
Compiling Functional Reactive Macroprograms
for Sensor Networks

by

Ryan Rhodes Newton

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

MASSACHUSETTS INSTITUTE OF

January 2005

TECHNOLOGY

(Massachusetts Institute of Technology 2005. All rights reserved.

Author ..
Department of Electrical Engineering and Computer Science

Janyary 31, 2005

Certified by

Professor of Electrical Engineering
Arvind

and Computer Science
Thesis Supervisor

Accepted by ,-..-.. ..-..-. ...-_.........
Arthur C. Smith

Chairman, Department Committee on Graduate Students

LIBRARIES

S~CHUS:i INSTmrE
OF TECHNOLOGY

MAR 14 005 I 1
L f f i L Z L J- -

IARCHIVES
t

___ I__� ·_·_ ___·_��_I_

Compiling Functional Reactive Macroprograms

for Sensor Networks

by

Ryan Rhodes Newton

Submitted to the Department of Electrical Engineering and Computer Science
on January 31, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science

Abstract
Sensor networks present a number of novel programming challenges for application
developers. Their inherent limitations of computational power, communication band-
width, and energy demand new approaches to programming that shield the developer
from low-level details of resource management, concurrency, and in-network process-
ing. To answer this challenge, this thesis presents a functional macroprogramming
language called Regiment. The essential data model in Regiment is based on regions,
which represent spatially distributed, time-varying collections of state. The program-
mer uses regions to define and manipulate dynamic sets of sensor nodes . A first
compiler for Regiment has been constructed, which implements the essential core of
the langugae on the TinyOS platform. This thesis presents the compiler as well as
an intermediate language developed to serve as a Regiment compilation target.

Thesis Supervisor: Arvind
Title: Professor of Electrical Engineering and Computer Science

3

· __� I_ ____�__�_ 1__··__�1_1 ·_ __I·_ ____--�-�-UII�IIICI II�

Acknowledgments

I would like to thank Professor Arvind for teaching me how to sell systems for building

systems; Matt Welsh for his macroprogramming perspective and his hand in Regi-

ment's design; and Gerald Sussman for introducing me to Amorphous Computing. I

would also like to thank Nirav Dave, Michael Pellauer, Greg Morisett and Norman

Ramsey for their enlightening discussion on languages and functional programming.

I would especially like to thank my wife for her unwaivering support, including

reading drafts. Also I must thank our children, Aspen and Nimbus, for their unwaiver-

ing ... purring. And, of course, I thank my parents for being supportive enough that

I can take them for granted.

5

- - - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ __

Contents

1 Introduction 11

2 The Regiment Programming Language 15

2.1 Related Work 15

2.2 The functional macroprogramming approach 17

2.2.1 Why a functional language? 17

2.3 The Regiment language 19

2.3.1 Fundamentals: space and time 20

2.3.2 Areas, Regions, and Anchors 21

2.3.3 Basic operations 23

2.3.4 Spatial operations 24

2.3.5 Example programs 26

2.3.6 Feedback and exception handling 29

3 Token Machine Intermediate Language 31

3.1 Introduction 31

3.2 Related Work 33

3.3 Distributed Token Machines 35

3.3.1 Execution Model 35

3.3.2 Handlers and their Communication Interface 37

3.4 Token Machine Language 39

3.4.1 Returning subroutines 41

3.5 Example Applications of TML 43

7

3.5.1

3.5.2

3.5.3

3.5.4

3.6 TML

Gradients.

Timed Data Gathering

Distributed Event Detection . .

Leader Election

Discussion .

4 A Regiment Compiler

4.1 Regiment Compilation: Informal Intuition

4.2 Current Language and its Restrictions .

4.2.1 Query Circuits.

4.2.2 Evaluation Ordering and Query Circuits

4.3 Compiler Structure and Simulator

4.4 Static Elaboration

4.5 Preprocessing and Normalization

4.6 Analysis and Annotation of the Macroprogram

4.6.1 Add Heartbeats.

4.6.2 Add Control Flow.............

4.6.3 Add Virtual Places

4.6.4 Add Routing.

4.7 Deglobalize

4.7.1 Formation and Membership Tokens . .

4.7.2 Per Operation Code Generation

4.7.3 Returning Data to the User

4.7.4 Simple Code Generation Example

5 Conclusion

8

. 4 4

. 46

. 4 7

. 4 8

. 49

51

........... . .52
54

56

57

59

60

61

62

63

64

66

66

67

67

68

70

........ . .71
75

_II -

..........................
............

.............

.............

.............
............

.............

.............

.............

.............
............

.............
............

.............

List of Figures

2-1 Regiment's basic data types (along with some helpful functions) . 25

3-1 The structure of a node in the DTM model. 36

3-2 The ingredients in the TML system. DTM is the underlying abstract

model implemented by TML. 44

4-1 A simple query circuit. Double-boxed operators take and return re-

gions, single boxed ones streams, and afold reduces regions to streams.

Operators returning events are outlined with hexalateral boxes, and op-

erators returning basic (non-monadic) values have have rounded edges.

.......................................57
4-2 A simple program before and after static elaboration 61

4-3 Grammar for core (desugared) mini-language. The added restrictions

are that applications of non-primitive operators have non-monadic re-

turn values, and that function-valued operands are refer to known func-

tion definitions 63

9

10

Chapter 1

Introduction

A sensor network represents a complex, volatile, resource-constrained cloud of sensors

capable of collaborative sensing and computing. Programming such an entity requires

new approaches to managing energy usage, performing distributed computation, and

realizing robust behavior despite message and node loss.

One approach is to program the sensor network as a whole, rather than writing

low-level software to drive individual nodes. Not only does such an approach raise

the level of abstraction for developing novel programs, we argue that the only way to

address the complexity of the underlying substrate is through automatic compilation

from a high-level language. Today, few computer scientists would doubt the value

of high-level languages for programming individual computers, or even groups of

machines connected in a traditional network. We wish to take this approach to the

next level and provide a macroprogramming environment for a network of sensors that

automates the process of decomposing global programs into complex local behaviors.

This thesis presents a functional macroprogramming language for sensor networks,

called Regiment. The essential data model in Regiment is based on regions, which

represent spatially distributed, time-varying collections of node state. The program-

mer uses these to express interest in a group of nodes with some geographic, logical,

or topological relationship, such as all nodes within k radio hops of some anchor node.

The corresponding region represents the set of sensor values across the nodes in ques-

tion. The operations permitted on regions include fold, which aggregates values across

11

nodes in the region to a particular anchor, and map, which applies a function over all

values within a single region. Operationally, map requires no communication between

elements, whereas fold requires the collapse of data to a single physical point.

Regiment is a purely functional language that does not permit input, output, or

direct manipulation of program state. Regiment uses monads [32] to indirectly deal

time-varying values such as sensor reading. As in other functional language designs,

this approach gives the compiler considerable leeway in terms of realizing region op-

erations across sensor nodes and exploiting redundancy within the network. The

Regiment compiler transforms a network-wide macroprogram into an efficient nodal

program expressed as a Token Machine. A program in the Token Machine Language

(TML) is a simple state machine that generates and processes named tokens, com-

municating only with neighbors in the network.

Contributions

The contributions of this thesis are: the design of the Regiment language, the im-

plementation of the first Regiment compiler, and the implementation of the Token

Machine run-time with an associated simulator. The Regiment language takes ideas

from Functional Reactive Programming [17] to a new level, and its implementation

puts a stake in the ground for sensor network macroprogramming.

The compiler is written in Scheme and the Token Machine assembler in Haskell.

Together, they produce output code in a C-variant called NesC, which executes on the

TinyOS platform. The current prototype supports a core subset of the full Regiment

language.

The Token Machine intermediate language and run-time environment forms the

basis for running Regiment programs on TinyOS motes (such as the Mica2 and Mi-

caZ). But it also provides a potential compilation target for other high-level languages.

Its primary benefits derive from its simple memory model and uniform atomic action

model of concurrency. Because human readable/writable, it is also a low-overhead

way to write simple sensor network applications.

12

___··L�_ __ · _ __ __·_ __

Structure

Chapter two describes the Regiment language, including the aspects of its specifica-

tion that have not been fully implemented in the current compiler. We showcase its

operators and idioms, present example programs, and provide a non-formal descrip-

tion of Regiment's semantics. Chapter three describes the Token Machine Language

(TML) and the abstract model model its based on - the Distributed Token Machine

(DTM). The stage is then set for chapter four to present the existing Regiment com-

piler and simulator. If desired, it would be possible to read chapter three on-demand

as it is referenced by chapter four. In chapter four the conceptual mapping between

high-level Regiment programs and low-level TML programs is discussed. Then, the

passes that comprise the Regiment compiler are described individually and we present

the compiler's multi-step simulation framework (multiple levels of detail) which allows

executable intermediate code throughout the entire compilation. Finally, chapter five

concludes.

13

14

Chapter 2

The Regiment Programming

Language

2.1 Related Work

For sensor networks, progress in macroprogramming has largely been domain specific.

We have seen: languages for global-to-local compilation of spatial pattern formation

[35, 28, 14]; Envirotrack [2], which exposes tracked objects as language objects (anal-

ogous to the way we expose regions); and, of course, database systems for querying

sensor data [50, 31].

Amorphous Computing

The Amorphous Computing research effort has pursued the broad goal of engineering

aggregate behaviors for dense ad-hoc networks (paintable computers, Turing sub-

strates). Their work focuses on pattern formation, taking inspiration from develop-

mental biology. They demonstrate how to form coordinate systems [34], arbitrary two

and three dimensional shapes [28], arbitrary graphs of "wires" [14], and oragami-like

folding patterns [35]. Yet the Amorphous Computing effort has not to date provided

a model for programming rather than pattern formation. In addition, the target plat-

forms envisioned by the Amorphous Computing effort differ significantly from existing

wireless sensor networks.

Database approaches

The database community has long taken the view that declarative programming

through a query language provides the right level of abstraction for accessing, fil-

tering, and processing relational data. Recently, query languages have been applied

to sensor networks, including TinyDB [31], Cougar [50], and IrisNet [36]. While these

systems provide a valuable interface for efficient data collection, they do not focus

on providing general-purpose distributed computation within a sensor network. For

example, it is cumbersome to implement arbitrary aggregation and filtering operators

and arbitrary communication patterns using such a query language. We argue that

a more general language is required to fully realize the potential for global network

programming.

There has also been a body of work on extending programming languages to deal

with database access: database programming languages or DBPLs. Many types of

languages have been used in this work, including functional ones. Functional DBPLs

include FAD [8] and IPL [4]. Regiment differs from these languages in being explicitely

concerned with: distributed processing, spatial processing, streaming data, and with

the volatility of its substrate-sensor networks.

Stream processing languages

Stream processing is an old subject in the study of programming languages. Func-

tional Reactive Programming (FRP) is a recent formulation which uses modern pro-

gramming language technology (including monads [32] and type classes [46]) to allow

purely functional languages to be able to deal comfortably with real time events and

time-varying streams. FRP is the inspiration for Regiment's basic type system.

Regiment's problem domain also overlaps with recent work in extending databases

to deal with continuous queries over streaming data, such as STREAM [5], Au-

rora [51], Medusa [51], and recently Borealis [1]. Regiment aims to utilize many

optimization techniques developed in this body of work, but at the same time Reg-

16

iment occupies a different niche. Regiment runs on tiny sensor nodes, utilizes local

communication only, and operates in a scenario where data sources are numerous and

not statically known - for example all nodes whose light readings exceed a threshold.

2.2 The functional macroprogramming approach

The traditional method of programming sensor networks is to write a low-level pro-

gram that is compiled and installed in each individual sensor. This amounts to a pro-

gramming model consisting of access to sensor data on the local node, coupled with

a message-passing interface to radio neighbors. In contrast, our macroprogramming

model captures the entirety of the sensor network state as a global data structure.

The changing state of each sensor originates a stream of data at some point in space.

Collectively they form a global data structure. As an intuition for why this is the

right approach, consider that matrix multiply algorithms are far simpler to state in

terms of matrices and vectors than as parallel programs implemented in MPI.

To express sensing and communication within local groups of nodes, regions en-

capsulate subsets of the global network state that can be manipulated by the pro-

grammer as single units. They represent the time-varying state of a time-varying

group of nodes with some geographic or topological relationship. Communication

patterns for data sharing and aggregation can be efficiently implemented within such

local regions [47, 48].

2.2.1 Why a functional language?

We propose that functional languages are intrinsically more compatible with dis-

tributed implementation over volatile substrates than are imperative languages. Promi-

nent (call-by-value) functional languages include Lisp, Scheme and OCaml. Func-

tional languages have been used to explore high-level programming for parallel machines-

such as NESL [10] and *LISP [43]-and for distributed machines [38]. In our system,

we get the most benefit from restricting ourselves to a purely functional (effect free),

call-by-need language similar to Haskell [26].

17

Purely functional languages essentially hide the direct manipulation of program

state from the programmer. In particular, the program cannot directly modify the

value of variables; rather, all operations must be represented as functions. Mon-

ads [32] allow mutable state to be represented in a purely functional form. For sensor

network applications, abstracting away the manipulation of state allows the compiler

to determine how and where program state is stored on the volatile mesh of sensor

nodes. For example, to store a piece of data reliably, it may be necessary to repli-

cate it across multiple nodes in some consistent fashion. Using a functional language

makes consistency moot; immutable values can be freely replicated and cached.

Because functions are deterministic and produce no output, computation can be

readily migrated or replicated without affecting program semantics. Another way

to state this is that functional programs support equational reasoning. Program

optimization in such a framework can be cast as semantics-preserving application of

general program transformations [37].

Regions and streams (which contain time-varying data but not spatial extent) are

encapsulated using monads. Monads are a programming language technology that

enables the clear separation of semantics of different kinds of computation. One can

cleanly embed foreign computations by revealing them as first class monadic values

within a host language. These foreign computations then can be manipulated only

through the monadic operators. Thus streams and regions may passed to and from

functions, stored in variables, but the only access to the data inside them is through

the map, fold, filter, and other operations described below.

Regiment has a host of algebraic properties which can be used together with

a static cost model or dynamic profiling information to optimize performance and

resource usage.

Another advantage of the functional programs is that it is straightforward to

extract parallelism from their manipulation of data. For example, a function that

combines data streams from multiple sensors can be compiled into a form that ef-

ficiently aggregates each data stream within the network. In addition to such data

parallel operations, functional programs are implicitly parallel in their evaluation of

18

function arguments [6]. The compiler can automatically extract this parallelism and

implement it in a variety of ways, distributing operations across different sensor nodes.

2.3 The Regiment language

The goal of Regiment is to write complex sensor network applications with just a

few lines of code. In this section we describe the Regiment language through sev-

eral examples. A common application driver for complex coordination within sensor

networks is that of tracking moving vehicles through a field of sensors each equipped

with a proximity sensor of some kind (e.g., a magnetometer). We start by showing a

simple Regiment program that returns a series of locations tracking a single vehicle

moving through such a network.

let aboveThresh (p,x) = p > threshold

read node =

(readsensor PROXIMITY node,

getlocation node)

in centroid (afilter aboveThresh

(amap read world))

We use a syntax similar to Haskell. Function applications are written as f x y; for

example, amap read world represents the application of the amap function with two

arguments: read and world. One important characteristic of functional languages is

that they allow functions to be passed as arguments. Here, amap takes the function

read as argument, and applies it to every value of the region world; we will discuss

the details shortly. afilter filters out elements from a region that do not match a

given predicate, in this case the aboveThresh function. And centroid is a function that

computes the spatial center of mass of a set of sensor readings (where each reading is a

scalar value coupled with the (x, y) location of the sensor that generated the reading).

We assume that every node has access to an approximation of its Euclidean location

in real space, though this assumption is not essential to the Regiment language.

19

So, this program can be interpreted as follows: a region is created that represents

the value of the proximity sensor on every node in the network;, each value is also

annotated with the location of the corresponding sensor. Data items that fall below

a certain threshold are filtered out. Finally, the spatial centroid of the remaining

collection of sensor values is computed to determine the approximate location of the

object that generated the readings.

2.3.1 Fundamentals: space and time

Regiment is founded on three abstract polymorphic data types. Polymorphic types

are also called generics, and are similar in use to C++ templates; they enable generic

data structures to be specialized for use with any particular type of data element.

Below, the a argument to each type constructor signifies the particular type that it

is specialized to hold.

* Stream a - represents a value of type a that changes continuously over time

* Space a - represents a physical space with values of type a suspended in it

* Event a - represents a discrete event that occurs at a particular point in time

and that carries a value a when it occurs

The notion of Streams and Events is based on Functional Reactive Program-

ming [17]. In this model, programs operate on a set of time-varying signals. A signal

can change its behavior on the arrival of an event. In Regiment, signals become

Streams and are used to represent changing sensor state or network status, Spaces

represent the physical distribution of information across a network, and Events notify

the program of meaningful changes to Streams, allowing triggers.

Because Regiment is a purely functional language, the Stream, Space, and Event

types all describe first-class immutable values. This means that values of these types

can themselves be passed as arguments, returned from functions, and combined in

various ways. Semantically, we can think of each of the three types as having the

following meanings:

20

* Stream a Time -c a

* Space a z Location - MultiSet a

* Event a (Time , a)

That is, Streams may be formalized as abstract functions that map a time to the

value at that time. This is not to say that we would ever implement a Stream object

as such. Similarly, Spaces may be formalized as functions mapping a location to a

set of values existing at that location. Events simply become tuples containing values

paired with the associated time of their occurrence.

2.3.2 Areas, Regions, and Anchors

Now we formalize our region notion by introducing Regiment's Area and Region types.

An Area is a generic data structure for representing volatile, distributed collections

of data. A Region is a specific kind of Area used to represent the state of the real,

physical network.

We saw before that a Space represents a "snapshot" of values distributed in space

at a particular point in time. But we would like for those values-as well as the

membership of values in that space-to change over time. To accomplish this we

introduce the concept of an Area. If we visualize a Space Int as a volume with integers

suspended throughout, then an Area Int would be an animated version of the same

thing. The Area data type is built by using Stream and Space together:

Area a = Stream (Space a)

Note that, with this type, an Area's membership and physical extent may change

over time. In fact, this type would allow the Area to become an entirely different

Space at each point in time. (But the instability would cripple our implementation.)

On the other hand, if Area were defined as a Space of Streams rather than Stream of

Spaces, then its membership and spatial extent would be fixed but its values varying.

Instead, both vary.

21

Areas are useful constructs, but they don't by themselves provide an initial foothold

into the real world. How do we make that first Area? In order to refer to the state

of specific sets of nodes in the real world, we define a Region, which is an Area of

Nodes. A Node, in turn, is a datatype representing the state of a sensor node in

the network at some point in time. It allows access to the node's state, such as its

sensor readings, real world location, and the set of other nodes that are part of its

communication neighborhood. The precise definition of the Node type, along with

its basic operations, are shown in Figure 2-1.

A Region is created as a group of nodes with some relationship to one another such

as"all nodes within k radio hops of node N," or "all nodes within a circle of radius

r around position X." Regions may be formed in arbitrarily complex ways: using

spatial coordinates, network topology, or by arbitrary predicates applied to individual

nodes. Hence, Regions may be non-contiguous in space, and their membership may

vary over time. The goal of a Region is to get a handle on a group of sensor nodes

of interest for the purpose of localizing sensing, computation, and communication

within the network. The special region world represents all nodes in the network.

One can form a Region by identifying a particular node that acts as the reference

point for determining membership in the region: an Anchor. The Anchor also acts

as the "leader" for aggregate operations in a Region, such as combining values from

multiple sensors. Note that the specific node that fulfills the role of Anchor may

change over time, for example, if a node fails or loses connectivity to others in the

Region. Regiment guarantees that the Anchor object persists across node failures,

which may require periodic leader elections. Anchors are useful for more implement-

ing distributed algorithms that require marking reference points. For example, the

Anchor Free Localization [39] algorithm begins by electing a number of anchors at the

extreme "corners" of the network (e.g. first pick a random node, then pick the node

furthest from that node, then the furthest from that). This takes a straightforward

form in Regiment but is difficult to reconcile with a data-gathering, query-processing

model as seen in TinyDB.

Examples of Regiment code for forming various Regions:

22

* radio_neighborhood hops anch:

Forms a Region consisting of all nodes within hops radio hops of the given

anchor.

* circle radius anch:

Forms a Region consisting of all nodes whose geographical coordinates are

within radius of anch.

* knearest k anch:

Forms a Region consisting of the k nodes that are nearest anch.

2.3.3 Basic operations

Regiment defines a number of basic operations on Streams and Areas.

smap f stream

amap f area

smap applies a function f to every data sample within a Stream (across time), re-

turning a new Stream. Similarly, amap applies a function f across every datum in

the Area (across space and time).

afold f init area

An Area fold, or afold, is used to aggregate the samples from each location in the

Area to a single value. The function f is used to combine the values in the Area,

with an initial value of init used to seed the aggregation. afold returns a new Stream

representing the aggregated values of the Area over time. For example, afold (+) 0

area generates a Stream of the time-varying sum of all values in area.

afilter p area

An Area filter, or afilter, pares down the elements of area to only those satisfying the

predicate function p. This filtration must be updates dynamically as the values in

area change over time.

Regiment also has operations for defining and handling events:

23

when p stream

whenAny p area

whenPercent per p area

when constructs an Event which fires when the current value of a stream satisfies the

predicate p. whenAny, on the other hand, constructs an Event that fires whenever any

single node in an Area matches a predicate p. whenPercent is similar to whenAny but

the Event returned only fires when above a certain percentage of elements in the area

meet the criteria potentially an expensive (and difficult to implement) operation.

Using Events, two Streams can be sequenced into a single Stream using the until

function:

until event startstream handler

until switches between Streams. The above call to until will produce values from

startstream until such a time as event occurs. At that point, the handler (a function)

is called on the value attached to the Event occurrence. This handler function must

return a new Stream, that takes over producing values where startstream left off.

2.3.4 Spatial operations

Along with these basic operators, Regiment provides several explicitly spatial opera-

tions on Areas. For example:

* sparsify percent area:

Make area more sparse. Each value in the Area flips a biased coin, and stays in

the Area with the given probability. This randomization is only done the first

time a value enters the Area. The sparse Area is not chaotically recomputed at

every time step. sparsify can be used, for example, to "weed out" nodes from

an overly dense Region.

* cluster area:

Cluster a fragmented Area into multiple Areas, each of which is guaranteed to

be spatially contiguous. The return type is an Area of Areas.

24

type Area a = Stream (Space a)
type Region = Area Node
type Anchor = Stream Node

- Node: represents a physical mote in the context of a
- communication network. Provides access to the node
- state as well as the states of "neighbors".

type Node = (NodeState, [NodeState])

- NodeState: all the relevent information for a
- node: id, location, and a set of sensor values
- (one for each sensor type supported by the node).

type NodeState = (Id, Location, [Sensor])

- Sensor: force all sensor readings to be floats:
type Sensor = (SensorType, Float)

- SensorType: predefined enumeration of sensor kinds.
type SensorType =

PROXIMITY I LIGHT I TEMPERATURE ...

- Function that returns the NodeState of a Node
getnstate :: Node -> NodeState

- Returns the reading for a given SensorType. For
- now we assume all nodes support all SensorTypes.

readnstate ::
SensorType -> NodeState -> Float

- And here are two convenient short-hands:
- Sensing function for Nodes

read_sensor typ nd =
read nstate typ (getnstate nd)

- Shorthand for reading location (via GPS, etc)
getlocation nd =

read_sensor LOCATION node

Figure 2-1: Regiment's basic data types (along with some helpful functions)

* flatten area:

Flatten takes an Area of Areas and returns a single combined Area. This is the

inverse of cluster.

* border area:

Return a Region representing the set of nodes that form a boundary around the

given area.

25

2.3.5 Example programs

Now we will return to our original example program and examine it in greater detail.

Let us start by defining centroid using basic Regiment constructs.

- This calcs a weighted avg of vectors.

- Used to find center of sensor readings.

centroid area =

divide (afold accum (0,0) area)

- 'accum' produces a weighted sum.

- 'wsum' - sum of weights.

- 'xsum'- sum of scaled locations.

accum (wsum, xsum) (w,x) =

(w + wsum, x*w + xsum)

- 'divide' the stream of scaled location

- values by the sum of the weights.

- Backslash defines a function.

divide stream =

smap (\(w,x) -> x/w) stream

The centroid function takes an area as an input and uses the accum function to fold

that area down to a stream of sums of sensor readings paired with the scaled locations

of each sensor in the region. The divide function divides the sum of scaled locations

by the sum of the sensor readings. This effectively calculates the center of mass of

the locations of those sensors, in a way that recomputes automatically over time.

Tracking multiple targets

Using the cluster operation, we can track the location of multiple targets, assuming

that the set of nodes near a given target do not overlap:

let aboveThresh (p,x) = p > threshold

read node =

(read_sensor PROXIMITY node,

26

get_location node)

selected = afilter aboveThresh

(amap read world)

globs = cluster selected

in amap centroid globs

This program returns an Area providing approximate target locations for each target

being tracked. Note that the number of targets in the Area will vary over time.

Resource efficiency with sentries

As a further refinement, consider a program that only initiates target tracking within

the network if any of the nodes on the periphery of the network initially detect the

presence of a target. This technique can be used to save energy on the interior nodes

of the network, which only need to be activated once a target enters the boundary.

let aboveThresh (p,x) = p > threshold

read node = (readsensor PROXIMITY node,

getcoords node)

selected = afilter aboveThresh

(amap read world)

targets = amap centroid (cluster selected)

sentries = amap read (border world)

event = whenAny aboveThresh sentries

handler ev = targets

in until event nullArea handler

The last line of the program initiates computation using the until primitive. Until

event fires, the program returns an empty Area (nullArea). Once a target is detected

by any of the sentries, the nullArea is supplanted by targets, the evaluation of which

yields a stream of approximate target locations.

The reader might reasonably be worried that the above program produces a fragile

implementation. If even one node in the sentry-border dies, might that let a target

through? This depends on the quality of the implementation of the border operator.

27

A high quality implementation will respond to failures and have the border sealed

again in a bounded amount of time. Also, the programmer may self-insure by making

a two layer border as follows:

let sentl = border world

sent2 = border (subtract world sentl)

thickborder = union sent1 sent2

Contour finding

The following program computes the contour between adjacent areas of the network.

Sensor readings on one side of the contour are above a certain threshold, and readings

on the other side are below. The contour is returned as a list of points lying along

the contour.

let mesh = planarize world

nodesAbove =

afilter ((>= threshold)

(readsensor SENSTYP))

mesh

midpoint nstl nst2 =

(read nstate LOCATION nstl +

read_nstate LOCATION nst2) / 2

contourpoints node =

let neighborsBelow =

filter ((< threshold)

(readnstate SENSTYP))

(getneighbors node)

in map (midpoint (getnstate node))

neighborsBelow

all_contourpoints =

amap contourpoints nodesAbove

in

afold append all_contourpoints

28

This program works by pruning the communication graph of the network into an

approximately planar form. It then filters out a region of nodes-abovethresh-with

sENSTYP reading above the threshold; this would be all the nodes to one side of the

contour. The contourpoints function takes a node above the threshold and returns a

list of midpoints between that node and each of its neighbors below the threshold (on

the other side of the contour). Finally, allcountourpoints is aggregated by appending

together all the individual lists of midpoints, thus yeilding the final countour-line-a

Stream of lists of coordinates.

2.3.6 Feedback and exception handling

Because behavior of the sensor network is stochastic, the response from a region

during any time period will involve only a subset of all the nodes that "should" be in

that region. The programmer needs feedback on the quality of communication with

the region in question. Thus the fidelity operator.

fidelity area

This operator returns a Stream representing the fidelity of an area as a number

between zero and one (an approximation based on the number of nodes responding,

spatial density, and estimated message loss).

The programmer will also want feedback about (and eventually control over) the

frequency of a Stream.

get_frequency stream

allows the programmer to monitor the actual frequency of a Stream of values.

Thus, by using these two diagnostic streams, the programmer may set up "excep-

tion handlers". This is accomplished by constructing events which fire when fidelity

or frequency falls out of the acceptable range. For example, if fidelity drops below a

certain level, one may want to switch to a different algorithm. (However, it will be

discussed in chapter 4, that the above operators are not yet fully implemented. The

user can set frequency for streams, but not monitor frequency or fidelity.)

29

30

111111111 -111 - --· 1 I I-··_

Chapter 3

Token Machine Intermediate

Language

3.1 Introduction

In implementing Regiment, we want to build a layered abstraction. A number of on-

going projects aim to developing better programming tools and paradigms for sensor

networks have resulted in monolithic software systems, which we wish to avoid. In

order to develop high-level languages that compile into node-level programs, but to di-

vide the complexity into multiple layers (like a network stack), it would be extremely

valuable to define a common intermediate language.

We need an intermediate representation to abstract away the details of concur-

rency and communication while capturing enough detail to permit extensive opti-

mizations by the compiler. Existing sensor network runtime environments, such as

TinyOS, are too low-level to act as a desirable compilation target. This is espe-

cially true in Regiment. Because of its high level nature, the semantic gap between

Regiment and NesC is large, making the task of compilation daunting.

In this chapter, we propose an intermediate language for sensor networks, called

the Token Machine Language (TML). TML is based on a simple abstract machine

model, which we call Distributed Token Machines (DTMs). Distributed Token Ma-

chines provide a simple execution and communication model based on tokens. Com-

31

munication happens through token messages which are typed messages starting with

a token containing a small payload. Tokens are associated with token handlers that

are executed upon reception of a token message (either locally or from a radio mes-

sage). The set of tokens that each node is holding is reflected through the DTM

model, providing a form of distributed state management. Tokens are akin to Active

Messages [45], although DTMs provide additional facilities for structuring execution,

concurrency, state management, and communication that make this model more at-

tractive as a compilation target for sensor network applications.

Our goal is to define an intermediate language for sensor network programming

that:

1. Provides simple and versatile abstractions for communication, data dissemena-

tion, and remote execution;

2. Constitutes a framework for network coordination that can be used to imple-

ment sophisticated algorithms such as leader election, group maintenance, and

in-network aggregation; and,

3. Is high-level enough to serve as an effective compilation target

TML is meant to be lightweight in every respect. In terms of performance, TML

must map efficiently onto the event-driven semantics of existing sensor network oper-

ating systems, such as TinyOS. In terms of versatility, TML must be primitive enough

to construct a wide range of higher-level systems. At the same time, for simplicity

TML must mask the complexities of the underlying OS and runtime environment.

Simplicity and regularity are the keys to making TML an effective target language

for compilers. These motivations differentiate TML from traditional intermediate lan-

guages, such as the Java Virtual Machine and CLI, which are primarily motivated by

portability and safety. Instead, we are drawing on the lineage of systems such as the

Threaded Abstract Machine (TAM) [15], which aims to provide an appropriate level

of granularity to achieve abstraction without sacrificing performance or versatility.

With TML we wish to capture in-network coordination in a systematic and reusable

way. TML provides a unified abstraction for communication, execution, and network

32

state based on tokens. Specifically, all communication in TML is accomplished by

dissemenation of tokens, which cause token handlers to execute on nodes that receive

the token, as well as storage of the token in the node's memory. This approach allows

an application to refer to the tokens as well as the set of nodes holding a particular

token as semantically meaningful units. For example, tokens make it straightforward

to implement network abstractions, such as gradients, which involve flooding a token

throughout all or part of the network and constructing a spanning tree back to the

origin of the gradient.This is a common routing model in sensor networks [24, 31]

which can be implemented directly in TML in a manner that meshes directly with its

token abstraction. A more advanced example would be the construction of a routing

infrastructure that can route a given token to all the holders of another token.

The rest of this chapter is organized as follows. In Section 3.3, we present the

semantics of the Distributed Token Machine model. The DTM defines an abstract

machine, not a complete intermediate language. In Section 3.4, we show how to re-

alize the DTM model as the Token Machine Language. In Section 3.5, we illustrate

the use of TML for writing several simple applications, including a distributed event

detector and a decentralized leader election algorithm. Finally, we will discuss our

implementation of TML on top of TinyOS. We show that the TML abstraction in-

troduces extremely little overhead in terms of code sizes, and only modest overhead

in terms of RAM usage and execution speed.

3.2 Related Work

To our knowledge, however, the only direct attempt to provide an intermediate rep-

resentation for compilation of sensor network programs has been the Mate virtual

machine. The Mate engine interprets a compact bytecode language for sensor net-

works [29]. The focus is on energy-efficient dynamic reprogramming, application

specific VM extensions, and safety. More recently, Mate has been extended to act

as an intermediate language for several higher-level languages [49]. Our work shares

this goal, however, Mate does not directly address the issue of high-level communi-

33

cation abstractions. Mate provides low-level access to radio communication, and has

also been extended to support the abstract regions [47] communication model. TML

extends upon the Mate approach by capturing a higher-level abstract machine that

integrates a coordinated communication and execution model.

In addition to virtual languages, there are a range of other efforts to improve

the infrastructure: from improvements to the NesC language, to reusable run-time

services. The Sensor Network Application Construction Kit (SNACK) [20] makes

a number of modularity improvements NesC, enabling more easily reusable compo-

nents. This component composition language remedies a number of ills plaguing NesC

developers, but does not have the clean and simple semantics desirable in a compiler

backend. The Impala system [30] enables also application modularity and network

reprogramming. MagnetOS [9] aims to provide automated assignment of Java com-

ponents to parts of an ad-hoc network, but has not been scaled down to work on

resource-constrained sensor networks.

Other middleware is more concerned with communication abstractions. Spatial

Programming [12] uses Smart Messages to provide content-based spatial references

to embedded resources. For example, the programmer may refer to the first available

camera in a given (predefined) spatial region. The entity maintenance mechanism

described in [11] enables tracked objects to be viewed as logical objects and serve

as communication endpoints. A few communication models in particular had an

influence on TML. Directed Diffusion [24] and SPIN [22] are paradigms for source-

sink communications over named data (but are specific to that class of applications).

It is from these projects - and from the work on gradients in Amorphous Computing

[3] - that we are inspired to incorporate the general purpose gradient and aggregation

interface of section 3.5.1.

TML is heavily inspired by Active Messages, which were originally conceived as

a mechanism for efficient message passing in parallel architectures [45]. The original

Active Messages work focused on integrating communication and execution for con-

structing parallel applications. Active Messages has found a new home in TinyOS [23],

although it is used there primarily as a radio message format, rather than for intro-

34

ducing specific semantics for the execution of message handlers. For example, the

TinyOS variant of AM does not specify how messages interact with the link and

network layers of a protocol stack. In TML, the only communication abstraction pro-

vided is that of single-hop message broadcast, which can be used to build higher-level

abstractions while staying within the token-oriented paradigm.

Ideally, TML could serve as an intermediate language for the compilation of high

level programs other than Regiment programs - such as the SQL-like queries found

in Cougar [50] and TinyDB [31]. While TinyDB compiles its queries into a lean query

specification that is executed by individual nodes, the TinyDB system itself is mono-

lithic and provides a wide range of functionalit - including spanning tree formation,

query dissemenation, query optimization, and in-network aggregation. These features

are not available to the TinyDB programming model except indirectly through SQL

queries. Rather, by compiling TinyDB queries into TML, we could support a broader

range of optimizations and tools that operate on the intermediate language level,

allowing innovations to be shared across the language boundaries.

3.3 Distributed Token Machines

A Distributed Token Machine (DTM) is an abstract model for computation in an

dynamic, asynchronous, ad-hoc network with failures and message loss. The DTM

structures concurrency, communication and storage, but it makes few assumptions

about what language is used to describe the computations inside each token handler.

To able to use the architecture one must complete it by attaching a concrete language

for handlers, which is embodied by the Token Machine Language.

3.3.1 Execution Model

In the DTM execution model, each node in the network holds some number of tokens

at any point in time (as well as statically sized shared memory). Each of the stored

tokens has an associated token handler which is executed upon receipt of the token,

as described below, and a memory which is a set of private variables that may only

35

OToken I'EToken Object
. ._. ..

Sensor Node

Figure 3-1: The structure of a node in the DTM model.

be accessed by that token handler. The stored token along with its private memory is

referred to as a token object. In OOP terms, each token object can be thought of as an

object with only private fields and only one method. Each handler executes atomically

and in a statically bouded amount of time, which simplifies memory consistency issues

and makes precise scheduling possible. If this seems restricted, it is because DTMs

are intended to be highly restricted. Their restriction is a boon to compilers and

analysis tools that work with the architecture. Their selling point is the ease with

which expressive languages can be compiled down to them in spite of their simplicity.

They have the core ingredients necessary to build up higher level programming

features. For, example, it would be straightforward to map multiple token "methods"

down onto the one supported handler action. Similarly, issues of memory scope and

protection can be compiler controlled. Most importantly of all, a compiler can break

a long sequence of coordinated actions into a set of token handlers that interact in

predictable ways.

Thus, a node in the network consists of heap, storing local token objects which we

refer as the token store, as well as a scheduler that orders incoming token messages and

some unspecified computing machinery able to execute handler functions (pictured in

Figure 3-1). Token messages simply refer to tokens that travel over network channels

along with their associated payloads. As in Active Messages, the token-name is at

the start of each message. Once a message comes through the scheduler, the token

36

______ ···__·_ I__ _I

name directs it to the corresponding handler. If the a coresponding token object

is not already present in the token store, its memory is allocated and initialized (to

zero) before the handler begins running. (While the message is still pending in the

scheduler it consumes no memory in the token store.) The hanadler consumes the

message payload and executes, possibly reading and modifying the token's private

memory and node's shared memory in the process.

A complete DTM must have a fixed and finite set of tokens I', with a fixed private

memory size and bounded message payload size for each T. DTMs allow first class

tokens. Because there are only a finite number of tokens T, a token name can be

encoded as a fixed length sequence of bits. In the DTM model we allow tokens to be

encoded as data and transfered in messages or stored in memories.

3.3.2 Handlers and their Communication Interface

Thusfar the only constraints we have put on the handlers is that they be computable

by the processing machinery of the nodes in our network, that they execute atomically

and only modify the appropriate memory. But executing handlers need to post new

messages; they must interact with the scheduler and the token store. We still do not

wish to specify exactly what language is used for describing handlers - we do not

care, for example, what concrete syntas or data types are used - but we do wish

to specify the interface through which the handler must interact with the rest of the

system. It is as follows.

* schedule(TT, priority, data...)

* timed_.schedule(Ti, time, data ...)

The schedule operation inserts a token message in a nodes' own scheduler.

data... is the payload of the token message. timed-schedule is a version of

schedule which schedules a message to execute locally at a precise time-after a

given number of milliseconds. This sets a hard requirement, overriding whatever

strategy the scheduler is using to order messages. But in general the scheduler

may use an implementation specific algorithm for scheduling incoming messages.

37

The acceptable values for the priority argument are also implementaton specific.

The scheduler even has the ability to drop remotely received messages - because

the DTM model is defined in terms of lossy channels. However, the scheduler is

expected to follow certain rules. It must respect the relative order of all token

messages produced by during the execution of a single atomic token handler.

Thus two consecutive schedule commands in a handler will have their order

preserved.

· bcast(, data...) bcast is a version of schedule which, instead of placing

the token message in the local scheduler, broadcasts it to each of the radio

neighbors of the node running the current handler. The channel may well drop

the message, and the DTM model does not assume ACKs in the communication

protocol. This is a simple, low-level, single-hop broadcast, nothing more. More

complex communication prmiitives are built up from here (see Section 3.5.1);

even addressing messages to specific neighbors should be compiler controlled.

* isscheduled(R)

* deschedule(Ti)

is_scheduled and deschedule allow query and removal of token messages that

are waiting in the scheduler. isscheduled only reports the presence or absence

of a given token in the scheduler-not the number or timing of token messages

affiliated with that token. Similarly, deschedule removes all messages with a

given token name.

* present(Fi)

· evict(T)

The DTM does not specify how handlers interact with their own private memories-

it is expected that they will have appropriate load and store operations-but

it does specify the interface into the nodes' token store as a whole. present

queries the local node for the presence of a token of a given name. evict removes

38

the token, if present. When a token name Ti is evicted, the corresponding token

object frees its private memory of length - no record of the token's presence

is kept. If token handler tries to evict itself while its executing, the eviction

happens as soon as the handler completes.

3.4 Token Machine Language

In this section we describe a concrete realization of the DTM model. We call this the

Token Machine Language (TML). The DTM model provides the execution model;

TML fills in a concrete syntax for describing handlers. As a whole, the systems'

simplicity comes from the use of atomic actions as a concurrency model, and the

unification of control, communication, and storage. And it is TML's simplicity that

makes it valuable as a compilation target - a program is a collection of token handlers

with a very disciplined interaction.

The core language used in TML for the bodies of handlers is a subset of C. This

subset disallows pointers, procedure calls, and loops. Conditionals are still allowed;

they make the execution time of a handler undecidable but statically bounded.

Of course, named fields such as (intl6_t x, int32_t y) replace the undifferen-

tiated blocks of bits described in the DTM model - both for the handler arguments

(the token message payload) as well as for the token object memories and the shared

memory. TML allows trailing arguments to handlers to be omitted with the under-

standing that they will take on a zero value. This allows some scheduling and broad-

casts of messages to be more efficient. Data in the token object's private memory can

be statically allocated by declarations of the form: "stored int x, y;" (initialized to

zere), and data shared by all tokens as "shared int z;". Special syntax is added for the

communication commands described in Section 3.3.2. Here is a sample of nonsense

code showing what a token declaration looks like.

shared int s;

token Red (int a, int b) {

39

stored int x;

if (present(Green))

x = 39;

else {

x += a + b;

timedschedule Red(500, s, a);

TML is currently implemented both as a simulator as well as a compiler targetting

the NesC/TinyOS environment. In the TinyOS implementation, the DTM interface

(send/schedule/etc) becomes a TinyOS module (DTM.send, DTM.schedule, and so

on). The handlers become individual NesC commands. Our compiler for TML insures

that only a safe subset of the NesC language is used-safe with respect to our DTM

semantics. Yet there is nothing to stop the user from bypassing our TML compiler

and manually writing code against our DTM library. They would be responsible for

respecting the constraints of the DTM model, or at least breaking them in controlled

ways.

Token Namespace in TML

The DTM model requires that there be a finite, but not statically known number

of token in existence. The token store is the place for dynamic allocation, and any

program that wants to make use of this needs a way to create an arbitrary number

of tokens names rather than just those that occur in the program text.

Thus, we allow unique "subnames". If a program consists of token declarations

for tokens {Red, Green, Blue}, the user may also reference {Red[11], Green[32]}. All

subtokens of Red use the same token handler, but have their own token object and

keep their own private memories. This does introduce a bit of ambiguity within each

token handler. Which subtoken are we currently executing? For this reason we allow

a syntax similar to component paramerization in NesC: "token Blue [id] () { ... ".

The variable "id" is in scope within the body of the handler, and refers to the numeric

40

index of the "subname" currently invoked. Invoking without a subtoken index is the

same as using 0.

Subtokens are somewhat like constructing multiple instances of a token "class".

Again, a nodes' token store is its heap, and subtokens are the only form of dynamic

memory available in TML. (There is not even the call stack normally available even in

NesC.) Subtokens are thus a form of pointer in TML, but one that uses a consistent

virtual address space across different nodes in the network. They can be used to

allocate variable amounts of storage, or as will be seen in Section 3.5.1, to keep

gradients from overlapping.

3.4.1 Returning subroutines

As our first example of systematically building up features with TML, we wish to

add subroutine calls with return values. These are a staple of normal procedural pro-

gramming, and are a necessity for us because the basic DTM model includes neither

blocking calls nor built-in split-phased operations. We don't wish to have blocking

calls in the model because our handlers must execute quickly for our atomic action

model of concurrency to remain solvent, and recursive calls could take unbounded

time to return. Besides, our model achieves its parsimony by eliminating the stack

and having only one dynamically allocated structure (the token store). Moreover, we

wish our token handlers to transparently support both local invocation and remote

invocation; it would be out of the question to block on remote invocations.

But as a user, would like a token handler to be able to invoke another handler and

use its return value, rather than merely be able to schedule its execution. We accom-

plish this by building subroutine calls on top of core TML by using a continuation

passing style (CPS) transformation. This is our answer to the issue of split-phase vs.

blocking operations. We circumvent the issue by having implicitly split-phase calls.

The user simply uses "subcall" as below, and the CPS transformataton splits their

handler into multiple handlers. The programmer must understand that when they're

using this facility they may be breaking the atomicity of their handler - they are

really using syntatic sugar for multiple handlers. This may require freezing all the live

41

variables at the subcall-point and restoring that context again at a later time; thus

there are possible efficiency concerns as well. As an example, consider the following

simple code snippet.

token int Red(int a) (

int y = 0;

schedule Blue(4);

y = subcall Green(3);

bcast Red(a);

return y;

The token handler for Red will be transformed so that it stops at the subcall to

Green. It will allocate a continuation object in the token store. A new token declara-

tion is added for this continuation. When Green is called it is passed the (sub)name

of its continuation - which is the equivalent of a pointer to that continuation. The

CPS transformation thus requires that every handler called via "subcall" take an

extra continuation argument.

Performing a CPS transformation on TML is straightforward because of its sim-

plicity and clear semantics, doing the same for general NesC code would be quite

difficult. First, NesC has multiple execution contexts: tasks and events. Second,

NesC has no easy mechanism for dynamically allocating the continuation objects.

CPS is well studied in the literature [18, 21, 41]. There are a number of opti-

mizations that can make it efficient, especially in the case of TML where we may do

whole program analysis. First, there are established techniques for minimizing the

number of continuations created and the circumstances in which they must allocate

memory. Second, in the case of TML we can optimize this subcall abstraction layer

without breaking the core DTM semantics by allowing the implementation to make

"direct calls" (i.e. NesC's "call") to non-recursive subroutines. This is similar to

procedure inling; the compiler must choose when to make direct calls to a subroutine

and when to go through the scheduler. In our case, since the execution time of each

token handler is bounded by a estatically known quantity, we can compute the time

42

cost of inlining a non-recursive subroutine call. We make this choice based on the

constraints of the scheduling algorithm. For example, we may simply set a maximum

desirable atomic action duration, and "inline" up to that maximum action duration.

Invoking split-phase TinyOS operations

Many operations in TinyOS are split-phase. In TML we can use our existing CPS

transformation to give us a framework for turning TinyOS split-phase operations

into TML "blocking" operations. Consider sensing in TinyOS which is split into a

"getData" command and a "dataReady" event. In TML we use this to build a simple

"sense" operation which gets treated just like a subcall. The handler is split, the first

part becoming the "getData" portion, and the second part the "dataReady" portion.

In this case, rather than the continuation being invoked from the user code, the first

token handler runs to completion and the continuation handler is invoked by an event

from the TinyOS subsystem.

However, we cannot give these event-invoked continuations the privelege of exe-

cuting at any time whatsover, because we don't want to break the guarantees we've

given through timed_schedule - they must go through the scheduler. Thus the

when the underlying TinyOS event handler fires, it must schedule the associated to-

ken handler to execute. This token message can be given high priority, so that it

executes quickly after the current atomic action completes, but it cannot be executed

immediately. However, even this small amount of computation in the event handler

takes some time. The TML scheduler will never be able to plan with perfect preci-

sion, it must assume some time-loss to events in the TinyOS subsystem; hopefully a

predictable loss.

3.5 Example Applications of TML

TML is a compilation target. In this section we will add a gradient interface to

TML. We do this by adding a very simple program transformation converting this

"gradient language" to core TML, much like our implementation of the "subcall"

43

High level language

gradients subcalls extensions

_LL

TinyOS

Figure 3-2: The ingredients in the TML system. DTM is the underlying abstract
model implemented by TML.

keyword. What results is an collection of gradient network coordination operations

that mesh naturally with the token-oriented semantics of TML. This is intended to

represent typical usage for TML. After building up this gradient layer, we demonstrate

its ease of use by writing a few simple applications. Finally, we discuss briefly how

TML is used as a target language for the Regiment compiler.

3.5.1 Gradients

Gradients are general purpose mechanism for breadth-first exploration from a source

node. A gradient establishes some sort of spanning tree which tells all nodes within

the gradient their hopcount from the source as well as how to route to the source.

See Directed Diffusion [24] for an example of gradients' utility and an overview of the

design tradeoffs in gradient implementation.

Adding gradients to TML constitutes an extension to the language - or the

creation of a new language, depending on how you see it - but at the same time it

doesn't require modifying the TML core, which is a testament to the versatility of that

core. Like our subcall facility, adding gradients involves a simple transformation in

our compiler: implicitely appending extra arguments to token handlers. This time the

44

extra arguments carry gradient information such as whop-count. We use an interface

consisting of four operations.

* gemit(T, data...)
Gemit is a version of bcast which begins a gradient propogation from the current

node. A gradient is like a normal message broadcast with extra information.

Gradient equality is determined by token name. Subtokens are used to achieve

overlapping, non-interfering gradients using the same code (token handler).

* grelay(Ti, data...)

Grelay is a version of beast which continues the propogation of a gradient from

the current node. Grelay fails silently if the named gradient has not been

received.

* greturn(Tcall, Tvia, Taggr, data ...)

Greturn allows data to be propogated up gradients to their roots, with optional

aggregation along the way. A greturn call sends data up the "via" gradient,

and fires the "call" token handler on the data when it reaches the source. The

"aggr" argument should name a token handler accepting two arguments which

can aggregate return values on their way to the same source, or it should be

NULL for no aggregation.

* dist(T)

* version(T)

We don't expose parent pointers through the gradient interface, because we

don't wish for algorithms to depend on the details like single vs. multiple

parents and so on. But we do wish the user code to be aware of distance

from the source of a particular gradient. Further, if a gradient is reemitted

from a source node - as is often the case - the user code should be able

to differentiate these different gradient generations. To this end we allow the

user to query the version of a gradient its received. This is first and foremost

useful for doing initialization the first time a gradient is received. Both dist

45

and version return -1 if the named gradient has not been received at the local

node.

The gemit/grelay/greturn interface does not commit to a particular spanning tree

selection or maintenance algorithm. Thus applications built against this interface

need not commit to a choice. However, the developer will want to choose a gradient

implementation appropriate to the application. Hence, the compiler should expose

a set of choices of gradient implementation that covers the design space outlined in

[24].

3.5.2 Timed Data Gathering

This extremely basic example shows how to use the above gradient interface to sam-

ple the light sensor on every node. It also uses a couple of trivial new keywords not

mentioned above. The "startup" declaration indicates that the Gather and Global-

Tree tokens will be scheduled when the node is first turned on. The "basestartup"

keyword is similar, but only applies to the base-station node in the network. Also

"BaseReceive" is pre-defined token handler supported only on the base-station, and

used to return results to the outside world.

startup Gather, GlobalTree;

base_startup SparkGlobal;

token SparkGlobal()

gemit GlobalTree();

timed_schedule SparkGlobal(10000);

token GlobalTree() {

grelay GlobalTree();

}

token Gather() {

greturn(BaseReceive,

46

GlobalTree,

NULL,

subcall sense_light());

timed_schedule Gather(1000);

This program emits a gradient from the base-station, which relays itself until it reaches

the edge of the network. Once a second, every node fires the "Gather" token which

uses the globally present gradient to route data back to the base-station.

3.5.3 Distributed Event Detection

Consider the problem of local event detection with unreliable sensors. We can't trust

the reading of a single sensor, but if some number of sensors within an area all detect

an event, an alarm should be raised. Here we solve the problem by spreading out

a small gradient from every node when it detects an event. When these gradients

overlap sufficiently, the alarm is raised.

shared int total_activation;

token EventDetected () {

emit AddActivation[MYID] (1);

schedule AddActivation[MYID] (1);

}

token AddActivaton[sub] (int x) {

if (dist(self) < 2)

relay AddActivaton(x);

total_activation += x;

if (total_activation > threshold)

greturn(BaseReceive, GlobalTree,

NULL, ALARM);

timed_call SubActivation[sub](1500, x);

47

token SubActivation[sub] (int x) {

total_activation -= x;

if (total_activation <= 0) {

evict AddActivation[sub];

evict SubActivation[sub];

By using subtokens for AddActivation and SubActivation (indexed by the ID

of the node emitting the gradient), we keep the different gradients from colliding.

However, their overlap is still seen through the shared variable "totalactivation".

This demonstrates the utility of lightweight gradients spawned and destroyed from

arbitrary points in the network.

3.5.4 Leader Election

As another example, we will now build a reusable leader-election component in TML.

All the nodes that invoke ElectLeader(Ti) will participate in the leader election for

token T. One such node will eventually be decided leader and receive an X/ to-

ken. Multiple leader elections can go on concurrently in the network; this is because

ElectLeader(T) uses subtokens indexed by T for all of its computation. The problem

of garbage collecting dead tokens is ignored for this example.

shared int winner;

token elect_leader(tokname T) {

int current = winner;

if (current == I I current < MYID) {

winner = MYID;

timed_schedule ConfirmFire[T](5000, T);

emit Compete(MYID, T);

}

48

token Compete(int id, tokname T) {

if (winner == 0) {

winner = MYID;

timed_schedule ConfirmFire[T] (5000, T);

if (version(Compete) == 0 I I id > winner) {

winner = id;

relay Compete(id, T);

token ConfirmFire[sub] (tokname T) {

if (MYID == winner) schedule T();

3.6 TML Discussion

TML is currently implemented as a high level simulator and as a compiler targeting

the NesC/TinyOS environment. The mapping from Token Machines onto NesC was

discussed in Section 3.4. Overall, it took relatively little effort to map TML into

TinyOS because TML is not a mechanism so much as a discipline.

Our current TML implementation has some shortcomings with respect to the

features laid out in this chapter. Namely, the current implementation implements

subcalls but makes all subcalls "direct" (as described in 3.4.1), and thus circumvents

the necessity of the CPS transformation. As a result, we must manually insure that

handlers complete in a relatively short time. This part of the implementation will be

corrected in the near future.

Code size for compiled TML code is very good. Only a small constant factor size

increase is added to the TML source when translated to NesC. The run-time sup-

port (DTM component) is also relatively lean. When compiled for the Mica2 mote,

it consumes only 8836 bytes of ROM. RAM usage is worse: 817 bytes, including a

49

token store of 320 bytes. Both RAM and CPU usage suffer as compared to "equiva-

lent" native TinyOS code. This is because of the overhead of running the scheduler

component and unnecessary copying of buffers. We believe that there are many op-

timizations yet to be exploited which can reduce memory redundancy. Future work

will be move in this direction.

What we have learned thus far from our use of TML is that its two important

qualities are: the atomic action model of concurrency, and the fact that communi-

cation is bound to persistent storage (tokens). The former precludes deadlocks and

makes reasoning about timing extremely simple. The later essentially gives us a way

to refer to communications that have happened through the token they leave behind.

Also, tokens give us some of the benefits of "viral agent" type models of ad-hoc dis-

tributed computing (such as in [13]), without the overhead. They can be seen as a

lightweight version of this agent-oriented model.

50

Chapter 4

A Regiment Compiler

The current prototype compiler for the Regiment language supports a restricted sub-

set of the language specified in the second chapter. In short, the currently operational

portion of Regiment includes the region operations, but lacks proper type-checking,

full stream rate control, and operations over basic types other than 16 bit integers.

The compiler is written in Scheme. It converts Regiment programs into Token

Machines (TML programs as described in the previous chapter). The programs shown

in this chapter appear exactly as processed by the compiler - a Scheme syntax is

used - but the operations are the same as chapter one. The output Token Machines

are subsequently compiled into complete NesC programs by a back-end written in

Haskell. The next implementation of the Regiment front end will be entirely written

in Haskell and will leverage the Glasgow Haskell Compiler's type checker.

Because the compiler transforms a Regiment program into a complete NesC pro-

gram, it differs from most query languages. In a distributed database, queries are

disseminated to all nodes for processing by local query processors. These query

processors are akin to program interpreters. Regiment "queries" are fully compiled

rather than interpreted at the nodes. This decision was made at the outset, based on

the observation that performing all the computation necessary to interpret Regiment

queries in-network would put too large a burden on the sensor nodes (in terms code

size as well as computation). Instead, we want all heavy-weight processing of the

Regiment macroprogram to happen in the compiler, and the tiny sensor node to re-

51

ceive only a lightweight Token Machine to execute. Future Regiment back-ends may

choose to reverse this decision. Advantages in doing so might include more compact

representations (queries vs. binary images) for dissemination, and easier dynamic

reprogramming.

4.1 Regiment Compilation: Informal Intuition

Before diving into the innards of the Regiment compiler this section gives an intuition

for the priorities and the process of Regiment compilation.

The precise operational semantics of programs from Section 2.3.5 should not be

immediately clear - Regiment's strength is that its semantics are high level. Hence

there are many operational realizations that would match the denotational semantics.

Our choices are thus driven by general principles of robustness and efficiency:

1. Communicate locally: minimize situations where the base-station(s) must

be brought into the loop.

2. Survive point failures: there should be no "critical nodes" in the network.

3. Avoid hot-spots: load should be distributed evenly across nodes.

Now, as an example, let us consider the compilation and run-time behavior of the

tracking programs of chapter two. The code for these examples appears on pages

27 and 27. Considering first the non-sentried version: the compiler, analyzing the

control flow of the Regiment program, knows that every node will need to monitor its

proximity sensor to determine its membership in selected. Thus, once the Regiment

program has been loaded on the sensor nodes, no communication is necessary to

form the region selected. Next the cluster operation is applied to form the region

globs. Cluster need only perform local communication in the network. Essentially, a

gradient is spread among members of selected, expanding from every node at once

but stopping when non-selected nodes are encountered - thus forming connected

components. The gradient is started from every node, but merges upon collisions,

resulting in a single gradient and a single leader elected (the cluster head).

52

Thus, without anything but local computation, we have a network full of small

contiguous regions ("globs") around each of the tracking targets (assuming no two

targets are close enough to interfere). The next stage of our computation involves

computing amap centroid globs. In this example the control flow of the high-level

macroprogram is known; therefore, each glob knows that the next thing that will

happen to it is processing by centroid. Thus without any outside instruction (from

the base-station) each glob will begin executing centroid.

Examining the definition of centroid we see that it consists a fold over the input

region, followed by mapping a function over the resulting stream. It so happens that

each glob from cluster was formed by a spreading gradient. The compiler knows to

use that gradient to do the aggregation requested by fold.

Once the fold is accomplished the globs aggregated into streams. These streams

have ended up at the leader nodes of each glob's gradient. This leader node applies

the mapped function (seen in the definition of divide) to each element of the stream.

Again, here is a place for future improvement. The current implementation greedily

computes the mapped function wherever the stream first becomes available (at the

cluster head). However, if the mapped function happens to be compute intensive, it

would be better to spatially spread out its computation; perhaps along the route to

the streams' next destination.

Where is the streams next destination? If we are one of these cluster heads, how

do we know where to route it? Again, the compiler has already told us. Because

amap centroid globs was the final return value of the Regiment program, that means

the user desires the value of that expression. To extract it, the data stream must be

routed to the base-station. The current Regiment implementation maintains a single

global gradient to enable any node to communicate with the base-station. (Likewise,

having multiple base-stations would be as easy as maintaining multiple gradients for

them.) The cluster heads use this global gradient to route the stream of approximate

target locations back to the user. Of course, everything we have described so far is

being dynamically recomputed. The targets move, regions shift, and cluster heads

move with them. This is a major source of robustness. For example, a cluster head

53

failure only lasts until the next gradient refresh.

Finally let us consider the sentry enhancement to our example program. We are

running the almost the code as before, but setting up an event to serve as a barrier on

the computation of targets. How does the control flow for this new program work?

The final return value of the program is until event nullArea handler. No work is

required to compute nullarea (the region equivalent of the empty set). The compiler

knows it needs to compute the event first. Doing that requires forming the border

around the world. This invokes a black-box process that unfortunately touches the

whole network (but at a low frequency). The nodes selected to be part of the border

are notified, and accordingly they continuously monitor their proximity readings to

determine whether or not to "fire".

When any of them detects the event locally, it knows the global event has fired.

(That's what whenAny means.) Where should that node route the information? In

the current implementation all event firings go through the base-station, but this is a

place for improvement. An ideal implementation would route an event it exactly to

those portions of the network that depend on it. (In this case, if we had a model of

the movement of the objects being tracked, perhaps we might notify only the portion

of the network in close proximity to the border, rather than waking up the whole

network.)

When the base-station learns of the event, it puts must shut off the border region

and activate the normal tracking program. That is, stop computing nullArea and

invoke handler on the resulting event which will begin computing targets. This will

require activating the process computing targets across the entire network. Subse-

quently, the rest of the computation looks exactly like the non-sentried version.

4.2 Current Language and its Restrictions

Now we will examine a the subset of the Regiment language currently implemented.

Then, in the following sections, we will go over the compiler pass by pass.

More so than most languages, Regiment faces critical choices as to which portions

54

of the computation should happen statically ("compile time") and which dynamically

("run time"). With Regiment's semantics, these choices don't generally affect the

meaning of programs (just their implementation), but may change the space of valid

programs.

Regiment faces a strong impetus to make features static rather than dynamic;

efficiency is critical in sensor networks. Dynamic features directly translate into

energy cost for the sensor network. Thus, for the time being we have pushed as much

as possible into the static domain (offline). For example, rather than allowing higher

order functions and the associated highly unpredictable control flow at run-time,

Regiment's current implementation is multi-stage. It includes a static elaboration

phas. In it, all procedure calls to user defined functions (with monadic return values

- Stream, Area) are inlined. This unrolls all the loops in the program having to do

with distributed operations. The transformation will be described in detail in Section

4.4.

Static elaboration does not change the semantics (types, evaluation rules) of the

Regiment language, it merely opportunistically pushes evaluation forward into com-

pile time. Yet the elaboration phase has real value because it allows users to gain

much of the benefit of procedural abstraction and bounded recursion without hav-

ing to execute those behaviors on the distributed run-time of a resource constrained

sensor network.

There is a well-established literature on strongly typed, multi-stage programming

languages [44, 42]. Also related is general work on partial evaluation [25], macro

systems for programming languages [19], and static-elaboration for hardware design

languages [7, 33]. In particular, the current Regiment implementation makes the same

design choice as Bluespec - it uses software expressivity for building the structure of

Regiment queries. However, because sensor networks are more dynamic than hard-

ware designs, we may allow more features to enter the dynamic realm as we develop

better techniques for executing traditional software constructs effectively within the

network.

For the rest of the thesis we will refer to the following distinct phases in the

55

compilation and execution process:

* Static elaboration (compile time)

* Query dissemination (load time)

* Query execution (run time)

A further restriction on the current version of the Regiment Compiler is that it

uses a simple monomorphic type system. 16 bit integers are the only simple type.

This is merely a limitation of the current implementation. Eventually Regiment will

have a full Hindley-Milner type inferencer and a type system resembling Haskell's [26].

Also, the language specification described in chapter two includes frequency-control

operations, but those have been only partially implemented in the current compiler.

Fidelity feedback (the percentage of processors in the region responding in a given

time-step) is not implemented at all, and will require significant additional effort.

4.2.1 Query Circuits

Because Regiment uses a static elaboration phase to eliminate most control structures

in the language, the resulting program is best visualized as a query circuit - a network

of stream/region processing operators. For the rest of the chapter when we refer to

the "network" we will be talking about this dataflow graph of operators, rather than

the run-time network of sensor nodes. The operators in the network are Regiment

primitives such as smap, amap, afold, afilter, and until. The job of the Regiment

back-end is to compile such a query circuit into an efficient node-level program. A

simple query circuit is shown in Figure 4-1. For brevity, the nodes f and g appear in

lieu of actual function definitions.

We call all non-monadic valued operators (drawn with rounded edges) local and all

others distributed. The idea is that local operators, when evaluated, occur only within

the scope of a single processing node, whereas distributed values require communica-

tion and coordination. Regiment query circuits differ from those seen in traditional

56

Figure 4-1: A simple query circuit. Double-boxed operators take and return re-
gions, single boxed ones streams, and afold reduces regions to streams. Operators
returning events are outlined with hexalateral boxes, and operators returning basic
(non-monadic) values have have rounded edges.

stream processing systems [1, 5, 51] because of the presence of region-producing op-

erator nodes (double boxed). These nodes can be thought of as representing an

unknown quantity of (single boxed) signal-producing sources - a region is a collec-

tion of streams. As illustration, consider the figure below; it equates an rmap over

world with an rmap over an unknown number of individual node data streams.

Jwrdlol Inp

4.2.2 Evaluation Ordering and Query Circuits

In the current implementation, the data in the streams/regions flowing through a

query circuit are always pushed rather than pulled. The question, however, of when

streams are initiated is a separate matter. It has to do with the evaluation order

of the high-level Regiment language. Regiment's semantics specify a lazy-evaluation

57

strategy. However, as with any call-by-need language, whenever it is certain that

an expression will be evaluated it is immaterial when it is evaluated. For Regiment

programs expressing relatively simple queries all or most of the programs distributed

operators generally falls into this category and can be evaluated at the outset. Only

operators inside lambda expressions have their evaluation delayed, and because all

monadic-valued user defined functions have been inlined, this leaves only distributed

operators inside the definitions of (monadic-valued) function arguments to higher

order primitives (amap, afold, etc). These are relatively rare in Regiment, but do

occur - primarily as a result of event handling and clustering.

Event handling delays evaluation of distributed operators. The until construct

takes an event, an initial stream/region, and an event handler. The event handler

must be a function that consumes the value produced by the event argument and

returns a new stream/region. Thus distributed operators in the handler function

(which must exist) are data-dependent on the value produced by the event. This

constrains the evaluation order of until's subexpressions. The Regiment runtime must

acquire the event's value at some location, and route this information to wherever it

is needed for the formation of the subsequent stream/region. However, if the event

handler (or some part of its result) does not depend on the particular value carried

by the event, we might speculatively evaluate that stream returned by the handler,

and simply discard its results up until the point of occurrence of the event.

Clusters are another common cause of functions that return region values. The

reason is that they generate region-of-regions. For (amap f (cluster r)), the function

f must (to do anything non-trivial) have a monadic return value and therefore contain

distributed operators. However, this usually does not cause painful control flow or

communication - generally working with clusterings only requires communicating

within the local connected components.

58

4.3 Compiler Structure and Simulator

Our compiler follows a micro-pass architecture. That is, it is composed of many small

compiler passes. The output pass of each is a runnable (simulatable) intermediate

form. The passes are grouped into three broad phases. The first phase of the com-

piler consists of preprocessing and normalization, the second involves analysis and

annotation, and the third performs code generation and optimizes the result.

We use the Scheme macro-system [27, 16] to build a series of embedded languages,

making output of each pass runnable code. This is a multi-resolution simulation

system. The earlier passes produce code that when executed run an extremely crude

simulation of the Regiment macroprogram. Simple list data-types represent regions

and areas and there is no decentralization of control-flow. This first-level simulation

is abstract and inaccurate, but is still surprisingly helpful for quickly getting a sense

of what a Regiment program means.

The second broad phase of the compiler works with the now-simplified Regiment

program (query circuit) to analyze and annotate it. These passes also use the same

form of crude, centralized simulation. (They don't change the structure of the pro-

gram, merely annotate it.)

The most substantial portion of the compilation process occurs at the outset

of the third phase of compilation. It is there (in "deglobalize") that the program

is converted from a macroprogram to a Token Machine - a node level program

described in chapter three. When run, these Token Machines invoke a basic network

simulator, called SimulatorO (pronounced "Simulator-Nought" - the first simulator

for Regiment). This is also implemented in Scheme. It is multithreaded, running a

thread for each node in simulated network. However, it uses an extremely simplified

communication model (disc radio model), and does not model node failures. For more

realistic simulation, the user runs the remainder of the compiler, produces NesC code,

and simulates it with the TinyOS simulator (TOSSIM), which has a bit-level-realistic

radio model.

59

4.4 Static Elaboration

All programming languages face tradeoffs in terms of choosing which features will

be static and which dynamic. In varying degrees this applies to typing, memory

allocation, procedure calls, method dispatch, and so on. As mentioned above, for

the current Regiment implementation we choose to restrict all (monadic-valued) user

procedure applications and memory allocation to the the static elaboration phase.

The Regiment static-elaborator proceeds by inlining all function applications where

the code for the operator is available. However, there is an exception that expressions

which do not and cannot have the Stream monad in their type do not need to have

all their user functions inlined. (Note that the Region monad includes the Stream

monad.) The intuition is that the user may run whatever computations they want

as long as they stay local to a single sensor node; and as long as there is no Stream

monad in the functions type signature, there can be nothing but local computation

and storage. For example, the user may wish to calculate the recursive factorial

function. This function can then be mapped over a stream, but it itself returns a

non-streamed result and thus it is no concern to us in doing our static elaboration.

Further, the compiler demands that when static elaboration is complete that all

function arguments to higher order primitives are known code, that is, the compiler

knows which function definition (lambda expression) the expression refers to. For the

purpose of the current compiler, this means that the expression is either a lambda

expression, or a let-bound variable reference to a lambda expression. Lambda-bound

variable references are conservatively classified as unknown. Thus, by fiat, the output

of the static elaboration phase is required to satisfy the following constraints.

1. The only procedure applications are primitive applications (rfold, rmap, etc)

(with the possible exception of non-stream typed functions).

2. All procedure-typed arguments to higher-order primitives are to "known" clo-

sures.

3. No memory allocating primitives (cons) remain.

60

(letrec ([f (lambda ...)])

(letrec ([loop

(lambda (n)

(if (= '0 n)

world

(rfilter f (loop (- n '1)))))])

(loop '4)))

Statically elaborates to:

(letrec ([f_1 (lambda ...)])

(rfilter f1 (rfilter f_1

(rfilter f_1 (rfilter f world)))))

Figure 4-2: A simple program before and after static elaboration.

This restricts Regiment to a subset of the language of chapter one. The memory

allocation limitation is merely a limititation of our current implementation.

As an example, refer to Figure 4-2. The input program uses recursion in a

monadically-valued function (loop). The static elaboration unrolls this loop, produc-

ing code that has no non-primitive applications, and where the only function-valued

operand (f_l) is a "known function" ((lambda ...)).

4.5 Preprocessing and Normalization

The core work of the Regiment compiler is in transforming the macroprogram to a

node level program. Before this can happen the compiler must do a routine simplifica-

tion of the input program. This happens in a number of steps which are summarized

briefly here. These transformations are standard fare and not specific to Regiment;

thus their details are not pertinent to the thrust of this thesis.

*verify-regiment: verifies syntactic properties of the Regiment program and

performs rudimentary type checking.1

1TODO: We don't have full polymorphic type-inference/checking in the current compiler.

61

* eta-primitives: makes sure that all references to primitive functions occur

in operand rather than operator context. That is, primitives' names cannot

be used as values. This pass accomplishes this by eta-expanding references to

primitives' names into lambda expressions.

* rename-var: renames all variables in the program so that each variable has a

unique name.

* remove-unquoted-constant ensures that all literals are preceded by a quote:

"'3".

* reduce-primitives re-expresses certain Regiment primitive functions in terms

of more basic ones. For example circle-at is just shorthand for a call to circle

combined with a call to anchor-at.

* uncover-free identifies and labels free-variables at each lexical scope.

* lift-letrec flattens the program so that it contains a single top-level letrec.

* lift-letrec-body relocates the body of the top-level letrec expression into a new

letrec-bound variable binding. Hence, the body of the top-level letrec expression

becomes simply a variable reference.

* remove-complex-opera* This orders all operations by introducing variable

bindings for all intermediate computations. Subsequently all operands to prim-

itive functions are either literals or variable references.

* verify-core Verifies that the intermediate program conforms to appropriate

specification. A grammar for this "core" Regiment is given in 4-3.

4.6 Analysis and Annotation of the Macroprogram

With desugaring complete, the next several passes analyze the high level program

and attach various kinds of information to it. All of this information will then be

used by the "deglobalize" code generator.

62

(program)) (letrec)
(letrec) > (letrec ([(identifier) (exp)] *) (exp))
(exp) , (constant-exp) I (identifier)

(if (exp) (exp) (exp))
((primitive) ((exp)*))
((exp) ((exp)*))

I (lambda ((identifier) +) (letrec))

Figure 4-3: Grammar for core (desugared) mini-language. The added restrictions
are that applications of non-primitive operators have non-monadic return values, and
that function-valued operands are refer to known function definitions.

4.6.1 Add Heartbeats

As alluded to in chapter three, during run-time regions become distributed, collec-

tive firings of token handlers. Different regions in the network may fire at different

frequencies. For example, we may wish to sense light readings once a second and

temperature readings once every two seconds. This pass analyzes the program and

attaches default frequencies to different operators in the program. For now it uses a

simple heuristic. Region formation in terms of geographical or network-topological

entities should proceed on a slower time-scale than sensor reading and computation.

It also employs user frequency annotations as constraints. For example, the following

would be used to read the light and temperature sensors at different rates.

let lights = setfreq 1.0 (map sense_light world)

temps = setfreq 2.0 (map sense_temp world)

in ...

Eventually, stream rate controls should be more dynamic, so as to adapt to chang-

ing circumstances (for example, power levels). Presently, they are statically scheduled.

Regiment's Timing Model

While we refer to "streams" throughout this thesis, Regiment has not semantically

committed itself to discrete streams. For example, it has no sliding-window operator.

63

Ideally, we think of Regiment's streams as continuous signals which are only approxi-

mated by their discretized counterparts. In the future we will look into incorporating

more signal-processing functionality as suggested by this viewpoint. For the time

being we must bear this in mind when considering Regiment's timing model.

For example, Regiment has a thus-far undiscussed (and incompletely implemented)

smap2 operator which joins two streams together, as well as an rmap2 which joins the

data in two regions over their intersected area. How does this work when the streams

or regions are of different frequencies? May we pair stale values of one stream with

the fresh values of another? Can we smooth the data? Regiment currently doesn't

answer these questions. It conservatively increases frequencies to match each other

when made necessary by joins.

4.6.2 Add Control Flow

Regiment's purely functional semantics enable it to adopt a lazy evaluation model.

However, purely functional languages are in some senses "immune" to differences in

operand evaluation strategy [40]. Thus, like other purely functional languages, Reg-

iment tries to be eager whenever it can. In practice almost all Regiment programs

have an eager evaluation order, as we will see, it is only event handling and inade-

quacies of our dataflow graph (due to conditionals, and regions-of-regions) that cause

us to resort to laziness.

In Regiment, order of evaluation becomes analogous to push vs. pull communi-

cation in the networking layer. If we have a simple network of rmaps, rfolds and the

like (without conditions or events) control flow may start at the leaves of the program

and come towards the root, and data can be streamed along with control in that same

direction. If we introduce an event and an until statement, then we face a situation

where the macroprogram can only evaluate the event-handler when the events value

is available.

Conditionals present a similar problem because their nondeterminism results in us

having references to regions whose identity is not statically known. In such a scenario

the region formation code must wait to be executed until the correct region is issued

64

a dispatch at run-time (which also requires potentially costly communication).

The job of this pass, then, is to analyze the operator network and add control flow

edges, also labeling region and stream carrying edges as push or pull. (Pull meaning

simply that the appropriate control flow edges must be invoked to evaluate the parent

expression).

As an example of a pull scenario, let's consider again the until construct.

The until construct takes an event, an initial stream/region, and an event han-

dler. The event handler must be a function that takes the value produced by the

event argument and returns a new stream/region. When the until expression receives

control, it transfers it to its event and initial-stream arguments simultaneously. Upon

the event firing, the until node transfers control to its event handler.

Consider the scenario in which we are compiling a top-level until expression.

Control transfers immediately to the event and initial signal expressions, allowing

them to have push edges for their distributed operators. The interior of the event

handler may also have distributed operators with push edges. But the event handler

itself (the lambda node) will be annotated with a pull edge, indicating that the until

node must initiate execution of that lambda node - "call" the function, which in this

case involves routing the events value to he appropriate place(s) in the network for

the event handler to generate its result.

65

4.6.3 Add Virtual Places

The Regiment program is executed in a distributed environment. Therefore, values

traveling through edges in the query circuit are located at different points in physical

space. This is similar to typical distributed stream processing, except more difficult

for a couple of major reasons. First, communication is not all-to-all; we have to work

with mesh communication only. Second, regions exist not at just a single point in the

network, but at an unpredictable collection of many points simultaneously.

Nonetheless, the Regiment compiler can infer some information about the places

that different values traverse. For example a region resulting from a filtration or an

intersection operation is a subset of the original region. This is extremely relevant for

doing communication efficiently - i.e. you can use the parents spanning tree rather

than flooding the sensor network. This pass proceeds by introducing a namespace

of virtual places, then inferring relationships (equivalence, subset, member) between

them. It gathers information by leveraging straightforward knowledge about the basic

operators (i.e. amap doesn't change the location of the region).

4.6.4 Add Routing

With our virtual place annotations in place, we can look for edges whose sources and

sinks don't exist at the same virtual place. When this occurs, routing is necessary.

Hopefully, the previous pass has left us with the information we need to conclude

"you can use spanning tree X to communicate to region R". Otherwise, we might

have to resort to flooding the communication network to reach a region, or to doing

a breadth first search to find the sink for a stream. This pass decides which of

these communication mechanisms will be used, and attaches the information to the

appropriate edges in the query circuit.

66

4.7 Deglobalize

To summarize, upon reaching this phase of the compilation process we have: expanded

the program into a network of stream/region operators, annotated it with timing

information, made push/pull decisions for all of the stream-carrying edges in network,

adding a separate set of control flow edges, and, where necessary, labeled the sources

and sinks of these edges with information on spatial redirects (routing).

The final major pass in Regiment's compiler is deglobalize. It's name takes after

the fact that the reduced and annotated streaming dataflow graph is still a "global"

program - it makes reference to non-local data structures (regions). The output of

deglobalize is a complete Token Machine program, conforming to the TML language

and execution model described in chapter two. Now we will conventions used for the

output TML program, and the code-generation process that gets us there.

4.7.1 Formation and Membership Tokens

The first convention we establish is that every edge in the input graph which carries a

value of type stream (including regions), will have an interface as follows: a formation

token that initiates the creation of the stream and a membership token that constitutes

an event signaling membership in the region or reception of a value in the stream. We

will allow ourselves to refer to the formation and membership tokens of an operator

node, which really refers to the corresponding tokens for its outgoing edge(s).

A formation token may be invoked once to create a cascade (stream) of mem-

bership events. Or it may be reinvoked at each step in time. This depends on the

operator generating the particular stream in question. But in general, for regions

formation is a process occurring on a time-scale slower than membership. That is,

the selection of a subset of nodes happens at a relatively slow time scale, whereas

reporting of samples from those nodes happens much more rapidly. Of course, for a

given region, formation events and membership events needn't happen in the same

place. A region is a network process that is seeded through formation tokens at some

set of locations over some time window, and whose formation signals another set of

67

membership tokens over another set of locations and a later time-window.

Events have membership tokens which fire only once (for that particular event

value). Events are constructed by predicates that watch streams. At the token level

this becomes simple. The input stream to a whenAny primitive (whenPercent is not

presently implemented) causes a sequence of membership events, when each of these

occurs, the predicate is checked; if it is satisfied the events membership event occurs.

The difficulty with events comes in routing the information appropriately.

For anchors (and also streams) the membership token will only fire in the node

elected as the anchor. As this node changes over time, the firing location for this

membership token follows it. Presently, anchor nodes are stateless so the migration

poses no problems. In the future, the run-time will attempt to migrate the state

associated with the anchor's tokens.

4.7.2 Per Operation Code Generation

This section will describe the code generated for several of the major operators in

Regiment. For brevity, only a subset of the full Regiment primitive library are de-

scribed.

1. amap takes one area argument and one argument thats a known function.

There are three possibilities as to how the operator is wired:

* If the operator node producing the region value is known, and the associ-

ated incoming edge is a push edge, then the membership token of that edge

is wired directly to the formation token created by the of the amap node.

That is, code is added to the token handler for that membership token,

causing it to invoke amap's formation token. The formation token invokes

the mapped function, and the membership token fires upon its completion

and carries the return value of the function.

* If the operator node is known, but the incoming edge has a pull orienta-

tion, then the amap primitive is responsible for invoking evaluation that

corresponds to Regiment expression signifying region operand. We refer to

68

the control flow graph, which includes information as to which leaf nodes

need to be seeded control (which formation tokens need to be invoked, and

where they need to be invoked). The formation token of the amap node is

wired to the formation tokens of these leaves.

The membership token for the amap's incoming region-carrying edge is

therefore not wired to the amap's formation token, but instead directly

invokes its function argument. As before, upon the completion of this

function the amap's membership token fires and carries its value onward

to the next stage of the computation.

* The operation producing the input region is not known. Even with Reg-

iment's static elaboration phase this may occasionally happen. Regions

can still be passed as arguments to functions. Thus we may be faced with

a variable reference to an unknown region. In this case, at run-time we

will receive the name (a reference) to the region that the amap applies to.

We must then broadcast amap's formation token to all nodes holding the

membership token associated with that named region. This is a spatial

redirect. Ideally, we can use "place" metadata added by a previous pass

to optimize this multicast operation. However, the current implementa-

tion handles this scenario simply by flooding the message throughout the

network, hitting all members of the named region in the process.

2. smap works in the same manner as amap. Currently smap also processes data

"in place", i.e. where it becomes available in terms of its membership token

firing. Smap operators should have more flexibility than amap operators, not

being bound to a region. (Streams are more mobile than regions.) In future

implementations we will look into intelligent placement of smap operators inside

the network. For example, it might be placed at the sink(s) of the stream rather

than the source (or anywhere in between).

3. afilter is also similar to amap. It is essentially the same as amapping the

identity function, with the caveat that the outgoing token event of the afilter

69

node is only fired if that particular element satisfies the input predicate function.

Thus the membership events coming out of an afilter will happen at a subset of

the locations of those coming in.

4. afold Starting from one or more nodes hosting formation token events, afold

spreads a gradient that covers the region in question (thereby establishing a

spanning tree for that region). Each subsequent formation firing refreshes the

gradient (adapting to changes in communication topology). When the spanning

tree is established, members begin reporting data up the spanning tree. This

happens at a frequency set by the add-heartbeats pass, and the reporting loop

runs independently of and asynchronously to the formation/gradient-refresh

loop.

Aggregation happens automatically as data travels up the spanning tree. The

outgoing edge for the afold operator is a stream, and when the final aggregated

datum arrives at the root of the tree, the membership token for this stream is

fired at that root node.

The current afold implementation could be substantially more robust. There

are well established techniques for robust aggregation that we will employ in

future refinements, for example, keeping multiple parents or aggregating the

final result to more than one node.

4.7.3 Returning Data to the User

One other relevant point concerns the final outgoing edge in the query circuit -

the edge that carries data to the user. The operator that is in this final position is

treated much like it would be elsewhere, but with the exception that the result is

streamed through a global spanning tree to the base-station (of which there are one

at this point). If a region rather than a stream is returned from the network, this

necessitates that all the nodes within than region report their data back through the

global spanning tree, which is a costly operation, so usually we try to do most of the

reduction on regions inside the network.

70

4.7.4 Simple Code Generation Example

Now we illustrate the above techniques with a simple compilation example.

(afold max 0 (amap senselight (rhood 5 (anchor-at '(30 40)))))

This example simply chooses an anchor node in the geographical vicinity of coor-

dinates (30, 40), and builds a region consisting of all the nodes within 5 network hops

of that anchor. (Rhood is a shorthand for radio-neighborhood. . When that region

is formed, the light readings are extracted from all the sensors inside the region, and

finally the maximum light reading is returned.

For this program, control flow starts in anchor-at and passes outward through

rhood, rmap, and finally rfold. Deglobalize adds extra tokens to establish the global

routing tree and to stimulate the leafs of the program (anchor-at). The output of the

deglobalize pass is shown here.

(deglobalize-lang

'(program

(socpgm (call spread-global))

(nodepgm

(startup leaf-pulsartmpanchorat_7)

(tokens

(spread-global ()

(emit global-tree)

(timed-call 1500 spread-global))

(global-tree () (relay)))

(leaf-pulsartmpanchorat_7 ()

(call ftokentmpanchorat_7)

(timed-call 1000 leaf-pulsartmpanchorat_7))

(ftokentmpanchorat_7 () (flood constok_18))

(constok_18 ()

(if (< (locdiff (this-loc) '(30 40)) '15)

71

(elect-leader mtokentmpanchorat_7 getdist_19)))

(getdist_19 () (locdiff (this-loc) '(30 40)))

(mtokentmpanchorat_7 () (call f_token_tmprhood_8))

(ftokentmprhood_8 () (emit mtoken_tmprhood_8))

(mtokentmprhood_8 () (if (< (dist) '5) (relay)))

(mtokentmprhood_8 () (activate ftokentmprmap_10))

(ftokentmprmap 10 ()

(call mtokentmprmap_10 (local-sense 'light))

(timed-call 100 ftokentmprmap_10))

(mtokentmprmap_10 (v) (call ftokenresult_6 v))

(ftokenresult_6 (v)

(greturn

v

(to mtokenresult_6)

(via m_token_tmprhood_8)

(seed '0)

(aggr tmpfunc_11)))

(tmpfunc_11 (a_3 b2)

(let* ([result_5 (max a3 b_2)]) result_5))

(mtoken_result_6 (v) (soc-return v))

)))

The socpgm clause contains code that is only executed by the base-station (Source

Of Control). In this case the base-station invokes a local copy of the spread-global

token, which takes no arguments, launches a gradient, and loops after a time. Please

refer to chapter three for definitions of the gradient operations (emit, greturn, etc).

The global-tree gradient simply relays itself until it hits the boundary of the network.

It doesn't need to invoke any other tokens, its their simply to provide a spanning tree

used by greturn.

72

You can also see a startup clause which launches a token in every node of the

network at startup time. The leaf-pulsar tokens are there to periodically send pulses

to nodes at leaves of the control flow graph. This calls the formation token for

the anchor node (f_token_tmpanchorat_7- formation tokens begin with f _ and

membership tokens with m_).

The anchor-at operation uses a relatively inefficient technique for electing an an-

chor. Rather than using a geographical routing protocol (which would be expected

in a refined deployment with localization capabilities), it floods the network with a

"consideration token" and all nodes within a given fixed distance of the target loca-

tion are considered for a leader election. Flood is a macro that subsequently expands

into an extra token handler emitting a gradient. Elect-leader is another macro that

expands into a bundle of token handlers in subsequent passes. The extra argument

getdist_19 provides a function to minimize. Of the nodes participating in the elec-

tion, the one with the smallest distance from the geographical location will receive

the token m_token_tmpanchorat_7 - the membership token for the anchor.

This membership token immediately invokes the formation token for the k-neighborhood,

without a spatial redirect. (Later Token Machine optimization passes eliminate this

extra call by inlining the call and eliminating dead code.) The anchor becomes the

epicenter of the gradient that forms the neighborhood. This gradient expands to a

certain number of hops and then stops. All the nodes within that radius have then

received rhood membership tokens.

Now the region has been formed. Next we'll begin taking light readings. But we

want that to be its own loop running at its own frequency. Hence the activate call;

it is a macro that checks if a token is already scheduled, if so does nothing, otherwise

schedules it immediately. This can be used for prodding a recursively looping token

to make sure it's alive, but without interfering with its timing cycle.

The f_token_tmprmap_10 does the sensing and passes the result on to its member-

ship token, which in turn activates the next step in the chain: the afold's formation

token, which is called f_token-result_6. For this aggregation, the compiler knows

that there's already a skeleton underpinning the region (because of the gradient emis-

73

sion forming the k-neighborhood). Thus the greturn uses the spanning tree from

m_token_tmprhood_8. The aggregation uses tmpfunc_ 1 to combine results along the

tree, and when it gets to the root it invokes the m_tokenresult_6 token on the final

aggregated value. All that's left for this token handler to do is stream the answers

back to the base-station. soc-return is another shorthand for a greturn statement

that uses the global tree and returns the results to the user.

74

Chapter 5

Conclusion

Programming sensor networks in terms of high-level, declarative, macroprogramming

languages is feasible and it simplifies development by abstracting away the low-level

details of sensing, communication, and energy management. However, since these

features are handled "under the hood" by the compiler, it becomes possible to write

very inefficient programs without realizing.Future work should focus on analyzing

performance and giving users a reasonable expectation as to the performance of their

programs - whether through a formal cost model, or if impossible, more effective

simulation of average-case scenarios. Further, we have only scratched the surface of

potential optimizations for Regiment and Regiment-like languages.

We have sought to demonstrate that an approach based on functional program-

ming and two-level semantics (monads) is more flexible and general than the relational

database approach.

* The FRP framework allows reaction to events in a systematic and controlled

way;

* regions can form arbitrary and powerful groupings;

* anchors and regions allow a constructive programming style wherein structure

is built on the network rather than just data queried;

* and, finally, the (traditional) procedural abstraction mechanism allows the user

75

build reusable functionality.

Future work should consider the ramifications of embedding Regiment's region oper-

ators in a non-functional language (for example, regions become Java objects). We

suspect such an approach would result in a greater frequency of costly synchroniza-

tion with a central base-station. Further, functional programming provides a great

deal of implicit parallelism [6] that Regiment is currently under-utilizing.

We have also provided an intermediate language, the Token Machine Language

(TML), that provides a semantically simple and uniform target for our Regiment

compiler, but is also easily human writable and readable. It is a low-overhead language

- very small programs can accomplish basic data-collection tasks. It is simpler and

less expressive than a language like NesC. It has no memory management and as a

result lacks most of the failure modes of NesC, making it ideal for beginners.

While we have valued TML, in future work with Regiment we will aim to formulate

a new intermediate language at a somewhat higher level than TML. In particular, we

would like to see streaming data represented explicitly in the intermediate language.

We have hopes that a common stream-processing framework can support both the

macroprogramming vision as represented by Regiment as well as the declarative query

processing model as seen in TinyDB.

There are definite benefits to the Regiment programming paradigm. It makes

certain programs extremely easy to write. What remains is for the system to be

tested "in the field" and validated for a class of sensor network applications. When

that is accomplished, we will see where the future will take us. Regiment's most

beneficial property in the long run will likely be its open-ended nature. It provides a

platform: region processing, for which many expressive operations can be imagined.

They await only a demand.

76

Bibliography

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Centintemel, M. Cherniack, J.-H. Hwang, W. Lind-
ner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, , and S. Zdonik. The design of the
borealis stream processing engine. In CIDR 2005 - Second Biennial Conference on Innovative
Data Systems Research, January 2005.

[2] T. Abdelzaher, B. Blum, Q. Cao, D. Evans, J. George, S. George, T. He, L. Luo, S. Son,
R. Stoleru, J. Stankovic, and A. Wood. Envirotrack: Towards an environmental computing
paradigm for distributed sensor networks.

[3] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, J. Thomas F. Knight, R. Nagpal,
E. Rauch, G. J. Sussman, and R. Weiss. Amorphous computing. Commun. ACM, 43(5):74-82,
2000.

[4] J. Annevelik. Database programming languages: A functional approach. In Proc. of the ACM
Conf. on Management of Data, pages 318-327, 1991.

[5] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava,
and J. Widom. STREAM: The Stanford Data Stream Management System. 2004.

[6] Arvind and R. Nikhil. Implicit Parallel Programming in pH. Morgan Kaufman, 2001.

[7] Arvind, R. S. Nikhil, D. L. Rosenband, and N. Dave. High-level Synthesis: An Essential
Ingredient for Designing Complex ASICs. In Proceedings of ICCAD'04, San Diego, CA, 2004.

[8] F. Bancilhon, T. Briggs, S. Khoshafian, and P. Valduriez. Fad, a powerful and simple database
language. In Proc. Conf. on Very Large Data Bases (VLDB), 1987.

[9] R. Barr, J. Bicket, D. Dantas, B. Du, T. Kim, B. Zhou, and E. Sirer. the need for system-level
support for ad hoc and sensor networks, 2002.

[10] G. E. Blelloch. NESL: A Nested Data-Parallel Language. Technical Report CMU-CS-93-129,
April 1993.

[11] B. Blum, P. Nagaraddi, A. Wood, T. Abdelzaher, S. Son, and J. Stankovic. An entity mainte-
nance and connection service for sensor networks, 2003.

[12] C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer, and L. Iftode. Spatial programming using
smart messages: Design and implementation. In 24th International Conference on Distributed
Computing Systems (ICDCS 2004), March 2004.

[13] W. Butera. Programming a Paintable Computer. PhD thesis, MIT, 2002.

[14] D. Coore. Botanical Computing: A Developmental Approach to Generating Interconnect Topolo-
gies on an Amorphous Computer. PhD thesis, MIT Department of Electrical Engineering and
Computer Science, February 1999.

[15] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek. Fine-grain parallelism
with minimal hardware support: a compiler-controlled threaded abstract machine. In Proceed-
ings of the fourth international conference on Architectural support for programming languages
and operating systems, pages 164-175. ACM Press, 1991.

[16] R. K. Dybvig. Writing hygienic macros in scheme with syntax-case. Technical Report TR 356,
1992.

77

[17] C. Elliott and P. Hudak. Functional reactive animation. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP '97), volume 32(8), pages 263-
273, 1997.

[18] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with continua-
tions. SIGPLAN Not., 39(4):502-514, 2004.

[19] M. Flatt. Composable and compilable macros: You want it when, 2002.

[20] B. Greenstein, E. Kohler, and D. Estrin. A sensor network application construction kit (snack).
In Proceedings of the 2nd international conference on Embedded networked sensor systems, pages
69-80. ACM Press, 2004.

[21] J. Hatcliff and 0. Danvy. A generic account of continuation-passing styles. In Proceedings of
the 21st ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
458-471. ACM Press, 1994.

[22] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information dissemi-
nation in wireless sensor networks. In Proc. the 5th ACM/IEEE Mobicom Conference, August
1999.

[23] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture directions
for networked sensors. In Proceedings of the ninth international conference on Architectural
support for programming languages and operating systems, pages 93-104. ACM Press, 2000.

[24] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and robust
communication paradigm for sensor networks. In Proc. International Conference on Mobile
Computing and Networking, Aug. 2000.

[25] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation.
P-H, 1993.

[26] S. P. Jones and J. Hughes. Report on the programming language haskell 98., 1999.

[27] R. Kelsey, W. Clinger, and J. R. (Editors). Revised5 report on the algorithmic language Scheme.
ACM SIGPLAN Notices, 33(9):26-76, 1998.

[28] A. Kondacs. Biologically-inspired self-assembly of 2d shapes, using global-to-local compilation.
In International Joint Conference on Artificial Intelligence (IJCAI), 2003.

[29] P. Levis and D. Culler. Mate: a tiny virtual machine for sensor networks. In Proceedings
of the 10th international conference on Architectural support for programming languages and
operating systems, pages 85-95. ACM Press, 2002.

[30] T. Liu and M. Martonosi. Impala: A middleware system for managing autonomic, parallel
sensor systems, 2003.

[31] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny AGgregation Service
for Ad-Hoc Sensor Networks. In Proc. the 5th OSDI, December 2002.

[32] E. Moggi. Computational lambda-calculus and monads. In Proceedings 4th Annual IEEE Symp.
on Logic in Computer Science, LICS'89, Pacific Grove, CA, USA, 5-8 June 1989, pages 14-23.
IEEE Computer Society Press, Washington, DC, 1989.

[33] A. Mycroft and R. Sharp. Hardware/software co-design using functional languages. In Tools
and Algorithms for Construction and Analysis of Systems, pages 236-251, 2001.

[34] Nagpal, Shrobe, and Bachrach. Organizing a global coordinate system from local information
on an ad hoc sensor network. In 2nd International Workshop on Information Processing in
Sensor Networks (IPSN '03), April 2003.

[35] R. Nagpal. Programmable Self-Assembly: Constructing Global Shape using Biologically-inspired
Local Interactions and Origami Mathematics. PhD thesis, MIT Department of Electrical En-
gineering and Computer Science, June 2001.

[36] S. Nath, Y. Ke, P. B. Gibbons, B. Karp, and S. Seshan. IrisNet: An architecture for enabling
sensor-enriched Internet service. Technical Report IRP-TR-03-04, Intel Research Pittsburgh,
June 2003.

78

[37] S. L. Peyton Jones and A. L. M. Santos. A transformation-based optimiser for Haskell. vol-
ume 32, pages 3-47, 1998.

[38] Pointon, Trinder, and Loidl. The design and implementation of Glasgow Distributed Haskell.
Lecture Notes in Computer Science, 2001.

[39] N. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller. Anchor-free distributed localization
in sensor networks, 2003.

[40] A. Sabry. What is a purely functional language? Journal of Functional Programming, 8(1):1-22,
1998.

[41] A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing style. In Pro-
ceedings 1992 ACM Conf. on Lisp and Functional Programming, San Francisco, CA, USA,
22-24 June 1992, pages 288-298. ACM Press, New York, 1992.

[42] T. Sheard. Accomplishments and research challenges in meta-programming. Lecture Notes in
Computer Science, 2196:2-??, 2001.

[43] G. L. Steele and W. D. Hillis. Connection machine lisp: Fine grained parallel symbolic pro-
gramming. pages 279-297.

[44] W. Taha and T. Sheard. Multi-stage programming with explicit annotations. In Partial Eval-
uation and Semantics-Based Program Manipulation, Amsterdam, The Netherlands, June 1997,
pages 203-217. New York: ACM, 1997.

[45] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages: a mechanism
for integrating communication and computation. In 25 years of the international symposia on
Computer architecture (selected papers), pages 430-440. ACM Press, 1998.

[46] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In Conference Record
of the 16th Annual ACM Symposium on Principles of Programming Languages, pages 60-76.
ACM, Jan. 1989.

[47] M. Welsh and G. Mainland. Programming sensor networks using abstract regions. In Proc.
the First USENIX/A CM Symposium on Networked Systems Design and Implementation (NSDI
'04), March 2004.

[48] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: A neighborhood abstraction for
sensor networks. In Proc. the International Conference on Mobile Systems, Applications, and
Services (MOBISYS '04), June 2004.

[49] B. T. G. P. S. N. with Application Specific Virtual Machines. In submission to osdi 2004.

[50] Y. Yao and J. E. Gehrke. The Cougar approach to in-network query processing in sensor
networks. ACM Sigmod Record, 31(3), September 2002.

[51] S. Zdonik, M. Stonebraker, M. Cherniack, U. Cetintemel, M. Balazinska, and H. Balakrishnan.
The aurora and medusa projects. Bulletin of the Technical Committee on Data Engineering,
2001.

79

