7
and 2%®" are free modules on I/ and V respectively of the same rank. Now consider
the situation on U N'V. Note that & @(2Y ®2) = 20(2Y® P). Letting P =
2Y®2and Q = PR 2V, we have an isomorphism of locally free twisted sheaves

P ®P = 2®Q. Furthermore, taking nth tensor powers, we see that P®™ ~, Q®™ (in
the equivalence relation of 2.23.1). Thus, by 2.2.3.1, P ~ @, so there exist positive
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integers N and M such that P®Y = Q®M  Furthermore, there exists Q such that
Q®Q = Fy, a non-zero free module. As P ~ @), there are non-zero free modules
F and F, with PRQ®F, = F,. Letting Q = Q® Fy, we have Q®Q = F; and
P® @ = F} for some non-zero free modules F3 and Fj of rank r. Finally,

P POPRQEIRQRQ Y Q¥

on U N V. Thus, the locally free twisted sheaves %" on [/ and 2% on V glue to
give an everywhere non-zero locally free twisted sheaf on X. O

Corollary 2.2.3.8. If X admits an ample invertible sheaf, then the natural injection
Br(X) — Br'(X) is an isomorphism.

Proof. See [19]. The idea is to start with a supply of twisted sheaves which are locally
free at selected points, and by making kernels of general morphisms between them
to increase the locus where the twisted sheaf is locally free. The ample invertible
sheaf enables one to make a Bertini argument when studying a general map between
twisted sheaves (tensored with powers of the ample invertible sheaf). O

2.2.4 Compact generation of the derived category

In this section, we indicate how to prove a result about the K-theory of twisted
sheaves. It is an immediate corollary of 2.2.3.3 and the methods of Neeman [14, 56].
In fact we prove a slightly more general result about the K-theory of stacks with
certain “moduli-like” spaces and a large supply (locally) of vector bundles. We also
sketch a proof that the natural map D(QCoh(%)) — Dqcon(Z") is an equivalence
for certain algebraic stacks 2. In particular, this holds for gerbes over schemes, so
in our setting we see that the derived category Dqeoon(2") breaks up as a coproduct
of categories according to twisting class. As none of the results of this section are
strictly necessary for the rest of this thesis, we only sketch the proofs. Details will
appear along with a development of algebraic twisted K-theory in future work. The
reader who is uninterested in this material or unwilling to read something with no
details should look at 2.2.4.7 and skip the rest of the section.

Fix a quasi-compact quasi-separated base scheme S, and let 2 be an Artin stack
over S. Let X be an algebraic space over S.

Definition 2.2.4.1. A map 7 : 2" — X is called a cohomological moduli space if 7,
preserves quasi-coherence and Rim, F' = 0 for all quasi-coherent sheaves F on 2" and
all ¢ > 0. If X is a scheme, it will be called a cohomological moduli scheme.

The property of being a cohomological moduli space is clearly preserved by flat
base change.

Remark 2.2.4.2. Tt is not hard to show that the moduli space of a tame DM stack is
a cohomological moduli space. If 2 is corepresented by an algebraic space X, then
any cohomological moduli space X’ for 2" admits a map X — X'. If 2" is DM, it is
corepresented by its moduli space 7 : 2~ — X. Furthermore, for any quasi-coherent
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F on X, the natural map F' — 7, 7*F is an isomorphism. When 2 is Noetherian with
separated coarse moduli space, we conclude by Serre’s theorem that in this case there
is an equivalence between cohomological moduli spaces for 2~ and affine morphisms
X — X'. Thus, for example, if a DM stack admits a (quasi-projective) cohomological
moduli scheme, then its coarse moduli space is also a {quasi-projective) scheme. ¢

The following definition is an adaptation of a definition made by Olsson and Starr
(58].

Definition 2.2.4.3. A locally free sheaf F' on 2 is a generating sheaf relative to
(or a w-generating sheaf) if the natural map

T T Fome, (F, Q)@ F — Q
is a surjection for every quasi-coherent sheaf ¢} on % .

Definition 2.2.4.4. A cohomological moduli scheme 7 : Z — X is locally generating
if there is an affine cover {U;} of X such that 2" x x U; admits a w-generating locally
free sheaf for all 2.

Remark 2.2.4.5. The question of when a cohomological moduli scheme is locally gen-
erating is a subtle question. Olsson and Starr [58] have shown that any separated
tame quotient DM stack over a quasi-compact algebraic space is globally generating
over its moduli space. Combining this with results of de Jong [19] and Vistoli-Kresch
[47], it follows that any smooth separated tame DM stack over a field is globally gen-
erating over its moduli space. It follows from the remarks in 2.2.4.2 that a separated
DM stack admits a locally generating cohomological moduli scheme if and only if its
coarse moduli space is a scheme and is locally generating. ¢

Proposition 2.2.4.6. If 2" is an algebraic stack admitting a quasi-compact separated
locally generating cohomological moduli scheme then the natural map D(QCoh(Z7)) —
Dqcon( &) ts an equivalence.

Remark 2.2.4.7. Tt is important to note that the methods of Hartshorne [37] may
be applied to show that for a locally Noetherian algebraic stack 27, the functor
D*(QCoh(Z")) — D{con(Z") is an equivalence. As usual, one finds enough quasi-
coherent injectives which remain injective in Modg, . Since we will usually have
boundedness conditions on our complexes, this will suffice. (Sketch of proof: for a
smooth map f: U — 42 from a locally Noetherian scheme, f, of any quasi-coherent
injective is a quasi-coherent injective. It will be injective in the category of all modules
if it was on U. Thus, the result is reduced to the result on a locally Noetherian
scheme.) So, modulo the work needed to classify injective modules on a Noetherian
scheme, it is very easy to show the equivalence in the bounded case with enough
Noetherian hypotheses, independent of the existence of any kind of cohomological
moduli space. ¢

Lemma 2.2.4.8. If & is a quasi-compact quasi-separated algebraic stack then the
category QCoh(Z") has all lvmats.
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We have added the adjective “quasi-separated” to emphasize that it is needed for
the truth of the lemma. The reader will recall that all algebraic stacks considered in
this thesis are quasi-separated (as in [52]).

Proof. This is a simple result of the theory of the “coherator” [2, 74]: let f: X — &
be a smooth covering by an affine scheme and ¥ — X x o X a covering by an affine;
let g : Y — & denote the map. Given any sheaf F on X, let QxF be the quasi-
coherent sheaf associated to I'(X, F'), and similarly for Y. Any sheaf & on 2~ gives
rise to a pair of maps h; : fuil@xFx — g.QvFy, i = 1,2. As f and ¢ are quasi-
compact, f. and g, preserve quasi-coherence. Thus, the equalizer of h; and A, will be
a quasi-coherent sheaf which we will denote by Q4 % . This is easily seen to provide
a right adjoint to the inclusion QCoh(Z") — Modg, . It is then immediate that
limits exist in QCoh(.2"). For example, to form the product [], % in QCoh(2"), one
simply takes @ 4 Hfﬁmc’d F. O

Lemma 2.2.4.9. If 2 s an algebraic stack admitting an affine generating cohomo-
logical moduli space then QCoh(Z") satisfies AB{* (products of ezact sequences are
exact).

Proof. Let F; — (; be a set of surjections of quasi-coherent sheaves on 2. We
know that [], F; and [ [; G; exist in QCoh(Z") (but their images in the category of all
sheaves is not the product). We wish to show that the natural map [], F; — [], G;
is a surjection. Let

O-——>K—>HE—>HG1—>C—+O

be exact. Let & be a m-generating sheaf. Applying the functor s##om(&, - ) preserves
exactness. Since 7 is acyclic for quasi-coherent sheaves and X is affine, we see that
there is an exact sequence

0 — Hom(&, K) — Hom(&, [ | #:) — Hom(&, [[ %) — Hom(&,C) — 0.

But these products are in the category QCoh(Z"). We conclude from the fact that
the category of Abelian groups satisfies AB4* that Hom(&,C) = 0. Since & is a
generator for QCoh, we see that C' = 0 and therefore QCoh(2") satisfies AB4*. O

As a consequence, products of exact sequences in QCoh(.2") are exact, and co-
homology sheaves of products are just the products of the cohomology sheaves (all
products being taken in QCoh).

Proof of 2.2.4.6. We only sketch the proof, the lemmas above providing some of the
details which are necessary to fill in the skeleton provided by the methods of Bokstedt
and Neeman [14]. The reader interested in filling everything in (and reading a beau-
tiful paper) is advised to consult the source. Let E(Z) be the full subcategory of
K(Z') of acyclic complexes. It is easy to see that E(.2Z) is a localizing subcategory
(in the sense of Bousfield). The proof proceeds in several steps.

49



1. Any complex Z € K(%) admits a Bousfield localization Z — Z,. To prove
this, note that classical methods using injective resolutions allow one to produce
such a map Z2" — Zezn for any truncation. One would then like to say that
since Z is the homotopy limit of the Z=", we can construct Z; by forming the
homotopy limit of the Z2". Unfortunately, the category K (.Z") does not satisfy
AB4* so this argument needs careful justification. Using the fact that the
cohomology sheaves are quasi-coherent (hence have vanishing cohomology on
an affine), one can show that everything works. (Recent work [7] has provided
a more general proof than Neeman and Bokstedt’s proof, but the method of
Neeman and Bokstedt is used elsewhere in the proof of the present result.)

2. When the cohomological moduli space X is affine, one can now show using
the locally free generator and 2.2.4.9 that the map D(QCoh(2")) — D(&')
is fully faithful. In other words, given Y and Z, one wants to show that
Homp(qcon(2) (Y, Z) = Homp(#)(Y, Z). The key is to use the expression of
Z as the homotopy limit of its truncations in K(QCoh(Z)) and as the homo-
topy limit of the Bousfield localizations of its truncations in K(.2") to reduce
the problem to the case where Z is bounded below. Using easier homotopy
colimit arguments (easier because the map D(QCoh(Z")) — D(.Z") preserves
homotopy colimits), one reduces to the case where Y is bounded above. Now
one can use the locally free generator & to replace Y by a complex of sheaves
of the form &7, a direct sum indexed by the set I. Using the fact that such
a complex is the colimit of its finite subcomplexes, one is reduced to the case
Y = &. Now by standard techniques, one reduces to the case Z = "M is
a single module placed in degree —n. Thus, one is reduced to showing that
HomD(Qcoh(g))(f,Enzw) = HOInD(Q;)(éa, EnM) Both sides vanish for n < 0
and are equal to Hom(&, M) for n = 0. When n > 0, the left side vanishes
because Hom(&, - ) is exact on QCoh, while the right side vanishes because
it is the same as H"(2", #om(&, M)), and one can apply the Leray spectral
sequence for 7 and the vanishing of quasi-coherent cohomology on an affine.

3. To finish the proof when the cohomological moduli space is affine, it remains to
show that every object Z of Dqcon(.2") is in the essential image of D{(QCoh(27)).
If Z is bounded, then this follows by induction on the number of cohomology
sheaves from the case where Z is a quasi-coherent sheaf. When Z is bounded
below, the expression of Z as the homotopy colimit of Z=" and the compati-
bility of the map D{QCoh(Z")) — D(Z") reduces this to the bounded case.
The general case now follows from the expression of a Bousfield local Z as the
homotopy limit of Z2 ", along with 2.2.4.9.

4. The general case now follows by induction on the number of affines in a cover of
X . Given one affine j : U — X in the covering, with complement ¢ : X\U — X,
one uses the local cohomology triangle 4,i'Z — Z — 7,5*Z to reduce to the case
of U and X \ U, which has a cover by one fewer affines.

Cl
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Lemma 2.2.4.10. Let7 : & — X be a generating affine cohomological moduli space.
The category Docon( Z') is compactly generated by perfect complezes. Any compact
object is perfect.

Proof. See [56]. It is easy to see that the suspensions of a generator give a family
of compact generators which are perfect. One shows that any perfect complex is
compact (as the problem may be made local, this follows immediately from the case
of a scheme). Using Neeman’s version of the Thomason localization theorem, one
sees that in fact any compact object is perfect. The proof is purely formal. O

Lemma 2.2.4.11. Let 7 : & — X be a generating affine cohomological moduli
scheme, U C X an open subscheme. The category Dﬁ'\%,QCoh(ﬂ) 18 compactly
generated by the suspensions of a single perfect complex, where % = X xx U.

Proof. The category in question is the subcategory of complexes supported on 2"\ % .
This is just as in [14, 6.1], using the generator in place of the structure sheaf. ]

Lemma 2.2.4.12 (Neeman). Suppose 2 — X is a generating cohomological mod-
uli scheme, with X quasi-compact and separated. Let U C X be a quasi-compact open
subscheme. Suppose z € D(QCoh(2")) s arbitrary, v € D(QCoh(%)) is perfect,
and we are given a map u — z in D(QCoh(%)). There exists a perfect complex
u’ € D(QCoh(Z')}) such that

(i) there is a perfect compler @ € D(QCoh(Z")) such that |y = u @', and
(i) the map u @ v — x|y lifts to a map & — z.

Proof. The proof is exactly as in [56, 2.6] (with slight modifications to account for
the replacement of U with %, etc.). O

Proposition 2.2.4.13. Let 2 be an algebraic stack admitting a quasi-compact sep-
arated locally generating cohomological moduli scheme. Then D(QCoh(Z")) is com-
pactly generated by perfect complezes.

Proof. One applies 2.2.4.12 as in [56, 2.5]. The fact that D(QCoh(.2")) is compactly
generated is crucial for applying Neeman’s form of the Thomason localization theo-
rem. 0

Corollary 2.2.4.14. Let X be a quasi-compact separated scheme and 2 a G,,-gerbe
on X. The derived category of quasi-coherent twisted sheaves is compactly generated
by perfect complezes.

Proof. 'This follows from 2.2.4.13 combined with the decomposition of QCoh(%2) =
@ QCoh’(Z") and the fact that a summand of a perfect complex is perfect. O
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2.2.5 Deformations and obstructions

Since twisted sheaves are modules in a topos, we can try to apply the deformation
theory of Illusie to study deformations and obstructions of twisted sheaves. The
condition that a deformation preserve the character of the inertial action and that
an obstruction take this into account makes the situation slightly more complicated
than in Illusie’s bare theory. We present two approaches to the deformation theory
of twisted sheaves. The first, which we call the “naive approach,” originates with
Grothendieck (and thus we should point out to the reader that by “naive” we mean
“devoid of extensive machinery” and not “silly”!). The second is simply to make
enough hypotheses that Illusie’s theory works in our context. In particular, restricting
attention to quasi-coherent twisted sheaves will turn out to be sufficient for Illusie’s
machine to work for twisted sheaves. (One of the reasons we have included the first
approach at all is to actually write down some of the proofs using a slightly more
“homotopical” approach to the derived category, which we feel illuminates things.)

2.2.5.1. The naive approach. We first indicate an approach to deformation and
obstruction theory for modules, due to Grothendieck, which does not use Illusie’s
machinery. As we will be primarily interested in quasi-coherent twisted sheaves,
where Ilusie’s theory will apply as we will see, we only sketch this approach. In this
section, we work in the abelian category of twisted sheaves. Thus, all Ext groups are
computed in this category and not in the larger category of all sheaves on 2. When
we specialize to quasi-coherent twisted sheaves, this will no longer matter, as both
Ext spaces are naturally isomorphic.

Lemma 2.2.5.2. The category of 2 -twisted sheaves contains enough injectives and
enough flat objects.

Proof. Let U7 € X be an object over which 2 splits and let = Z xx U, with
natural map f : % — % . Then % = BG,,y as U-stacks. By 2.1.3.10, there are
enough twisted injectives and flat objects on % . Taking f, of injectives and f, of flat
objects vields the desired result. The details are left to the reader (or see [6]). O

The reader will note that the proof of 2.2.5.2 actually shows that any bounded
above complex C of twisted sheaves admits a resolution F' — C where each term of
F is a sum of sheaves of the form mL, with w# + & xx U — £ and L a twisted
invertible sheaf on Z xx U. This explicit description will be used below.

We will use the “cher & Cartan” isomorphism to produce a naive deformation
and obstruction theory for twisted sheaves (without making use of the whole topos
of sheaves on the gerbe). This is a slightly sticky issue, so we give a brief exposition
combining ideas of Neeman-Bokstedt and Spaltenstein. For the most part, we only
sketch the results without giving full proofs (as the full-blown theory of Illusie will
apply in our case).

Remark 2.2.5.3. The reader should note that this whole rigamarole is necessary only
owing to the fact that it is not at all clear than an injective twisted sheaf is injective
in the category of all modules on 2 . This may be true, but I have no idea how to
prove it (when the twisted sheaf is not quasi-coherent on a scheme!). ¢
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We recall some definitions due to Spaltenstein [71]. Let A be a monoidal abelian
category satisfying AB4 (filtered colimits exist and are exact). For example, A could
be the category of abelian sheaves on a site. Given complexes A and B of objects of
A, write Hom(A, B) for the usual complex of homomorphisms.

Definition 2.2.5.4. A complex C € K(A) is K -injective if the complex Hom(D, C)
is acyclic for every acyclic object D. (In other words, C is Bousfield local for the
localizing subcategory of acyclic complexes.) It is K-flat if D ® C is acyclic for every
acyclic complex D. Tt is weakly K -injective if Hom(D, C) is acyclic for every acyclic
K-flat complex D (in other words, if it is Bousfield local for the localizing subcategory
of K-flat acyclic complexes).

Lemma 2.2.5.5. If C is a complex of & -twisted sheaves then C admits a K-flat
resolution F' — C and a K-injective resolution C' — I.

Proof. The first statement follows from standard techniques in the theory of homotopy
colimits {14], combined with 2.2.5.2. The second statement has been proven recently
by Leovigildo Alonso Tarrio, Ana Jeremias Lépez, and Marfa José Souto Salorio
[7} for any Grothendieck abelian category. When C' is bounded below, the second
statement is a standard result (again using 2.2.5.2) [37] dating back to Cartan and
Eilenberg. M

Lemma 2.2.5.6. Let B — By be a morphism of rings in a topos X. A K-injective
compler C of twisted Bg-modules is weakly K-injective as a complex of twisted B-
modules.

Proof. 1f S is a K-flat acyclic complex of B-modules, then
Homp(S,C'} = Hompg (S ® By, C).

As S is K-flat and acyclic, one can show (using the existence of K-flat resolutions of
By) that S® By is acyclic. As C is K-injective over By, we conclude that Hom(S, C)
is acyclic, whence C' is weakly K-injective. O

Lemma 2.2.5.7. Let A and B be complexes of twisted sheaves. If F' — A is a
K-flat resolution and B — I is a weakly K-injective resolution, then Hom(F,I) is
quasi-isomorphic to RHom(A, B) (defined on the category of twisted sheaves).

Proof. It suffices to show that if I — .J is a K-injective resolution then Hom(F, I) —
Hom(F, .J) is a quasi-isomorphism. As any K-injective complex is weakly K-injective,
we easily see that the homotopy cofiber M (mapping cone) of I — J is weakly K-
injective and acyclic. By the theory of homotopy colimits, we may replace F by
a complex whose terms are all sums of sheaves of the form mL, L an invertible
twisted sheaf on some 2 xx U. It suffices to show that for one such term the
complex Hom(m /7, M) is acyclic. Since m preserves K-flatness and tensoring by L
preserves weak K-injectivity, we are reduced to showing that given a weakly K-
injective complex M sheaves on a topos and any object U of the topos, the complex
of sections M(U) is acyclic. The clever argument may be found in [71, 5.16]. (Note
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that while Spaltenstein’s argument is written on topological spaces, nothing about
the result quoted uses this degree of specificity.) O

Proposition 2.2.5.8. Let B — By be a morphism of rings in X and & — X a
G,,-gerbe. Gwen a complex of & -twisted B-modules M and a complex of Z -twisted
Bg-modules J, there is a natural isomorphism in the derived category

~ L
RHOI’I’IB(M, J) — RHOIHBD(M® Bo, J)
B

Proof. Note that M é}B By, while a priori a B-module, has a natural structure of
By-module. Thus, the statement makes sense! To prove it, we just apply 2.2.5.7: let
F — M be a K-flat resolution of B-modules and J — I a K-injective resolution
of By-modules. Then the complex Hom(F, I) computes RHomg(M, J), but clearly

L
Homp(F, I} = Homp,(F &g By, ), and the latter represents RHompg, (F ® By, I), as
I is K-injective in Modp,. (|

This is the derived adjointness of %JQB By and (derived) restriction of scalars to
B. (Note that this also applies when the gerbe 2 is trivial, so in particular in any
topos.) We will use this below in 2.2.5.17 to deduce localization and constructibility
properties for the deformation and obstruction theory of twisted sheaves.

Corollary 2.2.5.9 (cher & Cartan). Let B — By be a surjection of rings in X and
2 — X a G,,-gerbe. Given two Z -twisted Byo-modules My and J, there s a natural

isomorphism

L
RHompg(My, J) — RHomp, (M ® By, J)
B
in the derived category of 2 -twisted sheaves.

Let B — By is a square-zero extension of rings in X with kernel I. Suppose M, and
J are twisted By-modules. We wish to know when there exists an /-flat extension
of My by J. Given any such extension, there is a naturally resulting morphism
I ®p, My — J, which is an isomorphism if and only if the extension is /-flat. Fix a
morphism u : I @, My — J. As in [42], we have the following proposition.

Proposition 2.2.5.10. There is an ezact sequence
0 — Extl, (Mo, J) — Exth (Mo, J) — Hompg, (I ® Mo, J) 2 Ext%, (Mo, J)
Bg

with the property that there exists an extension with associated morphism u if and
only if 8(u) = 0. The space of all such extensions is a torsor under Exty (Mo, J).

Proof. The exact is the sequence of low degree terms arising from 2.2.5.9 and the
composition of functors spectral sequence. That the maps agree with the interpreta-
tion given is checked carefully in {42, p. 252ff]. Note that Illusie’s proof works in the
derived category of twisted sheaves; it is not necessary to work in the category of all
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modules in the topos. (The Ext groups are different, but the functorialities are the
same.) O

2.2.5.11. We now have enough information to describe an obstruction theory
for the problem of twisted sheaves on a scheme. In this section, J:X — S will be a
proper morphism from a scheme X to a Noetherian excellent scheme S and 2 — X
will be a fixed G,-gerbe. We will develop the deformation-theoretic tools necessary
to apply Artin’s Existence Theorem. Let Ag be a reduced Noetherian ring. We recall
some terminology from Artin’s paper [9].

Definition 2.2.5.12. A deformation situation is a commutative diagram of Noethe-
rian rings A’ — A — A, such that

1. A — Ay and A — A are infinitesimal extensions (i.e., they have nilpotent
kernels)

2. ker(A" — A) = M is a finite Ag-module.

In the classical study of versal deformations, one often takes Ap to be a field and
A, A’ to be local Artinian rings with residue field k.
Let F be a stack on S.

Definition 2.2.5.13. An obstruction theory for F consists of two parts.
(i) For each infinitesimal extension A — Ay and element a F(A), a functor
Obg : Mod)"® — Modfimite

(ii) For each deformation situation and g € F(A), there is an element 0.(A") €
Ob, (M) which vanishes if and only if there is an element F(A4’) whose reduction
to A is isomorphic to a.

These data are subject to two further constraints:

F: Given a diagram
B \
f Ag
A

one has Ob, = Ob f(a) as functors Modi’(’jite — Modﬁ’;ite.

L: For any diagram of deformation situations

A—=A



giving rise to an Agp-linear map of kernels My — Mg, we get for any a € F(A)
an Ag-linear map Ob,(M4) — Ob,(Mp) taking o,(A’) to 0, (B’).

We will call F functoriality and L linearity of the obstruction theory.

Let F be the groupoid which assigns to any Noetherian affine scheme Spec A — S
the groupoid of A-flat families of coherent 2 -twisted sheaves .% on X ®g A.

Lemma 2.2.5.14. If F and 4 are A-flat coherent & ® A-twisted sheaves then
Ext'(%,9) is a finite A-module.

Proof. This follows from the local to global spectral sequence for Ext and the finiteness
of coherent cohomology for a proper morphism. (Coherence of the sheaf Exts is a local
computation in the lisse-étale topology of 4, hence follows from the corresponding
fact for locally Noetherian schemes.) O

Proposition 2.2.5.15. The following give an obstruction theory for F'.

1. Given an infinitesimal extension A — Ag and F € F(A),

Obg (M) = Extx g 4,(Fo, M © Fo) = Exty g a(F, M @ F).

2. Given a deformation situation A — A — Ap with kernel M, og(A") = 0(id :
MRsAF — MR4 ﬁ) n 2.2.5.10

The equality Obs(M) = Ext% g 4, (Fo, M @4, Fo) = Exty g a(F, M ®4.F) fol-
lows from the fact that # is A-flat. This is a simple consequence of the cher a Cartan

L
isomorphism and the fact that % ®4 Ay = Fo (by flatness).

Proof. Using 2.2.5.10, it suffices to check F and L and prove that Ext?(Fo, M ®4, Fo)
is a finite Ag-module. The finiteness is 2.2.5.14. F follows from the description of the
obstruction group in terms of Ag and L follows from the naturality of 2.2.5.10. O

2.2.5.16. We recall some of Illusie’s results: Let X be a topos, and 0 — I —
O — € a square-zero extension of rings in X. Let & be a commutative &-algebra
in X and F an &/-module. Then there is a class

o(F) € Ext2(F,I®F)
[

which vanishes if and only if there exists an /-flat &-module F' with Ry F=F.
When this is the case, the set of such F' is principal homogeneous under the group
Ext—(F,1® F). Furthermore, given such an extension £’ the set of automorphisms of
F which reduce to the identity on F is principal homogeneous under Hom;(F, I @ F).
Note that if F' is &-flat, then F is &-flat if and only if it is I-flat by the local criterion
of flatness.

In fact, these groups are packaged into a short exact sequence exactly as in 2.2.5.10.
In the case of twisted sheaves, this exact sequence (in the topos) receives a functorial

56




morphism from the exact sequence of 2.2.5.10. When M, and J are quasi-coherent,
this morphism is an isomorphism. In other words, in the quasi-coherent case, [llusie’s
formalism (with the attendant functorialities and filigree) carries over precisely, with-
out needing to first restrict attention to a subcategory of modules in the topos (where
things like the Atiyah class may not work as expected). We will return to the details
of Tllusie’s construction in future work when we study the virtual fundamental classes
of the stacks of generalized Azumaya algebras and twisted sheaves.

We can use this formalism to prove several “localization and constructibility”
results about the deformation theory of coherent twisted sheaves. These are the
«conditions (4.1)” of Artin’s famous [9]. Let Ao be a reduced Noetherian ring, Ay —
B, a flat ring extension, X — Spec Ag a proper morphism, & — X a G,,-gerbe, &
an Ag-flat family of coherent & -twisted sheaves, and M an Ag-module.

Proposition 2.2.5.17. For any i > 0 the following hold.
1. Exti (F M QF)®a, Bo = Ext,, (F50, Mo ® Fp,)-
2. IfmCAyisa mazimal tdeal then
Exti (F, M ® F)® A = m Exty(F, M/m"M & F),
the completion being taken with respect to m.
9 There is a dense open set of points (of finite type) p € Spec Ap such that

Ext!(F, M ®.F) @&(p) = Bxty  (Feirr Maip) ® Frip))

Proof. The proof of 1 1s smmediate. To prove 2, we work in Céldararu form. This
makes it clear that one can easily understand formal twisted sheaves on the formal
completion of a scheme along a closed subscheme. We wish to prove that if X —
Spec A is a proper scheme over a complete Noetherian local ring and . and ¥ are

coherent twisted sheaves on X then

Exty (F.9) = ELnExt}®A/mn(ﬁ ®A/m",€f§)A/m”).

This works just as in [33, 4.5]: one shows that the completion of the sheaf &t (F,9)
along the closed fiber is naturally isomorphic to the sheaf é&ti(@\, 2 ) of extensions
over the formal scheme. The rest comes by taking the local-to-global Ext spectral
sequence and using the finiteness of coherent cohomology to make an Artin-Rees
argument. The interested reader should consult [33] for further details.

The proof of 3 is slightly subtle. The discussion here similar to that of [12] (which
is written in the analytic untwisted context). Suppose first that Ag is excellent (in
general, this case suffices for applications to Artin’s theorem). Among other things,
this means that the regular locus of Ag 1s open. We may assume (since Ag 15 reduced
and we are just looking for points in a dense open set) that Ap is a regular Noetherian
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domain. In fact, we may assume that Ag is a finite type Z-algebra. Thus, the
dimension of Ag at any point is bounded by a fixed number.

Given X — Spec Ag proper and flat, # and ¢ flat coherent twisted sheaves
on X, define a functor T : M + Ext' (%, M ®%). We can produce a complex
C* such that C*® M computes RHomy(#, M ®%¥) for all M (and hence for all
base changes by the cher a Cartan isomorphism) as follows: we may resolve .# by a
complex L* whose terms have the form @ m.%, where 7 : U — X splits & with U
affine and % an invertible twisted sheaf on U. The complex C*(¢) = Hom(L*, %)
is the desired complex. To show this, it is easy to see that it is enough to show that
¢ — (C*(¥) is an exact functor from quasi-coherent twisted sheaves to complexes
and that H°(C*(¥9)) = Hom(%#,¥). The second statement is immediate, while the
first follows from the fact that m is a left adjoint to 7* and that affines have no
quasi-coherent cohomology. There is a spectral sequence

EP = Tor_ (M, BP(C*(9))) = HF9(C*(4 ® M)).

Whenever M has homological dimension d, we see that if H'(C*) is Ap-flat for all
j < i+dthen H(C*)® M = H(C* ® M), as desired. As A, is a finite type Z-algebra,
there is a universal upper bound for the homological dimension of any residue field,
so we see that if we pass to a sufficiently small open U C Spec Ay, we will know that
for any point p € U, the map T(A4) ® s(p) — T(x(p)) will be an isomorphism.

Now suppose f : Spec A — Spec Ay is a dominant map from an integral Noetherian
affine scheme to our finite type Z-scheme. We claim that f~'I/ < Spec A has the
same base change property. Indeed, it is clear that the map T(A) ®@ k(p) — T(x(p)) is
still surjective for any p € f1U. But (using step 2) once the natural map is surjective
at p it is in fact an isomorphism there. This standard argument may be found in [38,
[11.12.10), for example. O
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Chapter 3

Generalized Azumaya algebras

In this section we lay the foundation for studying compactified moduli of Azumaya
algebras on a projective variety. Our approach originates in an observation of de Jong.
An Azumaya algebra is a sheaf of algebras which is étale locally the endomorphism
algebra of a locally free sheaf. De Jong suggested that the objects in the compact-
ification should still be characterized by being local “endomorphism algebras,” but
clearly if there are to be limits, one must allow endomorphism algebras of torsion free
sheaves which are not locally free. However, taking (locally) &nd(%#) for a torsion
free F is not good enough, as when & is not locally free the formation of &nd(F)
1s not compatible with base change. However, de Jong observes, the formation of
R&nd(%) is compatible with base change. Thus, one should somehow glue “derived
endomorphism algebras” to make generalized Azuinaya algebras. We carry out this
procedure in this section. It turns out that the resulting objects are closely related
to twisted sheaves, as we will describe.

3.1 The stack GAz

The key to gluing local derived endomorphism algebras lies in a derived analogue
of the Skolem-Noether theorem. We take this up in 3.1.1. We then present the
construction of the stack of generalized Azumaya algebras on a scheme X and a
refinement when X is a smooth surface.

3.1.1 Derived Skolem-Noether

In what follows, we work primarily in the derived category of modules over a local
commutative ring (¢, m, k). For the sake of a smoother exposition, we assume that &
is Noetherian, but this is unnecessary. On occasion, we will work in the category of
chain complexes. However, we will use the word “complex” ambiguously, and we leave
it to the reader to determine from the context whether we mean an object of D(&)
or an object of K(#). Similarly, “isomorphism” will be consistently used in place of
“quasi-isomorphism” and we will always assume that isomorphisms preserve whatever
additional structures of objects are implicit. Given a scheme X, the symbol D(X)
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will denote a derived category of sheaves of &x-modules, with various conditions
(boundedness, perfection, quasi-coherence of cohomology) clear from context. In the
end, it will suffice to work in the category denoted Dyrq(X) by Hartshorne in [37], so
the hypotheses on D will not be a focus of attention.

Definition 3.1.1.1. Given a scheme X, an object A € D(X) will be called a weak

L
O -algebra if there are maps u: A® A - Aand i: € — A in D(X) which satisfy
the usual axioms for an associative unital algebra, the diagrams being required to
commute in the derived category.

In other words, a weak algebra is an algebra object of the derived category. Note
that the derived tensor product makes D(X) into a symmetric monoidal additive
category (as the universal property of derived functors ensures that all different as-
sociations of an iterated tensor product are naturally isomorphic). Thus, it makes
sense to speak of “associative” algebra structures.

Given an additive symmetric monoidal category, one can define most of the usual
objects and maps of the theory of algebras: (unital) modules, bimodules, linear maps,
derivations, inner derivations, maps of algebras, etc. We leave it to the reader to write
down precise definitions of these terms, giving two examples: Given a map of weak
algebras A — B, an & -linear derivation from A to B is a map § : A — B in D(X)

L L
such that §opy = ppo(id®46+d®id) in D(X). A derivation from A to A is inner
L L
if there is an o : & — A such that § = po (a®id) — po (id® a).
L
Given a ring map & — &', the derived functor (\)®s &' : D(€) — D(&")
respects the monoidal structure. There results a natural base change operation for

weak algebras and modules. (This operation will be consistently written as a change
of base on the right to avoid sign errors.)

Similarly, given a weak algebra A and a left A-module P, the functor P é() takes
objects of D(&) to A-modules. This follows from the natural associativity of the
derived tensor product.

The first non-trivial example of a weak algebra is given by

REnd(K) := RHom(K, K)

for a perfect complex K. Replacing K by a projective resolution, one easily deduces
the weak algebra structure from the usual composition of functions: if we write K
as a finite complex of free modules (which we will also call K), then REnd(K) has
as nth module [], Hom(K?, K?*"), with differential 0"(a, ), = (—1)"Magiid + day.

L
Since K is perfect, the nth module of REnd(X) ® REnd(K) is equal to
I T]Hom(k?®, K°**) @ Hom(K*, K***)
a+b=n st

and the multiplication projects to the factors with s + @ = ¢ and then composes
functions as usual. Setting K = RHom(K, &) (the derived dual of K), we have the
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following basic lemma.

Lemma 3.1.1.2. Let K be a perfect complex.

L ~
(1) There is a natural isomorphism K ® K¥ — REnd(K).
(#) There is a natural left action of REnd(K) on K.

Tensoring the action
L
REnd(K)® K - K
with KV on the right and using {i) yields the multiplication of REnd(K).

It is essential that the action be written on the left (when using the standard
sign convention for forming the total complex of a double complex [42, 1.1.2.1], [54,
Appendix]) and that KV be written on the right for the signs to work out. We will
not usually point out these sign sensitivities, but the reader should remain vigilant.

An algebra of the form REnd(K) will be called a derived endomorphism alge-
bra. Our goal is to re-prove the classical results about matrix algebras for derived
endomorphism algebras of perfect complexes.

Notation 3.1.1.3. The symbols P and ) will always be taken to mean perfect com-
plexes with a chosen realization as a bounded complex of finite free modules. Thus,
maps P — Q in the derived category will always come from maps of the “under-
lying complexes” (taken to mean the chosen realizations). Similarly, REnd(P) will
have as chosen representative the complex constructed from the underlying com-
plex of P as above: REnd(P)" = [[,Hom(FP* P"*") with differential 9(q;)s; =
(—1)"Mag,1d + da,.

These conventions facilitate making certain basic arguments without speaking of
replacing the object by a projective resolution, etc., but it is ultimately only important

for this book-keeping reason; the reader may ignore it without fear (until it is explicitly
invoked!).

Definition 3.1.1.4. Given M € D(&), the annihilator of M is the kernel Ann(M) of
the natural map from & to Endp(e (M). The quotient &/ Ann(M) will be denoted
by ﬁ]\,[.

Given an isomorphism ¢ : P — Q(n), there is an isomorphism %* : REnd(P) —
REnd(Q) given by functorial conjugation by # followed by the natural identification
of REnd(Q(n)) with REnd(Q). We will call this the induced map. The map *
may also be described as follows: under the natural identification of REnd(P) with

L L
P® PY, y* is identified with v @(yV) L.
Theorem 3.1.1.5. Let P and @ be non-zero perfect complexes of €-modules. If
REnd(FP) = REnd(Q) as weak algebras, then there exists a unique n such that the

map

Isom(P, Q(n)) — Isom(REnd(P), REnd(Q))

is surjective with each fiber a torsor under €5. If P = @, then n = 0 and the kernel
15 naturelly a split torsor.
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Corollary 3.1.1.6. The sequence
0 — &p — End(P) — Der(REnd(P)) — 0

is exact. More generally, if P and Q(n) are isomorphic, then the map
Hom(P, Q(n)) — Der(REnd(P), REnd(Q))

is surjective with each fiber naturally a torsor under €p.

Proof. Apply Theorem 3.1.1.5 to Ple] over €[¢] and look at automorphisms of the
weak algebra REnds((Ple]) reducing to the identity modulo €. O

The proof of Theorem 3.1.1.5 will make use of the completion of & to lift the clas-
sical theorems on matrix algebras from the closed fiber by “infinitesimal induction.”

Proposition 3.1.1.7. If € is a field k then Theorem 3.1.1.5 holds.

Proof. The bounded derived category of & is naturally identified with the category of
Z-graded finite k~-modules by sending a complex to the direct sum of its cohomology
spaces. Given perfect complexes P and @, the algebra REnd(P) (resp. REnd(Q)) is
then identified with a matrix algebra, carrying the induced grading from the grading
of the vector space P (resp. @), and an isomorphism from REnd(P) — REnd(Q)
is identified with an isomorphism of matrix algebras which respects the gradings.
By the allowance of a shift, we may restrict our attention to graded spaces whose
minimal non-zero graded piece is in degree 0; any reference in what follows to graded
vector spaces will implicitly assume this hypothesis. (The reader should note that
the algebras involved will still carry non-trivial graded pieces with negative degrees.)
Let A be a graded matrix algebra of rank n? and V and W two graded n-dimensional
vector spaces with non-trivial graded A-actions. By the Skolem-Noether theorem,
there is an A-linear isomorphism a : V. — W. We claim that « is graded. To
prove this, it suffices to show that given a non-zero vector v € V4, a(v) is in Wy
(because V and W are simple A-modules). Write a(v) = > w;. Since V is a stmple
A- module, A, - v = V,; a similar statement holds for W (given a choice of non-zero
weight O vector, which exists by the hypothesis on the gradings). Thus, the highest
non-trivial grading N of A will equal the highest non- trivial grading of both V" and
W. Furthermore, given any i such that w; # 0, the fact that A_, - w; = Wy means
that A_; # 0. Given ¢ > 0 such that w; # 0, we have for all 7 € A_; that

0 = a(0) = a{r(v)) = 7(av)) = T(Z wj) = 7(w;) + higher terms.

Thus, 7{(w;) = 0, which implies that W, = 0. This contradicts the assertion that
W, is the minimal non-trivial graded piece. So w; = 0 for all ¢ > 0 and therefore
w € Wp. Translating this back into the derived language, we have proven that given
an isomorphism ¢ : REnd(P) — REnd(Q), there is an isomorphism P — Q in D(k)
which induces ¢ by functoriality. In fact, we have shown the rest of the proposition
as well, because ¢ is the unique choice for such an isomorphism up to scalars by the
classical theory of matrix algebras. U

62



Lemma 3.1.1.8. Theorem 3.1.1.5 is true for € if 1t is true for 73

Proof. We proceed by reducing the problem to a question of linear algebra and then
using the faithful flatness of completion.

Suppose given P and @ and an isomorphism ¢ : REnd(P) — REnd(Q); this
defines an action of A := REnd(P) on Q. We claim that finding v : P — @ such
that ¢ = u* is equivalent to finding an A-linear isomorphism from P to €. Indeed,
suppose u : P — @ is A-linear, so that the diagram

L

L pRU L
REnd(P)® P~ " REnd(Q)® Q

|

P = Q

commutes, where the vertical arrows are the actions. Tensoring the left side with PV
and the right side with @V, we see that the resulting diagram

L L
PpRud(uY)?

L L L L
REnd(P)® P® PV REnd(Q) ® @ @ Q¥

| L |

L u@(uv)_l L
P& PY Q& QY

also commutes. Applying Lemma 3.1.1.2 and writing B for REnd(Q), we find that

the diagram
L

L %oy 1,
ARA B®B
A——~p

commutes. Considering the units in the algebras, one readily concludes the proof of
the claim. Note that to conclude that any such u as above is an isomorphism, it
suffices for its reduction to the residue field to be an isomorphism (e.g. because the
complexes are bounded above).

It is easy to see that Homp(s) is compatible with flat base change when restricted

to the category of perfect complexes: given a flat ring extension & — &7, there is a
L L

natural isomorphism Homp,)(M @ &, N @ &) = Hompg (M, N) ® & for all per-

fect M and N in D(&'). Furthermore, given a perfect weak algebra =, the realization

of the module of =-linear maps as a kernel of maps of Hom-modules shows that the
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same statement is true for Hom=. Thus there is a commutative diagram

Homg(M, N) Homg(]’\-/f, ]V)
Homz=(M, N) ®¢ k Homs (M, N)® 4k

\ /

L L
Hom . (M @k N®Ek).

=§k
This immediately applies to our situation to show that the map of Theorem 3.1.1.5
is surjective for & if it is for & (for a fixed n, which may be determined from the
reduction to the residue field). Similarly, to verify that an isomorphism £ : P = P in
the kernel of the automorphism map is homotopic to a constant, it suffices to show
that an element £ € Endps)(P) is in &p if and only if this is true after completing.
But the module of maps homotopic to a constant is also clearly compatible with flat
base change and completion is moreover faithfully flat (all modules involved are finite
over ¢ because the complexes involved are perfect), so £ is in a submodule Z of
End(P) if and only if its image in End(P)® & is contained in Z® &. O

From this point onward, we assume that & is a complete local Noetherian ring.
Recall that a quotient of local rings 0 — I — & — € — 0 is small if [ is generated
by an element £ which is annihilated by the maximal ideal of & (so that, in particular,
g2 = 0). We can choose a filtration & D m = Iy D I; D I, D --- which is separated
(i.e., so that N;J; = 0) and defines a topology equivalent to the m-adic topology
such that for all ¢ > 0, the quotient 0 — I;/I;1y — /11 — €/I; — 0 is a small
extension, with 7;/I;,1 generated by ;. We fix such a filtration for remainder of this
section, and we denote &/I, by &,.

Lemma 3.1.1.9. Let 0 - I — R — R — 0 be a surjection of rings. Let A be a
weak R-algebra and P and Q two left A-modules. Let T' denote the triangle in D(R)
arising from the quotient map R — R as above.

L
(1) The maps in PQT are A-linear (with the natural A-module structures).

L _ L
(ii) Any A-linear map v : P — Q ® R factors through an A-linear map : PQ R —
L _ L _
Q ® R which 1s the derived restriction of scalars of an A® R-linear map from
L L —
PRR to Q®R.
(i) If R — R is a small extension of local rings with residue field k, then the natural

| . .
identification P ® I — Py induced by a choice of basis for I over k is A-linear.

Proof. Note that basic results about homotopy colimits allow us to replace any object
of D(R) by a complex of projectives, so there are no boundedness conditions on any
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L
of the complexes involved. Part (i) follows immediately from the fact that P ®(-) is a
functor from D(R) to A-modules. Part (ii) follows from writing P and A as complexes

L
of projectives and representing the map P — @ & R as a map on complexes. (Note
that this factorization need not be unique as 2 map in D(R), but it is unique as the

derived restriction of scalars from a map in D(R).) Part (iii1) follows similarly from
looking at explicit representatives of P and A. O

Lemma 3.1.1.10. Suppose f,g : P — @ are two maps of perfect complexes in
K(O) Let P, =PQ6,, Q,=QRb,, fn=FfQ 0, g = g® &,. Suppose there
are homotopies

h(n) € H Hom(P!, Q' 1)
t
such that for alln,

fo = gn = d( 3 h(s)) + (D his))d

s<n s<n
as maps of complezes, where h denotes the induced map. Then f is homotopic to g.
Proof. The element h = 377"  h(s) converges and defines the homotopy. O

Lemma 3.1.1.11. Let 0 — I — R — R — 0 be a small extension of local rings
with residue field k. Let P and @ be perfect complexes of R-modules (with chosen
realizations) and ¢ : REnd(P) — REnd(Q) an isomorphism of the derived endomor-
phism algebras, written as a map wn that direction on the underlying complexes. If
there exists an isomorphism of the underlying complezes w: P = Q such that p = u*
as maps of complezes, then there is a lift u of @ and a homotopy h between ¢ and u*
such that h(REnd(P)) C REnd(Q) ® . In particular, ¢ = u* in D(R).

Proof. Let A = REnd(P) and let A act on @ via ¢. The identification of @ with u*
provides an A-linear isomorphism 7 : P — @, and we wish to lift this to an A-linear
isomorphism P — . Consider the composition P — Q@ — Q®I(1) = Qk(1) in
the derived category. By Lemma 3.1.1.9, this map is A-linear and factors through
an A-linear map a : P, — Qg(1) which comes by derived restriction of scalars from
an Aj-linear map in D(k). By Proposition 3.1.1.7, we see that a is either zero
or an isomorphism. But P, = @Q; % 0, which implies that & = 0. This means
that there is an R-linear lift v of 7. Now (y*)~! o » — id is identified with a map
REndi(FP) — REndi(P:) in D(k) which is a derivation of the algebra, hence is
homotopic to the inner derivation induced by a map wy, : P. — Py in D(k). Writing
w for the composition

We o

= L
Pe—pgr—"0

P— P

we see that there is a homotopy between ¢ and y(1+w)* with image in REnd(Q) ® I,
and that v(1 + w) is a lift of ¥ as maps of complexes. O
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Lemma 3.1.1.12. Let 0 — I — R — R — 0 be a small extension of local rings with
residue field k. Let P be a perfect complez of R-modules (with a chosen realization)
andy : P — P an automorphism of the underlying complex such that ¢ = @ for some
@ € Ry as maps of the complex P and such that ¥* is homotopic to the identity as a
map of weak algebras. Then there is a unit « lifting @ and o homotopy h between v
and a such that A(REnd(P)) C REnd(P)®I.

Proof. The proof is quite similar to the proof of Lemma 3.1.1.11, using the left half
of the exact sequence of Corollary 3.1.1.6 rather than the right half. L

Proposition 3.1.1.13. Theorem 3.1.1.5 holds for €& (now assumed complete).

Proof. Given an isomorphism ¢ : REnd(P) & REnd(Q), we may assume after
adding zero complexes to P and @), shifting ), and applying a homotopy to ¢, that
there is an isomorphism 1 : Py — (o such that ¢y = ¢ as maps of complexes.
We can now apply Lemma 3.1.1.11 to arrive at an isomorphism ¢, lifting ¥ and a
homotopy h(0) with image in REndg, (@) ®4, Io/11 between ¢y and ¢;. Lift h(0) to
a homotopy A(0) with image in REnd(Q) ® ly. Then (¢ — (dh(0) + h(0)d))1 = ¥7 as
maps of complexes, and we may find a homotopy A(1), etc. By Lemma 3.1.1.10, we
see that there is an isomorphism ¥ : P — @ such that ¢ = ¥* in D(&). A similar
argument shows that the kernel is &p. O

3.1.2 The construction of GAz

In this section, we define a stack which we will use to compactify the stack of Azumaya
algebras. While the definition is rather technical in general, in the case of a relative
surface it assumes a simpler and more intuitive form. A more subtle version of this
definition which includes an A.-structure is in some sense more natural, but at the
expense of yielding a higher stack whose truncation will be what we describe below.
Work in the general oco-direction is currently in progress by Jacob Lurie, Bertrand
Toen, Gabriele Vezzosi, and others.
Let (X, €) be a ringed topos.

Definition 3.1.2.1. A sheaf .# on X is totally supported if the natural map € —
&nd(F) is an injection.

Definition 3.1.2.2. Let X be a ringed topos. A pre-generalized Azumaya algebra on
X is a perfect algebra object 2 of the derived category D(X) of &x-modules such
that there exists an object U € X covering the final object and a totally supported
perfect sheaf .# on U with & |y = Réndy(F) as weak algebras. An isomorphism of
pre-generalized Azumaya algebras is an isomorphism in the category of weak algebras.

3.1.2.3. Consider the fibered category & — Sche of pre-generalized Azumaya
algebras on the large étale topos over Spec Z. We will stackify this to yield the stack
of generalized Azumaya algebras. This is slightly different from the construction given
in [52, 3.2], as we do not assume below that the fibered category is a pre-stack.
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Lemma 3.1.2.4. Suppose T is a topos and € — T is a category fibered in groupoids.
There exists a stack €°, unique up to 1-isomorphism and a 1-morphism € — €°
which is universal among 1-morphisms to stacks (up to 2-isomorphism).

Proof. The proof is the usual type of argument. A reader interested in seeing a
generalization to stacks in categories larger than groupoids should consult [30]. First,
we may assume that in fact € — T admits a splitting (after replacing € by a
1-isomorphic fibered category). Define a new fibered category %7 as follows: the
objects will be the same, but the morphisms between two objects a and bovert € T
will be the global sections of the sheafification of the presheaf Homy(a, b) : (s = t) —
Hom,{*a, ¢*b) on t. Clearly #* is a prestack (i.e., given any two sections a and b
over t, the hom-presheaf just described is a sheaf) and the natural map ¥ — %P of
fibered categories over T is universal up to 1-isomorphism for 1-morphisms of € into
prestacks. Now we apply [52, 3.2] to construct €* as the stackification of €. O

Definition 3.1.2.5. The stack of generalized Azumaya algebras on schemes is defined
to be the stack in groupoids 92° — Schy associated to the fibered category of pre-
generalized Azumaya algebras.

Remark 3.1.2.6. Explicitly, given a scheme X, to give a generalized Azumaya alge-
bra on X is to give an étale 3-hypercovering Y/ =—=Yy’'—xY —— X, a totally
supported sheaf .% on Y, and a gluing datum for Rénhdy (#) in the derived cat-
egory D(Y”}) whose coboundary in D(Y™") is trivial. Two such objects (Y1, %1, 61)
and (Y3, %5, d3) are isomorphic if and only if there is a common refinement Y3 of the
3-hypercovers Y] and Y5 and an isomorphism ¢ : 1|y, — 2|y, commuting with the
restrictions of ¢, and d,. Thus, a generalized Azumaya algebra is gotten by gluing
“derived endomorphism algebras” together in the étale topology. When X is a quasi-
projective smooth surface, or, more generally, a quasi-projective scheme smooth over
an affine with fibers of equidimension 2, then the sections of 22 over X are the same
as the sections of 92° over X ; see 3.1.3.

Example 3.1.2.7. Let 7 : 2 — X be a p,-gerbe and % a totally supported
perfect 2 -twisted sheaf. The complex Rm,Réndg (%) € D(X) is a pre-generalized
Azumaya algebra, hence has a naturally associated generalized Azumaya algebra. We
will see below that the global sections of the stack £?° are precisely the weak algebras
of this form.

Definition 3.1.2.8. Let & be a generalized Azumaya algebra on X. The gerbe
of trivializations of &, denoted 2 (&), has sections over V — X given by pairs
(F,p), where F is a totally supported sheaf on V and ¢ : Réndy(F) = |y
is an isomorphism of generalized Azumaya algebras. The isomorphisms in the fiber
categories are isomorphisms of the sheaves which respect the identifications with &,
as usual.

This is entirely analogous to the gerbe produced in 2.1.4. The reader should as
usual observe the caveat of 2.1.5.4.

Lemma 3.1.2.9. 2 (&) 1s a G,,-gerbe.
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Proof. This follows immediately from the derived Skolem-Noether theorem and the
fact that all of the sheaves # are totally supported. O

Let m: 2 (&) — X denote the natural projection.

Lemma 3.1.2.10. There is an 2 (&)-twisted sheaf F and an isomorphism of gen-
eralized Azumaya algebras ¢ : RmRénd g (o) (F) = . The datum (X (), F, p)
s functorial in .

Proof. As usual, the construction of & (&) yields by first projection a twisted sheaf
F. Whenever 2 (&) has a section f over V, there is an isomorphism Réndy ( f*F) —
& |+ by construction, and this is natural in V' and f. This is easily seen to imply the
remaining statements of the lemma. O

Let 2 — Sche denote the fibered category of derived categories which to any
scheme X associates the derived category D(X) of étale € x-modules.

Proposition 3.1.2.11. There is a faithful morphism of fibered categories P° — &
which identifies P° with the subcategory 2 whose sections over X are weak algebras
of the form Rrn,Rénd gy (F), where m : X — X is a Gy,-gerbe, and whose tsomor-
phisms Rm,Réndg (F) = Rr.Ré&ndg(F') are a pseudo-torsor under the group
(2, Aut(F) /G 2 ), with a section if and only if X is 1-isomorphic to X' and
under such an identification, there is an isomorphism F = L QF', with & an
invertible sheaf.

Proof. The morphism 4?° — 2 comes from the universality of the construction of
the stackification (or from 3.1.2.10, which provides a functorial object of 2). That
the functor is faithful is a consequence of the derived Skolem-Noether theorem and
the definition of 42°. The characterization of the morphisms again follows from the
derived Skolem-Noether, which says that given an isomorphism & — &, there is
an induced l-isomorphism 2 (&) = 2 (&) in such a way that the twisted sheaf
corresponding to &’ pulls back to be isomorphic to an invertible sheaf & on X
tensored with the twisted sheaf corresponding to &/. The automorphisms of Ré&nd(.#)
are then seen to be identified with isomorphisms # 5 # ® %, where . is some
invertible sheaf, modulo scalar multiplications. The sheaf of such things is precisely
Awt(F) /Gy, O

Corollary 3.1.2.12. A generalized Azumaya algebra &7 has o class in H2(X,Gn).
When the rank of & is n?, & has a class in H2(X, ;) (in the fppf topology).

Proof. The first statement is trivial. The second statement follows from the analogous
construction of the p,-gerbe associated to an Azumaya algebra using “trivialized
trivializations” and is left to the reader. 1

Definition 3.1.2.13. When rk & = n?, we will call the cohomology class in H*(X, u,,)
the class of &, and write cl{&).
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One can check that all of the formal properties of the gt,,-gerbe of trivialized triv-
ializations introduced in 2.2.2.10 carry over to the generalized setting. In particular,
given a g, -gerbe 2~ — X, a generalized Azumaya algebra & of degree n has class
(2] if and only if it is isomorphic to Rénd(F) for some F on % of rank n and
trivial determinant.

Thus, at the end of the complex process of stackification, one is left simply with
the derived endomorphism algebras of twisted sheaves, with special morphisms giving
the isomorphisms.

3.1.2.14. Now we wish to use “Weil restriction” to define relative stacks of
generalized Azumaya algebras.

Definition 3.1.2.15. Let f : X — S be a morphism. A relative generalized Azumaya
algebra on X/S is a generalized Azumaya on X whose local sheaves are S-flat. This
is equivalent to writing &/ = Rr,Réndy (%) with 2 — X a G,,-gerbe and .% an
S-flat % -twisted sheaf which is totally supported in every geometric fiber.

Before continuing, we prove a lemma which shows that the condition of total
support on fibers implies total support on the total space. This will make later
arguments smoother.

Lemma 3.1.2.16. Suppose f : Y — Z s a flat morphism of locally Noetherian
schemes and % 1is a Z-flat coherent sheaf on'Y . If the restriction of # to every fiber
of [ s totally supported, then % is totally supported on'Y .

Proof. We may assume that X = Spec B and S = Spec A are local schemes and
that f is the map associated to a local homomorphism ¢ : A — B. Write F for the
stalk of # at the closed point of B. Choosing generators x,...,z, for F', we find a
surjection B™ —» F which yields an injection End(F’) — F™. The composition of this
injection with the natural inclusion of B sends 1 € B to the n-tuple (zy,...,z,) € F™
We will show that this map ¢+ : B — F" is an injection. Note that ¢ respects base
change in the sense that for any A-algebra C, 1 ®4 C is the map corresponding to
the composition C — Ende(F®4C) — (F®4C)". As the right-hand map in that
sequence is always an injection, we find that the left-hand map is an injection if and
only if : ® 4 C is an injection.

We proceed by “infinitesimal induction” relative to A, i.e., write A with the m4-
adic topology as an inverse limit of small extensions { A,,} with Ay = k(A), the residue
field of A. We will show that lm ¢y B — Frisan injection. Krull’s theorem and
the obvious compatibility then show that ¢ itself is an injection.

By hypothesis ¢ is an injection. Suppose by induction that ¢, is an injection.
Let £ generate the kernel of A,,.;, — A,. By flatness, there are identifications
€Bni1 & (€) ®apay Bmy1 = Bo and eF | = ()@ F2,; & F¥, and under these
identifications, € - t;,41 is identified with ¢g. Now consider the diagram

0—¢eBmn Bt B, 0
0—¢eFn, T Q) Fr 0.
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By the Snake Lemma and the inductive hypothesis, the kernel of the left-hand vertical
map is identified with the kernel of the middle map (which is t,,11). But the left-hand
map is identified with ¢g, hence is injective. O

As above, one may define the class of such a generalized Azumaya algebra. Let
Z — X be a fixed p,-gerbe, with n € €¢(.5)*.

Definition 3.1.2.17. Let GAzg,s(n) denote the stack of generalized Azumaya al-
gebras on X/S of rank n? in every geometric fiber whose class agrees with [27] étale
locally around every point on the base.

When X — S is proper and n is invertible on 5, the last condition is equivalent
to agreeing with [27] in every geometric fiber.

3.1.3 Stackification is unnecessary on a surface

Let f : X — S be a smooth projective relative surface. We will prove here that
pre-generalized Azumaya algebras on X as in 3.1.2 form a stack on S.

Lemma 3.1.3.1. Let f : X — S be a flat morphism of locally Noetherian schemes.
Suppose F is an f-flat sheaf on X whose restrictions to the fibers of f are torsion free
(i.e., have no embedded points). If Z C X s a quasi-finite scheme over S, then there
1s no local section of F supported on Z. Furthermore, there are no local sections of
énd(F) having support in Z.

Proof. To prove the theorem, we may replace S by its localization Spec A at a point
and X by its localization Spec B at a closed point over the point of A. Therefore
we may take f to be a local map ¢ : A — B of local Noetherian rings, and we may
replace % by its stalk M at the closed point of B. In this case, Z will be the closed
point of Spec B. The method of proof is an infinitesimal induction formally similar
to that of Lemma 3.1.2.16, and we leave the details to the reader. O

Given a pre-generalized Azumaya algebra & on X, 3.1.2.10 produces a G,,-gerbe
2, an 2 -twisted sheaf %, and an isomorphism of generalized Azumaya algebras
# = Rn,REA(F) S of. We will show that in fact & and & are isomorphic as
pre-generalized Azumaya algebras. We will temporarily call % the associated fwisted
derived endomorphism algebra (or TDEA for short).

Proposition 3.1.3.2. Suppose 7 : X — S is a smooth quasi-projective surface over
an affine scheme. Any pre-generalized Azumaya algebra is isomorphic to the associ-
ated TDEA in &2. Furthermore, the isomorphisms of two such weak algebras form a
sheaf on S.

Proof. Fix an ample sheaf €(1) on X. Let & be a generalized Azumaya algebra on
X, and let & be the associated TDEA. As S is affine and 7 is quasi-projective, we
may choose a cochain complex representing & of the form F*, where each F* is a
locally free sheaf of the form &(—n)™ and F* = 0 for ¢ > 1. We may assume in what
follows that each m is arbitrarily large (with succeeding steps possibly depending
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upon previous ones). We may similarly choose a representative for & of the form
C~! — C° — C!, with the C* coherent sheaves on X such that C° and ¢! are locally
free and C~1 — C° is injective. We will identify C~! with its image in C° below
hopefully without confusion. (This implies that C~! is also locally free because = is
smooth of relative dimension 2, but this is not important to us. Similarly, this fact
tells us that we could assume that the I vanish for ¢ < —1, but again this is of no
importance to us.)

By the definition of pre-generalized Azumaya algebra, we see that both of these
complexes are concentrated in degree zero away from a locus Z which is quasi-finite
over S. Lemma 3.1.3.1 further shows that the zeroth cohomology (which is the same
for both sheaves by étale descent) has no sections with support contained in Z. By
definition, we may find an étale hypercovering Y, — X with each Y; an affine scheme
such that there is an isomorphism ¢ : @4, — By, respecting the derived descent
data on & and Z on Y;. Since locally free sheaves are projective objects in the
category of modules over an affine, we see that ¢ may be represented by a map
f : Fy, — Cy, of complexes. Compatibility with the descent data means that the
two maps of complexes pi f and p}f are homotopic on Y7 (as maps from Fy, to Cy,),
say by h € [THom(Fy,C3™"). This h has the property that its coboundary on Y;
is a zero homotopy, i.e., dh + hd = 0. Let 5 be the sheaf of tuples of morphisms
Fr — C" 1 and & C 2 the subsheaf of such tuples h such that dh + hd = 0.
Consider the sequence

02 > % —0

of coherent sheaves on X. The homotopy h gives rise to an element of H'(X, %)
which we wish to vanish. (Indeed, as all sheaves are coherent and the Y; are affine,
the Cech cohomology of Y, computes the sheaf cohomology, so we can then split the
cocycle on the given hypercovering, which will descend the map of complexes.) We
claim that the entire cohomology group is zero. By the assumption on the negativity
of the F*, we may assume that H'(%) = H*(%). Let us present % in a different way.
Consider the diagram

Hom(F!,C1) 24 0

|

0 — 2 — Hom(F' kerd}) — 2 —0.

The left-hand map factors through the diagonal arrow and the vertical inclusion on
U= X\Z: on U, the first cohomology of F and C vanishes. Therefore, since
the components are locally free, we may split the complexes F* and C* at the right
end. This in fact shows that 2 is identified with the subsheaf Hom(F!, (') on
U. We claim that this implies that the left-hand map always factors through the
subsheaf Hom(F", C~") of Hom(F* kerd2) and that the cokernel 2 is supported
only on Z. Indeed, any morphism ¢ : F! — kerd2 (over an étale open of X) maps
to 0 in the zeroth cohomology of C* away from the finite locus Z. By the fact that
H°(C*) = &nd(F) and 3.1.3.1, we see that » must lie in Hom(F*,C~1) over every
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point. On the other hand, by the negativity assumption on F!, Hom(F*,C™!) has
no cohomology. Thus, % has no H”.

The last statement of the proposition follows by an identical proof which we leave
to the reader. 0

3.2 The relation with twisted sheaves

By taking advantage of the derived Skolem-Noether theorem and the construction
of the stack of generalized Azumaya algebras, we can see that the stack-theory of
twisted sheaves is closely bound to that of generalized Azumaya algebras. We assume
throughout that n is invertible on the base S.

3.2.1 A covering

Let 27 — X — S be a u,,-gerbe on a proper flat morphism of finite presentation to
a locally Noetherian scheme S. It is clear that 2 -twisted sheaves form a stack on
S, with flat families with torsion free fibers forming a substack. (We will show this
substack is open in 4.1.2 below.)

Definition 3.2.1.1. The stack of torsion free perfect 2 -twisted sheaves of rank n,
denoted Twa4 s(n), is the stack whose sections over T — S are T-flat families of
coherent 2 -twisted sheaves # such that for every geometric point ¢ — T, the fiber
%, is a torsion free perfect Z;-twisted sheaf of rank n.

We remind the reader that “perfect” means “perfect as an object of the derived
category D(2").” Using the construction of Mumford and Knudsen [45], there is a
natural map Twg,g(n) — Picx/s given by sending & to det #. The stack-theoretic
fiber over [€x], which we will denote Tw g, g(n, €), is the stack of twisted sheaves
with #rivialized determinant, i.e., pairs (%,4y) with & a torsion free perfect Z-
twisted sheaf of rank n and ) is a trivialization det & = &. (This follows from the
construction of the natural 1-fiber product of stacks.)

There is a natural map Twgs(n, &) = GAzgs(n) given by sending an Z'-
twisted sheaf .# to the generalized Azumaya algebra Ré&nd(.%).

Proposition 3.2.1.2. The morphism Twa  s(n, &) — GAzg,s(n) is an epimor-
phism of algebraic stacks. There ezists a stack .# with a factorization Twa 5(n, &) —
M — GAzgs(n) such that # — GAz is representable by Picx,s[n]-torsors and
Tw — # is representable by p,, -gerbes.

Proof. The epimorphism arises from the definition of GAz and 3.1.2.10. The rest
is a consequence of derived Skolem-Noether. Let us make it clear. We omit the
adornments for the duration of this proof. Given a section T' — GAz, consider the
fiber product .% = T xgaz <. We claim that .% — Sh(.%’) — T is a p,,-gerbe over a
Picx/s{n]|r-torsor. Tensoring by invertible sheaves gives a map % xr Picxs[n] — &
which descends to a map a : Sh(.%) xr Picx/g[n] — Sh(.#). There is an étale
surjection T — T and a lift 7" — Tw. The derived Skolem-Noether theorem ensures
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that when the base is extended to 77, the map a is an isomorphism. This shows that
Sh(#) — T is a Picy,s[n]-torsor. Furthermore, again by the derived Skolem-Noether
theorem, we see that . — Sh(.¥) is a p,-gerbe. It is easy to see that the formation
of Sh (which we emphasize is a big étale sheaf on T') is a local construction in the
sense of Laumon and Moret-Bailly [52]; i.e., it defines a sheaf on GAz. This yields
the stack #. O

Remark 3.2.1.3. By any reasonable definition, we should really be able to see that
Twg 5(n, 6) > GAzg s5(n) is a “strict 2-torsor” under the Picard stack Picx,g[n].
However, the number of diagrams which intervene far outweighs the payoff for our
purposes. ¢

Proposition 3.2.1.4. If f: ¥ — % is a map of S-stacks which is representable by
frof morphisms of algebraic stacks then % is algebraic if and only if &' is.

Proof. First, we show that the diagonal of . is separated, quasi-compact, and rep-
resentable by algebraic spaces if and only if the same is true for .%’. To this end, let
T — & x % be a morphism with T an affine scheme. Consider the diagram

L x.F

/[ -

S| xS

ST

I T

whose terms we now explain. The sheaf I’ is the pullback of T” along the diagonal.
By assumption, the fiber product & x % X g T’ is an algebraic stack over T
with fppf structure morphism. Thus, we may let T be a scheme which gives a smooth
cover, and then we let I be the pullback sheaf of T along the diagonal of .%°. We see
that I — I’ is relatively representable by fppf morphisms of algebraic spaces. By a
result of Artin [52, 10.1], I is an algebraic space if and only if I’ is.

It remains to show that . has a smooth cover by an algebraic space if and only
if %" does. In fact, it suffices to replace the word “smooth” by “fppf,” by Artin’s
theorem [¢bid.]. This is left to the reader. O

Corollary 3.2.1.5. The stack GAzg/s(n) is algebraic if and only if Twas(n, ©)
is algebraic.

Proof. This is immediate from 3.2.1.2 and 3.2.1.4. O

3.2.2 An explicit Morita equivalence

We briefly recall a basic fact from [6] which makes use of the theory of fibered Morita
equivalence developed in section 2.1.4. This will frequently furnish alternative (non-
intrinsic) proofs for certain results later on.
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Proposition 3.2.2.1. Let X be o ringed topos and 2 — X a G,-gerbe. If there
is a faithful locally free & -twisted sheaf ¥, then the functor Fom(¥, - ) gives
an equivalence of abelian categories between the category 2 -twisted sheaves and the
category of &7 -modules, where & = End(¥') is an Azumaya algebra with Brauer class
(2] € H(X, Gr).

Proof. This follows immediately from the results of section 2.1.4 and the fact that 4
is & -twisted if and only if #om(¥,¥) is untwisted. O

Corollary 3.2.2.2. If X is a scheme admitting an ample invertible sheaf and & —
X is a G,,-gerbe representing a class in Hz(X , G )iors, then there is an Azumaya
algebra & on X and an equivalence between the category of 2 -twisted sheaves and
the category of &7 -modules.

Proof. This results from 2.2.3.8 and 3.2.2.1. O

When £ does not represent a torsion class in H*(X, G,,), there are still plenty
of (even coherent) 2 -twisted sheaves. However, it is no longer the case that such
sheaves have natural untwisted avatars as modules over a nice algebra. In general,
while it may be tempting to try to reduce the study of twisted sheaves to &/-modules,
one profits greatly from a more intrinsic approach, as we hope to demonstrate in the
remaining chapters.
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Chapter 4

Algebraic moduli

In this chapter, we will show that the moduli stacks of twisted sheaves and gen-
eralized Azumaya algebras are algebraic. In the process, we will develop a theory
of semistable twisted sheaves and generalized Azumaya algebras and study the re-
lation to Geometric Invariant Theory. We also describe the deformation theory of
generalized Azumaya algebras.

4.1 Moduli of twisted sheaves

We prove that the stack of twisted sheaves (and hence by 3.2.1 the stack of generalized
Azumaya algebras) on a proper morphism X — S of finite presentation over an
excellent {(quasi-separated) base is algebraic. We then study the substack of pure
twisted sheaves and show that it is open in 4.1.2. This sets the stage for a study
of stability of twisted sheaves (in its Mumford-Takemoto and Gieseker forms) when
X — S is projective and its use in producing GIT quotient stacks and corepresenting
projective schemes for stacks of semistable twisted sheaves in 4.1.3 and 4.1.4. The
work on Gieseker stability will require the definition of a suitable Hilbert polynomial.
We define and study this polynomial and state a Riemann-Roch theorem 4.1.3.7 which
will be useful at various points throughout this work.

In the special case where S is affine and X — S is projective of relative dimension
2, we can use 2.2.3.8 to “drastically simplify” the situation by reducing it to work of
Simpson on stability of modules for an algebra. Indeed, once there exists a locally
free twisted sheaf 7', the category of twisted sheaves becomes equivalent with the
category of modules for the Azumaya algebra é&nd(¥) on X. (This is just fibered
Morita equivalence.) Simpson has considered moduli of modules [70] quite generally;
being careful, we can choose ¥ so that the stability condition considered by Simpson
agrees with the stability condition defined here. (In fact, in arbitrary dimension such
a Morita equivalence will always preserve slope-stability.) We will use this technique
to transport Simpson’s GIT approach to the twisted setting on a surface (and to prove
some boundedness theorems in arbitrary dimension by appeal to classical results after
a Morita equivalence).

However, we wish to emphasize that this approach is fundamentally incorrect.
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While it is useful to have a Morita equivalence handy for transporting classical theo-
rems, it is always better to work intrinsically when possible. Working directly on the
gerbe is also a step toward producing a satisfactory theory of sheaves and bundles on
(at least DM) stacks.

4.1.1 Abstract existence

Let X — S be an algebraic space which is proper of finite presentation over a locally
Noetherian scheme, and let 2 — X be a fixed p,,-gerbe, where n is prime to char(X).
Consider the S-groupoid .7 ;s which assigns to an affine scheme Spec R — S over S
the category whose objects are R-flat families of coherent 2 -twisted sheaves. (We
reserve the notation Tw for twisted sheaves without embedded points; 4.1.2 we will
show that Tw C 7 is an open substack.) Our goal in this section is to apply Artin’s
Theorem [9] to prove the following.

Proposition 4.1.1.1. /s is an algebraic stack locally of finite presentation over

S.

Corollary 4.1.1.2. The result of 4.1.1.1 is true if and only if it is true when S is
excellent and Noetherian.

Proof. Since 1) X is of finite presentation, 2) being algebraic is local on S and stable
under base change, 3) the formation of étale cohomology is compatible with affine
limits [25, [.4], and 4) the formation of the stack .7 is compatible with base change,
we may replace S with a finite type Z-algebra. 0

Most of the components necessary to apply Artin’s Theorem are described in the
deformation theory of 2.2.5.

Lemma 4.1.1.3. Let R be a complete local Noetherian ring, and suppose S = Spec R
above. Given a compatible system of twisted sheaves F; on Z ® R/m'f!, there is a
tuisted sheaf F on % whose reduction modulo m" is compatibly isomorphic to ;.
Proof. This follows directly from the result of Olsson and Starr for sheaves on DM
stacks [58]. If X — S is a projective morphism of schemes, then by 2.2.3.8 and Morita
equivalence, the category of coherent twisted sheaves is equivalent to the category of
é&nd g (¥)-modules, where ¥ is a faithful locally free twisted sheaf. But then we are
reduced to the obvious analogue of the classical form of Grothendieck’s Existence

Theorem for modules over a coherent algebra [33, §5]. O

Lemma 4.1.1.4 (Schlessinger). Suppose A, — Ay «— A, is a diagram of com-
mutative rings such that Ay — Ag is a surjection with nilpotent kernel J. Suppose
give a diagram of flat modules M1 — My «— M over the diagram of rings inducing
isomorphisms M; @ Ag = My. Let B = Ay x4, A1 and N = My X pqo My. Then N s
a flat B-module and N ® A; = M,.
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Proof. The proof of this result given in [66] only treats a special case which does
not suffice for our purposes and the reference given there for the general case is
not publicly available. Thus, we give a proof which works for Noetherian rings and
indicate how to generalize it to arbitrary commutative rings.

To see that N is B-flat, we use the local criterion of flatness [54, §22]. Since A; —
Ayg is surjective (say with kernel J), we see that B — A, is surjective with (nilpotent)
kernel [ := J x4, 04,. It is easy to see that N/IN = M, as A;-modules. To show
that N is flat over B, it remains to show that the natural map ¢ : I @ N — IN is an
isomorphism. We may assume (after filtering J and proceeding inductively) that .J is
generated by a single element t of square 0. (This step of the proof only works in the
Noetherian case, but the usual “equational criterion” for flatness [54, 7.6] will work in
the general case. We choose to analyze this case for the sake of simplicity, and because
it suffices for our purposes.) The statement that /® N — [N is an isomorphism is
then equivalent to the statement that if n = mg X m, satisfies (¢ x 0)n = 0 then
(t x0)®@n = 0. But if (¢t x 0)n = 0, then tmy = 0. As M, is flat over A, we have
my = tml, so that mg +— 0 € Ag. Thus, m; — 0 € Ag, so my = ijm(lj) for some
k; € ker(A); — Ag), and so ma x my = (t x ky)(mg X m(ll)) + (0 % ky)(my X m(zz)) g
Plugging this in, we find that (¢ x 0) ® n = 0 as required. O

Lemma 4.1.1.5. Given two S-flat 2 -twisted sheaves ¥ and ¥, the functor on S-
schemes T — Isom(Fr, 9r) is representable by a separated algebraic space Isom (%, %)
of finrte type over S with a G,,-action. If % and 4 both have rank n and det F and
det ¥ are given trivializations, then the subspace Isom%' of isomorphisms preseru-
ing the determinant is a p,-equivariant closed subspace. When X — S is locally
projective, Isom is locally a closed cone in an affine bundle.

Proof. The first part of the lemma is an application of Artin’s representability theo-
renm, which we omit. It is proven by methods similar to 4.1.1.1. When X is locally
projective over S, we can give a more elementary proof, once we admit 2.2.3.8. In
this case, we can locally write .% as a cokernel 7! — 77 of locally free twisted
sheaves. As it suffices to work locally on S, we may assume that S is affine and that
there is a global resolution # ! — ¥% — % — 0. Twisting by enough powers of
¢(—1) when constructing the resolution ¥*, we may further assume that the higher
cohomology of the sheaf S#om(¥?, %) vanishes for i = 0, —1 and that it is gener-
ated by global sections. Note that Isom(.%,%) is an open subfunctor of the functor
Hom(.#,¥) (for a proof of this, see e.g. [52, 4.6.2.1]). Thus, it suffices to show that
Hom(.%,%) is a subcone of an affine bundle. The resolution gives rise to a map of
sheaves Hom(¥°,%4) — Hom(¥~!,%) whose kernel is Hom{.# ¥); as the kernel is
precisely the fiber product Hom(#°, %) X Hom(¥-1,4) S (the latter map being the zero
section), we see that it suffices to prove that Hom(#°, %) is a closed cone in an affine
bundle. This last sheaf is the same as Hom (&, 5#om(V°,¥4)), so it suffices to show
that given an S-flat coherent sheaf # on X which is generated by global sections
and has no higher cohomology, the functor 7' — .#(X) is representable by a vector
bundle. But now this functor is precisely the functor represented by m,.%#, which is
locally free and commutes with arbitrary base change by standard cohomology and
base change arguments [38]. O
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Proof of 4.1.1.1. We recall Artin’s conditions: let F' be the stack of twisted sheaves,
F the associated presheaf of isomorphism classes. Given a morphism of rings B — A
and an element a € F(A), we will denote F,(B) the fiber of F(B) — F(A) over a
(and similarly for F). The first conditions which must be satisfied to apply Artin’s
theorem are the Schlessinger-Rim criteria (our versions are slightly more general then
are necessary; see [9] for Artin’s list):

(S1a) given a diagram A" — A «— B with A’ — A surjective with nilpotent kernel,
and given a € F(A), the canonical map

FG(A’ x4 B) = Fo(A) x FG(B)
is surjective.

(S1b) If B — A is a surjection, b € F(B) with image a € F(A), and M is a finite
A-module then the canonical map

Fy(B® M) — F,(Ap M)
is bijective.

(S2) Given a € F(A), the A-module F,(A @ M) is finite. (The module structure
comes about via Slb. See [9, 3, 66] for details.)

(Aut) Given a € F(A), the module Aut,(A @ M) of infinitesimal automorphisms of a
is a finite A-module.

In our case, these are easy to check. (Sla) follows from 4.1.1.4 by an argument similar
to [66, 3.1]. (S1b) follows from the cher & Cartan isomorphism 2.2.5.8. (S2) comes
from the coherence of derived pushforwards of coherent sheaves on proper morphisms.
(Aut) follows from 2.2.5.14.

In addition to the “local versality” conditions, one must check effectivization and
constructibility conditions. In particular, one must check that the map F(A) —
im F (E/m") is a 1-isomorphism of groupoids for a local Noetherian A over S. This
follows from 4.1.1.3 above or from Olsson’s general Grothendieck Existence Theo-
rem for algebraic stacks [57]. The constructibility conditions are the following: the
deformation and obstruction theories are compatible with étale localizations and com-
pletion (2.2.5.17(1) and (2)), and there is a dense open where they are compatible
with base change to fibers (2.2.5.17(3)). One requires that similar conditions hold
for the group of infinitesimal automorphisms; this is also subsumed in 2.2.5.17. The
last condition to check is that given a reduced finite type S-affine Spec Ay — S and
an element ag € F(Ap), any automorphism which induces the identity in the fiber at
a dense set of points Ay — k of finite type over S is the identity morphism. This
is local on 27, so it reduces to the case where 2" = X is affine and % is an S-flat
coherent sheaf on X. This reduces to showing that a section ¢ of % which vanishes
in fibers over a dense set of points of Spec Ay is the zero section. By flatness, the
locus of points in Spec Ay over which ¢ vanishes is closed under specialization. On the

78



other hand, one easily sees that the set is constructible. (The only non-trivial point
comes in checking that if Ap is integral and o does not vanish on the generic fiber,
then there is an open subset of Spec Ay consisting of fibers where o does not vanish.
There is an open subset U of X consisting of points x € X such that o) # 0, as
Z is coherent. But X — Spec Ay is of finite type and Ay is Noetherian, so the image
of U contains an open subset of Spec Ay by Chevalley’s theorem.) Thus, the set of
fibers where ¢ vanishes is closed, so if it contains a dense set it is all of Spec Ay,
as required. (Alternatively, one can “deduce” this last point from 4.1.1.5, if one is
willing to accept a use of Artin’s representability theorem for algebraic spaces, where
one must check this fact anyway!) O

4.1.2 Purity

The abstract existence 4.1.1.1 yields an enormous and quite unwieldy stack Jys.
There are certain naturally occurring open substacks with nicer formal properties. In
this section, we will study purity of twisted sheaves as a precursor to 4.1.4, where we
will study various stability conditions on twisted sheaves.

4.1.2.1. Support of twisted sheaves. Twisted sheaves may be viewed both as
objects on X and as objects on a p,-gerbe 2 over X. In other words, putting 2 in
Cildararu form yields an étale cover of X where the twisted sheaf “is” an “ordinary”
sheaf. This leads to two possible definitions of support for a twisted sheaf, which of
course turn out to coincide. (In the sequel, when the gerbe is understood we will
often refer to “twisted sheaves on X” for the sake of notational simplicity.)

Definition 4.1.2.2. Given a p,-gerbe 2 — X and an Z -twisted coherent sheaf
F, the support of & is the closed substack of 2 defined by the kernel of the map
Oa — Endg (F), which is a quasi-coherent sheafl of ideals. The schematic support
of # is defined to be the closed subscheme locally determined by % when £ is put
in Caldararu form.

These two notions of support clearly coincide by 2.1.1.17. In particular, we note
that a twisted sheaf % with schematic support Y C X is naturally a 2" x x Y-twisted
sheaf with full schematic support (on Y). Thus, considering the support of a sheaf
does not nullify its “twistedness.”

4.1.2.3. We can use this notion of support to define a torsion filtration on a
twisted sheaf. First, we will briefly develop the theory of associated points and torsion
subsheaves on an arbitrary Noetherian algebraic stack. (When trying to generalize
these results to the non-Noetherian case, certain equivalences will fail, making the
theory developed here only one possibility.) Throughout, we systematically work with
the underlying topological space |2"| of a Noetherian algebraic stack. The support
of a sheaf will be taken to mean simply the underlying set of points of | 2|, or the
reduced closed substack structure on that set when it is closed (e.g., if # is coherent).
We will not require (as is typical) that Supp(.#) is the closure of the set of points
where . is supported.
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Let % be a quasi-coherent sheaf on % .

Definition 4.1.2.4. A point p € || is an associated point of # if there is a quasi-
coherent subsheaf & such that p € Supp(¥) C {p}. The set of associated points of
F will be written Ass(.%).

If & is coherent, this is the same as requiring that Supp(%) = {p}. In general,
this is not the case, as supports need not be closed for quasi-coherent sheaves.

Remark 4.1.2.5. When 2 is a Noetherian scheme, this is the same as the usual notion
(essentially because one can extend quasi-coherent subsheaves off of generic points).
More generally, if 2 is a Noetherian DM stack, one can say that a geometric point
p — & is associated to & if p is an associated point for the stalk of & at p (as a
module over ﬁ;"sx). By an argument similar to 4.1.2.6, a point of |%7| is associated
iff some (and hence any) geometric point lying over it is associated, so this yields the
same notion as 4.1.2.4. ¢

Proposition 4.1.2.6. Let f : X — Z be a flat surjection, with X a Noetherian
scheme. If & s a quasi-coherent sheaf on X, then Ass(F) = f(Ass(F|x)).

Proof. Write #' = F|x». Given a point p € Ass(F), it is easy to see that a generic
point of f~}({p}) will be in Ass(.#'). Conversely, let ¢ € Ass(.#') and let Y =
F Y f(g)} as areduced closed subscheme of X. Let ¥ C %' be the maximal subsheaf
supported on Y. (It is not true that Supp¥ = Y, but we at least know that ¢ €
Supp ¥.) We claim that ¢ descends to a subsheaf of % with support containing f(g)
and contained in {f{q)}. To see this, it is enough to show that the two pullbacks of
@4 to X x4 X are equal as subsheaves. In fact, by colimit considerations, we may
assume that # is coherent. We are reduced to showing the following: given a flat
surjection ¢ : Z — W of Noetherian algebraic stacks with W an affine scheme, a
closed subspace Y C W, and a coherent sheaf % on W, let % C .%# denote the
maximal subsheaf ¢ with Supp(¥) = Y. Then ¢* (%) = ¥, 1(v). To prove this, let
# be the ideal cutting out the reduced structure on Y. By flatness, # = ¢*.# is a
sheaf of ideals cutting out a substack of Z supported on ¢g~'(Y). To say that % is
maximal is the same as saying that the sheaf #om(€/.#", F /%y) vanishes for all
n > 0. By flat pullback, we conclude that #omg,(€z/ 7", F7/9*% ) = 0, whence
g*% is maximal. O

Corollary 4.1.2.7. If f : &' — & is a flat surjection of Noetherian algebraic stacks
and F is a quasi-coherent €4 -module, then Ass(F) = f(Ass(F|a)).

Proof. Choosing a smooth cover of 2™ reduces this to 4.1.2.6. O
Corollary 4.1.2.8. If % is a coherent sheaf on 2 then Ass(F) is finite.

Proof. The stack £ has a smooth cover by a Noetherian scheme X'. By 4.1.2.6, we
are reduced to the case of a scheme, where this is a classical result [54, 6.5]. O
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Points of a stack are subject to the relations of specialization and generization in
the usual way. This gives Ass(.#) the structure of partially ordered set. By 4.1.2.8
there are well-defined minimal elements of Ass(.%).

It is easy to check that Ass(#) = Supp(.#) and that the minimal points of Ass(.%)
coincide with the minimal points of Supp(.%).

Lemma 4.1.2.9. Suppose F,%, 5 are three coherent sheaves on X fitting into an
ezact sequence 0 — F — 4G — H# — 0.

1. Ass(F) C Ass(9) C Ass(F) U Ass(5#). If the sequence is split ezact, the

second inclusion 1s a bijection.
2. The minimal points of Ass(H#) are contained in Ass(¥)
3. If 9 #0, then Ass(¥4) # 0.
Proof. This is precisely analogous to the classical proof [54, §6]. [

Definition 4.1.2.10. A torsion subsheaf of & is a subsheaf %' C % with the
property that none of the minimal points of Ass(.#) are contained in Ass(F’).

Note that any minimal point of Ass(%#) which is also associated to a subsheaf F
will be minimal in Ass{.%").

Lemma 4.1.2.11. The sum of any two torsion subsheaves of F 1is a torsion subsheaf.
There is a unique mazimal coherent torsion subsheaf of % .

Proof. Suppose .#’ and .#"” are torsion subsheaves of .#. By 4.1.2.9, the minimal
points of Ass(F#' + %) are contained in Ass(#') U Ass(F"). This proves the first
statement. The second follows by taking the sum of all torsion subsheaves of %
(which is allowable because they form a set). 0

The maximal torsion subsheaf of % will be called the torsion subsheaf of # and
denoted T(.F).

Lemma 4.1.2.12. Any non-minimal point of Ass(F) is contained in Ass(T(.F)).
Proof. Immediate from the definition! O

Remark 4.1.2.13. When % is a gerbe bound by a diagonalizable group scheme, the
decomposition 2.2.1.6 respects torsion subsheaves, so we see that we have also devel-
oped a good theory of torsion subsheaves for twisted sheaves.

Definition 4.1.2.14. A coherent sheaf .# is pure if T(.%#) = 0.

Remark 4.1.2.15. By 4.1.2.12, we see that # is pure if and only if Ass(.%) consists
solely of minimal points, i.e., the partial ordering on Ass(.%#) is trivial.

Lemma 4.1.2.16. If X — % is a smooth cover, then & is pure if and only if F|x
1S pure.
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Proof. As in 4.1.2.6, it suflices to show that if 7 — W 1s a smooth map of schemes
then the pullback of a torsion free sheaf is torsion free. As this is a local property on
the source and target and is obviously true for arbitrary quasi-finite flat morphisms
(hence for étale morphisms), we see that it suffices to prove that the pullback of a
torsion free sheat on W to Ay, is torsion free. Again by 4.1.2.6, we see that any
torsion subsheaf of Aj, must have all associated points lying over minimal (generic)
points of W. Thus, we may assume W is the spectrum of an Artinian local ring R
and we wish to show that the pullback of any finite R-module to A} cannot have
torsion. Taking a composition series, we may assume that R is a field. The result
follows from the fact that A}, is Cohen-Macaulay. O

Let 7 : &' — 2 be a flat surjection of Noetherian algebraic stacks representable
by an open immersion into an integral ring extension and .%# a coherent sheaf on 2.

Proposition 4.1.2.17. % is pure if and only if F| 4 is pure.

Proof. By the going-up lemma [54, 9.4] and flatness (which implies the going-down
lemma [54, 9.5]), a morphism such as 7 has the property that 7(p) is minimal if and
only if p is minimal. The result now follows from 4.1.2.6. O

Corollary 4.1.2.18. If & 1s over a field k, then the purity of a coherent sheaf
is invariant under finite extensions of k. If Z is fimite type over k then purity is
geometric.

The finite type hypothesis in the second statement serves only to ensure that
2" ® K is Noetherian for any extension K D k, so that our theory applies.

Remark 4.1.2,19. When X is an integral universally catenary scheme of finite Krull
dimension (for example, a projective variety) and % is an 2 -twisted sheaf with
support of dimension d, we can filter T(.%#) by the dimension of support: let T.(.%)
be the maximal subsheaf of .# whose support is of dimension at most e. Then
T(F) = Ty i(F) D Tyo(F) D --- D TH(&F). This filtration can be useful when
considering various notions of semistability; it will not come up in the sequel.

4.1.2.20. We will now show that the property of being pure is open in flat families
of twisted sheaves (on a proper space). Again, we will show this more generally for a
proper algebraic stack.

Proposition 4.1.2.21. Let 7 : & — S be a proper morphism of finite presentation
from an algebraic stack to an algebraic space. Suppose F is an S-flat family of
coherent sheaves. The locus of points s € S such that F, is pure is open.

Proof. We may reduce to the case where S is affine, Noetherian, and even excellent (in
fact, affine of finite type over Z). Indeed, we may present the stack 2 as a groupoid
X1 — Xo x Xj of finite presentation between two schemes of finite presentation over
S. Thus, we may descend 2  to a Noetherian base. Having done this, note that
a coherent sheaf on %2 is given by a coherent sheaf on X, with an action of the
groupoid, i.e., an isomorphism of the pullbacks to X, which is compatible with the
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groupoid structure. By Grothendieck’s theory of limits, we can descend these data
to a finite level.

Consider the set = of points z € |£"| with the property “z is contained in the
support of T(Fr)).” It suffices to show that #(Z) is constructible and that 7(=) is
closed under specialization when 2 is proper over S (when S is Noetherian).

The second statement is immediate: it suffices to check this when S is the spectrum
of a discrete valuation ring. By flatness, the torsion subsheaf T'(&) of the total family
& is non-zero if and only if the torsion subsheaf of the generic fiber is non-zero. On
the other hand, since S is Dedekind, T'(.%) is also a flat family, and in particular has
constant fiber dimension, like #. Finally, the cokernel % /T (%) is pure, hence S-
flat, by definition of the torsion subsheaf. These facts combine to yield the statement
about specialization. (Properness is not necessary for this, as long as we assume that
the specialization on the base is contained in the image of 7.)

The first statement (that #(Z)) is constructible) is more subtle. It is easily reduced
to showing that if S is an integral and Noetherian affine scheme and the generic fiber
of = is non-empty, then = is non-empty over an open subscheme of S. By 4.1.2.6,
we may assume that 2 is in fact a scheme and that 7 is surjective. Consider the
sequence of sheaves 0 - T(#) - % — 2 — 0on 2. There is an open U C S
over which all of these sheaves and their supports are flat, and we may in fact assume
by further localization that the generic fiber of T(.#) is T(%#,). We claim that the
fibers of T(.%) are torsion subsheaves over any point of U; this will complete the
proof. We know that the support of T(.#) in the generic fiber has strictly smaller
dimension at every point than the support of % at that point. Let p be a point of
the support of T(.#) with image w(p) € S. The statement about the generic fiber
says that the support of T'(F) is cut out of the local ring of Supp .# at p by an ideal
I which is not contained in any of the minimal primes of &gypp 5 ,. Therefore, any
prime B C Oguppr(2)p has height strictly smaller than the height of its preimage in
Osupp #p- By the computation of fiber dimension for a flat map of local rings [54,
15.1], we see that the support of T(%), has strictly smaller dimension at every point
than the support of %, where s is any point of U. Thus, Ass T(.%#), does not contain
any of the minimal points of Ass % for every s € U, ie., T(F), C T(Z,) for every
seU. |

As a consequence of the Proposition, when 2 is a G,,-gerbe, there is an open
substack of Z ¢ representing families of pure twisted sheaves. Note that since the
support of a flat family over a dvr is itself flat over the dvr, the dimension of the
fibers of a flat family of coherent 2 -twisted sheaves over a locally Noetherian base
scheme is locally constant.

Corollary 4.1.2.22. Let X — S be a proper flat morphism of finite presentation
with geometrically integral fibers. There is an open substack of a5 consisting of
families of torsion free sheaves, i.e., pure sheaves of mazimal dimension.

Definition 4.1.2.23. If X — S is a proper flat morphism of finite presentation and
X — X is a p,-gerbe, the open substack parametrizing families with torsion free
fibers is denoted Tw /5.
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4.1.2.24. Suppose X is a smooth projective variety over a field k and 2" — X is
a p,-gerbe with n € k*. Let Twy i(n) denote the stack parametrizing torsion free
twisted sheaves of rank n. Since 2 is smooth, any S-flat family of twisted sheaves %
on Z x S has finite homological dimension everywhere. In other words, # is perfect
as an object of the derived category. As in section 3.2.1, we use the construction of
Mumford and Knudsen [45] to define a determinant for .#, which will be the pullback
to 2 xS of an invertible sheaf on X x S (as .# has rank n). This yields a morphism
of algebraic stacks

det : TWg/k(n) — Picx/k-

Given an invertible sheaf % on X, one can form the fiber of det over the resulting
k-point of Picx,. This will be a closed substack of Tw(n). Formally:

Definition 4.1.2.25. Twa (n, Z) := Twajx Xz k

Chasing through the definition of the natural 1-fiber product of stacks shows that
the objects of Tw g k(n, %) are pairs (#, ) consisting of a torsion free twisted
sheaf .% of rank n and a chosen isomorphism det % = .%. One can develop a good
deformation and obstruction theory for Tw(n, .%); we defer this to 4.2.1.10.

4.1.3 Hilbert polynomials and Quot spaces

In this section, we develop a notion of Hilbert polynomial for twisted sheaves which
we will ultimately use to define semistability. In later sections, we will show that on
a surface (and more generally on a variety which carries a twisted sheaf with enough
vanishing Chern classes), our notion agrees with Simpson’s notion [70, §3] and thus
yields a GIT quotient corepresenting the stack of semistable sheaves. In general, it
will be possible to show that the stack of stable twisted sheaves is a gerbe over an
algebraic space, but dealing with properly semistable points is difficult.

4.1.3.1. In order to define our semistability condition and for future reference,
we briefly recall the basic facts about rational Chow rings of DM stacks over a field.
Vistoli [77] and Gillet [29] have defined Chow theories which only work rationally
but which are formally identical to the usual Chow theory: in Vistoli’s approach, one
takes the Chow groups to be generated by integral closed substacks modulo rational
equivalence (suitably defined). There is a refined theory due to Edidin and Graham
[21] which applies to quotient stacks to yield an integral Chow theory which agrees
with Vistoli’s theory when tensored with Q. A further refinement of the integral
theory for algebraic stacks stratified by quotient stacks was developed by Kresch in
his thesis [46]. We will denote the rational Chow groups by Aq. We will write Ag
for the group generated by cycles of codimension n. When the underlying stack is
smooth, the graded group ©Ag has a commutative ring structure. As usual, there
is a theory of Chern classes and a splitting principle. The theory admits proper
pushforwards, flat pullbacks, and Gysin maps [77].

Given a proper DM stack 4~ with moduli space X, one can show that the proper
pushforward Aq(Z ) — Aq(X) is an isomorphism which respects the ring structure
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when both are smooth. In particular, when 2~ is of dimension n, there is a rational
degree function deg : A"(Z )q — Q. Given any element « of the graded group
AH(Z), we will let o, denote the part in degree n. Given a class 8 € A*(2")q, we
will let deg 3 denote the degree of 3,.

Let 2 be a smooth proper DM stack of dimension n over a field & with projec-
tive moduli space X. We will state (without complete proofs) some incredibly naive
Riemann-Roch theorems. The naiveté of the statements will allow us to avoid giving
proofs. The reader uncomfortable with this can rest assured that the subset of state-
ments of which we actually make use can be proven by alternative (Morita) methods
as described below. It is likely that our statements exist as corollaries of real results
in the literature, but the simplicity of these statements and their proofs is so extreme
as to preclude any appeal to real work past Fulton’s book [27]. Tt should be noted
that approaches to more legitimate Riemann-Roch theorems for stacks may be found
in the thesis of Toen [75], and in the equivariant setting in the work of Edidin and
Graham [22]. Recall that K°(2") is the Grothendieck group of vector bundles on 27,
while Ky(Z") is the Grothendieck group of coherent sheaves. When every coherent
sheaf on 2" admits a finite resolution by locally free sheaves, it is easy to see that
K° = K;. In general, K° is a ring and K, is a K%module (via tensor product).
One of the basic problems for arbitrary DM stacks is the fact that K° and K are
not isomorphic even on smooth DM stacks. For smooth quotient stacks, they are
naturally the same, which makes it easier to prove theorems. (This is yet another
place where 2.2.3.8 and its corollaries have a large impact.)

Let @ € K°(Z'). As usual, Tds denotes the Todd class of the tangent sheaf
:7 Xk of 2.

Definition 4.1.3.2. The geomeiric Euler characteristic of « is
x?(«) := deg(ch(a) - Tdg).

When X is projective with chosen polarization &(1), the geometric Hilbert polynomial
of & is the function
n— Pi(n) = x*(a(n)),

where a(n) == a® &(n).

To verify that P is a polynomial, it suffices to prove it when o = [&], & a locally
free sheaf on 2. This then follows by a simple splitting principle calculation left to
the reader.

Remark 4.1.3.3. The geometric Euler characteristic and Hilbert function are clearly
additive functions on the category of coherent sheaves. When % is the pullback
to & of a coherent sheaf on X, they agree with the usual Euler characteristic and
Hilbert function by the Grothendieck-Hirzebruch-Riemann-Roch theorem. However,
for sheaves which are not pullbacks, they do not agree with the usual cohomologically
defined functions. For a trivial example, consider the case of a gerbe & over a
geometric curve X. In this case, there is an invertible sheaf . on 2 which is 2 -
twisted whose nth tensor power .#®" is the pullback of an invertible sheaf .# on X.

85



The geometric Euler characteristic of . is easily seen to be
1
X(Z) = deger(Z) + x(Ox) = —deg s (M) + x(Ox).

Thus, if X is e.g. elliptic, one can easily produce gerbes Z and 2 -twisted sheaves
with non-zero x¢. On the other hand, if we use coherent cchomology to compute
the cohomological Euler characteristic, we find x(.¢) = 0 when % has non-trivial
stabilizer action. (For an even more trivial example, let 2" be a gerbe over a point!)

Recent results of Vistoli-Kresch [47], Edidin-Hassett-Kresch-Vistoli [23], and Gab-
ber/de Jong [19] (stated by Gabber and proven by Gabber and independently by de
Jong) show that any separated smooth generically tame DM stack over a field with
quasi-projective moduli space is a quotient stack, and that such a stack has the “res-
olution property”: any coherent sheaf is a quotient of a locally free sheaf. In these
cases, the natural map K" — Kj is thus an isomorphism. We will denote it simply

by K(%').

Definition 4.1.3.4. A (smooth) proper generically tame Deligne-Mumford stack 2
with projective moduli space will be called a (smooth) pseudo-projective stack.

(The reader will note that tame pseudo-projective stacks are locally generating
over their moduli spaces, so the results of 2.2.4 apply. This will not be used anywhere
in this thesis, but it could be useful for the study of higher K-theory of such stacks.)

Lemma 4.1.3.5. The category of (smooth) pseudo-projective DM stacks is closed
under the formation of (smooth) closed generically tame substacks, products, and
blow-ups along (smooth) sub-stacks.

Proof. We verify the statement about blow-ups, leaving the rest for the reader. Let
7 : 2 — X be a DM stack mapping to its moduli space. Let .¢ C &4 be a sheaf
of ideals. By [47, 2.1], there is a finite flat cover f : C — 2. Let M be the coarse
moduli space of Bl #(.27). Consider the diagram

|

C
Blﬂ%)—»,ﬁ*jf

|

M

X.

The center horizontal arrow is a projective morphism, hence there is a relatively
ample invertible sheaf % on Bl,(%"). It follows that f*.#° and all of its powers are
relatively ample for Bls. ,(C) — C. As M is the coarse moduli space, some power
of % descends to M, so we may assume that % is pulled back from M. Given a
very ample invertible sheaf .# on X, the finiteness of C — X implies that #c is
very ample. It follows that there is some power N such that f*.% ® #5 fN (O is very
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ample on Blg#(C). As Bl #(C) — M is finite, it follows that ¥ ® #5" is an
ample invertible sheaf on M. This implies that Bly(2") is pseudo-projective. O

Proposition 4.1.3.6. Let f : & — & be a projective morphism of smooth pseudo-
projective DM stacks. Then for all « € K(%'),

ch(fia) - Tde = fi(ch(a) - Tda)

in A(% )q.

Sketch of proof. As in [27, §15.2], this reduces to studying projections & x P" — &
and closed immersions 2~ —» % separately. The case of a projection reduces [ibid.] to
a computation on P”. In the case of a closed immersion, one reduces by deformation
to the normal cone to the case where f is a section of the projectivization of a vector
bundle on 2. Since by 4.1.3.5 the total space of the deformation to the normal
cone of a closed immersion of smooth pseudo-projective DM stacks is itself smooth
pseudo-projective and the Vistoli-Gillet-Chow theory of DM stacks has all of the
formal properties (rationally) as the classical Chow theory, one can simply transcribe
the proof of Fulton [ibid.]. (The reason one has to keep track of pseudo-projectivity
is that Fulton’s proof uses the resolution property.) a

Corollary 4.1.3.7. Let ¢ : X — % be a closed immersion of smooth pseudo-
projective DM stacks and % a coherent sheaf on . Then x9( 2, F) = x3(¥ , 1.F).

We fix a smooth pseudo-projective DM stack 2~ with moduli space 7 : & — X
in what follows. We assume that everything is flat over a fixed locally Noetherian
algebraic base space S. For the sake of simplicity, we will assume that the moduli
space X 1is smooth over the base and the natural map « is étale. (In fact, we are not
certain that the results hold as stated otherwise.) Since we will ultimately apply this
to p,-gerbes, this will not hinder us in reaching our goal. First suppose S = Speck,
k an arbitrary field.

Remark 4.1.3.8. When & is a p,-gerbe over a smooth projective variety X and there
is a locally free 2 -twisted sheaf with sufficiently many vanishing Chern classes (e.g.,
X is a surface), then the formula in the last sentence of the proof of 4.1.4.9 gives a
much more concrete proof of 4.1.3.7. As we will only use this statement for gerbes
on surfaces, we can (in light of this explicit calculation) safely omit the details of
4.1.3.6. ¢

Lemma 4.1.3.9. The geometric Hilbert function is geometric: if k C K is an ez-
tension of fields and X is a smooth geometrically connected projective variety over k,
then for any coherent & -twisted sheaf ¥, Pz = Pz gy as functions on Z.

Proof. This follows from the fact that Chern classes of arbitrary (perfect) coherent
sheaves pull back under Tor-independent maps. a

Notation 4.1.3.10. Following the conventions of Huybrechts and Lehn [40, §1.2], we
write
dim % i
™m

Pg(m)= 3 a(F)—.

2!
i=0

87



With this definition the coeflicients a; need not be integers (contrary to [40, p. 10]).

Definition 4.1.3.11. Given a coherent sheaf % of dimension d on &', the geometric
rank of &% is defined to be

tk F = ag(F)/ax(Cx).
The geometric degree of % is defined to be
degﬁ = (l'd_.l(y) — I'k(:g) . ad_l(ﬁgg’).

Lemma 4.1.3.12. Suppose k is infinite. Given a coherent sheaf F on 2, there is
a section o of €(1) such that o : F(—1) — F is injective.

Proof. The set Ass % is finite and determined by its image in X. Since &(1) is very
ample, there is a section missing these finitely many points. It is easy to see that
any associated point of the kernel of ¢ must then be contained in the zero locus of o,
contradicting the choice of ¢ and 4.1.2.9. 0

Lemma 4.1.3.13. The geometric rank of % is non-zero.

Proof. We show that deg P¢ = dim #. This is clear by induction and the previous
lemma, once we have verified it when dim X = 0. (We have used the fact that a
generic section will have smooth pseudo-projective zero locus; this is where we use
the assumption that & — X is étale. If there were a stacky Bertini theorem, we
could drop that requirement. The existence of a stacky Bertini theorem seems to be
subtle.) In this case, the geometric Euler characteristic is just the dimension of the
fiber of .# over any geometric point of 2 by 4.1.3.6. (This reduces one to working
on a gerbe over a point, which will be smooth by our assumption that the map to the
moduli space is étale.) O

Remark 4.1.3.14. In particular, the geometric Hilbert function of % vanishes if and
only if # = (. Furthermore, one sees that the geometric rank of % is precisely
the rank of % as an &-module. Unfortunately, one cannot show this by arguing
that .# and ™7 agree on a dense open substack, as this is false. Instead, one
must appeal directly to the Hirzebruch-Riemann-Roch formula (and the computation
[27, 3.2.2] of Chern classes of a twist). We leave the details to the reader. The
geometric degree of % is related to the degree of det(.#) just as in the case of
ordinary sheaves: ag_; = degdet(.#) (so the geometric degree is arrived at by a
linear transformation familiar from [40, 1.6.8ff]). This will aid us in comparing various
notions of semistability and slope-semistability to their classical counterparts (as in
Simpson’s theory for semistability of modules for sheaves of algebras 70, §3]).

4.1.3.15. For the rest of this section, we will consider only the case where &~ — X
is a p,,-gerbe with n € £(X)* and X is a smooth projective scheme over a Noetherian
affine base S. It is likely that many of our results generalize, but it is unnecessary for
this work and is likely to add complications (especially in positive characteristic).

We start with a refinement of 2.2.3.8 better suited to the study of stability.
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Proposition 4.1.3.16. Given a p,,-gerbe on a smooth projective morphism 2 —
X — S with Noetherian affine base S, there is a locally free & -twisted sheaf ¥ of rank
n. Ftale-locally on S, there is a locally free Z -twisted sheaf with trivial determinant.

Proof. The existence of ¥ is a non-trivial result which holds on any (separated)
scheme with an ample invertible sheaf. We refer the reader to the work of de Jong [19]
for the (upcoming) details. To make the determinant trivial, first consider # := ¥®",
Since n|tk #, we have . = det # € Pic(X). Now (LY@ O P 1)@ # is a locally
free twisted sheaf of trivial determinant. OJ

Recall that 2 has the resolution property if every coherent sheaf on 2 is the
quotient of a locally free sheaf [76]. The present virtue of 4.1.3.16 lies in the following
corollary.

Corollary 4.1.3.17. For any affine T — S, the stack Z7 has the resolution property.

Proof. By 2.2.1.6, the category of coherent sheaves on 2" breaks up according to
the degree of twisting. It suffices to show that coherent 2 -twisted sheaves have the
resolution property. Applying the fibered Morita equivalence s#om(¥, - ) reduces
us to showing that &nd(¥ }-modules on X have the resolution property. This follows
from the fact that coherent sheaves on a projective morphism have the resolution
property. (]

Proposition 4.1.3.18. If # on 2 is S-flat, then P is constant for all geometric
points s — 5.

Proof. It suffices to assume that S is the spectrum of a discrete valuation ring. In
that case, the support of % will be flat over S if # is, so we may assume that 2~
and X are S-flat. Thus, we may assume that any locally free coherent sheaf on 2 is
S-flat.

Let ¢4* — # be a locally free resolution of #. As & — S is smooth, ¥* may be
taken to be a finite resolution. If & is flat, then for any s — S, the complex ¥? is a
resolution of %,. Thus, to prove that P9 is constant for .#, it suffices by additivity
to prove it when # is assumed locally free. In this case, we may globally apply
the splitting principle (noting that the base change which filters the sheaf produces
another proper S-flat family). Thus, it is enough to show that given invertible sheaves
Li,...,L, on & with n the relative dimension of 2~ over S, the intersection product
ci(Ly)----- c1(Ly) is constant in fibers. As A{2 )q = A(X)q, it suffices (by multi-
linearity) to prove this for invertible sheaves on X. This is now a standard calculation
using the fact that Euler characteristics are constant in a flat family. (In other words,
we return to Kleiman’s definition of intersection product using Snapper’s lemma, [11,
§1], [44], where the intersection number appears as a coefficient in a polynomial Euler
characteristic.) O

Thus, given P, the substack Twy,5(P) C Twg s consisting of twisted sheaves
with fixed geometric Hilbert polynomial P is open (in fact, a union of connected
components). This immediately shows that Twg-,s(P) is an algebraic stack.
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4.1.3.19. Let P be a fixed polynomial and & a fixed coherent 2 -twisted sheaf.
We will briefly study the space of quotients of & with a fixed geometric Hilbert
polynomial.

Definition 4.1.3.20. Let Quotf; y S(cg" ) denote the functor on affine S-schemes which
assigns to T' — S the set of subsheaves ¥4 C &7 such that &/¥ is T-flat with

geometric Hilbert polynomial P in every fiber.

Proposition 4.1.3.21. The functor Quotg,/s(éa) is represented by a proper algebraic

space Quot;vs(cg’) over S.

Proof. It follows by an easy application of Artin’s criteria that Quot is representable
by an algebraic space which satisfies the valuative criterion of properness. This is
checked in great detail in [58] in a slightly different context (which is sufficiently close
to ours to be a complete proof in our case as well). The only fact that remains to
prove is that the functor Quot is bounded in the sense of [40, 1.7.5]. In other words,
we need to show that there is a quasi-compact scheme surjecting onto the functor.
Let ¥ be a locally free 2 -twisted sheaf. Given any ¢ C &r as above, note that
Hom(¥r,9) C Hom(¥p,Er) is injective with T-flat cokernel €. If we knew that
the Hilbert polynomial of the fibers of € were always the same, we would be done.
Unfortunately, this is highly unlikely. However, since we do know the geometric rank
and geometric degree of (&7/%),, we know the rank and degree of ;. Furthermore,
we know that the %, are quotients of a fixed sheaf % = #om(¥,&). By a result of
Grothendieck [40, 1.7.9], we know that the set of quotients of %; with slope bounded
above is bounded. A consideration of the proof of Huybrechts and Lehn [#bid.] shows
that the set of Hilbert polynomials appearing in such quotients is finite and indepen-
dent of s. Thus, as the geometric Hilbert polynomial is locally constant, we see that
Quot;(é” ) is a union of finitely many connected components of finitely many schemes
of quotients of &nd(¥)-modules which are themselves proper over S. This completes
the proof. O

Remark 4.1.3.22. The proof actually works (with slight modification) for any coherent
& on 2 (independent of twisting). ¢

4.1.4 Semistability and boundedness

We wish in this section to define a reasonable stability condition for twisted sheaves
on smooth projective varieties. Variations on this theme occur throughout the study
of moduli of sheaves. The basic goal is to produce a condition which cuts out a well-
behaved substack of the stack of pure sheaves. Historically, this has meant two things:
from the differential-geometric angle, stability conditions are related to the existence
of certain types of metrics on bundles; from the algebro-geometric direction, the
choice of a stability condition is influenced by the use of Geometric Invariant Theory
to construct the moduli of such sheaves as a quotient stack.

Using the geometric Hilbert polynomial, we define a stability condition for twisted
sheaves analogous to the classical definition for untwisted sheaves. As usual, a coars-
ening of our relation will define u-semistability (or Mumford-Takemoto semistability).
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(In characteristic zero, this condition is probably equivalent to the existence of certain
metrics on the associated analytic DM stack (orbifold). We do not pursue this mat-
ter here.) On surfaces, we relate our construction to GIT via a Morita equivalence
and fundamental work of Simpson on moduli of modules for a sheaf of algebras [70].
(More generally, we make this comparison when there exists a locally free twisted
sheaf with enough vanishing Chern classes.)

Definition 4.1.4.1. An Z -twisted sheaf # of dimension d is semistable (respec-
tively stable) if for any subsheaf & C # we have au(F )Py < q4(9) Pz (respectively
ad(ﬁ)Pg < Ocd((f)Py)

Lemma 4.1.4.2. A semistable coherent Z -twisted sheaf F is pure.

Proof. If ¢ C % is a torsion subsheaf, then dim¥ < dim.#, which means that
Py <0 (as ag(F) # 0). Thus, Py = 0, and therefore 4 = 0 by 4.1.3.14. O

Definition 4.1.4.3. The reduced geometric Hulbert polynomial of a coherent 2 -
twisted sheaf # of dimension d is pe := (1/ay)Ps.

Remark 4.1.4.4. Thus, an 2 -twisted sheaf .# is semistable if and only if it is pure
and for any subsheaf ¢4 C # we have py < pg.

Definition 4.1.4.5. The slope of a coherent 2 -twisted sheaf .# of dimension d is
deg &#
WF) = k. F

Definition 4.1.4.6. A coherent 2 -twisted sheaf # of dimension d is u-semistable
(respectively p-stable) if # is pure and for any subsheaf & C .# we have (%) < (%)
(respectively u(¥4) < p(ZF)).

Remark 4.1.4.7. If we define the modified slope of an 2 -twisted sheaf .%# of dimension
d as u(.F) := ay-1/ay, then we get the same notion of slope semistability as above.
We will use both notions of slope interchangeably.

Definition 4.1.4.8. Given a sheaf of algebras & on X, an &/-module % is Sim-
spon (semi)stable if the inequality of 4.1.4.1 holds for subsheaves ¢ which are o7-
submodules.

Lemma 4.1.4.9. Let X be a smooth projective variety and £ a p,-gerbe on X
with a locally free twisted sheaf ¥ of rank v such that ¢;(V) = 0 € Ag(Z") for
all 1 < ¢ < n. Let & = Endy(¥). Then semastability of 2 -twisted sheaves is
equivalent to Simpson-semistability of of -modules via the fibered Morita equivalence
W — Fom(V, ).

Proof. By the Riemann-Roch theorem,

x(Fom(¥V, %)) = deg(ch(¥#") - ch(¥#') - Tdy)
= vdeg(ch(#') - Tda) + deg(ch(#"Y), - (ch(#) - Tda )n_1) + -
-+ 1k(#) deg(ch(¥") - Tdg)
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The assumption about the Chern classes of 7 kills all of the terms but the first and

the last. We see that x(#om(¥, %)) = vx3(W) + tk(#') - constant, whence the
result follows. O

Proposition 4.1.4.10. Let X be a smooth projective variety and Z a u,-gerbe on
X. The category of ji-semustable coherent 2 -twisted sheaves with fized geometric
Hilbert polynomial 1s bounded.

Proof. By 4.1.3.16, there is a locally free 2 -twisted sheaf ¥ with det ¥ = . Ap-
plying the Morita equivalence #om(¥, - ) and a result of Simpson [70, 3.3], one sees
that the set of & := &nd(¥')-modules resulting from this operation has the property
that the slope is fixed and pn., is bounded above.

To show boundedness, first consider the subset of reflexive sheaves. Given a
reflexive sheaf F' on X, temporarily write

g dim X m+dimX — i
Pi(m) = > ai(F) dimX —i /)

1=0

By a result of Langer (proving a theorem of Maruyama in arbitrary characteristic),
the set of coherent reflexive sheaves F on X with a fixed upper bound on pmax(F),
ao(F) =1, a1(F) = ay, and as(F) > a; for fixed ag, a;, az is bounded [51, 4.3]. Thus,
to apply this to our situation, it remains to show that the “codimension 2”7 coeflicient
ay 1s bounded below. Looking at the formula in 4.1.4.9 and using the formula for the
Chern character, we see that if det " = & then the correction to the codimension 2
term of the Hilbert polynomial of J#om(¥,# ) coming from higher terms (= after
the first term) is given by —&(ca(¥) - c1(€(1))?*)t%2, where  is a coefficient which
depends only on d (the dimension of X) and the degree of £(1) on X. In particular,
after dualizing ¥ if necessary, we may assume that this correction term is always
non-negative. Thus, we see that the Morita equivalence we apply will yield Hilbert
polynomials with bounded below codimension 2 terms. Applying Langer’s theorem
[2b2d.], we are done for reflexive twisted sheaves.

Given a torsion free twisted sheaf, taking its reflexive hull fixes ap and a; and
increases a,. Thus, we have just shown that the set of reflexive hulls of the sheaves
we are interested in is bounded. In particular, only finitely many geometric Hilbert
polynomials occur. We can now apply 4.1.3.21 finitely many times to yield the desired
result. O

Corollary 4.1.4.11. The category of semistable 2 -twisted sheaves with fized geo-
metric Hilbert polynomaial is bounded.

Proof. It is elementary that any semistable sheaf is f-semistable. [

Remark 4.1.4.12. In the future, we will only be interested in p,-classes on a smooth
surface. In this case, the hypothesis of 4.1.4.9 (which is simply that ¥ have trivial
determinant) will always be satisfied for us. In fact, as is shown below in 4.1.4.14
below, when X is a smooth projective surface over a strictly Henselian local ring,
every p,-gerbe 2 admits a locally free 2 -twisted sheaf of rank n and determinant
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. We include the proof as it yields the only case of 2.2.3.8 which is strictly necessary
for our work and is much easier to prove. ¢

Corollary 4.1.4.13. Let X — S be a smooth projective morphism, X a . -gerbe on
X, and F an S-flat family of coherent & -twisted sheaves. The locus of ji-semistable
(resp. semistable, resp. geometrically [i-stable, resp. geometrically stable) fibers of F
15 open in 5.

Proof. Tt suffices to prove this when S is affine, whence we may assume that 2~ is
a quotient stack (2.2.3.8 again!) and that the theory developed above applies. Now
one can apply [40, 2.3.1] verbatim, with the additional remark that their proof also
works for ji-semistability (even though they do not state this explicitly). 0

4.1.4.14. Let us indicate how to locally produce an Azumaya algebra as men-
tioned at the end of 4.1.4.12 for a smooth projective morphism of relative dimension
2. The argument given here marginally resembles a sketched argument of {40, 5.2.6].
In the present context, this result was first proven by Artin and de Jong (10, 8.4.2]
using elementary transforms of Azumaya algebras. QOur approach gives a different
“sheaf-theoretic” proof of the result in the same spirit.

Lemma 4.1.4.15. Let X be a quasi-compact reqular scheme, C C X a regular Cartier
dunsor, and n a positive integer prime to the characteristics of X. Suppose & — X
15 a ., -gerbe possessing a faithful locally free & -twisted sheaf and which has a section
when restricted to C. The determinant (on X ) of a locally free Z x x C-twisted sheaf
of rank v is €(rC).

Proof. 1t is clear by regularity that any two Z¢-twisted sheaves of the same rank have
the same determinant on 2" (as they differ on a subset of X of codimension at least
2). Furthermore, as any sheaf on Z¢ has rank zero on 2, the determinant will be
O-fold twisted and therefore be the pullback of a unique invertible sheaf from X. By
the hypothesis that Z¢ has a section, we see that there is a locally free Z¢-twisted
sheaf of rank 1. Call its determinant L (which we view as an invertible sheaf on X
by abuse of notation). Let ¥ be a locally free 2 -twisted sheaf of positive rank t.
The sequence 0 — ¥ (—C) — ¥ — ¥ — 0 shows that L® 2 ¢(tC'). On the other
hand, there is a surjection ¥ — 22, where £ is a torsion free Z¢-twisted sheaf of
rank 1. (Indeed, there is such a map generically, and we can extend the quotient as
X is Noetherian.) The kernel # of such a surjection will be isomorphic to ¥ away
from C'. Thus, det % will differ from det ¥ by a power of &(C) (by the usual facts
about Picard groups and the fact that X has normal integral connected components),
which implies that det 2 = €(sC) for some s. Combining the two statements, we
see that s =1 and L = &(C). a

Remark 4.1.4.16. T am not sure if this holds in the absence of the hypothesis that
there is a locally free % -twisted sheaf or a global section of 2~ xx C.

Lemma 4.1.4.17. Let C be a projective variety over an algebraically closed field k
with fized very ample invertible sheaf &(1). Suppose ¥ is a locelly free sheaf of rank
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n>1onC,.Z and ¥ are invertible sheaves on C, and o : ¥ — ¥ @ X is a given
non-zero map of sheaves. Then for a generic map © : ¥ — 2£(n), the composite
(m ® % )o is non-zero.

Proof. To see the non-vanishing of generic (r ® ¢ )o, it suffices to show the existence
of a single such 7. Indeed, the locus of maps which do not kill ¢ is easily shown to
be open. To find such a map, note that there is trivially one over the generic point
of C, and this extends upon twisting enough. 1

Corollary 4.1.4.18. Let ¥ be a locally free & -twisted sheaf as in 4.1.4.15, P an
invertible Zc-twisted sheaf, and K an invertible sheaf on X. Given a map ¢ : ¥ —
VY @ K, there is a map 7 : ¥ — P(n) for sufficiently large n such that (m @ K)o # 0.

Proof. Twisting everything by £V reduces this to 4.1.4.17. a

Proposition 4.1.4.19. Let & — X — S be a p,,-gerbe on a smooth surface over a
strictly Henselian local scheme S, with n € €(S)*. There is a locally free X -twisted
sheaf ¥ of rank n and trivial determinant.

Proof. We may assume that S is the strict localization of an excellent scheme and is
therefore excellent. By the Grothendieck Existence Theorem on DM stacks [58, 57]
and Popescu’s Theorem, it suffices to show that there is a totally unobstructed locally
free twisted sheaf on the special fiber of rank n and trivial determinant. By this we
mean a twisted sheaf ¥ of rank n and trivial determinant such that the space of
traceless homomorphisms Hom (¥, ¥ ® Kx)o (which is the space of obstructions to
deformation with constant determinant 4.2.1.10) vanishes entirely. (For the uniniti-
ated, the argument then proceeds by deforming the sheaf to the completion of S at the
closed point and then using the two hammers — the Existence Theorem and Popescu’s
theorem — to effectivize the formal deformation and descend it to the Henselization.
This technique is the algebraists’ version of local analytic constructions.)

Thus, let X be a smooth projective surface over an algebraically closed field k, Z
a p,-gerbe on X (with n prime to the characteristic of k), # a locally free 2 -twisted
sheaf (of rank n), L = det#. Let C be a smooth member of the linear system of
sections of LY(mn) for large m and £ an invertible Z¢-twisted sheaf. The kernel
# of a general map m: ¥ — Z(N) will have determinant &(—mn), so that # (m)
will have determinant &. For large enough N, we claim that Hom(#', # ® Kx)o has
strictly smaller dimension than Hom(¥, ¥ ® Kx)o (the subscript denoting traceless
homomorphisms). This will imply by induction on the number of independent trace-
less maps that there is some locally free & -twisted sheaf # with trivial determinant
and Hom(#', # & K)o = 0.

Choose N large enough that Ext'(¥, #Z® K(N)) = 0. Then any map # —
# © K will extend to a map ¥ — ¥ & K. Furthermore, any traceless map must
extend to a traceless map because # < ¥ is an isomorphism at the generic point.
Given such an extension, restriction defines a map Z(N) — £(N) ® K over the open
on C where 7 is a surjection; if the map is traceless to begin with, this restriction
must also be traceless, which implies that it vanishes as 42 is invertible. If N is
sufficiently large, we may apply 4.1.4.18 to conclude the following: if ¥ admits a
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traceless map o to ¥ @ K, then no traceless map # — # @ K extends to yield o.
Thus, hom(#, # ® K)o < hom (¥, ¥ & K)g. O

4.1.5 Applications of GIT

Let (X, &(1)) be a (polarized) smooth projective variety over an algebraically closed
field £ and £ — X a p,-gerbe with n € k*. According to 4.1.4.13, there is an alge-
braic stack Tw ,(n, P) of semistable twisted sheaves of fixed rank r and geometric
Hilbert polynomial P containing an open substack T'w?, /k(n, P) of geometrically sta-
ble points (which contains a further open substack of geometrically p-stable points).
We consider only sheaves of rank n in this section. Recall that in this case there is a
determinant 1-morphism
TWy/k(n) — ﬁz’icx/k.

Let L be an invertible sheaf on X, corresponding to a 1-morphism ¢y : k — HPicx .

Definition 4.1.5.1. With the above notation the stack of semistable twisted sheaves
of rank n, determinant L and geometric Hilbert polynomial P, is defined to be

TW??/k(”a L, P):= TWZS’/k(m P) X Picxppor K-

The open substack of geometrically stable sheaves will be denoted Twi . (n, L, P).

The usual computation [52, 2.2.2] of the 1-fiber product of stacks shows that
Tw3 x(n, L, P) has as objects over T' — Spec k pairs (¥, ¢}, where ¥ is a flat family

of torsion free semistable 4 -twisted sheaves parametrized by T, v : det ¥ = Ly
is a chosen isomorphism, and for all points ¢ — T one has P% = P. As usual,
isomorphisms in the groupoid are given by isomorphisms of the sheaves ¥ which
respect the trivializations p. Combining 4.1.1.1 with 4.1.4.13 shows that Tw*® and
Tw* are algebraic stacks, locally of finite presentation over &, hence the same is true
for Tw¥ 4 (n, L, P) and Tw?, . (n, L, P).

Suppose X is a surface. Given L, fixing the geometric Hilbert polynomial of ¥
is the same as fixing deg c,(%') by the Riemann-Roch formula. In this case, we will
often write Tw(n, L, ¢) in place of Tw(n, L, P) in order to align ourselves with the
classical literature on surfaces. When all of the adornments are clear from context
(or irrelevant), we will omit them from the notation.

Lemma 4.1.5.2. The stack Tw**(n, P) (resp. Tw?®(n, L, P)) is quasi-compact and
unwersally closed over k. The substack Tw®(n, P) (resp. Tw®(n, L, P)) is quasi-
compact and separated over k.

Proof. The numerical properties of the geometric Hilbert polynomial allow for a tran-
scription of Langton’s proof [40, §2.B]. The uncomfortable reader may use the Morita
equivalence of 4.1.4.9 to reduce this to [70, §4] (but only when there exists a locally
free twisted sheaf with enough vanishing Chern classes, e.g., if X is a surface). O

Historically, moduli of semistable sheaves (and more generally modules) were stud-
ied using the tools of Geometric Invariant Theory, as developed in Mumford’s thesis
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[55]. The basic consequence of these methods is a proof that Tw*® is corepresented
by a projective scheme; in fact, one can say quite a bit more about the corepresenting
object using the full theory. The philosophy adopted in this thesis is that the stack is
really a more fundamental object. (It is galling that the semistability of a sheaf still
lacks a convincing explanation in intrinsic terms without recourse to GIT. However,
as we remind the reader, stable sheaves do have a convincing description in terms of
unitary connections in characteristic 0. In fact, these bundles arose independently of
GIT and it was only discovered later that they solve a GIT problem [64].) We will
apply some of the classical results in this section to deduce GIT-like properties of our
own moduli problem. When the underlying projective variety is a surface, techniques
of Simpson will yield the result for all of Tw*. In general, even without GIT, one
can show that Tw® has a coarse moduli space.

Lemma 4.1.5.3. Let 2 be an algebraic stack, and suppose F(Z) — Z 1is fppf.
Then the big étale sheaf Sh(Z") associated to & is an algebraic space and & —
Sh(Z7) is a coarse moduli space.

Proof. Martin Olsson pointed out that this is essentially the content of [9, appendix,
item 2]. Here is a sketch of a more explicit proof:

We show that Sh(%Z") has an fppf cover. Let X — 2 be a smooth cover; we will
show that X — Sh(Z") is fppf. To this end, let f : ¥ — Sh(Z") be a map from
an affine scheme. Consider the map of sheaves 7 : X x5 Y — X Xgy2) Y. By the
definition of Sh(Z"), we see that 7 has a section after pulling back by an étale cover
Y =Y. fU — X Xsye) Y has a lift along 7 with projection p: U — &, then
one can see that (X Xg Y) Xxxg 4,y U — U is a torsor under &ut(p). Thus, 7
is a representable fppf surjection of sheaves. As @ut{p) is quasi-compact, we in fact
see using Artin’s theorems on fppf algebraic spaces [52, 10.4.1] that X Xgya) Y is
a quasi-separated algebraic space. It is easy to check that X xgh2yY — Y is fppf.
Thus, we have shown that X — Sh(Z") is an fppf cover. The fact that Sh(Z") is
quasi-separated is similar and is left to the reader. O

Thus, we see that Tw® — Sh(Tw?) is a p,,-gerbe on an algebraic space of finite
type over k. The class of this g,-gerbe in H*(X, G,,) is the famous “Brauer obstruc-
tion” to the existence of a tautological twisted sheaf on Sh(Tw®) x £". (In other
words, a flat family of stable twisted sheaves on Sh(Tw®) x &£ such that any fat
family of stable twisted sheaves on 7" x % is given by pulling back along a morphism
T — Sh(Tw?®) and tensoring with the pullback of an invertible sheaf on T'.)

Definition 4.1.5.4. The algebraic space Tw% . (n, L, ¢) := Sh Twi . (n, L, ¢) is the
moduli space of stable twisted sheaves.

Thus, that Tw® is an algebraic space, as we have seen above, is quite easy to
prove using the proper abstract foundations. The interesting challenge is to show
the existence of an ample invertible sheaf on Tw®. This really does seem like a
difficult problem. Of course, by 4.1.4.11 if we apply a Morita equivalence there are
only finitely many possible Hilbert polynomials occurring, so we see that it suffices
to prove quasi-projectivity under the assumption that both the geometric Hilbert
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polynomial and the Morita-Simpson-Hilbert polynomial is constant in fibers. The
standard techniques (making a linearized invertible sheaf on a Quot scheme) can be
seen to work only when we know that the moduli space is a GIT quotient. I have no
idea how to show abstractly that there is an ample invertible sheaf.

Proposition 4.1.5.5. Let 27 — X be a p,-gerbe on a smooth projective variety
of dimension d. Suppose there is a twisted sheaf ¥ such that all Chern classes but
(possibly) c4(¥') are zero in A(X )q. Then Twiy ,(n, L, P) is a GIT quotient stack
with stable sublocus Twy i (n, L, P).

Proof. By 4.1.4.9, this reduces to work of Simpson [70, §4]. d

Corollary 4.1.5.6. Given the hypotheses of 4.1.5.5, there is a morphism to a pro-
jective scheme Tw . (n, L, P) — Tw (n, L, P) corepresenting Tw ;. (n, L, P) in
the category of schemes and an open subscheme U C Tw®® such that the restriction
of the morphism Tw* — Tw* to U yields an isomorphism Tw® — Tw® = U.

Question 4.1.5.7. In the absence of a ¥ with enough vanishing Chern classes, is it still
true that the coarse moduli space Tw?® Is quasi-projective? Attempting to prove this
in various naive ways always leads one back to GIT. If the space is quasi-projective,

can one find a projective scheme corepresenting Tw®® by taking a projective closure
of Tw*?

4.1.6 Essentially trivial gerbes

In this section we describe the situation for a p,-gerbe 2 on a projective variety X
which is the gerbe of nth roots of an invertible sheaf. These correspond to the kernel of
the natural map H*(X, i) — H?(X, G,,). If one chooses the “correct” polarization
of X, then the stack of semistable twisted sheaves is canonically isomorphic to the
stack of semistable sheaves on the underlying variety X. These spaces have essentially
been studied by Ellingsrud-Gottsche, Thaddeus, Yoshioka, and Matsuki-Wentworth,
in the guise of “twisted stability.” These authors did not think in terms of gerbes, but
rather investigated what happens when instead of computing the Hilbert polynomial
of a torsion free sheaf F' one computes the Hilbert polynomial of F® &(«), where
« is some Q-divisor (with stability now being called “a-twisted stability”). We refer
the reader to their work ([79] and the references therein) for a detailed description
of the situation (in characteristic 0); we will only use a small bit of the theory in
what follows. At the end of the section we will spend a few moments considering
what happens when the base field is not algebraically closed. Let X — Speck be a
geometrically connected smooth projective variety over a field.

Definition 4.1.6.1. A p,-gerbe 2 — X is (geometrically) essentially trivial if the
class [ 2] has trivial image in H*(X, G,,) (respectively, H*(X ® k, G,,)).

A gerbe 2 is essentially trivial if and only if there exists an invertible 2 -twisted
sheaf .. As usual, .#®" will be the pullback of an invertible sheaf on X. There is
another way of identifying Z®", using the Kummer sequence.
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Definition 4.1.6.2. Let .# be an invertible sheaf on X. The gerbe of nth roots of
A, denoted [.#]"/™, is the stack whose objects over T' are pairs (., ¢), where % is
an invertible sheaf on X x T and ¢ : £®™ 5 # is an isomorphism.

It is immediate that [.#]'/" is a p,-gerbe.

Proposition 4.1.6.3. The cohomology of the Kummer sequence 1 — p, — G, —
G, — 1 yields an ezact sequence

0 — Pic(X)/nPic(X) — H*(X, u,,) — Br(X)[n] — 0.

Under this identification and with the notation preceding 4.1.6.2, the cohomology class
of & in H2(X, pu,) equals the image of the class of £%".

Proof. The construction of the (moderately) long exact sequence in non-abelian co-
homology shows that given .# € Pic(X), the coboundary §(.#) € H*(X, u,) is just
[.#]*/". Up to isomorphism, this gerbe depends only on the residue of .# modulo
n Pic(X). The sequence shows that any essentially trivial gerbe has the form §(.#)
for some .#. On 8{.#), there is a universal nth root .¢ with £®" 5 #. If A4
is any other invertible twisted sheaf then . ® .4 is an untwisted invertible sheaf,
say .#', and one has Z®" @(A®")Y = (.#')®". Thus, the nth tensor power of any
invertible twisted sheaf lies in the same class as .«# modulo n Pic(X). O

Corollary 4.1.6.4. Any essentially trivial p,,-gerbe s the gerbe of nth roots of a very
ample invertible sheaf on X.

Proof. Since X is projective, there is some very ample invertible sheaf ¢'(1). But
for all m > 1, [#)Y/" = [ (mn)]Y/" by 4.1.6.3. Thus, as .# (mn) is very ample for
sufficiently large m, we are done. m

Proposition 4.1.6.5. Suppose Z 1is essentially trivial. Then there exists a polariza-
tion O(1) of X such that there is an isomorphism of Twi- (n, L, P) with the stack
Shi,.(n, L(—1), Q) of semistable sheaves on X of rank n, determinant L(—1), and

Hilbert polynomial Q(t) = P(t — 1).

Proof. By 4.1.6.4, we may assume that 2 = [£{1)]'/". Let % be the universal
twisted nth root of &(1). We claim that the functor ¥ +— ¥ ® £Y = # gives the
desired isomorphism. The rank and determinant of # are clearly as stated. The
Hilbert polynomial follows from the multiplicativity of the Chern character and a
trivial calculation. It now follows that the functor preserves semistability. O

Definition 4.1.6.6. Given an essentially trivial p,-gerbe 2 on X, a polarization
(1) of X is suitable to & if Z = [€(1))V/.

A suitable polarization is unique up to nth powers.

Suppose now that k is a perfect field and that 2" is only geometrically essentially
trivial. In this case, there is a polarization of X ® % which is suited to the isornorphism
of 4.1.6.5, but this polarization may not descend to X.
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Corollary 4.1.6.7. Suppose & 13 geometrically essentially trivial. If there is a suit-
able polarization for & & k which descends to X, then with respect to this polarization
there is an isomorphism

Twi (n, L, P) S Shf,(?/k(n, L(-1),@)
as in 4.1.6.5. In general (without changing the polarization), there is an isomorphism
ng}/k(n, LY®k — Sh‘;(/k(n, Lok,

where the superscript pu denotes the open substacks of u-stable sheaves and X =
[LR(LY]Y™. If X is a surface, there is an isomorphism

Tw’ff/k(n, L PRk — Sh‘)‘(/k(n, L' Q)®k,
with @@ an appropriate polynomial.

Proof. The first statement, follows just as in 4.1.6.5. To prove the second statement,
we may assume that k is algebraically closed and & = [A])Y". If # is a twisted
invertible sheaf such that .#®™ =2 4" then the functor % — % ® .# defines an
isomorphism of stacks Sh(n, L® A4"Y) — Tw(n,L). When X is a surface, one can
see that in fact this functor will also preserve the disriminant of # (defined in 5.2.1.1)
and therefore fixing a Hilbert polynomial on one side will also fix it on the other. It
remains to understand how this functor behaves with respect to p-stability. But one
has u(F @ ) = p(F) + p(#4), so this functor in fact respects the u-stable loci.
(As discussed at the beginning of this section, it is not true in general that it will
respect full-blown stability.) O

In general (still assuming k perfect), we may describe the obstruction to the
descent of a suitable polarization. There is a natural map

Pic(X) — Pic(X)/n Pic(X) = NS(X)/nNS(X).

The suitable polarization corresponds to a class on the right, and the obstruction
to descent is precisely the failure of the map to be surjective. We can consider first
the map Pic(X) — NS(X). Suppose Br(k) = 0, so that Pic(X)% = Pic(X). The
sequence

0 — Pic®(X) — Pic(X) - NS(X) — 0
gives rise to a sequence in cohomology
Pic(X) — NS(X)%¥ — H!(Speck, Pic’(X)).

We see that if in addition H'(Spec k, Pic”) = 0 (for example, if k is finite, by Lang’s
Theorem [68, Cor. 1 to Prop. 3, Chap. VI]), the obstruction to the descent of a
suitable polarization is in the failure of a Galois-invariant class in NS{X) to map to
the suitable polarization in NS(X)/n NS(X). (The difference between this and the
Galois-invariance of the class of the suitable polarization in NS(X)/n NS(X) lies in
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El(Spec k,nNS(X)).) Thus, if all ample components of the Néron-Severi group of
X are k-rational (and k is perfect with vanishing Brauer group, e.g., k is finite) or
n NS(X )ors = 0, then we recover a k-rational version of 4.1.6.5.

4.2 Moduli of generalized Azumaya algebras

Using the work of previous section, we can prove analogous results for generalized
Azumaya algebras. We include a section on their deformations and obstructions as
a subject of independent interest, and with an eye toward the numerical estimates
of 5.2.1 and ultimately construction of a virtual fundamental class (which will be
written out in future work). We then define semistability for generalized Azumaya
algebras and compare it to the existing notions for PGL,-bundles. Finally, we show
that on a surface there is a projective scheme corepresenting GAz.

4.2.1 Deformations and obstructions redux

The complex definition of generalized Azumaya algebras makes understanding their
deformation theory seem daunting. As we will show in this section, this fear is easily
allayed. Let I — A — Aj be a small extension of Noetherian rings over .S. Suppose
given a generalized Azumaya algebra o of degree n on X,4,. We assume that n is
invertible in Ag in what follows.

Lemma 4.2.1.1. Let (X, &) be a ringed topos and A, B, and C' complexes of €-
modules. There is a natural isomorphism

L
R.#om(A® B,C) = Rotom (A, Ra#om(B, C))

and a natural isomorphism

RHom(A & B, C) & RHom(4, Ro#om(B, C)).

Proof. This is a close relative of 2.2.5.8 and can proven similarly using the techniques
of Neeman and Spaltenstein: replace A and B by K-flat resolutions Fa, Fg, and
C by a K-injective resolution Ic. Then S#om(Fg, I¢) is weakly K-injective, hence
R.#om(A, R#%om(B, C)) is computed by

jfom(FA, %om(FB, Fc))
Using the hom-tensor adjunction on modules, this is naturally isomorphic to

%om(FA®FB, Ic),

L
which computes Rs#om(A® B, C) as usnal. The last formula follows upon taking
derived global sections of the sheafified version. O
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If .Z is perfect, then there is a natural isomorphism .% — #YV. Applying 4.2.1.1

L
we see that to the identity in End(#) corresponds some morphism Homp (F & #V, ).
This gives rise to a morphism R#om(.%, %) — €, called the trace morphism, which
we will denote Tr.

Definition 4.2.1.2. The homotopy fiber of Tr : & — & in D(X) is the traceless
part of & and denoted s.&.

Lemma 4.2.1.3. Under the natural isomorphisms &V = & and 6 = €, the trace
18 dual to the unit € — &

Proof. By functoriality, we can localize and assume that & is a strict perfect complex,
where this is just a computation. O

Lemma 4.2.1.4. If % is a perfect complex of € -modules, the composition
¢ — Rtom(F,F) 5 6

is equal to multiplication by the rank of F.

Proof. If % is a strict perfect complex, i.e., there is a quasi-isomorphism ¥ = %
with ¥ a finite complex of locally free modules, this comes down to checking that the
adjunction is induced by the obvious maps. As every perfect complex is locally quasi-
isomorphic to such a complex, this will prove the general case by functoriality. O

Definition 4.2.1.5. The reduced trace of & is the map 7 = L Tr : Rénd(#) —
¢. This is independent of the choice of realization of & as derived endomorphism
algebras.

Proposition 4.2.1.6. Let f : A — B be a map in the derived category D(%) of
an abelian category. If f has a section g : B — A then there 1s an tsomorphism
holim(g) = hocolim(f).

Proof. In other words, the homotopy fiber of g is isomorphic to the homotopy cofiber
(“mapping cone”) of f. This is a straightforward exercise which works in any trian-
gulated category. ]

Corollary 4.2.1.7. The third verter po¥ of the unit € — & is isomorphic to the
traceless part sof .

Proof. This is an application of 4.2.1.6 to 4.2.1.4 and 4.2.1.3. Ol

The main result of this section is that the traceless part of a generalized Azumaya
algebra governs its deformation theory. In the general case (when the rank is not
invertible on the base), a more subtle analysis is called for. It is not especially
difficult, and may be found in [10, §8.4], but we will not make use of it here.

We return to our situation: & is a generalized Azumaya algebra on X,4,. To
study possible deformations of &, we first study the possible deformations of the
class cl(«) C H*(X 4, p1,,)-
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Lemma 4.2.1.8. The natural map H*(X 4, ,,) — H*(Xa,, it,,) is an isomorphism.

Proof. By assumption, the group scheme u,, , is étale, so the result follows from the
usual topological invariance for constructible étale cohomology. O

Remark 4.2.1.9. Note that a similar analysis of the Brauer class may be carried out
since Spec Ay is affine. This result is independent of the characteristics but is slightly
more complicated, as we cannot invoke the topological invariance of constructible
cohomology; if one wants to lift to a class of same order in the Brauer group and
n is prime to characteristics, the same result is achieved. However, things are more
complicated with the characteristic divides n. We leave this analysis to the reader. ¢

Thus, if we choose a gerbe 2~ — X4 such that %4, carries a twisted sheaf %
with & = Rénd(.F), we see that the deformation theory of & as a generalized
Azumaya algebra admits a map to the deformation theory of % as a twisted sheaf.
Given a deformation & = Rénd(¥) on X4, we see by 3.1.2.11 that 9y, = X Q@ F
for some invertible sheaf % on X4,. As det¥ and det &% are both trivialized, we
see that .2 € Pic(X a,)[n), whence it deforms to X4 (as Picx,s[n] is finite étale over
S by the assumption that n is invertible on S). Changing ¢ by an invertible sheaf
does not change &, so we see that the deformation theory of & is the same as the
equideterminantal deformation theory of #.

Proposition 4.2.1.10. Let F be an Ag-flat Za,-twisted sheaf with torsion free fibers
of rank n and trivial determinant O, — det #. Let &/ = Rénd(F).

1. The obstruction to deforming F while preserving the determinant lies in the
L
hypercohomology H*(I @ 527 ) = Ext*(F, I @ F)o.

2. The isomorphism classes of equideterminantal deformations of F are a princi-
pal homogeneous space under the hypercohomology

H(I ® s) = Ext'(F, [ @ F)s.

3. The determinant-preserving infinitesimal automorphisms of a deformation are
L
equal to H(I @ s) = Hom(.#, 1 ® F),.

Proof. According to the standard deformation theory of sheaves in topoi (recalled
in 2.2.516), we have only to show that the trace of the obstruction of & is the
obstruction of det .%#. As we will only use this in the case where X — Ap is smooth
and projective, we will only treat this case. By 2.2.3.8, we may assume that %
has enough locally free twisted sheaves. The argument one can use to prove this is
practically identical to the argument of Artamkin [8] and proceeds by induction on
the homological dimension of #. If % is locally free, the statement is quite easy. The
inductive step works as follows: choose a surjection 0 — ¢ — ¥ — F — 0 with ¥
a locally free twisted sheaf whose deformation is unobstructed. Then the obstruction
to deforming det % is the same as the obstruction to deforming det J£". Furthermore,
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¢ has smaller homological dimension, hence the obstruction of det £ is the trace
of the obstruction of #". A simple argument shows that the trace of the obstruction
of # equals the trace of the obstruction of £ .

The second statement works in a similar way and uses 4.2.1.7. The last statement
is left to the reader. O

Remark 4.2.1.11. It is important to emphasize that the fact that the deformation and
obstruction theory of the generalized Azumaya algebra & = Rénd(F) is the same
as the equideterminantal deformation and obstruction theory of .# hinges on the fact
that rk.# is invertible on the base. In fact, the natural deformation theory of &

L
as a generalized Azumaya algebra lies in the hypercohomology of I ® p&?, which is

dual (in the derived category of X,,) to [ &)sﬂ only under the hypothesis on the
degree. When & is an Azumaya algebra, the infinitesimal form of the Skolem-Noether
theorem says that pef is the sheaf of autoderivations of «/; that this sheaf carries
the deformation theory of & is a fun exercise in Cech cohomology (i.e., étale local
deformations are easy to make, and then one simply tries to glue them together). ¢

4.2.2 On the existence of a universal object

The abstract nature of the definition of a generalized Azumayva algebra makes the
existence of a universal object on GAz g /x(n)xX difficult to understand. Throughout
this section, we will write GAz in place of GAzg ) (n), and we will write & =
GAz x X.

Let ¢ : Y — % be a map from an affine scheme to . This yields a generalized
Azumaya algebra & on Y x X and a section of m; : ¥ x X — Y, hence by pullback
defines a generalized Azumaya algebra o, on Y. To &/, is associated a p,-gerbe
of trivializations 7, and we may define a fibered category ¢ over the site of 4 by

sending ¢ to the global objects of 7,,. The construction of 7, also yields a twisted
sheaf %, on 7, such that &, = Rénd(#,).

Lemma 4.2.2.1. With the preceding notation, 4 is a p,,-gerbe over U whose restric-
tion via 18 T,.

Proof. This follows by functoriality. g

Proposition 4.2.2.2. There is a &-twisted perfect coherent sheaf & of rank n and
trivial determinant on % such that for all ¢, Rénd(p*%) = o,.

Proof. A map n : T' — ¥ is the same thing as a global object b of the gerbe 7,
associated to a map ¢ : T — %. Assigning to n the sections of %, over b yields the
desired twisted sheaf. O

Pulling back to a smooth cover of GAz shows that the “universal” twisted sheaf
is GAz-flat and of locally finite homological dimension when X is smooth. Thus,
Rénd(#) € D(%) is a perfect complex. As in 4.2.1, we can produce the “universal
deformation theory” for generalized Azumaya algebras by taking the traceless part
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of the universal algebra. This gives a perfect obstruction theory (on a surface) which
is yields the virtual fundamental class by the construction of Behrend and Fantechi
[13]. (Ongoing work with Olsson and de Jong should help to say this correctly even
when GAZz is not a Deligne-Mumford stack.)

4.2.3 Semistability

The structure of the surjection Tw g k(n, &) — GAzg /(n) (where the first term
means the union over all geometric Hilbert polynomials P) has been well described in
3.2.1.2. We can use that description to define semistability for generalized Azumaya
algebras.

Lemma 4.2.3.1. A geometric point of Tw is semistable (resp. stable, y-semistable,
u-stable) if and only if every geometric point in the fiber over its image in GAz is
semnistable (resp. stable, p-semistable, u-stable).

Proof. Tt suffices to check that if & is semistable (resp. ...) and L is an n-torsion
invertible sheaf, then # @ L is semistable (etc.). But this is clear, as all of the semista-
bility properties are numerical, hence are insensitive to tensoring with a numerically
trivial invertible sheaf. O

Definition 4.2.3.2. The semistable locus of GAz, denoted GAz*’, is the image of
Tw®® by the natural map Tw — GAz. Similarly for the geometrically stable locus,
p-semistable locus, and geometrically u-stable locus.

Note that it is essential that we keep the determinant of the twisted sheaves fixed
for this to work. We will always take the stability condition induced by twisted
sheaves with trivial determinant (as this comports well with existing definitions for
PGL,-torsors, as we will see in a moment).

Using the description of the map Tw — GAz in 3.2.1.2, we also see that the
semistable (geometrically stable, u-semistable, geometrically u-stable) locus is an
open substack of GAz. The lemma above shows that it is quite easy to tell when a
point is in it: a generalized Azumaya algebra Rénd e (F), det F = &, is semistable
(etc.) precisely when & is.

It is worthwhile to compare our notion to the classical notion when one thinks of
Azumaya algebras as associated to PGL,-bundles. We recall a definition of Hyeon
[41), giving a “Gieseker” form of a classical situation first considered by Ramanathan
in his thesis [61, 62] and subsequently by many authors, including Friedman, Morgan,
and Witten [26]. In the following, G denotes a reductive algebraic group.

Definition 4.2.3.3. A principal G-bundle £ — X is semistable if the vector bundle
ad F induced by the adjoint, representation G — GL(Lie(G)) is semistable.

If G = PGL,,, we can be explicit about this. The Lie algebra of PGL, is the same
as the Lie algebra of SL, (when n is prime to the characteristic of the base field!),
namely the algebra of traceless n x n matrices. The adjoint representation is precisely
acting by conjugation. Thus, if £ is the bundle associated to an Azumaya algebra
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&, the adjoint bundle ad E is just the traceless part s&/. On the other hand, the
reduced trace gives a splitting & = & @ s/, which shows that sg is semistable if
and only if & is semistable as a sheaf. The same holds for slope semistability. The
situation for stability is a bit more complicated, and we will satisfy ourselves for the
moment with semistability.

On surfaces and higher-dimensional varieties, these notions are still being worked
out, and there has been a great deal of recent work on the subject [67], [31). Our goal
for the moment is just to show that our space contains Hyeon’s and is compact, so
that we have added a small set of points and made the moduli quasi-proper. We have
not yet tried to compare our method with Gomez and Sols or Schmitt’s methods.
Our methods constantly exploit the fact that there is a central extension of PGL,
whose bundle theory is fairly well understood in low dimensions, namely SL,. This
fact has no hope of generalizing to other groups G!

Fix a class o € H*(X, u,,) and a p_-gerbe 2 in the class a.

Lemma 4.2.3.4. Given [¥] € Twy (n, O, P), if &nd(¥) is semistable as in 4.2.3.9
then ¥ is semistable.

Proof. 'This is an immediate consequence of 4.1.4.9. O

Thus, we have (inadvertently) constructed a compactification of Hyeon's space.

Remark 4.2.3.5. It is worth pointing out that it is quite likely that the definitions
of semistable principal bundles now in fashion are wrong in positive characteristic.
In particular, when G = GL, or SL,, the adjoint representation does not preserve
semistability (as #£om(%,7’) need not be semistable any longer); it follows that this
is also true for PGL,. On the other hand, we will see below that the moduli spaces
of semistable PGL,-bundles are asymptotically irreducible. As Hyeon’s condition is
open in ours, any compactification which can be constructed of his space will be
birational to ours, and in particular will need to account for points where the adjoint
bundle is not semistable. This leaves some big questions to be resolved which have
not been seriously approached to date. We feel that our approach gives a satisfactory
theory for PGL,, but there is no hope of going further in the zoo of algebraic groups
with our methods. ¢

4.2.4 Corepresenting GAz**(n)

Since any generalized Azumaya algebra o of degree n with class 2 has an associated
weak algebra, which has an underlying perfect complex, we can define a geometric
Hilbert polynomial for /. (The easiest way to do this is to replace & by a quasi-
isomorphic strict perfect complex and then work in K°. Since the geometric Hilbert
polynomial factors through K, this is immediately independent of the resolution.
When & does not have a global resolution, things get more complicated. Illusie has
defined and studied Chern classes for arbitrary perfect complexes in a topos [42], but
we will not make use of his theory.)
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Definition 4.2.4.1. The stack GAzg ji(n, P) has as objects over a k-scheme T
generalized Azumaya algebras &/ on X x T such that for every geometric point
t — T, the fiber & has class [2], degree n, and geometric Hilbert polynomial P.

As usual, the isomorphisms are isomorphisms of generalized Azumaya algebras.
This stack is easily seen to be an open substack of GAz(n). When the underlying
variety X is a surface, it is easy to understand what it means to fix the geometric
Hilbert polynomial of .

Lemma 4.2.4.2. If X is a surface, & — X is a p,-gerbe, and ¥ is a torsion free
twisted sheaf of rank n with trivial determinant, then c;(RENA(Y)) = 2nex(?'). Thus,
the geometric Hilbert polynomial of ¥ determines the geometric Hilbert polynomial of
Ré&nd(Y).

Proof. This follows from the splitting principle (as £ has the resolution property)
and the usual computations. O

As with twisted sheaves, when X is a surface we will use GAzg /,(n, ¢} to denote
the stack of generalized Azumaya algebras with class [Z], degree n, and second Chern
class of degree c.

The GIT description of Tw gives a projective scheme corepresenting GAz.

Corollary 4.2.4.3. There is a morphism GAz* — Tw*® / Picx[n) which corepre-
sents GAz*® in the category of schemes. The image of GAz® is the open subscheme
Tw® / Picgx[n] and the induced map GAz* — Tw®/Picxk(n] is a coarse moduli
space.

Proof. Write G = Tw® / Pic[n]. Given any object T — GAz®, we have by 3.2.1.2
an étale surjection 7" — T and a lift 7" — Tw*. To get a map GAz* — G, it thus
suffices to show that the composition 7" — Tw*® / Pic[n] factors through T', i.e., that
the étale local maps 7' — G agree on overlaps. To do this, it suffices to show that
if T" = Tw are two maps with isomorphic images in GAz then they have the same
image in G. But any two such maps differ (up to isomorphism) by an element of
Pic[n], so this is clear. We have thus produced a map GAz — G. On the other hand,
suppose GAz — T is any map to a scheme. The composition Tw - GAz — T
yields a map Tw — T, and we want to show that this map is Pic[n]-equivariant. But
the map Tw — GAz is Pic[n]-invariant, so this is immediate. O
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Chapter 5

Curves and surfaces

In this section, we develop the theory of Tw®® when the underlying variety X is
a curve or a surface. Over an algebraically closed field, there is a guiding meta-
theorem: Anything which happens in the theory of Sh* happens in the theory of
Tw?*. For curves, this is not just a meta-theorem: as we will show in section 5.1,
Sh** and Tw*® are isomorphic (with the proper adornments added to the symbols).
For surfaces, there is not a similar direct comparison, but the classical structure theory
for Sh*® carries over to Tw**. In particular, as the second Chern class grows, Tw**
becomes irreducible. One can further compute examples on K3 surfaces, but we have
unfortunately not included these examples in this thesis. Thus, we will show that
despite the excessively abstract foundations, we have a reasonable understanding of
the geometry of these moduli spaces for low-dimensional varieties over algebraically
closed fields. There are many gems from the untwisted world waiting to be properly
twisted which we have not been able to include in this thesis. They will hopefully
appear in future work.

When the base field is allowed to be non-algebraically closed, things get more inter-
esting, and the stacks Tw® carry arithmetic information which Sh* knows nothing
about. The straightforward geometry of the moduli spaces can now be brought to
bear on arithmetic problems. We will exploit this extra information in section 6 when
we study the Brauer group of a surface over an algebraically closed field, a finite field,
and a local field. The work here also appears to be just the beginning of a possibly
fruitful line of investigation.

5.1 Twisted sheaves on curves

We illustrate the theory developed up to this point with the example of semistable
twisted sheaves on curves. This serves two purposes: first, twisted sheaves are easy to
understand. Second, we will use the results mentioned in this section when we study
semistable twisted sheaves on surfaces.

Let C be a proper curve over a field k. By this we mean a proper scheme of
equidimension 1 over k, not necessarily smooth. For the sake of simplicity, we will
assume that a curve is irreducible and generically reduced. Even the classical theory of
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sheaves has not been very well worked out for severely pathological curves. Allowing
the curve to become reducible should be relatively straightforward, but we do not
pursue this here. The reason to consider such a general type of curve is that in the
relative case it is nice to be able to handle degenerate fibers. For example, if a surface
X carries a generically nice pencil X — P, it is likely (usually necessary) that there
will be singular fibers in the pencil. We would still like to relate the space of semistable
twisted sheaves on X to the relative space of twisted sheaves of X viewed as a family
of curves over P!.

5.1.1 A curve over a point

Let C' — Speck be a curve over an algebraically closed field, and let 4 — C be a
w-gerbe over C with n € k.

Lemma 5.1.1.1. Br(C) = 0.

Proof. We sketch the proof. One first reduces to the case where C is reduced. (E.g.,
consider 0 — & — 6o — O¢,_, — 0. Thenl - 1+ — O — 65  — 118
exact, and taking cohomology we find 0 = H2(C, I) — H*(C, Gyn) — H?*(Cred, Gn) —
H*(C, I} = Ois exact.) It then suffices to show that the Brauer group of any irreducible
component vanishes (see 5.1.5.5¢F for the type of reasoning used in this argument).
This follows from Tsen’s theorem. a

In other words, there exists an invertible F-twisted sheaf, say 2. Recall that for
any torsion free coherent sheaf ¢ on C, one defines deg ¥ = x(¥) — k¥ x(0c).

Definition 5.1.1.2. Given a ¢-twisted sheaf &, the degree of F is

kF deg %" € Q.

deg(F) = deg(F @.LY) +

n

Thus, for example,
1 ®n 1 ®n
deg(Z) = deg € + —deg ¥ =Edeg.9,” .
n

Lemma 5.1.1.3. Given .# € Pic(X), deg F @ # = deg F + 1k F deg A .

Proof. 1t is enough to prove this for very ample .#. Thus, we may assume that M
has a section with zeroes in the locally free locus of #. There rest is straightforward
and left to the reader. a

Definition 5.1.1.4. The slope of &, denoted u(.F#), is deg F/rk F. The twisted
sheaf . is (semi-)stable if for every twisted subsheaf ¢ C %, we have u(4)(<)u(F).

It is easy to see that tensoring with £V creates a bijection between the semistable
% -twisted sheaves of rank r and degree d and the semistable sheaves on C with rank
r and degree d — rdeg.#. Note that this last number must be an integer. In fact,

deg £ € 2Z,50d € gcdlrinZ.
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It is easy to see that the stack of semistable sheaves on C of rank r and degree d
1s non-canonically isomorphic to the stack of semistable sheaves of rank r and degree
d+nr for any n. In the case of twisted sheaves, a similar statement will hold. Writing
4 for the image of [¢] in Z/nZ under the map induced by the degree map on Pic(C),
we see (by definition) that any invertible %-twisted sheaf .% will have degree ¢ + 6
for some integer g, where 0 is the fraction with denominator n which corresponds to
6 under the natural identification of Z/nZ with (1/n)Z/Z.

We have proven the following proposition.

Proposition 5.1.1.5. The moduli stack of semistable € -twisted sheaves of rank
and degree d is non-canonically isomorphic to the moduli stack of semistable sheaves
on C of rank r and degree d — 14.

In particular, it is a GIT stack (hence corepresented by a projective variety).

The usual structure theory for moduli spaces of semistable sheaves on smooth
curves developed by Seshadri, Ramanan, Ramanathan, Narasimhan, Mumford, New-
stead, etc., now carries over to the twisted setting. (See [55, Appendix 5C] for a
relatively exhaustive list of references.) We omit proofs for the sake of brevity.

Corollary 5.1.1.6. If C is smooth of genus g > 1, the moduli space of semistable
% -twisted sheaves of rank v and any fized determinant is unirational of dimension
(r* —1)(g — 1). The stack of semistable € -twisted sheaves of rank r and fized degree
d 1is integral and smooth over k of dimension r?(g — 1) + 1 at stable points.

Note that, as usual, even though the stack is smooth, its corepresenting GIT
quotient need not be smooth away from the stable locus (over which the stack is a
gerbe).

Proposition 5.1.1.7. Suppose d — 16 € Z and r are relatively prime. The open
immersion Twg (r,d) — Twg, (r,d) is an isomorphism. In this case, Tw* is a
smooth rational projective variety isomorphic to Sh(Tw®*). There is a tautological
sheaf F on Tw* x€, and Pic(Tw**) = Z.

5.1.2 The relative case

When C is allowed to move over a base (or descend over a non-algebraically closed
base field) things get more interesting. In this section, we let 7 : C — S denote a
proper morphism of finite presentation whose geometric fibers are curves as above,
and we let € — C be a p,-gerbe with n € €5(5)*. We continue to assume that all
geometric fibers are irreducible. (However, a more careful analysis of the general case
should not be too difficult.) We fix a rank 7 and a rational number d, the degree.

Note that the degree map on the relative Picard scheme induces a morphism
¢ : H°(S,R2m,pp) — HO(S, Z/nZ) which is a relative version of the map considered
above: The image over a connected component &' C S is equal to n times the
constant value for the minimal degree of an invertible ¥-twisted sheaf on a fiber. If §
is connected, write 6 := (1/n)p([%]) as above (where ([#]) is chosen to lie between
0 and n —1).
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Proposition 5.1.2.1. Suppose S is connected. The moduli stack of semistable 5-
flat B -twisted sheaves of rank v and degree d is an étale form of the moduli stack of
semistable S-flat sheaves of rank r and degree d — 9.

Proof. We simply need to note that one can étale-locally on the base find an invertible
twisted sheaf . on ¥ of degree 6. (The obstruction to the gluing of these local
invertible sheaves is the image of [#] in H'(S,R'7.G,)). The comparison is made
by tensoring with .2V; this will not change the S-flatness of the sheal because it
will not change its local structure. Note that deformation theory still provides a
family of such % étale-locally on # even though it is not flat because the universal
obstruction space vanishes. In this case, as .Z is locally free, it is easy to deform it
explicitly to a family of invertible €-twisted sheaves on the completions of S. Descent
to the Henselization follows from Popescu’s theorem (after reducing to the case of an
excellent base). O

5.1.2.2. Consider the case S = Spec k for some possibly non-algebraically closed
field k. There is another way to describe the spaces Twg . (r, d) using the theory of
Galois twists. Suppose C is a smooth projective curve over k£ with a rational point
p. The Leray spectral sequence for G, yields a natural isomorphism H*(C, G,,) =
H?(S, Gp) ® HY(S, Picgyi). Since C has a point, it follows that H'(S, Picc/s) =
H'(S, Picg /). Similarly, there is a decomposition

H(C, ) = H2(S, p,,) @ H'(S, Piceyk[n]) @ HY(S, R? fups,).

The sheaf R2f,u, is in fact isomorphic to Z/nZ, and a splitting of the natural map
H%(X, pu,) — H(S,R%f.u,) = Z/nZ is given by sending 1 € Z/nZ to the gerbe
[o(p)]'/".

In particular, the gerbe % gives rise to an element 7 € H'(S, Picgs(n]) by pro-
jection. Note that tensoring yields an injection Picos{n] — Aut(Sheigz z(n, €(p)).
By descent theory we see that varieties V over k which are geometrically isomorphic
to Shg,,(n, €(p)) are classified (up to isomorphism) by H'(S, Aut(ShC/k(n &(p))))-
(Such varieties are called twists of Sh®.) In particular, to any class 7 € H'(S, Piccyx[n])
is associated a twist M, of Sh. . (n, &(p)).

Proposition 5.1.2.3. With notation as above, let v be the projection of [€] in
Z/nZ = H(S,R*f.u,,), and fiz an invertible sheaf A € Pic(C). Then Twg(n, #)
is the Galois twist M, of ShS,(n, # (—rp)) associated to 7. When 7 = 0, the pro-
jection of [€] into H*(Speck, Gr,) is trivial, and n is prime to deg.#, there is a
tautological sheaf on Twi . (n, #).

Proof. Over the separable closure k, there is an invertible ¥-twisted sheaf .# such that
#®n =~ @(rp). Thus, there is some finite separable extension L D k over which such
an & is defined. If we let py and p; denote the two projection maps Spec(L ® L) —
Spec L, then we find that (p.¥) ®(p;ZL)Y € Piceys[n](L® L). Moreover, it is im-
mediate that this gives a 1-cocycle representing an element of H' (S, Piccys[n]); this
element is in fact 7. (To actually prove this is not entirely trivial; at some point one
must explicitly compute an edge map in a spectral sequence.)
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On the other hand, the invertible sheaf % induces an isomorphism
Sh*(n, #(—rp)) — Tw**(n, #)

by sending ¥ to ¥ ® #. Chasing everything through now shows that the isomor-

phism class of Tw**(n, &(p)) in H'(S, Picc/s(n]) is 7.
The statement about the existence of the tautological sheaf follows from the fact
that such a sheaf exists geometrically (in the untwisted case) and is left to the reader.
]

This shows that the geometry of the moduli space Twg ), (n, .#) is determined by
the image of (%] in H'(S, Picoyk[n]) @ Z/nZ (and the geometry of the classical spaces
of semistable sheaves). It is natural to wonder about the relation between the other
projection of [#] in H*(S, u,) and the properties of the moduli space Tw?®. This is
actually rather mysterious. For example, when the class in H*(C, u,,) is the pullback
of x € H*(S,u,), the existence of a rational point on the stack Twg i (n, €(p))
is related to the period-index problem for x over k (see 6). As k is an arbitrary
field, this is utterly unknowable a priori. Thus, for example, it is difficult to see
the relationship between x and the Brauer obstruction for Tw?, i.e., the class of the
pn-gerbe Twi (n, O(p)) — Twg (n, €(p)). For in this case, Tw® 2 Sh® and thus
has many rational points, but the obstruction to lifting these points into the stack
Tw?® depends upon the arithmetic of the arbitrary base field k. We leave this as an
imprecisely formulated question:

Question 5.1.2.4. Given ¥ with projection v € H%(S, u,,), (how) can + be recovered
from the stack Twg . (n, 6(p))?

5.1.3 Rank 1: twisted Picard schemes

Let k be a field, C' (resp. X) a smooth geometrically connected proper k-variety of
dimension 1 (resp. 2), and 7 : X — C a generically smooth surjection. We assume
for the sake of simplicity that 7 has a section ¢ : C — X and that all geometric
fibers are generically reduced and irreducible. In this case, T.Gmx = Gne, as 7 is
universally cohomologically flat in dimension 0.

Consider the Leray spectral sequence for G,,,. It is well-known that R2r.G,,, = 0.
This is due to Artin; it is equivalent to the statement that the Brauer group of a
relative curve over a strictly Henselian ring is trivial, and this in turn becomes a
problem in the deformation theory of Azumaya algebras. The argument is essentially
contained in Grothendieck’s article [36]. Thus, we are left with a sequence

0 — Br(C) — Br(X) — HY(C,R'7,G,,) = H'(C, Picx/c) — 0

which is split-exact owing to the section o. The left-hand map is easily interpretable:
one takes a Brauer class on C' and pulls it back via 7 to X! Using the theory of
twisted sheaves, we can also identify the right-hand map: if @ € Br(X), then the
corresponding element of H'(Pic) is the space of a-twisted invertible sheaves in the
fibers. In fact, there is a very simple way to describe this space.
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Given «, let 2 — X be a Gp,-gerbe in the class «. By 2.1.3.9, 2 is naturally
isomorphic to the stack of twisted left G,-torsors. We can push forward Z to C,
yielding a stack 7,2 — C whose fiber category over T — (' is the category of
invertible a-twisted sheaves on T x¢ X. Thus, for example, 7, BG,, = Picy/c, the
relative Picard stack. In general, we find that the inertia stack of 7, 2" is the constant
sheaf G,un, 2. By 4.1.5.3, 1,2  — Sh{w, &) is a G,,-gerbe over an algebraic space
which we will denote Picx;c,.. The obvious action of BG,, on & gives rise to an
action of Picx;c on Picx/c,a- It is easy to see that this makes Pic x/c{a) into a torsor.
Furthermore, an explicit Cech computation shows that the class of this torsor is the
class of the image of a.

Note that there is an exact sequence given by the degree map 0 — Picg(/c —
Picx;c — Z — 0. Furthermore, since there is a section o, this sequence remains
exact after taking global sections. Thus, there is an exact sequence H'(C, Pic®) —
H'(C, Pic) — H'(C, Z) = 0. (That the last group is zero follows from the fact that Z¢
is the pushforward of Zy ¢y, combined with the case of a field and the Leray spectral
sequence.) This has the interesting consequence that Picx;c. not only splits into
components corresponding to the components of Pic, but that it is possible to choose
a distinguished component corresponding to the image class of the Pic®-torsor. As
we have defined Picx/c.q, it is not obvious how to find this component. However, we
claim that one may do the following: if na = 0, choose a lift a € H*(X,p,) and a g,
gerbe 2, representing & Adding a multiple of [&x(c(C))]'/", we may assume that
the restriction of & to any geometric fiber is trivial. Any two such classes & and &'
must differ by the gerbe of nth roots of m*.# for some .# € Pic(C) (as an invertible
sheaf on X which is trivial in every geometric fiber of 7 must be a pullback from
C). On %, we may consider just those invertible twisted sheaves of degree 0. We
claim that this construction is independent of the choice of 2, (with trivial geometric
fibers, as above) in the sense that the resulting torsor Pick /Co 18 well-defined up to
isomorphism, hence that its class in H'(C, Picg(/c) is well-defined. To see this, note
that in general given two i, -gerbes &, and Z,/, differing by [.#']'/", the space of
invertible Z;,-twisted sheaves of degree 0 in each fiber is identified with the space of
invertible %-twisted sheaves of degree deg.4#"/n in each fiber. (This follows from
the fact that 2 is identified with the space of invertible 2 -twisted sheaves whose
nth powers are identified with .#.) Thus, if 4" = 7", then the two spaces are
isomorphic.

Now consider the case when k is finite. The twisted Picard spaces just constructed
in fact lie in the Tate-Shafarevich group. Before we prove this, we first recall the
definition of the Tate-Shafarevich group.

Definition 5.1.3.1. If F is an étale sheaf on Spec k(C'), then III(k(C), F') is defined

——

to be the kernel of the map H*(Spec k(C), F) — [, H'(Spec k(C),, F), where v runs

over all closed points of C' and k(C), denotes the completion of the function field
with respect to the equivalence class of discrete valuations corresponding to v.

Lemma 5.1.3.2. If X is a geometrically irreducible curve over a finite field k then
Br(X)=0.
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Proof. We may reduce to the case where X is irreducible and reduced (by the methods
of 5.1.5.5{f and deformation theory). By the Leray spectral sequence for G,,, Tsen’s
theorem, and Wedderburn’s theorem, it suffices to show that H'(Spec k, Pic, ) = 0.
Since H'(Speck, Z) = 0, this will follow if H'{Spec k, Pch/,c) = 0. But since X is
irreducible, Pic} sk 1 a connected group variety over a finite fleld, hence the vanishing

of H'(Spec k, Pic”) follows from Lang’s theorem (see e.g. [68, Cor. 1 to Prop. 3, Chap.
VI)). O

Proposition 5.1.3.3. Suppose the base field k is finite. Let a € Br(X). The space
Pch/C( a) has a section over the spectrum of the complete local ring of C at every
closed point.

Proof. This is a standard argument. By 5.1.3.2, given a closed point ¢ € C, one
has that Picg{/Ca( ) # 0. Furthermore, since every fiber of m has dimension 1, the
deformation theory of twisted sheaves 2.2.5.16 shows that Pic% /C.a 18 formally smooth
over C. Thus, any section over the closed point ¢ admits a formal deformation over
Spf ﬁcC’ By the Grothendieck Existence Theorem for twisted sheaves 4.1.1.3, this

comes from an effective formal deformation, i.e., an element of Pic}, /C,a(ﬁqc). N

Corollary 5.1.3.4. Given a fibration X — C with a section o over a finite base field
as above, H'(C, Pch/C) ik(C), Pchﬂ/k(C))

Proof. This follows from the definition of the Tate-Shafarevich group and 5.1.3.3. O

[

As a result of all of this, when k is finite we recover Artin’s isomorphism Br(X) &
OI(k(C), Picg’G1 Jk(cy)s 8iving a link between the Brauer group of a fibered surface and
the Tate-Shafarevich group of the generic Jacobian. This allows one to study, e.g.,
the Tate-Shafarevich conjecture for an elliptic curve over a function field by instead
studying the Brauer group of a minimal model of the curve. There are problems
known as “period-index problems” in both contexts, but this translation does not
respect the meaning of that term, as will be discussed below in section 6.

In general, in the absence of the section ¢, one can carry out most of the analysis
of this section, as long as one is willing to forget about trying to narrow the problem
down to Pic and work with Pic-torsors throughout. However, in this case it is no
longer true that Br(X) -» H'(C,Picx/c) is surjective. In fact, reasoning as above
will show that the image of this map lies in II(k(C), Picx,/k(c)). A more subtle
analysis carried out by Artin and Grothendieck {36] yields a greater understanding
of the cokernel of the map Br — III, the relation between II(Pic) and II(Pic’), and
the state of things when the fibers are reducible. We refer the reader to [36] for more
recent results in this direction.

5.1.4 Moving twisted sheaves on curves

Given a divisor moving in a surface and a twisted sheaf on the divisor, we can push it
along the moving curve. This gives us a way of connecting two stable twisted sheaves
on linearly equivalent smooth divisors in a family. Throughout this section, X is a
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smooth projective surface over an algebraically closed field k and 2" — X is a fixed
K,,-gerbe on X.

Proposition 5.1.4.1. Let Cy and C; be smooth curves in X and let &; be the push-
forward to & of a stable locally free twisted sheaf on C; xx & . If Co 1s linearly
equivalent to Cy and sz’,.% = Pé,% then there is an irreducible k-variety S, two
points sg,51 € S(k), and an S-flat family of & -twisted sheaves &F on & x S such
that ﬁsi = 91-.

Proof. The idea is to push %, along an embedded deformation of Cp into € and
then move the image through the moduli space of twisted twisted sheaves on C}.
We can actually do both simultaneously (which is more likely to yield an irreducible
parameter space for the family).

Since Cp and C; are linearly equivalent, there is a map X — P! and a flat Cartier
divisor € ¢ X x P! — P! such that Gy = Cy and €; = C;. (E.g., one can take the
total space of the pencil of sections of &(Ch) generated by Co and C).) Passing to
an open subset U C P1 if necessary, we may assume € — U is smooth. Consider the
stack A := Tw . e/p(n, P). 1t is a classical result that the stack Sh¢ry(n, d) is an
irreducible GIT quotient stack [55, Appendix 5C]. Thus, applying 5.1.2.1 and using
quasi-properness, we see that .4 is irreducible and smooth over U (and thus smooth
over k).

Let M — # be a smooth cover. Write M;,i = 1,...,¢ for the connected com-
ponents of M. Then each M, is an open irreducible subspace of M, hence has open
image in .#. Since .# is irreducible, there is some 7 such that M; — ./ is surjective.
In other words, .# has an irreducible smooth cover. Choosing points mg, m; € M (k)
mapping to %, and & respectively, we see that we can make a family of semistable
sheaves on @ xy; M base containing 2, and &?,. Since € C X x U, we see that
C xy M C X x M. Pushing forward the family yields the result. O

Corollary 5.1.4.2. The conclusion of 5.1.4.1 holds when &?; are invertible twisted
sheaves, without explicit stability hypotheses.

Proof. This follows from the fact that any invertible sheaf is stable and the fact that
She, (1, d) = Pic% s is smooth and irreducible. O

5.1.5 Moduli of restrictions

We use the above machinery to study what happens when restricting stable twisted
sheaves on a surface X to a very ample smooth curve D. In particular, we show
that there are no positive-dimensional complete families of locally free stable twisted
sheaves on X which all restrict to the same stable twisted sheaf (up to isomorphism)
on D. This will ultimately be used to show that asymptotically, the irreducible
components of the stack of semistable twisted sheaves on X contain both locally free
and non-locally free points.

Throughout this section, X is a smooth projective surface (with fixed very ample
invertible sheaf &(1)) over an algebraically closed field k and 2 — X is a p,-gerbe
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on X, with n € k*. The proof written here is based on an approach of de Jong
using the relative moduli stack of the incidence correspondence of a very ample linear
system. A different proof follows from more general theorems analogous to those of Li
[40, §8.1] describing certain line bundles on the moduli stack. Those line bundles can
also be used to blow down the Gieseker compactification to arrive at an “Uhlenbeck
compactification”, which differs non-trivially from the compactification constructed
here even in the optimal case. We defer a discussion (verification!) of this construction
and its properties to future work.
Let D € |£(1)| be a general member.

Situation 5.1.5.1. Let C be a smooth projective curve over k and ¢ : C — TwWo iy
a l1-morphism to the locally free locus (which will be denoted by a subscript f in the
future) corresponding to & on C x X. Suppose that every object (c), ¢ € C(k),
restricts to a fixed stable locally free 2p-twisted sheaf .%,.

This condition on D will be described as R(D).
Proposition 5.1.5.2. ¢ is essentially constant (i.e., isotrivial).

(Since ¢ lands in the stable locus, being isotrivial is equivalent to the map to
the coarse moduli space Tw*® being constant. Indeed, if ¢ is isotrivial, then there is
a finite étale extension ' — C such that the induced map C' — Tw* is constant,
whence the original map must be constant. Conversely, if ¢ — Tw?® is constant, then
¢ lands in the fiber 7 of Tw® — Tw? over a point. Since J is a p,-gerbe, the map
pt — 7 is finite étale, and pulling back by this map yields a finite étale cover ¢/ — ¢
such that the restriction of ¢ to €’ is constant.)

Lemma 5.1.5.3. There is an open subset of |€(1)| consisting of smooth divisors D’
such that R(D') holds.

Proof. Write P for |€(1)]. Let I C X x P be the incidence correspondence of €(1);
the fiber of the second projection over a point p € |€(1)] is the divisor corresponding
to p. The family # on C' x X corresponding to ¢ pulls back to give a flat family F of
twisted sheaves on C' x I — C x P. (The sheaf F is flat by e.g. a Hilbert polynomial
calculation after applying a Morita equivalence.) The condition R(D) says that the
locus W of stable fibers contains all of C' x {[D]}. By openness of stability and
properness of €', we conclude that there is an open U € P such that C x U C ¥. [J

Lemma 5.1.5.4. Suppose R(D) holds. The twisted sheaf Foyp has the form pri{(#) x
pry(Fo), where 4 is an invertible sheaf of €o-modules and %,y is a stuble twisted
sheaf on D.

Proof. Write & := 2 xx D. By R(D), the family Fcxp gives rise to a diagram

RN

TWS@/k
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such that ¢ is constant with value [%#g]. There is also a constant lift ¢ of ¢ given
by the family pri %, on C x D. Since 7 is a Gp-gerbe, we see that ¢ and ¢ are
identified with two sections of a trivial G,,-gerbe. Using one of them to trivialize the
gerbe, they differ by a map C — BGy,, which gives the invertible sheaf .#. (]

Given a (possibly singular) divisor E, we will say R'(E) holds if there is an
invertible sheaf .# on C and a fixed twisted sheaf %, on F such that Foxp =
pr; A @ pry.Fo. We just showed that for a smooth divisor D, R(D) implies R'(D),
and that if R(D) holds for one smooth very ample divisor, then it holds for an open set
of them. Using these two facts, we now provide an inductive procedure for enlarging
the divisor D satisfying R'(D).

Lemma 5.1.5.5. Let
A—B

]

C—D

be a Cartesian diagram of surjections of sheaves of groups in a topos T. The natural
map BA — BB xgp BC is a 1-isomorphism of classifying stacks.

Proof. The natural map BA — BB xgp BC is given by sending a right A- torsor F A
to the triple (Fy x? B, Fa x* C, ), where ¢ : (F4 x* B) x® D = (Fa xAC) x

is the natural isomorphism arising from the associativity of the contracted product
(i.e., (Fa x* B) x® D 5 Fy x4 (B x2 D) = Fy x* D and similarly for C). There
is a 1-morphism in the other direction arising as follows. An object of BB xpp BC' is
given by a triple (Fi, Fo,v), where ¢ : Fg x® D 5 Fg x© D is an isomorphism of
right D-torsors. Given such an object, one can produce a right A-torsor by forming
the commutative diagram

/\
J\/

FBD—"FCD

where Fgp = Fg xB D, etc. That F, is in fact an A-torsor follows from the
surjectivity of B — D. We leave the check that these maps of stacks are 2-inverse to
one another as an exercise. 0

We can use 5.1.5.5 to prove a (twisted) classical result about vector bundles on
a union of curves meeting transversely. Let D and D’ be curves with transverse
intersection D N D' = {qy,...,q-}. Let X be a k-scheme. The transversality of the
intersection of D and I’ says that the diagram of surjections of sheaves of rings on
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X x (DuD")
ﬁXx(DUD’) —— ﬁXxD’

| |

Oxxp Oxx(bnp)

is Cartesian, where all schemes are given their reduced structures. (More generally,
given a ring & in a topos and two ideals I and I’ such that I A [’ — 0, one has
a corresponding diagram. For non-CM schemes, there can be complex information
at embedded intersection points.) Here we write (by abuse of notation) &p for the
pushforward of the structure sheaf of D and similarly for D" and D N D’. Tt follows
that given any k-scheme X the diagram

GLy, Oxx(pup’y —> GLy Oxx

| |

GLn ﬁXxD > GLn ﬁXx(DﬁD‘)

Is a Cartesian diagram of surjections of sheaves of groups on X x (DU D).
Suppose ¥ and ¥ are locally free sheaves of rank 7 on D and IV, respectively.
Our goal is to describe the space of locally free sheaves # on D U D' which restrict
to ¥ on D and ¥ on D'.
Define a stack 3 on k-schemes as follows. Given a k-scheme X, the fiber category
L x is the groupoid of triples (¥, a, 3) where # is locally free of rank n on X x (DuUD’)
and & : W\ xxp = Vxxp and B : #|xp = Y%« pr are isomorphisms.
Proposition 5.1.5.6. With the above notation, the sheaf Sh(X) is representable by
Isomprp (¥ | prpr, ¥ [ papy).
Proof. By 5.1.5.5 and transversality (as discussed above), we have a 1-isomorphism
of stacks

BGLn Oxx(pupy = BGL, Oxyp xpar, BGL, Oxp.

Cpnpt
On the other hand, there is a natural 1-morphism
BGLr Oxxp XB6L, 6,5 BGL, Oxxpr — BGL, Oxyp X BGL, Ox . p

given by forgetting the isomorphism of the restrictions. The choice of ¥ and #” gives
amap X — BGL, &5 x BGL, #p (which comes by base change from a map defined
when X = k). Taking the fiber product of the diagram

BGL, Oxxnupy — BGL, Oxxp XpaL, Opnr BGLy Oxypr

BGLn ﬁXxD X BGLn ﬁXxD’

with X over BGL, €x.p x BGL, &x . and writing out the isomorphism class
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categories yields the result. (In fact, one checks that the fiber products are rep-
resentable.) O

Corollary 5.1.5.7. Suppose ¥ and ¥ are locally free simple sheaves of rankn. The
moduli space of locally free sheaves # of rank n on DU D' such that #'|p =V and

W = V' is isomorphic to GL], /G, where Gy, is embedded along the dwagonal.
Moreover, this scheme is affine.

Proof. That the scheme is affine follows from the fact that the quotient is the com-
plement of a hypersurface (cut out by the product of the determinants) in a projec-
tive space. Since ¥ and ¥’ are simple, it is easy to see that the moduli space M
parametrizing # restricting to ¥ and ¥ exists as an algebraic space. Furthermore,
there is a surjection Sh(X) — M which is a G,,-bundle, and in fact M is identified
with Sh(X)/Gn,, where G, acts in the natural way on the isomorphism (. Applying
5.1.5.6 completes the proof. O

Corollary 5.1.5.8. Suppose € — DU D' is a p,-gerbe and ¥ and ¥ are locally
free simple twisted sheaves of rank n on €p and €pr. The moduli space M(¥, V') of
locally free twisted sheaves W of rank n on € such that #'|g, =V and ¥ |, = V'
is (non-canonically) isomorphic to GL}, /Gn.

Proof. This follows from 5.1.5.7 after twisting down by a ¥-twisted invertible sheal.
O

Lemma 5.1.5.9. Suppose D and D' are (not necessarily smooth) elements of |€(1)]
which intersect transversely such that R'(D) and R'(D') hold. Then R'(DUD') holds.

Proof. Inthe decompositions Feoxp = pri 4 @ pry Fo and Foxpr = pry A’ @ pr F,
we claim that .# = . Indeed, let ¢ € DN D’ be a point. Restricting # to C x {q}
and using the two decompositions, we find that .# ®(F ® k(q)) = A" @(F; ® k(q))-
Both .%, ® k(q) and £, ® x(g) are non-zero finite-dimensional x(g) = k-vector spaces.
Thus, we conclude that both .#Z ® .#’~! and .4’ ® .# ' have non-zero global sec-
tions, whence .# = .#'. Choosing such an isomorphism and twisting down by prj .#,
there results a map from C to the moduli space M (¥, ¥"’) of 5.1.5.8. Since M(¥,7”)
is affine and C is proper, the map C — M(¥,#"') must be constant. As moduli of
simple sheaves are a G,-gerbe over moduli and C is a curve over an algebraically
closed field, Tsen’s theorem shows that the family pr} .#" @ Fcx(pup) is constant.
Thus, R'(D U D)) holds. |

Proof of 5.1.5.2. Note that Tw® is a G,,-gerbe over its moduli space Tw’. This
means that any curve C in T admits a 1-morphism C — Tw*(Z") lifting the inclusion
C < T. Replacing C by the normalization of the lift of its image in T', we may assume
that the map C — Tw” is separably generated. Thus, to show that it is essentially
constant, it suffices to show that the map on tangent spaces is the zero map, ie.,
that the first-order deformations of any point in € induce the trivial deformation of
the image point in moduli. We will do this by showing that they induce the trivial
deformation on a sufficiently ample divisor. It is easy to see that given a locally free
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twisted sheaf ¢ on X, the space of first-order infinitesimal deformations of ¢4 which
restrict to the trivial deformation on an effective divisor D is principal homogeneous
under the kernel of the restriction map H'(X, &nd(4)) — HY(D, &nd(%p)); in the
case where & and %, are simple, this is precisely H'(X, &nd(%)(—D)). Thus, if D
is sufficiently ample, the deformations of 4 inject into the deformations of 4. By
5.1.5.3 and 5.1.5.9, we see that 1) R(D) holds for some D in &(1), and 2) when
R(D) holds for some D € |£(1)|, there is an arbitrarily ample divisor D™ = D, U
DyU---UD, € |f(n)| such that R'(D™) holds. But R'(D'™) says precisely that
the infinitesimal deformation of #pm induced by a tangent vector ¢ of C is trivial.
As D™ is arbitrarily ample, we see that the deformation of .% induced by t is also
trivial. O

5.2 Twisted sheaves on surfaces

In this section, we discuss the moduli of twisted sheaves on surfaces. In the process, we
develop tools to reduce certain twisted statements to their classical counterparts. This
should be viewed as a preliminary survey of a theory which is certainly amenable to
significant further development. In particular, ongoing work of Langer (mentioned in
[50]) should help clarify the classical situation in positive characteristic (and therefore,
In our view, in characteristic 0 as well), and we believe that his methods will ultimately
prove useful in the twisted case.

Throughout, we focus on moduli of twisted sheaves of rank n. This is technically
simpler, as then determinants naturally take values in the Picard group of X itself.
This is also the case one is naturally led to consider when approaching the classifi-
cation of (generalized) Azumaya algebras of degree n in a Brauer class of order =,
which is the most natural (and naive) thing to do on a surface. In general, if one
wants to consider rank r twisted sheaves on a p,-gerbe 2, then there is a 1 -gerbe
X, carrying them all with the same Brauer class as 2. However, the stability con-
ditions on 2" and Z. are not identical. It seems likely that the resulting moduli
spaces are (at least asymptotically) birational (related by flips). A special case of
this has been worked out by several authors including Ellingsrud-Gétsche, Yoshioka,

.., when comparing classical Gieseker semistability with what they call “twisted
semistability” (which is our stability condition on a gerbe of roots of a divisor, i.e.,
every sheaf is twisted by a Q-divisor before the Hilbert polynomial is computed).
This work was mentioned (with references) in section 4.1.6.

The reader will observe throughout this section evidence for our meta-theorem
(“All phenomena which occur for moduli spaces of semistable sheaves on surfaces
also occur for moduli spaces of semistable twisted sheaves”). Unlike the case of
curves, the evidence in this case is purely behavioral and not attributable to any
direct comparison of the twisted and untwisted situations.
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5.2.1 Discriminants and dimension estimates

Definition 5.2.1.1. Let X be a smooth projective surface and 2" — X a p,,-gerbe.
Given a coherent 2 -twisted sheaf % of rank r, the discriminant of % is the quantity

A(F) 1= deg(2reo(F) — (r — Dey(F)?) € Z.

Proof that A(F) € Z. Since X is smooth, 2.2.3.8 shows that & has a global resolu-
tion by locally free twisted sheaves. A formal calculation (in K°) shows that

degch”(F) ch(F) Tdx =Y (1) ext!(F, F),

i=0
where chY(F); = (—1)" ch(#);. Another formal calculation shows that
chY(F) ch(F) = 1k(F)* — A(F).

We thus conclude that x(F,.%) = A(F) — (tk(F)? — 1)x(Fx). (Such “formal calcu-
lations” show at least that the Chern character and all related results — Grothendieck-
Hirzebruch-Riemann-Roch, discriminant calculations, etc. — can be extended to K°,
hence to the homotopy category of strict perfect complexes.) O

When & is locally free, A(F) = ca(&nd(F)). (More generally, one has A(F) =
ca(Rénd(F)), where REnd(.#) here should be taken to mean the complex of sheaves
Hom(¥*,¥*) coming from any finite locally free resolution ¥* — &.) The discrim-
inant plays an important role in the behavior of the moduli space.

Lemma 5.2.1.2. The discriminant is locally constant in flat families: given an S-flat
family of coherent twisted sheaves F on X x § with S connected, the number A(F)
is constant for all (geometric) points s € S.

Proof. Implicit is the statement that A(#) may be computed after making any
base field extension, which is clear. One easy way to see that A(F) is locally
constant in our case is to (locally on S) resolve .# by a complex of locally free
twisted sheaves ¥* — .F, use the fact that A(F) = co(Hom*(¥*,#*)) and then
use the fact that intersection products and geometric Hilbert polynomials are con-
stant in a flat family (4.1.3.18). Another proof is based on the equality A(F) =
¥(F, F)+(rk(F)?—1)x(€x) and the semicontinuity theorems for higher Exts (whose
methods are demonstrated somewhat in 2.2.5.17(3)). C

In fact, when the determinant is fixed, it is equivalent to specify A, P9, or ;.
Since we will usually fix a determinant in what follows, this means we can use any of
these surrogates to divide the moduli problem into clusters of connected components.

Recall that the deformation theory of Tw% /. (n, P) at a point [#] is governed
by Ext!(#, %) and Ext?(&#,.%), while the deformation theory with fixed determi-
nant is determined by Ext!(#, %), and Ext®(F, %)y (2.2.5), where the subscript
0 denotes traceless elements (4.2.1). We can use this to estimate the dimension of
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Twiy x(n, L, P). We start with a well-known lemma, whose proof we feel comfortable
recording because we know that no one will ever read this. There is a proof in e.g.,
[40, 2A.11], but we feel that the proof given here is slightly simpler. We borrow the
notation of Huybrechts and Lehn out of sloth.

Lemma 5.2.1.3. Let k be a field and F : Arty, — Set a functor with a hull R. If the
embedding dimension dim; mp/m% = d and F has an obstruction theory with values
n an r-dimensional vector space O, thend > dim R > d —r.

Proof. As a consequence of Schlessinger’s proof [66, 2.11], it is easy see that R has the
form k[zy,...,24]/J for some closed ideal J. It is enough by the Krull Hauptidealsatz
to show that J is generated by at most r elements. Let b;,...,b, be a basis for the
obstruction space O. Let A = kfz,,...,z4] and m = (z,...,74). Given N > 2,
consider the infinitesimal extension

A= A/mJ +m" - A/T +mV = A,

By construction, there is a map o : R - A/J + m"¥. By definition, there is some
obstruction 4 € (J+ m¥/mJ + m") ®; O to lifting ¢y to a map

R-->A/mJ+m¥

l

A/J +m".

Writing 8 = B ® b; for some 3 € J, we see that there is a lift of g, into A/mJ +
m™ + (BY, ..., BY). Furthermore, by linearity of the obstruction theory, we see that
the V%! reduces to BN modulo J N m¥. Thus, taking the limit over N , We can
define elements f,...,/3, € J which reduce to B for all N. On the other hand,
we know that A — A/J induces an isomorphism on tangent spaces. Thus, A/mJ +
(Br,..., By +m™ — A/T +m" induces an isomorphism on tangent spaces. By the
construction of the hull [66], A/.J+m?" is universal for maps from Artinian k-algebras
with maximal ideal annihilated by m® to F. Thus the lift A/J — A/mJ+m?" induces
a splitting of the surjection A/mJ + ({4;}) +m" — A/J + m". Since this surjection
is an isomorphism on tangent spaces, we see that J +m" =mJ + ({3;}) + m". By
Nakayama’s lemma, we conclude that (8y,...,5,) generates J/m¥ N J for all N > 2.
Since A is complete, we see that J = (6, ..., 5,). d

We will systematically use the phrase “miniversal deformation space” for what
was called by Schlessinger “hull” and originally called “versal deformation space” by
Artin. The term “versal deformation” seems now to denote a more general smooth
map to a stack without any hypotheses on the tangent spaces.

Proposition 5.2.1.4. Suppose F is a semistable X -twisted sheaf of rank n, geomet-
ric Hilbert polynomial P, and determinant L. Given an algebraic stack .4 containing
F as a point, write dim gz .# for the dimension of the miniversal deformation space

of F.
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(i) ext(F, F) > dimg Twi 4 (n, P) > ext'(F, F) — ext?(F, F);
(i) ext!(F, F)o > dimg Twy 4 (n, L, P) 2 ext!(F, F)o — ext?(F, F)o.

In both cases, the moduli stack is a local complete intersection at & if the lower bound
is achieved and formally smooth at F if and only if the upper bound is achieved.

Proof. This is an application of the results of 2.2.5 and 4.2.1 along with 5.2.1.3. D

Definition 5.2.1.5. Given a semistable twisted sheaf of rank n, geometric Hilbert
polynomial P, and determinant L, the ezpected dimension of Tw**(n, L, P) at &,
denoted expdim z; Tw**(n, L, P), is the quantity

expdim z Tw®(n, L, P) := ext!(F, F)o — ext®(F, F)o.

Lemma 5.2.1.6. The expected dimension at stable points is independent of the choice
of F € Tw'(n, L, P) and is equal to A(F)— (n? —1)x(Ox). The expected dimension
Jumps at properly semistable points. There is a constant B3y, such that for all points
F € Twy (n, L, P,

expdim Tw*(n, L, P) < dimg Tw®(n, L, P) < expdim Tw*(n, L, P) + 3.

Proof. The formula for the expected dimension follows from the identity

2
— hom(F, F)g + ext (F, F)o — ext*(F, Fo= x(Ox) — ¥ _(~1)' ext!(F,.F)

i=0

and formal calculations. One uses the fact that stable sheaves & are simple (End(.%#) =
k), which immediately implies that Hom(%#, #)o = 0, and the rest follows. (The given
identity also uses the trace map splitting 4.2.1.4 and thus requires that the rank of
& be relatively prime to the characteristic of X.) Details of this type of calculation
may be found in [40, 4.5, 6.1, 8.3]. Since A(F) is determined by the determinant and
Hilbert polynomial, we see that this is independent of the stable twisted sheaf 7.

The jumping of the expected dimension at properly semistable points comes from
the fact that Hom(.%#, % )o need not be zero. The identity above shows that

expdimz Twi . (n, L, P) — Hom(Z, #)o

is constant, so the expected dimension jumps whenever there are traceless endomor-
phisrs (i.e., infinitesimal automorphisms acting trivially on the determinant).

The last inequality follows immediately from the fact that there is a constant 3
such that for all semistable twisted sheaves of rank r with fixed discriminant (and no
restrictions on Chern classes if char X = 0), ext?(#, . %)y < fBw. In characteristic 0,
this follows easily (using the methods of section 5.2.3) from the Le Potier-Simpson
estimate and the fact that the endomorphism sheaf of a semistable sheaf is semistable
[40, 4.5.7], a fact which does not hold in positive characteristic. In general, this is
slightly subtle (whence the restriction on the discriminant, which is not present in
characteristic 0) and will be proven in 5.2.3.8 below. O
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5.2.2 Preparation for restriction theorems

Let X be a smooth projective surface over an algebraically closed field k and P — X
a Brauer-Severi variety of relative dimension n. Note that the Brauer class of P
is split by P, hence by any subscheme of P. Choose a projective embedding of P.
Let D C X be a smooth divisor. We start with a lemma about generic hyperplane
sections of a Brauer-Severi scheme, which is essentially a refinement of a special case
of a lemma of Vistoli and Kresch [47].

Lemma 5.2.2.1. Let P — X be a surjective map of smooth projective varieties with
fibers of equidimension n which is generically smooth over D. Let P — P¥ be a closed
immersion. A generic hyperplane section Py of P has the following properties: Py
15 smooth and irreducible, Py xx D C Py is an irreducible smooth divisor, Py — X
is surjectwe and generically smooth over D with fibers of equidimension n — 1.

Proof. Let = be the projective space parametrizing hyperplane sections of P. The
smoothness of the hyperplane section of P and its intersection with the pre-image of
D defines an open subset U C =. Let d € D(k) be a smooth point, with smooth
fiber 3 ¢ P. The condition that a hyperplane H € = intersect P; in a smooth
variety of dimension n — 1 defines an open subset V in = Let W = UNV. We
claim that the hyperplane sections parametrized by W have the properties of the
lemma. Indeed, if H € W, then Py and Py xx D are smooth and irreducible since
W C U. Furthermore, the fiber of Py — X over d is smooth of dimension n — 1 (and
hence also irreducible, incidentally) since H € V. We claim that this forces Py — X
be be surjective, generically smooth, with equidimensional fibers. Indeed, we have
dim P ~ dim X = n, hence dim Py — dim X = n — 1. If im Py = I, then the usual
inequalities [54, §15] show that dim Py —dim I < n—1 (as dim(Py)g = n—1). Thus,
I =X and Py — X is surjective. Applying the identity once more shows that any
closed fiber has dimension at least n — 1 at any closed point. Thus, every closed fiber
is equidimensional of dimension n — 1. O

Lemma 5.2.2.2. Let f : C — Spec K be a normal curve over a field. If S C C is a
closed subscheme which s finite étale over K and f is smooth along C\ S, then f is
smooth.

Proof. The scheme C' is Noetherian and reduced. Thus, to show that the sheaf Q5 K
is locally free of rank 1, it suffices to show that for every point P € C, the x(P)-
vector space €, ®c £(P) is 1-dimensional. For points P € C'\ S, this holds by
assumption. On the other hand, given a point @ € S, there is a canonical sequence

Since @ is a Weil divisor on a normal separated scheme, it is a Cartier divisor and
therefore the left-most term is 1-dimensional over x(Q). Since x(Q) is separable over
K, the right-most term vanishes. d

Lemma 5.2.2.3. Suppose Y is a smooth surface over an algebraically closed field k
and D, D’ € |6(1)| are very ample divisors such that D is at worst nodal and D and
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D' intersect transversely. Then the general member of the pencil spanned by D and
D' is smooth.

Proof. Write Y — P! for the total space of the pencil. The non-smooth locus of
Y — P! has the property that it is unramified over P! at [D]. Indeed, the fiber over
[D] is a nodal curve, so this follows from the standard construction of the scheme
structure on the non-smooth locus using Fitting ideals [18, 2.21]. (Really, this just
comes down to showing that the relative differentials of a node are supported precisely
on the node with length 1.) Thus, all components of the non-smooth locus which
intersect the generic fiber must be generically étale over P!. This implies that any
non-smooth points of the generic fiber have separable residue fields over k(P'). The
result follows by 5.2.2.2.

An alternative (well-known) argument (rather than exploit the scheme structure of
the non-smooth locus) comes from the versal deformation space of a node. Completing
Y with respect to the uniformizing parameter of [Dy] at one of the nodes over [Dy]
yields an effective formal deformation of the node over k[t] with the property that
the total space is regular. On the other hand, the versal deformation of a node is
isomorphic to k¢, Xo, X1]/(XoX1 — &) parametrized by k[£]. (In other words, given
any family of curves ¥ — 5 with a node ¢ in a closed fiber %, there is a map
k[€] — Oss such that ﬁcgc = ﬁgs®k[[£]]k[[€ Xo, X1]/(Xo X1 — &).) Thus, there is

some map k[£] — k[t] giving rise to Y, and the condition of regularity forces £ to
map to ut where u is a unit of k[t]. This shows that the generic fiber is smooth in
the generizations of the node. (Indeed, the compatibility properties of Q! allow us to
assume that the base is k[t]. Now the map from Yfmde to its completion is regular as
Y is excellent. Thus, the map from the generic fiber of Viode to the generic fiber of
the completion is regular. But given a regular map A — B of Noetherian rings over a
field, it follows that A is geometrically over the field if and only if B is geometrically
regular over the field. This applies to our situation to show that Yoqe 18 smooth over

k(#).) 0

Proposition 5.2.2.4. There exists a smooth subvariety Y C P which is finite flat
generically étale over X such that for every n, the pullback of a general member of
|&x(n)| to Y is smooth.

Proof. By 5.2.2.1 and induction, we may carry this out for n = 1. (Indeed, once
a single smooth member pulls back to a smooth divisor, it will hold for a general
smooth member. This follows from a consideration of the pullback of the incidence
correspondence for £(1) on X to Y and the standard results about generization of
smoothness in a flat family.) Let f : ¥ — X be the restriction of the projection
P — X. We will show that once it holds for n = 1, it holds for all n. Indeed, once it
holds for n = 1, there is a dense open in |&x{1)| of smooth members whose preimages
in Y are smooth. Given n, we may choose n such general members which intersect
transversely away from the branch curve of f. Call such a resulting nodal divisor
D,. Choose D! € |€x(n)| which is at worst nodal and intersects D, transversely
away from the branch curve. Then the pencil generated by D, xx Y and Dy, xx Y
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satisfies the conditions of 5.2.2.3, hence has smooth general member. (So does the
pencil generated by D, and D] on X.) ]

5.2.2.5. Tt is likely that the cover produced by 5.2.2.4 is not ideal, in the sense
that the degree of the map ¥ — X is far too large. (We can know this “abstractly”
because the proof of 5.2.2.4 is so easy.) In fact, if P — X is a Brauer-Severi variety
of relative dimension d — 1 representing a Brauer class of index d (defined below),
the lowest degree for the map ¥ — X arising in 5.2.2.4 will be d*1. On the other
hand, we know by results of Artin and de Jong [10, §8.1] that there will be a finite
flat surjection Y’ — X from a smooth surface to X of degree d. Here is a sketch of
their method, paying slightly more attention to the pullback of an ample divisor. We
will also use (a weaker form of) this below in our study of period-index phenomena.

Proposition 5.2.2.6. Let f : Y — X be a finite map of smooth surfaces. Let B C X
be the (reduced) branch curve and R C Y the ramification curve with its reduced
structure. If the restriction R — B is generically unramified over every component of

B, then the general member of |0 x(1)| has smooth preimage in'Y for any very ample
invertible sheaf €x(1).

Proof. By the openness of smoothness in flat families, it is enough to prove the
following: let D, D' € [£(1)| be smooth members intersecting transversely in X \ B
such that D intersects B transversely (in the smooth locus). Then the general member
of the pencil spanned by D and D’ has smooth preimage in Y. To prove this, consider
the total space X of the pencil (D, D'). There is a natural diagram

X—X

|

Pl

realizing X as a blow-up of X along the base points of the pencil. Since D th B and
DnD' NB =0, the preimage B of B in X is isomorphic to B and is generically
unramified over P*. Thus, the algebra k(P?) C k(B) is finite separable. (Here we use
k(B) to denote the generic algebra of B, which is the product of the function fields
of the components of B.) We can pullback the diagram by the map f : ¥ — X to
yield the total space Y of the pullback pencil f~'(D, D). Since DND' C X \ B, we
see that Y — Y is the blow-up at a finite set of reduced points not on R (namely the
preimages of the base locus under f). Thus, the preimage of R in Y is isomorphic to
R. Since R — B is separable, we see that k{P') C k(R) is finite separable. (Indeed,
Spec k(1) — Speck(B) is finite étale by the assumption that R — B is generically
unramified over each component of B.) We may now apply 5.2.2.2. O

We now review the construction of Artin and de Jong, using 5.2.2.6 to keep track
of the preimages of divisors. Let X be a smooth surface and &7 an Azumaya algebra
of degree d on X. Let C' C X be a very ample curve. Given any section of .7, we
can associate to it a monic characteristic polynomial of degree d. This gives a map
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over X
y: & — AT x X

from  to the constant bundle on X with fiber the space A% of monic polynomials
of degree d.

The space AY, interpreted as the space of polynomials, comes with a finite cover
Z — A%, with Z a closed subscheme of A%[t], such that the fiber of Z over [f] is
the locus of zeroes of the polynomial f. This situation may be explicitly realized as
follows: let Z = A< and let the map A% — A send (a4,...,aq) to the tuple whose
ith coordinate is (—1)'a;(as, ... ,aq), where o; is the sth elementary function of the
a;. In other words, the map sends (ay,. .. .an) to the coefficients of the polynomial
(x—a1)---(z —aq). The resulting map 7 : A? — A is just the quotient map for the
natural permutation action of ¥4 on A,

Lemma 5.2.2.7. With the above notation, the ramification divisor R is the “multi-
diagonal” — the dwisor where at least two coordinates agree. The branch divisor B s
the discriminant hypersurface. The map R — B is generically unramified.

Proof. This is mostly straightforward. The statement about ramification follows from
the fact that the map A% — A? sending (a, b) to (a+b,ab) kills precisely the tangent
direction @/da — @/8b (in any characteristic). O

Let L be an (ample) invertible sheaf on X such that &/ ® L and o ® Lo are gen-
erated by global sections and the map H*(X, & ® L) — HY(C, @z ® L) is surjective.
The map x gives rise to

Y@L Z@L— P(Ly:=Lal®® oL

There is a map 7 : L& — Py(L) representing the zero locus of a monic polynomial
section of L of degree d. Pulling back by a section ¢ of & ® L yields a finite map
Ly — X.

Proposition 5.2.2.8 (Artin, de Jong). For a general section o € HY(X, o« ®L),
the scheme Z, is a smooth surface of degree d over X, and the map Zs — X has the
property that the ramification curve is generically unramified over every component
of the branch curve.

Proof. For smoothness, see {10, 8.1.11]. The statement about the ramification is
proven as follows: by the hypothesis on L, a general section over X restricts to
a general section over C. In particular, a Bertini-like analysis shows that we may
assume that Z,|c — C has everywhere tame ramification of order at most 2. (In
other words, the characteristic polynomial of the section at all points in C has at
most two roots coming together.) Thus, the characteristic polynomial of o over the
generic point on each component of the branch curve for Z, — X must have precisely
2 roots coming together (as C is ample). As 5.2.2.7 shows, this means that R — B
is generically unramified over each component of B. O
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Corollary 5.2.2.9. Given a smooth surface X and a p,-gerbe &, if there is a locally
free & -twisted sheaf of rank d then there is a finite flat surjection of smooth surfaces
Y — X of degree d such that

1. there exists an tnvertible Z° x x Y-twisted sheaf, and

2. for every very ample invertible sheaf €(1) on X, a general member has smooth
preimage in Y .

Remark 5.2.2.10. The method of 5.2.2.1 and 5.2.2.4 seems likely to generalize to
higher dimensional varieties X. The only difficulty in the argument is in ensuring
that general members of &(n) have smooth preimages once it is true for n = 1.
For the applications envisioned, it is in fact sufficient that such divisors have normal
preimages, which may be easier to arrange. In either case, it seems likely that a
similar (more subtle) analysis of the behavior of a pencil with a fiber consisting of a
divisor with sufficiently transverse crossings will yield a geometrically normal generic
fiber, which is enough for applications. In other words, there would result a finite flat
cover ¥ — X by a smooth variety such that the general member of &(n) has normal
integral preimage.

On the other hand, the method of Artin and de Jong seems harder to generalize
directly, because it appears possible that the zero loci Z, can acquire singularities in
codimension 3. Nevertheless, if one is willing to let ¥ be normal as well, it seems
possible that a refinement of their method could yield a finite flat covering with a
better degree and all of the properties necessary to carry out analogues of our proofs
below. This of course has the advantage of yielding a better numerical answer, hence
more effective bounds, but at the present time it is not clear if having a non-smooth
cover Y is compatible with the methods used here. We leave this investigation to
future work.

5.2.3 Restriction theorems and the Bogomolov inequality

Classically, Mehta and Ramanathan proved that the restriction of a slope-semistable
sheaf to a general sufficiently ample divisor is again slope-semistable. An effective
version (which specifies what “sufficiently” means) was first proven in characteristic
0 by Bogomolov; a recent paper of Langer [51] gives a much more general statement,
valid in all characteristics. Using Langer’s results, we will give twisted versions of
these theorems in this section. One of the (future) uses of these theorems is to
construct the Uhlenbeck compactification of the space of twisted sheaves (and then,
hopefully, the space of PGL,-bundles). We also use the work of Langer to provide a
twisted Bogomolov inequality, recovering earlier work of Artin and de Jong [10, §7.2]
in the context of Azumaya algebras. Throughout, X is a smooth projective surface
over an algebraically closed field k.

Definition 5.2.3.1. Given a p,-gerbe 2~ — X, the indez of 2, denoted ind(Z)
is the minimal rank of a locally free 2 -twisted sheaf. The period of 2, denoted
per(Z), is the order of the image of [Z'] in Br(X). The gerbe 2 is optimal if the
period 1s n.
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As we will see in section 6, one has per(Z2)|ind(2") and ind(Z")| per(Z )™ for
some m. When X is a surface (over an algebraically closed field), a theorem of de
Jong (which we will re-prove below) shows that per(Z’) = ind(Z). Thus, on a
surface, the index of a p,-gerbe divides n. It is easy to show that the rank of any
locally free Z -twisted sheaf is divisible by ind(Z").

5.2.3.2. We first study restriction theorems. Fix a p,-gerbe Z° — X.

Lemma 5.2.3.3. Let f: Y — X be a finite separable morphism of smooth surfaces.
A torsion free coherent twisted sheaf F on X is p-semistable if and only if f*F is
p-semistable.

Proof. This may be found in [40, 3.2.2]. 0

Lemma 5.2.3.4. Let f : Y — X be a finite flat map of smooth surfaces of degree
d, Ox(1) a very ample invertible sheaf on X, & — X a p,-gerbe, n € k™. Write
W =92 xxY. The diagram

A(Z)q L A()q
degi Jdeg
d
Q Q

commutes. In particular, given a torsion free & -twisted sheaf #, one has

peox(f*F) = dup, 1y (F)

and A(f*F) = dA(F).

Proof. Tt suffices to show that the similar diagram with X and Y in place of & and
% commutes. That can be seen easily on the level of O-cycles. O

By 5.2.2.9, we may fix a finite map f : ¥ — X of smooth surfaces of degree
d = ind(Z") with the property that a general member of any very ample linear
system on X has smooth preimage in Y, and such that there is an invertible twisted
sheaf % on Y. Fix a very ample linear system &x(1) on X, with associated divisor
class H. Following Langer [51], we choose a nef divisor A on Y such that Z(4) is
globally generated, and we set

4 — (r(r— 1)AH>2,

p—1

where we assume that char X = p. This depends upon A, and it is slightly unfortunate
that this fact is not recorded in the notation. (When char X = 0, set 8, = 0.) Our
method has the perverse consequence that effective restriction theorems are easier to
prove than generic restriction theorems.

Proposition 5.2.3.5 (Twisted Langer). Let & be a torsion free Z -twisted sheaf
of rank r. Let D € |kH| be a smooth divisor such that &p s torsion free and D Xx Y
is smooth.
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(i) If & is u-stable and

r—1, 1 )i
— ind(2)A(8) + ind(2 ) deg;(X)(r — 1) ' ind(Z ) degg(X)

then &p is p-stable.

(ii} If & is p-semistable and all of the Jordan-Hélder factors of & have torsion free
restrictions to D, and the inegquality of (i) holds, then &p is u-semistable.

Proof. After twisting by .V, the pullback of & to Y is naturally identified with a
torsion free coherent untwisted sheaf .#, satisfying the stability conditions of (i} or
(i1). Furthermore, A(F) = ind(2)A(&) and deg;.;(Y) = ind(2) deg,(X). The
inequalities reduce to those of Langer’s effective restriction theorems [51, 5.2 and 5.4],
whence Fp is (i) p-stable or (ii) p-semistable. Applying 5.2.3.3, we see that &p is (i)
p-stable or (ii) p-semistable, as required. 0

Remark 5.2.3.6. It is irritating to have to pay attention to D x x Y, as this makes the
result quite a bit less effective. One might be tempted to see 5.2.3.5 (as we have proven
it) as an “effective generic restriction theorem,” as the integer k is effectively bounded,
whereas by 5.2.2.9 we know that a general member of |k H| will have smooth preimage
in Y. This state of affairs is the unfortunate consequence of what is a fundamentally
unsatisfying proof. The right way to proceed would be to analyze twisted sheaves,
their behavior under Frobenius, and the properties of connections on them, as Langer
has done in the untwisted case. This is made especially difficult by the inability to
use sheaf cohomology.

Corollary 5.2.3.7 (Twisted Mehta-Ramanathan). If & is a torsion free u-
semistable X -twisted sheaf then the restriction of F to a general sufficiently ample
curve C C X is p-semistable.

Proof. This is immediate from 5.2.3.5 and the properties of preimages of divisors
ensured by 5.2.2.9 (or 5.2.2.4, which will just change the estimates in 5.2.3.5). O

As promised in 5.2.1.6, we prove the existence of the universal constant 3, such
that ext?(#, #)o < fu for all p-semistable # with rank n and fixed discriminant
A. The notation grates slightly with the notation 3, of this section, but we have
chosen to retain the notation of both Huybrechts and Lehn (8.) and Langer (Br).
In future sections, we will not return to the restriction theorems, so g, will vanish,
which makes this annoyance temporary.

Lemma 5.2.3.8. There exists a constant B depending only on X, 2 ,Y,n, H and
A such that for any p-semistable twisted sheaf F of rank n and discriminant A, one

has ext*(F, F)o < foo.

Proof. Tt suffices to prove this after pulling back to Y. (Indeed, by the obvious twisted
Serre duality, one can see that ext’(#, #)y = hom(%#, F Quwx)o. Furthermore,
frw)x — wy, so

Hom(&, # ®wx)o < Homy (Fy, Fy @ frwx)o < Homy (Fy, Fr Quwy)o
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and we may apply Serre duality again on Y.) Thus, we may assume that # is a
semistable untwisted sheaf. We can then suppress Y from the notation; the depen-
dence of 3., on Y only comes in the form of a 3, in the formula. Pushing the formulas
given here back down to X will result in multiplying each degy(X) and each A(F)
by ind(Z").

In general, we have A(énd(F)) < 2n°A(F). Indeed, .# injects into its reflexive
hull .ZYV, yielding an injection &hd(F) — &nd(FYY). It is not hard to see that

U End(F V) End(F)) < nl(FY | F). (5.1)
On the other hand [40, 3.4.1], we have
A(F) = A(FYV) + 20l FVY | F) (5.2)

and similarly for &nd(%#). Combining (5.1) with (5.2) for & and for &nd(F) shows
that A(&nd(F)) < 2nA(F). Now a theorem of Langer [51, 5.1] combined with the
inequality A(&nd(.%#)) < 2r?A(#) and the fact that p(&nd(F)) = 0 shows that

ﬂmax(gnd(gz)) <Zn degH(X)A(y) + Gy

Another theorem of Langer [50, 3.3 says (in the case of surfaces) that for any torsion
free sheaf of rank n on X,

7

fmax(E)
hU(X, E) < ndegH(X) (degH(X) W;f(n) + 2)

where f(n) = —1 4 Y7 1/i. Combining this with the estimate for pmac(6nd(F))
vields a bound for Hom(.%#, #). Similarly, we get a bound for Hom(.#, # @wx)
which differs from the first by a constant depending only on X. By Serre duality,

ext?(F, F)o = hom(F, F Quwx) — h°(wx),
so we are done. O

Remark 5.2.3.9. Note that bounding the discriminant does not suffice to bound the
Hilbert polynomial when the determinant is not fixed. Thus, 5.2.3.8 is non-trivial. Of
course, when working with a fixed determinant and therefore a bounded set of sheaves,
some constant 3., will exist by virtue of the boundedness and the usual semicontinuity
theorems for Ext sheaves. In characteristic 0 (or for strongly semistable sheaves in
general, which we will briefly describe below), the dependence upon the discriminant
disappears; it is not clear to me whether or not this should still be true in positive
characteristic.

5.2.3.10. We can also use the work of Langer and the coverings of 5.2.2.9 to
produce a version of the Bogomolov inequality for twisted sheaves. After defining a
notion of Frobenius pullback and strict semistability for twisted sheaves, we can use
these methods to recover a Bogomolov-like inequality first proven by Artin and de
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Jong in the context of Azumaya algebras. This inequality will be important at one
point during the study of asymptotic properties of the moduli spaces.

We begin by defining a Frobenius map which is appropriate for our situation.
First, note that the (absolute) Frobenius can be defined for stacks of characteristic
p- If ¥ — S is such a stack (with char(S) = {p}), which we may assume split as a
fibered category, then the Frobenius 1-morphism Fy : ¥ — % sends a l-morphism

T — .% to the composition TiT—n-y (and fixes all morphisms in fiber
categories).

Lemma 5.2.3.11. If & — X is any stack and x : #(Z") — G,, is any character,
then the Frobenius map Fg pulls back x-twisted sheaves to p-fold x-twisted sheaves.
In particular, if 2~ — X is a p,-gerbe, then the Frobenius map For : 2 — % pulls
back Z -twisted sheaves to p-fold twisted sheaves.

Proof. Note that the map on the site of 2" induced by the Frobenius is the identity.
In particular, there is a natural isomorphism

Fo(I(X)) = (X))
(as this is true for any sheaf). It is not hard to see that the composition
ISP IS 7

is equal to the identity, where the left-hand map in the composition is the natural
map 2.1.1.9. Under this identity, given any sheaf % on 2, the action .# x ¥ — %
pulls back under £y to be the same action # x & — &#. On the other hand, given
any Og-module .#, the &-structure on F*.# is given by .# ®p r, €, with the map
Fg: € — O given by sending a section s to s?. Thus, if a section of # acts by x on
A , when pulled back it acts by x?.

The second sentence is just a restatement of the first one for readers who cleverly
skipped section 2.1! O

Definition 5.2.3.12. Let ¢ be the order of p in (Z/nZ)*. The power FY is called
the twisted Frobenius of 27, denoted Fg .. The resulting map

N

1s an isomorphism of pu,-gerbes which pulls back twisted sheaves to twisted sheaves.

A

Definition 5.2.3.13. An 2 -twisted sheaf .F is strictly (u-) semistable if (Fg . )*F
is (u-) semistable for all ¢ > 0.

As with untwisted sheaves, it is the strictly p-semistable twisted sheaves which
have the best properties.
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Proposition 5.2.3.14 (Twisted Langer-Bogomolov Inequality). Let & be a
torsion free 2 -twisted sheaf, Y — X a cover as in 5.2.2.9 and 3, as in 5.2.3.5.

(i) If & is p-semistable then ind(2°)*A(£) + B > 0.
(ii) If & is strongly p-semistable then A(&) > 0
(i) If tk(&) = ind(Z") then A(&) > 0.

Proof. Parts (i) and (ii) follow immediately from Langer’s version of the Bogomolov
inequality [51, 3.2] (which is our statement if ind(2’} = 1) and 5.2.3.3. Part (iii)
follows from the fact that if 1k(&) = ind(Z"), then & has no proper torsion free
submodules of strictly smaller rank, so & is p-stable. Thus, since the rank of & is
unchanged by Frobenius pullback, & is strongly p-stable and we may apply (ii). O

Remark 5.2.3.15. The fact that n is prime to the characteristic figures essentially
into part (iii). We see from (i) that in general there is still a lower bound for the
second Chern class of any Azumaya algebra of class [%£7], depending only upon 2
(and possibly the choice of covering ¥ — X). ¢

Corollary 5.2.3.16 (Artin, de Jong [10, 7.2.1]). Let X be a smooth projective
surface with function field K, and let A be an Azumaya algebra over X such that Ak
is a division ring of degree prime to the characteristic. Then ca(A) = 0.

Proof. Let deg A = d. There is a pz-gerbe £ — X and a locally free 2 -twisted
sheaf ¥ of rank d and trivial determinant such that &nd(¥?) = A. It is easy to see
that ¢;(A) = 2rea(¥), so we are done by 5.2.3.14(iii). O

Remark 5.2.3.17. Artin and de Jong’s original proof of 5.2.3.16 is not very difficult, but
in their approach positive characteristic and characteristic 0 are treated in completely
different ways. Our method “explains” what is going on in a characteristic free
manner. They must also bound the second Chern class from below by a different
method before showing it is 0, while both things happen at once in our approach
(which also applies to more general Azumaya algebras with possibly non-division
generic points). Finally, our proof gives a reason for the failure of 5.2.3.16 when the
characteristic divides the degree, namely the failure of strict stability of #. We feel
that this is another demonstration of the usefulness of working with twisted sheaves
(and thus thinking sheaf-theoretically). ¢

5.2.4 Asymptotic properties for optimal classes

In this section we study the behavior of Tw% . (n, L, cz) as A — oo. We will always
work with spaces of twisted sheaves with a fixed determinant. Due to inadequacies
in the classical theory of semistable sheaves on surfaces in positive characteristic
(currently being ameliorated by Langer), we only prove these theorems in the optimal
case in all characteristics. For the arithmetic applications of the next section, this is
the only case that we will need.
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The approach is essentially that of O’Grady, as presented by Huybrechts and
Lehn in {40, Chapter 9]. The biggest difference between the approach here and their
approach is 5.2.4.23, which is an alternative ending step in the proof of asymptotic
irreducibility. The idea behind this proof was worked out jointly with Johan de
Jong. Other than this, the rest of the proof is essentially identical to the classical
proof. In the optimal case, certain better numerical estimates can be made, which
we present here. Otherwise, we quote the book of [40] for certain proofs. While
they were written in an untwisted context, they carry over verbatim (as indicated) to
the twisted (arbitrary characteristic) context. I believe (but have not checked) that
in the non-optimal characteristic O case, one can carry out a similar transcription
of the classical proofs. However, I have avoided dealing with e-stability and related
numerical estimates in this work, so the reader should take this belief with a grain
of salt. It is likely that the current characteristic-free work of Langer (alluded to in
[50]) will prove amenable to a twisted transcription.

Throughout this section, & — X is an optimal p,-gerbe with n prime to the
characteristic of the base field k. Thus, any rank n torsion free twisted sheaf will
be p-stable. We will continue to use the notation Tw*®) even though in this case
there are equalities Tw(n, L, P) = Tw*(n, L, P) = Tw*(n, L, P). Furthermore, all
of these stacks are Deligne-Mumford and are gerbes over their moduli spaces. We are
therefore free to conflate their closed substacks and closed subspaces of their coarse
moduli spaces; in particular, the dimension theory does not change.

We write Tw for Tw g 4, etc. We will also use the notation Tw(n, L, c), where
¢ = ¢y, rather than Tw(n, L, P), where P is the geometric Hilbert polynomial. By the
Riemann-Roch theorem, these are equivalent sets of data. Finally, as we will always
work with fixed rank and determinant, we will write Tw*(A) for Tw**(n, L, ¢), where
A is the discriminant.

5.2.4.1. We first outline the asymptotic properties and their proofs. The state-
ments will be proven in 5.2.4.12 below.

Definition 5.2.4.2. The closed subspace in Tw**(n, L, ¢) parametrizing non-locally
free twisted sheaves is the boundary, denoted dTw*(n, L, c).

For any map T — Tw?*(n, L, ¢) corresponding to a family of twisted sheaves on
1" x X, the preimage of 9Tw*® in T equals a closed subspace 8T, which we will also
call the boundary of T".

Definition 5.2.4.3. A (u-stable) point % € Tw* is good if & is locally free and
ext?(F, F)o = 0.

(We include the p-stability so that the reader is aware of the general definition.)
In general, we will write 3(F) = ext*(#, #)o and B(Z) = max{B(F)|F € Z} for a
substack Z C Tw*(A). The good locus is the vanishing set for 3.

Lemma 5.2.4.4. There is an open substack of good points Twi*(A) C Tw*(A)
which is smooth over k with smooth moduli space.
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Proof. The openness follows from the semicontinuity properties of higher Exts (see
[12] and 2.2.5.17(3) for an example of the method involved in the twisted case).
Smoothness of the stack is well known and comes from 5.2.1.3 {which shows that the
universal deformation space of a point is formally smooth). Smoothness of the moduli
space follows from the fact that Tw®(A) — Tw*(A) is a p,,-gerbe. O

The asymptotic properties of Tw**(A) come from an analysis of the substacks
OTw**(A) and Tw}’(A). We can first show that sufficiently large irreducible closed
substack of Tw**(A) must intersect ITw**(A).

Proposition 5.2.4.5. There are constants A, Ci, and Cy such that iof A > A, and
if Z is an irreducible closed substack of Tw*(A) such that

dim Z > (1——1—)A+CI\/Z+02
n+ 2

then 872 # 0.

Using 5.2.4.5, we will then show that as A grows, so does the codimension of the
complement of Tw§*(A). More precisely, we have the following. Let W = TwP(A)\
Tw;(A) (as a reduced closed substack).

Proposition 5.2.4.6. There is a constant C; > C» and a constant Ay > Ay such
that for all A > Aj,

n

1
dimW < (1—2—)A+01\/E+Cg,.

Thus, the stack will asymptotically become generically smooth and everywhere
l.c.i. of the expected dimension, hence normal.

Proposition 5.2.4.7. Suppose A satisfies
(1) A > A1
(2) A—(n?—=Dx(0x) 2 (1-£)A+C1VA+Cy+2.

Then every wrreducible component of Tw®(A) intersects Tw;*(A). In particular, it
is generically smooth of the ezpected dimension. Furthermore, Tw*(A) is normal and
a local complete intersection.

Proof. The two properties and the fact that expdim Tw**(A) = A — (n? — 1)x(Fx)
(at any point, hence on any irreducible component) shows that the locus of good
points Tw;’(A) is dense in every component of Tw*(A). When ext*(F, F)o =0,

one then has
dim Tw3*(A) = ext! (F, F)o = expdim Tw*(A),

so the stack Tw**(A) is generically smooth of the expected in every irreducible com-
ponent, hence at every point. This implies by 5.2.1.3 that Tw?®(A) is a local complete
intersection. Furthermore, by condition (2) and 5.2.4.6, Tw**(A) is regular in codi-
mension 1. By Serre’s theorem, Tw**(A) is normal. g
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Another use of 5.2.4.5 is in proving that Tw*°(A) is irreducible for sufficiently
large A. Suppose F € Tw*(A) is good. This implies that % lies on a unique
irreducible component of Tw*(A). Any subsheaf .#' C % of finite colength ¢ (i.e.,
such that the quotient % /%" has finite length £) must also be good. Indeed, by Serre
duality (which carries over to the twisted category) and compatibility with trace,
ext*(F', #')o = hom(F', F' @wx)o, and similarly for .#. Furthermore, taking the
reflexive hull gives a natural injection Hom(#', #F' Q@uwx)o — Hom(F, F Qwx .

Lemma 5.2.4.8. A(F') = A(F) + 2nl.

Proof. This reduces to showing that c;(#/#') = £, which itself reduces to show-
ing that a twisted sheaf 2 of length 1 has c3(2) = 1. This follows from the
twisted Hirzebruch-Riemann-Roch theorem 4.1.3.6 (or from the classical Hirzebruch-
Riemann-Roch theorem after applying a Morita equivalence s#om (¥, - ) for some
twisted progenerator with trivial determinant, which is why we did not need to feel
guilty about not including the proof of 4.1.3.6!) applied to the inclusion of Supp(£2) in
&, along with a trivial calculation when & is a u,,-gerbe over a geometric point. [

Thus, %’ lies on a unique irreducible component of Tw**(A + 2nf). It is trivial
that every locally free twisted sheaf .# contains a colength 1 subsheaf .Z,. Let Ax
denote the set of irreducible components of Tw*(A).

Lemma 5.2.4.9. Suppose A satisfies the conditions of 5.2.4.7. Then map sending a
good twisted sheaf F to % yields o well-defined map ¢ : Axa — Aaion.

Proof. We will show that for a locally free twisted sheaf, the space of quotients of
fixed finite length is irreducible 5.2.4.16. Thus, the irreducible component containing
&) is independent of the choice of .%). O

The idea behind the proof of irreducibility of Tw**(A) for large A is to show that
¢ is eventually surjective, and that any two points are eventually brought together
under an iterate of .

Proposition 5.2.4.10. There is a constant Az such that for all A > Aj, the following
hold.

(1) Every irreducible component of Tw**(A) contains a locally free good twisted
sheaf.

(2) Every irreducible component of Tw**(A) contains a point F such that both F
and FYV are good and £{(FVV | F) = 1.

Theorem 5.2.4.11. There is a constant Ay so that for all A > Ay, the stack Tw**(A)
15 trreducible.

Proof. By 5.2.4.10(2), for A > Aj; the map ¢ : Aa_z, — Ap is surjective. We wish
to show that this implies that A is eventually a singleton. In the twisted case, there
is a slight wrinkle, as ¢; need not be an integer. Thus, not all discriminants are
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congruent modulo 2n. However, we do know that A is always an integer. Consider
the sequences of surjections

An

Apson — = Aaian

AA+1 AA+1+2n - AA+1+4n -

AA+2nfl —_— AA+2n—1+2n _— AA+2n—1+4n —_—

For any sufficiently large discriminant A’, one of the sequences above will contain
Aar. If we show that any two components in the first set of the sequence eventually
map to the same point, then we see that each sequence is eventually singletons, and
hence that any A is eventually a singleton (for large enough A').

We claim that it is enough to show that given locally free ¥ and # of rank n with
the same determinant and discriminant, there are finite colength subsheaves ¥* C ¥
and #' C # and an irreducible flat family containing both #” and #”. This is not
obviously the same as making colength 1 subsheaves of locally free good sheaves in
each stage. To see that these are the same, note that the irreducibility of the twisted
Quot scheme shows that we may assume that the supports of ¥ /%" and # /#" are
finite sets of distinct reduced points. Now suppose given a family of twisted sheaves
ZF on X x §. The S-scheme of quotients of F of length ¢ with supports distinct
reduced points disjoint from the singular locus of .% in each fiber is easily seen to be
irreducible when S is irreducible (see e.g., the proof of 5.2.4.16 below). Thus, if S is
irreducible, so is this scheme of quotients. So as we let a point move in it, it will end
up in the same irreducible component of Tw®* (A + 2n).

We will prove the existence of ¥’ and #” below in 5.2.4.20. O

5.2.4.12. We now prove everything! First comes 5.2.4.5.

Lemma 5.2.4.13. Let C € |O(N)| be a smooth member (for any N) and let € =
X xx C. Let Z C Tw*(A) be a closed irreducible substack with 0Z = 9. If
dim Z > dim Twg,(n, Zc) then there is a point of Z parametrizing an Z -twisted
sheaf F whose restriction to C is unstable.

Proof. By 5.1.5.2, we see that if it is defined the restriction map Z — Tw%f/k(n, 2c)
is finite. Thus, if every restriction of a point of Z to C is stable, we see that dim Z <
dim Twg, (n, ). O

Proposition 5.2.4.14. Let Z C Tw*(A) be a closed irreducible substack. Let C €
|@(N)| be smooth. Suppose Z contains a point [F] such that Fc is unstable. If

2

—1
dim Z > expdim Tw*(A) + fo + % _n >

C(C - K)
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then 8Z # Q.

Proof. This may be copied almost verbatim from [40, 9.5.4], but omit the part about
e-stability. O

Proof of 5.2.4.5. This is an application of 5.2.4.13 and 5.2.4.14. Indeed, these show
that if Z is an irreducible component such that

2
—1
dim Z > dim Twg(n, Le) = “——(N2H? + NKH)
and
n? n-1
dimZ>A—(n2~l)x(ﬁx)+ﬁm+—4—— 5 C(C - K)

then 8Z # (). We seek a function of A which is greater than both right-hand sides for
large A (and some choice of N) but which is smaller than A — (n? — 1)x(€x) by an
amount which grows without bound as A increases. (The second condition becomes
necessary when trying to make the codimension of W high.) For the purposes of the
present work, we do not make any attempt to be especially effective; this will make
things easier. Letting N ~ ¢vA and examining the resulting inequalities for that
value of NV leads one to choose ¢ with

5 2
S Dm -

to ensure that the “leading term” (coefficient of A) of the top line is larger than that
of the bottom line and less than A. As we let A grow, this will eventually produce
positive integers for IV, and working through the arithmetic shows that there will be
a function f(A) = C;vA + C, such that for N ~ C|A, the inequalities are satisfied
and f(A) < A — (n? — 1)x(€x). Then any Z with dim Z > f(Z) will satisfy both
5.2.4.13 and 5.2.4.14 and have dimension strictly smaller than the expected dimension
of Tw**(A). (This step is harder to write down than it is to understand. A reader
confused by the poor writing of this paragraph is encouraged to think this through
for a few moments.) For a similar argument, see [40, pp. 209-210]. O

5.2.4.15. Next come 5246 and 5.2.4.10. We begin with some preparatory
lemmas.

Lemma 5.2.4.16. If & is a locally free & -twisted sheaf of rank r, then Quot(&,¢)
15 irreducible of dimension £(r + 1)

Proof. We use the highly non-trivial fact that this is true when 2  is trivial [40,
6.A.1]. First, note that there is an open subspace of the Quot corresponding to
length £ quotients which are just ¢ distinct points. This open subspace is isomorphic
to an étale (P™~!)*-bundle over Sym?(X)\ A, where A is the multidiagonal, hence is
irreducible (and has the right dimension). It is thus enough to show that the entire
Quot is the closure of this open, which is the same as showing that any quotient may
be deformed into a quotient with reduced support. Let & — 2 be any quotient of
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length ¢. Write the support (with its natural scheme structure) of 2 as Z (which
will be the preimage of a closed subscheme of X). The quotient map is the same
as a quotient & — 2. Since Z is a scheme of finite length over an algebraically
closed field, we have Br(Z) = 0. Let . be a twisted invertible sheaf on Z; any
two invertible twisted sheaves are in fact mutually isomorphic. Twisting down by
&, we see that & — 2 is the same thing as a surjection &7 — Q. (In other
words, & @.¢Y = €".) By the irreducibility of Quot(&7,¥¢), we know that there
is a complete discrete valuation ring R containing k and a flat family of quotients
Ok or — @ on X ® R whose special fiber is &7 — (). The support 5 of @ will be
finite over R, and hence will be strictly Henselian. Thus, Br(S) = 0, and we may
choose an invertible twisted sheaf .% on S (for the pullback of 2" to X ® R). Since
S is semilocal, it follows that " = (€ ® R)s. Thus, twisting the quotient Q by g@j
we find an effective deformation of 2 into a quotient with reduced support. O

Lemma 5.2.4.17. If 0Tw**(A) # 0 then codim(@Tw*(A), Tw*(A)) <n — 1.

Proof The statement is local on the stack. Locally on Tw®®, one may choose a locally
free resolution of the universal object on Tw®**(A) x X by two sheaves ¢ : Ly — Ly —
Funiv (as surfaces have homological dimension 2). The result follows from studying
the locus where the rank of ¢ drops, which is known from standard theorems about
determinant schemes. See [40, 9.2.2] for more details. Note that while the reference
given for determinantal loci is written over C, the estimates are independent of the
characteristic. O

We need one more lemma, which is well known. Given a torsion free twisted sheaf
F. there is a reflexive hull &YV = Hom(#om(F, ), ). As usual, there is an
injection # — # YV such that the cokernel T has finite length.

Lemma 5.2.4.18. If % is an S-flat family of torsion free twisted sheaves then the
function s — E(FYV [ F,) is upper semicontinuous. If S is reduced and the function
is constant than the formation of the reflexive hull commutes with base change and
FYV 15 locally free.

Proof. See e.g. [40, 9.6.1]. One uses the fact that a surface has homological dimension
2 and that there are locally free resolutions {which is true in the twisted setting as
well}). O

Definition 5.2.4.19. The double-dual stratification of Tw**(A) is given by subsets
Tw*(A), = {FUFVY/F) > v}

These are closed subsets by 5.2.4.18. For any family of torsion free twisted sheaves
over S, there is an induced stratification S, by pullback along the classifying map
S — Tw*(A).

The most important fact about this stratification is that formation of the double
dual induces a map

(OTwW*(A), \ TTW(A)y41)red — TWH(A — 28).
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The fiber over a (locally free) point % is just (set-theoretically, at least) Quot(.%, ¢).
Let Z C Tw®*(A) be a closed irreducible subspace with 9Z # @ and 8(Z) > 0.
Following Huybrechts and Lehn, we define a sequence of triples

Yi C Z; C Tw*(A))

as follows: Ag = A, Zy = Z, and Y; C 07, is an irreducible component of the maximal
open stratum of the double-dual stratification of 0Z. If £ is the constant colength on
this stratum, then, as we just remarked, there is an induced map Y; — Tw**(A,;—2n#).
Set Ajr1 = A; — 2nf and 7y, equal to the closure of the image of Y;. There is some
index m such that 8Z,, = @ by the twisted Langer-Bogomolov inequality A > 0
5.2.3.14(iii) (which applies since ind(Z") = n).

Using 5.2.4.16 and 5.2.4.17, one finds dim Z; > dimY;_; —¢;(n+1) and dim ¥;_; >
dim Z;_; — (n — 1), whence dim Z; > dim Z;_; — (2n — 1)4; — 1. A careful analysis of
when equality can hold between dim Z; and dim Z,_; — (2n — 1)¢; — 1 (which may be
found in [40, pp. 211-212)) yields an inequality

dim 7, — (1—%) Ap > dimZ — (l—i)A—,@w.
n

2n
It is now clear what is going to happen: if dim Z is too large, then dim Z,, is too large,
i.e., satisfies 5.2.4.5, contradicting the fact that 8Z,, = §. The numerical details may
be found in [40, p. 212-213], where it is shown that

03 = max{02 + ﬁom A]/QTL + 2/800 - (Tl2 - 1)X(ﬁX)}

works in the statement of 5.2.4.6.
Finally, the proof of 5.2.4.10 may be copied verbatim from [40, p. 213].

5.2.4.20. As promised in 5.2.4.11, we show that given two (good) locally free
twisted sheaves ¥ and #  with the same rank, determinant, and discriminant, there
are finite colength subsheaves ¥’ C ¥ and #’ C # which belong to a common
irreducible family of (good) twisted sheaves.

Lemma 5.2.4.21. A general map ¥ — W (N) 1is injective with cokernel supported
on a divisor where it has rank 1 in every fiber.

Proof This is a Bertini type theorem. Over any field, the space of n x n-matrices
which have rank at most n—1 is a divisor in M,,(k) with singular locus of codimension
3 (in the divisor) given by matrices of rank at most n — 2. Thus, the cone of matrices
of rank at most n — 2 has codimension 4 in each fiber, and the usnal argument (e g.,
the simpler version of the argument found in [19] for 1-dimensional bases) shows that
on a surface a generic section (for N large enough that s#Fom(¥, #(N)) is globally
generated) will avoid this locus. As the rank drops on a divisor, we are done. O

Corollary 5.2.4.22. A general map ¥ — W (N) is injective with cokernel an in-
vertible twisted sheaf supported on a smooth curve in | det # (nN) @ det ¥ ®~"|.
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Proof. This involves a similar Bertini argument with the second jet bundle of a matrix
algebra. At a point p with local coordinates x and y, an element of the fiber of
this bundle is a matrix My + M, + yM,. Taking the determinant yields a function
fot+zfi+yfs (as x2 = y* = zy = 0 in the jet bundle). In order for the determinant to
vanish to order at least 2 at the point, all three functions f; must vanish. This defines
a “forbidden cone” of codimension 3 in every fiber (see [10, 8.1.1.6] for a verification
that these conditions are independent), which is greater than the dimension of X.
The usual argument shows that once the jet bundle is globally generated, a general
section will miss the forbidden cone in each fiber. 0

Proposition 5.2.4.23. Let ¥ and # be two locally free twisted sheaves of rank n
with the same determinant and discriminant. Then there exist torsion free twisted
sheaves and finite colength inclusions ¥’ C ¥ and #' C # (of the same colength)
and an irreducible flat family of twisted sheaves containing ¥ and #'. If ¥V and W
are both (u-)(semi)stable, then there ezists an wrreducible family consisting of (good)
(11-) (semi)stable sheaves.

Proof. For N sufficiently large, there are extensions
0=V (-N)-7¥ =P =0

and
0 =Y (-N)y—-¥ — 2 —0,

where 2 and 2 are invertible twisted sheaves on smooth curves in the linear system
|€(nN)|. Furthermore, 4 and £ have the same geometric Hilbert polynomial. By
5.1.4.2, there is an irreducible variety S (which we may assume is affine) and an S-flat
family of twisted sheaves 2 on X x S supported on an S-flat Cartier divisor which
interpolates between 92 (the fiber over sy € S(k)) and 2 (the fiber over s; € S(k)).

We will use the usual Grauert semicontinuity results for Ext spaces to make a
connected family interpolating between finite colength subsheaves of & and 2. We
can do this explicitly quite easily as follows. Let #°* — 2 be a finite resolution
by a complex of locally free twisted sheaves. (In fact, it will have length at most
2 Twisting .#* by a very negative power of &(1), we see that the perfect complex
¢ = Hom*(#*(—m), ¥ (—N)) on S universally computes relative Ext spaces. In
other words, for any T — S, H(€®sT) = Extly, . (2(—m)X xg T, ¥ (—N)xxsr).
Moreover, for large enough m, it is the case that the function

s € S dim H(€ ® x(s))
is constant and the function
s € S — dimH*(€ ® k(s))

is the 0 function (by Serre duality). Standard methods (see 38, II1.12] for example)
now show that H'(€) is a locally free sheaf and that for all f : T' — S the natural map
f*H'(€) - H(€®5T) is an isomorphism. Let V. — S be the vector bundle whose
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sections are H'(€). Then we have shown that V represents the functor T — $
Ext}(2(—m), ¥ (=N)) (for sufficiently large m). (In fact, we could have easily shown
that H*(€ ® 7)) is universally 0 to begin with, by a trivial homological dimension
calculation, but the method here generalizes slightly to higher dimensional ambient
varieties.) As such, there is a universal extension

0— V(—N)vxx — & — 9(—m)vxx — 0.

Furthermore, once the existence of a vector bundle representing Ext'(2(—m), ¥ (—N))
is true for m, it will be true for all m’ > m. Thus, to get V to have nice properties,
we can keep enlarging m.

We claim that for sufficiently large m, given any s € S there is a non-empty open
subset Us C V, parametrizing torsion free extensions. It is enough to prove that there
is a single torsion free extension by the openness of purity in families. Furthermore,
the existence of such a point is stable under increases of m: if & is torsion free element
of Ext'(2(—m), ¥ (—N)), then the preimage of 2,(—m — my) in & gives a torsion
free element in Ext'(Z,(—m — myg), # (=N)). Let s be a point of S, so that we are
considering extensions Ext} (2,(--m), ¥ (—N)). We are reduced to proving that if m
is large enough, there is a point of this space representing a torsion free twisted sheaf.
Let & be any extension with torsion subsheaf T'(£"). Since ¥ (—N) is torsion free, the
intersection ¥ (—-N)NT(&) = 0, so T(&) < D;(—m). Now consider the situation
generically. Over the local ring at the generic point of Supp 2 there is certainly a
torsion free extension, so over the complement W := X \ D of some sufficiently ample
hyperplane section D € |€(my)| there is a torsion free extension

Since W is affine, this may be realized as a map ow : £ H(—m)w — ¥ (= N)y whose
composition # 2(—m)y — F {—m)w — ¥ (—N)w is 0. Twisting by a high power
c of D we find an extension ¢ : F 1 (—m — cmy) — ¥ (—=N) of pw. It is immediate
that ¢ satisfies the cocycle condition, hence gives rise to an extension & which restricts
to &w on W. Since W contains the generic point of C and 2,(—m — cmy) is torsion
free, the inclusion T(&") — Z,(—m — cmy) implies that T(&) = 0.

Therefore, by the openness of the torsion free locus and Noetherian induction, we
may choose a large m so that the torsion free locus of every fiber of V — S is open
and dense. This implies that the locus U C V parametrizing torsion free sheaves is
irreducible.

Now consider the original points sq and s; over which lie % and 2. Choosing a sec-
tion of &(m), we find finite colength subsheaves ¥’ C ¥ and #' C # parametrized
by points of U, hence lying in an irreducible family of torsion free twisted sheaves. If
¥ and # are (good) (u-)(semi)stable, then the same is true of ¥’ and #", and we
are done by the openness of these loci in families and irreducibility. O

Remark 5.2.4.24 This is the key step to proving that the stack of semistable twisted
sheaves is asymptotically irreducible for non-optimal classes as well. Our proof is suf-
ficiently general to work in the general case. However, some of the other foundations
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(notably a study of e-stability) cannot be carried out in positive characteristic yet.
The general characteristic 0 case is likely to work precisely as it does in the classical
case, but we have not yet checked the details. ¢

5.2.4.25. We can give a relative version of all of the constructions here. Stack-
theoretically, this extension is trivial. The GIT construction of Simpson also gives a
good global projective corepresenting scheme (although in positive characteristic it is
no longer clear whether or not this is universal on the base). In the case of an optimal
class, all points will be stable, so Tw, s is a gerbe over a projective scheme, which
shows that in this case the formation of the coarse moduli space is universal on S.
(Universal means “compatible with all base change.” It is always true that the GIT
quotient is uniform, which means that it is compatible with flat base change.)

For our purposes, we only remark on one aspect of this story.

Proposition 5.2.4.26. Let & — X — S be a p,-gerbe on a smooth proper mor-
phism over a reqular Noetherian scheme with geometrically connected fibers of dimen-
sion 2, and assume that n 1s invertible on S. Suppose & has optimal geometric fibers.
The stack Twﬁg/s(A) — S 15 a proper flat local complete intersection morphism for
large A.

Proof. (This result can also be finagled when the fibers are either geometrically op-
timal or geometrically essentially trivial, and is likely to hold completely generally in
characteristic 0 by a simple extension of our methods. As above, the general positive
characteristic case is still in progress.) This follows from 5.2.4.7 which shows that
Twis(A) is Cohen-Macaulay, combined with the fact that the dimension of the
fibers is constant. The usual criterion of flatness for maps from a Cohen-Macaulay
scheme to a regular scheme [54, 2.3.1] then yields flatness. O

Question 5.2.4.27. Is 5.2.4.26 still true when S is no longer regular?
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Chapter 6

Period-Index results

In this section we apply the above theory to study period-index phenomena for Brauer
groups of function fields. Our results range from a new proof of the period-index
theorem of de Jong for surfaces over algebraically closed fields to a proof of the period-
index theorem for unramified classes on a geometrically connected smooth surface over
a finite field. Before we embark on the details, we provide a brief introduction to the
problem.

6.1 Background and definitions

The period-index problem has several manifestations. The modern way of describing
the problem uses Galois cohomology. Let K be a field and F an étale sheaf on Spec K.
Let a € H'(Spec K, F') be a Galois cohomology class with ¢ > 0.

Definition 6.1.0.28. The period of v, denoted per(e), is the order of « in the group
H'(Spec K, F). The indez of a, denoted ind(a), is ged{deg L/K : |, = 0} with L a
separable extension.

In certain instances, the index of « is actually the minimal degree of a field exten-
sion killing o (for example, if ¢ = 2 and F' = Gy,;). In the context of elliptic curves,
this was considered by Lang-Tate [48] and Lichtenbaum [53].

Lemma 6.1.0.29. Given F, i, and a as above, per(a)|ind(e) and both have the same
prime factors.

Proof. This is well-known, but we review the proof for the sake of completeness. That
per(a)|ind(«) is a consequence of the existence, for any finite separable extension
f : Spec L — Spec K, of a trace map f,f*F — F (called the “corestriction”) such
that the composition with the restriction is multiplication by deg L/K. Applying
this to L/K such that a; = 0 shows that the degree of any such extension kills o,
whence the ged kills . To show that the prime factors are the same, suppose L/K
kills & and let p be a prime number not dividing per(a). We may suppose L is Galois
with group G. Let G, be a p-Sylow subgroup of G and L, the fixed field. Thus, the
degree of L, over K has no factors of p. We claim that L, kills a. Indeed, oy, is
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still per(a)-torsion and p still acts invertibly on the subgroup generated by «. Thus,
restricting further to L and corestricting back to L,, we see that « is trivial over L,
if and only if it is trivial over L. This removes p from ind(c). O

Thus, there is some minimal £, so that ind(a)| per(a)fe.

Definition 6.1.0.30. With the preceding notation, £, is the period-indez factor of
Q.

The period-index problem is to understand the period-index factor. In particular,
one can study the situation for F = G,, and ¢ = 2, where this problem exists in
the guise of the Brauer group. To rephrase it, suppose o = [D], with D a central
division algebra. In this case, the classical theory of division algebras shows that the
index of a is the degree of D, while the period is the order of « in Br(K). Thus,
the period-index problem for the Brauer group is about deciding how large a division
algebra is necessary to represent a given Brauer class. In this form, it was considered
by Brauer in his foundational paper and by Albert in subsequent work (see [48] for
the reference).

Definition 6.1.0.31. A field K has (unramified) period-indez factor n (prime to p)
if every class « in the (unramified) Brauer group of K (of order prime to p) has
period-index factor at most n.

Our goal throughout this section will be to demonstrate that certain function
fields of low transcendence degree over constant fields of low homological dimension
have low period-index factor. In general, one expects [16] that the period-index factor
of a field should be related to the Galois cohomological dimension. Our results below
show that for unramified classes, the global geometry of a variety can intervene to
lower the expected period-index factor of classes over the function field.

Another natural source of period-index problems is the category of Abelian vari-
eties. This was first considered by Tate and Lang, inspired by Brauer and Albert’s
work for division algebras. A basic result in this direction concerns elliptic surfaces.
Let 7 : E — P! be an elliptic surface over a finite field (with a section o). Then
it is a classical result [69, Exercise 10.11] that given an element a € II(k(P?), Ey;)
of period n prime to the characteristic of k, there is a field extension of degree n of
k(P?) killing . In other words, for these particular classes of H'(Spec k(P?), Ey),
the period equals the index. Using Artin’s isomorphism Br(E) = II(k(P?), E,) (see
section 5.1.3), we see that this inadvertently also proves that £ has period-index fac-
tor 1. We will generalize this result to all surfaces over a finite field below using a
different approach.

Using our methods, we can translate the period-index problem into a series of
rationality questions on twists of well-known moduli spaces.

6.2 One method: reduction to a curve

By birationally fibering a variety of dimension d as a curve over a projective space, we
can reduce the period-index problem to the study of rationality properties of varieties
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over k(ry,...,z4-1). We sketch the method and give as an application a theorem
originally proved by de Jong and refined by Starr.

6.2.1 Rationality questions

In this section, we transform the period-index problem into a rationality question on
twists of the moduli spaces of stable sheaves.

Lemma 6.2.1.1. Let X be a smooth geometrically connected projective variety over a
field k which is either algebraically closed or finite. Given any n, there 1is an extension
k' O k of degree prime to n and a birational equivalence of X @ k' with a fibration X —
Pi?l with smooth generic fiber of dimension 1 with a rational point over k'(P1).

Proof. Suppose first k is algebraically closed and X is P?. Fixing a point p and taking
the linear system of hyperplancs through it, one sees that the blowup Bl, P? fibers
of P91 with a section and with generic fiber P}C(Pd_l). Given any variety X over k
of dimension d, we can apply Noether normalization to yield a finite generically étale
map v : X — P% Choosing p to lie in the locus over which v is étale, we can simply
pull back the picture from P™ The space X will then be the blowup of the fiber,
which is just a finite set of reduced points. Geometrically, this is the same as taking
a general linear system of dimension P4-! in any very ample complete linear system
on X.

When £ is finite, the description in terms of general linear subsystems shows that
the space parametrizing good fibrations is open in a projective space. Such a set
must contain a point rational over an extension of degree prime to n (by e.g., the
Lang-Weil estimates [49)). O

Lemma 6.2.1.2. Let X — X — P4 pe 45 in 6.2.1.1. Gwen a class o € Br(X),
one has
ind(«) = ind(ag) = ind(ag ),

where )?,, 15 the generic fiber curve.

Proof. This follows from the fact that X — X is birational and the index is deter-
mined at the generic point. 0

By construction, X',, has a rational point p.

Proposition 6.2.1.3. Let = - )?,, — 1 = Spec K be a smooth curve over g field
with a rational point p. Given o € Br(X,)In), there is a lift [€] € H*(X,, i) whose

projection in H%(n, R2f,1.) is trivial. Suppose the projection of a in H3(y, G,.) is
zero. The following are equivalent:
(1) « has the period-inder property;

(i) there is a locally free € -twisted sheaf of rank n and determinant of degree 1;
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(1ii) the twist of Sh®(n, 1) determined by the image of a in H'(n, Pici:n/n[n]o) has a
rational point, where Sh®(n, 1) is the space of stable sheaves of rank n and degree
1.

If K is C then in (i1) we may assume the determinant is €(p) and in (iii) we may
consider the twist of Sh®(n, (p)).

Proof. Suppose there is a locally free twisted sheaf % of rank n on &, and let # =
det Z. The assumption that the projection of a into H?*(, G,,) vanishes says precisely
that «f, = 0 € H*(Spec k(p), Gs»,). Thus, there is a quotient of .%|, with any rank at
most n. Taking an elementary transformation shows that we may assume that the
determinant has degree 1. When K is C1, we can apply this argument at any Cartier
divisor on X, and therefore ensure that the determinant is precisely &(p). Thus, (i)
and (ii) are equivalent. By 5.1.2.3 and the existence of a tautological sheaf when the
degree and rank are coprime and the class is trivial at p (5.1.2.3), (ii) is equivalent to
(iii). d

6.2.2 An application: period and index on a geometric sur-
face

We give a proof of de Jong’s theorem on the period-index property for surfaces over
algebraically closed fields. For the sake of simplicity (and lack of earlier definitions
in this thesis), we focus on the case of unramified classes. The proof we give adapts
verbatim (upon adding the phrase “intersects the ramification locus transversely”) to
the case of classes over the function field of order prime to the characteristic, which is
de Jong’s original version of the theorem. This restriction was subsequently removed
by Starr. We believe that our methods can also be used to re-prove Starr’s result,
but we have not checked this completely.

Proposition 6.2.2.1. Let K be a function field in one variable (i.e., a field of tran-
scendence degree 1 over an algebraically closed field) and C — Spec K a smooth proper
curve over K with a rational point p. Given any cocycle € € H'(Spec K, Pic%/K[n])
and any invertible sheaf ¥ € Pic'(C), the twist of Sh*(n,.Z) induced by £ has a
K -rational point.

Proof. This is just an application of the powerful theorem of de Jong and Starr [20]
(generalizing to positive characteristic a result [32] of Graber-Harris-Starr) which
finds rational points on strongly rationally connected varieties over function fields in
one variable, once we note that Sh®(n, &(p)) is a smooth rational variety. O

Theorem 6.2.2.2 (de Jong). A field of transcendence degree 2 over an algebraically
closed field k of characteristic p has the pertod-indez property prime to p.

Proof. Let X be a smooth projective surface modelling the given function field and
let o € Br(k(X))[n] with » prime to char k. The fibration of 6.2.1.1 is just the total
space of a general pencil of hyperplane sections. (If D is the ramification curve of
o, we may choose general hyperplane sections intersecting D transversely. It then
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follows that the pullback of a to X is unramified along the generic fiber [10, 3.1.4].)
To finish the proof we simply apply 6.2.2.1 and 6.2.1.3. O

Remark 6.2.2.3. The result of Starr and de Jong used in the proof of 6.2.2.1 is itself
quite non-trivial, so this is not truly a simplification of de Jong’s proof. However, we
feel that it is illuminating to put the problem in the general framework of a natural
rationality question. This shows where the fact that X has dimension 2 is used:
rationality questions are significantly easier over fields of transcendence degree 1. In
the next section, we will see how a different problem about rational points can be used
for surfaces over finite fields. There the fundamental necessity that dim X = 2 arises
from the fact that the moduli spaces of sheaves are quite well behaved, something
which is highly unlikely in higher dimensions. ¢

6.3 Another method: using moduli on a surface

Another way to reduce the period-index problem to a rationality question is to use
the known structure of the moduli spaces of twisted sheaves along with classical
estimates on the existence of points (e.g., the Lang-Weil estimates for geometrically
integral varieties over finite fields).

6.3.1 A cheap trick

We mention here a simple trick which can be used to make certain base field exten-
sions. For the sake of generality, we slightly extend the definition of the index of a
Brauer class on a scheme.

Definition 6.3.1.1. Given a scheme X, a Brauer class a € H*(X, G,,) and a point
p € X, the local index of «v at p, denoted ind, (), is the index of the restriction of a
to Spec k(p).

Proposition 6.3.1.2. Let X be a scheme and o € H*(X,G,). If f:Y = X is a
locally free morphism of schemes of degree d and n is prime to d, then a has index
dividing n at o point p € X if and only if ag-1(p) has index dividing n.

Proof. This reduces to the case where X is the spectrum of a field . If there is a
locally free ay-twisted sheaf on Y of rank n then pushing it forward to X yields a
locally free a-twisted sheaf of rank nd. Taking endomorphisms yields a central simple
r-algebra A of degree nd with [A] = a. If D is the (unique up to isomorphism) central
division x-algebra with class o, we may write A = M, (D) for some r. Since per(a)|n,
we see that (ind(a),d) = 1, so the degree of D is prime to d. Since nd = rdeg D, we
see that d|r. Thus, n = ¢deg D for some ¢, and we conclude that M,(D) is a central
simple algebra of degree n with class «. (When per{a) = n, we in fact conclude that
r = d and that deg(D) =n.) a

Corollary 6.3.1.3. If X is a k-scheme and o € H*(X,G,,) has period n, then
ind(a) = n if and only if there 1s a field extension k' > k of degree prime to n such
that ind(ak:)|n.
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6.3.2 Period and index on a surface over a finite field
In this section, we will prove the following theorem.

Theorem 6.3.2.1. If X be a proper smooth geometrically connected surface over F,
then X has the period-index property prime to q.

For classes of period divisible by the characteristic, the methods employed here
cannot be applied (even though the moduli theory can be developed). Thus, (sadly)
we can give no insight into the problem for these classes.

Due to the inadequacy of our proofs of asymptotic properties (e.g., applying only
to geometrically optimal classes and geometrically essentially trivial classes), we are
forced to be slightly clever. Let PIP,(k) denote the phrase “classes of period dividing
n on any geometrically connected proper sooth surface over k have the period-index
property.”

Definition 6.3.2.2. A Brauer class o € Br(X) is geometrically optimal if per(a) =
per(a ® k).

This is the same as saying that given a (necessarily optimal) g, -gerbe £ with
Brauer class a, the gerbe 2 ® k — X ®k is optimal.

Proposition 6.3.2.3. If k is any field and PIPy(k) for all primes £ dividing n then
PIP, (k).

Proof. First, we may assume from the beginning that k is infinite. Indeed, if £ = F,
then by the cheap trick 6.3.1, to prove the period-index property over Fy it suffices
to prove it after replacing ¥y by its maximal prime to n extension k = F7°"™.

We show that PIP, for all primes ¢ in a set P of primes implies P/ F, for any n
in the submonoid of N”° generated by P. We proceed by induction on the number
of primes occurring in the product expansion. Thus, let o be a class with period n
and let £ be a prime factor of n, so n = #n’. The class n'a has period ¢, hence has
the period-index property by assumption. By 5.2.2.8 and the fact that & is infinite,
there is a finite map f : ¥ — X of degree £ with Y a smooth proper geometrically
connected surface such that f*n’a = 0 € Br(Y). Thus, f*a has period dividing n’,
whence by induction f*« has the period-index property. Pushing forward to X shows
that o« has the period-index property.

Instead of using 5.2.2.8, one can use a different (sloppier) argument: the generic
section of & ® L (in the notation of 5.2.2.8) is easily seen to define a geometrically
connected geometrically normal surface ¥ — X with a finite map of degree £. Now
we can simply resolve the singularities of ¥ (as the dimension is 2) and thus arrive
at a map ¥ — X between smooth proper geometrically connected surfaces which
is generically finite of degree £, which suffices for our argument (by the injection
Br(Z) «— Br(k(Z)) for any regular integral algebraic space Z over k). a

Corollary 6.3.2.4. To prove 6.3.2.1 it suffices to prove it for classes of prime order
prime to q. Thus, it suffices to prove it for classes which are either geometrically
optimal or geometrically essentially trivial.
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Proof of 6.3.2.1 for geometrically optimal classes. Let & — X be a geometrically
optimal ge,-gerbe. By 5.2.4.11 and 5.2.4.7 the stack Tw*®(A) is geometrically integral
for sufficiently large A and is a p,-gerbe over its moduli space. Thus, Tw®(A) is
a geometrically irreducible (even projective) variety over Fy, and furthermore since
H*(SpecF,, p,,) = 0 we see that a rational point of Tw* lifts to a point of Tw*, i.e.,
an object. Thus, by the cheap trick 6.3.1, it suffices to find a rational point of Tw?®
over F;°"", the maximal extension of degree prime to n. By the Lang-Weil estimates
[ibid.], any geometrically integral variety over F, has rational points over Feo"m, if ut
is non-emply. By de Jong’s theorem 6.2.2.2, Tw®(A) is asymptotically non-empty,
so we are done. O

Proof of 6.3.2.1 for geometrically essentially trivial classes. In this case 2 — X is
a p,-gerbe such that 2 ®F, admits an invertible twisted sheaf (has trivial Brauer
class). There are two ways to proceed. First, we can use the moduli theory developed
here. By 4.1.6.7, the stack Tw*(A) is geometrically isomorphic to Sh*(A). On the
other hand, the stack of semistable sheaves on X is asymptotically geometrically
irreducible, with Sh* as a dense open substack. The proof in characteristic 0 is
contained in [40]; Langer claims in [50] to have proven this in arbitrary characteristic.
In either case, the method is closely related to the method used in section 5.2.4 for
geometrically optimal classes. Applying the Lang-Weil estimates to the substack of
p-stable points of Tw® completes the proof.

There is a better, elementary proof due to de Jong which also applies to more
general ambient varieties. This will appear written up in future work. O

6.3.3 Period and index on a surface over a local field

Using 6.3.2.1 and 5.2.4.26, we can prove a partial result on the period-index problem
for surfaces over local fields. Throughout this section, K denotes a local field with
integer ring R and (finite) residue field k.

Proposition 6.3.3.1. Let X be a proper smooth geometrically connected surface over
K which extends to a proper smooth surface X — Spec R. If @ € Br(X) has period
prime to char(k), then ind(«a)| per(a)®. If o 1s unramified on X, then ind(a) = per(a).

Proof. First suppose a extends to all of X. By 5.2.4.26, for large A the stack
Twiy,r(A) and its moduli space are proper flat generically smooth local complete
intersections over R. There is an unramified extension R’ O R of degree prime to n
such that Tw*(A) has a rational point in the smooth locus of the special fiber. Since
R’ is complete, this extends to a section, and we see furthermore that this section lifts
into the stack Tw® because Br(R') = 0. Passing to the generic fiber yields a locally
free twisted sheaf of rank n.

If o is ramified along the special fiber, then extracting the per(a)th root of a
uniformizer of £ will kill the ramification [10, 2.3.4] (which uses the main purity
result of [28]). Thus, after making a finite free extension R’ O R of degree per(a), we
are reduced to the unramified case. This is easily seen to imply the result. O
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