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Abstract

This thesis addresses the challenges of building a software system for general-purpose runtime
code manipulation. Modern applications, with dynamically-loaded modules and dynamically-
generated code, are assembled at runtime. While it was once feasible at compile time to observe
and manipulate every instruction — which is critical for program analysis, instrumentation, trace
gathering, optimization, and similar tools — it can now only be done at runtime. Existing run-
time tools are successful at inserting instrumentation calls, but no general framework has been
developed for fine-grained and comprehensive code observation and modification without high
overheads.

This thesis demonstrates the feasibility of building such a system in software. We present Dy-
namoRI0O, a fully-implemented runtime code manipulation system that supports code transforma-
tions on any part of a program, while it executes. DynamoRIO uses code caching technology
to provide efficient, transparent, and comprehensive manipulation of an unmodified application
running on a stock operating system and commodity hardware. DynamoRIO executes large, com-
plex, modern applications with dynamically-loaded, generated, or even modified code. Despite the
formidable obstacles inherent in the TA-32 architecture, DynamoRIO provides these capabilities
efficiently, with zero to thirty percent time and memory overhead on both Windows and Linux.

DynamoRIO exports an interface for building custom runtime code manipulation tools of all types.
It has been used by many researchers, with several hundred downloads of our public release, and is
being commercialized in a product for protection against remote security exploits, one of numerous
applications of runtime code manipulation.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

As modern applications become larger, more complex, and more dynamic, building tools to
manipulate these programs becomes increasingly difficult. At the same time the need for tools to
manage application complexity grows. We need information-gathering tools for program analysis,
introspection, instrumentation, and trace gathering, to aid in software development, testing, de-
bugging, and simulation. We also need tools that modify programs for optimization, translation,
compatibility, sandboxing, etc.

Modern applications are assembled and defined at runtime, making use of shared libraries, vir-
tual functions, plugins, dynamically-generated code, and other dynamic mechanisms. The amount
of program information available statically is shrinking. Static tools have necessarily turned to
feedback from profiling runs, but these give only an estimate of program behavior. The complete
picture of a program’s runtime behavior is only available at runtime.

Consider an important modern application, the web server. Figure 1.1 shows the components of
a running server, highlighting which parts can be seen by the compiler, linker, and loader. Today’s
web servers are built for extension by third-party code, in the form of dynamically-loaded modules
(e.g., Internet Server Application Programming Interface (ISAPI) components used to provide
dynamic data and capabilities for web sites). Even the designers of the web server program cannot
anticipate all of the third-party code that will be executed when the web server is in actual use.
Tools for operating on applications like this must have a runtime presence.

A runtime tool has many advantages beyond naturally handling dynamic program behavior.

Operating at runtime allows the tool to focus on only the code that is executed, rather than wasting
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statically-linked dynamically-loaded dynamically—
shared libraries shared libraries generated code

Jav

NET

Figure 1.1: The components of a modern web server, and which can be seen by the compiler, linker,
and loader. The only components that are known statically, and thus viewable by the compiler or
linker, are the executable itself and the shared libraries that it imports. Neither tool knows about
custom extension libraries that are loaded in dynamically. The loader can see these, but even
the loader has no knowledge of dynamically-generated code for languages like Java and .NET. In
modern web servers, extension modules and generated code are prevalent. In addition to missing
dynamic behavior, the linker and loader have difficulty seeing inside modules: code discovery and
indirect branch target resolution are persistent problems.

analysis resources (which may not matter statically but do matter if operating at load time) on
never-seen code. This natural focus on executed code also avoids the code discovery problems
that plague link-time and load-time tools. With a runtime view of the program, module boundaries
disappear and the entire application can be treated uniformly. Additionally, runtime tools need not
require the target application’s source code, re-compilation, or re-linking, although they can be

coupled with static components to obtain extra information (from the compiler, for example).

1.1 Goals

The goal of this thesis is to create a runtime tool platform for fine-grained code manipulation.
We would like a comprehensive tool platform that systematically interposes itself between every
instruction executed by a running application and the underlying hardware, as shown in Figure 1.2.

Custom tools can then be embedded in this flexible software layer. In order for this layer to be
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running application

Y
* runtime code manipulator:

observe/manipulate every instruction
in the running application

Figure 1.2: Our goal was to build a flexible software layer that comprehensively interposes itself
between a running application and the underlying platform. The layer acts as a runtime control
point, allowing custom tools to be embedded inside it.

maximally usable, it should be:

e Deployable
The layer should be easily inserted underneath any particular application on a production sys-
tem. Our target tools operate on and dynamically modify applications in actual use; they are
not limited to studying emulated application behavior. Examples include secure execution
environments, dynamic patching for security or compatibility, on-the-fly decompression, and

dynamic optimization. This goal drives all of the other ones.

o Efficient
The layer should amortize its overhead to avoid excessive slowdowns. Poor performance is

always a deterrent to tool use, and near-native performance is required for deployment in

production environments.

e Transparent
The layer should operate on unmodified programs and should not inadvertently alter the
behavior of any program. Transparency is critical when targeting and modifying applications
in actual use, where unintended changes in behavior can have serious consequences. Even

a seemingly innocuous imposition can cause incorrect behavior in applications with subtle
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dependences.

Comprehensive
The layer must be able to observe and modify any and all executed instructions to do more
than periodic information gathering. Tools such as secure execution environments require

interposition between every instruction.

Practical
To be usetul, the layer must work on existing, relevant, unmodified, commodity hardware

and operating system platforms.

Universal
The layer should be robust, capable of operating on every application, including hand-crafted
machine code and large, complex, multi-threaded, commercial products. Operating at run-

time allows us to target applications for which source code is unavailable.

Customizable

The layer should be extensible for construction of custom runtime tools.

These goals shape the design of our code manipulation layer. Some are complementary: uni-

versal and transparent work together to operate on as many applications as possible. Other goals

conflict, such as being comprehensive and practical while maintaining efficiency. This thesis is

about optimally satisfying the combination of these goals.

1.2 DynamoRIO

We present DynamoRIO, a fully-implemented runtime code manipulation system that allows code

transformations on any part of a program, while it executes. DynamoRIO extends existing code

caching technology to allow efficient, transparent, and comprehensive manipulation of an individ-

ual, unmodified application, running on a stock operating system and commodity hardware.

Figure 1.3 illustrates the high-level design of DynamoRIO. DynamoRIO executes a target ap-

plication by copying the application code into a code cache, one basic block at a time. The code

cache is entered via a context switch from DynamoRIO’s dispatch state to that of the application.
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Figure 1.3: The DynamoRIO runtime code manipulation layer. DynamoRIO interposes itself be-
tween an application and the underlying operating system and hardware. It executes a copy of the
application’s code out of a code cache to avoid emulation overhead. Key challenges include man-
aging multiple threads, intercepting direct transfers of control from the kernel, monitoring code
modification to maintain cache consistency, and bounding the size of the code cache.

The cached code can then be executed natively, avoiding emulation overhead. However, shifting
execution into a cache that occupies the application’s own address space complicates transparency.
One of our most significant lessons is that DynamoRIO cannot run large, complex, modern appli-
cations unless it is fully transparent: it must take every precaution to avoid affecting the behavior
of the program it is executing.

To reach the widest possible set of applications (to be universal and practical), DynamoRIO
targets the most common architecture, IA-32 (a.k.a. x86), and the most popular operating systems
on that architecture, Windows and Linux. The efficiency of a runtime code manipulation system
depends on the characteristics of the underlying hardware, and the Complex Instruction Set Com-
puter (CISC) design of IA-32 requires a significant effort to achieve efficiency. To be universal,
DynamoRIO must handle dynamically-loaded, generated, and even modified code. Unfortunately,

since any store to memory could legitimately modify code on IA-32, maintaining cache consistency
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is challenging. Every write to application code must be detected, and system calls that load or un-
load shared libraries must be monitored. Further challenges arise because DynamoRIO resides on
top of the operating system: multiple threads complicate its cache management and other opera-
tions, and comprehensiveness requires intercepting kernel-mediated control transfers (e.g., signal
or callback delivery) and related system calls. Finally, DynamoRIO must dynamically bound its
code cache size to be deployable on production systems without disturbing other programs on the
same machine by exhausting memory resources.

DynamoRIO has met all of these challenges, and is capable of executing multi-threaded com-
mercial desktop and server applications with minimal overhead that averages from zero to thirty
percent. When aggressive optimizations are performed DynamoRIO is capable of surpassing na-
tive performance on some benchmarks by as much as forty percent. DynamoRIO is available to
the public in binary form [MIT and Hewlett-Packard 2002] and has been used by many researchers
for customized runtime applications via its interface, which supports the development of a wide
range of custom runtime tools. Furthermore, DynamoRIO is being commercialized in a security

product.

1.3 Contributions

Runtime code manipulation and code caching are mature fields of research. Many systems with
different goals and designs have utilized these technologies, including emulators, simulators, vir-
tual machines, dynamic optimizers, and dynamic translators. Chapter 10 compares and contrasts
the differences in the goals and technologies of these systems with DynamoRIO. We extend run-
time interposition technology in a number of different directions, the combination of which is

required to comprehensively execute inside the process of a modern application:

¢ Transparency (Chapter 3)
We show how to achieve transparency when executing from a code cache inside of the ap-

plication’s own process, and we classify the types of transparency that are required.

e Architectural challenges (Chapter 4)

We contribute several novel schemes for coping with the CISC IA-32 architecture: an adap-
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tive level-of-detail instruction representation to reduce decoding and encoding costs, efficient

condition code preservation, and reduction of indirect branch performance bottlenecks.

¢ Operating system challenges (Chapter 5)
We show how to handle thread complications in everything from application synchronization
to cache management to obtaining scratch space. Another contribution is handling kernel
transfers whose suspended context is kept in kernel mode, invisible to a user-mode run-
time system, and causing havoc on cache management and continuation. These problematic
transfers are ubiquitous in Windows applications. We also give a systematic treatment of
state-handling options across kernel transfers, show how to operate at the system-call level

on Windows, and enumerate the system calls that must be monitored to retain control.

o Code cache management (Chapter 6)
We present a novel algorithm for efficient cache consistency in the face of multiple threads
and self-modifying code, and extend the prior art with an incremental, runtime algorithm for

adapting the cache size to match the application’s working set size.

e Validation and evaluation on real-world programs (Chapter 7)
We show that it is possible to build a runtime interposition point in software that can achieve
zero to thirty percent overhead while executing large, complex, real-world programs with

dynamic behavior and multiple threads.

¢ Runtime client interface (Chapter 8)
We present our interface for building custom runtime code manipulation tools, which ab-
stracts away the details of the underlying system and allows a tool designer to focus on
manipulating the application’s runtime code stream. Our interface provides support to the

tool builder for maintaining transparency and allows efficient self-replacement of code in

our code cache, facilitating adaptive tools.

Case studies of several applications of DynamoRIO are presented in Chapter 9. Related work is
described in Chapter 10, and conclusions and future work are discussed in Chapter 11. To provide

background for the subsequent chapters, the next chapter (Chapter 2) describes how DynamoRIO
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incorporates the standard code caching techniques of linking and trace building, including novel

twists on trace starting conditions and basic block building across unconditional control transfers.
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Chapter 2

Code Cache

DynamoRIO is able to observe and manipulate every application instruction prior to its execu-
tion by building upon known techniques of code caching, linking, and trace building. This chapter
describes our implementation of these techniques, but delays discussing a number of important and
novel aspects of DynamoRIO to subsequent chapters: transparency (Chapter 3), architectural chal-
lenges such as instruction representation and branch prediction problems (Chapter 4), challenges
of interacting with the operating system (Chapter 5), and code cache management and consistency
(Chapter 6).

Figure 2.1 shows the components of DynamoRIO and the flow of operation between them. The
figure concentrates on the flow of control in and out of the code cache, which is the bottom portion
of the figure. The cached application code looks just like the original code with the exception of
its control transfer instructions, which are shown with arrows in the figure, and which must be
modified to ensure that DynamoRIO retains control. This chapter describes each component in
the figure: how we populate our code cache one basic block at a time (Section 2.1) and then link
the blocks together (Section 2.2). The code cache enables native execution to replace emulation,
bringing performance down from a several hundred times slowdown for pure emulation to an order
of magnitude (Table 2.2). Linking of direct branches reduces slowdown further, to around three
times native performance. Adding in indirect branch linking, by using a fast lookup of the variable
indirect branch target, pushes that performance further, down under two times. Our novel twist on
linking is to separate the stubs of code required for the unlinked case from the code for the block

itself. We achieve further performance gains by building traces (Section 2.3) in a slightly different
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START

dispatch

context switch

Figure 2.1: Flow chart of DynamoRIO. A context switch separates the code cache from Dy-
namoRIO code (though it all executes in the same process and address space). Application code
is copied into the two caches, with control transfers (shown by arrows in the figure) modified in
order to retain control.

Average slowdown

System Components SPECFP | SPECINT
Emulation ~300x ~300x

Basic block cache 3.54x 17.16x
+ Link direct branches 1.32x 3.04x
+ Link indirect branches 1.05x 1.44x
+ Traces 1.02x 1.17x
+ Optimizations 0.88x 1.13%

Table 2.2: Performance summary of the fundamental components of DynamoRIO described in this
chapter: a basic block cache, linking of direct and indirect branches, and building traces. Average
numbers for both the floating-point (SPECFP) and integer (SPECINT) benchmarks from the SPEC
CPU2000 suite are given (our benchmarks are described in Section 7.1). We overcame numerous
architectural challenges (Chapter 4) to bring each component to the performance level listed here.
The final entry in the table shows the best performance we have achieved with DynamoRIO, using
aggressive optimizations to surpass native performance for some benchmarks (see Section 9.2).

manner from other systems, and by our novel scheme of eliding unconditional control transfers

when building basic blocks (Section 2.4).
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original: add %eax, %ecx
cmp $4, %eax
jle 0x40106f

Figure 2.3: An example basic block consisting of three IA-32 instructions: an add, a compare, and
a conditional direct branch.

2.1 Basic Blocks

DynamoRIO copies application code into its code cache in units of basic blocks, sequences of
instructions ending with a single control transfer instruction. Figure 2.3 shows an example basic
block from an application. DynamoRIQO’s basic blocks are different from the traditional static
analysis notion of basic blocks. DynamoRIO considers each entry point to begin a new basic
block, and follows it until a control transfer is reached, even if it duplicates the tail of an existing
basic block. This is for simplicity of code discovery. Unlike static analyzers, DynamoRIO does not
have the luxury of examining an entire code unit such as a procedure. At runtime such information
may not be available, nor is there time to spend analyzing it.

The application’s code is executed by transferring control to corresponding basic blocks in
the code cache. At the end of each block, the application’s machine state is saved and control
returned to DynamoRIO (a context switch) to copy the next basic block. Figure 2.4 shows what
the example block looks like inside of DynamoRIO’s code cache. Before the targets of its exits
have materialized in the cache, they point to two exit stubs. Each stub records a pointer to a stub-
specific data structure so DynamoRIO can determine which exit was taken. At first glance, putting
the second stub first seems like an optimization to remove the jump targeting it, but as Section 2.2
will show, we use that jump for linking, and it is not worth optimizing for the rare unlinked case.

Table 2.5 shows statistics on the sizes of basic blocks in our benchmark suite. A typical basic
block consists of six or seven instructions taking up twenty or thirty bytes, although some blocks
can be quite large, in the thousands of bytes.

Figure 2.6 shows the performance of a basic block cache system. Pure emulation slows down
execution by about 300 times compared to native; directly executing the non-control flow instruc-
tions in a basic block cache, and only emulating the branches, brings that slowdown down to about

six times on average. Each successive addition of linking and trace building brings that perfor-
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fragment7:

stub0:

stubl:

add
cmp
jle
jmp
mov
mov
jmp
mov

mov

Jjmp

%eax, %ecx

$4, %eax

stub0

stubl

$eax, eax-slot
&dstub0,

context_switch

$eax

$eax, eax-slot
&dstubl,

context_switch

$eax

Figure 2.4: The example basic block from Figure 2.3 copied into DynamoRIO’s code cache. Each
exit stub records a pointer to its own data structure (dstub0 or dstubl) before transferring control
to the context switch, so that DynamoRIO can figure out which branch was taken. The pointer is
stored in a register that first needs to be spilled because this two-instruction combination is more
efficient than a ten-byte (slowly-decoded) store of the pointer directly to memory.
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Figure 2.6: Performance of a basic block cache system versus native execution. This graph shows
time, so smaller numbers are better.
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ﬁenchmark ]7# blocks ‘ Max bytes | Ave bytes | Max instrs bve instrs

ammp 2351 2293 22.59 520 6.70
applu 2687 33360 72.99 7570 16.84
apsi 4470 3763 34.88 771 9.73
art 1395 211 17.47 57 5.47
equake 1940 372 21.22 118 6.04
mesa 2884 1743 2252 364 6.31
mgrid 2321 3975 25.79 812 7.05
sixtrack 9270 3039 29.62 908 7.58
swim 2342 1332 18.32 310 5.50
wupwise 2665 4805 22.30 1023 6.71
bzip2 1693 193 19.20 35 5.61
crafty 6306 834 23.60 163 6.55
eon 6002 1247 40.33 206 8.65
gap 8645 1002 16.03 103 5.19
gee 36494 748 13.97 102 451
gzip 1600 193 17.33 29 5.20
mcf 1661 313 15.84 87 5.01
parser 6538 194 14.18 56 4,73
perlbmk 14695 1673 15.07 583 4.80
twolf 5781 280 19.31 68 5.86
vortex 12461 532 17.85 81 5.96
vpr 3799 298 17.52 68 5.52
excel 92043 1129 13.04 458 4.39
photoshp 206094 4023 16.35 834 5.13
powerpnt 153984 1206 12.61 458 4.34
winword 111570 2794 13.42 1009 4.52
| average | 26988 2752 22.05 | 646 | 6.30 |

Table 2.5: Sizes of basic blocks measured in both bytes and instructions (since IA-32 instructions
are variable-sized).

mance down still further (Table 2.2 summarizes the numbers).
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fragment7: add %eax, %ecx
cmp $4, %eax
jle fragment4?2
jmp fragment$8
stub0: mov %eax, eax-slot
mov &dstub0, %eax
jmp context_switch
stubl: mov %eax, eax-slot
mov &dstubl, %eax
Jjmp context_ switch

Figure 2.7: The example basic block from Figure 2.4 with both the taken branch and the fall-
through linked to other fragments in the code cache.

2.2 Linking

Copying each basic block into a code cache and executing it natively reduces the performance hit
of interpretation enormously. However, we are still interpreting each control transfer by going back
to DynamoRIO to find the target. If the target is already present in the code cache, and is targeted
via a direct branch, DynamoRIO can link the two blocks together with a direct jump, avoiding the
cost of a subsequent context switch. Figure 2.7 shows how the exit stubs of our example block
are bypassed completely after linking. The performance improvement of linking direct control
transfers is dramatic (Figure 2.8), as expensive context switches are replaced with single jumps.
Linking may be done either proactively, when a fragment is created, or lazily, when an exit is
taken. Section 4.5.1 explains why proactive linking is a better choice for IA-32. In either case, data
structures must be kept to record the outgoing links of each fragment. The incoming links must
also be kept, in order to efficiently delete a single fragment: otherwise, all other fragments must be
searched to make sure all links to the dead fragment are removed, or alternatively space must be
wasted with a placeholder in the dead fragment’s place. Single-fragment deletion is essential for
cache consistency (see Section 6.2). Incoming link records are also required to quickly shift links
from one fragment to another for things like trace head status changes (Section 2.3.2) or replacing
a fragment with a new version of itself (Section 8.2.3). Incoming links to non-existent fragments
must be stored as well, for which we use a furure fragment data structure as a placeholder. Once
an actual fragment at that target is built, it replaces the future fragment and takes over its incoming

link list. Future fragments can also be used to keep persistent state across fragment deletions and
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B Basic block cache
[] Basic block cache with direct linking
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Figure 2.8: Performance impact of linking direct control transfers, compared to the performance
of a basic block cache with no linking, versus native execution time.

re-creations, such as for cache capacity (Section 6.3.3) and trace head counters (Section 2.3.2).

We must be able to undo linking on demand, for building traces (Section 2.3), bounding time
delay of delivering signals (Section 5.3.5), fragment replacement (Section 8.2.3), and when delet-
ing a fragment. Unlinking requires either incoming link information or using a prefix on each
fragment. DynamoRIO uses incoming link information, as it is already needed for proactive link-
ing and other features.

The actual process of linking and unlinking boils down to modifying the exits of a fragment.
Examining Figure 2.7 and its unlinked version Figure 2.4 shows that each branch exiting a fragment
either points to its corresponding exit stub (the unlinked state) or points to its actual fragment target
(the linked state). Switching from one state to the other takes a single 32-bit store, which, if the

targets do not straddle cache lines or if the lock prefix is used, is atomic on all recent TA-32
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processors [Intel Corporation 2001, vol. 3] and thus can be performed in the presence of multiple
threads without synchronization.

Fortunately, on IA-32 we do not have reachability problems that systems on other architectures
faced [Bala et al. 1999]. The variable-length instruction set allows for full 32-bit addresses as
immediate operands, allowing a single branch to target any location in memory. A few specific
branch types take only eight-bit immediates, but we are able to transform these to equivalent 32-
bit-immediate branches (see Section 4.1.3).

Once an exit from a basic block is linked, the corresponding exit stub is not needed again unless
the exit is later unlinked. By locating the exit stubs in a separate cache from the basic block body,
we can delete and re-create exit stubs on demand as they are needed. This both compacts the cache,
reducing the working set size of the program, and reduces overall memory usage by deleting stubs
no longer needed. The performance impact of separating direct exit stubs is shown in Figure 2.9.
The resulting reduced instruction cache pressure helps benchmarks with larger code sizes, such as
photoshp and gcc in our suite. Memory savings are given in Section 6.3.5. About one-half of
all stubs are not needed at any given time (when not using them for profiling as in Section 7.3.3).
The other half are mainly exits whose targets have not yet been reached during execution (and may
never be reached).

Indirect branches cannot be linked in the same way as direct branches because their targets may
vary. To maintain transparency, original program addresses must be used wherever the application
stores indirect branch targets (for example, return addresses for function calls — see Section 3.3.3).
These addresses must be translated to their corresponding code cache addresses in order to jump
to the target code. This translation is performed as a fast hashtable lookup inside the code cache
(avoiding a context switch back to DynamoRIO). Figure 2.10 shows the performance improvement
of linking indirect control transfers. Benchmarks with more indirect branches, such as perlbmk
and gap, are more affected by optimizing indirect branch performance than applications with few
indirect branches, like swim (see Table 7.4 for the indirect branch statistics of our benchmark
suite).

The translation of indirect branches is the single largest source of overhead in DynamoRIO.
Why this is so, and our attempts to reduce the cost by both optimizing our hashtable lookup and

eliminating the translation altogether, are discussed in Section 4.2 and Section 4.3.
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Figure 2.9: Performance impact of separating direct exit stubs. Relative time impact is shown
compared to base DynamoRIO performance, so smaller numbers are better. As in all of our per-
formance measurements, noise produces an impact of up to one or even two percent (see Sec-
tion 7.1.1).

2.3 Traces

To improve the efficiency of indirect branches, and to achieve better code layout, basic blocks that
are frequently executed in sequence are stitched together into a unit called a trace. The superior
code layout and inter-block branch elimination in traces provide a significant performance boost,
as shown in Figure 2.11. Benchmarks whose hot loops consist of single basic blocks, such as
mgrid and swim, are not improved by traces; fortunately, such benchmarks already perform well
under DynamoRIO. One of the biggest benefits of traces is in avoiding indirect branch lookups by
inlining a popular target of an indirect branch into a trace (with a check to ensure that the actual
target stays on the trace, falling back on the full lookup when the check fails). This explains why

their biggest impact is often on benchmarks with many indirect branches.
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B Direct linking only

[] Direct and indirect linking
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Figure 2.10: Performance impact of linking indirect control transfers, compared to only linking

direct control transfers, versus native execution time.

Trace building is also used as a hardware instruction fetch optimization [Rotenberg et al. 1996],

and the Pentium 4 contains a hardware trace cache. Although the Pentium 4 hardware trace cache

stitches together IA-32 micro-operations, it is targeting branch removal just like a software trace

cache, and there is some competition between the two. The hardware cache has a smaller window

of operation, but its effects are noticeable. In Figure 2.11 the average overall speedup is 11% on the

Pentium 3 as opposed to just over 7% for the Pentium 4. The differences for individual benchmarks

are sometimes reversed (e.g., powerpnt and winword) for reasons we have not tracked down,

perhaps due to other differences in the underlying machines.
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Figure 2.11: Performance impact of traces on both a Pentium 3 and a Pentium 4, versus Dy-
namoRIO performance without traces.

2.3.1 Trace Shape

DynamoRIQ’s traces are based on the Next Executing Tail (NET) scheme [Duesterwald and Bala
2000]. Figure 2.12 shows two example traces created from sequences of basic blocks. As Duester-
wald and Bala [2000] show, a runtime system has very different profiling needs than a static system.
For static or offline processing, path profiling [Ball and Larus 1996] works well. However, its over-
heads are too high to be used online, especially in terms of missed opportunities while determining
hot paths. Another problem with many path profiling algorithms is a preparatory static analysis
phase that requires access to complete source code. These algorithms can only be used in a runtime
system by coordinating with a compiler [Feigin 1999]. General runtime profiling must be done in-
crementally, as code is discovered — all the code to be profiled is not known beforehand. Some

path profiling algorithms can operate online, such as bit tracing [Duesterwald and Bala 2000], but
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Figure 2.12: Building traces from basic blocks. Block A, as a target of a backward branch, is a
trace head with an associated execution counter. Once its counter exceeds a threshold, the next
executing tail is used to build the trace headed by A. In this example, the tail is BDEG. Block C,
as an exit from a (newly created) trace, becomes a secondary trace head. If it becomes hot, the
secondary trace shown will be created.

none identify hot paths quickly enough.

The NET trace creation scheme is specifically designed for low-overhead, incremental use.
Despite its simplicity, it has been shown to identify traces with comparable quality to more sophis-
ticated schemes [Duesterwald and Bala 2000]. NET operates by associating a counter with each
trace head. A trace head is either the target of a backward branch (targeting loops) or an exit from
an existing trace (called a secondary trace head). The counter is incremented on each execution
of the trace head. Once the counter exceeds a threshold (usually a small number such as fifty),
trace creation mode is entered. The next executing tail (NET) is taken to be the hot path. This
means that the next sequence of basic blocks that is executed after the trace head becomes hot is
concatenated together to become a new trace. The trace is terminated when it reaches a backward
branch or another trace or trace head.

DynamoRIO modifies NET to not consider a backward indirect branch target to be a trace head.
Consequently, where NET would stop trace creation at a backward indirect branch, we continue.

This has both an advantage and a disadvantage. The advantage is that more indirect branches
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Figure 2.13: Performance impact of using the NET trace building scheme versus DynamoRIO’s
trace building scheme. NET treats indirect and direct branches the same for trace head purposes,
while DynamoRIO does not treat a backward indirect branch target as a trace head. NET traces
perform worse than DynamoRIO’s traces on nearly all of our benchmarks.

will be inlined into traces, where with the NET scheme, half of the time a trace will stop at an
indirect branch. The disadvantage is that in pathological situations (e.g., a recursive loop where
the recursive call is indirect) unlimited loop unrolling can occur. We feel that the advantage is
worth the extra unrolling, and use a maximum trace size to limit code bloat. Figure 2.13, showing
performance, and Table 2.14, showing size, back up our choice: the average size increase is under
eight percent, while the performance improvement is as much as ten percent. We have not tracked
down the exact indirect branches in gap and the other benchmarks that are responsible for the
difference in trace performance.

The key insight is that more trace heads do not result in better traces. Since trace creation stops

upon reaching a trace head (to avoid code duplication), more trace heads can result in many tiny
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Benchmark | Trace cache

ammp 7.2%
applu 2.1%
apsi 5.8%
art 7.1%
equake 11.8%
mesa 5.9%
mgrid 8.0%
sixtrack 7.1%
swim 7.1%
wupwise 1.0%
bzip2 0.0%
crafty 5.4%
eon 17.3%
gap 8.2%
gcc 6.1%
gzip 4.6%
mcf 14.3%
parser 3.4%
perlbmk 4.5%
twolf 22.9%
vortex 4.0%
vpr 14.3%
excel 9.5%
photoshp 8.0%
powerpnt 13.4%
winword 5.8%
average [ 7.9% }

Table 2.14: Trace cache size increase from DynamoRIO’s changes to the NET trace building
scheme. The average size increase is under eight percent, which is a reasonable cost for achieving
performance improvements as high as ten percent (Figure 2.13).
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traces. By selectively eliminating trace heads that are targets of indirect branches, we try to build
traces across those branches.

However, DynamoRIO’s trace building scheme does do poorly in some extreme cases. An
example is a threaded interpreter, such as Objective Caml [Leroy 2003], where indirect branches
are used almost exclusively, causing DynamoRIO to build no traces. This is not a catastrophic
situation; we will simply not get the performance boost of traces.

To understand the shape of our traces, see Table 2.15. An average trace consists of four basic
blocks, about 29 instructions. More than one in two traces contains an inlined indirect branch, one
of the goals of trace building. Traces reduce DynamoRIO’s indirect branch translation overhead
significantly.

Table 2.16 shows the coverage and completion rates of our traces. We gathered these using our
exit counter profiling, which is discussed in Section 7.3.3. On average, only five traces are needed
to cover a full one-half of a benchmark’s execution time. Ten traces cover nearly two-thirds, and
fifty approaches seven-eighths. For completion, on average a trace is only executed all the way
to the end one-third of the time. However, execution reaches at least the half-way point in a trace

90% of the time.

2.3.2 Trace Implementation

To increment the counter associated with each trace head, the simplest solution is to never link
any fragment to a trace head, and perform the increment inside DynamoRIO (the first method in
Figure 2.17). As there will ncver be more than a small number of increments before the head
is turned into a trace, this is not much of a performance hit. We tried two different strategies
for incrementing without the context switch back to DynamoRIO. One strategy is to place the
increment inside the trace head fragment itself (the second method in Figure 2.17). However, this
requires replacing the old fragment code once the fragment is discovered to be a trace head (which
often happens after the fragment is already in the code cache, when a later backward branch is
found to target it). The cost of replacing the fragment overwhelms the performance improvement
from having the increment inlined (remember, the increment only occurs a small number of times
— DynamoRIO’s default is fifty).

A different strategy is to use a sharcd routine inside the cache to perform the increment (the
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Basic blocks || Instructions Bytes Inlined ind. br.
Benchmark | Max | Ave | Max | Ave Max | Ave | Max Ave
ammp 50 43| 531 | 32 2355|108 12 0.5
applu 40 3.3 ]| 4096 | 63 | 18068 | 278 13 0.3
apsi 41 46| 774 | 44| 3778 | 152 13 0.6
art 34 3.6 | 200 21 924 | 69 12 0.4
equake 38 44 198 25 824 | 92 14 0.6
mesa 45 54 669 | 39| 2270 | 136 16 0.8
mgrid 40 43| 815 37| 3984 | 137 13 0.7
sixtrack 53 431 926 31| 3113 111 17 0.5
swim 40 43| 313 | 27 1341 | 92 13 0.7
wupwise 36 5401034 | 45| 4827 | 146 12 0.6
bzip2 54 3.0 303 | 20 936 | 71 5 0.2
crafty 69 3.4 530 23| 2006| 83 14 0.3
eon 49 55 570 40| 2271 130 13 1.1
gap 66 37| 292 | 19 752 | 53 22 0.6
gee 48 37 190 18 750 | 55 13 0.3
gzip 26 321 1491 18 612 | 63 9 0.3
mcf 35 471 215 | 23 732 | 713 11 0.7
parser 48 29 210 15 601 | 45 15 0.2
perlbmk 57 40| 604 21 1712 | 63 13 0.4
twolf 52 5014 270 27 853 | 93 14 0.7
vortex 82 58| 402 | 47| 1244 | 137 16 0.5
vpr 38 4.6 211 26 699 | 78 12 0.6
excel 121 4.6 | 438 22| 1262 | 67 23 0.8
photoshp 62 4.1 394 | 37| 1210 109 24 0.8
powerpnt 21 4.3 95| 20 303 | 59 6 0.8
winword 321 4411994 | 22| 5880 | 66 99 0.7
average | 60| 437 632] 29 2435] 98] 17] 06|

Table 2.15: Trace shape statistics. The numbers for each benchmark are an average over all of
that benchmark’s traces. (See Table 7.3 for trace counts for each benchmark.) The maximum and
the arithmetic mean are shown for each of four categories: number of basic blocks composing
each trace, number of application instructions in each trace, number of bytes in those instructions
(i.e., the sizes given are for the original application basic blocks that are stitched together, not the
resulting trace size in the code cache, which would include exit stubs, prefixes, and indirect branch
comparison code), and number of indirect branches inlined into each trace.
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Coverage Completion
Benchmark | Top 5 { Top 10 | Top 50 End Half
ammp 80.4% | 92.6% | 99.5% | 23.7% | 93.6%
applu 58.3% | 76.6% | 99.4% || 17.7% | 96.8%
apsi 46.1% | 63.2% | 94.3% || 33.1% | 93.7%
art 71.6% | 84.5% | 100.0% || 24.6% | 90.8%
equake 69.8% | 85.4% | 99.3% | 25.8% | 91.3%
mesa 449% | 653% | 98.9% | 34.6% | 92.5%
mgrid 94.9% | 98.9% | 100.0% || 29.4% | 93.9%
sixtrack 82.7% | 98.7% | 99.9% | 41.4% | 94.0%
swim 99.9% | 99.9% | 100.0% || 36.4% | 95.9%
wupwise 72.2% | 83.6% | 94.7% || 24.6% | 92.4%
bzip2 36.7% | 50.6% | 90.6% | 25.6% | 90.0%
crafty 159% | 24.5% | 53.5% | 33.8% | 85.4%
eon 22.8% | 35.7% | 76.2% | 30.4% | 87.5%
gap 313% | 47.5% | 81.5% | 44.7% | 89.5%
gce 27.0% | 33.2% | 47.7% | 41.9% | 90.3%
gzip 36.2% | 58.3% | 97.5% | 26.8% | 88.5%
mcf 542% | 78.9% | 97.6% || 31.9% | 89.8%
parser 16.3% | 24.0% | 54.5% || 36.4% | 89.8%
perlbmk 65.9% | 76.0% | 91.6% || 38.2% | 89.0%
twolf 243% | 40.7% | 81.4% || 27.1% | 91.0%
vortex 42.6% | 56.2% | 81.9% | 48.0% | 92.5%
vpr 33.5% | 53.9% | 96.8% | 34.9% | 86.8%
excel 60.2% | 86.5% | 98.0% | 55.3% | 84.7%
photoshp 29.0% | 36.9% | 57.7% || 23.0% | 90.7%
powerpnt | 66.9% | 87.1% | 99.8% | 40.2% | 88.2%
winword 17.8% | 27.1% | 49.9% | 62.1% | 86.5%

average | 50.1% | 64.1% | 86.2% | 34.3% | 90.6% |

Table 2.16: Trace coverage and completion statistics. The numbers for each benchmark are an
average over all of that benchmark’s traces. For coverage, the percentages of total trace execution
time spent in the top five, ten, and fifty traces are shown in the first three columns, respectively.
(Trace execution time is very close to total execution time for nearly all of our benchmarks, as
shown in Table 7.8.) The fourth column shows how frequently execution makes it to the end of
the trace (without exiting early). The final column shows the percentage of the time that execution
makes it to the second half (defined in terms of exits) of the trace.
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dispatch: increment counter

context switch

Figure 2.17: Three methods of incrementing trace head counters: exiting the cache to perform the
increment in DynamoRIO code, re-writing the trace head to increment its counter inline, and using
a shared increment routine inside the code cache.

third method in Figure 2.17). When discovering that a fragment is a trace head, all fragments
pointing to it can be changed to instead link to the increment routine. This link change is most
easily done when incoming links are recorded (see Section 2.2). The increment routine increments
the counter for the target trace head and then performs an indirect branch to the trace head’s code
cache entry point. Since a register must be spilled to transfer information between the callihg
fragment and the increment routine, the routine needs to restore that register, while keeping the
indirect branch target available. Only two options allow both: storing the indirect branch target in
memory, or adding a prefix to all potential trace heads (all basic blocks, unless blocks are replaced
once they are marked as trace heads, which as mentioned earlier is expensive) that will restore
the register containing the target to its application value. We chose to store the target in memory,
though this has ramifications for self-protection (see Section 9.4.5).

Incrementing the counter without leaving the code cache drastically reduces the number of
exits from the cache (Table 2.18). Surprisingly, the performance difference (Figure 2.19) is no
more than noise for nearly all of our benchmarks. The explanation is that code cache exits are not
a major source of overhead because the number of them is already small. The benchmarks that

it does make a difference on are those that execute large amounts of code with little re-use, our
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Figure 2.19: Performance impact of incrementing trace head counters inside the code cache, versus
exiting the cache to perform increments inside DynamoRIO.

desktop benchmarks, and are spending noticeable time entering and exiting the cache.

Indirect branches targeting trace heads present some complications. For the first increment
method of not linking to trace heads, the hashtable(s) used for indirect branches must not contain
trace heads at all, to avoid directly targeting a trace head and skipping its counter increment. The
most straightforward way is to use two separate hashtables, one for basic blocks and one for traces,
with only the trace hashtable being consulted when resolving an indirect branch. However, this can
result in terrible performance on programs with pathological trace building problems, such as the
threaded interpreters mentioned above, since basic blocks will never be indirectly linked to other
basic blocks. One solution is to use a different lookup routine for basic blocks that looks in both
the basic block and trace hashtables, but that requires support for fragments to exist in multiple
hashtables simultaneously. A simpler solution that preserves a one-hashtable-per-fragment invari-

ant (which has advantages for a traditional chained hashtable, as explained in Section 4.3.3) is
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Code cache exits

Benchmark | Exit to incr | Incr in cache | % Reduction | Instrs between exits
ammp 37491 18940 49% 10040410
applu 40721 16570 59% 98173295
apsi 91341 55624 39% 35475064
art 20803 8609 59% 5969804
equake 35974 17490 51% 4729822
mesa 33257 17830 46% 9500127
mgrid 36878 20641 44% 173472495
sixtrack 178403 118093 34% 11307727
SWim 31539 18197 42% 41273912
wupwise 33436 21265 36% 26797111
bzip2 27197 7471 73% 3364326
crafty 151004 65280 57% 1415142
eon 101240 67845 33% 785384
gap 208695 122664 41% 1175068
gce 995130 537771 46% 75366
gzip 26011 10167 61% 2887328
mcf 24198 12421 49% 2051516
parser 192279 79012 59% 1572238
perlbmk 315179 195251 38% 360501
twolf 159911 91408 43% 1852202
vortex 190478 137046 28% 650459
vpr 64522 34318 47% 1810481
excel 1919330 1735839 10% N/A
photoshp 10804377 9986015 8% N/A
powerpnt 19475416 19070649 2% N/A
winword 1151742 866214 25% N/A
average 42%

Table 2.18: The number of code cache exits. The first column shows the number of exits when we
must exit the cache to increment a trace head counter. Column two shows the number when we
perform increments in the cache itself. The third column gives the resulting reduction in exits. To
give an idea of how infrequent exits are, the final column divides the total instructions executed by
the first column, resulting in an average number of instructions executed between code cache exits.
This numbers in the millions for most benchmarks.
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to have two disjoint hashtables: one that contains trace heads and one that contains all non-trace
heads, both traces and basic blocks. For the second increment method, the indirect branch lookup
routine must be modified to check whether its target is a trace head. If so, it should transfer control
to the shared increment routine and pass it a pointer to the target fragment.

To avoid losing the trace head count due to eviction of the trace head from the cache for capacity
reasons (see Section 6.3), it is best to use persistent trace head counters. When a trace head is
deleted, its count can be stored in the future fragment data structure used to store incoming links
for a deleted or not-yet-created fragment (see Section 2.2). Once the trace head is re-created, the
existing count can be transferred so that it does not start at zero. Persistent trace head counters
are important for maintaining trace building progress, and thus performance, when the basic block
cache size is limited (see Section 6.3.2).

Once a trace head’s counter exceeds the trace threshold, a new trace is built by executing basic
blocks one at a time. Each block’s outgoing exits are unlinked, so that after execution it will
come back to DynamoRIO in order to have the subsequent block added to the trace. Each block is
marked as un-deletable as well, to avoid a capacity miss that happens to evict this particular block
from ruining the trace being built. After being copied into the trace-in-progress and being executed
to find the subsequent basic block, the current block is re-linked and marked as deletable again.
Then the next block is unlinked and the process repeats. Once the subsequent block is known, if
the just-executed block ends in a conditional branch or indirect branch, that branch is inlined into
the trace. For a conditional branch, the condition is reversed if necessary to have the fall-through
branch direction keep control on the trace, as shown in Figure 2.20. The taken branch exits the
trace. For an indirect branch, a check is inserted comparing the actual target of the branch with the
target that will keep it on the trace. If the check fails, the trace is exited.

Once a trace is built, all basic blocks targeted by its outgoing exits automatically become sec-
ondary trace heads. This ensures that multiple hot tails of a trace head will all become traces. The
trace head that caused trace creation is removed from the code cache, as its execution is replaced
by the new trace.

The shape of basic blocks has a large impact on trace creation because it changes the trace
heads. Section 2.4 discusses one variant on basic block shape and how it affects traces.

Traces and basic blocks are treated in the same manner once they are copied to the cache.
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blockl:

0x08069905 cmp (%eax), %edx
0x08069907 jnb S0x8069%a02 <block3>
block?2:

0x0806990d mov $4, %esi
block3:
0x08069a02 mov 0x810fd6c, %edx

trace:
Ox4c3f584e cmp (%eax), %edx
0x4c3£5850 jb <fragment for block2>
0x4c3f5856 mov 0x810fdec, %edx

Figure 2.20: An example of reversing the direction of a conditional branch in a trace. Three basic
blocks from the application are shown. The first block ends in a conditional branch, whose fall-
through target is the second block. During trace creation, the conditional branch is taken, and so
the first and third blocks are placed in the trace. The direction of the conditional branch is reversed
to make the fall-through target the third block and stay on the trace.

We use the term fragment to refer to either a basic block or a trace in the code cache. Both
types of fragment are single-entry, multiple-exit, linear sequences of instructions. As discussed in

Section 4.1.1, these features facilitate optimizations and other code transformations.

2.3.3 Alternative Trace Designs

We considered several alternative trace designs.

Supertraces

DynamoRIO profiles basic blocks to build hot sequences of blocks, or traces. We attempted to add
another generation, profiling traces to build hot sequences of traces, or supertraces, by taking the
results of exit counter profiling (Section 7.3.3) and connecting traces joined by direct exits into
larger, self-contained units. Figure 2.21 shows some example supertraces determined for three
benchmarks. For a benchmark like mgrid where traces are already capturing the hot code well, the
supertraces are identical to the traces. The supertraces are more interesting for other benchmarks,

where they combine several traces. However, for some benchmarks the supertraces we came up
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Figure 2.21: Example supertraces from analysis of exit counter profiling results. Each square is
one trace, labeled with the percentage of total application execution time it covers. The main
exits from each trace are labeled with their frequency and joined to their targets to produce closed
groups, whose total execution time is shown. In the top example, from mgrid, traces already
capture the hot code and the supertraces are identical to the traces. The rest of the examples show
how combinations of traces were found to turn into supertraces.

with were too large to be practical (there was no small set of traces that formed a closed set).
Building larger traces by stitching together direct exits is not as important as inlining indirect

exits into traces. Furthermore, very large traces may be detrimental to performance, just as too

much loop unrolling is bad. Traces are better improved by targeting them to the performance

bottlenecks of the application, rather than making them longer.

Higher-Level Traces

When operating on a layered system such as an interpreter with a higher-level application executing
on a lower-level program, our trace building will be blind to the higher-level code and will try to
find frequently executed code streams in the lower-level interpreter. This often leads to traces that
capture a central dispatch loop, rather than specific sequences through that loop. In Section 9.3 we

describe how to build logical traces rather than lower-level native traces to capture hot code in a
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higher-level application.

Local Contexts

The problem with longer traces is code duplication. Without internal control flow, we must unroll
loops in order to build a trace that reaches our target. One alternative is to add internal control
flow to traces. We can, however, maintain the attractive linear control flow properties of all our
code fragments by using an idea we call local contexts. Each trace, in essence, has its own private
code cache consisting of basic block fragments for each constituent element of the trace. These
fragments are private to the trace and can only be accessed after entering the top of the trace. Exits
from the trace return to the regular code cache. This local context is useful for any situation where a
single trace must reach from one code point to another, such as from a call point to a corresponding
return in order to inline the return. We have also proposed local context code duplication to aid in

function pointer analysis for building a secure execution environment [Kiriansky et al. 2003].

Traces in Other Systems

NET was used for building traces in the Dynamo [Bala et al. 2000] system. Mojo [Chen et al.
2000] also used NET, with modified trace termination rules, though they never specified what those
modifications were. The rePLay system [Fahs et al. 2001, Patel and Lumetta 1999] uses hardware
to build traces based on branch correlation graphs. The Sable Java virtual machine [Berndl and
Hendren 2003] combines the simple profiling of NET with branch correlation to create traces with
higher completion rates than ours.

In an earlier study on compilation unit shapes for just-in-time compilers [Bruening and Duester-
wald 2000], we found that inlining small methods is critical for Java performance. The same ap-
plies to IA-32, where there is a large discrepancy between the performance of a return instruction
and the general indirect jump it must be transformed into inside the code cache (Section 4.2). In
Section 9.2.4 we present a variation on our trace building that actively tries to inline entire proce-
dure calls into traces, which is successful at improving performance on a number of benchmarks.
Again, tailoring traces toward indirect branch inlining (in this case returns) is where we have found

performance improvements.
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2.4 Eliding Unconditional Control Transfers

A simple optimization may be performed when an unconditional jump or call instruction is en-
countered while building a basic block. Instead of stopping the block at the control transfer, it can
be elided and the block continued at its target, which is statically known. This is an initial step
toward building traces, which are described in Section 2.3.

Eliding unconditional control transfers provides a code layout benefit. However, it leads to
duplicated code if the unconditional target is also targeted by other branches, since those other
targets will build a separate basic block. If there are few such duplications, however, eliding
unconditionals can result in less memory use because there are fewer basic blocks and therefore
fewer corresponding data structures. We found that the performance and memory impact of eliding
unconditionals varies significantly by application.

Figure 2.22 gives the performance impact of eliding unconditionals. Numbers both with and
without traces are given, since eliding changes trace creation, as we discuss later. The apsi bench-
mark improves significantly, entirely due to unconditional jumps. The more minor improvements
for the other benchmarks are mostly from direct calls. But a few benchmarks actually slow down,
and the harmonic mean is just a slight improvement well within the noise.

Table 2.23 shows the code cache size impact. In some cases, more memory is used when
eliding, due to duplicated code. However, for many applications, especially large Windows ap-
plications, there is a significant memory savings when eliding conditionals, because many of the
unconditional targets are not targets of other branches, and so eliding ends up reducing the number
of exit stubs (as well as data structures in the heap). Because of this memory benefit on these
applications, DynamoRIO elides unconditional control transfers by default.

Table 2.24 shows the effect on individual basic block size when eliding unconditionals. The
number of basic blocks drops since one block is now doing the work of two in all cases where the
unconditional target is not reached through other branches. The average size of a basic block rises
by about one-half. The maximum size does not change much — it seems that the extremely large
blocks in these benchmarks only rarely contain unconditional transfers.

Care must be taken to maintain application transparency when eliding unconditionals. If the

target is invalid memory, or results in an infinite loop, we do not want our basic block builder to
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Benchmark | Basic block cache | Trace cache H No traces
ammp -5.9% 10.8% -3.6%
applu -41.2% -111.6% -7.4%
apsi -6.9% -1.4% 1.7%
art -11.1% 8.9% -6.3%
equake -2.6% 13.7% -2.7%
mesa -6.9% 5.9% -5.0%
mgrid -25.0% -81.2% -5.5%
sixtrack 0.2% -1.2% 4.9%
swim -12.6% -10.6% -6.3%
wupwise -10.1% -10.5% -3.2%
bzip2 -6.9% 0.0% -2.5%
crafty 2.5% 12.3% 6.0%
eon 8.8% 18.4% 7.0%
gap 1.3% 9.3% 5.7%
gcc 9.6% 16.4% 9.9%
gzip -9.9% 7.7% -4.1%
mcf -9.9% 14.3% -71.7%
parser 4.1% 9.9% 4.9%
perlbmk 9.0% 14.6% 8.4%
twolf 0.9% 37.0% 6.7%
vortex 17.8% 24.3% 16.8%
vpr 4.0% 19.9% 4.6%
excel -3.1% -2.0% 0.7%
photoshp -13.7% -16.1% -9.4%
powerpnt -6.2% -12.2% -2.1%
winword -3.4% -1.2% -0.2%
average -4.5% 29% | 0.7%

Table 2.23: Cache size increase of eliding unconditionals. The first two columns give the basic
block and trace cache increases, respectively. The final column gives the basic block increase when

traces are disabled.
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Benchmark | # blocks | Max bytes | Ave bytes | Max instrs | Ave instrs
ammp -16.7% 1.4% 29.8% 1.2% 31.9%
applu -28.6% 0.0% 35.5% 0.0% 38.2%
apsi -23.7% 0.4% 61.6% 0.4% 69.8%
art -18.1% 0.0% 29.8% 0.0% 29.8%
equake -16.1% 22.3% 28.2% 5.1% 28.5%
mesa -17.5% 2.1% 28.6% 0.0% 29.6%
mgrid -20.8% 0.2% 48.2% 0.4% 52.2%
sixtrack -19.8% 0.5% 70.8% 0.3% 85.6%
swim 21.2% 0.7% 44.2% 1.0% 46.0%
wupwise -21.9% 0.2% 59.8% 0.3% 63.2%
bzip2 -13.5% 0.0% 26.5% 45.7% 29.9%
crafty -10.0% 0.0% 353% 0.0% 40.3%
eon -16.0% 4.3% 39.2% 4.4% 56.9%
gap -12.0% 1.8% 45.2% 7.8% 54.7%
gce -5.8% 0.7% 50.0% 1.0% 59.9%
gzip -17.6% 0.0% 37.6% 58.6% 38.7%
mcf -20.0% 0.0% 32.3% 0.0% 31.9%
parser -10.0% 21.1% 47.7% 30.4% 49.9%
perlbmk -10.0% 1.1% 52.1% 1.5% 60.6%
twolf -11.8% 1.4% 34.4% 1.5% 36.9%
vortex -8.4% 4.3% 102.0% 101.2% 105.2%
vpr -14.1% 59.7% 51.7% 57.4% 55.4%
excel -13.0% 5.4% 42.5% 4.6% 44.9%
photoshp -9.1% 0.1% 86.1% 0.0% 90.4%
powerpnt -12.5% 0.0% 51.0% 4.6% 53.9%
winword -12.5% 0.0% 45.5% 0.0% 49.1%
| average | -15.4% | 49% |  46.8% | 126% | 51.3% |

Table 2.24: Effect on basic block sizes when eliding unconditionals, measured in both bytes and
instructions (since IA-32 instructions are variable-sized). Each number is the percentage increase
when eliding versus not eliding (the base numbers of not eliding are in Table 2.5).
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Figure 2.22: Performance impact of eliding unconditional control transfers when building basic
blocks.

prematurely trigger that condition (this is error transparency — see Section 3.3.5). We check the
target of the branch to see if it will result in a read fault (at the same time that we check its memory
region for cache consistency purposes (Section 6.2.4)). To handle the infinite loop problem of
blocks like that shown in Figure 2.25, our implementation uses a maximum basic block size.
Eliding unconditionals impacts trace building, since eliding backward unconditionals changes
which blocks will become trace heads. As Figure 2.22 shows, apsi is particularly sensitive to
eliding. It has basic blocks that are joined by backward unconditional jumps. If we do not elide
such a jump, the second block will be its own trace head, and we will never end up placing the two
blocks adjacent to each other, since traces always stop upon meeting other traces or trace heads. If
we do elide the jump, the second block will not be a trace head, but we will have achieved superior

code layout. Not considering a backward unconditional jump to mark trace heads could make a
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loop: mov $0, %eax
int $0x80
jmp loop

Figure 2.25: An example of a troublesome basic block to decode when following unconditional
control transfers. This block is for Linux kernels that use interrupt 80 as the system call gateway.
System call zero is the exit system call. When this block is executed natively, the process exits
prior to reaching the jump instruction.

difference, but the second block is often also targeted by a backward conditional jump. Eliding has
an additional impact on building traces at call sites. When not eliding, a single basic block will
represent the entrance of a callee. This makes it more difficult to create call-site-specific traces
that cross into the callee. Eliding can enable the creation of more specific traces by ensuring that
a trace that reaches the call site also reaches into the callee. The performance impact of eliding,
independent of traces (with traces turned off), is shown as the second dataset in Figure 2.22. The
improvement is less than it is when including traces (though still slightly positive on average),

showing that eliding is complementary to, rather than competing with, trace building.

2.4.1 Alternative Super-block Designs

As eliding unconditionals proved, building larger units than classical basic blocks often reduces
memory usage (since the data structures required to manage a small basic block are often larger
than the block itself) and improves code layout. An area of future work is to allow internal control
flow and build blocks that follow both sides of a conditional branch. Incorporating related work on

increasing block sizes [Patel et al. 2000] could also be investigated.

2.5 Chapter Summary

This chapter introduced the fundamental components of DynamoRIO. Beginning with executing
the application one basic block at a time out of a code cache, the crucial performance additions
of direct linking, indirect linking via hashtable lookup, and traces bring code cache execution
close to native speed. With this chapter as background, subsequent chapters turn to more novel

contributions of this thesis, beginning with transparency in Chapter 3.
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Chapter 3

Transparency

DynamoRIO must avoid interfering with the semantics of a program while it executes. Full
transparency is exceedingly difficult for an in-process system that redirects all execution to a code
cache. DynamoRIO must have its hands everywhere to maintain control, yet it must have such a
delicate touch that the application cannot tell it is there.

The further we push transparency, the more difficult it is to implement, while at the same time
fewer applications require it. It is challenging and costly to handle all of the corner cases, and
many can be ignored if we only want to execute simple programs like the SPEC CPU [Standard
Performance Evaluation Corporation 2000] benchmarks. Yet, for nearly every corner case, there
exists an application that depends on it. For example, most programs do not use self-modifying
code. But Adobe Premiere does. Another example is using code cache return addresses (see Sec-
tion 3.3.3), which improve performance on our SPEC benchmarks but violate transparency enough
to prevent execution of our desktop benchmarks. We found that every shortcut like this violates
some program’s dependencies. One of our most significant lessons from building DynamoRIO is
that to run large applications, DynamoRIO must be absolutely transparent.

To achieve transparency, we cannot make any assumptions about a program’s stack usage, heap
usage, or any of its dependences on the instruction set architecture or operating system. We can
only assume the bare minimum architecture and operating system interfaces. We classify aspects of
transparency under three rules of transparency: avoid resource usage conflicts (Section 3.1), leave
the application unchanged when possible (Section 3.2), and pretend the application is unchanged

when it is not (Section 3.3).
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3.1 Resource Usage Conflicts

Ideally, DynamoRIO’s resources should be completely disjoint from the application’s. That 1s
not possible when executing inside the same process, but DynamoRIO must do its best to avoid

conflicts in the usage of libraries, heap, input/output, and locks.

3.1.1 Library Transparency

Sharing libraries with the application can cause problems with re-entrancy and corruption of persis-
tent state like error codes (see Section 5.2.2). DynamoRIO’s dispatch code can execute at arbitrary
points in the middle of application code. If both the application and DynamoRIO use the same
non-re-entrant library routine, DynamoRIO might call the routine while the application is inside
it, causing incorrect behavior. We have learned this lesson the hard way, having run into it several
times. The solution is for DynamoRIO’s external resources to come only from system calls and
never from user libraries. This is straightforward to accomplish on Linux, and most operating sys-
tems, where the system call interface is a standard mechanism for requesting services (Figure 3.1a).
However, on Windows, the documented method of interacting with the operating system is not via
system calls but instead through an application programming interface (the Win32 API) built with
user libraries on top of the system call interface (Figure 3.1b). If DynamoRITO uses this interface,
re-entrancy and other resource usage conflicts can, and will, occur. To achieve full transparency on
Windows, the system call interface (Figure 3.1¢) must be used, rather than the API layer. (Other
reasons to avoid the API layer are simplicity and robustness in watching application requests of
the operating system (Section 5.4) and in intercepting callbacks (Section 5.3.1).) Unfortunately,
this binds DynamoRIO to an undocumented interface that may change without notice in future
versions of Windows.

Our initial implementation of DynamoRIO on Windows used the Win32 API. However, as
we tried to run larger applications than just the SPEC CPU2000 [Standard Performance Evalua-
tion Corporation 2000] benchmarks, we ran into numerous transparency issues. We then began
replacing all Win32 API usage with the corresponding Native API [Nebbett 2000] system calls.
DynamoRIO can get away with using some stateless C library routines (e.g., string manipula-

tion), although early injection requires no library dependences (other than ntdl11l.d11l — see

60



application
|

b) =i Win32 API
y
application Win32 DLLs
a) w—l- system call gateway C) i system call gateway

.......

Linux Windows

Figure 3.1: On the left is the usual relationship between an application and the operating system:
the application invokes operating system services via a system call gateway. DynamoRIO can
avoid application resource conflicts by operating at this system call layer, only requesting external
services via system calls (a). On Windows, however, there is a layer of user-mode libraries that
intervene, as shown on the right. The documented method for an application to request operating
system services is through the Win32 application programming interface (Win32 API). This APl is
implemented in a number of user libraries, which themselves use the system call gateway to com-
municate with the operating system. Transparency problems result if DynamoRIO also operates
through the Win32 API (b). The solution is to operate at the undocumented system call layer (c).

Section 5.5). The Native API is not officially documented or supported, but we have little choice
but to use it.

On Linux we had some problems with using the C library and LinuxThreads. Our solution
(Section 3.2.1) of using the __1ibc_ routines raised more issues, however. The GNU C li-
brary [GNU C Library] changed enough between versions 2.2 and 2.3 with respect to binding
to these routines that DynamoRIO built against one version is not binary compatible with the other
version. We also ran into problems dealing with signal data structures at the system call level and
via the C library simultaneously. Some of these structures have different layouts in the kernel than
in g1ibc. Were we completely independent of the C library we could solely use the kernel version;
in our implementation we must translate between the two. It is future work to become completely

independent of all user libraries.
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3.1.2 Heap Transparency

Memory allocated by DynamoRIO must be separate from that used by the application. First,
sharing heap allocation routines with the application violates library transparency (Section 3.1.1)
— and most heap allocation routines are not re-entrant (they are thread-safe, but not re-entrant).
Additionally, DynamoRIO should not interfere with the data layout of the application (data trans-
parency, Section 3.2.3) or with application memory bugs (error transparency, Section 3.3.5). Dy-
namoRIO obtains its memory directly from system calls and parcels it out internally with a custom
memory manager (see Section 6.4). DynamoRIO also provides explicit support in its customiza-
tion interface to ensure that runtime tools maintain heap transparency, by opening up its own heap

all