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Abstract

A second-order method for blind source separation of noisy instantaneous linear mix-
tures is presented and analyzed for the case where the signal order k and noise co-
variance GGH are unknown. Only a data set X of dimension n> k and of sample
size m is observed, where X = AP + GW. The quality of separation depends on
source-observation ratio }, the degree of spectral diversity, and the second-order non-
stationarity of the underlying sources. The algorithm estimates the Second-Order
separation transform A, the signal Order, and Noise, and is therefore referred to as
SOON. SOON iteratively estimates: 1) k using a scree metric, and 2) the values of
AP, G, and W using the Expectation-Maximization (EM) algorithm, where W is
white noise and G is diagonal. The final step estimates A and the set of k under-
lying sources P using a variant of the joint diagonalization method, where P has k
independent unit-variance elements.

Tests using simulated Auto Regressive (AR) gaussian data show that SOON im-
proves the quality of source separation in comparison to the standard second-order
separation algorithms, i.e., Second-Order Blind Identification (SOBI) [3] and Second-
Order Non-Stationary (SONS) blind identification [4]. The sensitivity in performance
of SONS and SOON to several algorithmic parameters is also displayed in these ex-
periments. To reduce sensitivities in the pre-whitening step of these algorithms, a
heuristic is proposed by this thesis for whitening the data set; it is shown to improve
separation performance. Additionally the application of blind source separation tech-
niques to remote sensing data is discussed. Analysis of remote sensing data collected
by the AVIRIS multichannel visible/infrared imaging instrument shows that SOON
reveals physically significant dynamics within the data not found by the traditional
methods of Principal Component Analysis (PCA) and Noise Adjusted Principal Com-
ponent Analysis (NAPCA).

Thesis Supervisor: David H. Staelin
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Motivation for Research

As digital storage has become cheaper the number of ever larger data sets has in-

creased accordingly. It is often desirable to reduce the dimensionality of these data

sets while retaining their unique, non-redundant information. Benefits of this pro-

cess include an increased understanding of the underlying dynamics present in the

data, more efficient use of storage space, and a decrease in the computational process-

ing time needed for the analysis of the transformed data set. Additionally in many

research areas such as remote sensing, telecommunications, neurobiology, manufac-

turing, finance, and speech processing, sensor arrays produce data sets that can be

characterized as mixtures of some set of interesting phenomena and unwanted noise.

Here it is often desirable to obtain each interesting component separately given lit-

tle information as to the underlying system and signal characteristics. The field of

Blind Signal Separation (BSS) offers approaches and methods for dealing with such

problems. This thesis extends and improves existing BSS algorithms.
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1.2 Blind Signal Separation (BSS) Background

1.2.1 Generalized Blind Signal Separation Problem

The general problem of Blind Signal Separation (BSS) can be described as follows:

Given a vector comprising n sensor output signals,

X(t) = [x 1 (t), x2 (t).,.,Xon(t)] 0 < t < T (1.1)

where each sensor output signal, xi(t), is the output of some unknown system Fi,

whose inputs are from a set of k source signals,

P(t) = [p1(t),p 2 (t),..,pk(t)] 0 t < T (1.2)

and 1 noise signals,

W (t) = [wi(t), W2 (t),...., wi(t)] 0 < t < T (1.3)

=> Xi(t) = F(P(t),XW(t)) 1 < i n (1.4)

find an inverse system or transform such that the source signals, pi(t) 1 < i < k, can

be obtained. In such problems, some assumptions must be made as to the structure

of the systems, Fl's, for the problem to be well posed. Additionally it is also often

necessary to have restrictions on the statistical characteristics of the source signals,

P(t), and noise, W(t).

1.2.2 System Models

Although many models are possible for the systems, F 's, there are a few special

cases that have been heavily studied [4] which serve as good representations of typical

systems. In each the noise model is most often additive.

16



Linear Convolutive Model

Here the sensor output signals, X(t) are modeled as the output of a linear system,

k

xi(t) =ZE

j=1
100 asj(t, -r)p(r )d-r +

-o j=1

where

A(t,T)=

all(t, T)

ani(t, r)

... alk(t,T)

... ank(t,T)

(1.6)

is the matrix of linear systems that the source signals pass through and,

G(t, T)=

911 (t, r)

gi T)

91(t, T)

--- gnl(,r

(1.7)

is the matrix of linear systems that the noise signals pass through.

Linear Instantaneous Mixture Model

An important special case of the linear convolutive model is the instantaneous linear

mixture model. Here the linear systems of A(t, r) and G(t, r) are restricted to be

memoryless, causal, and time invariant systems. The system equations then become,

Cxi(t)

xn(t)Iiaupi(t) + ... + alkpk(t) g1 1w1(t) + ... +-- giiwi(t)

anip1 (t) +... + ankpk(t)J gi 1W1 (t) ++.. . + gw(t)

=> X(t) = AP(t) + GW(t)

(1.8)

(1.9)
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Non-Linear Models

Additionally, many systems where Blind Separation is applicable contain nonlineari-

ties [4]. Models and solutions exist for these types of systems, however because of the

increased complexity involved, these systems are often approximated by their linear

counterparts.

1.2.3 Prior Work and Solution Methods

An assumption in blind signal separation problems regarding the relationship be-

tween source signals, P, is that they are mutually independent. This assumption is

necessary in order to avoid ambiguity in trying to distinguish signal content that is

probabilistically related. The problem can be described as given sensor outputs, X,

find P such that:

P = min g(P') (1.10)
P'

where g(o) is a cost function measuring independence between source signals in P.

Many techniques have been proposed for solving the BSS problem under many differ-

ent models and sets of assumptions. Although many methods exist, the approaches

they take can be roughly divided into four general categories based on the type of

cost function used for measuring independence.

Second Order Statistics

In general, the blind separation problem involves solving for approximately n2 un-

known parameters which correspond to how each unknown source signal is mixed

within each sensor output. In order for a unique solution for the mixing transform

to be attainable there must be at least n2 independent sources of information for the

dependencies between sensor outputs. The zero-lag covariance matrix of the data

for instance provides !I- independent sources of information. Given that stationary

white gaussian noise is completely specified by its zero-time lag covariance matrix,

18



separating these signals uniquely is not possible. However if the underlying sources

have non-white independent auto-correlation functions, this second-order source of

dependence can be used to unmix the sources. Some popular methods that take ad-

vantage of second-order statistics include, factor analysis [1], Bayesian BSS [2], SOBI

[3], and SONS [4]. Additionally a second-order method was developed in [17] that

incorporated SOBI for use on low SNR data sets and cases where the signal order

is unknown. In each the cost function signifies the second-order dependence of the

source signals.

Higher Order Statistics

If the underlying sources are non-gaussian, they will not be uniquely specified by

their first and second moments. In these cases, the higher order moments of the

sources can be used to specify dependence between sensor outputs. Many possibilities

for cost functions exist in this domain, including kurtosis, mutual information, and

other non-gaussian features. Some widely used methods for higher-order based source

separation include contrast functions, cumulant matching [5][6][7], and independent

component analysis [8]. In each the goal is to minimize some cost function measuring

the higher-order dependencies between source signals.

Non-Stationarity

An additional potential characteristic of the source signals that methods attempt to

use is the non-stationarity of their probabilistic behavior. If the probability distribu-

tions for each source signal vary independently of one another then dependence of the

sensor outputs will correspondingly vary. Dependencies between the sensor outputs

at different times then give rise to independent sources of information. Cost functions

are derived based on finding source signals that are independent over each of these

time windows [4].

19



Time-Frequency Diversity/Orthogonality

Signal separation is also carried out by taking advantage of any orthogonality be-

tween the source signals. If the source signals are known a-priori to fall within non-

overlapping frequency bands then separation can be as simple as band-pass filtering

the data set. Additionally if the sources fall in non-overlapping time segments, the

separation is again straight forward.

1.2.4 Problem Statement

Solution methods for BSS that utilize higher order statistics are computationally

demanding and require large sample sizes in order to obtain statistically accurate

results. Higher order statistics are not applicable to gaussian sources. Methods falling

into the category of Time-Frequency Diversity require a restrictive set of assumptions.

We therefore restrict our attention in this thesis to the second-order solution domain

of BSS. Here the problem we are interested in is that of developing a BSS method

that uses all possible information available from second-order statistics, which is also

robust to noise. In particular we adopt for this thesis the instantaneous linear mixture

model for which we have m samples of the sensor output vector X(t):

/11 .. XP11-- Pim -W-im

-. i (P '- +G(" . j (1.11)

Xni . ' nm) Pkl Pkm )W11 ' Wim J

=>X=AP + GW (1.12)

In order to make the solution unique we make the standard assumption that the

mixing transform, A, is of full column rank. Here we also assume the noise, W, to

be temporally white, i.e.,

E[WWf] = i-I (1.13)

20



where Wi represents the ith column of W. Additionally the noise covariance matrix,

GGH, is assumed to be diagonal. This provides an accurate model for any instru-

ment or measurement noise that may be present in the observations. While GGH

is restricted to be diagonal it should be noted that the diagonal elements can take

on any value, allowing the noise variances to vary widely across sensor outputs in X.

Here we also fix the source signals to have unit variance,

E[PiPH] = 1 (1.14)

where Pi denotes the ith row of P. This assumption removes any scaling ambiguity in

the separation of A and P. The goal is to under this model come up with a solution

method for best estimating the source signals, P, based exclusively on knowledge of

x.

1.3 Thesis Outline

Chapter 2 outlines the prior work in second-order blind signal separation, and in-

troduces a new algorithm in this problem domain, SOON. SOON extends the set of

second-order algorithms by addressing some of the limitations associated with other

techniques in this set. Section 2.1 introduces the popular second-order separation

algorithm, SOBI. Here the theoretical justification for the two-stage approach used

in SOBI, namely pre-whitening and joint diagonalization, is outlined. Additionally

the limitations of the SOBI algorithm are discussed. In Section 2.2 a more recently

proposed second-order algorithm, SONS, is introduced. Here it is shown how SONS

improves upon SOBI along with noting the limitations left unaddressed by SONS.

Section 2.3 introduces the SOON algorithm proposed in this thesis. This section

shows how SOON improves upon SOBI and SONS through a more robust approach

to order and noise estimation. Additionally in this section the importance of several

algorithmic parameters is discussed along with the proposal of several heuristics for

working with these parameters.
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In Chapter 3 the performance of SOON is compared to that of SOBI and SONS

over simulated data. In Section 3.1 the problem space of BSS problems is charac-

terized by discussing several degrees of freedom to which separation performance is

sensitive. Section 3.2 introduces the performance metrics used in this thesis to gauge

algorithmic performance. In Section 3.3 a test using simulated colored stationary

sources is presented and the results are displayed. Similarly in Section 3.4 a second

test with simulated white nonstationary sources is proposed, and the results are then

analyzed. Section 3.5 explores the sensitivity of the SOON algorithm to the degrees

of freedom discussed in Section 3.1.

Chapter 4 examines the application of blind signal separation to remote sensing

data. Section 4.1 motivates this study by justifying the desire for blind signal sep-

aration in remote sensing. Section 4.2 introduces the classic Principal Components

Algorithm (PCA) which is often used in remote sensing for component analysis. Sec-

tion 4.3 then outlines the Noise Adjusting extension of PCA (NAPCA) along with

discussing its drawbacks. Next in Section 4.4 a two-dimensional blind signal separa-

tion model is presented. Finally in Section 4.5 an experiment using remote sensing

images collected by the AVIRIS 224-channel instrument is performed to compare

SOON to PCA and NAPCA.

Chapter 5 discusses the extension of the SOON algorithm to include higher or-

der statistics. In Section 5.1 a generalized architecture is presented that allows for

the separation of signals based on a general cost function. In Section 5.2 the In-

formation Maximization and Maximum Likelihood approaches to signal separation

are introduced and discussed. Section 5.3 examines the cumulant based approach to

higher-order separation.

Chapter 6 outlines possible extensions to this work and summarizes the work

presented in this thesis. In Section 6.1 the higher order extensions introduced in

Chapter 5 are further discussed. Additionally Section 6.1 elaborates on further work

in partitioning schemes for taking advantage of non-stationarity in data sets. Lastly

in this section there is a discussion on how this work can be applied to data sets

collected in many other fields. Section 6.2 concludes by summarizing this work.
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Chapter 2

Second-Order separation

Order-Noise estimation (SOON)

2.1 SOBI

2.1.1 The SOBI algorithm

The SOBI algorithm, which was introduced in [3], is a second-order separation method

that relies on there being some level of spectral diversity among the underlying

sources. The algorithm starts with pre-whitening the observation matrix X by finding

a whitening transform H that whitens the signal part of X:

E[HAP(HAP)H] = HARp(O)(HA)H = HA(HA)H = I (2.1)

where Rp is the source covariance matrix and I is the identity matrix. In order to

find the whitening transform, H, it is necessary that either the noise variances, or's,

be known or that an estimate of them can be made. In SOBI a solution is offered for

the case where the noise variances across observations are equal in magnitude. With

this assumption the whitening transform H is obtained through either an eigenvalue

decomposition (EVD) of the sample covariance matrix of X, Rx, or of the covariance

23



matrix Rx if it is known a-priori:

H = [(A, - 2h , .(A - 2)(1/2)hk]H(2.2)

where a2 is the estimated variance of the noise, Ai denotes the ith largest eigenvalue,

and hi is the corresponding eigenvector of either Rx or Rx. From (2.1), U=HA

can be seen to be a unitary matrix. The desired mixing transform A can then be

expressed in terms of H and U as

A = H#U (2.3)

where # denotes the Moore-Penrose pseudoinverse. The last step of SOBI then is

to find this unitary transform, U, so that A may be obtained from (2.3). This is

achieved first by noting that the time delayed covariance matrices of the whitened

data, HX, adhere to the following relation:

RHX(r) = HARp(-r)(HA)H Vr $0 (2.4)

-->RHX() = URp(T)UH VT 0 (2.5)

By the relation in (2.5) it is then possible to obtain the desired unitary factor, U, as

any unitary matrix that diagonalizes RHX(r) for some time lag r. As pointed out in

[3] it follows from the spectral theorem for normal matrices' [9] that the existence of

a unitary matrix V is guaranteed such that for a nonzero time lag T,

VHRHx(T)V= diag{di, ...,dk} (2.6)

'A normal matrix M, i.e. MMf=MHM, by the spectral theorem is unitarily diagonalizable,
i.e. there exists a unitary matrix U and diagonal matrix D such that M=UDUH.
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However in order for V to be essentially equal 2 to U, making U directly attainable

from V, the condition:

pi(r)# p (T) Vi fj (2.7)

where

pj(r) = E[Pi(t + T)P*(t)] (2.8)

and Pi denotes the i'th source, must hold, which is not true in general for an arbitrary

nonzero time lag T. The idea used in SOBI is to find a unitary matrix, V, such that

(2.6) holds for a set of nonzero time lags, {ri i = 1, ..., L}, rather than just one lag

r. Now U will be directly attainable from V so long as (2.7) holds for at least one

ri. This decreases the probability of not being able to identify U, and subsequently

A, as it will be less likely for (2.7) not to hold for all ris in this set. An algorithm

overview of SOBI appears in Table 2.1.

2.1.2 Limitations of SOBI

Commonly in BSS algorithms, as is the case with SOBI, it is computationally desirable

to have a pre-whitening step that first finds a whitening transform, H, that when

applied to the mixing transform, A, forms a unitary matrix, i.e.

(HA)(HA)H = diag{A, .., A} (2.9)

This allows the search space for the mixing transform to be reduced to that of unitary

matrices. In order to accurately find such a transform, however, it is necessary to re-

move the noise bias present in the EVD of the data covariance matrix. One limitation

of SOBI is that in order to remove this bias and obtain a whitening transform that

satisfies (2.9) it assumes that the noise covariance matrix is either known a-priori or

2Two matrices M and N are essentially equal if there exists a matrix P, such that M= PN, where
P has exactly one nonzero entry in each row and column, where these entries have unit modulus

[sobi].
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Table 2.1: The SOBI Algorithm
Step
1. Calculate the sample covariance matrix, Rx(0), of

X=AP+GW
Rx(0) ARp(0)A H + GRw(O)GH

~AAH+GGH
Let Al,...,Ak denote the k largest eigenvalues and hl,...,hk
the corresponding eigenvectors of Px(0)

2. Assuming white noise, an estimate a2 of the noise variance
is the average of the n - k smallest eigenvalues of Rx(0).
Calculate the whitening matrix, H, as
H = [(A, -. 2)(1/2)hi....., (Ak - a2 )(1/ 2)hk]H

3. Let the whitened data be denoted as Z = HX
Calculate the sample covariance matrices, Rz(r), for a
fixed set of time lags T4JTi I i = 1, ..., L}

4. Find U as the joint diagonalizer (see Appendix A.1) of the set {z(ri) |
i = 1, ..., L}, recalling Rz(Tj) ~~ URp(T2)UT.

5. Estimate A and P:
A = W#U (# indicates the Moore-Penrose pseudo-inverse)
P = (U TH)X

that the noise variances are of approximately equal magnitude over the observations.

In the case where the covariance matrix is unknown it is assumed that the noise co-

variance matrix is a scaled identity matrix. With this assumption an estimate is then

made of the unknown scaling factor by averaging over the last few eigenvalues of the

data covariance matrix, i.e.

GGH =U2I (2.10)

where

2 An-k+1-+...+ n(2.11)

n- k

Rx(0) = QAQH (2.12)
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with Ai being the ith smallest diagonal element of A. If this equal-energy assumption

does not hold, which is commonly the case, the whitening step will be biased by

noise. More specifically the condition of HA being unitary will not generally hold for

the calculated whitening transform H. This in turn will lead to degraded separation

performance for low SNR data as the exact new mixing transform, U = HA, will not

be contained in the search space comprised of unitary matrices.

An additional limitation of SOBI is its restriction to the separation of stationary

sources. If any sources happen to be non-stationary, which is common for real data

sets, the performance of SOBI will suffer as sample statistics will lose accuracy from

averaging over regions of the data set with different statistics.

2.2 SONS

2.2.1 The SONS algorithm

A more recently developed second-order separation algorithm, SONS, introduced in

[4], attempts to address these limitations associated with SOBI. First the noise bias

that is often present in the pre-whitening step of SOBI is addressed through a pro-

cedure they introduce called robust whitening. The zero-time-lag data covariance

matrix is expressed as:

Rx(O) = ARp(O)A H+ GRw(O)GH (2.13)

=A AH + GG H (2.14)

The bias originates from the noise covariance term GGH. This term must be known

or estimated in order for the signal part of the data to be accurately whitened. To

avoid this bias, robust whitening uses a linear combination of time delayed data

covariance matrices to obtain a whitening transform as opposed to using the zero-

time-lag covariance matrix. This involves first starting with an arbitrary weight

vector, a', for the coefficients of the sample covariance matrices used in the linear
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combination, i.e.

R = aiRx(ri) + ..... + aiRx(Tr) ri #0 Vi (2.15)

where

Rx(Ti)r~ ARp(i))AH (2.16)

follows from the white noise assumption. The desired whitening transform can then

be found using the EVD of R:

R = VRARVR (2.17

->H R=ARVR (2.18)

However because R is not necessarily positive definite, the whitening transform H

may not be valid. Therefore to ensure that R is positive definite the next step of

the procedure is to use the finite-step global convergence algorithm' [101 to adapt the

initial weight vector in such a way that the resulting R is positive definite. Robust

whitening helps performance by increasing the likelihood that HA will be approxi-

mately calculated as a unitary matrix.

Additionally SONS allows for the separation of not only spectrally diversified

sources, but also second-order non-stationary sources. In SONS the data is partitioned

such that sample covariance matrices are calculated separately over each partition.

This new set of covariance matrices is then used in the same joint diagonalization step

implemented in SOBI so that any change in source statistics over different partitions

can be exploited. The SONS algorithm appears in Table 2.2.
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2.2.2 Limitations of SONS

One potential source of separation performance loss associated with SONS is in the

robust whitening step. The performance of this procedure in whitening the data

is sensitive to the initial weight vector chosen. Additionally in the case of white

non-stationary data, the robust whitening procedure is not applicable because of

the lack of time-correlations among the sources. For these data sets the separation

performance will be degraded by any noise present, as is the case with SOBI.

Another source of sensitivity in performance involves how the data set is parti-

tioned. If the data partitions in SONS are made arbitrarily as opposed to roughly

matching the non-stationarity of the data, sample statistics will be poor causing per-

formance in estimating the sources to suffer. This sensitivity is shown empirically in

the tests conducted in Chapter 3 of this thesis.

Table 2.2: The SONS Algorithm
Step
1. Calculate the set of sample covariance matrices, {Rx(ri) I

i= 1, ... , J} where X = AP + GW. Choose any non-zero
initial vector of weights a = [a,, ..., a&]. Use the global
convergence algorithm to iteratively update a till R =

aiRx(ri) + ... + ajRx(Tr) is positive definite.
Let )q,...,Ak denote the k largest eigenvalues and hl,...,hk
the corresponding eigenvectors of R

2. Calculate the whitening matrix, H, as
H = [(A,)(1/ 2 )hiI . ,(Ak)(1/2)hk]H

3. Let the whitened data be denoted as Z = HX
Divide Z into L non-overlapping blocks (time windows Ti)
and calculate the sample covariance matrices Rz(Ti, Tj)

for i=1..L and j=1....M
4. Find the unitary matrix U as the joint diagonalizer of the

set {Rz(Ti, rj)}) using the joint diagnalization method.
5. Estimate A as:

A = H#U (# indicates the Moore-Penrose pseudo-inverse)
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2.3 SOON

The SOON algorithm, presented in this thesis, seeks to improve upon SONS and

SOBI by carefully addressing the limitations associated with those algorithms. In

particular SOON works to improve separation under noisy conditions by iteratively

estimating both the number of sources k and the noise covariance matrix GGH. More

specifically, SOON uses a scree metric to estimate the signal order, and then the EM

algorithm to estimate the noise covariance matrix. This first step of SOON iterates

between order and noise estimation to improve the estimates of each parameter. Using

this method an estimate of the noise can be constructed and used to improve the SNR

of the data matrix. Robust whitening is then performed on the noise adjusted data

by using a heuristic proposed in this thesis for choosing the initial weight vector.

The Joint Diagonalization method is then used to find the unknown unitary mixing

matrix of the transformed data set.

2.3.1 Order Estimation

The quality of performance of any separation algorithm in obtaining the desired source

signals depends on the knowledge of the number of sources within the data. Most

algorithms either assume that this number is known or make restrictive assumptions

with respect to the noise so that an estimate of this number can be easily obtained.

This is true for SOBI and SONS. For the case in which the noise covariance matrix

GGH is an identity matrix multiplied by some scalar and this covariance matrix is

known, the problem of estimating the number of underlying sources is trivial. The

number of sources in this case is simply the multiplicity of the smallest eigenvalue of

the data covariance matrix:

k = p([A, .. , An], Amin) (2.19)

where k is the source order estimate, Ai is the ith eigenvalue of Rx, Amin is the

smallest such eigenvalue, and p(a, b) denotes the number of elements in vector a that
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have value b. What makes estimation of the number of sources difficult in practice is

that the noise covariance is often not a scaled identity matrix as in equation (2.10).

Additionally the exact data covariance matrix, Rx, is not usually known so that the

order estimate must be calculated using the finite sample covariance matrix, Rx.

The eigenvalues of finite sample covariance matrices are guaranteed to be distinct so

that using Equation (2.11) will not work in practice regardless of the structure of

Rx. Information theoretic approaches to this problem have been studied in [11],[12]

and other methods in [13],[14]. In each, however, it has been assumed that either

GGH is a scaled identity matrix as in (2.10), or that GGH is known a priori. To

be robust in this estimation, so that we may use the less restrictive noise model of

this thesis, we adopt a method outlined in the ION algorithm [16] which utilizes a

scree plot. The scree plot used here displays the log magnitude-ordered eigenvalues

of the sample correlation matrix for the data matrix X as a function of eigenvector

number. In Figure 2-1, we see a typical scree plot, where the plateau to the right

of the break generally represents pure noise components. Here the true order of

the underlying process is 20, while the data matrix X is of rank 55. Multivariate

data with additive noise yields eigenvalues representing the noise plus signal energy.

Therefore with noise-normalized signals, the eigenvalues corresponding to pure noise

have approximately equal amplitudes and form a plateau of length n-k. The estimated

number of sources is the number of eigenvalues that lie above the extrapolated plateau.

In iterations where the distribution of eigenvalues is such that an accurate estimate

cannot be made, SVD is used by estimating the number of signals as the number of

singular values that lie above some pre-determined threshold. In general however, the

use of a scree plot allows for a more robust order estimation to be made as opposed

to solely using SVD.

2.3.2 Noise Estimation

The ability of a separation algorithm to effectively remove or reduce the noise sig-

nals will ultimately determine the accuracy of the source signal estimation of that

algorithm. Models that assume the noise covariance to be a scaled identity matrix
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Figure 2-1: Typical Scree Plot which plots the ordered log-magnitude eigenvalues of
data matrix X. Here the number of underlying signals, k, is 20 while the number
of observations, n, is 55. The horizontally orientated dotted lines represent the line
fitting the plateaus of the scree plots and the vertical dotted lines represent the
intersection of the two curves in which the order estimation is obtained.

are restrictive as many data sets do not have equal variance across sensor outputs.

To account for this possibility we use a variant of the EM method to obtain a better

estimate of these variances, namely the parameter G, than is obtained in equation

(2.10). This allows for a noise estimate to be made that can then be used to increase

the SNR of the data, which improves separation performance.

The Expectation Maximization (EM) algorithm is a two-step iterative technique

for finding the Maximum Likelihood (ML) estimate for an unknown parameter of

interest. The problem generally involves finding a value for this unknown parameter

that maximizes the conditional probability of some observed and unknown stochastic
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parameters given the unknown parameter of interest, i.e. find:

bML = max f ('Dknown, Dunknown10 (2.20)

where 0 is the unknown stochastic parameter of interest, Dknown is a set of known

parameters that depend on 0, and 4)unknown is the corresponding set of unknown

parameters. In order to find the value of 0 that maximizes (2.20) it is necessary

to obtain the parameters contained in cIunknown. However, these parameters are not

directly available. The idea then incorporated in the EM algorithm is to replace

4Dunknown with:

E[4 )unknownI0ML, 4 nown] (2.21)

The ML estimate of 0 using the EM algorithm is then obtained by iteratively obtain-

ing the expression in (2.21) and maximizing (2.20) by substituting (2.21) for 4Dunknown.

In the ION algorithm [16], a variant of the EM method was derived to estimate

the noise variances in the case where the observation matrix, X is temporally white,

i.e.

E[XXfy] = _I (2.22)

where Xi represents the ith column of X. In the problem we are considering here

though this is generally not the case, so we derive a variant of the EM algorithm for

estimating these variances for data sets that may or may not contain time correlations.

In (1.12) A and G are unknown but fixed parameters, whereas P and X are stochastic

matrices. In the framework of the EM algorithm then we have,

0 = A, G}(2.23)

(Dknown = {X} (2.24)
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(2.25)Dunknown = {P}

The maximum likelihood estimates of A and G then are,

{AML, GML} = max f(x, .. , Xmp1, ,--,m|A, G)
A,G

where

X = [ X X2.... m ] XzeCnxl

P = [ P2 ..... PmI PieCkxl

(2.26)

(2.27)

(2.28)

Using Bayes' rule, (2.26) can be written as

f (pi,--,pmIA, G)f (xi,-..,xmpi..Ipm, A, G) (2.29)

Here P does not depend on {A,G}, so the term f(pi,..PMIA, G) can be dropped

from (2.29) as it does not effect the maximization. Additionally we have the following

relation

Xi = Api + Gwi Vi (2.30)

where wi is the ith time sample of the stochastic matrix W. Therefore given P, A,

and G, the xi's are independent as they depend stochastically only on the wi's which

are assumed independent. Thus (2.26) can be written as

max f(x, lpi, A, G)...f (xmp m, A, G)
A,G

m 1

= max exp-B1
A,G i=1 (27r)n det (GG)H
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where

B1 = (X, - Ap )H (GGH)- (x, - Api)/2 (2.33)

After taking the log of (2.32) and changing the sum to be over the rows of X as

opposed to the columns we arrive with the final expression for the ML estimate of A

and G:

n1
{AML, GML} = min(Z mlog(Gi) + B2 ) (2.34)

where

B2 =XiX - 2XiPHAH + AiPPHAY (2.35)

Ai is the ith row of A, Xi is the i"' row of X, and Gi is the ith diagonal element

of GGH. However, the terms pH and ppH in (2.35) are not known, so that (2.24)

can not be directly minimized. So the EM algorithm proposes that we replace these

terms with their expectations given X and our current estimates of A and G in what

is referred to as the expectation step of the algorithm. To obtain these expectations

as in [16] we can first solve for the distribution f (pi xi, A, G), which by Bayes' rule

can be expressed as:

f(pilxi, A, G) = f(xijp2 , A, G)f(piIA, G) (2.36)
f(xi lAG)

Noting that xi, pi, and wi are all jointly gaussian, we can solve for (2.36) as

f(pi xi, A, G) = N(S-A H(GGH)-lXi, S~1) (2.37)

where

S = A H (GGH)- 1A + 1(2.38)
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which implies

E[PH JX, A, G] = XH(GGH ) 1AS- 1  (2.39)

Additionally we have the following relation,

E[prpi] = RPHxgi,A,G + E[p~ffxi, A, G]E[p-ff Iji, A, G]H (2.40)

where RPg j ,A,Gdenotes the covariance of pi given X, A, and G. From (2.36) this

can be expressed as:

RpfI x,A,G = S-' (2.41)

This then implies that the second unknown quantity, E[PPHIX, A, G], can be ex-

pressed as,

E[PPH JX, A, G] = mS~1 + S~lAH(GGH)-lXXH(GGH) 1AS- 1  (2.42)

which completes the expectation step of the algorithm. The maximization step of the

algorithm then requires optimizing over (2.34) by substituting for the unknown quan-

tities their corresponding estimated values found in (2.39) and (2.42). An analytical

solution for the unknown parameters is obtainable by taking the partial derivative

of (2.34) with respect to A and G. The derivation for these maximization equations

is independent of the spectral characteristics of the data. Therefore this derivation

is identical to that found in [16] and can be referenced there. The maximization

equations along with the entire iterative EM algorithm derived for use in SOON can

be seen in Table 2.3.

2.3.3 Sensitivity of Robust Whitening

The robust whitening procedure utilized by the SONS algorithm, requires first choos-

ing an initial set of weights for the set of covariance matrices used in the whitening
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Table 2.3: The Expectation-Maximization Algorithm
Step
1. Initialization:

Iteration index j = 1; number of iterations Jmax
GG = 0.51
A 1 = { unit-variance n x ki array of g.r.n. }

2. Expectation Step:
S3 = A (GG)-1Aj + I
C 3 = E[PH 3=X, A,, G = XH(GG)--lAjS-
D = E[PPHIX, A, G]

= mS-. + S lA~f(GG)-JXXH(GG )~1AjS-l
3. Maximization Step:

Aj+1 = XC D-7'
Gq,j+i = ((XH)H(XH)q - Aq,j+iCf(XH)q)/m;
where q= 1, ... , n indexes the columns of XT and A;
Gq is the qth diagonal element of GGH,

4. If j <jnax, increment j and go to Step 2 for further iteration.
5. After last iteration, output Gj+1 and

X -+1 = [XH(GGji)-'A +1s-l+]A +

process. These matrices are the delayed sample covariance matrices, Rx (r), which

are calculated using a finite sample size with upper bound m. Here the (i, j)th entry

for Rx (r) is calculated as:

Xilxj(r+1) + ... + Xi(m--r)xjmRx (-) ij M =F(2.43)

When making use of delayed sample covariance matrices of the form, Rx(T), we

would like to use those that have high signal-to-noise ratio (SNR) so that a whitening

matrix will be found that accurately whitens the signal portion of the data. Given the

white noise assumption of the model used in this thesis, the noise intrinsic to the data

should be roughly negligible in the calculated time-delayed covariance matrices. The

noise we are concerned about then in this context is the sample noise from calculating

Rx(r) from a finite sample size. The SNR of a given calculated sample covariance
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matrix can be described as:

SNR{Rx()}} m(2.44)

where,

E7_ = Eiy|$x(r)ij| (2.45)

'' = Ei,jEsi] (2.46)

The expected sample error, Eij, incurred by approximating Rx (r) by Rx (r) can then

be calculated as the standard deviation of Rx(T)ij in (2.43):

E[Ei]= Var[XilX(r+) + -- - i m-r)Xjm (2.47)
M - T

= E[(xixj(-r +_ _+_--mr)m)2] - E[XiXi(r+i) + . + - m- r m)Xj2 (2.48)
Sm - Tm - T

= O( mE[xT(r)] (2.49)M - T

where (2.49) follows from a gaussian assumption on X, which is consistent with the

second-order theme of this thesis. Therefore the SNR of Rx(T)} grows proportional

to the square root of its energy, i.e.,

SNR{Rx(T)} ~sqrt[Er] = S Vtx(r)jI (2.50)
i~j

A good strategy then is to weight the delayed covariance matrices proportional to the

square root of their energy in the initial linear combination rather than arbitrarily

choosing these weights. Here we adopt this strategy in SOON by first calculating the
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set of covariance matrices and then assigning the initial weight vector a accordingly.

Namely, calculate the set of sample covariance matrices,

(2.51)

then calculate the energy of Rx(ri) as

(2.52)-= Z(x(i))Rx(i)jk)* Vi

j,k

finally initializing the weight vector a as

a = {V/E , /E-2,...,I A/ }(2.53)

This heuristic as compared to arbitrary initialization increases the probability the

calculated whitening transform H has high SNR.

2.3.4 Data Partitioning

An important contribution of the SONS algorithm was to add the capability of us-

ing the potential second-order non-stationarity of the underlying source signals as a

means for separating them. The heuristic suggested by SONS to accomplish this is

to partition the whitened data set, HX, into L equally sized segments,

HX = {HX 1 ,HX 2 . ,HXL} (2.54)

With this strategy, sets of time delayed covariance matrices can be calculated over

each segment separately so that any change in source statistics between segments can

be taken advantage of, i.e. calculate the set:

{RHX (7j)} 1<i<L, 1 j<M
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The technique used here is once again the joint diagonalization method which states

that there exists a unitary transform, V, that is essentially equal to the desired un-

known unitary mixing factor, U, that jointly diagonalizes the set of delayed covariance

matrices from each data partition:

VHRHx,(r)V = diag{di, ..., d}1(2.56)

The ability of this method to accurately separate source signals though depends

on the covariance matrices, RHX (r), being good representations of the stochastic

relationships in the data. In order for this to be true the source signals must be

approximately stationary within each data partition. In cases where the source signal

statistics vary continuously, i.e.,

2(t) = f(t) (2.57)

where 4. (t) is the variance of the i"t source at time t and f(t) is a continuous function

in time, there exists a tradeoff in that the windows over which sample covariance ma-

trices are calculated need to be large enough that the statistics are accurate but small

enough that the second order statistics are fairly constant over the window. Addition-

ally when statistics change at discrete points in time, arbitrary data segmentation can

often lead to an averaging effect that also degrades the statistical validity of the com-

puted covariance matrices. In order to gain insight into which partitioning scheme

is appropriate it is necessary to approximately characterize the non-stationarity of

the data set. The method applicable for this characterization depends on the type of

data being analyzed. For time series data many heuristics exist for partitioning the

data into stationary segments [18]. An algorithm that computes exact partitioning

of the data into stationary segments scales4 as 0(2 -1), where T is the number of

4Consider a time series with T samples, then there exists T-1 positions between samples in which
a partition can be placed. Since in each position a partition can either be placed or not placed the
total number of ways to partition the time series is 2T-1. Hence the problem of finding which of
those 2 T1 possibilities is an optimal partitioning of the time series into stationary segments will
scale as O( 2T-1)
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data samples. This makes exact partitioning impractical, causing most heuristics to

seek approximate solutions to the segmentation problem. For other data sets, such as

images found in remote sensing, the process of finding a proper partitioning scheme

can be as simple as manually inspecting the image for visibly distinct regions, or using

standard classification techniques to define the regions. The purpose of this section is

to note that for any given data set, X, there is likely a better heuristic for partition-

ing X than simply dividing it into an arbitrary number of equally sized partitions.

The heuristic chosen will greatly depend on any a-priori information regarding the

non-stationarity of the data set.

2.3.5 Algorithm Summary

The SOON algorithm combines the order estimation, noise estimation, joint diago-

nalization method, and improved robust whitening outlined in this chapter in order

to produce a robust second-order separation algorithm. A complete algorithm de-

scription of SOON can be seen in Table 2.4.
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Table 2.4: The SOON algorithm
Step
1. Optionally normalize rows of X to zero mean and unit variance.

Initialize G0 = I.

2. Noise-normalize X: Xi = G-X
3. Estimate signal order ki using a scree plot of Xi and SVD
4. Estimate GiG4' and noise reduced data, Xi using the EM

algorithm and ki
5. Check for iteration termination conditions; if none, increment

the index i and return to Step 2.
6. Calculate the set {R(ri)} for i=1...L. Initialize whitening

vector a according to energy of this set. Use the global
convergence algorithm to iteratively update a till R =

aiRx(ri) + ... + ajRx(Tr) is positive definite.
Let A1,...,Ak denote the k largest eigenvalues and hl,...,hk
the corresponding eigenvectors of R

7. Calculate the whitening matrix, H, as
H =.[(\.)../2)h,7....(A)(1/2)h]H

8. Characterize the non-stationarity of X and construct
partitioning set {Ti} for i=1...J according to the proper heuristic.

9. Calculate the sample covariance matrices Rz(Ti, rj)
for i=1..L and j=1....M

10. Find the unitary matrix U as the joint diagonalizer of the
set {Rz(Ti, -r)}) using the joint diagnalization method.

11. Estimate A as:
A = H#U (# indicates the Moore-Penrose pseudo-inverse)
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Chapter 3

Evaluation of SOON

Now that SOON has been introduced and described relative to the standard second-

order algorithms SOBI and SONS, it is desirable to see how they compare in terms

of some measure of performance over typical data sets in this domain.

3.1 Problem Space

In order to come up with typical data sets it is necessary to outline the important

degrees of freedom in the problem space to which the separation performance is

particularly sensitive. Data sets can be generated that have these degrees of freedom

fixed at what would be considered typical values.

3.1.1 Source-to-Observation Ratio k

One degree of freedom to which separation performance is sensitive is the ratio be-

tween the number of source signals k and the number of sensor output observation

signals, n. Clearly for the problem to be well posed, this ratio, k, must be less than

or equal to 1. Additionally for a fixed number of sources if the number of noisy obser-

vations is increased the separation performance should be helped as new information

is added. Therefore we would expect the performance of a separation algorithm to in-

crease as k -+ 0, and decrease as -+ 1. In fact, the scree-plot method for estimatingn n
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source order begins to fail when k> [16].

3.1.2 Data Signal-to-Noise Ratio (SNRx)

Another degree of freedom that effects separation performance is the SNR of the

observation matrix X,

SNRx = EP(31)
EGW

where,

Ez =Z ZiI (3.2)
i~j

We should expect separation performance to be better for high SNR data as the noise

will be less likely to bias our estimate of a whitening matrix and the number of source

signals.

3.1.3 Sample Size (m)

In addition the sample size, m, of the data set will affect how well the signals can

be separated. Given that the performance of all three algorithms being compared

depends on estimating the probabilistic structure of the data through sampling statis-

tics, the performance of this process will be degraded for smaller sample sizes.

3.1.4 Angle between Columns of Mixing Transform (LA)

The it" column of the mixing transform, A, projects the ith source signal into the

observation space. Clearly the more orthogonal these columns are the more orthogo-

nal the contributions of each signal will be in this space and the system will be less

mixed and more easily separable. This degree of freedom is defined as,

AY A(
JJ*i =J jJJ(3.3)
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3.2 Performance Metric

In order to compare the performance of these different algorithms we must first define

a performance metric. A clear choice for this is how well each estimates the mixing

transform A, as this will determine how accurately each method separates the source

signals. The metric we use here for gauging the quality of this estimate is an inverse

residual metric,

Tr{As}

where

As = E[AAH] (3.5)

AN = E[(A - A)(A - A)H] (3.6)

and Tr{.} is the standard trace operator on square matrices. Here a larger value of

rA indicates a better estimate of A.

3.3 SOON/SOBI/SONS Comparison

The two potential characteristics of a data set that second-order separation methods

utilize for separation purposes are second-order non-stationarity and spectral diver-

sity. Use of these algorithms is therefore restricted to data sets that possess at least

one of these characteristics. For the purpose of comparing the performance of SOON

to that of SOBI and SONS, two test data sets were constructed, one for testing per-

formance over each characteristic. In both data sets the number of observations and

sources were fixed at 55 and 20 respectfully. The mixing matrix, A, was constructed

so that its columns had 45 degrees of separation between them. In addition the
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columns of A were normalized,

A," Ai = A7A 3  Vij (3.7)

so that no single source would dominate the performance of the algorithms. Addition-

ally the noise variances were independently and randomly chosen from a normalized

exponential distribution, i.e.

fGc(x) = e' x > 0 (3.8)

where fG, 1 represents the distribution function of the noise variance for the ith ob-

servation. The performance for each test was calculated over varying SNR of the

observation matrix X. In each test both SOBI and SONS were given the correct

number of sources whereas SOON was not.

3.3.1 Test 1: Stationary-Colored Sources

In the first data set we illustrate the performance of SOON on stationary time cor-

related gaussian sources. Here the underlying signals are modelled using a standard

Auto-Regressive (AR) model:

Pi, = piPij 1 + cij (3.9)

where Pij is the jth time sample of the ith source signal, pi is the correlation coefficient

of the ith source, and Eqj is a random gaussian number. The p'is where chosen inde-

pendently and uniformly in (0,1). Using this test set we compare the performance

of SOON to that of SOBI and four variants of the SONS algorithm. The variants of

SONS vary in two degrees of freedom, namely how the initial weight vector is chosen

in the whitening step and how the data is partitioned for the calculation of covariance

matrices. The initial weight vector was either chosen proportional to the square root

of energy as described in Chapter 2, or equally weighted. The data was then either

not partitioned, which is optimal for this stationary case, or divided into ten segments
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of equal size. The variants of SONS are outlined in Table 3.1 and the results for the

first test can be seen in Figure 3-1.

Table 3.1: SONS variants
Variant Number Initial Weight Vector Partitioning Scheme
1 proportional to energy 1 segment
2 proportional to energy 10 equal size segments
3 equally weighted 1 segment
4 equally weighted 10 equal size segments

3.3.2 Test 2: Non-stationary-White Sources

With the second test set we tested the performance of SOON on non-stationary

white gaussian sources. Here the underlying sources are white gaussian signals with

time varying second moments. In particular the second moments of each source vary

independently of one another at discrete points in time that are distributed as a

Poisson process, i.e.

Pi,j = pi,tc,j (3.10)

where Psj is the j"t time sample of the ith source, qj is a normalized random gaussian

number, and

pi,t = o-ij tij < t ti(j+1)

faj = e- x ;> 0

ft1 (x) = .- )! x > 0
(j - 1)!x>

(3.11)

(3.12)

(3.13)

Here we have set A to be L, where T is the number of time samples in the data set, so

that we should expect the sources to on average be characterized as 10 equally sized
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Figure 3-1: Test 1, which compares the performance of SOON to that of SOBI and
four variants of SONS. The data set here is comprised of stationary sources which
have diverse correlation functions.

segments with different second moments. Here robust whitening is not applicable

since there exists no time correlation in the underlying sources. We therefore test

SOON with SOBI and two variants of the SONS algorithm that each use traditional

data whitening. In one variant the partitioning is done such that the non-stationarity

of the data set is matched exactly whereas in the other the data set is partitioned into

5 equal sized partitions. The two variants are outlined in Table 3.2 and the results

for this test can be seen in Figure 3-2.

Table 3.2: SONS variants
Variant Number Partitioning Scheme
1 matches non-stationarity
2 5 equal size segments
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Figure 3-2: Test 2, which compares the performance of SOON to that of SOBI and
two variants of SONS. The data set here is comprised of white second-order non-
stationary sources.

3.3.3 Results

By inspection it can be seen that SOON performs better at the estimation of the

mixing transform, A, when compared to both SOBI and SONS over the entire range

of data SNR. As expected, this improvement is larger for low SNR data. The perfor-

mance gain is particularly large in this range for the non-stationary/white test case.

This can be attributed to the inability of SONS to use robust whitening for purely

non-stationary white data. Also through this test we can see how sensitive perfor-

mance is to properly characterizing the non-stationarity of the data. Each successive

improvement in data segmenting from SOBI to SONS results in a large improvement

in separation quality. Additionally in the colored stationary test, Figure 3-1, the

sensitivity of performance to the initial weight vector choice is visible. Note in Figure
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3-1 the performance gain achieved by choosing the initial weight vector according

to the heuristic introduced in Chapter 2 was not particularly sensitive to the data

SNR given that the inaccuracies present in the delayed sample covariance matrices

are predominately due to error incurred by using a finite sample size.

3.4 Stability over Problem Space

3.4.1 Testing

Now that SOON has been shown to give increased separation performance in com-

parison to other standard second-order methods over typical data sets, we would like

to display its sensitivity to the outlined degrees of freedom within the problem space.

Here again we show the results for the two types of sources used in the above tests.

For both we start from a nominal test case whose parameters can be seen in Table

3.3. Each additional test case then differers from the nominal case in one degree of

freedom to display the sensitivity of SOON to that parameter. The parameters ex-

plicitly explored here are the source-observation ratio }, the number of data samples

m, the data SNR, and the angle between columns of the mixing transform ZA. The

performance for the estimates of A, P, G, and W are given using the previously

defined residual metric in Equation (3.4). Performance for the order estimation is

then given by:

Pk = E[kk] (3.14)

k k

Ork = E[( k' .Ak)2] (3.15)

where k' and k are the estimated and actual number of sources respectfully. The

results of these tests can be seen in Tables 3.4 and 3.5.

50



Table 3.3: Nominal Test Parameters
Parameter Value
n 55
kc 0.36n (k = 20)
m m=10,000
SNR of X 16 dB
Mean angle between columns of A ZA = 450

Table 3.4: SNR
gaussian test da

(dB)
ta

and order error performance of SOON on colored stationary

3.4.2 Results

By inspection we can see that SOON performs well in the estimation of all parameters

in the nominal test case. Here it is also evident that an increase in k significantly

affects only the performance of the noise estimation. A decrease in separation perfor-

mance, estimation of A and P, is noticeable when the sample size of the data set was

decreased. This results from a loss in statistical accuracy in the estimated covariance

Table 3.5: SNR (dB) and order
gaussian test data

error performance of SOON on white non-stationary
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Exp. Nom. k = m = SNRx= ZA=

0.5n 1000 3 dB 200
rG 37.3 19.8 32.4 32.7 33.7
rw 4.4 3.1 4.4 4.5 4.2
rA 11.9 11.8 5.4 6.5 10.1
r 10.9 10.1 3.7 3.3 5.3
pk -0.002 -0.006 -0.002 -0.004 -0.002
_k 0.01 0.03 0.01 0.02 0.01

Exp. Nom. k= m = SNRx= ZA=
0.5n 1000 3 dB 200

rG 36.8 19.8 31.9 32.2 33.9
rw 4.4 3.1 4.5 4.3 4.6
rA 6.2 6.6 2.2 3.3 6.3
r 3.7 4.5 .3 .8 .5

pA 0 -0.008 -0.002 -0.002 -0.004
_-k 0 0.04 0.01 0.01 0.02



matrices used in the whitening and joint diagonalization steps. Likewise we see that a

decrease in data SNR, significantly affects only the separation performance, i.e. esti-

mates of A and P. The effect of decreasing the linear independence of the columns of

the mixing transform A was limited primarily to the estimation of the source signals

P. These observations are consistent over both data sets, with the only difference

being that the absolute separation performance was better for the stationary colored

sources than the non-stationary white sources.
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Chapter 4

Application to Remote Sensing

and Financial Data

4.1 Remote Sensing Background

Remote sensing typically characterizes the electromagnetic radiation emitted or re-

flected over some geographic area of interest. The instrument gathering the data often

records energy over many different frequency channels, where the response for each

channel depends on the physical properties of the surface being observed. For high

resolution instruments with many channels there is often a high level of redundancy

within the data collected. It is therefore often desirable to change the basis over which

the data is stored in order to gain insight into the underlying dynamics of the data,

and to facilitate greater data compression. The two classic methods most used in

the remote sensing community for these purposes are Principal Component Analysis

(PCA) and its extension, Noise Adjusted Principal Component Analysis (NAPCA)

[19] [20].
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4.2 Principal Component Analysis (PCA)

4.2.1 The Method

Principal component Analysis is a method for changing the coordinate system of a

data set. Formally the process can be described as operating on a zero-mean data set

X, find a transform,

bi

B= (4.1)

bn

such that,

bi = max bXi(bXi)H (4.2)
jjbjj=1

where,

i-1

Xi = X- Eb HbX (4.3)
k=1

The vector bi is referred to as the it' principal component and is contained in the

subspace spanned by the data set which is orthogonal to bl, b2 , ..., and bi- 1 . This

vector is the vector in this space along which the data set has greatest variance. The

Principal components transform has the special property that the first j principal

components span the j-dimensional subspace of the data with the greatest total vari-

ance. This makes PCA a popular choice for transforming data sets, as higher variance

is associated with higher information content.

4.2.2 Limitation of PCA

The problem associated with PCA is that the method ranks components by variance

without considering whether this variance corresponds to interesting phenomena or
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noise. For noisy data sets, the PCA result may be undesirable as the high ranking

components may have lower SNR than lower ranked components. A natural correction

to this leads to an extension of PCA, Noise-Adjusted Principal Components.

4.3 Noise Adjusted Principal Component Analysis

(NAPCA)

4.3.1 The Method

NAPCA works to improve PCA by eliminating the effect of noise in the ranking

process. It proceeds by finding a transform that normalizes the noise within the data

set so that the noise adjusted principal components can then be found as the principal

components of the transformed data set. More formally, find a transform H on the

data,

HX = HAP + HGW (4.4)

such that:

HG(HGH) = I (4.5)

with:

bi = max bHXi(bHXi)H (4.6)
||bII=1

where:

i_1

HX = HX - 3bHbkHX (4.7)
k==1

where the bi's now represent the noise-adjusted principal components. By transform-

ing the data in this way the noise contributes equal variance for any vector in the
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observation space. This then produces components ranked by the variance of their

signal contribution.

4.3.2 Limitation of NAPCA

The drawback with NAPCA is the same as with SOBI and SONS. In order for the

process to be applicable the noise covariance matrix must either be known or an

accurate estimate must be achievable. If this is not the case then the noise cannot be

normalized.

4.4 Blind Signal Separation Approach

4.4.1 BSS Model

An alternative approach to this problem that we explore here is to model remote sens-

ing data using a two-dimensional extension of the blind signal separation framework

used by this thesis. Namely, given n two-dimensional images, X:

(4.8)

with each image, X1 , of size m, by m2 , and expressible in terms of k surfaces,

P= [PlP 2,..-Pk] (4.9)

and a normalized white noise component, Wi, as,

Xi = ailP 1 + ai 2P 2 + ..-. + aikPk + GiW (4.10)

where Gi is a positive scalar, find the set of k underlying surfaces, P. Here the data

set, X, is transformed to a new basis, whose components are the Pi's.
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4.4.2 Solution using SOON

In the BSS model, it is assumed that the response images, Xi's, recorded at different

frequencies will be comprised of a linear combination taken from a set of underlying

surfaces, P's, that are in some way independent. This model can be justified by

the fact that electromagnetic energy will respond differently based on the physical

properties of the surface from which it emanated. However in order for SOON to

be applicable, the set of surfaces, P, that the electromagnetic energy responds to,

must have diverse spatial correlations or independently varying spatial correlations.

Namely at least one of the following conditions must hold,

Condition I

The spatial correlation of each surface is distinct:

Rp, 7 4Rpj Vi,j (4.11)

where Rp, represents the two-dimensional auto-correlation function of the surface Pi.

Condition II

The spatial correlations of each surface are non-stationary:

3t1,4t2,Til,TQ 2s-t. Rp,(rai, 72) : Rpi(til + Tl, t42 + Ti2) Vi (4.12)

4.4.3 Applicability of SOON

The above conditions do not heavily restrict the applicability of SOON to remote

sensing data. Justifying this statement is the fact that many data sets are collected

over regions that contain a diverse set of surface features that are comprised of vary-

ing physical components. The location of these components within the surface area

will often be non-uniform leading to non-stationary responses. Additionally their lo-

cations will often be independent of one another resulting in a diverse set of spatial
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correlations.

4.5 Case Study: AVIRIS Data

4.5.1 The AVIRIS instrument

To compare the performance of SOON to that of PCA and NAPCA we have chosen a

data set collected with the AVIRIS instrument used at the Jet Propulsion Laboratory

[21] [22]. Aviris is 224 channel instrument that records frequencies ranging from 370

to 2500 nm which spans the visible to the mid-infrared bands. The images used here

have been collected over Moffet Field, CA and are particularly interesting in that

the upper halves of these images contain natural terrain whereas the bottom halves

contain mostly man-made structures. The images collected by channels 20, 50, 80,

110, 140, 170, and 200 can be seen in figure 4-1.

4.5.2 Quantitative Comparison

Component Ranking Metric

Given that the mixing matrix, A, is not known for this data set a new quantitative

metric is needed in order to compare the performances of SOON, PCA, and NAPCA.

A natural selection for this metric is the information content of the components

found by each method. Here we would like to rank the significance of a component as

being low if it resembles white noise and high if it contains some level of meaningful

structure. To do this we take the two-dimensional Fast Fourier Transform (FFT) of

each component and sum over the weights in its high frequency region, i.e.,

F =-FFT(Pi)

jik= Ek|Fijk|
j,k:j+k>-r
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Figure 4-1: Data collected over Moffet Field, CA by the AVIRIS instrument, channels
20, 50, 80, 110, 140, 170, and 200 are shown from left to right.

where Pi is the ith component found by the given method and r is the threshold for

being considered high frequency. In particular for an image with pixel dimensions x1

and x2 , we have made the selection of T as:

x1 22
T= mint{ X 2}2 2

so as to give a non-dimensionally biased result. Those components with a relatively

large (, are then considered to be less interesting as they more closely resemble white

noise.
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Test and Results

Here we have tested the performance of SOON and NAPCA in terms of this metric

over the AVIRIS data set. The normalization step of NAPCA has been carried out

by using the estimate of the noise covariance matrix provided by SOON. The results

of using PCA have been omitted as they were nearly identical to those of NAPCA.

This is due to the noise across frequency channels being fairly normalized on the

instrument. In figure 4-2 we see a graph displaying the value of this metric for the

components found by each method ranked in ascending order. For the noise threshold

0.9-

0.8-

0.7 -

Z0.6 -ca

00.5 - -

0.4 --
NAPCA
SOON

0.3-

0.2 L-
0 10 20 30 40 50 60 70 80

Component Number

Figure 4-2: This graph displays the noise metric defined above for each of the com-
ponents found by SOON and NAPCA. The components are sorted here in ascend-
ing order of this metric. By inspection the higher ranking components of SOON,
those containing the most information content, are less noisy than the corresponding
NAPCA components
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in figure 4-2, the number of components found using SOON and NAPCA was 24 and

7 respectfully. Here it is clearly shown that the highest ranking components found

by SOON were less noisy than the corresponding components found using NAPCA.

4.5.3 Qualitative Comparison

Remote Sensing data, such as that collected by the AVIRIS instrument, often consists

of images that can be visually inspected for information content. Here we further

compare SOON to NAPCA, by visually inspecting the components found by each

method to see how either might be more informative than the other. Below in figure

4-3 are the top halves (natural terrain) of the visually most interesting images from

each method. Similarly, in figure 4-4 the most interesting bottom halves (urban

terrain) found by each method are displayed.

Figure 4-3: Here are the top halves of the visually most interesting components found
by SOON and NAPCA. In the top row are the NAPCA components, and the bottom
row presents the SOON components.
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Figure 4-4: Here are the bottom halves of the visually most interesting components
found by SOON and NAPCA. In the top row are the NAPCA components, and the
bottom row presents the SOON components.

Component Comparison

By inspection we can see that the components picked up by each method are visually

quite different. The NAPCA components seem to capture redundant information.

This is particularly noticeable in the first three NAPCA components of Figure 4-3.

In contrast every component found by SOON is quite different. Additionally, the

components found by NAPCA appear to drop into the noise much faster. This can

be verified by inspecting the last few components found by each method in Figures

4-3 and 4-4.

Physical Interpretation

When using these methods to change the basis of the data set, it is often desirable

to find components that have some sort of physical significance which aid in the
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Figure 4-5: Here are the normalized channel coefficients for the 5 th SOON component
of figure 4-4. Here it can be seen that the majority of energy is weighted in the higher
frequency, visible wavelength channels of the instrument, channels 1-40.

understanding of the geophysics of the surface being observed. An example of this

can be seen in the shadowing features present in some of the SOON components that

aren't present in the NAPCA components. In particular, shadowing can be seen in the

5th, 6th, and 7th SOON components of Figures 4-2 and 4-3. These images exhibit three

distinct shadowing signatures that vary according to their level of spatial correlation.

In the 5 th, 6 th, and 7th SOON components of Figure 4-3, the shadowing can be seen

to become finer in each successive image. Theoretically SOON will separate surface

features that have diverse spatial correlations, which explains the separation of these

shadowing signatures into components based on spatial correlation. The normalized

channel weights for the 5th SOON component of Figure 4-3 are shown in Figure 4-4.

By inspection of this component it looks like a shadowing signature cast by buildings

and other objects blocking sunlight. Looking at Figure 4-3, it can be seen that

the majority of the energy of this component comes from the high frequency, visible
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Figure 4-6: Here are the normalized channel coefficients for the 6"h SOON component
of figure 4-4. Here it can be seen that the majority of energy is weighted in the
near-infrared channels, channels 40-110.

wavelength channels of the instrument, which supports this observation. Additionally,

the channel weights for the 6t" SOON component of Figure 4-3 are displayed in Figure

4-5. Here, within this component, there is a large contrast in magnitude between the

left and right sides of the buildings in the image. A possible explanation for this

phenomena could be that this component contains the thermal signature cast by the

sun heating one side of the objects in the image. Looking at Figure 4-5, the majority

of the energy of this component comes from the shorter wavelength infrared channels

of the instrument, which supports this claim.
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4.6 Financial data

4.6.1 Adjusted Stock Returns Experiment

Additionally blind signal separation techniques can be applied to financial data, such

as equity returns in order to potentially resolve interesting phenomena underlying

market behavior. A short experiment was carried out to test the applicability of

SOON in this difficult domain. In particular the data set was comprised of daily

stock returns for 500 companies traded on US markets over the ten-year period 1994-

2003. The returns were normalized with respect to dividends, splits, merges, and

all other cash flows to share holders so that such artifacts would not factor in the

resulting pricing behavior. The data was obtained from the Center for Research in

Security Prices [27] and provided by Wharton Research Data Services [28]. Here the

objective was to obtain the independent components detected by SOON and establish

their utility in predicting future pricing behavior and explaining market dynamics. A

scree plot containing the eigenvalues of the covariance matrix for the pricing data can

be seen in Figure 6-1. Additionally a collection of independent components found by

SOON within this data set are shown in Figure 6-2.

4.6.2 Results

By inspection of Figure 6-1 it can be seen that the space spanned by the highest

ordered eigenvectors contain most of the variance in the data set. This seems to

suggest that a large percentage of the movement in the market is explained by a

relatively small number of components. Additionally the components in Figure 6-2

are sinusoids and imply that perhaps there exist predictable behavior in the market if

the sample correlations hold over time. To test the predictability of these components

an experiment was carried out where SOON was trained on the first seven years of

the data set to obtain a set of independent components. The entire ten years of data

was then projected onto these components. Four of the resulting signals can be seen

in Figure 6-3. Figure 6-3 clearly shows that the components found using SOON are
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Figure 4-7: Here the scree plot is shown for a data set consisting of the adjusted
returns for 500 US equities over the ten year period starting in 1994 through 2003.

not helpful in predicting the pricing behavior of the market. This can be explained by

the fact that equity pricing behavior is inherently non-stationary so that correlations

between different stocks change over time. The result of this market behavior is that

the whitening transform and time delayed covariance matrices calculated in SOON

over any particular time interval do not hold over future periods.
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Figure 4-8: Four of the highest variance components found using the SOON algorithm
from the financial data set.
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Figure 4-9: The complete 10 year data set projected onto four of the components
found by SOON trained over the first seven years of data.

68

2

0 5

-2L
0 500 1000 1500 2000

0 500 1000 1500 2000

4 I

ZOL)U

2500

00

ICL)tjv

00



Chapter 5

Higher Order Extension

5.1 Higher Order Architecture

The SOON algorithm presented in this thesis works within the domain of second-

order separation by taking advantage of second-order diversity and non-stationarity

in the underlying source signals. Sources with higher-order statistics offer additional

opportunities for source separation. The present second-order architecture of the

SOON algorithm is constructed to estimate first the number of sources and the noise

through an iterative procedure using scree plots and the Expectation Maximization

(EM) algorithm. Next the noise-reduced data is whitened through a heuristically

modified robust whitening step. The last step finds the transform on the data set

that minimizes a joint diagonalization criteria for a set of second-order matrices.

This architecture could be modified to take advantage of higher order statistics by

replacing the joint diagonlization step of the algorithm with a new cost function, g(o),

that evaluates the cost of the estimated signals based on some higher order statistic,

i.e. find P such that:

P = A#X (5.1)
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A = min g(A#X)
A

(5.2)

where P and A are estimates of P and A, and X is the noise-reduced data set'.

A block diagram for this generalized SOON architecture can be seen in Figure 6-

1. This new cost function could include minimizing the joint higher order moments

Scree Plot EM algorithm
X Order Noise

Estimation Estimation

if(convergence of k, G not met)

Calculate initial

using heuristic

ozo

Find U
such that

g(UHX) {H~i,... , HXL} Partition Data HR

is optimized f according to

for some cost Non-stationarity Whitening

function go

Figure 5-1: Architecture of the generalized SOON algorithm

of the source signals or joint information content. Many cost functions for defining

independence exist in the higher order domain, the appropriate choice of which would

depend on the data model.

here # indicates the Moore-Penrose pseudo-inverse
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5.2 Maximum Information/Maximum Likelihood

One possibility for the cost function, g(o), is the popular infomax cost function in-

troduced in [23]. Here we maximize with respect to A,

g(A) = H(h(A#X)) (5.3)

where H(y) is the differential entropy for the vector of random processes y,

H(y) = - j log(fy(y'))fy (y')dy' (5.4)

and h): R"' " -+R"x' is a

finite. An equivalent approach

estimate of P given X, i.e.

squashing function for restricting the entropy to be

[24] is to find P as the maximum likelihood [25] [26]

P = max f(XIP)
p (5.5)

In both cases the distribution of the sources are assumed known in advance and

the estimate P of the sources is found as the estimate that most resembles this

distribution.

5.3 Cumulants

Another higher order approach for the cost function, g(e), are cumulant based meth-

ods [5]. Often these methods restrict their attention to fourth-order cumulants for

computational reasons, as is the case in the popular JADE [7] separation algorithm.

The fourth-order cumulant for the random variables X 1, X 2, X 3, X 4 is defined as:

Cum(X 1, X 2 , X 3, X 4) = Ci - C2 (5.6)
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where:

Ci = E[X'X'2X'3X'4] (5.7)

C2 = E[X' X'2JE[X' X'4] + E[X' X' ]E[X'2X'4] + E[X' X1]E[X'X'] (5.8)

and X' = Xi - E[Xi]. Following directly from this definition, the fourth-order cu-

mulant for independent random variables X1, X 2 , X3 , X4 is 0. Using fourth-order

cumulants then for blind signal separation would involve finding a transform A on

the whitened data X such that the fourth-order cross cumulants of the transformed

data set are minimized, i.e. find A such that:

Cum(A#Xi, A#X., A#Xk, A#XI) (5.9)
i#Jfk#1

is minimized, where A#Xj refers to the ith row of the transformed data set, and

Cum() is the sample fourth-order cumulant. The number of cumulants grows large

with the size of the data set so often only a subset is used in the optimization. This

subset depends on the nature of the dependencies present in the data.
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Chapter 6

Conclusions and Suggested Further

Work

6.1 Suggestions for further work

6.1.1 Higher Order Statistics

The SOON algorithm presented in this thesis works within the domain of second-

order separation by taking advantage of second-order diversity and non-stationarity

in the underlying source signals. The experiments of this thesis compared SOON

to other second-order methods on both simulated and real data sets. A proposed

extension of the SOON architecture for separation based on a general cost function

was introduced in Chapter 5. An interesting extension of this work would be to

implement this architecture to separate signals based on their fourth-order cumulants.

A comparison then could be made between this fourth order version of SONS and

the standard algorithms in this class, including the JADE algorithm. Additionally,

data sets collected in the remote sensing community are most often non-gaussian in

nature. It would be interesting to see how this fourth-order SONS compares to the

results of Chapter 4.
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6.1.2 Partitioning Schemes

This thesis mentioned the significance of correct data partitioning when taking ad-

vantage of non-stationarity within the data set. Additionally, this significance was

shown explicitely in the simulated testing of Chapter 3. As noted, many heuristics

exist for partitioning data sets according to their non-stationarity. An interesting

study would be to analytically or quantitatively characterize the sensitivity of sepa-

ration performance to the accuracy of the partitioning scheme used. In this way a

tradeoff between computational burden and performance accuracy could be resolved

giving insight into what heuristics are appropriate.

6.1.3 Application to Other Fields

In this thesis we have illustrated the potential for using BSS algorithms, in particular

SOON, on remote sensing data in order to observe interesting dynamics within such

data sets. In doing so, the experiment of Chapter 4 revealed interesting phenomena

within the data that PCA and NAPCA did not detect. It is quite likely that similar

discoveries could be found in data sets collected in other fields. An interesting exten-

sion to this work would then be to run experiments on a collection of data sets to see

the range of applicability of this software to other fields such as atmospheric sciences,

demographic data, and biological data.

6.2 Conclusions

This thesis has presented a blind signal separation algorithm that estimates the num-

ber of sources, noise levels, the mixing transform, and the separate signals and noises

themselves. The performance of this algorithm, SOON, has been shown to be ro-

bust with respect to separation using second-order statistics, namely making use of

second-order non-stationary and diversity in time correlation. In addition we have

shown that SOON gives increased separation performance as compared the tradi-

tional second-order methods, SOBI and SONS, over a typical data sets. Similarly
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this performance was shown to be robust to the nominal degrees of freedom of blind

separation problems. Also the application of SOON to remote sensing data has been

established. This included an experiment that revealed SOON's ability to detect

interesting phenomena that traditional PCA and NAPCA analysis did not find.
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Appendix A

A.1 Joint Diagonalization

Here we outline the joint diagonalization [3] method that is used in the SOBI, SONS,

and SOON algorithms. The problem here can be formulated as: Given a set of L

matrices,

M={MlM 2 ,...,ML} (A.1)

find a unitary matrix V such that the joint diagonalization for M, V is:

JD(M, V) Ef' off(VHMV)

is minimized, where for a matrix N we define off(N) as:

off(N)=ZEI NiI 2

isi

If it is the case that:

Mi = UDiUH 1 < iL

for some unitary matrix U, and

Di = diag[di, d2 , .. . , di]
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then any unitary matrix V that minimizes (A.2) will be essentially equal to U if and

only if,

3k,1 < k < L s.t. diak 4 dk V1 i7 4 ij < n (A.6)

In the blind signal separation context (A.4) will hold for the set of delayed covariance

matrices of the whitened data. However because these covariance matrices are calcu-

lated using finite sample approximations, the Joint Diagonalization method will find

a unitary matrix that approximately diagonalizes this set of matrices by minimizing

(A.2).

A.2 Global Convergence Algorithm

The global convergence algorithm [4] is used by SONS and SOON in the robust

whitening step for finding a whitening matrix that is positive definite. The procedure

can be outlined as: Given a matrix R that can be expressed as:

K

R= aiRi (A.7)
i=1

where each Ri is a symmetric positive definite matrix, and

a = [a,, a2, ... , aK1 (A.8)

is a non-zero vector, iteratively update a until the matrix R is positive definite. At

each step of the procedure the matrix R is checked for positive definiteness. If R is

not positive definite, a is updated as:

a = a + 6 (A.9)
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where:

-[UHRiu, uHR 2 u... U , UHRKU]H (A.10)
I UHRiU, uHR 2 u, . .., uHRKuII

and u represents the eigenvector of R with smallest eigenvalue.
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