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Abstract

Shadows are important to computer graphics because they add realism and help the
viewer identify spatial relationships. Shadows are also useful story-telling devices.
For instance, artists carefully choose the shape, softness, and placement of shadows
to establish mood or character. Many shadow generation techniques developed over
the years have been used successfully in offline movie production. It is still challenging,
however, to compute high-quality shadows in real-time for dynamic scenes.

This thesis presents two efficient shadow algorithms. Although these algorithms
are designed to run in real-time on graphics hardware, they are also well-suited to
offline rendering systems.

First, we describe a hybrid algorithm for rendering hard shadows accurately and
efficiently. Our method combines the strengths of two existing techniques, shadow
maps and shadow volumes. We first use a shadow map to identify the pixels in the
image that lie near shadow discontinuities. Then, we perform the shadow-volume
computation only at these pixels to ensure accurate shadow edges. This approach
simultaneously avoids the edge aliasing artifacts of standard shadow maps and avoids
the high fillrate consumption of standard shadow volumes. The algorithm relies on
a hardware mechanism that we call a computation mask for rapidly rejecting non-
silhouette pixels during rasterization.

Second, we present a method for the real-time rendering of soft shadows. Our
approach builds on the shadow map algorithm by attaching geometric primitives that
we call smoothies to the objects’ silhouettes. The smoothies give rise to fake shadows
that appear qualitatively like soft shadows, without the cost of densely sampling an
area light source. In particular, the softness of the shadow edges depends on the
ratio of distances between the light source, the blockers, and the receivers. The soft
shadow edges hide objectionable aliasing artifacts that are noticeable with ordinary
shadow maps. Our algorithm computes shadows efficiently in image space and maps
well to programmable graphics hardware.

Thesis Supervisor: Frédo Durand
Title: Assistant Professor
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Chapter 1

Introduction

Shadows play a key role in computer graphics for several reasons. First, they add
realism and believability to computer-generated scenes. High-quality shadows, such as
the ones shown in Figures 1-1 and 1-2, are needed in photorealistic image synthesis and
in lighting simulations. Second, shadows help viewers understand spatial relationships
in 3D scenes [WFG92]. For instance, it is hard to determine from Figure 1-3a whether
the dragon is sitting on the floor or hanging in mid-air; shadows make it easy to
distinguish the two cases (see Figures 1-3b and 1-3c). Finally, shadows are powerful
story-telling devices. Photographers often use shadows to establish a desired mood
or character; Figure 1-4 shows how different lighting conditions lead to significant
changes in appearance. A famous example is cinematographer Gordon Willis’s use
of an overhead bounce lighting system in The Godfather to place Marlon Brando’s
eyes in shadow (see Figure 1-5); this technique helped to define Brando’s character
as the mysterious and powerful head of the Corleone family. Such lighting techniques
also apply to computer graphics. Artists at animation studios, for example, carefully
choose the shape, softness, and color of shadows to define a character’s personality
(see Figure 1-6). For these applications, the final appearance of the shadow and its

effect on the scene are more important than geometric accuracy.
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Figure 1-1: Hair rendered with and without shadows. The shadows contribute
strongly to the apparent depth and realism of rendered hair. (Images rendered by
Tom Lovovic and Eric Veach [LV00].)

Figure 1-2: Examples of soft shadows and their contributions to photorealistic image
synthesis. (Images rendered by Henrik Wann Jensen.)

Figure 1-3: Shadows and spatial relationships. (a) Without shadows, it is hard to
determine if the dragon is above or on the floor. (b) and (c) Shadows make it easy
to distinguish the two cases.

16



Figure 1-4: Examples of portrait lighting, including (from left to right) direct on-camera
flash, direct off-camera flash, flash bounced from above, and flash bounced from the side.
The location and softness of the shadows can be used to add depth and emphasize facial
features. (Photographs by David Arky.)

Figure 1-5: Lighting in The Godfather. Cinematographer Gordon Willis used a bounce
lighting system attached to a low ceiling to cast shadows over Marlon Brando’s eyes. This
approach hides the thoughts of Brando’s character from the audience and defines the mys-
terious and powerful head of the Corleone family. ((©) Paramount Pictures)

Figure 1-6: Lighting and shadow techniques also apply to computer graphics. Each of
these examples shows different shadow qualities, including placement, shape, and softness.
(© Disney Enterprises, Inc.)

17
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Figure 1-7: Point-to-point visibility in two dimensions. When computing shadows
cast by a point light source, we must check for each surface point whether or not the
light is visible from that point.

1.1 Shadow Concepts

When rendering images in computer graphics, we need to compute how much light
arrives at each visible surface point. Surface points that receive no light are by
definition in shadow. Seen another way, the computation of shadows boils down to
a visibility problem: to determine whether or not a surface point lies in shadow, we
need to know how much of the incoming light is blocked by other objects in the scene.
We use the term blocker to refer to an object that occludes the incoming light and
therefore casts a shadow; similarly, we use the term receiver to refer to an object onto
which shadows are cast. Note that a concave surface acts both as a blocker and as
a receiver; self-shadowing of concave surfaces is an important visual phenomenon, as
demonstrated in Figure 1-1.

Let’s consider a scene with a single point light source. To compute shadows for
this scene, we need to know whether the light is visible from each surface point.
Figure 1-7 illustrates this point-to-point visibility problem in two dimensions. Since
the visibility function is binary, there is a sharp discontinuity between the shadowed
and illuminated regions, as shown in Figure 1-8. Thus point light sources lead to
hard shadows.

Unlike point light sources, area light sources require us to solve a point-to-area

18
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Figure 1-8: Visibility discontinuities. A blocker casts a hard shadow from a point
light source onto a receiver. The shadowed region is indicated in red.
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Figure 1-9: Point-to-area visibility in two dimensions. In this example, only part of

an area light source is visible from the indicated surface point. This point is partially
in shadow.

visibility problem. Figure 1-9 shows an example in which only part of an area light
source is visible from the indicated surface point; this point lies partially in shadow.
More generally, area light sources give rise to soft shadows because of smooth transi-
tions between complete visibility and complete occlusion of the light source. Figure
1-10 depicts a common geometric configuration and highlights these transitions in
blue. The surface region that receives no light is called the umbra; the region that
sees part of the light source is called the penumbra. Note that the visibility function

is no longer binary: it varies smoothly within the penumbra between 0 and 1.
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Figure 1-10: An area light source gives rise to soft shadows due to smooth transitions
between complete visibility and complete occlusion of the light source. A surface
region that receives no light at all is called the umbra (highlighted in red). The part
of the region that sees part of the light source is called the penumbra (highlighted in
blue). The visibility function is no longer binary: it varies smoothly from 1 at point
A to 0 at point B.

The appearance of soft shadows depends on the geometric relationships between
the light source, blocker, and receiver. For instance, Figure 1-11 shows how the
shadow’s penumbra varies with the size of an area light source; larger lights lead to
larger penumbrae and smaller umbrae. The photographs in Figure 1-12 illustrate this
principle.

Shadow softness also depends on the ratio of distances between the area light
source, blocker, and receiver (see Figure 1-13). Let b be the distance from the light
source to the blocker, and let r be the distance from the light source to the receiver.
When the blocker is much closer to the receiver than to the light (b/r ~ 1), the area
light source behaves like a point light source and the resulting shadows have small
penumbrae. In contrast, when the blocker is much closer to the light source than to
the receiver (ratio b/r = 0), the resulting shadows have large penumbrae. This is
why the shadow cast by a box sitting on the floor appears sharp near the contact
point and becomes softer farther away. See Figures 1-14 and 1-15 for examples of this

phenomenon.
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Figure 1-11: Larger area light sources lead to larger penumbrae and smaller umbrae.
The two diagrams illustrate this geometric relationship.

Figure 1-12: Photographs of shadows due to small and large area light sources. (Left)
The box of pepper is illuminated by a small flashlight, which leads to sharp shadows.
(Right) The box is illuminated using a large desk lamp, which leads to softer shadows.
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Figure 1-13: Umbrae and penumbrae depend on the ratio of distances between the
light source, blocker, and receiver. When the blocker is much closer to the receiver
than to the light source (left image: ratio b/r ~ 1), the area light source is approxi-
mately a point light source; the resulting shadows have small penumbrae. In contrast,
when the blocker is closer to the light source than to the receiver (right image: ratio

small ratio b/r
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b/r = 0), the resulting shadows have large penumbrae.
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Figure 1-14: Photographs of shadows in different geometric configurations. (Left)
The light source (a desk lamp) is placed far away from the box of pepper, which leads
to sharp shadows. (Right) The same light source is placed very close to the box,

which leads to softer shadows.
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Figure 1-15: Shadow softness depends on the ratio of distances between the area light
source, blocker, and receiver. In this photograph, the box of pepper is the blocker
and the floor is the receiver. Notice how the shadows appear sharp near the contact
point between the two surfaces and become softer farther away.

The geometric relationships described above affect the types of shadows we often
see from day to day. For instance, on a clear sunny day, the sun — despite its size —
acts as a point light source because of its great distance from the earth; the resulting
shadows are hard and create high contrast. On the other hand, cloudy days lead to
very soft, almost non-existent shadows because the entire sky acts as a giant area

light source.

23



area light source

blockers

Figure 1-16: Shadow calculations are inherently non-local. In this example, the point
we are trying to shade receives only a small amount of light from the large area
light source due to occlusions from multiple independent blockers. Computing this
quantity of light accurately, efficiently, and robustly is far from trivial.

1.2 Real-Time Shadows

Although shadows are conceptually easy to understand, they are difficult to compute
efficiently in a rendering system. To see why, let’s consider the nature of the required
calculations. Unlike surface reflectance, which depends only on local properties such
as the normal vector, shadow calculations are inherently non-local. To determine
whether or not a point on a surface lies in shadow, we must check if other (possibly
far away) surfaces block the incident light. Soft shadows are particularly difficult
to compute because multiple blockers may contribute to partial occlusion of an area

light source. A 2D example is shown in Figure 1-16.

Designing a real-time shadow algorithm is challenging because of several conflict-

ing goals. Let’s discuss five of the most important ones.
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Figure 1-17: Photographs of shadows cast by square vs. triangular light sources.
(Left) The box of pepper is lit by a square light source. (Right) The box is lit by a
triangular light source. While the shadow penumbrae differ in shape, these differences
are rather small.

Image quality. Synthesized images should be free of aliasing artifacts and other
“digital signatures.” When rendering soft shadows, geometric accuracy is desirable
but sometimes unnecessary. As we discussed in the previous section, the thickness of
the penumbra depends greatly on the size of the light source and the ratio of distances
between the light, blocker, and receiver; thus a soft shadow algorithm should attempt
to capture this phenomenon. In contrast, the exact shape of an area light source
is less important. Consider, for example, the shadow cast by a square light source
versus the shadow cast by a triangular light source (see Figure 1-17). The differences
in the shape of the penumbrae are relatively insignificant, particularly in animated
scenes.

Robustness. Developers that work with offline rendering systems for movie
production have the liberty of knowing their viewpoints and scene configuration in
advance. If necessary, they can manually tweak algorithm parameters on a per-
scene or per-frame basis. Unfortunately, this is not the case for interactive dynamic
applications, because the scene configuration and viewing parameters may change
unpredictably from frame to frame. Therefore, it is important for real-time shadow
algorithms to be robust to such changes.

Efficiency. A shadow algorithm intended to be used in real-time applications

must be simple enough to implement using graphics hardware. This requirement
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places a number of constraints on the design of the algorithm. For instance, current
graphics architectures lack an efficient scatter operation, which is used to write data
to an arbitrarily-computed memory address. It is also important to realize that an
algorithm that maps well to the hardware may not scale well if it places unreasonable
demands on hardware resources; as we will see in the next chapter, this is a major
issue with the shadow volume method. Scalability, rather than efficiency, is key to
making a shadow algorithm practical in complex, heavily-shadowed scenes.

Generality. A shadow algorithm should obey the “anything-can-shadow-anything”
principle, meaning that the algorithm should treat all surfaces in the scene as poten-
tial blockers and receivers. For example, an algorithm should handle self-shadowing
for concave surfaces. In addition, a shadow algorithm should support blockers and
receivers regardless of their model representation. As we will see, some algorithms are
flexible and support any primitive that can be rasterized into a depth buffer, whereas
others require watertight polygonal models.

Support for dynamic scenes. Interactive applications such as 3D games are
moving towards fully dynamic environments. The viewpoint, light sources, characters,
and the environment itself may change from frame to frame. Shadow algorithms that
require extensive scene pre-processing are too expensive for dynamic scenes.

Not surprisingly, no known shadow algorithm has all of these desirable properties!
Designing a practical shadow algorithm involves finding a reasonable tradeoff among

these goals.

1.3 Contributions

This thesis describes two real-time algorithms, one for rendering hard shadows and
one for rendering soft shadows. We will refer to our hard shadow algorithm as the
hybrid algorithm and refer to our soft shadow algorithm as the smoothie algorithm.

In Chapter 3, we present a hybrid algorithm for rendering hard shadows accu-
rately and efficiently. Our method combines the strengths of two existing techniques,

shadow maps and shadow volumes. We first use a shadow map to identify the pix-
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els in the image that lie near shadow discontinuities. Then, we perform the shadow
volume algorithm only at these pixels to ensure accurate shadow edges. This ap-
proach simultaneously avoids the edge aliasing artifacts of standard shadow maps
and avoids the high fillrate consumption of standard shadow volumes. The algorithm
relies on a hardware mechanism that we call a computation mask for rapidly rejecting
non-silhouette pixels during rasterization.

In Chapter 4, we present a method for the real-time rendering of soft shadows. Our
approach builds on the shadow map algorithm by attaching geometric primitives that
we call smoothies to the objects’ silhouettes. The smoothies give rise to fake shadows
that appear qualitatively like soft shadows, without the cost of densely sampling an
area light source. In particular, the softness of the shadow edges depends on the
ratio of distances between the light source, the blockers, and the receivers. The soft
shadow edges hide objectionable aliasing artifacts that are noticeable with ordinary
shadow maps. Our algorithm computes shadows efficiently in image space and maps
well to programmable graphics hardware.

We designed these algorithms while keeping in mind the criteria presented in Sec-
tion 1.2. The algorithms attempt to balance the competing quality and performance
requirements using a mix of image-space and object-space approaches. Both algo-
rithms minimize aliasing artifacts, and the smoothie algorithm generates plausible
(though not geometrically-correct) penumbrae. Furthermore, both techniques are de-
signed to support dynamic environments and to scale well to large scenes. These
advantages come at a cost, however. Since parts of the algorithms require image-
space calculations using a discrete buffer, potential undersampling artifacts prevent
us from guaranteeing robustness. Similarly, parts of the algorithms perform geometric
calculations in object space, which limits the class of 3D models that we can handle.
In summary, we have attempted to maximize image quality and scalability at the
cost of some generality. Note that our algorithms are designed to run in real-time on

graphics hardware, but they are also applicable to offline rendering systems.
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Chapter 2

Related Work

As we discussed in the previous chapter, accurate shadows are hard to compute
efficiently and robustly. Several algorithms have been proposed over the past three
decades; the two methods proposed in this thesis build on many of these techniques.
We focus our discussion below on the most relevant real-time methods and refer the
reader to Woo et al.’s paper [WPF90] for a broader survey of shadow algorithms.
Akenine-Moller and Haines’s book [AMHO02] also provides a good overview of real-
time shadow algorithms.

We first discuss algorithms that compute hard shadows from point light sources,
then show how these algorithms have been extended to generate soft shadows. Fur-

thermore, we will describe how how our methods relate to these existing techniques.

2.1 Hard Shadow Algorithms

Ray casting is a natural way to compute hard shadows. For each surface point, send
a shadow ray towards the light source and check if the ray intersects a surface before
reaching the light. Although intersection tests can be optimized using hardware ac-
celeration [PBMHO02, Pur04] and various spatial data structures, these optimizations
do not support dynamic scenes efficiently. Furthermore, as we discussed in the previ-
ous chapter, the visibility calculations are non-local: they require global access to the

scene database, which is hard to achieve using graphics hardware. For these reasons,
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Figure 2-1: Geometric configuration of the shadow map algorithm. Consider the two
samples labeled A and B. Sample A is considered in shadow because the point on the
receiving plane is farther from the light source than the point stored in the shadow
map (which belongs to the blocker). In contrast, sample B is illuminated.

ray casting is fine for offline rendering but is too expensive for real-time applications.
Instead of using ray casting to compute shadows, developers of real-time appli-
cations often use shadow maps or shadow volumes, both of which were originally

proposed in the late 1970’s.

2.1.1 Shadow Maps

Shadow maps were introduced by Williams in 1978 [Wil78]. The algorithm, outlined
in Figure 2-2, involves two rendering passes. In the first pass, we render a depth map
of the scene from the light’s viewpoint; this depth map is called the shadow map.
In the second pass, we use the depth map to determine which samples in the final
image are visible to the light. To accomplish this, we project each image sample into

light space. If the sample’s depth in light space is greater than the value stored in
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Figure 2-2: Visualization of the shadow map algorithm. (a) Depth map seen from the
light’s viewpoint. (b) Depth map projected onto the surfaces, seen from the observer’s
viewpoint. (¢) Final shadow computed using depth comparisons against the shadow
map.

the depth map, then the sample is considered to be in shadow. Figure 2-1 illustrates
this process in two dimensions. Consider, for instance, the two samples (labeled A
and B) that lie on the observer’s image plane. Sample A is in shadow because the
corresponding point on the receiver is farther away from the light source than the
blocker’s point in the shadow map. In contrast, sample B is illuminated.

Shadow maps have several nice properties. They map easily to graphics hardware
because they use only projective texture mapping [SKvW*92] and simple depth com-
parisons. In addition, they are efficient because shadow calculations are performed
in image space and involve simple texture lookups. Finally, they naturally decouple
shadow computations from the scene geometry and support any geometric primitive
that can be rasterized into a depth buffer. A limitation of shadow maps, however,
is that the algorithm assumes that the light source is a directional light, such as a
spotlight. Omnidirectional light sources require additional rendering passes to cover
the entire sphere of directions.

The most serious drawback of shadow maps is that depth values are represented
in a discrete buffer. This leads to undersampling such as incorrect self-shadowing. To
make this easier to understand, consider the'2D example shown in Figure 2-3. During
shadow-map generation, surface depth values z4 and zp are stored at discrete sample
positions A and B (shown in red). When rendering the final image, a sample in the
observer’s space is transformed into light space at position C' (shown in blue), which

lies between A and B. The associated depth value z¢ is greater than the nearest
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Figure 2-3: Illustration of incorrect self-shadowing in two dimensions. After being
transformed into the light’s coordinate system, the image sample C' lies in between
the two nearest shadow map samples, A and B. Since the depth value at C' is greater
than the depth value of the nearest shadow map sample B, the image sample is
determined incorrectly to be in shadow.

Figure 2-4: Examples of bias-related artifacts in shadow maps. (a) Too little bias is
applied, leading to incorrect self-shadowing. (b) Too much bias is applied, causing
the shadow boundary to move away from the contact point between the box and the
floor. (c) The bias has been manually fine-tuned to avoid self-shadowing artifacts and
to obtain the full shadow along the box-floor boundary.

stored depth zp, so the current sample lies (incorrectly) in shadow. Notice that the
difference between z¢ and zp depends on both the slope of the surface relative to the

light source and the spacing between adjacent shadow map samples.

A common technique for avoiding self-shadowing artifacts is to apply a bias to
the depth value of the current sample. This has the effect of pushing forward the
depth values that might otherwise lie just behind a visible surface. Figure 2-4 shows,

however, that choosing the appropriate amount of bias can be tricky. Too little bias
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Figure 2-5: Aliasing of shadow maps. This example shows the shadow of a cylinder
cast onto a plane. Figures (a), (b), and (c¢) use 256 x 256, 512 x 512, and 1024 X
1024 shadow maps, respectively. Aliasing is evident in all three images.

(Figure 2-4a) leads to clearly-visible self-shadowing artifacts; too much bias (Figure

2-4b) removes parts of the shadow, leading to incorrect depth cues.

Kilgard and many others have noted that the amount of bias needed for a given
sample depends on many factors, including the local depth slope and the projected
shadow-map pixel area [Kil01]. Determining the appropriate bias is particularly trou-
blesome for interactive applications that render dynamic environments. This is be-
cause the projected shadow map pixel area for each sample depends on the viewing
parameters and scene configuration, which may change from frame to frame. In con-
trast, developers that work with offline rendering systems for movie production have
the liberty of knowing their viewpoints and knowing the scene configuration in ad-
vance. They can also adjust the bias manually on a per-scene or per-frame basis if

necessary.

Another consequence of undersampled shadow maps is aliasing. Figure 2-5 shows
an example of aliasing in the shadow cast by a cylinder onto a plane. The three images
were computed using shadow-map resolutions of 256 x 256, 512 x 512, and 1024 x
1024; aliasing along the shadow edges is clearly visible in all three images. Although
aliasing can be reduced by increasing the resolution of the shadow map, in practice
shadow maps are limited in size because of memory constraints. Furthermore, the
aliasing problem of shadow maps is harder to address than the usual aliasing problem
that arises in image synthesis, because the shadow map algorithm projects the depth

map from the light’s viewpoint onto the scene; the projected depth map is then
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resampled onto the observer’s image grid. Depending on the scene configuration, the
aliasing artifacts that result from this projection and resampling process can become
arbitrarily severe. For example, the aliasing artifacts in Figure 2-5¢ can be magnified

by moving the observer closer to the cylinder and zooming in on the shadow edges.

Researchers have developed many techniques for addressing shadow-map alias-
ing. Approaches based on filtering and stochastic sampling [LV00, RSC87] produce
nice antialiased shadows. Unfortunately, effective filtering requires a large number of
samples per pixel, which is expensive for real-time applications. Furthermore, using
a large filter width aggravates incorrect self-shadowing artifacts. In contrast, our
smoothie algorithm performs shadow edge antialiasing by projecting filtered texture
maps onto the scene; self-shadowing artifacts with this approach are no worse than

with ordinary shadow maps.

Other methods reduce aliasing by increasing the effective shadow map resolu-
tion. Adaptive shadow maps [FFBGO1] detect and redraw undersampled regions of
the shadow map at higher resolutions. Unfortunately, the required data structures
and host-based calculations preclude real-time performance for dynamic scenes. Per-
spective shadow maps [SD02, Koz04] are simpler: they just require an additional
perspective transformation that effectively provides more resolution in the shadow
map to samples located close to the viewer. This method is simple and fast, but it
does not reduce aliasing in all cases. For instance, when the light source and the
viewer face each other, the perspective transforms mutually cancel and the result is

a standard uniform shadow map.

Sen et al. [SCHO3] observed that shadow-map aliasing is only problematic near
the shadow silhouettes, i.e. discontinuities between shadowed and lit regions. They
propose the silhouette map, a 2D data structure that provides a piecewise-linear ap-
proximation to the true geometric silhouette seen from the point of view of the light
source. The silhouette map provides an excellent reconstruction of the shadow sil-
houette and eliminates shadow map aliasing in many cases. Since only one silhouette
point may be stored per texel in the silhouette map, however, artifacts may appear

when multiple shadow boundaries meet. Our hybrid shadow algorithm uses shadow
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Figure 2-6: Shadow volume configuration in two dimensions. Line segments (dotted
red) are extended from the blockers’ silhouettes away from the light source. The

enclosed region (shaded blue) is the shadow volume.

volumes for edge reconstruction and thereby avoids these artifacts.

2.1.2 Shadow Volumes

Unlike the shadow map, which relies on a discrete shadow representation, Crow’s
shadow volume algorithm [Cro77] works in object space by drawing polygons to rep-
resent the boundary between illuminated and shadowed regions of 3D space. The
shadow volume itself is the volume bounded by these polygons (see Figure 2-6), and a
shadow query involves checking if a point in the image lies within the volume. Berg-
eron [Ber86] generalized the method to handle open models and non-planar surfaces.

One way to perform shadow queries is to use ray casting, as shown in Figure 2-7.
To determine whether a surface point lies within the shadow volume, we use a simple
counting argument. For each image ray, we begin with a count of zero. Each time

the ray intersects a shadow polygon that is front-facing with respect to the observer,
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Figure 2-7: Stencil shadow volume example in two dimensions. Consider the three
image rays, shown in magenta, blue, and orange. The samples corresponding to the
top and middle rays are illuminated because the total stencil count along each ray is
0. In contrast, the sample corresponding to the bottom ray is in shadow because the
final stencil count is +1.

we increment the count. Similarly, each time the ray intersects a back-facing shadow
polygon, we decrement the count. If the ray intersects an object and the count is
non-zero, the intersection point lies in shadow; otherwise the point is illuminated. As
an example, Figure 2-7 shows three image rays: the top and middle rays intersect
surface points that are illuminated, and the bottom ray intersects a point that lies in
shadow.

Heidmann [Hei91] realized that this counting approach could be accelerated using
a hardware stencil buffer. Unfortunately, the original algorithm for stencil-based
shadow volumes suffered from numerous robustness issues. Figure 2-8 shows examples
of tricky cases, such as when the observer is in shadow or when a shadow polygon
is clipped by the view frustum’s near plane. Some of these issues were addressed

by Diefenbach [Die96] and Carmack [Car00]. Recently, Everitt and Kilgard [EK02]
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Figure 2-8: Tricky cases for stencil-based shadow volumes. In the left case, the
observer is in shadow, so the outcome of stencil counts must be inverted. In the right
case, a shadow polygon is clipped by the frustum’s near plane, which leads to inverted
shadow calculations in some regions of the image.

described a robust implementation using modern graphics hardware.

Robust stencil shadow volumes offer two advantages over shadow maps. The
algorithm is accurate because it computes shadows in object space for every pixel
of the final image. Thus, the resulting shadows do not suffer from undersampling
artifacts such as aliasing and incorrect self-shadowing. Also, unlike shadow maps,

shadow volumes naturally handle omnidirectional light sources.

On the other hand, shadow volumes do not provide the same level of generality
as shadow maps. Whereas shadow maps support any type of geometry that can be
rasterized into a depth buffer, a robust implementation of shadow volumes places
numerous restrictions on the geometry representation. In particular, surfaces must
be polygonal models that are oriented and watertight.

The most serious drawback to shadow volumes is that the algorithm does not
scale well to scenes with high shadow complexity. The method involves drawing
extra geometry, but the main problem is the large fillrate required. There are two

reasons for this. First, shadow volume polygons occupy substantial screen area, as
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Figure 2-9: A simple scene with a few objects (a) can lead to high fillrate consumption
when using shadow volumes. (b) The shadow polygons (shown in yellow) occupy sub-
stantial screen area and overlap in screen space. Lighter shades of yellow correspond
to regions with higher overdraw.

shown in Figure 2-9, especially in heavily-shadowed scenes or when the observer is in
shadow. Second, the shadow polygons overlap in screen space, and every rasterized
pixel of every shadow polygon potentially updates the stencil buffer. This degree of
overlap, combined with the large screen coverage of shadow polygons, grows rapidly
as shadow complexity increases, leading to an explosion in fillrate consumption.

Lengyel [Len02], Everitt and Kilgard [EK03], and McGuire et al. [MHE*03]
describe a number of culling techniques for optimizing stencil shadow volumes to
reduce fillrate. One method estimates the shadow extent on a per-blocker basis and
uses scissoring to discard shadow polygon pixels that lie outside the computed scissor
rectangle. A related method also considers the depth range of the shadows cast by
individual blockers and discards pixels from shadow volume polygons that lie outside
of this range. The key idea here is to discard pixels early in the pipeline without
performing stencil updates, thereby accelerating rasterization and saving valuable
memory bandwidth.

The above techniques are useful, but they are less effective for heavily-shadowed
scenes. This is because pixels that lie in shadow are precisely those that lie within
the depth ranges and scissor rectangles computed in the above optimizations; thus
such pixels do not benefit from these optimizations. Scenes in which shadow polygons

have large depth ranges are also problematic. In contrast, our hybrid method performs
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rasterization and stencil updates only for pixels that lie near shadow silhouettes. Thus
even for scenes with many shadows, the fillrate consumed by shadow volume polygons
remains small. Note that our hybrid method is complementary to the aforementioned
optimizations.

Researchers have recently proposed several new methods for tackling the fillrate
problem of shadow volumes. Aila and Akenine-Moller [AAMar] describe a two-level
hierarchical shadow volume algorithm. Their approach is similar to ours in that
they identify shadow-boundary pixels and rasterize shadow volumes accurately only
at those pixels. There are two important differences, however. First, their method
detects tiles of boundary pixels in object space by checking for triangle intersections
against the tiles’ 3D bounding boxes, whereas our method identifies the boundaries
in image space using a shadow map. Second, an efficient implementation of their
method requires numerous changes to hardware, including a modified rasterizer, logic
for managing tile updates, and the addition of a delay stream [AMNO3]. In contrast,

our method relies on existing culling hardware to reduce shadow-volume fillrate.

Lloyd et al. [LWGMar] take a different approach to reducing shadow-volume ras-
terization costs. One of their techniques is to use image-space occlusion queries to
identify blockers that lie entirely in shadow; shadow-volume polygons for such block-
ers are redundant and may be culled. A similar method is used to cull blockers that

cast shadows only on receivers lying outside the observer’s view frustum.

Furthermore, Lloyd et al. limit the screen-space extent of shadow-volume polygons
in two ways. In the first method, they compute overlaps of the blockers’ axis-aligned
bounding boxes to estimate the depth intervals from the light source that contain
shadow receivers; they clamp shadow polygons to non-empty depth intervals. In the
second method, they partition the observer’s view frustum into discrete slices and use
occlusion queries to determine which slices contain receivers; as in the first approach,
shadow polygons are clamped to non-empty slices. The second approach provides
greater culling but incurs additional overhead. The key difference between all of
the above culling strategies and our method is that Lloyd et al. reduce fillrate by

reducing the number and size of the shadow-volume polygons, whereas we draw the
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entire polygons and rely on the hardware to perform culling of non-silhouette pixels.

These approaches are fully complementary.

2.1.3 Hybrid Approaches

McCool [McC00] was the first to propose a hybrid algorithm that combines shadow
maps and shadow volumes. His method first renders a depth map and runs an
edge detection algorithm to find the blockers’ silhouette edges. Next, the method
reconstructs shadow volumes from these edges and uses them to compute shadows in
the final image. A strength of McCool’s approach is that shadow volume polygons are
generated only for silhouette edges that are visible to the light source. Unfortunately,
an expensive depth buffer readback is required, shadow polygons are fully rasterized,
and artifacts can occur due to aliasing in the shadow volume reconstruction.

Govindaraju et al. [GLY 03] propose a different hybrid shadow algorithm. First,
they use level-of-detail and PVS culling techniques to reduce the number of potential
blockers and receivers; these techniques are implemented using hardware occlusion
queries [Ope02b]. Next, they compute shadows using a mix of object-space clipping
and shadow maps. Exact clipping of receiver polygons against the blockers’ shadow
frusta is performed for receivers that would otherwise exhibit shadow-map aliasing
artifacts. To identify these receivers, they use a formula derived by Stamminger and
Drettakis [SD02] that relates the size of a pixel in shadow-map space to its size when
projected into the observer’s image space. Shadow maps are used for the remaining
receiver polygons. This hybrid approach improves the accuracy of shadow silhouettes
without requiring an excessive number of clipping operations.

The approach of Govindaraju et al. is similar to ours in that both methods limit
the amount of computation required to render accurate shadow silhouettes. The
two methods perform culling at different stages, however. Whereas their method
minimizes the number of objects that are processed by their clipping algorithm, our
method minimizes the number of pizels in the image that are treated by shadow vol-
umes. The two methods could be combined by replacing their software-based polygon

clipping with our optimized, hardware-accelerated shadow volume rasterization.
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2.2 Soft Shadow Algorithms

Both shadow maps and shadow volumes have been extended to support soft shadows.

Shadow maps can be used to render both antialiased and soft shadows through a
combination of filtering, stochastic sampling, and image warping techniques [RSC87,
LV00, ARHMO00, HH97, GCHHar|. However, these methods require examining many
samples per pixel to minimize noise and banding artifacts. Dense sampling is costly,
even on modern graphics hardware which supports multiple texture accesses per pixel.
Consequently, these techniques are mostly used today in high-quality offline rendering

systems.

To avoid the cost of dense sampling, some methods use convolution to ensure
a continuous variation of light intensity at the shadow edges. For example, Soler
and Sillion [SS98] showed how to approximate soft shadows using projective texture
mapping and convolution in image space; they convolve the image of the blockers
with the inverse image of the light source. Unfortunately, their method cannot easily

handle self-shadowing.

Researchers have developed simpler approximations that take advantage of shadow-
mapping hardware. For instance, Heidrich et al. [HBS00] described how shadow maps
can support linear light sources using only two samples per light. Brabec and Seidel
[BS02] extended this idea to handle area light sources by searching over regions of the
shadow map. Although their method uses only one depth sample per pixel, it requires
a search procedure and an expensive readback from the hardware depth buffer to the

host processor. Thus their method is practical only for low-resolution shadow maps.

Parker et al. [PSS98] proposed creating an “outer surface” around each object in
the context of a ray tracer. Their technique can be seen as convolution in object
space: a sample point whose shadow ray intersects the volume between a real surface
and its outer surface is considered partially in shadow. The sample’s light intensity is
determined by interpolating alpha values from 0 to 1 between the two surfaces. Only
one shadow ray is needed to provide visually smooth results, but because of the way

outer surfaces are constructed, only outer shadow penumbrae are supported. In other
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words, the computed shadow umbrae do not shrink properly as the size of the area
light source increases. Our smoothie algorithm is closely related to Parker et al.’s
method in that we extend extra geometry outwards from the blockers’ silhouettes.
Consequently, our method is also limited to outer shadow penumbrae.

Assarsson and Akenine-Moller have published several papers describing soft shadow
algorithms based on shadow volumes [AMA02, AAM03, ADMAMO03]. They replace
each shadow volume polygon with a penumbra wedge, a set of polygons that encloses
the penumbra region for a given silhouette edge. Their original approach achieves
visual smoothness by linearly interpolating light intensity within the wedge, and the
wedges are constructed in a manner that supports inner shadow penumbrae.

Subsequent publications describe an improved wedge construction technique that
increases robustness and can handle multiple wedges independently of each other
[AAMO03, ADMAMO3]. When rendering a wedge, the shadow polygon for the corre-
sponding silhouette edge is clipped against the image of the light source to estimate
partial visibility. The clipping calculation is performed for each wedge at every pixel
to accumulate light into a visibility texture. This geometry-based approach yields an
accurate approximation, supports inner shadow penumbrae, and can handle animated
light sources with different shapes.

Unfortunately, as we discussed in Section 2.1, shadow volumes do not scale well
to complex scenes because of their large fillrate requirements. The penumbra wedge
algorithms consume even more fillrate than ordinary shadow volumes, because each
silhouette edge gives rise to multiple wedge polygons. Furthermore, a long pixel
shader that performs visibility calculations must be executed for all rasterized wedge
pixels.

Other techniques rely on projective texturing to avoid the cost of shadow volumes.
For instance, Haines [Hai01] describes a method for rendering a hard drop shadow
into a texture map and approximating a penumbra along the shadow silhouettes. The
method works by drawing cones at the silhouette vertices and drawing sheets that
connect the cones at their outer tangents. The cones and sheets are smoothly shaded

and projected onto the ground plane to produce soft planar shadows. Like the work
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of Parker et al. [PSS98], this construction only grows penumbra regions outward from
the umbra and does not support inner shadow penumbrae.

Recently, Wyman and Hansen [WHO03] independently developed a soft shadow
algorithm similar to our smoothie algorithm. They extend Haines’s work by drawing
cones and sheets at the objects’ silhouettes and storing intensity values into a penum-
bra map, which is then applied as a projective texture to create soft shadow edges.

We will compare their approach to ours in more detail in Chapter 4.

2.3 Additional Methods

So far we have discussed many hard and soft shadow rendering techniques based
on the shadow map and shadow volume algorithms. There are many other classes of
techniques, however. For instance, distributed ray tracing [CPC84] is a natural way of
generating accurate soft shadows, but it is too expensive for interactive applications.

Researchers have recently developed a number of techniques based on precom-
puted radiance transfer. These techniques use a preprocessing step to compress the
incoming lighting information (taking into account occlusions) with a set of basis func-
tions such as spherical harmonics [RH01, SKS02] or Haar wavelets [NRH03]. These
techniques allow relighting of the scene with high-quality soft shadows at interactive
rates. Unfortunately, the long precomputation times preclude support for dynamic

environments.

2.4 Summary

This chapter has examined several real-time shadow algorithms and their strengths
and limitations. Most of these algorithms are based on the classic shadow map and
shadow volume methods. Shadow maps work in image space and are efficient and
general, but they suffer from undersampling artifacts and support only direction light
sources. Shadow volumes work in object space and are robust and accurate, and they

handle omnidirectional light sources. However, they support only a limited class of
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geometry and do not scale well to complex scenes because of high fillrate requirements.
Soft shadow algorithms that extend these basic approaches inherit the corresponding
limitations.

While discussing these various techniques, we have seen examples of algorithms
that are difficult to map to hardware, either because they require an expensive read-
back [McC00, BS02] or because they require complicated data structures that are hard
to update for dynamic environments [FFBGO01]. We have also discussed algorithms,
such as ray tracing and precomputed radiance transfer, that can lead to high-quality
shadows, but they do not support dynamic environments efficiently.

In comparison, the algorithms we propose in this thesis are designed to work for
dynamic scenes, to map directly to existing graphics hardware, and to avoid expensive
readbacks. Our algorithms attempt to balance the quality and performance require-
ments using a mix of image-space and object-space approaches. For instance, the
hybrid algorithm uses the image-space shadow map approach to determine shadows
for all parts of the image except at the shadow edges, then uses the object-space
shadow volume approach to compute accurate shadow edges. In the smoothie algo-
rithm, we find silhouette edges and construct extra geometric primitives in object
space, but ultimately we perform the visibility calculations in image space using tex-
ture lookups. In the next two chapters, we’ll discuss these algorithms in detail and

see how they achieve both efficiency and good image quality.
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Chapter 3

Hybrid Shadow Rendering Using
Computation Masks

As we discussed in the previous chapter, shadow maps and shadow volumes are
commonly-used techniques for the real-time rendering of shadows. Shadow maps
are efficient and flexible, but they are prone to aliasing. Shadow volumes are accu-
rate, but they have large fillrate requirements and thus do not scale well to complex
scenes. This chapter describes a way of combining these algorithms to achieve both
accuracy and scalability.

Sen et al. [SCHO03] observed that shadow-map aliasing is only noticeable at the
discontinuities between shadowed and lit regions, i.e. at the shadow silhouettes. On
the other hand, shadow volumes compute shadows accurately at every pixel, but
this accuracy is needed only at the silhouettes. This observation suggests a hybrid
algorithm that uses a slower but accurate algorithm near the shadow discontinuities
and a faster, less exact algorithm everywhere else.

This chapter presents a hybrid algorithm for rendering hard shadows from point
light sources (see Figure 3-1). We first use a shadow map to find quickly pixels in
the image that lie near shadow silhouettes, then apply the shadow volume algorithm
only at these pixels; the shadow map determines shadows for the remaining non-
silhouette pixels. This approach greatly reduces the fillrate needed for drawing shadow

volumes, because the number of silhouette pixels is often a small fraction of the shadow
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Figure 3-1: Overview. We first use a shadow map (a) to identify pixels in the image
that lie close to shadow silhouettes. These pixels, seen from the observer’s view, are
shaded green in (b). Next, we render shadow volumes only at these pixels to obtain
accurate shadow edges (c). We use the shadow map to compute shadows everywhere
else, and the final result appears in (d).

Figure 3-2: (a) The cylinder’s shadow exhibits aliasing due to shadow map under-
sampling. However, aliasing is only apparent at the shadow edges. (b) Pixels that lie
near shadow edges (shown in red) account for only a small fraction of the total image
size.

polygons’ total screen area (see Figure 3-2). We show that our method produces
accurate hard shadows and has substantially lower fillrate requirements than the

original shadow volume algorithm.

To avoid processing non-silhouette pixels during shadow volume rasterization, we
propose an extension to graphics hardware called a computation mask. Computation
masks are useful in general for accelerating multipass rendering algorithms. Although
they are not directly exposed in current hardware, we show how to simulate them
efficiently using available features related to early z occlusion culling. Since computa-
tion masks exploit existing culling hardware, adding native hardware support requires

minimal changes to modern graphics chips.

46



3.1 Algorithm

We assume that blockers are polygonal, well-behaved, closed, and manifold; these

properties ensure a robust implementation of shadow volumes [EK02].

An overview of our approach is shown in Figure 3-1. We first create an ordinary
shadow map, which serves to identify shadow silhouette pixels and compute shadows
for non-silhouette pixels. Then, we use shadow volumes to compute accurate shadows
only at silhouette pixels. The underlying assumptions are that the shadows’ silhouette
pixels account for a small fraction of the total number of shadow-polygon pixels, and
that the hardware supports a mechanism for efficiently discarding pixels that do not

lie on the silhouette.

We now explain these concepts in more detail; implementation and hardware issues

are discussed in the next section. The algorithm’s steps are:

1. Create a shadow map. We place the camera at the light source and render
the nearest depth values to a buffer, as shown in Figure 3-la. Since we only need
the shadow map to approximate the shadow silhouette, we can use a low-resolution
shadow map to conserve texture memory and speed up shadow-map rendering. The
tradeoff is that low-resolution shadow maps can miss small features and usually in-
crease the number of pixels classified as silhouette pixels. We will discuss this issue

further in Section 3.3.1.

2. Identify shadow silhouette pixels in the final image. We render the scene
from the observer’s viewpoint and use a technique suggested by Sen et al. [SCH03]
to find silhouette pixels. We transform each sample to light space and compare its
depth against the four nearest depth samples from the shadow map. If the comparison
results disagree, then we classify the sample as a silhouette pixel (shown in green in
Figure 3-1b). Otherwise, the sample is a non-silhouette pixel and is shaded according

to the depth comparison result.

Reducing the number of silhouette pixels is desirable because it limits the amount
of stencil fillrate consumed when drawing shadow volumes. For example, pixels that

are back-facing with respect to the light are always in shadow, so we never tag them
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// Find discontinuities: shadow silhouette pixels.

void main (out half4 color : COLOR,
half diffuse : COLO,
float4 uvProj : TEXCOORDO,

uniform sampler2D shadowMap)

// Use hardware's 2x2 filter: 0 <= v <= 1.
fixed v = tex2Dproj(shadowMap, uvProj) .x;

// Requirements for sil pixel: front-facing and
// depth comparison results disagree.
color = (v > 0 && v < 1 && diffuse > 0) ? 1 : 0;

Figure 3-3: Cg pixel shader for finding shadow silhouettes.

as silhouette pixels. Additional methods for reducing the number of silhouette pixels

are discussed in Section 3.4.3.

During this step, we also perform standard z-buffering, which leaves the nearest
depth values seen from the observer’s viewpoint in the depth buffer. This prepares

the depth buffer for drawing shadow volumes in the next step.

3. Draw shadow volumes. The stencil shadow volume algorithm works by
incrementing or decrementing the stencil buffer based on whether pixels of shadow-
volume polygons pass or fail the depth test. We follow the z-fail setup described
by Everitt and Kilgard [EK02] because of its robustness. The key difference in our
approach is that we rasterize shadow-polygon pixels and update the stencil buffer

only at framebuffer addresses containing silhouette pixels.

At the end of this step, the stencil buffer contains non-zero for pixels that lie in
shadow; it contains zero for pixels that either are not shadowed or are not silhouette
pixels. For example, the black shadow edges in Figure 3-1c show the regions where

the stencil buffer contains non-zero.

4. Compute shadows. We draw and shade the scene only at pixels with stencil

values equal to zero, thereby avoiding the shadowed regions of the image.
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Figure 3-4: Comparison: a cylinder’s shadow is rendered using (a) a 512x512 shadow
map and (b) our hybrid algorithm with a 256x256 shadow map. Using a lower-
resolution shadow map in our case is acceptable because shadow volumes are respon-
sible for reconstructing the shadow silhouette.

3.2 Implementation Issues

Our shadow algorithm performs rasterization and stencil updates of the shadow-
volume polygons only at the silhouette pixels. To find these silhouette pixels, we
compare the depth of each image sample with the four nearest depth samples in the
shadow map and check if the results agree. We use hardware-assisted percentage
closer filtering [RSC87] to accelerate this step. If the shadow query returns exactly
0 or 1, the depth comparison results agree and the pixel is not a silhouette pixel;
otherwise the results disagree and the pixel lies on a silhouette. This optimization
allows us to issue a single texture-fetch instruction in a pixel shader, shown in Figure
3-3. We tag silhouette pixels by writing 1 to the color buffer.

Rasterization and stencil updates of shadow-volume polygons are limited to sil-
houette pixels. We accomplish this task using a computation mask, a device that
lets us pick specific framebuffer addresses to mask off so that the hardware can avoid
processing pixels at those locations. Computation masks are useful for accelerating
multipass rendering algorithms. For instance, Purcell et al. [PDC*03, Pur04] found
that a computation mask with coarse granularity improved the performance of their
hardware-based photon-mapping algorithm by factors of two to ten.

Current graphics hardware does not directly expose computation masks, but it
turns out that the EXT _depth_bounds_test OpenGL extension [Ope02a| can be treated

as one; see the appendix for a brief explanation of this extension. The idea is to use a
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pixel shader to mask off pixels by setting their depth values to a constant outside the
depth bounds. Then we enable depth-bounds testing so that in subsequent rendering
passes, rasterized pixels at these masked-off framebuffer addresses can be discarded
early in the pipeline. Similar culling mechanisms are commonly used for early z
occlusion culling {Mor00].

In our implementation, we set up a computation mask as follows. We draw a
screen-aligned quad and use a pixel shader to set the depth values of all non-silhouette
pixels to z = 0; depth values of silhouette pixels are unmodified. Next, we enable
depth-bounds testing and set the depth bounds to [¢,1] for some small constant
e ~ (0.001. Finally, we apply the robust z-fail variation of stencil shadow volumes
[EK02]. Since the hardware discards all rasterized pixels whose depth values in the
framebuffer are equal to z = 0, only silhouette pixels will be rendered.

Note that our implementation depends on the hardware’s ability to preserve early
culling behavior when using a pixel shader to compute depth values. This feature is
available on the NVIDIA GeForce 6 (NV40) but not on earlier NVIDIA architectures
such as the GeForce FX (NV30). ATI’'s Radeon 9700 (R300) and newer architec-
tures also support this feature, but unfortunately those chips do not support the

EXT _depth_bounds_test extension.

3.3 Results

All of the images presented in this section were generated at a resolution of 1024 x
768 on a 2.6 GHz Pentium 4 system with a NVIDIA GeForce 6800 (NV40) graphics
card.

Examples. Figure 3-4 shows a cylinder casting a shadow onto the ground plane.
We used an ordinary 512x512 shadow map and 2x2 bilinear percentage closer fil-
tering [RSC87] for the image in Figure 3-4a. We used our hybrid method with a
256x256 shadow map for the image in Figure 3-4b. The lower-resolution shadow
map is acceptable because the shadow-volume portion of our algorithm reconstructs

the shadow edges accurately.
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Figure 3-5: Visualization of mixing shadow maps and shadow volumes. We see the
shadow of a ball cast onto the ground plane. (a) Aliasing is evident when the ball’s
shadow is rendered using a 256x 256 shadow map. The rest of the images illustrate
how our method minimizes aliasing. In (b) and (c), non-silhouette pixels are shaded
red and blue; for these pixels, the shadow map determines which ones are in shadow
(red) and which ones are lit (blue). Silhouette pixels are shaded black and green;
shadow volumes determine which ones are in shadow (black) and which ones are lit
(green). Shadow map resolutions of 256256 and 512x 512 were used for (b) and (c),
respectively. The final shadow is shown in (d).

Figure 3-5 shows a closeup of a ball’s shadow and illustrates how our method oper-
ates near shadow silhouettes. Figure 3-5a shows the aliasing artifacts that result from
using an ordinary 256x256 shadow map. In the middle two images, non-silhouette
pixels are shown in red and blue; red pixels are fully shadowed, and dark gray pixels
are fully lit. Visibility for these pixels is determined using the shadow map. Silhouette
pixels are shown in black and green; black pixels are in shadow and green pixels are
lit. Shadow determination in this case is performed by shadow volumes. Figures 3-5b
and 3-5¢ use 256x256 and 512x512 shadow maps, respectively. Figure 3-5d shows
the final shadow computed by our method.

Methodology. We evaluated our method using the scenes shown in Figure 3-6.
The Cubes and Dragon Cage scenes contain 12,000 triangles each, and the Tree scene
has 40,000 triangles. We chose these scenes and viewpoints for several reasons. First,
they have high shadow complexity and require enormous fillrate when using ordinary
shadow volumes. Second, these scenes have many overlapping shadow edges, which
can lead to temporal artifacts when using shadow silhouette maps [SCH03]. Third,
we have chosen some camera views (see View C) that are on the opposite side of

the blockers as the light source; these cases are difficult to handle using perspective
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Figure 3-6: Three test scenes with high shadow complexity. Rows contain different
scenes, and columns show different views. Each scene is illuminated using a single
point light source.

shadow maps [SD02]. Finally, these scenes are heavily-shadowed, and the depth range
of shadow-volume polygons is large, making it difficult to apply the scissor and depth-
bounds optimizations described in Section 2 [Len02, EK03, MHE*03]. In summary,

real-time shadow rendering is a challenging task in all of these scenes.

3.3.1 Image Quality

Figure 3-7 compares the image quality of shadow maps, our hybrid method, and
shadow volumes; we used a 1024x1024 shadow map for the first two techniques.

These images show that our method minimizes the edge-aliasing artifacts of shadow

maps.
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Shadow Maps Hybrid Algorithm Shadow Volumes

Figure 3-7: Comparison of image quality using shadow maps (left column), our hy-
brid algorithm (center column), and shadow volumes (right column). A shadow-map
resolution of 1024x1024 was used for the shadow map and hybrid algorithms.

A more subtle improvement is that our method reduces self-shadowing artifacts.
With regular shadow maps, incorrect self-shadowing may occur due to limited depth-
buffer resolution and precision. These artifacts are visible, for example, in the Dragon
Cage scene in Figure 3-7 (see the lower-left image). The problem is usually addressed
by adding a small bias to the depth values when rendering the shadow map [AMHO02,
RSC87, Wil78]. Unfortunately, the amount of bias required depends on the scene
configuration and is hard to set automatically for dynamic scenes.

In our approach, however, incorrectly-shadowed pixels are often classified as sil-
houette pixels and thus are rendered correctly by the shadow-volume portion of the
algorithm. The reason is that the depth value of an affected pixel usually lies between

the depth values of two adjacent samples in the shadow map. As a result, the depth
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not applicable

Hybrid: 256 x 256 - Hybrid: 512 x 512 Hybri: 1024 x 1024 Shadow Volumes

Figure 3-8: Artifacts. These images are crops from the Tree scene, View B. The
images in the left three columns were generated using our hybrid algorithm with
varying shadow-map resolutions. In the top row, the regions indicated in red and
green show missing or incorrect shadows due to undersampling in the shadow map.
The corresponding images in the bottom row visualize the reconstruction errors using
the same color scheme as in Figures 3-5b and 3-5¢c. The reference image in the far-right
column was obtained using shadow volumes.

comparisons disagree and the pixel is tagged as a silhouette pixel. One implication is
that we can choose the shadow bias conservatively, erring on the side of applying too
little bias and relying on the shadow volumes to avoid self-shadowing artifacts. If we
apply too little bias, however, then most of the pixels in the image will be classified
as silhouette pixels.

Although shadows computed using our approach are often similar to those com-
puted using shadow volumes, small differences may occur due to sampling errors in
the shadow map. To understand these differences better, we studied several images
produced using the hybrid algorithm at different shadow-map resolutions. Figure 3-8
shows an example of one such set of images; we chose the Tree scene as our example
because its thin branches are difficult to represent accurately in a discrete buffer.
The indicated regions in red and green show missing or incorrect shadows due to
undersampling.

More generally, a limitation of using lower shadow-map resolutions is that small
blockers may be poorly represented in the shadow map. This form of aliasing mani-

fests itself in vanishing and popping shadows. Existing shadow algorithms that rely
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Figure 3-9: Fillrate consumption and overdraw in the Dragon Cage scene. The shadow
volume polygons, shaded yellow in (a), cover the entire image and have an overdraw
factor of 79; brighter yellow corresponds to higher overdraw. Our hybrid method
restricts drawing shadow polygons to the silhouette pixels, shaded green in (b); these
pixels cover just 5% of the image. The image on the right (c) illustrates the resulting
stencil buffer: black pixels on the floor and walls are in shadow and represent non-zero
stencil values.

on discrete buffers for visibility queries, such as the work of McCool [McC00], Govin-
daraju et al. [GLY"03], and Sen et al. [SCHO3|, also exhibit similar artifacts. The
difficulty is that arbitrarily small objects may cast arbitrarily large shadows, depend-
ing on the scene configuration, and low-resolution shadow maps are more likely to
miss such objects. This problem could be addressed by combining our method with
a perspective shadow map [Koz04, SD02], which optimizes the depth buffer’s sample

distribution to maximize resolution near the viewer.

3.3.2 Performance

Fillrate consumption is significant for the shadow volume algorithm in all of our test
scenes. Figure 3-9a shows an example in which shadow-volume polygons cover the
entire image and have an overdraw factor of 79, meaning that every pixel is processed
79 times on average. We reduce this huge fillrate consumption by limiting shadow-
polygon rasterization to silhouette pixels, shaded green in Figure 3-9b; silhouette
pixels in this scene cover just 5% of the image. Performing rasterization and stencil
updates only at these pixels leads to the stencil buffer shown in Figure 3-9c.

Figure 3-10 compares the number of pixels rasterized by shadow volumes and our

hybrid method. It also shows the percentage of pixels classified as silhouette pixels as
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Figure 3-10: Shadow volume overdraw and silhouette pixel coverage. The black bars
show the percentage of pixels in the image covered by shadow volumes, and the
number next to each bar is the overdraw factor (the ratio of shadow-polygon pixels
to the total image size). The white, red, and blue bars show the percentage of pixels
in the image that are classified as shadow silhouette pixels by our hybrid algorithm;
colors correspond to different shadow-map resolutions.
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Figure 3-11: Performance comparison. The vertical bars measure the per-frame time
in milliseconds (ms) for the shadow map algorithm (SM), our hybrid algorithm (H),
and the shadow volume algorithm (SV). Colored sections of a bar indicate how much
time is spent in each part of the algorithm.

a function of shadow-map resolution. Even with a 256 x 256 shadow map, the fraction
of silhouette pixels is much smaller than the fraction of all shadow-volume pixels.
Figure 3-11 compares the performance of the shadow map, shadow volume, and
hybrid algorithms. Performance is measured using the time required for each algo-
rithm to render one frame; all times are reported in milliseconds. The plot gives a

performance breakdown for each part of each algorithm. Not surprisingly, the cost
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of the hybrid and shadow volume algorithms is dominated by the rasterization and
stencil updates of the shadow-volume polygons. Our method is significantly faster,
however: we observed speedups of 30% to over 100%, measured in frames per second.
Keep in mind that these performance numbers are highly scene-dependent and view-
dependent; hardware culling implementations (see Section 3.4.2) also play a large
role in determining the actual speedup. We provide performance numbers simply to
demonstrate that substantial acceleration is attainable across a number of different

scenes and viewpoints.

3.4 Discussion

3.4.1 Algorithm Tradeoffs

The key performance tradeoff in our work is the reduction of fillrate at the cost
of an extra rendering pass. We emphasize that our method is designed to handle
dynamic scenes with high shadow complexity, which would ordinarily give rise to
many overlapping shadow volumes and quickly saturate the hardware’s fillrate. Thus
our method is most relevant to fillrate-limited applications, such as many of the
current real-time game engines. Ordinary shadow volumes will clearly run faster for

scenes of sufficiently low shadow complexity.

Since our method combines both shadow maps and shadow volumes, it inherits
some of the limitations from both. In contrast to the shadow map algorithm, which
handles any geometry that can be represented in a depth buffer, our method requires
watertight polygonal models for robust shadow volume rendering. In contrast to the
shadow volume algorithm, our method is restricted to directional light sources because
we use shadow maps to find silhouette pixels; omnidirectional lights require additional
rendering passes. Finally, our method requires one more rendering pass than ordinary
shadow volumes because we must first create the shadow map. Fortunately, this extra

pass is inexpensive because it can be done at lower resolutions and requires no shading,.
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3.4.2 Computation Masks

We described at length in Section 3.2 how to treat the depth bounds test as a com-
putation mask, but this trick is only necessary because current hardware lacks a
dedicated computation mask. We believe that adding a true computation mask to
graphics hardware is worthwhile for several reasons. First, as we pointed out earlier,
computation masks are closely related to early z occlusion culling, and thus most of
the required technology is already present in current hardware. In particular, compu-
tation masks can take advantage of the early tile-based rejection mechanisms already
used for occlusion culling and depth bounds testing. Furthermore, the representation
for a computation mask is much more compact: only a single bit per pixel is needed,
as compared to 16 or 24 bits per pixel for an uncompressed depth buffer.

Early pixel rejection (due to either computation masks, occlusion culling, or depth
bounds testing) is unlikely to occur with single-pixel granularity. It is more likely that
such culling takes place on a per-tile basis, such as a 16-pixel or 8-pixel tile. Fortu-
nately, the images in Figures 3-1b and 3-9b suggest that non-silhouette pixels tend
to occupy large contiguous regions of screen space and can benefit from conservative

tile-based culling.

3.4.3 Additional Optimizations

One way to reduce further the number of classified silhouette pixels is to consider
only the pixels that undersample the shadow map. Stamminger and Drettakis [SD02]
derive a simple formula for estimating the ratio r of image resolution to shadow-map
resolution; silhouette pixels with 7 < 1 can be omitted because they won’t exhibit
aliasing artifacts. This culling strategy could be added to the shader in Figure 3-3 at
the cost of additional per-pixel floating-point arithmetic. In our test cases, however,
we found that this technique reduced the number of classified silhouette pixels by
only 5%, not enough to justify the computational overhead.

We have also considered (but not implemented) an optimization inspired by the

work of Lloyd et al. [LWGMar] and the hybrid algorithms of McCool [McC00] and
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Govindaraju et al. [GLY*03]. As mentioned earlier, an advantage of McCool’s work
is that shadow volumes are not needed for blockers that are entirely in shadow,
because these blockers are absent from the shadow map. Similarly, Lloyd et al. and
Govindaraju et al. use image-space occlusion queries to reduce the number of blockers
and receivers considered for shadow computation.

These occlusion queries could be combined with our algorithm in the following way.
After rendering a shadow map in the first step of the algorithm, render a bounding
volume for each blocker from the light’s viewpoint and use an occlusion query to check
if any of the bounding volume’s pixels pass the depth test. If no pixels pass, then
drawing the shadow volumes for that blocker may be skipped. Note that this culling
strategy must be applied on a per-blocker basis (as opposcd to a per-silhouette-edge
basis) to ensure the consistency of the stencil-based shadow volume algorithm.

This optimization is useful in situations where complex blockers are often shad-
owed; a common scenario is a computer game in which monsters hide in the shadows.
In these cases, it may be possible to avoid drawing the shadow polygons entirely for
a large model. The cost of the optimization includes the occlusion query, which adds
latency to the rendering pipeline, and the drawing of bounding boxes, which consumes
additional fillrate. On the other hand, most of the latency can be hidden by issuing
many queries but only checking the result of the first query after several bounding
volumes have been drawn. Drawing a bounding box is also fast because there are no
writes to the framebuffer, no shading is needed, and hardware-accelerated occlusion

culling is applicable.

3.5 Conclusions and Future Work

We have presented a hybrid shadow rendering approach that combines the strengths
of shadow maps and shadow volumes. The key idea is to use shadow maps to identify
which regions of the image will exhibit edge aliasing, then apply shadow volumes only
in those regions to obtain better accuracy.

We have shown that our algorithm benefits from using a computation mask that
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discards pixels early in the pipeline. More generally, a computation mask allows the
programmer to identify a small set of pixels in the scene that are “interesting”; all
other pixels are masked off. Expensive per-pixel algorithms can then operate on this
subset of pixels without incurring the cost over the entire framebuffer. This strategy
of decomposing a problem into two parts — a large part that relies on a fast but
inexact technique, and a small part that uses a slower but accurate technique — is
applicable to a number of multipass rendering algorithms.

We believe that the benefits of hardware computation masks will become more
significant as pixel shaders increase in complexity. Current hardware already per-
forms aggressive occlusion culling to avoid unnecessary shading. Computation masks

represent a logical step in this direction.

Notes

The EXT _depth_bounds_test OpenGL extension [Ope02a] states that a rasterized frag-
ment is discarded if the current depth value stored in the framebuffer at that frag-
ment’s address lies outside user-specified depth bounds. The key is that an architec-
ture’s implementation may discard fragments early in the pipeline without performing
buffer updates, such as stencil writes. Thus modern graphics architectures, which of-
ten rasterize and shade tiles of fragments in parallel, can aggressively discard an entire
tile during rasterization if all the fragments in the tile lie outside of the depth bounds.

Similar mechanisms are already used for early z occlusion culling [Mor00].
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Chapter 4

Rendering Fake Soft Shadows

Using Smoothies

Whereas the previous chapter proposed an algorithm for rendering hard shadows,
this chapter presents an approximate soft shadow algorithm. Specifically, we describe
an algorithm that combines shadow maps with geometric primitives that we call
smoothies to render fake soft shadows (see Figure 4-1). Although our method is not
geometrically accurate, the resulting shadows appear qualitatively like soft shadows.

Specifically, the algorithm:

1. hides undersampling artifacts such as aliasing,

2. generates soft shadow edges that resemble penumbrae,
3. performs shadow calculations efficiently in image space,
4. maps well to programmable graphics hardware, and

5. naturally handles dynamic scenes.

We emphasize that our method does not compute geometrically-correct shadows.
Instead, we focus on the qualitative aspects of penumbrae without modeling an area
light source. For example, we compute the penumbra size using the ratio of distances

between the light source, blocker, and receiver, but we consider neither the shape
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Figure 4-1: Smoothie algorithm overview. (a) We first render a shadow map from the
light’s viewpoint. Next, we construct geometric primitives that we call smoothies at
the objects’ silhouettes. (b) We render the smoothies’ depth values into the smoothie
buffer. (c) For each pixel in the smoothie buffer, we also store an alpha value that
depends on the ratio of distances between the light source, blocker, and receiver.
(d) Finally, we render the scene from the observer’s viewpoint. We perform depth
comparisons against the values stored in both the shadow map and the smoothie
buffer, then filter the results. The smoothies produce soft shadow edges that resemble
penumbrae.

nor orientation of the light source. In this sense, we have chosen a phenomenological
approach.

This work was originally published in the Proceedings of the Eurographics Sympo-
stum on Rendering 2003 [CDO03].

4.1 Overview

An overview of our approach is shown in Figure 4-1. We first render an ordinary
shadow map from the light’s viewpoint. Next, we construct geometric primitives that
we call smoothies at the objects’ silhouettes (see Figure 4-2). We render the smoothies
into a smoothie buffer and store a depth and alpha value at each pixel. The alpha
value depends on the ratio of distances between the light source, blocker, and receiver.
Finally, we render the scene from the observer’s viewpoint. We combine the depth
and alpha information from the shadow map and smoothie buffer to compute soft
shadows that resemble penumbrae (see Figure 4-3). A limitation of this approach

is that computed shadow umbrae do not diminish as the area of the light source

mcreases.
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Figure 4-2: Smoothie construction. A smoothie edge is obtained by extending a
blocker’s silhouette edge outwards to form a rectangle in screen space. A smoothie
corner connects adjacent smoothie edges.

Our proposed algorithm is inspired by many different classes of techniques. For
example, we identify silhouettes with respect to the light source in object space, an
idea borrowed from shadow volumes. In some sense, our method is a hybrid between
the “outer surface” approach of Parker at al. [PSS98] and the convolution approach
of Soler and Sillion [SS98]. Specifically, smoothies are defined in object space and are
related to the outer volume, but they can also be seen as pre-convolved shadow edges.
Smoothies are also related to the work of Lengyel et al. [LPFHO01], who showed how

texture-mapped fins can improve the quality of fur rendering at the silhouettes.

We make the following assumptions in our approach. First, blockers are opaque;
we do not handle shadows due to semi-transparent surfaces. Second, blockers are
represented as closed triangle meshes; this representation simplifies the task of finding
object-space silhouette edges. Finally, our method does not take into account the
shape and orientation of light sources, so we assume that light sources are roughly

spherical.
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Figure 4-3: Three possible scenarios: an image sample is either (a) illuminated, (b)
partially in shadow, or (c) completely in shadow.

4.2 Algorithm

The smoothie algorithm has five steps:

1. Create a shadow map. This is done by rendering the blockers from the light
source and storing the nearest depth values to a buffer (see Figure 4-1a).

2. Identify silhouette edges. We identify the silhouette edges of the blockers
with respect to the light source in object space. Since we assume that blockers are
represented as closed triangle meshes, a silhouette edge is simply an edge such that
one of its triangles faces towards the light and the other triangle faces away.

Silhouette detection algorithms have been developed for many applications in
computer graphics, including non-photorealistic rendering and illustrations [IFH*03,
Ras01]. We use a simple brute-force algorithm, looping over all the edges and per-
forming the above test for each edge. For static models, Sander at al. [SGG*00] and
Bala et al. [BWGO03] describe more efficient hierarchical algorithms.

3. Construct smoothies. We construct a smoothie edge for each silhouette
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edge and a smoothie corner for each silhouette vertex, as shown in Figure 4-2. A
smoothie edge is obtained by extending the silhouette edge away from the blocker to
form a rectangle of a fixed width ¢ in the screen space of the light source. A smoothie
corner connects adjacent smoothie edges. The variable t is a user parameter that
controls the size of the smoothies. As we will see later, larger values of ¢ can be used
to simulate larger area light sources.

Arbitrary closed meshes may have silhouette vertices with more than two adjacent
silhouette edges. We treat this situation as a special case. First, we average the
adjacent face normals to obtain a shared vertex normal 77 whose projection in the
screen space of the light source has length £. Then we draw triangles that connect 7@
with each of the adjacent smoothie edges.

4. Render smoothies. We render each smoothie from the light’s viewpoint.
This is similar to generating the shadow map in Step 1, but this time we draw only
the smoothies, not the blockers. We compute two quantities for each rendered pixel,
a depth value and an alpha value, and store them together in a smoothie buffer (see
Figures 4-1b and 4-1¢). We discuss how to compute alpha in Section 4.2.1.

5. Compute shadows with depth comparisons. We render the scene from
the observer’s viewpoint and compute the shadows. We use one or two depth com-
parisons to determine the intensity value v at each image sample, as illustrated in

Figure 4-3:

1. If the sample’s depth value is greater than the shadow map’s depth value, then
the sample is completely in shadow (v = 0). This is the case when the sample

is behind a blocker.

2. Otherwise, if the sample’s depth value is greater than the smoothie buffer’s
depth value, then the sample is partially in shadow (v = «, where «a is the
smoothie buffer’s alpha value). This case occurs when the sample is not behind

a blocker, but is behind a smoothie.

3. Otherwise, the sample is completely illuminated (v = 1).
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For better antialiasing, we perform these depth comparisons at the four nearest sam-
ples of the shadow map and smoothie buffer, then bilinearly interpolate the results.
This is similar to percentage closer filtering [RSC87] using a 2 x 2 tent filter. The
filtered visibility value can be used to modulate the surface illumination.

In summary, the smoothie algorithm involves three rendering passes. The first pass
generates a standard shadow map; the second pass renders the smoothies’ alpha and
depth values into the smoothie buffer; and the final pass performs depth comparisons
and filtering to generate the shadows. To handle dynamic scenes with multiple light

sources, we follow the above steps for each light source per frame.

4.2.1 Computing Smoothie Alpha Values

We return to the discussion of computing alpha values when rendering smoothies in
Step 4 of the algorithm. Some of the design choices described below are motivated
by current graphics hardware capabilities.

The smoothie’s alpha is intended to simulate the gradual variation in light inten-
sity within the penumbra. Thus alpha should vary continuously from 0 at one edge
to 1 at the opposite edge, which can be accomplished using linear interpolation (see
Figure 4-4a).

There are two problems with this approach, both shown in Figure 4-4b. One
problem occurs when two objects are close together, because the smoothie of one
object casts a shadow that does not appear to originate from that object. The second
problem is that computing alpha values in the manner described above with fixed-
size smoothies will generate a penumbra whose thickness is also fixed, which does not
model the behavior of true penumbrae well.

The shape of a penumbra depends on many factors and is expensive to model
accurately, so we focus on its main qualitative feature: the ratio of distances between
the light source, blocker, and receiver (see Figure 4-5). The size of a smoothie, rather
than being fixed, should depend on this ratio. We can estimate the distance from
the light to the blocker by computing the distance from the light to the smoothie.

Furthermore, we can find the distance from the light source to the receiver using the

66



original o o remapped o

Figure 4-4: Computing smoothie alpha values. Diagram (a) shows a smoothie with
the original, linearly interpolated alpha. (b) The resulting soft shadow edge has a
fixed thickness and also has an obvious discontinuity at the contact point between the
box and the floor. In diagram (c) we have remapped the alpha values as described
in Equation 4.1. (d) The remapping fixes the contact problem and also creates a soft
shadow edge that more closely resembles a penumbra.

shadow map rendered in Step 1.

Using the shadow map to resize the smoothies on graphics hardware requires tex-
ture accesses within the programmable verter stage, a feature that has only recently
appeared in the latest generation of graphics hardware, such as NVIDIA’s GeForce 6
(NV40) architecture [NVI04]. We have not yet experimented with this new architec-

ture due to limited availability.

Alternatively, we can work around both of the problems discussed above by ren-
dering the fixed-size smoothie edges using a pixel shader that remaps the alpha values
appropriately. Let a be the linearly interpolated smoothie alpha at a pixel, b be the
distance between the light source and smoothie, and r be the distance between the
light source and receiver. We compute a new o' using

’ 0%

e (4.1)

«

and clamp the result to [0, 1]. The remapping produces a new set of alpha values sim-
ilar to alphas that would have been obtained by keeping the original a and adjusting
the smoothie size. An example of remapping the alpha values is shown in Figures

4-4¢ and 4-4d.

Smoothie corners must ensure a continuous transition in alpha between adjacent
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Figure 4-5: Alpha computation. The penumbra size depends on the ratio b/r, where
b is the distance between the light and the blocker, and r is the distance between the
light and the receiver.

smoothie edges. Figure 4-6 shows a smoothie corner rooted at the silhouette vertex
7. For a sample point § within the corner, we compute @ = |0 — p|/t, clamp « to
0, 1], and remap the result using Equation 4.1. The resulting shaded corner is shown
in the right image of Figure 4-6.

The case where multiple smoothies overlap in the screen space of the light source
corresponds to the geometric situation where multiple blockers partially hide the
extended light source. The accurate computation of visibility can be performed using
Monte Carlo [CPC84] or backprojection [BRW89, DF94] techniques, both of which are
expensive. Instead, we use minimum blending, a simple yet effective approximation.
Minimum blending, which Parker et al. [PSS98] refer to as thresholding, just keeps the
minimum of all the alpha values. This has the effect of ensuring continuous shadow
transitions without making the overlapping region appear too dark. Blending in this
manner is not geometrically accurate, but it is much simpler, more efficient, and still
gives visually acceptable results. Note that we discard smoothie pixels that lie behind

a blocker instead of blending them into the smoothie buffer.

The method for computing alpha values described above gives a linear falloff
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Figure 4-6: Smoothie corner geometry and shading. A sample point p’ within the
corner is assigned o = |’ — p|/t, which is then clamped to [0, 1] and remapped using
Equation 4.1.

of light intensity within the penumbra. Parker at al. [PSS98] note, however, that
the falloff due to a diffuse spherical light source is sinusoidal, not linear. In our
implementation, we follow Haines’s suggestion [Hai01] and precompute the sinusoidal
falloff into a one-dimensional texture map. We then use the linear remapped alpha

value to index into this texture map, which yields a more realistic penumbra.

4.3 Implementation

We implemented the smoothie algorithm using OpenGL and the Cg shading lan-
guage [MGAKar]. The algorithm maps directly to the vertex and pixel shaders of
programmable graphics hardware without requiring expensive readbacks across the
AGP bus. Since the hardware does not retain vertex connectivity information, how-
ever, identifying silhouette edges must be done on the host processor. Our code
is currently optimized for the NVIDIA GeForce FX [NVI02] and is split into four
rendering passes:

Pass 1. We generate the shadow map by storing the blockers’ depth values into
a 16-bit floating-point buffer. In the OpenGL graphics pipeline, depth values are

stored in screen space and hence are non-linearly distributed over the view frustum.
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We require linearly-distributed depth values, however, to find the ratio of distances
between the light source, blocker, and receiver. Thus we compute depth values in
world space using a vertex shader.

Pass 2. We draw the smoothies and store their depth values into a standard
OpenGL depth buffer.

Pass 3. We redraw the smoothies and compute their alpha values in a pixel
shader, as described in Section 4.2.1. We initialize a separate fixed-point buffer to
o = 1 and composite the smoothies’ alpha values into this buffer using minimum
blending. This blend mode is supported in hardware through the EXT _blend_minmax
OpenGL extension.

Pass 4. We render the scene from the observer’s viewpoint and compute the
shadows in a pixel shader. We accelerate the depth comparisons and 2 x 2 filtering
using the native hardware shadow map support.

The Cg code for these rendering passes is shown in Figure 4-7. We first compiled
the shaders to the NVIDIA vertex and fragment OpenGL extensions [Kil02], then
optimized the assembly code by hand to improve performance. Most of the per-
pixel calculations use 12-bit fixed-point precision or 16-bit floating-point precision
for faster arithmetic; this choice does not appear to affect image quality. The table
at the bottom-right of Figure 3-3 shows the number of shader instructions for each
rendering pass.

Additional optimizations are possible on different hardware. For example, the
ATI Radeon 9700 supports multiple render targets per pass. Thus the second and
third passes above could be combined into a single pass that stores the smoothies’

depth and alpha values into separate buffers.

4.4 Results

All of the images presented in this section and in the accompanying video were gener-
ated at a resolution of 1024 x 1024 on a 2.6 GHz Pentium 4 system with an NVIDIA
Geforce FX 5800 Ultra graphics card.
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// Pass 1 (compute linear z): vertex program. // Pass 4 (make shadows): vertex program.

void main (float4 pObj : POSITION, void main (float4 pObj : POSITION,
out float4 pClip : POSITION, out float4 pClip : POSITION,
out float zLinear : TEXCOORDO, out float4 projRect : TEXCOORDO,
uniform floatd4x4 mvp, uniform float4x4 mvp,
uniform float4x4 mv) uniform float4x4 mv,
{ uniform floatd4x4 lightClip)
pClip = mul (mvp, pObj); // obj -> clip space {
zLinear = mul (mv, pObj).z; // z in eye space pClip = mul (mvp, pCbj); // obj -> clip space
} float4 pEye = mul(mv, pObj): // obj -> eye space
// Pass 1 (compute linear z): fragment program. // Compute RECT projective texture coordinates.
void main (half zLinear : TEXCOORDO, // lightClip maps camera's eye space to light's
out half4 z : COLOR) // clip space, and multiplies x and y by shadow
{ // map resolution to yield texRECT coordinates.
z = zLinear; float4 projCoords = mul (lightClip, pEye);

} H

// Pass 4 (make shadows): fragment program.

// Pass 3 (remap alpha): vertex program. void main (float4 projRect : TEXCOORDO,
void main (float4 pObj : POSITION, out half4 color : COLOR,
out float4 pClip : POSITION, uniform samplerRECT shadowMap : TEXUNITO,
out float zLinear : TEXCOORDO, uniform samplerRECT smDepthMap : TEXUNITI1,
uniform float4x4 mvp, uniform samplerRECT smAlphaMap : TEXUNITZ2,
uniform float4x4 mv) uniform samplerlD sinFalloff : TEXUNIT3)
{
pClip = mul (mvp, pObj); // obj -> clip space {
zLinear = mul (mv, pObj).z; // z in eye space // Use hardware shadow map depth comparison and

} // 2x2 filtering support (ARB_shadow). All
// textures set to GL_LINEAR filter mode.

// Pass 3 (smoothie EDGE)}: fragment program. fixed u = texRECTproj (shadowMap, projRect) .x;
void main (half zLinear : TEXCOORDO, fixed p = texRECTproj (smDepthMap, projRect).x;
float4 wpos : WPOS, fixed a = texRECTproj (smAlphaMap, projRect}.x;
out half4 aRemap : COLOR,
uniform half3 v, // silhouette vertex // Are we in shadow?
uniform half3 n, // silhouette normal fixed v = 1; // assume not in shadow
uniform half invT, // 1/t (smoothie size) if (p < 1) v = a; // if in penumbra, use alpha
uniform samplerRECT shadowMap) if (u < 1) v = 0; // if in umbra, all shadow
{
// Compute linear alpha in screen space. // Add sinusoidal falloff.
half alpha = dot(wpos.xyz - v, n) * invT; v = texlD(sinFalloff, v);
// Compute ratioc £ = b/r to remap alpha values. // ... optional shading calculations go here ...
// If b/r > 1, smoothie pixel is occluded.
// Otherwise, remap alpha and clamp to [0,1]. color = v; // in practice, modulate shading by v

half £ = zLinear / texRECT(shadowMap, wpos.xy).X; }
aRemap = (f > 1) ? 1 : saturate(alpha / (1 - £)):

)

// Pass 3 (smoothie CORNER): fragment program. Renderlng Pass Vertex Fragment
void main (half zLinear : TEXCOOQRDO,
float4 wpos : WPOS,
out half4 aRemap : COLOR, Pass 1 (shadow map) 5 1
uniform half3 v, // silhouette vertex
uniform half invT, // 1/t (smcothie size) Pass 2 (smoolhie depth) n/a n/a
uniform samplerRECT shadowMap)
{ .
// Compute linear alpha in screen space and remap. Pass 3 (smoolhle alpha) 5 1 (GngS)
half alpha = saturate(length(wpos.xyz - v) * invT); 5 13 (COI'I’!EI’S)

half f = zLinear / texRECT(shadowMap, wpos.xy).x;
aRemap = (f » 1) ? 1 : saturate(alpha / (1 - £)};

) Pass 4 (make shadows) 12 10

Figure 4-7: Cg vertex and fragment shader code. We compiled the shaders and
optimized the resulting assembly code by hand. The table at the bottom-right shows
the number of assembly instructions for each rendering pass after optimization.

Figure 4-1d shows a simple scene with 10,000 triangles rendered using our method

at 39 fps. The spotlight casts shadows with soft edges onto the ground plane.

Figure 4-8 compares the quality and performance of shadows generated using
different methods. The images display a close-up of the shadow cast by the cylinder
in Figure 4-1d. The first column of images is rendered using an ordinary shadow map;

the second column is rendered using a version of percentage closer filtering [RSC87]
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Figure 4-8: Shadow edge comparison using different methods and shadow map res-
olutions. The shadow is cast by the cylinder from Figure 4-1. The total rendering
time per frame is shown at the lower-left of each image.

with a bicubic filter; the last two columns are rendered using our method. The rows

correspond to different shadow map resolutions.

These images illustrate the advantages of our approach. First, whereas aliasing
is evident when using the other methods, the smoothie algorithm helps to hide the
aliasing artifacts, even at low shadow map resolutions. Second, the smoothies give
rise to soft shadow edges that resemble penumbrae; notice that the penumbra is larger
in regions farther away from the cylinder. We can indirectly simulate a larger area
light source by making the smoothies larger, as shown in the fourth column. Finally,
the rendering times given in Figure 4-8 indicate that the smoothie algorithm is more
expensive than the regular shadow map, but still much faster than using the bicubic

filter.

Figure 4-9 compares the shadows generated using our method to the geometrically-
correct shadows computed using a Monte Carlo ray tracer. These images show that
our method works best when simulating area light sources that are small relative to
the blockers (top row). Recall that the smoothies only extend outwards from the
blockers’ silhouette edges. Like the work of Haines [Hai01] and Parker at al. [PSS98],

this construction produces shadow umbrae that do not shrink as the size of the light
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Smoothie Ray Tracer

Figure 4-9: Comparison of soft shadow edges. The images in the left column are
rendered using the smoothie algorithm with a buffer resolution of 1024 x 1024. The
images in the right column are rendered using a Monte Carlo ray tracer and show the
geometrically-correct soft shadows. Each successive row shows the effect of simulating
a larger area light source.

source increases. Furthermore, the construction relies on a single set of object-space
silhouette edges computed with respect to a point light source. This approximation
becomes worse as the size of the light source increases, since different points on the
light source correspond to different sets of silhouette edges. The resulting differences
in visual quality are noticeable at the contact point between the cylinder and the

floor in the bottom row of images.

Figure 4-10 illustrates the importance of remapping the alpha values when a
shadow falls on multiple receivers. In this scene, two boxes are arranged above a
ground plane, and a spotlight illuminates the objects from above. The left and mid-
dle images show the smoothie buffer’s alpha values in two different cases. In the left
image, alpha is linearly interpolated from the silhouette edge of each smoothie to

the opposite edge. This approach does not take into account the depth discontinuity
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Smoothie Buffer (o not remapped) Smoothie Buffer (remapped o) Final Image (using remapped o)
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Figure 4-10: Scene configuration with multiple blockers and receivers. Remapping
the alpha values (shown in the left and middle images) causes the penumbra due to a
single blocker to vary in thickness across multiple receivers. As a result, box 1 casts a
shadow onto box 2 and the ground plane, but the shadow edges on the ground plane
are softer.

\ overlap

smoothie ray tracer

Figure 4-11: Comparison of overlapping penumbrae. The left image shows how shad-
ows may overlap due to multiple blockers. The next two images show a close-up of
the region indicated by the arrow. The middle image is rendered using the smoothie
algorithm. When multiple smoothies overlap, their alpha values are composited using
minimum blending. The right image is generated using a Monte Carlo ray tracer and
shows the geometrically-correct soft shadow that results from multiple blockers.

between box 2 and the ground plane in the region indicated by arrows. In the middle
image, the alpha values have been remapped at each pixel using Equation 4.1. The
remapping has the desired effect (shown in the right image): the shadow cast by box
1 has a smaller, harder edge on box 2 and a thicker, softer edge on the ground plane.

Figure 4-11 shows a common case of two blockers overlapping in the screen space
of the light source. Recall that when multiple smoothies overlap, we use minimum

blending to composite their alpha values. Although this operation is not geometrically
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accurate, the middle image shows that the resulting overlapping penumbrae appear
smooth and reasonably similar to the image generated by the ray tracer.

Figure 4-12 shows four different scenes rendered using the smoothie algorithm.
The models in these scenes vary in geometric complexity, from 5000 triangles for the
boat to over 50,000 triangles for the motorbike. The images demonstrate the ability of
our algorithm to handle both complex blockers and complex receivers. For instance,
the right image in the second row shows the shadows cast by the flamingo’s head onto
its neck, and by its neck onto its back. Similarly, the right image in the last row shows
a difficult case where the spokes of the motorbike wheel cast shadows onto themselves
and onto the ground plane. All of these scenes run at interactive framerates; even
the intricate motorbike renders at 18 fps using buffer resolutions of 1024 x 1024.

Table 4.1 summarizes the rendering performance for the images shown in Figures
4-1d and 4-12. For most scenes, the final rendering pass accounts for over 90% of the
total running time. An exception is the motorbike scene, which contains many more
overlapping silhouette edges than the other scenes; about 30% of its total rendering
time is spent computing the smoothies’ alpha values. Even so, increasing the size of
smoothies to simulate larger area light sources incurs little overhead. For the scenes
shown in Figure 4-12, we found that enlarging the smoothies from ¢ = 0.02 to t = 0.2

increases the rendering times by about 15%.

Scene Boat Primitives Flamingo Elephant Motorbike
(Fig. 4-12) (Fig. 4-1d) (Fig. 4-12) (Fig. 4-12) (Fig. 4-12)
Geometry
Triangles 5664 9424 26,370 39,290 50,648
Edges 8488 14,124 39,460 59,039 76,287
Silhouette Edges 1677 150 1554 2861 10,600
Rendering times
256 x 256 20 ms 20 ms 21 ms 26 ms 37 ms
512 x 512 22 ms 22 ms 22 ms 27 ms 50 ms
1024 x 1024 26 ms 26 ms 25 ms 32 ms 53 ms

Table 4.1: Performance measurements for each scene. Timings per frame are given
for different buffer resolutions.
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Scene Close-up (shadow map) Close-up (smoothie)

Flamingo

Motorbike

Figure 4-12: Scenes rendered using the smoothie algorithm, arranged in order of
increasing geometric complexity. These images show the interaction between complex
blockers and receivers. For instance, the elephant’s tusk casts a shadow onto its trunk,
and the spokes of the motorbike wheel cast shadows onto themselves. The middle
and right columns compare the shadow quality produced by ordinary shadow maps
and our method, respectively.
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4.5 Discussion

The above results illustrate the advantages of combining smoothies with shadow maps.
In summary, constructing smoothies in object space with interpolated alpha values
ensures smooth shadow edges, but performing the visibility calculations in image
space limits the number of depth samples we need to examine. Thus we can achieve

interactive framerates for detailed scenes.

The combination of object-space and image-space calculations is an important
difference between our work and the penumbra wedge algorithms [AMAQ2, AAMO03,
ADMAMO3|. Since penumbra wedges are based on shadow volumes, wedges are
rendered from the observer’s viewpoint. Thus rasterized wedges tend to occupy sub-
stantial screen area, especially in heavily shadowed scenes. In contrast, smoothies
are rendered from the light’s viewpoint. They occupy relatively little screen area (see

Figure 4-1b) and therefore are cheaper to render.

The geometry cost of the smoothie algorithm lies somewhere between the cost of
shadow maps and shadow volumes. Shadow maps require drawing the scene twice;
our method adds to this cost by also drawing the smoothies twice, once to store the
depth values and once to store the alpha values. However, only one smoothie is needed
per silhouette edge, and for complex models the number of silhouette edges is small
relative to the number of triangle faces. The shadow volume algorithm draws the same
number of shadow polygons, but it also requires drawing all blocker triangles once
more to cap the shadow volumes properly. Compared to shadow volumes, penumbra

wedges require additional polygons to represent each wedge.

The size of the smoothies is defined in terms of an image-space user parameter t
(see Figure 4-2). Fortunately, t is an intuitive parameter because it directly affects
the size of the generated penumbra. Applications such as 3D game engines should
choose t for a given environment depending on the spatial arrangement of objects and
the desired shadow softness. We have found that for scenes of size 10 x 10 x 10 units,
t values in the range of 0.02 to 0.2 (measured in normalized screen space coordinates)

give a reasonable approximation for small area lights and yield good image quality.
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Our work attempts to combine the best qualities of existing shadow techniques,
but it also inherits some of their limitations. For example, since our method uses
shadow maps, we require the light source to be a directional light or a spotlight; ad-
ditional buffers and rendering passes are needed to support omnidirectional lights. In
contrast, shadow volumes and the penumbra wedge algorithms automatically handle

omnidirectional lights.

A second limitation is that our method, like the shadow volume algorithm, re-
lies on finding the blockers’ silhouette edges in object space. Thus we assume that
blockers are represented as closed triangle meshes to simplify the computations. In
contrast, ordinary shadow maps trivially support any geometric representation that
can be rendered into a depth buffer. It would be nice to identify silhouette edges and
construct smoothies in image space instead of in object space. One approach might
be to find the blockers’ silhouettes using McCool’s edge detection algorithm [McC00].
Constructing the smoothies directly from these detected silhouettes requires a feed-
back path from the output of the edge detection pixel shader to a vertex array. This
feedback path has recently become available in graphics hardware, but we have not

yet experimented with it.

Another limitation inherited from shadow maps is the use of discrete depth buffer
samples, which leads to aliasing at the shadow edges. Although we have shown that
smoothies can hide aliasing artifacts, this approach does not work as well when the
smoothies are small or when the light source is far away (see Figure 4-8, top row, third
column). The reason is that less shadow map resolution is available to capture the
smooth variation in alpha values. This problem can be addressed by combining our
algorithm with a perspective shadow map [SD02, Koz04], which effectively provides

more resolution to depth samples located closer to the viewer.

In the previous section, we saw that the shadow umbrae computed by the smoothie
algorithm do not shrink as the size of the light source increases. It seems logical to
extend a smoothie not only outwards from a silhouette edge, but also inwards to model
the inner penumbra. This approach, however, leads to “light leaks” when two blockers

touch. In general, rendering the inner penumbra accurately requires examining the
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interactions between multiple blockers. We have not yet found a robust and consistent

way to handle these interactions.

4.5.1 Comparison to Penumbra Maps

The penumbra map algorithm [WHO03] was developed independently by Wyman and
Hansen and published in the same forum as our algorithm. Both techniques ap-
proximate soft shadows by attaching geometric primitives to the objects’ silhouette
edges and rendering alpha values into a buffer. There are two important differences,
however.

The first difference lies in the geometric primitives themselves. The penumbra
map algorithm builds cones at the silhouette vertices and draws sheets to connect the
cones. These primitives must be tesselated finely enough to ensure smooth shadow
corners and to avoid Gouraud shading artifacts. Thus each silhouette vertex intro-
duces multiple cone vertices, and each silhouette edge introduces at least four new
vertices.

In contrast, our method constructs smoothie edges as rectangles in screen space,
which avoids Gouraud shading artifacts. Instead of drawing cones at the silhou-
ette vertices to create round soft shadow corners, we draw quadrilaterals with sharp
corners and rely on pixel shaders to interpolate the alpha values. Since we do not
tesselate the smoothies, each silhouette vertex and edge introduces exactly four new
vertices. Although more shading is required for the smoothie corners, the corner ge-
ometry occupies little screen area. Our approach, however, requires a special case for
vertices with more than two adjacent silhouette edges, as described in Section 4.2.

The second difference is that the penumbra map algorithm stores the depth values
of the blockers but not the depth values of the cones and sheets. In contrast, our
method keeps track of the depth values of both the blockers and the smoothies; thus
we require an additional depth comparison in the final rendering pass. The smoothie’s
depth value is useful, however, in cases where some objects in the scene are specified
as shadow receivers but not shadow blockers. Applications such as 3D video games

often restrict the number of blockers in a scene for performance reasons; for instance,
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blockers may be limited to characters and other dynamic objects. The second depth
value ensures that soft shadow edges are cast properly on all receivers, including
non-blockers. Fortunately, the penumbra map algorithm can be extended easily to
store depth values of the cones and sheets. Likewise, the smoothie algorithm can be

simplified by omitting the smoothies’ depth values.

4.6 Conclusions

We have described the smoothie algorithm, a simple extension to shadow maps for
rendering soft shadows. Our experiments show that while the soft shadow edges
are not geometrically accurate, they resemble penumbrae and help to hide aliasing
artifacts. The algorithm is also efficient and can be implemented using programmable
graphics hardware to achieve real-time performance.

Current research in real-time shadow algorithms is closely tied to programmable
features of graphics hardware. In particular, many multipass algorithms exploit the
hardware’s ability to compute and store arbitrary data values per-pixel at high pre-
cision. For example, recent work has shown how to simulate subsurface scattering
effects by keeping additional data in a shadow map [DS03]. Similarly, it may be
possible to extend our work to generate more accurate shadow penumbrae by storing
extra silhouette data.

Recently-announced graphics architectures such as the NVIDIA GeForce 6 [NVI04]
provide per-vertex texture accesses, floating-point blending, and the ability to ren-
der directly to vertex attribute arrays. We expect that new hardware features such
as these will continue to facilitate the design of real-time shadow algorithms in the

future.
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Chapter 5

Conclusions

Many shadow algorithms have been proposed over the past three decades for both real-
time and offline rendering applications. In this thesis, we have focused on methods
optimized for real-time shadows, but our hybrid and smoothie algorithms are both
well-suited for offline rendering systems. On the other hand, a surprisingly high
number of papers concerning real-time shadows have been published in just the last
three years. One reason for this emphasis is that commodity graphics hardware
has recently become programmable in both the vertex and fragment stages; this
flexibility allows more sophisticated algorithms to be mapped to the hardware. The
two algorithms that we have presented in this thesis are examples of techniques that
take advantage of programmable graphics hardware.

With the recent developments in graphics hardware, shadows are rapidly becoming
a key feature of hardware-accelerated 3D game engines. It is interesting to consider
the shadow algorithms that developers currently choose for these engines, especially
in light of the design criteria covered in Chapter 1. Many engines that draw only
hard shadows, such as Doom 3, Halo 2, and Neverwinter Nights, use the shadow vol-
ume algorithm because of its robustness and artifact-free image quality. This choice
of shadow algorithm underscores the importance of robustness when attemping to
apply a shadow algorithm to real-world applications with dynamic environments. As
we have discussed throughout this thesis, however, shadow volumes do not scale well

to complex scenes. Indeed, John Carmack of id Software has stated that the Doom
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3 engine spends half of its rendering time drawing shadows! The hybrid algorithm
presented in Chapter 3 is designed to address these scalability problems while main-
taining high image quality.

Whereas many game engines are beginning to support hard shadow algorithms
such as shadow volumes, no current engine implements a general solution for soft
shadows. Games such as Maz Payne 2 and Half-Life 2 use blurred projective textures
to simulate soft shadows. This technique is fast and simple and it masks aliasing
artifacts, but it is not a general solution because it does not support self-shadowing.
Instead, this technique is mostly used to draw shadows cast by characters onto the

environment.

Our purpose in discussing the shadow techniques used by various game engines
is to identify some areas for future work. For instance, how can we solve the under-
sampling and robustness problems of shadow maps while preserving the generality of
shadow maps? Although many solutions have been proposed in the past few years,
some do not work for certain scene configurations, and others are limited to a certain
class of geometric models. Second, how can we further optimize the shadow volume
algorithm to make it practical for large, complex scenes? Third, can we develop a
soft shadow algorithm that is efficient, artifact-free, and robust? Some of the current
solutions, such as ours, extend the basic shadow map and shadow volume approaches,
and therefore they also inherit the corresponding limitations. Other solutions, such
as those based on precomputed radiance transfer, already achieve both high quality
and high performance; the challenge in this case is to extend these techniques to
support dynamic scenes. In summary, even though dozens of papers on real-time
shadow computation have been published over the past three years, there are still

many interesting and challenging problems to be solved.

We believe that three additional hardware features will help researchers find so-
lutions to these problems. The first of these is data-dependent flow control (e.g.
branching and looping) in fragment programs; data-dependent looping is helpful for
many tasks, including efficient filtering with spatially-varying kernel sizes and local

search algorithms. The second feature is the upcoming PCI Express architecture,
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which will enable significantly faster readbacks from the graphics hardware to the
host processor; fast readbacks will facilitate hybrid CPU/GPU algorithms. The third
feature that will improve shadow rendering performance significantly is the compu-
tation mask, which we have discussed at length in Chapter 3. We have shown that
a user-programmable mask is useful for shadow rendering, but it applies much more
generally to multipass rendering algorithms. We hope that computation masks will

be supported natively in future generations of graphics hardware.
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