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Abstract

Power efficiency is a capital issue in the study of mobile wireless nodes owing to
constraints on their battery size and weight. A careful examination of the power con-
sumption in low-power nodes shows that, as the total power available to such nodes
decreases, the ratio of power consumed for transmission purposes to the power con-
sumed on other non-transmission processes also decreases. The latter power therefore
constitutes a considerable fraction of the total power available to such devices.
We perform our study in terms of power per unit of time, or energy. Traditional in-
formation theoretic energy constraints consider only the energy used for transmission
purposes. We study optimal transmission strategies by explicitly taking into account
the energy expended by processes other than transmission, that run when the trans-
mitter is in the 'on' state. We term this energy by 'processing energy'.
We first derive the capacity of a single user Additive White Gaussian Noise (AWGN)
channel in the presence of processing energy. We prove that, unlike the case where
only transmission energy is taken into account, achieving capacity may require inter-
mittent, or 'bursty', transmission.
We show that in the low Signal to Noise Ratio (SNR) regime, burstiness becomes op-
timal when the processing energy is greater than half the square of the total energy
available to the transmitter.
This analysis is extended to the AWGN multiple access channel with M senders and a
single receiver. We first show that, under a processing energy constraint, Time Divi-
sion Multiple Access (TDMA) outperforms other known multiple access techniques in
the maximization of the sum rate. We prove that, for that same purpose, burstiness is
capacity achieving in the low SNR regime when the sum of the ratios of total energy
to processing energy is less than unity. Moreover, we present numerical results that
show the improvement in the shape of the general two-user achievable rate region ob-
tained with a bursty transmission scheme. We compare the rates obtained by bursty
signaling to the rates that can be achieved by TDMA and to the Cover-Wyner region
under a processing energy constraint.
Finally, we show that, in low SNR regime, a time-variable channel can be analyzed
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as a channel with no variability but with processing energy. In fact, the results we

obtain for the bursty signaling in time-variable channels from the processing energy

correspondence match those of other studies ([3], [4], [5]) that do not make use of the

processing energy argument.

This leads to posit a model in which energy can be regarded as a unifying cost or

penalty for various communication impediments.

Thesis Supervisor: Muriel M6dard

Title: Associate Professor

Thesis Supervisor: Lizhong Zheng

Title: Associate Professor
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Chapter 1

Introduction

1.1 Computer and Sensor Nodes Literature for En-

ergy Efficiency

Portable and hand-held computers must be careful not to waste the scarce energy re-

sources in their batteries. Even though battery technology is improving continuously

and processors and displays are rapidly improving in terms of power consumption,

power-aware designs and algorithms applied to various aspects of the communication

process continue to be a crucial way to optimize consumption.

Conservation of power has been addressed using many techniques such as variable

speed CPUs, flash memory and so on. While power-aware components and algo-

rithms are essential building blocks for portable systems ([19, 28, 29, 30, 20, 31]),

saving power in the transmission process is crucial. Consider, for instance, low-power

nodes. We note that, when the total power available to such nodes decreases, the

ratio of power spent for transmission purposes as compared to power spent for non-

transmission purposes becomes significantly small. The latter power constitutes a

considerable fraction of the total power available to such devices.

For instance, in the computer and sensor nodes literature, various techniques have

been proposed to reduce the mobile host's power consumption during operation:

In [32], Chandrakasan et al. studied power-aware techniques to minimize power con-
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sumption of wireless microsensor systems.

In [19], the authors proposed techniques to reduce energy consumption for mobile

computers by using extra dedicated low-power modules to cut on processor cycles of

the main CPU. Moreover, because networking consumes a large part of the battery

resources, the authors used network interfaces with a power aware network protocol

that minimizes the 'on'-time of network interfaces.

In [29], the authors studied mobile power management for maximum battery life in

mobile wireless communication networks. Their objective is to minimize mean en-

ergy consumption subject to maintaining a given quality of service. This was done

by unbalancing power levels so that users see alternating periods of interference and

decide on transmission.

For laptop computers where the energy use is dominated by the display and the disk,

[22] and [21] examined the use of techniques to reduce this consumption by turning

the devices off after a period of no use.

For smaller computing devices which often have no disk and which eliminate the

display-related power, power consumed by the CPU is significant. In [20], the au-

thors considered reducing the energy used for executing instructions and dynamically

varying chip speed so as to reduce energy consumption.

In the case of video applications, encoding and decoding become expensive in terms of

power; Low power encoding and decoding schemes have been researched extensively

under limited power constraints, like for instance in [27].

When minimizing the total energy, it is fundamental to consider, besides the energy

spent on transmission purposes, non-transmission energies. In particular, the energy

cost incurred with the state of the channel being 'on', appears to constitute an im-

portant fraction of the total energy expended in wireless devices.

At the intersection between the communication theory and the networking fields:

El Gamal et al. proposed an optimal scheduling algorithm to minimize transmission

energy by maximizing the transmission time for buffered packets, [24].

In [23], Cui et al. considered wireless applications, where nodes operate on batteries,

and analyzed the best modulation strategy to minimize the total energy consumption,
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when error-control codes are used.

In [25], the authors analyzed the best modulation strategy to minimize the total en-

ergy consumption, while satisfying throughput and delay requirements.

The last 3 rows of table (1-1) show the relatively high amount of power consumed in

a PDA and a laptop by the mere fact of being 'on'. This fact was also recognized by

Device Sleep (mW) Idle (mW) Wakeup Turn-on Time
(MW)

Wavelan (2.4 Ghz) 177.3284 1318.857 N/A looms

Wavelan (915 Mhz) 143.0023 1148.601 N/A looms

Metricom 93.50762 346.984 N/A 5 sec

Infrared N/A 349.607 431.034 looms

Newton PDA 164.1871 1187.75 N/A N/A

Magic Link PDA 312.03 700 N/A N/A

Laptop N/A 8000 N/A N/A

Figure 1-1: Power consumption at idle times

Kravertz et al. who argued that: "when inserted, many wireless communication de-

vices consume energy continuously" and that "this energy consumption can represent

over 50% of total system power for current hand-held computers and 10% for laptop

computers". Kravertz et al. then suggested software-level techniques to suspend the

mobile host's device during idle periods of the communication ([11]).

The information theoretic literature has also extensively considered the energy cost

of being 'on'. In particular, Verddi investigated in [10], the minimum cost incurred

by the transmission of one bit of information through a noisy channel, characterizing

the most economical way to communicate reliably. This approach is well suited for

continuous changes and presents very general results. Applying those to include a

cost associated with the 'on' state, would not lead, however, to continuous results

since, in this case, a step function would be involved.

In this thesis, we take explicitly into account the energy of being 'on', which we term

'processing energy', in addition to the energy used for transmission purposes. Under
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this new constraint, we derive the capacity of an Additive White Gaussian Noise

(AWGN) channel. We prove that, unlike the case where only transmission energy is

taken into account, achieving capacity may require intermittent, or 'bursty', transmis-

sion. We define the burstiness of signaling as the ratio of time in which transmission

occurs. We distinguish two transmission schemes, bursty vs. non-bursty. Each of

these schemes can become optimal given a certain amount of processing energy and

a given total energy constraint. For instance, we show that in the low Signal to

Noise Ratio (SNR) regime, burstiness becomes optimal when the processing energy

is greater than half the square of the total energy available to the transmitter.

This analysis is extended to the AWGN multiple access channel with M senders and

a single receiver. We first show that, under a processing energy constraint, Time

Division Multiple Access outperforms other multiple access techniques for the pur-

pose of maximizing the sum rate. We prove that, for the same purpose, burstiness is

capacity achieving in the low SNR regime when the sum of the ratios of total energy

to processing energy is less than unity. Next, we present numerical results that show

the improvement in the shape of the general two-user achievable rate region under a

processing energy constraint as compared to the TDMA curve on one hand and to

the Cover-Wyner region obtained under processing energy constraint, on the other

hand. Moreover, we show that, in low SNR regime, a channel with a certain time

variability as well as a channel with processing energy lead to the same intuition re-

garding burstiness of signaling, since the variability of a channel can simply be treated

as an energy penalty, or a processing cost, as in our study. We show that the same

expression of burstiness as a function of the SNR is obtained for both channels.

Throughout this study, we neglect the energy cost associated with the transitioning

to the 'on' state; the effect of state transition energy cost would only be manifested

if a delay metric, such as an error exponent, was used.
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1.2 Thesis Outline

The remainder of the thesis is organized as follows:

Chapter 2 deals with the single user case. In section 2.2, we modify the energy con-

straint of a single user AWGN channel to include the processing energy. Then, we

derive the capacity of the channel in terms of the optimal transmitted energy and

the optimal burstiness of signaling. In section 2.3, we determine the conditions that

make burstiness capacity achieving, in terms of the total available energy and the

processing energy.

The first three subsections of section 3.1 give a brief literature on Gaussian multiple

access channels. In subsection 3.1.4 we briefly review some multiple access techniques.

In section 3.2, we include the processing power in the energy constraint in the mul-

tiple user case. Then, for the purpose of maximizing the total sum rate, we derive

the condition that makes burstiness capacity achieving in the low SNR regime. We

show that TDMA outperforms other multiple access techniques. Section 3.4 shows a

graphical illustration of the effect of processing energy on TDMA. Section 3.5 gives

numerical results about the shape of the capacity region in the presence of processing

energy as compared to the Cover-Wyner region obtained by merely subtracting the

processing costs.

Chapter 4 gives a brief background on how to characterize the channel variability of

channels with an intermediate coherence level then shows the correspondence between

the effect of processing energy from one side and channel variability on the other side

on the burstiness of signaling.

Chapter 5 summarizes our conclusions and presents possible future work.

Finally, a review of the LambertW function can be found in the Appendix.
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Chapter 2

Processing Energy in the Single

Access Case

2.1 The Model

The classical information theory problem of characterizing capacity for an Additive

White Gaussian Noise (AWGN) channel under an energy constraint strives to answer

the question: How much information can be transmitted through a channel, and how?

This traditional approach considers that all the available energy without inefficiency

or overhead is consumed as radiated energy for transmission. Owing to the concav-

ity of log(1 + x), transmission should have constant energy. Unlike the case when

transmission accounts for all the expended energy, we take explicitly into account the

processing energy. We show that the processing energy may lead, instead, to making

bursty transmission capacity achieving.

We consider a bandlimited AWGN channel, as shown in figure 2-1, with one sender

and one receiver.

For this channel, we use a sampled time that we denote by the variable i. The input

signal is constrained in energy and in bandwidth and is distorted by additive and

bandlimited white Gaussian noise. The noise samples are mutually independent and

identically distributed Gaussian random variables with zero-mean and variance ca:

Z(i) ~ CJ(0, U2).
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Channel noise

Z(i)

X(i) ± -Y(i)
Transmitted signal Received signal

Figure 2-1: AWGN channel

The output of the channel at time i is given by:

Y(i) = X(i) + Z(i). (2.1)

2.2 Inclusion of Processing Energy in Energy Con-

straint

2.2.1 Capacity in Terms of Transmission Energy

Let us first review the capacity of an AWGN channel [9], with energy constraint S,

noise variance a2 (product of bandwidth and noise spectral density), and under no

processing energy:

C = log(1 + ). (2.2)
012

The energy constraint over n samples is given by:

i<8 (2.3)
n

where P = X 2(i) and X(i) is the input to the channel at time i. Please refer to the

comments on n in the remarks later.

In what follows, we let 1i be the indicator function taking the value 0 or 1 according

to whether at time i the transmitter is sending or not, P be the actual energy used

18



for transmission at time i and S be the total energy available per channel use.

When the processing energy is taken into account and is given by E, the system that

we seek to solve becomes:

max 1i log(1 + ) (2.4)
i=1

n 14(Pi + )s.t. Zi=1  < .. (2.5)
n

Remarks:

" We are considering arbitrarily large time n while maximizing the sum in (2.4).

" For a fixed n, this is equivalent to dividing the channel into n subchannels with

power constraints P1 .. .P respectively and assuming independent coding over

the subchannels.

" In writing (2.4), we assumed that the transmitter and the receiver have agreed

on the time at which transmission should occur.

* Setting E to 0, (2.5) leads back to the constraint in (2.3) and the corresponding

maximized value of (2.4) would be given by (2.2).

" Since burstiness may be capacity achieving, we model the channel as Y =

aX + N, where a is a binary random variable taking the value 1 or 0 according

to whether the sender is 'on' or 'off', all other variables being Gaussian random

variables,[9].

In order to find the capacity of the channel, we aim to maximize

I(a, X; Y) = I(a; Y) + I(X; Yja). (2.6)

When a = 0, Y = N and I(X; Yja = 0) = 0 since the noise is independent of

the input.

19



Let e = P(a = 1). Then,

I(X; Yla) = 8I(X; Yja = 1) + (1 - e)I(X; Yja = 0) (2.7)

= eI(X; Yja = 1) (2.8)

so, I(a, X; Y) = I(a; Y) + eI(X; Yla = 1) (2.9)
SNR

= I(a; Y) + 8 log(1 + E -E) (2.10)

" H(a) + E log( + SR- ) (2.11)

SNR
" 1+e1og(1+ -6 ). (2.12)

since a is a discrete random variable. For high SNR, clearly the second term

dominates as compared to 1.

For the low SNR case, we need to express I(a, Y) as I(a; Y) = H(a) - H(ajY).

In this case, a more complicated proof is needed to prove that for low SNR, the

order of this term is less than the order of SNRl+ where a > 0.

We have neglected I(a; Y) in both low and high SNR regimes. The result we

obtain is therefore, at least, an achievable rate, the converse not being neces-

sarily true. However, as will be shown later, the scheme we propose readily

gives great improvements over the rate region obtained when no burstiness is

allowed.

When we transmit, i.e. when 1i = 1, the concavity of the function log(1 + x) implies

that P should, at any time i for which li = 1, be equal to a constant, say v.

We denote the burstiness of signaling by

n ii . (2.13)
i=o

When e = 1, a constant transmission strategy is being used; when e < 1, bursty

signals are being transmitted. The smaller the E, the burstier the transmission.

Given a certain total amount of energy S, how would an increase of the processing

energy, 6, affect the optimal transmission mode? Clearly, since the optimal strategy

20



should avoid paying too much overhead owing to the processing energy cost, sending

more bursty signals would result in higher rates. On the other hand, transmission

should not be too bursty, since placing all the energy in one time slot may result in

a loss of rate. Therefore, there is a certain tradeoff between sending bursty signals

and adopting a continuous transmission strategy. This tradeoff is controlled by the

values of 8 vs. E.

Back to the constraint in (2.5), since additional total energy can only be beneficent,

we take the constraint to equality:

E(v + c) = 8. (2.14)

Hence, we denote (3.15) in terms of v by,

C1(v) = 8 log(1+-). (2.15)

Taking the derivative with respect to v and setting it to 0, we obtain because of

convexity the optimal value of the energy for which the capacity is maximized in the

presence of processing energy

Vopt = _,- 2. (2.16)

As seen in the expression of vopt, we have used the LambertW function, which we

denoted by W. A brief review of the function can be found in the appendix.

Note that the optimal value of the transmission energy is independent of the total

available energy 8 and is merely dependent on the processing energy e.

The maximum value of (3.15) that can be achieved in the presence of processing

energy is

C1(vopt) = log(1 + ), (2.17)
lopt+ E 012

where vpt is given by (2.16). We examine the second derivative constraint in section

2.2.2.
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There are two constraints on the value of the energy,

v > 0 (2.18)

and

v > . - E from E < 1. (2.19)

For unit noise variance, we can show that vopt > 0 for all E > 0. The functions E - 1

and W(e) are plotted in figure 2-2. For 0 < E < 1, both functions are negative and

E -1 < W( 1), so the ratio is positive and greater than unity, consequently v0 t > 0.

For E > 1, both functions are positive and E - 1 > W(-), so vct > 0. Values of vopt

are illustrated in figure 2-3.

For the second constraint, we should find the values of E and 8 for which vopt > E - E.

Substituting for vopt from (2.16) and simplifying, we obtain the equivalent constraint

in terms of 8 and E, i.e.
(c - 1)(1 + W( 1 ))

8 1) W(± W e) . (2.20)
(Y)

When this condition is not met, v0pt = E-E becomes the optimal value that maximizes

the rate.

For instance, in the case of 8 = 1, it can be shown that vpt > E - e for all E >~ 0.237.

In that case, the value in (2.16) achieves capacity. Again, we omit the proof for the

sake of brevity.

2.2.2 Capacity in Terms of Burstiness of Signaling

We can also maximize the capacity with respect to e. Hence, using (2.14), we denote

(2.4) by:
del -- 621

C2(6) = log(1 2 ). (2.21)

Note that, although different functions, C2 above and C1 in (2.17) are describing

the same entity, namely the maximum achievable rate in the presence of processing

energy, but in terms of different variables. Calculating the derivative with respect to
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e, then, setting it to 0, we obtain the corresponding E),p that maximizes the capacity

in the presence of processing energy.

.FW(F--r2)
(E - 02)(W(LT2) + 1) (2.22)

For the remainder of the paper, we assume a = 1; under this assumption, the Signal

to Noise Ratio (SNR) given by -L is simply given by E. Similarly, we define the

Normalized Cost (NC) as g, which simply equals the processing energy or E. Then,

E)Op can be reexpressed merely in terms of the SNR and the NC by:

W(e-1 (c - 1))
(E - 1)(W(e 1 (e - 1)) + 1)(

From this equation we note two things. First, the optimal burstiness of signaling is

directly proportional to the SNR. Therefore, the bigger the total energy available, the

larger the e. Therefore, the channel should be less bursty in the transmission since

c becomes negligible as compared to E and continuous transmission becomes more

efficient.

Second, we can know how 00pt/SNR varies with the NC, i.e. with c. Figure 2-4 shows

the plot of logio(Oopt/E) vs. c.

As illustrated in figure 2-4, for a given SNR, the burstiness of signaling decreases with

increasing NC. This agrees with our intuition, since the higher the cost of being 'on',

the lesser the fraction of time the user should transmit, i.e. the burstier the signaling.

Now, from the definition of e in (2.13), 0 < opt < 1.

We can show that e0 ,p > 0 for all c > 0. For c > 0, c -1 > -1 and e(E -1) > -e-'.

Since the LambertW function is increasing and W(-e-1 ) = -1, we obtain that

W(e- 1 (E - 1)) > -1. Also, from above, 6 - 1 > W(e 1 (c - 1)).

Next, we seek the values of E and 6 for which 0 0pt < 1. Let us illustrate the effect of

these constraints when E 1 and check the conditions on e. We plot in figure 2-5,

(Oopt - 1) versus 6. As seen in 2.2.1, for 6 >~ 0.237, 0opt < 1 and the optimal value

is 00pt as given in (2.22), otherwise E),p = 1.
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Given certain values of c and E, we calculate the second derivatives of (2.17) and

(2.21) and verify that they are non-positive when evaluated at ' v = ,t and e = Opt

respectively. If this test fails, one of the boundary values of vet and e0, would

maximize the sum in (2.4).

The above example in which we used = 1 and unit noise variance, illustrates one

case in which Opt is not always equal to 1, unlike the case where no processing

energy is considered. Therefore, burstiness is, in some cases, capacity achieving. We

investigate the conditions of such a transmission mode in the following section.

2 4 6 8 10
0-

-20

-40

-60

-80-

-100

Figure 2-6: Second derivative of O0pt as a function of E

2.3 Bursty Transmission

In this section, we determine when achieving the capacity requires bursty transmis-

sion. For this purpose, we would like to find a relationship between the SNR (S)

and the processing energy (E) that allows the transition from the bursty transmission
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regime to the constant transmission one. This transition occurs at 2 = 1.

Recall the expression of E0), in (2.22). We have that

1 8 (6- 1)(W( -))+ (2.24)

We consider the curve (E, E) which separates the regions in which burstiness and

constant transmission become capacity achieving. As seen in figure 2-9, the region

below the function E),0  = 1 denotes the region where we would like to be bursty.

The region where E0), = 1 is where continuous transmission is appropriate and the

processing energy can be neglected. We are then back to the original idealized model

of wireless channels where there is no need to consider the cost of being 'on'.

Next, we would like to find numerical bounds between these two models.

From the definition of the LambertW function, we recognize that,

lim W(x) = -1. (2.25)

We can refer to Appendix A for the plot of the LambertW function. Then, we have

limX'O W(x - e- 1 ) = -1.

We can also show that,

lim W(x - e-1) + 1 = V2. (2.26)
x--.0

We can then use 2.26 to approximate the expression in (2.24) as c -- 0, or E -+ 0 as

follows.

Let y = ex. Use change of variables on (2.26) to obtain:

lim W(e- 1(y - 1)) - y/2 = -1, (2.27)
y-+O

Therefore, (2.27) shows that for arbitrarily small c, we can substitute W(e-1 (e - 1))

by (V2 - 1).
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(2.24) can then be approximated by:

v - . (2.28)

(2.28) can be furthermore approximated by using:

lim -2- = 0. (2.29)

Therefore, for low SNR we obtain:

S ~ dE. (2.30)

We illustrate in figure 2-7, the equation in (2.24) and its approximation in (2.30).

In general, (2.22) and (2.29) give:

S ~-- E)Op2. (2.31)

Replacing 0,p 1 in (2.31), we obtain

S < V,. (2.32)

The above equation shows that burstiness is capacity achieving when the total energy

available to the channel is less than the square root of double the processing energy,

or equivalently when the SNR is less than the square root of double the Normalized

Cost (NC). This fact is illustrated in figure 2-9 for small c.

Moreover, the slope of (2.30) at E = 0 goes to oo. Therefore, in the low SNR regime,

when the processing energy is any percentage of the total energy, burstiness is capacity

achieving. On the other hand, to remain non-bursty, e and S should satisfy the

relationship: E < (. Under this constraint, constant transmission over the channel is
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Figure 2-7: Equation (2.24) and its approximation in (2.30) in low SNR regime

optimal. For large SNR, when c -+ oo,

dE 1
= 1 + - (2.33)de W (6-)

1
-+1

W e ) (1 + Wf)

Thus, the slope of the curve that separates the bursty transmission regime from the

non-bursty region tends to 1. In figure 2-8, we plot 4 as a function of C.

Therefore, for large SNR, given a certain ratio j, we can directly deduce the region in

which we are situated in figure 2-9 and decide whether burstiness is optimal or not.

For instance, for c = 0.01E, we are clearly above the curve (S, E), hence we want to

have continuous transmission. This, of course, agrees with our intuition that for a

small cost of being 'on', processing energy can be neglected and transmission should

remain constant.
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Chapter 3

Processing Cost in the Multiple

Access Case

3.1 Background on Multiple Access Channels

In this section, we present a brief overview of the classical results on the information-

theoretic aspects of multiple access channels (MAC). We confine our discussion to the

basic MAC model which is discrete, memoryless, without no channel side information

or feedback, and where the two (or more) senders are synchronized. Subsection 3.1.1

introduces the channel model while subsection 3.1.2, establishes the capacity region

for a general MAC. Corresponding results for the Gaussian MAC are presented in

subsection 3.1.3.

3.1.1 The Channel Model

A multiple access channel is a channel via which two (or more) senders send informa-

tion to a common receiver. More precisely, in the case of two users:

Definition 1 (Discrete memoryless MAC) A two-user discrete memoryless MAC con-

sists of three alphabets, X1, X2 and Y, and a probability transition matrix p(yIx 1, x 2).

[9]
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Figure 3-1: The discrete memoryless multiple access channel

The channel is memoryless, i.e.

p(y"|xn, x2) = 11p(yi xixz) (3.1)
i=1

3.1.2 Capacity Region

Consider two users sharing the same medium, with user i having rate Ra. In 1971,

Liao and Alshwede independently derived the conditions that should be satisfied by

the rates R 1 and R 2. This is summarized in the following theorem.

Given any two distributions p 1(x 1 ) and P2(x 2 ) over X1 and X 2 , we have

Theorem 1 (MA C capacity region for given p1(xi) and p2 (x 2 )) For any given pi(xi)

and p2 (x 2), all pairs (R 1, R 2 ) satisfying

R 1 < I(X;YIX 2 ), (3.2)

R 2 < I(X2 ; YIX1), (3.3)

R 1 + R 2 < I(X1, X 2 ; Y) (3.4)

belong to the capacity region of the MAC.

Theorem 2 (MAC capacity region) The capacity region C of the MAC is the convex

closure of the regions established in Theorem 1 for every possible product distribution

p 1 (x 1 )p 2 (x 2 ) over X1 x X 2 .
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Furthermore, the capacity region, C, established above is equivalent to the region

specified in the following corollary:

The corresponding capacity region for the two-user case is shown in figure (3-2).

Corollary 1 The capacity region of the MAC is also given by the convex closure of

all (R 1, R 2) pairs satisfying

R1 < I(X1; YX 2 , Q), (3.5)

R2 < I(X2; YIX1, Q), (3.6)

R1 + R 2 < I(X1, X 2; YQ) (3.7)

Here Q is some auxiliary random variable such that X 1 -+ Q -+ X 2 and Q -

(X 1 , X 2) -+ Y are two Markov chains. Furthermore, IQ can be as small as 2.

Note that C is a closed and convex set.

R2

I (X2;YIX1)

I (XIY) I(X ;YIX2)

Figure 3-2: Capacity region C of the MAC
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Figure 3-3: Gaussian multiple access channel

3.1.3 Gaussian Multiple Access Channels

The capacity region of the time sampled AWGN channel above with energy constraint

ES for user i under no processing energy is the subset of RM containing the rate-tuples

(R 1,.., RM) with nonnegative components satisfying

Ri < log(1 + iS)VS c {1, ... M}. (3.8)
iES

Some points in this capacity region are known to be achievable by successive cancel-

lation. These are the points which satisfy

Ri < log(1 + 2  (3.9)

The energy constraint for user i is given by

k= 4 i (3.10)n

where Ek = E[Xi] and X' is the input to the channel from sender i at time k, and

n is the largest time index. For the two-user case, we show the capacity region in

figure (3-4). More background on multiple access channels and intuition about the

Cover-Wyner region can be found in [1], [18] and [8].

For the time-sampled AWGN channel shown in figure (3-3), we can use the equations
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Figure 3-4: Capacity region of the two-user Gaussian MAC with power constraint P
and noise variance N

in Theorem 1 and obtain the Cover-Wyner region in the Gaussian case for two users

as shown in (3-4).

The dominant face of the pentagon corresponds to:

1 El+E2
R,+ R2  -log(1+ 2 (3.11)

2 0

The two corner points have the following rate pairs:

(R1 = 1 log(+log(+ )2 (3.12)
2 T2 2 o 2 + El

1 _ 1
(R, = log(1+ 2 ); R2 - log(1 + -)). (3.13)

2 U2+E2 2 U2))

Those points have the characteristic that they can be achieved by interference cancellation, [8].

To achieve points on the dominant face, time-sharing betwen theses corners can be

done. Anoher method, known as rate-splitting, may be used to achieve points on the

diominant sum-rate face. In this method, one of the users (say user 1) would be split

into two virtual users (virtual user 1 and virtual user 3) by splitting the rate and

the energy between these two virtual users, [8]. Splitting one of the users into two

gives an extra degree of freedom as to what fraction of power the two virtual users

will represent out of the total energy of the original user and allows to move on the

dominant face.
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3.1.4 Multiple Access Techniques

There are several multiple access techniques for accessing a shared AWGN channel.

In this section, we will briefly review TDMA, FDMA and CDMA:

In Time Division Multiple Access (TDMA), different users are assigned to different

time slots. Let a be the fraction of time that user 1 transmits. User 1 will then trans-

mit with an energy L. Therefore, R1 = a log(1 + 5). User 2 will then transmit

with an energy -.

The capacity region and the TDMA rates are shown in figure 3-5.

R2

TDMA

R1

Figure 3-5: Rates achievable by TDMA as compared to the Cover-Wyner region

In Frequency Division Multiple Access (FDMA), different users are assigned different

frequencies. If we assign user 1 to frequency W 1, then R 1 = E-1 log(1+ ).

In TDMA and FDMA, the maximum sum rate is achieved when the fraction of time

or frequency assigned to the user is proportional to the proportion of energies avail-

able to the users.
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3.2 Inclusion of the Processing Energy in the En-

ergy Constraint

Let A be the set of active users. For the case of two users, A = {00, 01,10, 11}. For

instance, '01' means that user 1 is 'off' while user 2 is 'on'.

Let QA be the indicator function taking the value 1 if at time k, the given combination

of active users out of the set A is true. ES is the total energy available for user i and

PkA(i) is the actual transmitted energy of this user at time k, given the set of active

users.

Now, if the processing energy is taken into account and is given by E' for user i, the

system that we would like to solve becomes

max 1 EQA log(1 + ) (3.14)
k=1 A

s.t. Q(PA(i) + ) 5 for each i. (3.15)
k=1 A

the above system has i constraints.

Note that in writing (3.15), we assumed that the transmitter and the receiver have

agreed on the time at which transmission should occur.

When we transmit, i.e. when QA = 1, the concavity of the function log(1 + x) implies

that PkA(i) should, at any time k for which QA = 1, be equal to a constant, say vA(i).

We denote the burstiness of signaling by

A =Z QA. (3.16)
k=1

The constraint for user i in (3.15), relaxed to equality, becomes

S EA(vA(i) + Ei) =,Ei. (3.17)
A
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Finally, an additional constraint would be, that the sum of the fractions of transmis-

sion time for the different combinations of users should be less than 1, i.e.

E A < 1, (3.18)
A

with each 0 < EA < 1.

We illustrate in the following section how the system and the constraints would be

written in the two-user case.

3.3 Superiority of TDMA for Maximizing the Sum

Rate

As explained in section 3.1.4, in TDMA, different users are assigned to different time

slots. Let a be the fraction of time that user 1 transmits. User 1 will then transmit

with an energy

-. (3.19)

Therefore,

R 1 = celog(1 + 2). (3.20)
ao

Similarly, for user 2,

R 2 = (1 - a) log(1 + 2 (3.21)
(1 - a)U-

The TDMA rates are suboptimal except at one point where the TDMA curve touches

the dominant face.

In what follows, we shall prove that, when we take into account the processing energy,

TDMA achieves a better sum rate than the 45 degree line of the Cover-Wyner region

that we obtain by merely removing the processing energy from the total available

energy.

For simplicity, we will consider the two-user case:
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EA = 8001,010,E" depending on which senders are transmitting at a time.

User 1 will have a rate that he achieves by himself (Riaone) and a rate achieved when

both users are transmitting (R12shared). These two rates can be expressed as follows:

Riaione =E" log(+ 2 ) and R12shared = 611 log(1 + V112(1) +v"(2) (322)

A similar reasoning can be applied to user 2. Therefore the sum rate would be given

by:

v10(1) v4()v(1) + v"(2)
R,+R 2 = 10log(1+ 2 )+ 01 log(1 + U2 + 011 log(1 + 2 )

(3.23)

In order to find the maximum sum rate, we shall solve the following system:

max R, +R 2  (3.24)

s.t. 810 (vlo(1) + E') + o11(vll(1) + J1) = E1 (3.25)

601 (v01(2) + 62) + E)11(V"l(2) + 62) = 2 (3.26)

601 +610 + 811 < 1. (3.27)

The last equation is basically equation (3.18) obtained by removing 000 > 0, the

fraction of time where the two users are 'off'.

The other energy constraints are equation (3.17) applied to each of the two users.

Consider the case where both senders are ON, i.e. when 61 > 0. The rate achieved

is

log(1+ V 2(1) +v"(2). (3.28)

In the Cover-Wyner region, this rate is the one obtained from the 45 degree line with

user i having an energy of v 1 (i). At the same time, this rate can be obtained by

using TDMA with each sender transmitting a fraction a of the time, where

v4'(1)
a = V .l1M (3.29)

v10(2) + v01(1)'
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This proof is given in [6]. This argument proves that obtaining this rate does not

really necessitate that both users be ON since we can alternate their transmissions

with the convenient shares of energies and achieve the same total rate. Therefore, we

can increase E10 and E01 and set e" to 0.

Now, we may investigate the effect of processing energy on the maximum sum rate.

TDMA gives an advantage over the non-processing scenario since TDMA will save us

part of the processing energy.

We are assuming that the noise is complex Gaussian; for simplicity, we assume unit

noise variance and symmetric users having the same (E, c).

Since the users are symmetric, they have the same total energy available to them. At

the same time, each of the two users will be spending one processing energy for being

'on', therefore the sum rate can be written as:

R1 + R 2 = log(1 + 2. - 2c). (3.30)

Consider that, instead of allowing the users to transmit together, TDMA is used.

Then, the rates are as follows

R 1 = a log(1 + -- ), R2 =(1 - a)log( + - ). (3.31)

Since we are in the symmetric case, TDMA achieves the maximum sum rate when

a = 0.5. Therefore, the total sum rate is

log(1 + 2E - c). (3.32)

Comparing the sum rate alone to the sum of the rates in (3.31), we see that TDMA

achieves a sum rate larger than the one achieved by allowing 11 to be non-zero.

Therefore, we can always achieve a better sum rate by using TDMA in the presence

of processing energy.

In the M-user case, the more we allow users to send together, i.e. 11  > 0, the more

we expend unnecessary processing energy. Using TDMA will allow only one user to
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send at a time and only the processing energy of this user to be expended. Therefore,

the benefit of TDMA will increase as more and more users share the medium as it is

saving (M-1) times the processing energy. At the same time, the effect of processing

energy will decrease as the number of users increases since only the processing energy

of one user is expended with TDMA, owing to the fact that we can have at most one

user transmitting at one time.

Recognizing that for the purpose of maximizing the sum rate, 0" should be set to

0, we can go back and solve the original system of equations for the two-user case, in

(3.24), which is repeated below.

max e10 log(1 + 211(1)) + e01 log(1 + Vol) (3.33)

s.t. E10 (v10 (1) + e<) e' (3.34)

e01 (v01 (2) + 62) g s 2  (3.35)

01 +e 1 0 < 1. (3.36)

Using Lagrange multipliers, the first constraints will be biting. Therefore,

10 1
V10 (3.37)610

and

Vp= - 2 (3.38)

Taking the derivative with respect to e10 and e01 and setting them to 0, we obtain

because of concavity the optimal burstiness of signaling for each of the users:

E 81 W( E-_,2) 2 W(c 2_,or 2)Olo = 2e and 001 =012e (3.39)
(El - j2)(W(0-72) + 1) (E 2 - J2)(W(62

-0,
2 ) + 1)

As before, we have denoted by W the LambertW function which is defined as:

LambertW(x) x eLambertw(x) = x. (3.40)
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But, from the last constraint, we need to satisfy 001 + 010 < 1. Recognizing that,

lim W(x) = -1, (3.41)

lim W(x - C- 1) = -1, and (3.42)
x-O

lim W(x - e-') + 1 = (343)

we obtain the condition for burstiness in the low SNR regime, i.e. as c - 0, or

E)' - 0

+ <1. (3.44)

This result can be easily generalized to the M-user case. In the low SNR regime,

burstiness becomes capacity achieving when

M

EZ< 1. (3.45)
i=1

Remarks:

* If (3.45) is verified, then the capacity region is rectangular. Consider a time slot

from 0 to 1. Then, if user 1 only needs 25% of the time slots and user 2 needs

45%, and as long as the two percentages sum to less than 1, the two users do

not interfere together, as each one of them will occupy different time slots.

* For high SNR, the capacity region without processing is almost triangular, and

TDMA asymptotically follows the 45 degree line, covering almost the whole

capacity region. So, even with no processing energy, TDMA can be used with

almost no loss in capacity. In the presence of processing energy, TDMA will

be favored at the maximum sum rate, i.e. for the whole 45 degree line which

constitutes most of the capacity region. So taking TDMA to be the capacity

region under processing energy is reasonable.
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3.4 Graphical Illustration

We illustrate the effect of processing energy on the system where all users are only

allowed to transmit at all times, under the constraint of additional processing energy,

i.e. the Cover-Wyner region obtained by simply subtracting the processing energy

from the total energy available. This is the region obtained with maximum rates

log(1 + El - El), (3.46)

log(1 + S2 - ,2) (3.47)

and sum rate

log(1 + Sl + E2 _ El _ E2). (3.48)

For convenience, we will refer to the region formed by these rates as the 'Traditional

Cover-Wyner region under processing energy constraint'. We use the word 'Tradi-

tional' to refer to the case in which burstiness of signaling is not allowed, i.e. when

continuous (or non-bursty) transmission is used. We will illustrate in this section how

the use of bursty signaling improves the achievable rate region.

The TDMA curve is obtained by using

(R 1 , R 2) = (a log(1 + 9- - J), (1 - a) log(1 + - E2)) (3.49)
a-a

and varying a between 0 and 1.

We refer to the region obtained out of these rates by varying a, as the 'TDMA under

processing energy constraint'.

As argued before, when we compare the Traditional Cover-Wyner region under pro-

cessing energy constraint and the TDMA under processing energy constraint, we

notice that the maximum sum rate is achieved by TDMA in the presence of process-

ing energy. This fact is illustrated in figure (3-6).

In the high-SNR case, the Cover-Wyner region is almost triangular, the dominant

face being actually the dominant part of the region; The TDMA technique will result
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Take processing energy
Into account

RI R1

Figure 3-6: RHS: Processing energy is neglected. Cover-Wyner region and rates
achievable by TDMA. LHS: Processing energy is taken into account. Traditional
Cover-Wyner under processing energy constraint and rates achieved by TDMA under
processing energy.

in rates that are asymptotic to the dominant face and are almost overlapping with

it, therefore, the effect of processing energy is clearly going to make the TDMA tech-

nique achieve a higher sum rate. This is illustrated in figures (3-7) and (3-8).

After including the processing power, the Traditional Cover-Wyner region under pro-

cessing energy constraint has lower boundary rates than the Cover-Wyner region

obtained when processing energy is not taken inot account. This is because, when no

processing energy is considered, more energy will be allocated for transmission and

consequently higher rates will be obtained. Before the processing is taken into ac-

count, TDMA touches the dominant face at one point but is otherwise lower than the

region. With processing, TDMA gives higher sum rate than the Traditional Cover-

Wyner under processing energy constraint. This illustrates that the Cover-Wyner

region is no more optimal. In fact, we have proved in section 2.2.2 that the optimal

region is obtained by using bursty signaling. However, TDMA under processing en-

ergy constraint will still achieve the maximum sum rate. The impact of processing

energy in the low-SNR case is illustrated in figure (3-9).
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Figure 3-7: Cover-Wyner region and TDMA rate curve at high SNR: At high-SNR,
when the processing energy is neglected, the rates achieved by TDMA almost overlap
with the dominant face of the Cover-Wyner region.

R2 R2,

RI Rt

Figure 3-8: Effect of processing energy in the high SNR case

R2
112

RI

Figure 3-9: Effect of processing energy in the low SNR case

45



3.5 Capacity Region

In this section, we aim to find the shape of the whole capacity region in the presence

of processing energy. For this purpose, we fix R 2 and aim to maximize R 1 . We know

the maximum value that R 2 can take (say R2max), which is achieved when user 2

transmits alone. Let the fixed value of R 2 be x, where x < R2max. We approximate

the rates R 1 and R 2 by

R1 = E 10 log(1+v 10 (1)) +3E#" log(1 + v"(1) +v"(2)) (3.50)

R 2 = 01 log(1+ v1,(2)) + (1 - )e" 1 log(1 + v"(1) + v"(2)) = x. (3.51)

Now, using (3.51), we can express R1 in terms of x as follows

R1= E1 0 log(1 +v 10 (1)) + (x- E0 1 log(1 +v 1(2))). (3.52)
1 - P

R1 should be maximized subject to e 01 + 10 + 811 < 1 and E' 0 (v1 0 (1) + 61 ) +

11 (v"(1) + 61) <; Sl. Using Lagrange multipliers, this maximization problem can

be solved and a closed form solution could be obtained for the maximum R 1 in terms

of R 2 . The equations, while compact, do not present closed-form evaluations, so we

have resorted to numerical methods.

Let us consider an example where S' = 0.8, E2 = 0.7 and El = 0.3 and e2 = 0.2.

Numerically, we solve for the maximum rates that can be obtained while allowing the

Es to go from 0 to 1. In all figures, we plot in blue the different couples (A 1 , R 2 );

the envelope of the blue area constitutes the maximum achievable rate area when

burstiness is allowed. We compare this region to the Traditional Cover-Wyner region

under processing energy constraint. We also plot the maximum achievable rates

obtained by TDMA under processing energy constraint i.e. as described in 3.4.

Figure 3-14 shows the achievable rate region, given by the envelope of the region drawn

by the points in blue. The TDMA under processing energy constraint is shown in

red. The Cover-Wyner region when no burstiness is allowed is shown is black. This

region is obtained by simply subtracting the processing power from each of the rates,
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as in section 3.4. As shown, the new rate region gives great improvements over the

Cover-Wyner region with no burstiness allowed. The red curve shows that TDMA

still allows achieving the maximum sum rate, obtained by the new region.

The improvement obtained is intuitive because when the users are given an extra

degree of freedom by allowing them to transmit at a certain fraction of time, instead

of continuously, they can transmit in a way to save the most of the power: by backing

away, even when information is available for transmission, users can save part of the

processing energy incurred whenevet they are 'on'. We have proven why TDMA

allows achieving the maximum sum rate and why it outperforms in this case other

multiple access techniques.

For more insight, we show several figures that allow to compare the other methods.

Figure (3-10) for instance, shows the TDMA with and without burstiness allowed.

Other figures show the TDMA, the achievable regions with and without burstiness

allowed, all under a processing energy constraint.

1.2-

0.8

0.4-

02

02 0.4 0.6 0.8

. Without processing
With processing

Figure 3-10: Boundary of the region of rates achievable with TDMA, with and without
processing energy
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Figure 3-11: Achievable rates by bursty signaling: The black line shows the rate

achievable by TDMA under processing energy. We can see how the maximum sum

rate of the region in blue is achieved by TDMA.

Figure 3-12: Bursty vs. non- bursty signaling: This figure shows the improvement

obtained by the region in blue (when burstiness is allowed) as compared to the Tra-

ditional Cover-Wyner under processing energy.
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Figure 3-13: Traditional Cover-Wyner region and rates achieved by TDMA, both

under processing energy constraint.
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Figure 3-14: Summary of results: Traditional Cover-Wyner under processing energy,
rate achieved by TDMA and the achievable rate region when burstiness is allowed.
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Chapter 4

Correspondence Between Channel

Variability and Processing Energy

4.1 Background on Non-Coherent Channels

This section refers to some of the results in [3], [4] and [5]. We consider wideband

wireless communication over a channel where the transmitter has no channel state

information (CSI). The coherent model assumes perfect channel knowledge; and the

non-coherent i.i.d. fading model assumes not only no CSI at the receiver, but also

that the channel changes so rapidly that there is no hope at all to obtain even partial

channel knowledge based on the previously received signal.

From a signaling point-of-view, at low SNR, the estimation of the fading coefficients

becomes difficult. It is therefore desirable to use peaky signaling, that is, to use only

a small fraction of the available degrees of freedom, and avoid estimating the other

fading coefficients. In contrast, if the fading coefficients are known, it is desirable

to spread the transmitted energy over all the available time-frequency slots, in order

to reduce the SNR per degree of freedom and obtain the optimal energy efficiency.

Thus, the choice of the optimal peakiness of the input signals, which we denote by 6,

is a key difference between the coherent and the non-coherent cases.

Then, as in [3],

C(SNR) = SNR - A(SNR). (4.1)
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Intuitively, in the case that partial channel information is available, the channel esti-

mation becomes easier; when the channel changes over time slowly, a channel estimate

can be used for a longer time. The effect of channel variation on the relation between

capacity and SNR has been shown in [3] to be captured by a coefficient, /, which is

termed coherence level.

The coherent channel with perfect CSI at the receiver corresponds to the case that

0 = 1, and the i.i.d. non-coherent channel corresponds to the case that 3 = 0.

We consider block fading channels with an intermediate coherence level 3 E [0, 1].

The rate of channel time variation is characterized by the coherence time, denoted

by T. In a block fading model, the channel fading coefficients are assumed to remain

constant within a block of T symbol periods.

The parameter T is therefore used to indicate how slow the channel changes over time.

It has been shown in [3], that for the special case of / = 1,

T = SNR 2 . (4.2)

It has also been shown that for any / E [0, 1],

T = SNR 21 . (4.3)

and

J = SNR 1 #. (4.4)

As / decreases, transmission must become increasingly peaky to be capacity achiev-

ing.
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4.2 Correspondence Between Processing Energy

and Channel Variability

In 4.1, we have shown that processing energy and channel variability both require

peaky distribution for achieving capacity.

In this section, we show that, in the low SNR regime, there is a simple correspondence

between processing energy and channel variability.

When T is large, the lack of knowledge is small and the cost we pay for not knowing

the channel is small. Inversely, when T is small, the channel changes more often

and the cost to pay for this variability increases. Therefore, the changing rate of

the channel can be quantified by 1/T. We can picture the lack of knowledge of the

channel as an extra cost to pay and, most importantly, represent this cost as an

energy penalty.

Let us consider side-by-side two channels, channel 1 and channel 2.

The first is characterized by a processing energy E. The second is characterized by a

level of coherence 3 and a coherence time T. Both channels have the same SNR. Let

us assume that
1
-=T. (4.5)

For channel 1, when (,p = 1, we have from (2.30)

SN R = S = Vr2,. (4.6)

If we neglect the V2- factor, we obtain

SN R ~i. (4.7)

For channel 2, when # = 1,(i.e. J = 1), from (4.3),

T = SNR- 2, (4.8)
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or

Consequently,

1
SNR = .

SNR =
VT

and

which, by our assumption of similar SNR in both channels, only holds when (4.5)

holds.

On the other hand, from (2.30), again neglecting the V2 factor, we have for channel

SNR SNR
0 ' - -= ~'. (4.12)

But, for channel 2, using (4.5) and (4.3) when / E [0, 1],

1=SNRO. (4.13)

Therefore, substituting (4.13) in (4.12), we obtain the burstiness of signaling of chan-

nel 1 as a function of the level of coherence for channel 2:

E)O2 = SNR'-~. (4.14)

Finally, for channel 2, recall that from (4.3) the optimal peakiness

J = SNR-O.

0aPt = SNR 1- = 6 = SNR-O

So the burstiness of signaling as defined for channels with additional processing en-

ergy is the same as the peakiness of signaling as defined for channels with a certain

variability or a coherence level.
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Hence,

(4.15)

(4.16)



On the other hand, the lack of knowledge of the channel can be interpreted as an

energy penalty.
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Chapter 5

Conclusions and Future Work

We study the optimal strategy in using the total energy when the processing energy

of the transmitter being 'on' is also taken into account. We derive the capacity of

an AWGN channel in terms of the total energy constraint S and the processing en-

ergy E. We find the optimal value of transmission energy (vpt) for which capacity is

maximized. We distinguish two modes for transmission: constant transmission and

bursty transmission. We calculate the optimal burstiness of signaling(E),t) at which

channels should be transmitting. We describe the conditions that render bursty trans-

mission capacity achieving in terms of the total energy available to the input and the

processing energy.

In low SNR regime, we prove that achieving capacity requires burstiness when the

processing energy is greater than half the square of the total energy. In particular,

if the processing energy is any percentage of the total available energy, bursty trans-

mission achieves capacity.

At high SNR, we show that the slope of the curve (8, E), which tends to 1 at infinity

defines a clear-cut between the continuous transmission scheme and the bursty one.

In this analysis, we only consider the mutual information conditioned on the indicator

of when we actually transmit although it is in fact possible to use the indicator itself

to convey information; this can be done by having a random place to turn on and off

and using the detection of this to carry information. The results we obtain give at

least an achievable capacity region which readily gives great improvements over the
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Cover-Wyner region with no burstiness allowed.

Next, we extend the results to the AWGN multiple access channel with M senders and

a single receiver. We first show that, under a processing energy constraint, TDMA

outperforms other multiple access techniques for the purpose of maximizing the sum

rate. We prove that, for the same purpose, burstiness is capacity achieving in the

low SNR regime when the sum of the ratios of total energy to processing energy is

less than unity. Finally, we present numerical results under general conditions and

illustrate the shape of the achievable capacity region under processing energy. We il-

lustrate the improvement in rate, obatined by using burstiness, over the rate obatined

by the traditional Cover-Wyner region with no burstiness allowed.

We show that, in low SNR regime, a channel with a certain time variability as well

as a channel with processing energy lead to the same intuition regarding burstiness

of signaling, since the variability of a channel can simply be treated as an energy

penalty, or a processing cost, as in our study. We show that the same expression of

burstiness as a function of the SNR is obtained for both channels.

This direct correspondence between the processing cost and the variability of the

channels allows to interpret the lack of perfect coherence as an energy penalty.

This opens a new horizon in which one can think about the energy as a currency,

that one needs to pay whenever there is a lack of knowledge of some aspects of the

channel. It would be interesting to investigate what are the factors that can be solved

for by paying extra energy. Future work could include then a generalization of the

concept of energy as a unifying cost for various communication impediments.
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Appendix A

LambertW Function

The LambertW(x) function [26], also called the Omega function, is the inverse func-

tion of f(w) = w x ew for complex numbers w; This means that for every complex

number x, we have

LambertW(x) x eLambertw(x) = X. (A.1)

Since the function f is not injective in (-oo, 0), the LambertW is multivalued in

[- , 0).

For x > -e-1, the funtion W(x) is real and single valued.

For example, W(O) = 0 and W(-e- 1) = -1.

Furthermore, the plot of W(x) as a function of x, for x > -e- 1 , is shown in figure

A-i.
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Figure A-1: W(x) as a function of x
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