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Abstract

The Greene-Kleitman theorem says that the lengths of chains and antichains in any
poset are intimately related via an integer partition, but very little is known about
the partition A(P) for most posets P. Our first goal is to develop a method for
calculating values of A(P) for certain posets. We find the size of the largest union
of two or three chains in the lattice of partitions of n under dominance order, and
in the Tamari lattice. Similar techniques are then applied to the k-equal partition
lattice. We also present some partial results and conjectures on chains and antichains
in these lattices.

We give an elementary proof of the rank-unimodality of L(2,n,m), and find a
symmetric chain decomposition of L(2,2,m). We also present some partial results
and conjectures about related posets, including a theorem on the size of the largest
union of k chains in these posets and a bijective proof of the symmetry of the H-vector
for 2 x n.

We answer a question of Knuth about the existance of a Gray path for binary
partitions, and generalize to b-ary partitions when b is even. We also discuss structural
properties of the posets Ry(n), and compute some chain and antichain lengths in the
subposet of join-irreducibles.
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Title: Norman Levinson Professor of Applied Mathematics






Acknowledgments

I have to start by thanking my parents, for everything they’ve done these past 27
years. You gave me the freedom and encouragement to pursue any life that I wanted,
and supported me even when I wanted to travel thousands of miles from home to do
math.

There are many people who have helped me in one way or another over the years.
If T attempted to thank them all individually, this thesis would be more than twice
its current length. So, if you’ve helped me in any way, even if it was just with a smile
when I needed to be reminded that there is happiness in the world, please know that
I am thankful for you.

[ thank all of my math teachers over the years, especially Sam Baethge; clearly
they did something right.

Thanks to everyone I worked with at PROMYS over the years. To Glenn Stevens,
for admitting me and for inviting me back so many times. To Henry Cohn, my
counselor, whom I have never ceased to admire.

To Hartley Rogers and Sara Billey, for giving me the confidence and opportunities
to excel at MIT.

It’s been said that if you are really fortunate, there are a handful of people in
your life who mean it when they say, “I'll be there for you.” To Alex, Beth, Dylan
[2], Kelly, and Matt. I am really fortunate.

To Piotr Liszka, who will never know what an impact he had on my life.

This work was supported in part by an NSF Graduate Research Fellowship.

Last but certainly not least, I owe countless thanks to my advisor, Richard Stanley.

I am honored to have been his student.






Contents

1 Introduction

1.1 Posets . . . . . . .
1.2 Unranked posets . . . . . . . . ..
1.3 Rank-unimodality . . = . . . . .. .o
1.4 Other posets . . . . . . . . . . L

2 The dominance lattice

2.1 Imtroduction . . . . . . . . . ...
22 Downtowork . . . . . . . . ...
2.3 Proof of Theorem 2 . . . . . . . . . . .. . .. ... ... ...
24 Proofof Theorem 3 . . . . . . . . . . . . . ...
2.5 Smaller cases and related questions . . . . . ... o000

3 The Tamari lattice

3.1 Introduction . . . . . . . . .. Lo
3.2 Proof of Theorem4 . . . . . . . .. ... .. ... ...
3.3 Proof of Theorem 5 . . . . . . . . . . . ... ... ...
3.4 Smaller cases and related questions . . . . .. .. ...

4 L(ni,...,n)

4.1 Introduction . . . . . . . . L
4.2 Proof of Theorem 6 . . . . . . . . . . . . .
4.3 Related questions . . . . . . ... .. ...



4.4 Chain Lengths . . . . . . . . . . 51

b-ary partitions 55
51 Introduction . . . . . . . . ... 55
5.2 Gray paths for b-ary partitions . . . . . . . ... ... L. 56
5.3 Interval structure . . . . . . . .. .. ... 59
5.4 Related questions . . . . . . ... oL 63
And beyond... 65
6.1 Intersection lattices . . . . . . . . .. . ... L. 65
6.2 More questions . . . . . ... 67
8




List of Figures

1-1

1-3

1-4

2-1
2-2
2-3

3-1
3-2
3-3

Divisorsof 12. . . . . . . . . ... 13
A partition and its conjugate. . . . . . ... .. ... 14

A poset P such that the largest chain is not one of the largest two

chains. M(P)={4,2}. . ... ... .. .. ... ... ... ... 15
An unranked but leveled poset. . . . .. . .. ... .. ... ... .. 16
The partition {5,4,3,3,1}. . . . . . . .. ... ... ... ... .. 20
Salvagingadeadend. . . . . . .. ... ... ... 21

Three elements on every level but no three disjoint chains of maximal

length. . . . . . . 26
Two special cases. . . . . . . . . .. ..., 26
Pi3 (left) and Qi3 (right). . . . . .. ... ... 31
Elements of Pjg on maximal chains. . . . . . . .. .. .. .. ... . 32
T, with Us highlighted. . . . . .. . .. .. ... ... ... .. .. . 37
The poset Us. . . . . . . . . ., 38
Top three levels of T;, after second upward shift. . . . ... ... .. 40
A natural labeling of 2 xm. . . . ... ... L. 44
A natural labeling of 2 x 2 x 2. . .. . ..., 47
A natural labeling of 3 xn. . . ... .. L. 49
Ro(2B). . . . 56
R,(14), with a Gray path highlighted. . . . . . . . . . .. . ... .. . 58
Qa(22). . . . 61



6-1 I3, in three leveled subposets

10




List of Tables

21 Knownvaluesof AM(P,). . . . . .. . . ... . ...,

31 Knownvaluesof A(T5,). . . . . .. ... .. ... .. ... .. ...

11



12




Chapter 1

Introduction

1.1 Posets

A partially ordered set, or poset, is a set with an ordering < such that z < z,z <y
andy<r=z=y, andz<yandy < 2=z <z (for all z, y, and z in the set).
Two elements x and y are incomparable if + £ y and y £ . A chain is a totally
ordered subset, and and antichain is a subset of pairwise incomparable elements. A
chain is mazimal if it cannot be lengthened by adding any element of the poset. A
poset is ranked (or graded) if all maximal chains have the same length.

We say that y covers x if z < y and there is no element z such that z < z < v.
The Hasse diagram of a finite poset P is the graph whose vertices are the elements of
P, whose edges are the cover relations, and such that y appears “above” z if z < .

For example, the poset of divisors of 12 ordered by divisibility is shown in Figure 1-1.

12

1

Figure 1-1: Divisors of 12.
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Theorem 1 (Dilworth). For any poset P, the size of the largest antichain in P is
the minimum number of chains that cover P, and the size of the largest chain in P

is the minimum number of antichains that cover P.

A partition of a positive integer n is a sequence X = (Ay, Az, ...) of non-negative
integers such that ¥A\; = n and Ay > Ap > ---. The Young diagram of A is a left-
justified array of n boxes, with A; boxes in row i. The conjugate of X is the partition
obtained by reading the lengths of the columns instead of the rows in the Young
diagram of A. For example, the conjugate of (5,2,1} is (3,2,1,1,1), as illustrated in
Figure 1-2.

3 2 1 1 1

Figure 1-2: A partition and its conjugate.

In 1976, Greene and Kleitman proved the following generalization of Dilworth’s
theorem. Given any poset P, there exists a partition A(F) such that the sum of the
first k parts of A(P) is the maximal number of elements in a union of k chains in P.
In fact, the conjugate of X has the same property with chains replaced by antichains
(8, 15, 16]. Let Ax(P) denote the kth part of this partition.

Note that for computing A;(P), it is not sufficient to find the longest chain in P
and the longest chain in the remaining elements. For example, see Figure 1-3. While
there is a chain of length 4, and two chains of length 3, one cannot partition the poset
into chains of lengths 4 and 2.

The Greene-Kleitman theorem says that the lengths of chains and antichains in
any poset are intimately related via an integer partition, but very little is known about
the partition A(P) for most posets P. It is interesting to note that there are very few
theorems that are true for all posets, so the fact that A(P) exists is remarkable. In

this thesis, we develop and apply a method for computing parts of these partitions

14
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Figure 1-3: A poset P such that the largest chain is not one of the largest two chains.
AMP) = {4,2}.

for several important families of posets.

If every pair of elements z and y in a poset P has a greatest lower bound (i.e. an
element z in P such that any w less than or equal to both = and v is also less than or
equal to z) and a least upper bound (defined analogously), then we call P a lattice.

Most of the posets we will look at have this additional structure.

1.2 Unranked posets

The first two families of posets that we will work with are unranked lattices. We will
see the dominance lattice P, in Chapter 2, and the Tamari lattice T, in Chapter 3.
Each chapter contains an introduction that defines the poset being studied.

The term “ranked” poset comes from the fact that we can define a rank function
r on a graded poset such that for any z < y, r(z) — r(z) is the length of a saturated
chain from z to y. When drawing the Hasse diagram of a ranked poset, one can
put all of the elements of the same rank on horizontal lines, and arrange those lines
vertically in increasing order. Trying to draw the diagram with any element not on its
proper level will invariably lead to headaches and frustration. In other words, every
element has a well-defined level in the Hasse diagram. But an unranked poset can
also have this property, as illustrated in Figure 1-4.

In such a poset, we can draw a Hasse diagram where every element (except those
on the top and bottom levels) covers something on the level below and is covered by
something on the level above. Call such a poset leveled.

Given any poset, it is not difficult to see that the subposet of elements that appear

15



Figure 1-4: An unranked but leveled poset.

in chains of maximal length will be leveled, and that this is the maximal leveled
subposet. It is maximal in the sense that it has the largest number of levels possible,
and the addition of any other elements would make it no longer leveled. This simple
observation turns out to be very useful for computing Greene-Kleitman partitions of
certain posets. By temporarily throwing away all the elements that aren’t on long
chains, we can focus on the elements that really matter for our computations, and
know that the chains we’re finding really are the longest possible despite the lack of

a true rank function.

1.3 Rank-unimodality

A sequence ag, a1, 0y, . .., a, is unimodal if, for some k, we have ag < a; < ... < a; >
Qk+1 2 - .. 2 Gy If a poset is ranked, then we can look at the sequence of sizes of the
levels. If this sequence is unimodal, then the poset is rank-unimodal. If the sequence

is symmetric, then the poset is rank-symmetric.

In Chapter 4, we will look at questions of rank-unimodality and chain decompo-
sitions in the poset of order ideals of a product of chains. In general, the order ideals
of any poset form a lattice. In fact, a lattice is distributive if and only if it arises in

this way for some poset.
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1.4 Other posets

In Chapter 5, we will explore the problem of partitioning an integer into parts that are
all powers of a fixed integer b. In addition to addressing and generalizing a question
posed by Knuth, we explore the distributive lattice structure that comes with these
partitions.

In Chapter 6, we will look at another kind of partitions, namely partitions of a

finite set. This will lead us to another unranked lattice. We conclude with a discussion

of open problems.
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Chapter 2

The dominance lattice

2.1 Introduction

Let P, denote the poset of partitions of the positive integer n, ordered by dominance
(aka majorization), ie. p <vif gy +py -+ px < vy +ve+ - + 14 for all k. This
poset is a lattice, and is self-dual under conjugation. P, is not graded for n > 7,
since there exist saturated chains from {n} to {1} of all lengths from 2n — 3 to en3/?
(9, 17).

The length h(F,) of the longest chain in P, has been known for some time [17].

If n = (mgl) +7,0 <r <m, then h(PR,) = magm + rm. In other words, \(P,) =

m3—m

5+ rm + 1. Our main results are the following theorems.

Theorem 2. Forn > 16, A2(P,) = A (P,) — 6.
Theorem 3. Forn > 135, A3(P,) = X2(P,) — 6.

Consider the subposet @, of P, consisting of the partitions that appear in chains
of length h(F,). Clearly @, is self-dual under conjugation, since conjugation takes
a decreasing chain to an increasing chain of the same length. It seems likely that
@» is a graded lattice, but for our purposes it will suffice to use a weaker statement,
namely: for y € Q,, define 7(u) to be the length of the longest chain from {n} to u;

then p # {1"}, {n} is covered by an element v such that r(v) = 7(u) — 1 and covers
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an element v such that 7(v) = r(u) + 1. In other words, @, is leveled. Note that the
top element is level 0, and the levels increase as we move down.

The covering relation in P, comes in two flavors. Following the methods of [17],
we represent Young diagrams with vertical parts, as illustrated in Figure 2-1. We say
1t covers v by an H-step if there exists 4 such that v; = p; — 1, vi41 = piq + 1, and
v, = pg for k # 1,7+1. In terms of Young diagrams, this corresponds to moving a box
horizontally one space to the right (and down some distance). The other flavor is a V-
step, which is an H-step on the conjugate, and corresponds to moving a box vertically
one space down (and right some distance). Chains from {n} to {1”} consisting of
H-steps followed by V-steps are maximal.

—

Figure 2-1: The partition {5,4,3,3,1}.

In Figure 2-1, the only possible H-step goes to {5,4,3,2,2}. This step is also a
V-step. The other possible V-step goes to {4,4,4,3,1}.

2.2 Down to work

First we focus on Theorem 2. The cases where n < 16 will be handled separately, so
for now assume n > 16.

We will prove Theorem 2 by showing that there exist two disjoint chains in ), of
lengths h(P,) and h(P,) — 6. Since @, is a subposet of F,, these are also chains in
P,. Since there are six elements of P, in saturated antichains of size 1, this is clearly
the maximum possible number of elements in two chains, thus giving A;(F,) exactly.

To that end, we seek two disjoint chains in @, from {n —2,1,1} and {n — 3,3}
to {2,2,2,1" %} and {3,1"*}. Let Q7 denote @, without the top three and bottom

three elements.

20




Lemma 1. If Q* has at least two elements on every level, then it has two disjoint

chawns of mazimal length.

Proof: Clearly we can start two chains with the two elements in the top level, so
proceed by induction. The only potential problem is if we reach two elements on level
k that both cover only one and the same element on level £ + 1. In that case, take
a second element on level k£ + 1 and a maximal chain ending at it. This chain has a
lowest point of intersection with one of the two old chains, so just replace that old

chain with the new one from that point on. See Figure 2-2. )

8 -- o

A}
N

‘4‘@”4

@
)
1

V]

Figure 2-2: Salvaging a dead end.

~ Since @y, is self-dual, it will suffice to show that the first half of its levels have
at least two elements. We do this by explicitly constructing two disjoint chains
to the halfway point. As a first approximation of these chains, take the following
construction.

The left chain starts at {n—2,1,1}. At every step, we take the right-most possible
H-step, e.g. the next partition is {n—3,2,1}. The right chain starts at {n—3,3}. At
cvery step, we take the left-most possible H-step, e.g. the next partition is {n —4,4}.
The names come from the relative positions of the chains when plotted, as in Figure 2-
6. Both chains will eventually reach {m, m — L.o..or+1,rrr— 1,...,2 1}, which
is at least the halfway point [17], so the idea is to modifly the left chain as little as
possible to make it reach the halfway point without intersecting the right chain.

Once we’ve done that, we can apply Lemma 1 to get two disjoint chains of length

h(FP,) - 6, then append the top and bottom three elements to one of them two get
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the desired chains. The following proposition will be used to prove several lemmas

concerning the right chain.

Proposition 1. If g = {1, 2, - - -, ke } s @n the right chain, then p; — piy < 2 for
i=12 . ,k—2. In other words, only the last difference can be greater than 2.
Moreover, excluding the last difference, u cannot have more than one difference equal

to 2.

Proof: By construction, we are always doing the left-most possible H-step. At first
there is nothing to prove, since k = 2 through {%, 3} or {"T“, "T_l} Think in terms of
partition diagrams as in the definition of H-steps. If there are no differences greater
than 1 (excluding the last one), then push one box from u;_, to increase the last part
(or from 4 increase the number of parts). Now move to the left, pushing one box
at a time until pu; — g1 < 2 for i = 1,2,...,k — 2 again. Clearly we never get a

difference greater than 2 or more than one difference of 2 unless we had one before,

so the result follows by induction. 0

2.3 Proof of Theorem 2

The proof comes in six cases, depending on r. We begin with general calculations that
will be used in multiple cases. If u = {1, oo, 3, - - .} is reachable from {n} by only H-
steps, such as the elements of the left and right chains, then 7(ut) = p2+2pu3+3p4+- -,
since each box in y; had to be moved horizontally 7 — 1 times.

Note that any p in the left chain with y; — pp > 2 is not in the right chain
by Proposition 1. This means that the left chain makes it safely to the partition

m+r,m—1,m—2,...,2,1} at level m’_m for r > 2. Forr > 2, we can continue safely
6

to {m+2,m—1,m-2,...,7r—2,7—2,...,2,1} (using both assertions in Proposition 1)
for an additional m(r — 2) — (’;2) levels. So we're done if 2(m(r — 2) — (T;2)) > rm.

For r > 4, this comes down to m > ifT% = ¢ — 1+ 2. For r = 5, this means

r—4
m > 6. In fact m = 5 also works, since we really just needed m(r —2) — (’";2) > [%J
For r > 5, we just need m > r (since m must be an integer), but that’s as general as

possible since 7 < m by definition. Thus we've established Theorem 2 when r > 5.
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If r = 4, then the above construction gets us to one level shy of where we need
to be, since we only reach {m +2,m — 1,m — 2,...,3,2,2,1} safely. Since h(P,)
is always even when r is even, the middle level consists of self-conjugate partitions.
Note that not all self-conjugate partitions are in @,, but one will be if it is covered
by an element of (), since by duality it covers the conjugate of that element. Now
we simply observe that {m +2,m —1,m — 2,...,3,2,2,1} covers the self-conjugate
partition {m+2,m —1,m—2,...,3,2,1,1,1}. This partition cannot be in the right
chain by Proposition 1 (it is also not H-reachable from {n} [17]), so this establishes
Theorem 6 when r = 4. Alternatively, the step to {m +1,m,m —2,...,3,2,2,1} is
safe for m > 4, which will be more useful for proving Theorem 7.

If 7 = 0, then we safely reach {m + 1,m — 2,m — 2,...,2,1}, one level shy
again. Once again, we simply observe that this covers the self-conjugate partition
{m+1,m—-2m—2,...,3,1,1,1}, which is not in the right chain by Proposition 1,
so this establishes Theorem 2 when r = 0.

The remaining cases each require a lemma to get past the shortfall in the above
argument.

If r = 1, then we safely reach {m +2,m —2,m -2, m —3,...,2, 1}, but in fact

we can go further along the left chain.

Lemma 2. The partitions {m +1,m —1,m—2,...,2,1} and {m,m — 1,...  k +
Lk k k—2,...,21}, 5 <k <m, do not occur in the right chain.

Proof: If {m+1,m—1,m—2,...,2,1} occurred in the right chain, then it would have
to be preceded by {m+2,m—2,m—2,...,2,1} or {m+1,m,m-3,...,2, 1} (otherwise
we couldn’t have done the left-most H-step), both of which violate Proposition 6.

If {m,m—1,....k+1,kkk—2...,2 1} occurred in the right chain, then it
would have to be preceded by {m,m —1,... k+1,kkk—1k—4k— 4,...,2,1}
(note this works even for k = m) which violates Proposition 1 unless k — 4 = 0, hence
the need for k£ > 5, or by {m,m—1,...,k+1,k+1,k—1,k—2,...,2 1}. In this case,
we can recursively work our way back to {m+1,m—~1,m—2,...,2, 1}, which is not

in the right chain since it would have to be preceded by {m+2,m-2m-2 . 2, 1}
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or {m +1,m,m —3,...,2,1}, both of which violate Proposition 1. O

Now apply Lemma 2 to extend the left chain safely to {m,m—1,...,5,5, 3,2,1},

which occurs at level W. Since h(P,) = magm, it suffices if m* + 5m —
24 > m® + 2m, or m > 8 m = T also works since h(P) = 119 and we reach
level 59. The case m = 6, n = 22 can be dealt with individually. The left chain
gets to {6,5,5,3,2,1} at level 37, but intersects the right chain at level 38 with
{6,5,4,4,2,1}. However, the right chain reaches {6, 5,4, 4, 3} at level 37, which also
covers the self-conjugate partition {5, 5, 5,4, 3}, so this establishes Theorem 2 when
r=1.

If r = 2, then we safely reach {m +2,m — 1,m — 2,m — 3,...,2,1}, but in fact

we can go further along the left chain.

Lemma 3. The partitions {m+1,mm—-2m—-3,...,2,1} end {m+1,m -1, m—
2,...k+1Lkkk—2,...,21}, 1 <k <m—1, do not occur in the right chain.

Proof: If {m+1,m,m —2,m—3,...,2,1} occurred in the right chain, then it would
have to be preceded by {m +2,m —1,m—2,m-3,...,2,1}, {m+ 1L, m+1,m—
3m—3,...,2,1}, or {m+1,m,m—1,m—4,m—4,...,2,1}, all of which violate
Proposition 1. Note that we are tacitly assuming that m > 4, but that’s fine since
n > 16, so m > 5.

Since {m+1,m—1,m—2,...,k+1,k, k,k—2,...,2,1} has two differences of size 2
for k > 2, Proposition 6 takes care of those cases (note k = m — 1 means the partition
is {m+1,m—1,m-1,m-3,...,2,1}). H{m+1,m—1,m-2,...,3,2,2} occurred in
the right chain, then it would have to be preceded by {m+2,m—-2,m-2,...,3,2, 2} or
{m+1,m,m=3,...,3,2,2}, both of which violate Proposition 1. k¥ = 1is similar. [

Now apply Lemma 3 to extend the left chain safely to {m + 1,m — 1,m —
2,...,2,1,1}, which occurs at level ma—Jﬁrs’l‘—. Since h(P,) = Lf"—rf, this establishes
Theorem 2 when r = 2.

Finally, if 7 = 3, we safely reach {m +2,m —1,m — 2,...,2,1,1}. Now we just
modify Lemma 3. Note we could also show that the right chain has no elements

ending in 1,1 until it’s too late, but this method is cleaner.
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Lemma 4. The partitions {m + 1,m,m —2,...,2,1,1} and {m + 1,m — 1,m —
2, k+1LEkE-2...,211}, 4<k<m—1 do not occur in the right chain.

Proof: Exactly the same as Lemma 3, since the second 1 at the end never comes into
play. O

Now apply Lemma 4 to extend the left chain safely to {m + 1,m — 1,m —
2,...,5,4,4,2,1,1}, which occurs at level ﬂé’”—‘”. Since h(P,) = mgﬂ, it suf-
fices if m* + 11m — 18 > m3 + 8m, or m > 6. When m = 5, we get to level 27, and
h{Ps) = 55, so this case is fine as well. This establishes Theorem 2 when r = 3, and

thus completes the proof. Q

2.4 Proof of Theorem 3

At all times in this proof, we assume that n is arbitrarily large. Looking back on it,
we’ll see we never needed more than n > 135.

Once again we wish to construct disjoint chains to the middle level. We use the
left and right chains constructed in the proof of Theorem 2, plus a middle chain which
will start at {n —5,4,1}. By construction, we can easily tell that some partitions do

not occur in the left chain, in analogy with Proposition 1.

Proposition 2. If u = {u1, it2,. .., px} @5 in the left chain, then p; — pig < 2 for
t = 2,...,k =1 In other words, only the first difference can be greater than 2.
Moreover, excluding the first difference, p cannot have more than one difference equal

to 2.

Thus we will try to keep the middle chain safe by keeping the second difference
greater than 2, or having two differences equal to 2 somewhere in the middle. Un-
fortunately, Lemma 1 does not generalize in the most obvious way for finding three
chains, due to posets such as the ones shown in Figure 2-3. Consider the subposet R,
of P, consisting of the partitions that appear in chains formed from top to bottom
by a block of H-steps followed by a block of V-steps (note some steps may be both

H-steps and V-steps). This is a subposet of Q,, and is self-dual under conjugation

25



(which switches H-steps and V-steps) [17]. Let R} denote R, without the top six and

bottom six levels.

Lemma 5. If R}, has at least three elements on every level, then it has three disjoint

chains of mazimal length.

Proof: We can show this inductively, as in Lemma 1, if we can show that we do not
have any two consecutive levels with connecting relations as shown in Figure 2-3. The
pairs of bold lines indicate that we could have more lines like them without creating
a third chain (e.g. one element covering three or four others, rather than just the
two shown). Aside from the bold relations, there must be no other partitions in or

relations between the two levels shown.

Figure 2-3: Three elements on every level but no three disjoint chains of maximal
length.

Proving that these levels do not arise is extremely tedious, so we will not show
all the details here. We'll just do a partial case to show how the general argument
works; in particular we show that, with a few exceptions that can be ignored, we
cannot get either of the subposets in Figure 2-4, where there are no other covering
relations between these two levels involving «, B, or . This will prove that the first
scenario shown in Figure 2-3 does not occur with either part as in Figure 2-4. By

duality, it suffices to show that the one with H-steps does not occur.

By o
\Y \V, H H

o B v

Figure 2-4: Two special cases.

Since an H-step from « is possible only where a has a difference greater than 1,

or last part greater than 1, and since any H-step from o will stay in R, « must be
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of the form {a,a —1,.. . ,a—4,bb—1,...,b—j5,¢c,c—1,...,1}or {a,a —1,...,a -
i,b,b—1,....,6—j} wherea—i—-b>1,b—~j—c>1orb—75 > 1, and each run
(a,...,a—1i,b,...,b—7,and ¢,...,1) has at most one repeat.

lfais{e,a~1,a-1,...},{a,a—1,.. .} (but not {a,a—1,a~1,...}) or {a,a,...},
then the partition v we get by taking the right-most possible H-step is also covered
by a partition of the form {a,a,¢ - 2,...}, {a+1,a - 2,...},or {a+ l,a - 1,...},
respectively, where the ... ending matches the end of y. Thus the first run of o must
be just a. Similarly the second run must have just one or two numbers in it, and the
third run is just ¢ = 1 or empty. Thus « is {a, b}, {a,b,1}, {a,b,0}, {a,b,b — 1},
{a,b,b,1} or {a,b,b—1,1}.

If « = {a,2}, then 8 = {a — 1,3}, v = {a,1,1}, and we have an exception to
the claim. This exception can be ignored, though, since it happens in the upper
levels of R, that are not in R;. If o = {a,b} where b > 2, then 8 = {a — 1,5+ 1},
v = {a,b,b — 1}, and v is also covered by {a + 1,b — 1,b — 1}. Working through
the other cases, we similarly find only the isolated exceptions a = {5, 3,1}, {4,2,2},
{5,3,3,1}. These are easily ignored since, for such small values of n, R} does not
have at least three elements on every level.

If @ covered three or more partitions by H-steps, then the above argument would
actually be simplified, thanks to the additional runs and large differences. Similarly,
it really does suffice just to rule out the subposets in Figure 2-3.

A partition u is H-reachable (i.e. there exists a chain of H-steps from {n} to u)
if the parts of p that come in runs with differences of at most 1 each have at most
one repeated part, and that part appears no more than two times. p is V-reachable
(i.e. there exists a chain of V-steps from p to {1"}) if its conjugate is H-reachable,
i.e. p has no differences greater than 2, and any two differences of size 2 must have
a repeated part between them [17].

To handle cases involving both H-steps and V-steps, we can use the fact that R,
only has H-steps between H-reachable partitions, and V-steps between V-reachable
partitions. Of course, some partitions are both, and as long as r > 0 the number of

such partitions will grow with m. With sufficient patience and brute force, the rest
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of the proof is straightforward. O

Note that this lemma will not apply when » = 0, but that’s ok since the three
chains we construct in that case end on self-conjugate partitions, and hence can be
extended to their full length by conjugation. We only need Lemma 5 when r and m
are both odd, so that A{F,) = ﬂa;—m + rm is odd, i.e. the number of levels of F, is
even.

Just to take the first few steps along the middle chain without intersecting the
right chain, we need n > 14 so that we can go through {n — 5,4,1}, {n —6,5,1},
{n —7,6,1}, {n —7,5,2}, and {n — 7,5,1,1}, after which we just keep the second
difference greater than 2 as long as possible. First we deal with the cases where

r > 4. We safely reach {m +r —2,m + 1,m — 2,...,2,1}, and continue on to

m?—m r—
(m+2,m+1,m-2...,r—4r—4,..,21} at level =™ +- 2+ m(r — 4) - ("),

We want this to be at least half of ’"33_"‘ +rm,orm>r—1+ % for r > 8. So if
r > 16, then this works for all m (since m > r by definition), and for 8 < 7 < 16 we
just have to exclude finitely many values of m.

Now we can take another step, to {m+2,mm—-1,m-3,m—4,...,7 —4,7r —
4,...,2,1}. This is not in the right chain by Proposition 1, and one must check that
it is not in the left chain, but the usual argument of looking at possible predecessors
and seeing they all violate Proposition 2 works. From now on, we will say that
such a partition is “safe by the usual methods.” From there we continue along to
{m+1,m+1,m—1,m-3,m—4,. .. ,r—4,r—4,...,2,1}, {m+1l,m+1,m—-2,m—
2.m—4,...,r—4,7r-4,...,2,1}, and ondown to {m+1,m+1,m—2,m—3,m -
4,...,7r=3,r—3,...,2,1}. This is m — r + 2 levels beyond where we last computed.
One more step to {m +1,m,m—1,m—-3,m—4,...,r—3,r—3,...,2,1} is safe by
the usual methods, and on down to {m+1,m,m—-2,m—-3,m—4,...,r—1,r—1,7—
3,7 —3,7r—4,...,2,1} (here we need 7 — 1 < m —2, or m > r), and finally one more
to{m+1l,m—1,m—-1,m-3,m—4, .., r—1,r—1,r-3,r=3,7r—4,...,2, 1}. That's
another m —r+ 2 steps, for a grand total of m3T-—m +24+m(r—4)— (r;4) +2m—2r +5.
We want this to be at least half of ﬂa;—m- +rm,orm{r—4) >r?—5r+4, orm=>r—1

for r > 4. Since we already assumed m > r, this means the only possible bad cases
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are where m =r = 9,6,...,15. Since we only care about large n, we ignore these 11
cases, and we’ve established Theorem 3 when 7 > 5.

For r = 0, we safely go through {m + 14+ (m —4),m,m —3,m —4,... 2,1},

and eventually reach {m + 1,m,m —3,m —4,m — 4,...,2,1}. One more step to
{m+1,m—-1,m—2m—4,m—4,...,2 1} is safe by the usual methods, and then we
take two more steps to reach {m, m,m —3,m —3,m—4,...,2,1} (note the order of

these steps actually matters, we must make the m, m first). Now we’re just one step
away from the middle level of self-conjugate partitions, so we simply observe that
this covers the self-conjugate partition {m,m,m—-3,m—-3,m—4,...,3,2,2,2}, and
we're done.

The cases 7 = 2,3,4 are each straightforward with lemmas such as those used in
proving Theorem 2. The case r = 1, however, requires something more clever. The
trick we use turns out to give quick proofs for the other three cases as well, so we just

use one lemma to settle all four cases.

Lemma 6. The partitions {m,m—1,m—2,m—3, ... 7+5,r+4,r+4,7+3,...,4,1,1},

r=1,2,3,4, can be reached safely on the middle chain.

Proof: We certainly reach {m+1+(m+r—4),m,m—3,m—4,...,2,1} safely. Now
the trick is to move the difference of 3 to the right. This will make finding a fourth
disjoint chain much more difficult, but fortunately we're only trying to construct three
chains. First we continue as before to {m+1+4(m+r—5),m,m—-3,m—4,...,2,1,1}.
Thenit’sonto {m+1+(m+r—6),m,m—3,m—4,...,3,3,1,1} (do not proceed to
{-.,3,2,2,1}), and eventually {m+1+7,m,m—3,m—3,m—4,...,4,3,1,1}. From
there we goto {m+r,m+1,m—-3,m—-3,m—4,...,4,3,1,1}, then {m +r,m, m —
2,m-3,m—4,...,4,3,1,1}, then {m+r,m—1,m—1,m-3,m—4,...,4,3, 1,1} (safe
thanks to two differences of size 2 in the middle), and continue along until reaching

{m+rm—1,m-2m—3,...,4,4,1,1}, and finally on to {m,m —1,m — 2,m —

3, ., r+S5r+4r+4r+3,...,4,1,1}. O
For r =1, we reach {m,m —1,m—2,m—3,...,5,5,4,1,1} by Lemma 6 at level
1113+5'rn — 9, which is at least the halfway point, namely @.gz_m7 for m > 10.
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For r = 2, we reach {m,m —1,m -2 m —3,...,6,6,5,4,1,1} by Lemma 6 at

level i*;ﬂ — 10, which is at least the halfway point, namely ’"SZJ, for m > 10.

For 7 = 3, we reach {m,m —1,m—2,m —3,...,7,7,6,5,4,1,1} by Lemma 6 at

level mb;# — 16, which is at least the halfway point, namely msgsm, for m > 11.
For r = 4, we reach {m,m — 1,m —2,m —3,...,8,8,7,6,5,4,1,1} by Lemma 6
at level Lﬁzsm_ — 23, which is at least the halfway point, namely @, for m > 12.
Other arguments can handle this case for m > 6, but even m = 12, r = 4 gives us
n =176 < 136.
The largest case we did not settle was m = r = 15, or n = 135. This completes

the proof of Theorem 3. O

2.5 Smaller cases and related questions

The smaller n for which A(P,) = A (P,) — 6 are 10, 13, 14, and 15. Figure 2-5 shows
P53 and @);3, to give some idea of what’s going on. In fact, Ri3 = (13, though this
equality does not hold in general. For example, {5,2,1,1,1} is in @y but not in
Rio. Figure 2-6 shows Q1. Since there are levels of size 1 in the middle, Pjg cannot
possibly have two chains of the desired lengths. Due to the size of the posets we are
working with, we do not attempt to classify all n for which three chains of the desired
lengths exist.

More generally, Table 2.1 shows the partitions of chain lengths for P,,1 <n < 14,
It is interesting to note that in all of these cases, the elements added between A;_; (Py)
and A\, (P,) form a chain that is added to the previous k — 1 chains (and similarly for
antichains). This is not the case for arbitrary posets, such as Figure 1-3. The proofs
of Theorems 2 and 3 show that this is the case for every P, when k = 2 or 3; it would
be interesting to know if it holds for all k.

We know from Dilworth’s theorem that P, can be covered by A{(F,) antichains.
What we have shown is that we can do this with six one-element antichains, six two-
element antichains, and the remaining antichains of size three or larger. Moreover,

there does not exist such a covering with seven one-element antichains, nor with
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Figure 2-5: P53 (left) and (3 (right).

thirteen antichains of at most two elements (for n sufficiently large).

While the proof of Theorem 2 is constructive in the cases where h(P,) is even, so
that the middle level consists of self-conjugate partitions, it is not constructive when
h(F,) is odd, since in those cases the proof relies on Lemma 1. It would be interesting
to give an explicit construction of two long chains in those cases, and similarly for
three or more chains.

Note that each chain constructed so far was guaranteed to be disjoint from the
others by where it had differences greater than 1. We can thus hope to construct
arbitrarily many disjoint chains to the middle level for large n, though of course the
argument, grows more technically difficult with each chain. This idea motivates the

following conjecture.

Conjecture 1. For large n, \(F,) — M\11(P,) depends only on .
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Figure 2-6: Elements of Pjg on maximal chains.
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A(Fr)

{1}

{2}

{3}

{5}

{7}

{9,2}

{12, 3}

(15,7}

{18,9,3)
{21,15,4,2}
{25,18,10, 3}
{29,21,13,10,4}
{33,27,18,14,6, 3}
{37,31,24,19,15,6, 3}

E R m R © oG kW =S

Table 2.1: Known values of A\(B,).

Note that A;(P,) — Ait1(P,) need not always be 6. It appears that the fourth
chain starts just one level further down, so we conjecture that A3(F,) — Ay(B,) = 2
for large n. Indeed, we can show this for large r by taking a chain of partitions where

the third difference is greater than 2; the technical difficulties arise when 7 is small.

Let M be the transition matrix from the bases {e,} to {m,} of homogeneous
symmetric functions of degree n. Since M, > 0 iff v < 4/, it is a theorem of Gansner
and Saks (independently) that a generic matrix with the same 0 entries will have
jordan blocks whose sizes are exactly the parts of A\(P,) (see [8, 13, 27]). Using
Table 2.1 and Maple, one can verify that M is sufficiently generic at least for n < 13.

Another open problem is to find the size a{n) of the largest antichain in P,. Let
p(n) be the number of partitions of n. There is the obvious upper bound a(n) < p(n).
By Dilworth’s theorem, a(n) > p(n)/(h(FP,) + 1), so we have Q(n“r’/ze”\/ﬁ) <
a(n) < O(n_le“\/m). It would be interesting to find a constructive proof that a(n)
is at least as large as the lower bound. In addition to the values of a(n) implied by
Table 2.1, we can see that a(15) = 9. Moreover, Ag( P5) = 2, with the long antichains
being 71%, 62215, 541%, 532213, 525 44314, 442221, 433311, 3% and their conjugates. One
can also verify that a(16) = 10, with Ajo(Py6) = 5. The sequence of a(n)’s is number

A076269 in [28).
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One construction that shows a(n) has a lower bound of the form e*™ is as follows.
Begin with the antichain 73214, 722221, 651° 642211, 63322, 553111, 55222, 54421,
4444 in Pig. Let v + 7n denote a partition v from the list with 7n added to each
part. Consider v to have 7 parts, so some of them might be 0. Then {v + Tn,v +
7(n—1),...,v+7,v} is a partition of N = 16(n + 1) +49"2% = ¥n? + O(n). There
are 9"t! choices for the v’s, yielding an antichain of size 9"*! in Py. This yields a
lower bound for a(n) of e*V™ where ¢ = In9,/2/49 = 0.4439.... By starting with
a 28-element antichain in P,; where each v has at most 9 parts, and largest part
at most 8, one can similarly get ¢ = ]"% = 0.555.... This is still a long way from

my/2/3 = 2.565. .., but at least it’s constructive.
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Chapter 3

The Tamari lattice

3.1 Introduction

The Tamari lattice T, is defined as the set of all binary bracketings on n 4 1 symbols
ordered by applying the associativity rule in one direction, i e. (ab)c < a(be). For the
products zoz; - - - 1, applying transformations of that form gives us larger elements.
In paticular, ((.-- (zo%1)2) - - - z,) is minimal and (@o(@1 (- (Tprmn))) - - -} is maxi-
mal. We can take the ordered n-tuple (v, ..., v,) of integers from 1 to n, inclusive,
where the opening bracket before x; closes after z,,. In particular, (1,2,... n) is min-
imal and (n,n, ..., n) is maximal. In fact, T, is the set of these n-tuples that satisfy
t < v forall 4, and 4 < J < v; implies v; < v; for all ¢, ardered by componentwise
comparison [18].

The number of elements in T;, is the Catalan number C, = ?iT (2:) T, is self-dual,
Cohen-Macaulay, and has many other interesting properties [1, 5, 7, 14, 18, 22].

Let @ = (ay,a,, ... yan) and b = (by, by, .. .,b,), then b covers @ in T, iff there
exists j such that a; = b, for all 4 # 7, a5 < bj, and b; = b, = ar where k = q; 41
[22].

It is not difficult to see that M(T) = @ +1 [22]. A chain of maximal length
is one where each cover comes from just increasing one part by 1. Our main results

are the following theorems.
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Theorem 4. Forn > 5, X(T,) = M (1) — 4.
Theorem 5. Forn > 6, \3(Ty,) = X(T,) — 2.

The proof of each theorem is by explicit construction of disjoint chains of lengths
M(T3), Aa(Th), and A3(T),) as needed. To prove that we can’t do any better, we show
that T;, can be decomposed into antichains of appropriate sizes.

While 7, is not ranked for n > 2, we can extract the subposet U, of elements that
appear in chains of maximal length, as shown in Figure 3-1. It seems likely that U,
is graded, but for our purposes it will suffice to use the fact that U, is leveled. For
i € Up,, define 7(u) to be the length of the longest chain from (1,2,...,7n) to y; then
p#(1,2,...,n),{n,n,...,n) is covered by an element v such that r(v) = r(n) + 1
and covers an element 7 such that r(n) = r() — 1. In other words, every element of
U, is on a fixed level. Note that the bottom element is level 0, and the levels increase
as we move up. The bulk of the construction of the two or three disjoint chains will

take place in U,.

Lemma 7. The elements of U, are the ordered n-tuples (vq,...,v,) € T, such that

’U7;+1—U,'§1f07‘?:=1,...,n—1.

Proof: 1f we ever have v;;1 — v; > 1 for some i, then v; will increase by more then
1 when it is the place that changes in a cover, hence it cannot be on a chain of
maximal length. For the remaining n-tuples, we can get to them from (1,2,...,n) by
increasing the leftmost possible part at all times (i.e. increment the first part until it
reaches vy, then start incrementing vy, etc.). We then continue along to (n,n,...,n)

by starting over incrementing the leftmost possible part. O

3.2 Proof of Theorem 4

First we show that there are indeed two disjoint chains that use up n(n — 1) — 2
elements. The longer chain will start at (1,2,...,n), and by Lemma 7 must proceed
to (2,2,3,...,n). Sincen > 5, for illustrating the chain we will just write vyvav3v4UsV6

to denote (v, v, Us, Vg, Us, Ug, T, - - - , ). Our long chain starts 123456, 223456, 323456,
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Figure 3-1: T5, with Us highlighted.

423456, 523456, 623456, 633456, 643456, 644456. The chain continues by increasing
the rightmost possible part that keeps us in U,, all the way up to (n,n,...,n).

The second chain starts 133456 (not in U,!), 333456, 433456, 533456, 543456,
953456, 653456. The chain continues by increasing the leftmost possible part (which
will always keep us in Uy,) until we reach (n,n,...,n,n —2,n — 1,n), and then ends
at (n,n,...,n,n —2,n,n). This chain has four fewer elements than the long one, as
desired, and it is not hard to see that the two chains are disjoint. The key idea here
was to take advantage of the crossing covers highlighted in Figure 3-2. Note that it

would have been easier to construct two chains of length "—(”#

by not having them
cross, but it is interesting to see that we really can get disjoint chains of length A (7;,)

and AQ (Tn)
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555556 6644356

555456 663456
554456 653456
544456 643456

444456 633456

623436

123456

Figure 3-2: The poset Us.

To show that this does indeed give us A\y(T5) = A(T) — 4, we prove that T,, can
be decomposed into N = A\ (T,) = M"Z—_ll + 1 antichains, four of which consist of a
single element. To this end, we start with the most obvious decomposition into NV
antichains.

Draw the Hasse diagram of T,, by starting with (1,2,...,n) at the bottom, as level
0. Now each subsequent level consists of the minimal elements of what’s left of T5,.
It is not hard to see that level ¢ will consist of the elements of T,, whose components
sum to @ + 7. These levels give us a decomposition of T}, into N antichains, but
unfortunately only the top two levels ((n,n,...,n) and (n,n,...,n,n — 1,n)) and
the bottom level have just one element. Note, however, that level 1 of U, consists
of only one element, namely (2,2,3,...,n), so everything in T,, — U, can be shifted
up one level in the diagram. This makes level 1 have only one element, but adds
(n,n,...,n,n—2,n,n) to level N — 1. However, (n,n,...,n,n—2,n,n) only covers

(n,n,....,n,n—2,n—1,n) (which is in U,) and things that were originally at least two
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levels below it ((n,n, ... T N=2,n~2,n,1) comes the closest), so we can safely push
it back down one leve] Now we have Just one element in each of levels 1, 2, N -,
and N. Thus any two disjoint chains in 7, can contain at most 2N — 4 elements, ag

desired. 0

3.3 Proof of Theorem 5

First we show that there are indeed three disjoint chains that use up g"—(g—‘ﬁ -8
elements. This time we record just the first Seven numbers in each element. The
longest chain starts 1234567, 2234567, 3234567, 4234567, 9234567, 6234567, 6334567,
6444567, 6544567, 6644567, 6654567 The chain continues by increasing the rightmost
possible part that keeps us in U,, al] the way up to (n,n, ... n).

The second chain starts 1334567 (not in Un), 3334567, 4334567, 3334567, 9434567,
5534567, 6534567, 7634567, 7734567, 7744567, 7754567, 7755567, The chain then

disjoint from the third chain (defined below), until we reach (n,... n n— 2,n—1,n),
and then ends at (n,...,n,n— 2,m,n).

The third chain starts 1244567, 2244567, 4244567, then enters U, at 4444567, fol-
lowed by 9444567, 5544567, 9554567, 6554567, 7554567, 7654567, 7664567, 7764567,

keep us in Uy) until we reach (n,...,n, n-3,n-2,n-1 n), and then leaves U, to end

with (n,... n, n—3, n—1,n—1,n), (n,... n, n~—3,n,n—1,n), (n,... =3, 1, n,n).

hamely (3,23 ;1) and (1,3, 3....,n). Now we have the top three levels as shown
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in Figure 3-3, so we have to move a few things back down again.

n,...,n,n-4,n,n,n,n n,...n,n-3,n,n-1,n n,..,n,n-2,n-2,n,n n,...nn-1n-1,n

Figure 3-3: Top three levels of T, after second upward shift.

Of course the elements of U,, are left alone, so we need to get rid of four of the
elements marked by hollow circles. All we need is to move each of them down one
level, then convince one of the two that remain to go away. Take a few deep breaths,

and here we go...

To push (n,n,...,n,n—4,n,n,n,n) down one level, we have to lower a chain of
elements below it, namely (n,...,n,n—4,n,n,n—1,n), (n,...,n,n—4,n,n—1,n—
Ln) (n,...,n,n—4n—1n—1n—-1n), (n,...,n,n-4n—-1n-2n-1n)

(n,...,n,n—-4,n—-2,n-2,n—1,n),and (n,...,n,n—4,n—3,n—2,n—1,n). We
also have to throw in (n,...,n,n—4,n,n—2,n—1,n). Each of these only covers other
elements that are either in U, (and hence more than one level down after shifting)
or were more than one level down in the first place, so it is safe to move all of these
elements down one level.

The elements (n,...,n,n—2,n,n) and (n,...,n,n—2,n—2,n,n) go down with

much less of a fight, they only take (n,...,n,n — 3,n — 2,n,n) with them. For

(n,...,n,n —3,n,n,n) and (n,...,n,n — 3,n,n — 1,n), we also have to move the
chain of elements (n,...,n,n—3,n—1,n—1,n), (n,...,n,n—1,n-3,n—1,n—1,n),
(n,...,myn—1,n—1,n=-3,n—1,n=-1,n),..,(n—1,...,n=1,n=3,n—-1,n—1n).

It is easy to check that all of these only cover other elements that are in U, or were
originally more than one level down, so moving this chain down works.

We're almost there. (n,...,n,n — 2,n,n) can’t move down any further, since it
covers (n,...,n,n — 2,n — 1,n) € Uy, so we focus on (n,...,n,n — 3,n,n,n). Of
course we have to move the whole chain of elements that we had before with it, and

now we have to also move anything not in U, that was originally covered by one of
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those by a move that increased one part by 2 (those that increased by just 1 are
already included). The only such element is (n,...,n,n — 3,n — 2,n,n), which we
already moved down one level in the previous paragraph, so we’re good to go.

The levels of this drawing of the Hasse diagram now show that three chains can

use at most 3N — 10 elements of T,,, as desired. O

3.4 Smaller cases and related questions

Some partial values of A(T},) for small n are shown in Table 3.1. Note that A;(7},) —

A2(T,.) can be larger or smaller than 4 for small values of n.

n | A(Ty)

1] {1}

2142}

3| {4,1)

1| {7,3,3,1}
5| {11,6,6,7)
6 | {16,12,7)
7| {22,18,16,7}

Table 3.1: Known values of A(T,).

There is no reason to believe that similar reasoning can’t be applied to unions of
more chains, the only obstacle is the difficulty in carrying out the explicit constructive

proof.
Conjecture 2. For large n, A\i(T,,) — A1 (T3) depends only on 1.

Also unknown is the size of the largest antichain in T,. Clearly it is smaller than
Chn, and by Dilworth’s theorem it is at least C,/A(T,). Asymptotically, this tells us
that the size of the largest antichain is between Q(n~7/24") and O(n=*/24").
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Chapter 4

L(ny, ... n)

4.1 Introduction

Pandy ¢ @} such that (z,y) < (=, y) if z <2 in X and Y=v¥inQ Ap order
ideal iny 3 poset P is a subget 7 of P such that itz e [ and Y=<z thenyey

with at most M parts, and maxiinum part gt mMost ny, ordered by inclusion of Young
diagrams. When % = 3, we get the lattice of plane partitions that ft inside ap
™ X ny X ng box. This poset is rank—symmetric, and is known to be Peck (i.e.
rank-symmetric, rank-unimodal, and strongly Sperner) for < 4[24, 25, 30], with
& combinatorial proof of rank—unimodality known only for <323 35. Ina few

cases, 1t is even known ¢, have a symmetric chain decomposition (SCD) [a1, 26, 34].

Our main result on rank~ummoda1ity is a new proof of the following theorem.



g-binomial coefficient (or Gaussian polynomial)

m-+n (1 _qm+n)(1_qm+n~1)_“(1 _qm+1)

n T QAo (1-0)

This polynomial is symmetric and unimodal, centered around " [23, 25]. We
will also use a special case of Proposition 8.2 in [29], namely that the rank-generating
function for L(nq,ng,...,n) is a sum of g-binomial coefficients multiplied by certain
polynomials in ¢. The general result is

p—1 _
p+m—s
Un(Pw) =) W (P, w). (4.1)

q

For our purposes, P will be n; xng X --- xng 1, m = ng, w is a natural labeling,
s0 Un(P,w) is just F(L(ni,ns,...,nk)). On the right-hand side, p is the size of
P, namely ning---ng_1. We(P,w) = 3, g™(™M  where the sum is over all linear
extensions 7 of P (labeled by w) with s descents, and maj(w) is the sum of the
descents. From now on we will omit w from the notation, since we are only dealing
with a natural labeling as in Figure 4-1, obtained by labeling the elements of P from

bottom to top, left to right.

2n-1

Figure 4-1: A natural labeling of 2 x n.

+m-—3 B
Now P is symmetric and unimodal, centered around degree p—f(mz 5.

P
9
If W,(P) is symmetric and unimodal, centered around degree ps/2, then the product
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is symmetric and unimodal, centered around degree pm/2 [31], and hence the sum
of these products, namely F'(L{n;, ng,...,ny)), is symmetric and unimodal, centered
around degree pm/2.

Our goal is to show that W,(P) is indeed symmetric and unimodal, centered

around degree ps/2, at least for P = 2 x n (p = 2n). The proof is by induction on 7.

4.2 Proof of Theorem 6

For symmetry and degree, suppose 7 is any extension of P = 2 x n. Replace each
number z in ® by 2n + 1 — z and reverse the order to get a new extension 7’ (of the
dual of P) with the same number of descents, but with maj(n') = 2ns — maj(m).
Since P is self-dual, 7’ is also an extension of P.

If n =1, then L(2,1,m) is isomorphic to L(2,m), so we’re done. For n > 1, a
linear extension of 2 x n can have anywhere from 0 to n — 1 descents.

Our strategy is to put a poset structure on the set of linear extensions of P
with s descents. We will get a poset W*(P) with rank-generating function W(P)
(after factoring out the lowest power of g) for each s, and we can then attempt to
prove statements about W*(P). To this end, given an extension m with s descents,
replace the increasing subsequences from the beginning with 0’s, 1’s, up to s. Thus
123546879 becomes 000011122. Now label P with these smaller numbers in the order
of the extension (remember we’ve fixed a natural labeling of P). Since P = 2 x n, this
labeling is a 2 x n array of numbers 0 to s, weakly increasing in rows and columns.
But this is precisely an element of L(2,n, s).

Now replace each row with a row that counts the number of entries in the original
row that are at least s, s — 1, ..., 1. This will be an element of L(2,s,n). The point

is that now we have a minimal element, shown below.

60 < 1 < .- < s5-1
Al Al Al
2 < 3 < < s+1
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This minimal element can be subtracted from all of the others to bring us down

to L(2,5,n— s —1).
Lemma 8. The map described above shows that W*(P) = L(2,5,n — s — 1).

Proof: To see this, we verify that each step is an order-preserving bijection. The map
from the set of extensions to the subset of L(2,n, s) is clearly a bijection, and we use
the ordering on L(2, n, s) to define the ordering on W*(P). The elements of L(2,n, s)
that we get are those where for each i, 1 <4 < s, the first 7 in the bottom row occurs
to the left of the last ¢ — 1 in the top row.

The next step is just the obvious bijection from L(2,n, s) to L(2, s,n). After that
we subtract off the minimal element, which is possible since back in L(2, n, s) we had

to have at least the element shown below, which maps to the minimal element in

L(2,s,n).
0 < -« < 0 <€ 0 <1 < < 5—2 < s5-—-1
Al Al Al Al Al Al
0 < - <1 <€ 2 £ 3 < .- < s =< s

Thus we clearly have an injection into L(2, s,n~s—1). To see that it is surjective,
consider the inverse map. Given any element of L(2,s,n—~s—1), we add the minimal
element to it, work our way back to L(2,n, s), and observe that for each i, 1 < i < s,
the first ¢ in the bottom row occurs to the left of the last ¢ — 1 in the top row, as
desired. 0

Since s < n, we know L(2,s,n — s — 1) is rank-unimodal by induction, so we're

done. 0

4.3 Related questions

There is more structure that we can exploit here. If n = 2, then we just had
F(L(2,2,m)) = F(L(4,m)) + ¢*F(L(4,m — 1)), which suggests a way to prove the .

following theorem.

Theorem 7. L(2,2,m) has a symmeiric chain decomposition.
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Proof: We find a bijection from L(2, 2, m) to the disjoint union of L(4, m) and L(4, m—
1), whose inverse is order-preserving, where the rank gets shifted down by 2 in the
second case. Since an explicit gCD is known for these posets (34], that is all we need.

An element of L(2,2,m) is a diagram of the form below.

0 < a £ ¢
A\ Al

b £ d £ m

This element can be thought of as an ordered 4-tuple (a, b, ¢, d) of numbers from
0 to m, wherea < b, a < ¢, b<d andc<d lfd<c then this is just an element of
L(4,m). If b > ¢, then we take (a,c,b—1,d—1) € L(4,m —1). It is not difficult to
see that this is the desired bijection. O
We can prove that F(L(ny,na,--- ,ny)) is unimodal for fixed 1y, no, . - - M-y and
arbitrary n, with a straightforward (though lengthy) calculation. For example, we

have the following new results.
Proposition 3. L(2,2,2, m) is rank-unimodal for all m.

Proof: Let P =2x2Xx2, labeled as shown in Figure 4-2.

Figure 4-2: A natural labeling of 2 x 2 x 2.

By computing all 48 linear extensions, we can see the following.

Wo(P) =1
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Wi(P) = 2¢° + 2¢° + 3¢" + 2¢° + 2¢°
Wa(P) = ¢° +3¢° + 40" + 8¢° + 4¢° + 3¢'° + ¢
W3(P) — 2q10 + 2q11 + 3q12 + 2q13 + 2q14
Wy (P) = ¢'°

Since each of these is symmetric and unimodal, centered around degree 4s, the
result follows. O
Only a few other products of more than two chains can be done with Maple in a

reasonable amount of time.
Proposition 4. L(2,2,3,m) and L(2,2,4,m) are rank-unimodal for all m.

Proof: Once again, by computing all the linear extensions for P = 2 x 2 x 3 or
2 x 2 x 4, we find that all of the polynomials W,(P) are symmetric and unimodal,

centered around the appropriate degree. In particular,

Wi (P) = 2¢% + 3¢° + 5¢* + 5¢° + 7¢® + 59" + 5¢® + 3¢° + 2¢™°

Wa(P) = q® + 5¢° + 9q7 + 20¢° + 264° + 364'° + 39¢*" + 43¢"*+
39¢'® + 36q™* + 26q™° + 20¢'® + 9¢'7 + 5¢'° + ¢*°

W3(P) = 3¢'° 4 7¢* + 17¢'% + 23¢*® + 50¢" + 70¢™° + 94¢* + 107¢'" + 119¢"%+
107¢"° + 94¢% + 70! + 55¢%% + 29¢* + 17¢* + 7¢”° + 3¢*°

Wy(P) = 3¢'8 + 7¢'7 + 17¢"® + 23¢"° + 50¢%° + 70¢* + 94¢* + 107¢** + 119¢*'+
107¢% + 94q% + 70¢%" + 55¢”° + 299 + 17¢™ + 7¢°' + 3¢™

W5(P) — q23 + 5q24 + 9q25 + 20q26 + 26(]27 + 36q28 + 39q29 + 43q30+
39¢%" + 36¢°% + 264 + 20¢* + 9¢*° + 5¢°° + ¢*7

We(P) = 2¢° + 3¢® + 5¢* + 5¢°° + 7¢°® + 5¢°" + 5¢%® + 3¢°% + 2¢™
Wo(P) = q*

48




so the result follows. O

The big question is whether the polynomials W,(P) will behave so nicely for all
products of chains, even just for all products of two chains. There are ranked lattices
for which they are neither unimodal nor symmetric, but of course products of chains
have much more structure (such as self-duality). The proof of Theorem 6 does not
generalize in the most obvious way, since we cannot always find a minimal element
to subtract off. Nevertheless, we conjecture that these polynomials will always be
unimodal, and hence that L(ni,ns, ..., ng) will always be rank-unimodal.

For example, W(3 x 3) is isomorphic to L(3, 3) with one maximal chain removed,
and hence is rank-unimodal. It also possible to prove that some of the polynomials

W,(P) have the desired properties by brute force.
Proposition 5. W,(3 x n) is symmetric and unimodal, centered around degree 3n/2.

Proof: The symmetry and degree follow from self-duality as before. Let 3 x n be

labeled as shown in Figure 4-3.

3n-2

Figure 4-3: A natural labeling of 3 x n.

A descent must be of the form 3a+2 > 3b, 3a+1 > 3b—1, or 3a+1 > 3b, where
n—12a2>0b2>1 These occur respectively at positions 2a +b+1, a + 2b — 1,
and a +2b+ k for K = 0,1,...,a — b. Thus, for fixed a and b, we get exactly one
descent at position r for r from @+ 2b— 1 to 2a + b+ 1 inclusive. Thus the coefficient
of ¢" in Wi(3 x n) is just the number of pairs (a,b), n — 1 > a > b > 1, such that

a+2b—1<7<2a+b+1. The only potential problem for unimodality is when
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r=2a+b+1,1r< {37"] We must show that there are at least as many pairs (a, b),
n—1>a>b>1 suchthatr+1=a+2b— 1.
The solutions to r = 2a + b+ 1 in positive integers when r is even are of the form

a= T_Tzi, b=2i—1 Weneeda>b ori< %, so there are [123'—2J in all. If r is odd,

then the solutions are of the form a = %, b=2i. Weneeda > b, orz < 1;—1, SO

there are L%J in all

The solutions to r + 1 = a + 2b — 1 in positive integers when r is even are of the

form a = 23, b= 222 Weneedn —1>a > b, or B2 <4 < %71, 50 there are

25| — [##2] + L in all. If 7 is odd, then the solutions are of the form a = 2i - 1,

_ r+3-2i 45 o~ ; 5 ;
b= "= Weneedn — 12 a > b, or 5> <1< %, so there are {%J—’-Tg-|+11n
all.

Thus the result will follow from the following two statements.

— 2
{n 1J — [T+2-‘+12 lrg J wherer < r%n} is even

2 6

n r—+5 r—1 3n

—| — 1> | — — 1 1
{2J [ 6 ]-{- _{ 5 therer<[2Jlsodd

These claims are straightforward to verify by just computing all 12 possible cases
depending on m mod 2 and r mod 6, to get rid of the floor and ceiling functions. As
an example, we do the case where n is even and r is 0 mod 6, which is the one that

comes closest to failing. In this case, we need "T_z — % +1>¢%, or @ > r. Since

n is even, 3 is an integer. While we were only given r < [%”J, we also have that r is
a multiple of 3 (as is 37”), so In fact we do have that % > r, as desired. (]

While the posets W?¥(P) are nice, they do leave something to be desired. For
starters, they depend on the natural labeling of . There is a simple bijection between
L(ny,ng,...,n,m) and the disjoint union of W* x L(p,m — s) (which proves the
special case of (4.1) that we used), but in general it is not order-preserving in either
direction, and the posets W¢ do not always possess a SCD.

Let hx(P) denote the number of linear extensions of P with k descents. For P a
ranked poset, it is known that the sequence ho, iy, ho, ... is symmetric, but without

a bijective proof. In the special case where P = 2 x n, we get this bijection for free
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from our proof of Theorem 6, since W*(P) = L(2,s,n—1—-5s) = L(2,n—1—s,5) &
Wn=1=5(P). If we use self-duality along the way, then we get another bijection,
so at least one of these will be different from a bijection found by J. Farley [12].
For products of more or larger chains, however, the analogous posets W* are not
isomorphic (though the polynomials Wy will be the same up to a power of ¢ factor,
so ideally a bijection would prove this as well), and the problem of finding a simple

bijection is still open.

4.4 Chain Lengths

The longest chain in L(n, ..., ng) clearly consists of n; - - - ny + 1 elements. If a poset
P has a SCD, then X;(P) would just be the length of the ¢ longest chains in the SCD,
which is easily computed by looking at the levels of the poset up to the first level
with at most ¢ elements. Since the bottom levels of L(ny,...,n;) remain the same

for large ny, - - -, ng, this motivates the following theorem.

Theorem 8. For fired k and large nq, ..., ny,
Ai(L(na, ..o yne)) — Xig1(L(ny, - .., ny)) depends only on i.

Proof: We start with a detailed proof for k = 2, so we’re working with L(m,n) where
m and n are as large as we need them to be. The idea is to construct i disjoint
chains of the maximum possible lengths. The elements of this poset are partitions
with m parts of size at most n. To do this, the ith chain will go from some partition
# = {m1, pt2,...} (where m is assumed to be larger than the number of parts of i)
to {n,n,...,n — ps,n — py}. For the ith chain, the partition y is selected from the
lowest level that isn’t covered by the first ¢ — 1 chains. If we have more than one
choice, it doesn’t really matter, but for clarity say we take the one that occurs last in
lexicographic order. The difficulty is keeping the chains disjoint, which we will do by
passing through {n —i,n —14,...,n — i}

More precisely, we start our chain by incrementing the first part from g, up to

n — ¢ {since we can assume that n > p, + i), then the second part, and so on. Once

ol



we’ve reached {n—i¢,n—14,...,n—1i}, then we increment the first part until it reaches
n, then the second part, and so on, where the jth part from the end goes up to n—p;.
We just need to check that this will never give us the same partition in more than
one chain. The only potential difficulty comes when incrementing the first two parts.
Suppose ¢ and v agree after their first two parts, but p; > 1y (and py < vp). If pis
in the ith chain, then that chain will go through {n —i,v, ...}, so we need to ensure
that v is not in the first < chains. The partition {a,b,...} is on the chain that started
at {b,b,...}, so pu (the partition with the smaller second part} will indeed come first
in our construction.

For larger k, we use the same trick, but since now we have some k — 1-dimensional
array of numbers up to ni we just need to pick a natural labeling of n; X --- x ng_;
to tell us in what order to increment the parts. O

The same proof works for a more general result, with Theorem 8 as the 7 = 0

case.

Corollary 1. For fized k, j <k, and ny,...,n;, and large njyq, ..., 0y,

M(L(ny, ... ,ng)) — Aipa(L(n1, . .., ng)) depends only on i.

We can also consider the poset M (n) of partitions into distinct parts not exceeding
n. This poset is also known to have nice properties [25, 30], but a SCD or even a
combinatorial proof of unimodality are still open. We can, however, prove that the
analogue of Theorem 8 holds here as well. Actually, it follows from the fact that
M(n) is Peck, but here we give a proof by explicit construction of the chains of

length A (M(n)), Aa(M(n)), etc.
Theorem 9. For large n, \i(M(n)) — i1 (M(n)) depends only on i.

Proof: We start the ith chain at some unused partition in the first level with at least
i elements. We increase the largest possible part until we reach {[%J -1, [%J —1—
n

1,...,1} (i.e. we stop incrementing the first part once it reaches \_EJ — 1, and so

on). From there we start over incrementing the largest part until we reach {n,n —

..., 3] +i+1}
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Given a partition in M (n), define the complementary partition to be the one that
uses precisely the parts from 1 to n not used in the original partition. Now there
is some partition near the top we're trying to reach, which will be complementary
to one in the level where we started. Thus we can consider the chain from that
complementary partition to {[%1 + 1, [%1 +4—1,...,1} by increasing the largest
possible part. But this is complementary to the point we've reached from the bottom,
so taking complements tells us how to finish the chain. Again, it is easy to check that

the i chains thus constructed are disjoint. 0
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Chapter 5

b-ary partitions

5.1 Introduction

Let b and n be positive integers. A b-ary partition of n is an integer partition all
of whose parts are powers of b. When b = 2, we call them binary partitions. The
problem of enumerating binary partitions was considered as far back as 1750 by Euler.

For more about the history of this problem, see [20] and its references.

Let Ry(n) denote the set of all b-ary partitions of n. We define a partial order
on Fy(n) by saying a covers 3 if 8 can be obtained from « just by splitting a b*
into b ¥*~1’s for some k£ > 0. The partial order is then the transitive closure of this
covering relation. Latapy has shown that this ordering gives Ry(n) the structure of a
distributive lattice [20]. For an introduction to distributive lattices, see [32]. We will

take a closer look at this structure, focusing on the subposet of join-irreducibles.

Knuth has asked if the set of binary partitions of n has a Gray path, ie. a
Hamiltonian path for the Hasse diagram of Rs(n) [19]. This question was answered
affirmatively by Colthurst and Kleber [10] independently of this work, though we
construct the same Gray path. We will see that in fact the same is true for R,(n)

whenever b is even, but not for all n when b is odd.

Let ey(n) denote the exponent of the highest power of b that divides n, e.g.
e2(20) = 2 and e3(81) = 4.
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5.2 Gray paths for b-ary partitions

The critical observation here is that Ry(n), when n is a multiple of b, is just a copy
of Ry(n — b) (with b 1’s appended to every partition) and a copy of Ry(|n/b|) with
every part multiplied by b. When n is not a multiple of b, say n = bk + r, where
0 < r < b, then Ry(n) is just Ry(bk) with r ones appended to every partition.

Note that a Gray path does not always exist when b is odd. Let B denote the
square of b so that we can use the notation b* to denote 7 copies of b in a partition.
Then R,(2B) does not have a Gray path. This is easily seen by examining the Hasse
diagram shown in Figure 53-1, keeping in mind that b and B are odd, since we cannot
hit all four of the elements that make up the top and bottom levels of size 2. It is

unknown whether or not R,(n) has a Gray path for & odd and n large.

BB
b
Bb
bl b 2
Bb 1 b
b2 2b FTREY
Bb 1
By - NPT
Bbl :
B b+l B-b
B1 b 1
\ b B
bl
bl Bsb
b 1
T
bl
2B
1

Figure 5-1: R,(2B).

Theorem 10. If b is even, then Ry(n) has a Gray path.

Proof: The proof is by recursive construction. Suppose that b is even, and that n is
a multiple of b (the result follows easily from this case when n is not a multiple of b

since Ry(bk + 7), where 0 < r < b, is isomorphic to Ry(bk)).
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The subposet of b-ary partitions of n with exactly & 1’s is isomorphic to Rb("—gk),
with every part multiplied by b and then the k& 1’s appended. The idea is to go through
these subposets via previously constructed Gray paths that either start or end at the
partition 1"=K/% ¢ R, (2=£). As we go up (i.e. as k decreases), we alternate whether
we start or end at 1%/t and the fact that b is even will make this construction
work.

More precisely, we prove that there is a Gray path that starts at 1™ and ends at
b-ary partition of n whose only (repeated) part is the largest power of b that divides

/6% " One can easily check that this works for small values of n.

n, namely (b%™)
For example, with b6 = 2 and n = 2,4,6,8,10,12, 14, 16, 18, and 20, the respective
ending partitions are 2,4, 2% 8, 2° 4% 27 16,2 and 4°.

The subpaths start at 1("=%)/® when (n— k) /b is even, and end there when (n—k)/b
is odd. In particular, we start at 1, where (n — k)/b = 0 is even, then go to b1"7?,
where (n — k)/b =1 is odd, and so on.

The subpath we want when b divides (n — k)/b starts at 1¢°=%/% in Ry(2=%) and

ends at

(B Ty samaltnT7
In Ry(n), it starts at b"~*}/51% and ends at

- —k
(b1 +esd 258 it 1k,

For other even values of (n — k)/b, we append the appropriate number of 1’s to
the endpoints from the next largest multiple of b to get the endpoints in Rb(”T‘k),
equivalently we insert the same number of b’s in Ry(b - L%J) to get to Ry(n). For the
subpath when 1 + ”—;—k is odd, we have the same endpoints as for "2;’“ but with a 1
appended in R,(1 + 27%), equivalently a b inserted in Ry(n), and we travel in the
opposite direction.

Now the big question is whether these paths actually join together to form a

Gray path for Ry(n). In other words, we want to make sure that each path starts at

something that covers the end of the previous path, and ends at something covered
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by the start of the next one. Of course the answer is yes, the endpoints were chosen

precisely to make this step work. An example of how this works is shown in Figure 5-2.

21 111IN

NN

Figure 5-2: Ry(14), with a Gray path highlighted.

Going from ”f:k odd to even is easy, since the odd subpath ends at 1(»—*)/®

in Ry(27E), or b#)/%1F in Ry(n), which is covered by b'*=F/e15~F in Ry(n), or
1M+(=8)/b in Ry(1 + 23%), the start of the even subpath.

Going from even to odd is just as simple, but looks more technical. First consider

the case where b divides %. The even subpath ends at

n—k
b )

(beb(n;_k))_b.beb——{(t;fk)/b) € Ry

or

(B Rt P 1k ¢ Ry (n),
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which is covered by

(bH—eb(E—gﬁ))mﬁ%W b1*¥ € Ry(n),

or

(beb(ﬂz—k));ﬁﬁf‘-&iﬁﬁl c Rb(l + E%E)’

the start of the odd subpath. If 9‘—;—& is even but not a multiple of b, then going from
the end in Rb(%) to the start in Rp(1+ ”—;5) we again just appended a 1. Thus we
have indeed constructed a Gray path for Ry(n). O

Note that the Gray path is not unique in general. For example, R3(10) has 6
different Gray paths starting at 11 The enumeration of these paths is an open
problem. The one we have constructed was chosen because of its recursive structure.
When b = 2, it is the same Gray path that was found by Colthurst and Kleber [10].

Suppose we want to find the successor or predecessor of a particular b-ary partition,
say A°, with & 1's. Let A= L)‘—bij fori = 1,2,..., L.e. we throw away the 1’s and
divide each remaining part of \'"! by b. In particular, M e Ry(%:%). Whether
we want to move forward or backward along the Gray path in Rb(ﬂ-;—k) starting at
L(=k/b is determined by the sign of (—1)', with positive meaning forward and
negative meaning backward. Thus if we recursively work our way to AL, then we want
to move according to the sign of € = (—1)“‘”‘*"\2”"*'”'.

Eventually we get down to M = (b)*1¥, whose successor or predecessor (depend-
ing on €) ¥ can be computed easily by hand. We can then define ! (for 1 <7 < k)
by multiplying every part of ;¢ by b and appending the appropriate number of 1’s so
that || = |\ Then u° is the successor of A0 1f instead we want the predecessor
of X\, then just switch the sign of €. A detailed description of this rule when b =2 is

given in [10].

5.3 Interval structure

Our first result of this section concerns the Mobius function of Ry(n). While it

follows from the fact that Ry(n) is a distributive lattice, we give an explicit proof that
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illuminates the structure at work.
Proposition 6. The Mdbius function of Ry(n) only takes the values, 0, 1, and —1.

Proof: Consider the interval [x,y] in Ry(n). If z £ y, then of course u(z,y) = 0. If
T < y, then z can be obtained from y by some sequence of breaking larger powers
of b into smaller ones. We claim that the non-zero values of u(z,y) will be when z
comes from breaking at most one of each distinct part of y. For example, if b = 2
and y = 8842221, then the values of z such that u(z,y) # 0 are 88422111, 88222221,
84442221, 882222111, 844422111, 844222221, and 8442222111. Note that these make
up the interval [8442222111, 8842221], which is isomorphic to the boolean algebra Bj.
In general, the set of such z will make up an interval isomorphic to B;, where i is
the number of distinct parts greater than 1 in y. The isomorphism is simple, just
number the distinct parts greater than 1 in y 1 through ¢, then map x to the subset
of {1,2,...,i} of parts that haven’t been broken yet. In the example above, if we call
the 8’s 1, the 4’s 2, and the 2’s 3, then 84442221 maps to {2,3}. Thus any z of this
form will have pu(x,y) = +£1. Call the set of b-ary partitions of this form B(y).
Suppose z is less than y but not in B(y), then some distinct part of y was broken
more than once to reach x. Suppose just one part is broken twice, and the others at
most once, equivalently z is covered by some 2z € B(y). This z is unique, since the
only way to get to B(y) from z is to mend the part that was broken twice. There
must be some maximal level at which such an z exists, so for the partitions z on that
level we have u(z,y) = 0. We can now use induction to conclude that all z < v,
z ¢ B(y), have u(z,y) = 0 since they are covered by at most one partition z with
u(z,y) #0. O
A poset is a distributive lattice iff it is the set of order ideals J(P) of a poset
P, and P is isomorphic to the subposet of join-irreducibles in J(P). The more
general result that implies Proposition 6 is that for any distributive lattice J(P),
p(I, 1) = (=) = (—1)-T1if [I,I'] is a boolean algebra (i.e. if I’ — [ is an
antichain of P), and 0 otherwise. In order for this to be useful for computational

purposes, we need to know something about the P such that Ry(n) = J(P). Let
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Qu(n) denote the subposet of join-irreducibles in Ry(n), as shown in Figure 5-3 (the
1’s at the end of each partition have been omitted for aesthetics), so Ry(n) = J(Qs(n))
(32].

Figure 5-3: Q2(22).

Proposition 7. The subposet Qy(n) of join-irreducibles in Ry(n) is the set of par-
titions that have exactly one (possibly repeated) part greater than 1. Moreover, the

meet-irreducibles are the partitions that have ezactly one repeated part.

Proof: Partitions with only one (possibly repeated) part greater than 1 only cover
one other element, and hence are join-irreducible. If a partition has two distinct parts
greater than 1, then we can break either one. Thus it covers (at least) two elements
on the level below, and hence is their join. The reasoning for meet-irreducibles is
similar. J

There are strong connections between a poset P and the distributive lattice J(P).
For example, the number of chains 0 = Iy < I} < ... < I, = 1 of length m in
J(P) is the number of surjective order-preserving maps from P to m (an m-element
chain), and the number of multichains 0 = Iy < I; < ... < I, = 1 is the number of

order-preserving maps [32]. In particular, antichains in P are in 1-1 correspondence
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with order ideals in P, order-preserving maps to {1, 2}, and elements of J(P). Thus
the problem of enumerating the elements of R,(n) is equivalent to enumerating the

antichains of @Qy(n).

Proposition 8. For n even, M\ (Q2(n)) = 5 + a(n), where
a(n) = max{es(n — 2:) — (i + 1)}.

Fquivalently, a(n) = max{a(n — 2) — 1,e;(n) — 1}.

Proof: If we draw @(n) with every element on the lowest possible level, then we
get a Hasse diagram like Figure 5-3. The chain that starts at 21”2 and goes up to
2117=% then takes a turn to 4Y/21"%, 8/41"% etc., contains 2 + ey(n — 24) — (¢ + 1)
elements, and it is easy to see that a chain of this form will hit every level of the
Hasse diagram, and hence have maximal length. This proves the first statement. For
the second statement, just observe that max{a(n — 2) — 1,es(n) — 1} = max{ex{n —
2i) — (1 + 1) }iso U {e2(n) — 1} = max;{es(n — 2¢) — (i + 1)}. In other words, the
a(n —2) — 1 term is the 7 > 0 case, and ex(n) — 1 is the i = 0 case. O

We can similarly prove a far more general result.

Theorem 11. For n > b*, we have

[t n

M(@o(m) + 2al@() + -+ M(@(m) = [ 5| + ||+ -+ [5] 200

where
k in _
1(n) = max {zm(b’ 5| v -G +m} .
11,82, % j=1
The mazimnum is taken over all non-negative integers iy,1i,,- - -, such thal

bm —biy > b2 L%J By > b [b—kJ bk,

Proof: Use the same idea for drawing the Hasse diagram, putting everything on the

lowest possible level. The tricky thing is that the largest union of two chains will not
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in general be the union of the longest chain and one other chain. One example where
this fails is b = 2, n = 10. The unique longest chain is 2 < 22 < 222 < 2222 < 44 <
8, leaving the antichain {22222 4}, while the largest union of two chains contains
everything, e.g. 2 < 22 < 222 < 2222 < 22222 and 4 < 44 < 8.

To see that the formula for v is correct, observe that the longest £ chains will
start off as chains of b's, *’s, ..., and b*’s, and that the chain of 4%’s won’t use (b%)"+!
if the chain of b’s branched off to use (b?)* (since we’re no worse off giving that
branch to the b*-chain and letting the b-chain branch higher up), etc. The condition

b
such an order. The formula e, (& [%J —b%4;) — (i; + 7) is the length of the ¥'-chain if it

by — biy > b? [EJ — b2y > - > bF [B'%;J — b*4;, just says that the branches occur in

branches off at (b’)%, minus the length lﬁJ of the '-chain that doesn’t branch. O
We can also compute that the size of the largest antichain, using the proof of
Proposition 6. Note each open interval of R,(n) is contractible or homotopy equivalent

to a sphere of some dimension, and this number is the highest of those dimensions.

It is also A|(Qs(n)), and the largest k for which Ar(Q@s(n)) > 0.

Proposition 9. The largest antichain in Qy(n) has size
llog,(nb—n +b)| — 1.

Proof: By the proof of Proposition 6, the size of the largest antichain in Ry(n) is

the largest number of distinct parts greater than 1 in any b-ary partition of n. The

bEtl b

smallest n which was a partition with & such parts is ¥ + 51 4. + b2+ b= =2,

For any larger n, we can get this partition with 1’s appended, so the largest antichain

has size k for 70 < < bk;_zl_b. Rearrange to get k+ 1 < logy(nb—n+b) < k+ 2,
and the result follows. O

5.4 Related questions

The posets Ry(n) do have some nice properties, such as being distributive lattices,

but they lack others. In general, they are not self-dual, nor even rank-symmetric.
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While Ry(n) is rank-unimodal for small n, it is not in general. The first coun-
terexample comes when n = 30. The sizes of the levels of R,(30), starting from the
top, are 1, 4, 6, 7, 10, 11, 10, 11, .... To compute these level sizes, we use the fact
that if fi(n,b) denotes the number of b-ary partitions of n with n — k parts (hence 0

if k£ is negative), then we have a nice recursion.

Proposition 10. If n is a multiple of b, then

fe(n,b) = fe(n —bb) + fk_<_b-_buv_»(n/ba b).

Proof: Given a b-ary partition of n with n — k parts, there are two possibilities. If it
has any parts equal to 1, then it has at least b of them (since b|n), so we can subtract
those off to get a b-ary partition of n — b into n — b — k parts, counted by fi(n — b, b).
Otherwise we have no parts equal to 1, so we can divide every part by b to get a b-ary
partition of n/binton — k=3 — (k - @) parts, counted by fkfw(n/b, b). O

In particular, for n even we have

fr(n,2) = frln —2,2) + fk,%(n/Q, 2).

It seems reasonable to expect that R,(n) will similarly not be rank-unimodal
for any fixed b and arbitrary n. We can still ask if these posets are Sperner, but

unfortunately we don’t have an answer at this time.
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Chapter 6

And beyond...

6.1 Intersection lattices

A partition of a finite set S is a collection 7 = {By,...,b} of disjoint, nonempty
subsets whose union is S. These subsets are called blocks.

Let I, denote the poset of all partitions of [n] = {1,2...,n}, ordered by re-
finement. Thus the partition {{1},{2},...,{n}} is minimal and {{1,2,...,n}} is
maximal. This is a ranked lattice that is not rank-unimodal in general. Let II,;
denote the poset of all partitions of [n] with no blocks of size 2, 3, ..., or k — 1. Thus
Il,2 =1II,. For k > 2, we get an unranked lattice.

These lattices have geometric origins. I, ; is the intersection lattice of a hyper-
plane arrangement called the k-equal arrangement (3, 4, 6].

We can see that 11, is ranked, where the rank function r(=) is n minus the number
of blocks of w. Thus the bottom level is 0, and the top level is n — 1.

If we take the maximal leveled subposet of II,x, for & > 2, then we get the
partitions with at most one non-singleton block. These partitions occur on chains of
n - (k — 2) elements, since every non-singleton block requires us to skip k& — 2 levels
in II, while getting there from the bottom. But this subposet is clearly isomorphic
to B, the poset of all subsets of [n| ordered by inclusion, with levels 1 through k& — 1
removed.

Let II7, , denote the maximal leveled subposet of IT,, 4. Let II2 , denote the maximal
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leveled subposet of the poset that remains if we remove Hi,k from II,x, and so on.
For k > 2, I}, consists of the elements of Il with exactly m non-singleton blocks
(plus the all-singleton partition when m = 1). See Figure 6-1 for the decomposition
of Myg3 into Mgy, 3,5, and I3, ;, shown as three boxes. Since there are far too
many elements to draw, we simply show the non-singleton block sizes on each level.

For the elements not in I}, 5, we put them on the lowest possible level.

Figure 6-1: II;q 3, in three leveled subposets.

B, also known as the Boolean algebra or Boolean lattice of rank n, has a symmetric
chain decomposition [11]. Thus we can exploit that SCD to find long chains in IT,, ;.
For stating our main result, we will use the notation ¢/ in a partition to denote the

part ¢ repeated 7 times.

Theorem 12. Let A(I1, ;) = 1™2™2 ..., and k > 2, then:
()m; =0 fori>n—k+2

(2) M gr2=1

(3) Mp_k+1 =10

(4) Fork <i <2k -3,

i n

In particular, mp_y =n—1
(5) Forn > 2k, >34 mn,_; = (’,:)

Beyond that, we can calculate any particular m; for n sufficiently large.
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Proof: The longest chains have length n — k +- 2, and Il has a top and a bottom
element, so (1), (2), and (3) follow immediately.

To get (4), we just use the SCD for B,. Working just within II}, ,, we can de-
compose the part from block size k£ to n — k into (2) chains. (kf_ll) of these can be
extended to the n — k + 1 blocks, and so on. Since II7; starts on the same level as
the k& + m — 1 blocks, and ends on the same level as the n — (m — 1)(k — 1) blocks
(remember we’re putting everything on the lowest possible level), for m > 1 these
elements do not matter yet.

For (5), the limiting level starts to be at the bottom instead of the top. Chains
starting with a block of size k and containing n — 2k + 2 elements would end with a
block of size k+n—2k+2—1=mn—k+ 1, but there are more subsets of size k than
size n — (k —1). However, the level that contains blocks of size n — k+ 1 also contains
the two-block partitions with block sizes k and n — k, k +1 and n — k — 1, etc. The
chains that end before this level make it to a block of size n — k, just one level lower,
and there is an obvious bijection between these partitions and those with blocks of
size k,n — k for n > 2k, so we simply branch off into I12 , for our final element.

Beyond that, we have to start looking at chains that start with two non-singleton
blocks, so the numbers get ugly, but the key idea of exploiting injections from B,, and
letting n be sufficiently large will still work. 0

6.2 More questions

A wise man (named Dan Kleitman) once said that the worst thing you can do to a
problem is to solve it completely. With that in mind, we end with a discussion of
things we don’t know.

Of course there are the questions and conjectures that came up in each chapter,
so we just have a couple more questions to ask here.

For the dominance lattice, all of the known values of A;(P,) — Aiy1(F,) are less
than or equal to the difference we get for large n, but this is not the case for the

Tamari lattice. Other than that, these lattices seem to have a surprising amount in
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common. Do they share some property that makes the difference in chain lengths
stabilize? Note that this stabilization does not happen for I, ;, at least not in the
same way.

Is there a better method for computing A\;(P) for the dominance lattice and the
Tamari lattice? Computing it isn’t the hard part so much as proving that one can’t
do any better. The antichain decomposition we got from the levels when everything
is placed on the lowest possible level only got us so far. Is there a better antichain
decomposition for either of these two lattices that provides a better starting point?

While binary partitions have been around for over 250 years, general b-ary parti-
tions have not received very much attention despite their nice structural properties,
so there is still plenty of exploring to be done.

Except in the cases where an SCD is known to exist, A(P) has not been even
partially computed for most posets P. While we've made some progress here, the
problem of computational Greene-Kleitman theory is still far from being solved com-

pletely. Thus, at the very least, we have not done the worst possible thing for it.
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