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Abstract

Currently, most dialog systems are restricted to single user environments. This thesis
aims to promote an untethered multi-person dialog system by exploring approaches
to help solve the speech correspondence problem (i.e. who, if anyone, is currently
speaking). We adopt a statistical framework in which this problem is put in the form
of a hypothesis test and focus on the subtask of discriminating between associated
and non-associated audio-visual observations. Various methods for modeling our
audio-visual observations and ways of carrying out this test are studied and their
relative performance is compared. We discuss issues that arise from the inherently
high dimensional nature of audio-visual data and address these issues by exploring
different techniques for finding low-dimensional informative subspaces in which we can
perform our hypothesis tests. We study our ability to learn a person-specific as well
as a generic model for measuring audio-visual association and evaluate performance
on multiple subjects taken from MIT's AVTIMIT database.

Thesis Supervisor: Trevor Darrell
Title: Associate Professor EECS

Thesis Supervisor: John W. Fisher
Title: Principal Research Scientist EECS

3



4



Acknowledgments

First, I would like to thank my advisors, John Fisher and Trevor Darrell, for their

unwavering support and encouragement. I would have been lost without their wisdom

and guidance. A special thanks also goes out to Alex Ihler, who has repeatedly helped

me gain new insight into the problems discussed in this thesis and donated his KDE

Matlab code.

I must also thank the members of the VIP group who were always willing to listen

to my problems and discuss different parts of this thesis. In particular, I greatly

appreciated the time Kevin Wilson spent helping me and copy editing my text. I

salute him for being one of the very few who have actually read the majority of

this document. I also would like to thank Mario Christoudias and Kate Saenko for

listening to my complaints about my thesis even though they were also trying to finish

their own. Kate gets a second thanks, in addition to Jim Glass, for supplying the

AVTIMIT database for my experiments.

Two other people I must thank are Kinh Tieu and Carrie McGrory. Kihn was

always willing and excited to discuss any research direction I was currently into.

Carrie was always ready to get some food or help me calm down when it seemed like

everything was going wrong. She was even willing to perform a last minute copy edit

to fix as much of my horrible grammar as she could. I also must thank my officemates,

Ali Rahimi, Bryan Russell and Ce Liu, for their encouragement and for putting up

with my random outbursts of frustration.

Most importantly, I must thank my family. They mean everything to me. John

and Tina deserve a special award for letting me eat their food and use their washing

machine on the weekends. They were very good about not asking me "are you done

yet?." I must also thank my nephews Ethan, Simon and Alex, whose pictures I keep

on my desk to remind me of what is truly important and to smile. Last, but most

important, I would like to thank my mom and dad. I am so blessed to have such

wonderful and loving parents. They have given me so much.

5



6



Contents

1 Introduction 17

1.1 O utline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Related Work 21

3 The Speech Correspondence Problem as a Hypothesis Test 27

3.1 A Generative Approach ................................ 28

3.1.1 Audio-Visual Association LRT .................. 28

3.1.2 Speech Correspondence LRT ........................ 29

3.1.3 Measuring Performance . . . . . . . . . . . . . . . . . . . . . . 31

3.1.4 Aspects of using a learned Generative Model . . . . . . . . . . 33

3.1.5 Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Discriminative Approach . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . 43

4 Informative Subspace Learning 47

4.1 M aximizing Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 P C A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.2 Joint PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Maximizing Mutual Information . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 C C A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Nonparametric Maximization of MI . . . . . . . . . . . . . . . 57

4.2.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7



4.3 Maximizing Discriminability . . . . . . . . . . . . . . . . . . . . . . .

4.3.1 Simple Illustrative Examples . . . . . . . . . . . . . . . . . . .

5 Dataset and Preprocessing

5.1 Face Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Audio Visual Features

5.2.1

5.2.2

Audio ......

Video ......

6 Experiments

6.1 Experiment 1 : Comparing Mo

Association . . . . . . . . . . .

6.1.1 Purpose . . . . . . . . .

6.1.2 Training and Testing Pro

6.1.3 Techniques Compared .

6.1.4 Variables . . . . . . . . .

6.1.5 Results: Synthetic Data

6.1.6 Results: Audio-Visual Da

6.1.7 Summary and Discussion

6.2 Experiment 2 : Techniques for I

parison . . . . . . . . . . . . . .

6.2.1 Purpose . . . . . . . . .

6.2.2 Variables . . . . . . . . .

6.2.3 Results : Synthetic Data

6.2.4 Results: Data from AVT

6.2.5 Summary and Discussion

deling Techniques for Detecting AV

ed......................

.....mVT.M..............

cedure . . . . . . . . . . . . . . . . .

ta from AVTIMIT . . . . . . . . . .

earning Informative Subspaces Com-

Al......................

MIT . . . . . . . . . . . . . . . . . .

. .. . . . . . . . . . . . . . . . . . .

6.3 Experiment 3: Exploring the Importance of Kernel Size . . . . . . . .

7 Discussion and Future Work

A Density Estimation

A.1 Learning a Gaussian Model . . . . . . . . . . . . . . . . . . . . . . .

8

63

67

71

72

. . . . . . . . . . . . . . . 7 3

. . . . . . . . . . . . . . . 7 4

. . . . . . . . . . . . . . . 7 6

79

79

79

80

80

83

84

92

105

109

109

109

110

116

129

134

137

141

141



A.2 Kernel Density Estimation . . . . . . . .

A.2.1 Choosing a Kernel Size . . . . . .

B Select Elements of Information T

B.1 Entropy . . . . . . . . . . . . .

B.2 KL Divergence . . . . . . . . .

B.3 Mutual Information . . . . . . .

B.4 Data Processing Inequality . . .

B.4.1 Sufficient Statistics

C CCA

C.1 Derivation . . . . . . . . . . . .

C.2 Implementing CCA with SVD .

heory 147

. . . . . . . . . . . . . . . . . . . . . 147

. . . . . . . . . . . . . . . . . . . . . 149

. . . . . . . . . . . . . . . . . . . . . 149

. . . . . . . . . . . . . . . . . . . . . 150

. . . . . . . . . . . . . . . . . . . . . 150

153

. . . . . . . . . . . . . . . . . . . . . 153

. . . . . . . . . . . . . . . . . . . . . 155

D L2 Regularization 159

D.1 Least Squares Linear Regression . . . . . . . . . . . . . . . . . . . . . 159

D.1.1 Minimizing Squared Error . . . . . . . . . . . . . . . . . . . . 160

D.1.2 Maximizing the Likelihood of h . . . . . . . . . . . . . . . . . 160

D.2 Regularized Least Squares (Ridge Regression) . . . . . . . . . . . . . 161

D.2.1 Minimizing Squared Error plus L2 Norm Constraint . . . . . . 162

D.2.2 Regularization as a Prior on h . . . . . . . . . . . . . . . . . . 162

D.2.3 Regularization in relation to an Observation Noise Model . . . 163

D.3 Regularized Canonical Correlation . . . . . . . . . . . . . . . . . . . . 166

E Entropy Gradient Calculations 169

E.1 Law of Large Numbers Approximation . . . . . . . . . . . . . . . . . 169

E.2 ISE Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

F Experiment 1 Raw Results 175

9

144

144



10



List of Figures

2-1 Hershey and Movellan's technique. . . . . . . . . . . . . . . . . . . .

2-2 Finding an informative subspace . . . . . . . . . . . . . . . . . . . . .

3-1 Hypothesis test for Audio-Visual Association . . . . . . . . . . . . . .

3-2 Speech Correspondence Hypothesis Test . . . . . . . . . . . . . . . .

3-3 General LRT Performance characteristics. The probability of detection

is the integral of L(a, v)'s distribution under 'HO (red,left) from q to

oo.The probability of false alarm is the integral of C(a, v)'s distribution

under 1 (blue,right) from q to oc. . . . . . . . . . .

3-4 Estimating distribution under o. . . . . . . . . . . .

3-5 Hypothesis test for single audio and video stream . .

3-6 Grid search results. The contours represent levels of

correctly classified samples during cross validation . .

3-7 Sample SVM Classification on Gaussian Data . . . .

System Components ... .................

Comparison of PCA and JPCA. Top 3 components

Circle Test for MD . . . . . . . . . . . . . . . . . .

Sample Frames from AVTIMIT Corpus . . . . . . .

Full System Training and Testing Components . . .

Face Tracking . . . . . . . . . . . . . . . . . . . . .

Extracted Lower Face . . . . . . . . . . . . . . . . .

Wavelet Pyramid . . . . . . . . . . . . . . . . . . .

33

37

41

the number of

. . . 45

. . . 46

. . . 48

. . . 52

. . . 69

. . . . . . . 72

. . . . . . . 72

. . . . . . . 73

. . . . . . . 74

. . . . . . . 77

11

22

23

28

30

4-1

4-2

4-3

5-1

5-2

5-3

5-4

5-5



5-6 Differential Video Features: (a) Difference Image, (b) Horizontal Edge

Filter (c) Horizontal Edge Difference Image . . . . . . . . . . . . . . . 77

5-7 O ptical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6-1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6-2 Performance on Gaussian Data . . . . . . . . . . . . . . . . . . . . . 86

6-3 LR Plots on Gaussian Data. Shows the mean and standard deviation

of the likelihood ratio under hypothesis H1 (associated, plotted in red

stars, upper) and Ho (non-associated, plotted in blue triangles, lower)

versus window length. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6-4 Performance on Nonlinear Data . . . . . . . . . . . . . . . . . . . . . 89

6-5 LR Plots on Nonlinear Data. Shows the mean and standard deviation

of the likelihood ratio under hypothesis H1 (associated, plotted in red

stars, upper) and Ho (non-associated, plotted in blue triangles, lower)

versus window length. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6-6 Performance Summary Plots for Person 1 (Pixel Intensity, MFCCs) . 94

6-7 Samples drawn for person 1, 1 PCA coefficient (Pixel Intensity, MFCCs) 95

6-8 PCA Components and the cumulative amount of energy they capture

for Person 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6-9 Performance summary plot. Testing and training on different people.

(Pixel Intensity, MFCC) . . . . . . . . . . . . . . . . . . . . . . . . . 97

6-10 Samples drawn for 10 people. Each person is indicated by a different

color/shade, 1 PCA coefficient (Pixel Intensity, MFCCs) . . . . . . . 98

6-11 Performance Summary Plots (Image and MFCC differences). (a)(b)

Results for Person 2 (c)(d) Results for 10 People . . . . . . . . . . . . 100

6-12 Training samples using 1 principal component. (Image and MFCC

differences) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6-13 Probability of error versus window length using 5 PCA components

and a Gaussian Model . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6-14 Performance Summary Plots (Flow and MFCC differences) . . . . . . 103

12



6-15 Top 5 principal components of the optical flow features . . . . . . . . 103

6-16 Learned Projections (Linear Data) . . . . . . . . . . . . . . . . . . . 113

6-17 Linear Data: Pe vs Technique . . . . . . . . . . . . . . . . . . . . . . 114

6-18 Learned Projections (Nonlinear) . . . . . . . . . . . . . . . . . . . . . 115

6-19 Nonlinear Data: Pe vs Technique . . . . . . . . . . . . . . . . . . . . 115

6-20 CCA Learned Projections / Bases (Flow and MFCC differences) . . 118

6-21 MMI Learned Projections / Bases (Flow and MFCC differences) . . 119

6-22 Decision Boundaries learned by MMI and CCA for Flow and MFCC

D iff features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6-23 P(error) vs % Energy kept during PCA Regularization for CCA and

MMI on Image and MFCC Differences . . . . . . . . . . . . . . . . . 122

6-24 CCA and MMI Learned Projections / Bases (Image and MFCC dif-

ferences). The number above each projection is the % of video energy

preserved for regularization. . . . . . . . . . . . . . . . . . . . . . . . 124

6-25 Data projected into subspaces learned by (a) CCA (b) MMI (d) Ran-

dom for Image and MFCC Differences. (c) Shows a random linear

combination of the top 512 principal components of the training data. 125

6-26 Plot of samples used by KDE Model for the 6 dimensional subspace

learned by CCA (Flow and MFCC Differences). Dimensions 1-3 are

audio and 4-6 are video. . . . . . . . . . . . . . . . . . . . . . . . . . 128

6-27 Plot of samples used by KDE Model for the 6 dimensional subspace

learned by CCA (Image and MFCC Differences). Dimensions 1-3 are

audio and 4-6 are video. . . . . . . . . . . . . . . . . . . . . . . . . . 130

6-28 Comparing Techniques for Choosing Kernel Size . . . . . . . . . . . . 135

13



14



List of Tables

6.1 Techniques Compared .......................... 81

6.2 Person-specific results summary using pixel intensities and MFCCs.

The best performance for each technique is summarized. The num-

ber of principal components and window length (in samples) used to

achieve the best probability of error are listed. A common separated

list of parameters indicates that each parameter achieved similar per-

form ances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Person-specific and generic results summary using image and MFCC

differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 Probability of error for different audio visual features. Technique

Gaussian Model i.i.d. , # PCA = 5, Window Length = 63 samples 104

6.5 Informative Subspace Learning Techniques and Associated Model Tech-

niques. Details about the subspace techniques can be found in Chapter

4........ ....................................... 109

6.6 Results for linear data . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.7 Results for nonlinear data . . . . . . . . . . . . . . . . . . . . . . . . 113

6.8 Results comparison for PCA, CCA and MMI using flow statistics and

MFCC differences (10 People) . . . . . . . . . . . . . . . . . . . . . . 116

6.9 Results comparison for PCA, CCA and MMI using flow statistics and

MFCC differences (10 People) . . . . . . . . . . . . . . . . . . . . . . 127

6.10 Results comparison for PCA, CCA and MMI using Image and MFCC

differences (10 People) . . . . . . . . . . . . . . . . . . . . . . . . . . 127

15



Experiment

Experiment

Experiment

Experiment

Experiment

Experiment

Experiment

Experiment

Experiment

1:

1:

1:

1:

1:

1:

1:

1:

1:

Raw Results for Person 1: Pixels Intensities and MFCCs176

Raw Results for Person 2: Pixels Intensities and MFCCs 176

Raw Results for 10 people: Pixels Intensities and MFCCs177

Raw Results for Person 1: Image Diffs and MFCC Diffs 178

Raw Results for Person 2: Image Diffs and MFCC Diffs 178

Raw Results for 10 People: Image Diffs and MFCC Diffs 179

Raw Results for Person 1: Flow and MFCC Diffs . . 180

Raw Results for Person 2: Flow and MFCC Diffs . . 180

Raw Results for 10 People: Flow and MFCC Diffs . . 181

16

F.1

F.2

F.3

F.4

F.5

F.6

F.7

F.8

F.9



Chapter 1

Introduction

Natural human-computer interfaces should place few constraints on the human users.

Conversational dialog systems have worked toward achieving this goal by allowing

speech to be used as a natural form of input. However, most speech interfaces require

that the users be tethered to the system, forcing them to wear a close-talking micro-

phone or talk into a handset. This inconvenience restricts the use of such a system to

controlled environments and makes it difficult for multiple people to freely interact

with the system and each other. We would like to help promote the development of

systems that can participate in multi-person untethered conversation by addressing

the problem of associating speech with a particular user.

Determining who is currently speaking in a given scene is not a simple task but

the use of multiple sensing modalities makes the problem more tractable. Visual cues

can be used to determine if a person is in the field of view, what direction he or

she is facing and if his or her lips are moving. However, these cues cannot tell if

a subject's lip movement is caused by speaking or by some other process such as a

change in expression. Audio cues can tell us when someone is speaking. However,

when using only audio, it is often difficult to identify who is speaking the utterance

and whether or not that speaker can be seen by the system. It is the fusion of these

cues that can identify when a person's lip movements or actions are a result of speech.

Consequently, we wish to develop a practical model of the joint audio-visual statistics

to help discriminate between consistent and inconsistent observations of speech.
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The search for such a model can be biologically motivated. It has been shown

that the manner in which humans perceive the location of a sound source is strongly

linked to the sound's synchronization with visual events [3]. A television provides a

simple example of how this relationship can be exploited. Although the audio may

be emanating from the side of a television, the viewer perceives the sound as if it is

coming from the mouth of a person shown on the screen. When there is no obvious

association between audio and video, the observer concludes that the sound is coming

from an "off camera" source or that the show is badly dubbed.

This audio-visual fusion is an automatic process for humans and is hard to break.

The Mcgurk Effect [19] shows how our perception of speech can be modified by visual

events. When presented simultaneously with the sound /ba/ and the lip movement

corresponding to /ga/ the observer hears /da/. The effect is an involuntary action

that can only be broken by removing one of the modalities. Such experiments strongly

suggest that our perception of human speech involves a low level audio-visual integra-

tion. However, it is not entirely clear how much our prior information about human

speech plays a role in this illusion.

There has been a variety of work on audio visual integration in the domain of

human speech. Some have worked on measuring the low-level statistical relationship

between audio and video signals [8, 20, 12], while others have focused more on the

creation of phoneme and viseme models for the higher level task of audio-visual speech

recognition [21]. The solution to the speech correspondence problem most likely lies

somewhere between these two extremes. It is our goal to build a practical joint

audio-visual statistical model that incorporates prior knowledge about human speech,

while at the same avoids the need of a full audio-visual speech recognition or person

identification system.

This thesis adopts a statistical framework in which the speech correspondence

problem is put in the form of a hypothesis test. Our primary focus is on the sub-

task of testing the likelihood of audio-visual association using a limited number of

observations from a single camera and microphone. We explain noth generative and

discriminative methods for carrying out this test compare the relative performance

18



of each. We discuss issues that arise from the inherently high dimensional nature

of audio-visual observations and address these problems by exploring different tech-

niques for finding low dimensional informative subspaces in which we can perform

our hypothesis tests. All experiments are performed on subjects taken from the MIT

AVTIMIT database.

1.1 Outline

We begin by discussing related work in Chapter 2. In Chapter 3 we present the

speech correspondence problem in terms of a simple hypothesis test. We compare

both generative and discriminative approaches for executing this test and discuss

how to measure performance. Additionally, we explore how using models learned

online or from training data affect performance. In Chapter 4 we discuss the practical

issues that arise from using high dimensional audio-visual observations. We discuss

some standard techniques for dimensionality reduction and present the concept of

informative subspaces. Different techniques for learning these subspaces are explored.

Details about the AVTIMIT database and the audio-visual features used for our

experiments are discussed in Chapter 5. We show how we use a simple face tracker

to obtain segmented faces of the subjects used for testing. Experimental results are

presented in Chapter 6. We study our ability to learn person-specific as well as generic

models for measuring audio-visual association. Lastly, we conclude with discussion

and future work in Chapter 7.
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Chapter 2

Related Work

Recently many systems have been developed for speaker detection and segregation

using video or audio cues. Here, we summarize a portion of the most relevant previous

work. An early system, [14], used cues such as user pose, user proximity and visual

speech activity. These cues were combined using simple fusion rules to determine

whether a person is speaking to the camera and to enable automatic control of a

speech recognition system in a traditional desktop environment. Detection of speech

activity was achieved by observing changes in the average illuminance of a tracked

mouth region. Several systems for speaker detection using visual cues have been

proposed using Bayesian Networks [24] [26]. These systems exploited a sophisticated

statistical model for fusion but were primarily designed for a single speaker.

There are many approaches to speaker localization from one or more audio sensors.

Microphone array processing can be used to estimate the direction of arrival from

one or more sources [15]. [25] demonstrated the use of a microphone array and a

single camera to locate a speaker in a scene; they used a time-difference-of-arrival

(TDOA)/cross correlation technique to locate the direction of speakers relative to

the interface.

All of the above systems improved their performance by combining information

from both modalities. However, they were primarily designed for a single user. They

did not take advantage of any measurement of low-level audio-visual statistical de-

pendence that could have helped disambiguate who was speaking in tightly packed

21



+V(x' y't) t

time W A(t) (xy)

Figure 2-1: Hershey and Movellan's technique.

group of people.

Hershey and Movellan were one of the first to explore the use of audio-visual

synchrony/association to locate speaking humans [8]. They define the synchrony as

the degree of mutual information,I(A, V), between the audio and video signals:

I(A(t), V(x, y, t)) = - log CA(t)ICv(t) (2.1)
2 o ICA,v(t)|

where A(t) and V(x, y, t) are windows of the audio and video signals at time t and

at location (x, y) in the image. They make the assumption that audio and video are

individually and jointly Gaussian over a small window of time with ICA(t)i, ICv(t)

and ICA,v (t) I being determinants of the audio, video and joint audio-video covariance

matrices. These statistics were calculated recursively as the time window changed.

Their audio representation was simply audio energy and the used gray scale intensity

values as their video representation. With these one-dimensional representations the

mutual information measure is a function of the signals correlation. That is

1
I(A(t), V(x, y, t)) = log (1 - p(x, y, t)2 ) (2.2)

2

where p is the Pearson correlation coefficient. They calculate this mutual information

or correlation at all locations in the image, treating each pixel independently. This

gives a map of audio visual synchrony as shown in Figure 2-1. This map is used

by a simple tracker that looks for a localized area of high audio-visual correlation to

identify who the current speaker is.
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"Learned" Subspace

Figure 2-2: Finding an informative subspace

This method works reasonably well and is computationally efficient. However,

it makes strong assumptions. The method assumes that each pixel is independent

and that they are marginally and jointly Gaussian with respect to the audio. There

are many cases in which this is clearly an incorrect assumption. Neighboring pixels

around the mouth region will be highly correlated with each other and any head

movement unrelated to the audio will cause changes in all pixels on the face.

Improving upon the previous approach Slaney and Covell concentrated on a tech-

nique that measured audio-visual synchrony by combining the information from all

pixels. Their technique also assumed a jointly Gaussian distribution but exploited

canonical correlation analysis to find a projection into a linear subspace that maxi-

mized the mutual information between the audio and the video [20]. That is, given

audio and video observations, A and V, they found a linear mapping into a lower

dimensional subspace.

Ya = hiAYA a (2.3)
Yv = hIV

This linear mapping, defined by ha and he, was found using canonical correlation

analysis [9] which maximizes the correlation, p, between YA and Yv. This mapping

was learned from a training set composed of aligned faces and their corresponding

audio. The synchrony of new data was measured by projecting that data into the

learned subspace and measuring correlation. A depiction of this technique is show in

Figure 2-2.

Fisher et al proposed an extension of these ideas in [12]. They removed the

Gaussian assumption by modeling the joint distribution nonparametrically and they
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estimated mutual information using this distribution at each. time step. In place of

canonical correlation they described an optimization procedure that finds a mapping

to a subspace that maximizes their estimate of mutual information.

Both of these learned subspace techniques removed the independent pixel assump-

tion used by Hershey and Movellan. Fisher et al went one step further to remove the

Gaussian restriction. All of these techniques are very useful in that they are general

enough to be applied to other domains to measure synchrony/association. However,

they are strictly online techniques and ignore any information that may be gained

from using a model learned from training data. In addition, the experiments pre-

sented in [8], [20] and [12] papers focused on the task of localizing speakers and did

not address situations in which the audio was not consistent with any part of the

video.

Nock et al presented an excellent empirical study of techniques for assessing audio-

visual consistency in [23]. In addition to performing experiments dealing with speaker

localization, they compared techniques for identifying the "consistent" speaker from

a set including multiple confusers. The perform these experiments using a large

database of full-face frontal video and audio of speakers, who read sentences from a

large vocabulary database.

They compare the use of online measurements of MI to a more sophisticated

model based technique that used an HMM trained on held out data. Ultimately

they showed that the simple online Gaussian MI technique worked best in the task

of determining which speaker most likely produced the observed audio. However, in

[22], they concluded that this technique was not suitable for producing an absolute

measure that could be used in the task of distinguishing between associated audio

and video observations and those that are not. This task of classifying audio and

video as being associated or not associated is heavily focused on in this thesis. We

aim to explore a more varied set of techniques then tested in [22] in order to extend

their search for one better suited to this task.

In most of the previous work presented above, a limited set of audio and visual

features were tested. Although Slaney and Covell explored the use of different audio
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representations, those working on audio-visual speech recognition have gone further in

the search for useful audio-visual features. In the AVSR community there have been

differing assumptions about were the relevant visual speech information lies. Some

have focused on appearance based features obtained from tracked facial regions. They

then use PCA or other techniques borrowed from image compression to preserve the

relevant speech information. Others have focused more on shape based features found

by tracking lip contours or facial movement. More recently some have explored the use

of active appearance models (AAM) [4] which jointly model both shape and texture

[18].

There have been a few studies comparing different visual features performance in

AVSR systems. [17] showed that AAMs seem to outperform active shape models and

give similar performance to purely appearance based features for AVSR. [27] reported

that DCT based features were better than lip contours. Although these studies sup-

ply some insight into how features affect AVSR performance, which features are best

for preserving speech information is still an open question. However, there is a strong

argument for the use of appearance-based features in that they can capture informa-

tion about places or articulation such as tongue and teeth visability. [31] has shown

that human speech perception based on lip contours is worse than perception based

on the entire mouth region.
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Chapter 3

The Speech Correspondence

Problem as a Hypothesis Test

Given a scene and multiple people being tracked, we define the speech correspondence

problem as identifying who, if anyone, is speaking at any given time. To enable

realtime performance, this task must be carried out over a sliding window of time,

which limits the number of observations. Observations are obtained using a single

camera and microphone and we assume access to a simple tracker that, for every

frame, presents us with the face of each individual in the scene.

Decision theory is the natural choice for addressing problems of this form. Thus

a solid framework for setting up this problem is in terms of a hypothesis test. This

framework assigns each possible configuration of who is speaking as a separate hy-

pothesis. We exploit the fact that each of these hypotheses imply a different model

for our observations in order to make a decision.

There are two basic approaches to carrying out this hypothesis test. A fully

generative approach uses some parametrization of joint distribution p(obs, hyp) to

form a decision rule that picks the most likely hypothesis. A purely discriminative

approach is solely concerned with finding a good decision rule and does not explicitly

model the full joint distribution of the observation and hypothesis.

This first half of this chapter discusses the speech correspondence problem in terms

of a likelihood ratio test (LRT). Measuring performance of such test is discussed

27



--- AO A, --- Ak

.. VO V, .--. V

(a) NO (b) H1

Figure 3-1: Hypothesis test for Audio-Visual Association

in addition to how performance is affected when using different generative model

learning techniques. The final section of this chapter explores the use of a specific

discriminative approach using Support Vector Machines (SVMs).

3.1 A Generative Approach

We begin with the basic definition of a hypothesis test. The solution to a hypothesis

test is described in terms of a decision rule which compares likelihood of the observed

data under each hypothesis. This section will pose the speech correspondence problem

as a hypothesis test. It will discuss how to measure performance as well as how to

obtain a generative model for the audio-visual observations. Lastly this section will

show how performance is affected by errors in these models and how one can carry

out a hypothesis test when no prior model has been learned.

3.1.1 Audio-Visual Association LRT

We will begin by exploring the subproblem of identifying audio-visual association. Let

us define this problem in terms of a binary hypothesis test in which each hypothesis

explains a different factorization of a simple graphical model. We assume that our

observations will be a series of N consecutive i.i.d. audio and video observations and

we will define our hypotheses as

'HO Audio and Video are independent p(ak,vk) = pff(ak)pH0 (vk) (3.1)

'H :Audio and Video are dependent p(ak, V) = pH, (ak, Vk)
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Figure 3-1 shows the two associated graph factorizations. The graphs clearly show

that the audio-visual association corresponds to some audio-visual dependence. We

will assume that the prior probability of either of these hypotheses being true is equal.

This results in a hypothesis test that compares likelihoods under each hypothesis.

HO
p({a}N, {V}N ) p({aN, {V}NI'HO)

N 0 N

R pH,(ak,Vk) ! flpH.(ak)PH(Vk)
k=1 -t k=1

(3.2)
N l 0
N Pi- H1(ak,Vk)

k=R pHO(ak)PHo(Vk)

N RO
, log pH1(ak, Vk) < 07i

L(a,v) N 1klogp=H(ak)PH(Vk) >

We see from the above equation our hypothesis test is simply a likelihood ratio test

comparing C(a, v) to a threshold 7.

This model for our audio-visual observations is clearly a huge simplification. It

assumes that speech produces i.i.d audio-visual samples and that it is a stationary

process. This conflicts with the approaches taken by most modern speech recognition

systems which invest a great deal in modeling the dynamics of speech. However,

our goal is much simpler than recognizing speech. Thus, we start with the simplest

model and study how well our assumptions hold and what level of performance we

can achieve. In addition, this model is consistent with those used in [8], [20] and [12].

3.1.2 Speech Correspondence LRT

The speech correspondence problem is a simple extension of the AV association prob-

lem shown above. Given a single audio source we seek to determine which one (or
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Figure 3-2: Speech Correspondence Hypothesis Test

none) of M video sources (vi..v") is jointly dependent with the audio. Our ob-

servations will be a series of N consecutive i.i.d observations and we will define our

hypotheses as

NO : Audio is independent of all M Video sources

Hi-: Audio and Video source i are dependent. (3.3)

All other video sources are independent of the audio

Figure 3-2 shows the two associated graph factorizations. We again assume equal prior

probabilities for each hypothesis. Determining which hypothesis is correct requires

M - 1 comparisons / tests. Comparing hypothesis i to j yields.

p({a}k, {V1 k, ... , {v"} IN) 5 p({a}k, {v}k, ... , {vM"kIHj)

-

N / N

Hp1 (ak v ) 1 1PI (v7)) H (pH,(ak, Vj) 1 P,(V)
k:=1 mfji i k=1 mn.5j

N Pyi (ak, VO ptm y 11(V )

k=1 p (ak,v mj) ,,j PHMk)

N ll pH1 (ak v, V) H j pJJUv) 9
r -j E log 0='

k k=1l pg -I (ak, v ,) HrnIp (v )N

(3.4)
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Comparing 'Hi to 'Ho is the same as shown in the previous section.

3.1.3 Measuring Performance

We can gain some insight about what this likelihood ratio test is doing by looking

at what the expected value of the likelihood statistic is under each hypothesis. The

separation of this statistic under each hypothesis gives some indication of how well

one can discriminate between them.

Expected Likelihood Statistic for AV Association

When HO is true the audio and video are independent and as N becomes large we

obtain:

lim C(a, v) = Ev,,1 [(a,v)= -D(pmJ(a)pH(J(v)||pHL(a,v)) (3.5)
lo,N->oo

which is the negative KL divergence between the model under 'Ho and H1. Similarly

when we look at this ratio when H, is true we have:

lim C(a, v) = E,, [C(a, v)]
W1,N-oo

= D(p- 1 (a, v)pH1, (a)pl, (v)) (3.6)

+ D(pHI (a)p, (v)IIpH (a)pn0 (v))

= IH (a; V) + D (pji (a)p, (v) I PHo (a)pH, (v))

which is the mutual information between the audio and video under hypothesis H,

plus a model difference term comparing the marginals under each hypothesis. Since

KL divergence is strictly positive we see that we get a nice separation between the

two hypotheses.

Expected Likelihood Statistic for Speech Correspondence

For the speech correspondence problem we see that under Hi asymptotically our

likelihood ratio becomes:
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lim J pft (a, vi) 171 pH. (v') log pgs (a, vi) Hm'i PHi (v ) dadv 1 ...dy-
ii,N-oo p,(a, vi) Hm0j pH, (vrn)

( a,(a, vi pI (P(v )pH (a) Hmj pi (yiM)
PH, v) p (vm) log P dadv'...dv

MOi pjl,,(a)pff (vi) pH, (a, vi) flmoj pHj (vm)

IH (a; vi) + D(pj (v)pH (a)I P, (a, vi)) + E D(pH (v") IpH, (v m))

(3.7)

When a Hi is true we obtain a collection of three terms. The first term rewards the

statistical dependence between a and v . The second term rewards any divergence

between the marginals under 1Hi and the joint under 7Hj for a and vi. The last term

adds even more separation from differences in the marginals under each hypothesis.

The sum of these terms are strictly non-negative. Furthermore, when Hj is true we

obtain:

lim 4, =f p, (a, vi) H PHf, (v") log pfi (a, vi) JL0 PHi (vm) dadv'...dv m

?ij,N-oc PH, (a, vi) PjPH, (vm)J

-Ig,(a; v1) - D(pH,(vz)pH(a) IpH (a, v')) - E D(pH,(v') Ip. (v'))
m~i

(3.8)

which has similar terms but is strictly non-positive.

Receiver Operator Characteristic (ROC)

The amount of expected separation gives us some intuition about the performance

of our hypothesis test but is not the whole story. When we are forced to make a

decision from a limited set of observations our likelihood ratio will have a different

distribution under each hypothesis. In our case L(a, v) is the sample mean of a

function of i.i.d (the independence is over time) random variables (ak and V). The

central limit theorem tell us as we increase the number of observations, L(a, v) will be

normally distributed under each hypothesis. The means of these distributions will be
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Figure 3-3: General LRT Performance characteristics. The probability of detection is

the integral of L(a, v)'s distribution under Ho (red,left) from q to oo.The probability

of false alarm is the integral of L(a, v)'s distribution under N, (blue,right) from q to

00.

Equations 3.5 and 3.6 for hypothesis Ro and R, respectively. In addition the weak

law of large numbers says that these distributions will converge to delta functions

at their means.Figure 3-3 illustrates these distributions for a generic likelihood ratio

test.

The performance of such a test can be described by a receiver-operator charac-

teristic (ROC) which plots the probability of detection, Pd (choosing N 1 when H1 is

true) verses the probability of false alarm, Pf (choosing N 1 when No is true). We ob-

tain different (Pd, Pf) pairs by adjusting the threshold rj. Our goal is obtain the pair

with the highest Pd and lowest Pf. We know that in the presence of a large number

of observations the distribution of likelihood ratio will converge to a delta under each

hypothesis and we will obtain a 100% Pd and 0% Pf. However to predict the exact

performance using a small number of observations we must know the analytic forms

of the distributions shown in Figure 3-3.

3.1.4 Aspects of using a learned Generative Model

The above analysis presents a straightforward method for carrying out this hypothesis

test when the forms and parameters of the joint and marginal probability distributions

are known. With this knowledge we know the 7 obtained in Equation 3.2 will produce

the best possible (Pd, Pf) pair. In this case we simply plug in our audio and video

observations into L(a, v) and make a decision.
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The problem is that we most likely lack the correct form for these distributions.

There are a few ways to address this problem. The simplest thing one can do is

to assume a particular parameterizations of the distributions and proceed with the

hypothesis test. A second option would be to estimate these distributions from a

collection of training data. A third option is to learn the model online from the

samples that are being tested.

Using a Model Learned Offline

Appendix A has brief overview two extremes in how to learn a distribution from

a set of training samples. It discusses estimating parameters for Gaussian model

in addition to a nonparametric approach using a Kernel Density Estimate (KDE).

Using one of these techniques we can then carry out our hypothesis test, replacing

the densities with our estimates, q. This yields:

N

Eq(a,lv) = log H (3.9)Lq(a v =N Crq~t,(akOqG, (Vk) 39

Let us see how this will change the performance of our hypothesis test. When 'Ho

is true (i.e. the correct distribution is pH,(a)pH0(v)), asymptotically:

lim Cq(a, v) =[pH (a)pH0 (v) log H, (a, V) dadV
WtO,N--*)oo J ~qH 0,(a) q1Hi(v) )

SPH 0 (a)P (v) log (pH 1 (, v) pH0 (a)pH (v) qH,1 (a, v) dadV
pj\H0 (a)pH (v) q9H (a)qH0 (v) pH1 (a, v)

-D(pH,(a)pH,(v)|pH1 (a, v))

+ (D(pH.(a)pH,(v)I qH(a)qH(v)) + pH (a)pH, (v) log pH1 (a, v) dadV
0 0 qH 1 (a, v)

= -{factorization difference} + {model error}

(3.10)
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and when 'R, is true we will obtain:

lim L. (a, v) = PH, (a, v) log qH,(a, V) dAdV
'Hl,N-+4oo qH. (a) qH. (v))

PH1 (a, v) log PH1 (a, v) PH, (a)pH1 (v) qH, (a, v) PH. (a)pH, (v) dAdV
PH, (a)pjh (v) PH. (a)pHO (v) PH, (a, v) qH, (a) qH (v)

= IH1 (a; V) + D(pH. (a)pH1 (v)I IpH(a)pH (v))

- (D(pH (a, v)II qH, (a, v)) - PHi (a, v) log H.(a)pH, (V) dAdV
j ( qH. (a) qH. (v)

= {factorization difference} - {model error}

(3.11)

It is clear from Equations 3.10 and 3.11 that when we pick a model q which is

close to the correct, p, we will get the same results shown in Equations 3.5 and 3.6.

When q is incorrect, we get extra model error terms which can potentially decrease

our separability. However, we know from the previous section that to full quantify

our performance we need to know the actual distributions of our likelihood ratio

under each hypothesis. If we had these distributions we could search for a threshold

-q corresponding to the best possible (Pd, Pf) that satisfies an acceptable limit we

choose for Pf.

It can be shown that for certain situations and incorrect model choice, the hy-

pothesis test will produce results that are opposite of what we want [11]. In addition,

finding a good model requires a consistent density estimator and a sufficient amount

of training data under both hypotheses.

We can carry out the same analysis for the full speech correspondence problem.

In order to simplify the problem we will choose distributions such that the marginals

are the same under both hypotheses (i.e. qH,(a) = qH,(a) = q(a) and qH (vm)

qH,(v"n) = q(v")). This produces the likelihood ratio

qj = k log q'(aH , vk)q(vk) (3.12)
N qH,(ak, Vi)q(v')
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Under 1-i asymptotically our likelihood ratio becomes

lim £q:ij IJ(a; v') + D(pH,(a)p (v) IpFI, (a, vi))
'H,,N->oo

- D(pH,(a,vi)I|qH(a,v)) + D(pu.(v)ljq(vi)) - D(p 1,(vi)Ilq(vi))

+ ( pH,(a)pH,(v l g (a, V Adv
+J P~qu (a, v )

(3.13)

Similarly under H(

lim Lq:i,j- =-IH, (a; v3 ) - D(pH3 (a)p-,(v')l|pH (a, v))

+ (D(pu,(a, vi)I|qu (a, vi)) + D(pj (v") Iq(v')) - D(p1,(vi)I|q(vi))

+ JpH (a)pH, (v') log ( qff, (a, v) dAdvi
pr, (a, vi)

(3.14)

Although the above equations are messy we can clearly see that when we choose the

wrong model we get a combination of the optimal answer and some extra corrupting

terms which have to do with the model differences between p and q.

Using a Model Learned Online

An alternative to the previous approach is to learn these distributions and perform

the hypothesis test at the same time, i.e. we can obtain an estimate of our likelihood

ratio:
1N ( 1(ak, Vk)(.5

t (a, v) = log
N _ (ak)1(Vk))(.5

where ^(a, v), ^(a), and k(v) are consistent estimates of the joint and marginal den-

sities from the same N observations. In this case, we will be estimating our densities
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random permutations of the data

^L(A,V)

Figure 3-4: Estimating distribution uIder Ho

from data that cones from one of the two hypotheses, but we do not know which one.

We again look out the asymptotic behavior of our likelihood ratio. When HO is true

our density estimator will find the joint to be equal to the independent factorization

of the marginals, leading to

lim (a, v) -D(pu,, (a)pij (v)| jI(a, v)) + D(pirr (a)pj, (v)| IP(a)P(v))

-1D(pul (a)pur (v)j I(a)P(v)) + D (ps, (a)pij (v) IP(a)P(v))

=0

(3.16)

Furthermore, R 1 being true results in

lin L,(a, v) = D(p1 , (a, v)I P(a)P(v)) - D(pH, (a, v)fIjP(a, v))
'H i,N-oc

= D(Psi (a, v) I pyl, (a)p/j, (v)) (3.17)

= I 1 , (a; V)

where the last step above is due to the fact that if p is consistent estimate as N goes

to infinity P will converge to the true density (inder K 1 ), pmj. This justifies the use

of mutual information estimates from observed data to asses audio-visual association

in[8],[20], and [12].

While this shows mutual information is an informative statistic, we still need some

way to choose between the two hypotheses. We would like to find somie threshold for

L(a, v) that gives us the best (PI, P1 ) pair. Again, this requires knowledge of how
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4(a, v) is distributed under each hypothesis. If we had a model of a particular

hypothesis, 7-i, we could draw random samples and estimate P(L(a, v)Xij). The

problem is that when are estimating our model online we do not know what hypothesis

our observations came from.

Fortunately, however, we should always be able to simulate observations from

hypothesis ho. If we randomly pair our audio and video observations we can simulate

independence. We can simply fix the video and randomly permute the order of the

audio observations. For each permutation we can calculate C(apermv). Performing

multiple permutations we can estimate p((a, v) 17o). With this knowledge, our

hypothesis test would be performed in the following way:

Algorithm 1 Making a decision based on online model estimates

1: Calculate L(a, v)
2: Perform Nperm permutations of the observations obtaining a set of (apErrn, v)
3: Use these sets to estimate p(C(a,v)to)
4: Find P= f (L v((a, v)7io)

5: If Pf is below some acceptable threshold you choose for false-alarm rate choose
H1, else choose Ho.

Again we carry this analysis further and see how this online estimation method

affects the full speech correspondence problem. Using a consistent density estimator

p gives us our likelihood ratio in the form.

S1N f(ak,V
Li,k Vl (3.18)

N f(ak, V')^(vi)

When 7-i is true ^(a, vi) -+ pH,(a,vi), (a, vi) -+ pg,(a)pHjvj) and ^(v")

Pm,(v m ). Using this information and plugging in ^ in place of the q's in Equation

3.13 we see that:

lim cy = IH,(a, V11) (3.19)?Hi,N-oo
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Similarly under 7-4:

lim = -I(a, vj) (3.20)
'N,N-oo

Again we see that when we estimate our densities online our hypothesis test is based

solely on the mutual information between the variables. However we are still faced

with the problem of how to decide between our hypotheses since we do not know the

optimal threshold for decisions in this situation. We can make a simple extension to

Algorithm 1 shown in Algorithm 2.

Algorithm 2 Speech Correspondence Hypothesis Test with Online Models

S = {}
for i = 0 to M do

Choose between Ho and Hi using Algorithm 1
if Chose 7- then

S = S U {i}
end if

end for
if S is empty then

Choose Wo
else

Choose Ri,? where r n = arg max.ws I(a; V"i)
end if

3.1.5 Simple Example

Here we will explore the relative performance of the techniques described above

through a simple example. We choose a model for our audio and video such that:

Ho :p(a, v) ~ JV(0, C(6, 0)) (.1
R, : p(a, v) ~ P(0, C(4, .6))

where

C(u 2, p) = 0 2 (3.22)

We can now study the performance of our hypothesis test by randomly drawing
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samples and evaluating L(a, v) under each hypothesis. Performing this calculation

over many trials will give us a distribution of L(a, v) (one for each hypothesis). An

ROC curve can then be calculated by adjusting a threshold and calculating (Pd, f)

pairs from our estimated likelihood distributions.

We follow the same procedure using an incorrect model and evaluating q(a, v)

as our likelihood statistic where:

NO : q(a, v) ~ .(O, C(4, 0)) (3.23)

H1 : q(a, v) ~ A(0, C(6, .2))

Notice that this model maintains the same graphical factorization but incorrect mod-

els the variance and correlation.

Lastly we do the same using L(a, v) where we estimate our densities online. Here

our density estimator assumes a Gaussian distribution and calculates the sample mean

and variance.

Figure 3-5 shows the relative performance of these tests for varying number of

observations. The top row shows ROC curves. Each curve corresponds to a test with

a set number of observations. The lighter colors correspond to fewer observations. We

see as the number of observations increases the ROC curves converge to the corners.

Using the correct model gives almost perfect performance with more than 10 ob-

servations. In addition, for a reasonable number of observations, the online estimation

technique performs just as well as having the correct model. However when we in-

correctly choose our model we see that our test fails catastrophically, and our results

are the opposite of what we would hope for. In this case we could just reverse our

decision and obtain reasonable performance. However, when we are performing the

test on real data we will not know whether or not we are making correct decisions.

Figure 3-5(b) shows the mean and variance of the likelihood statistics under each

hypothesis. The separation between distributions is greatest in the correct model

case, and we can clearly see how the two hypothesis switch when we use the incorrect

model.
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Figure 3-5: Hypothesis test for single audio and video stream
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3.2 Discriminative Approach

Much attention can be focused on obtaining the "correct" model under each hypothe-

sis, but if the main goal is to discriminate between consistent and inconsistent speech

one may question the necessity of having such a strong generative model.

Thus we can examine this problem in the context of discriminative classification

techniques. We define a set of 1 training vectors xi C Rn, n = N(na + n,), i = 1, ... ,

with each xi containing N audio (a E R"-) and video (v E RnJ) observations

[af ... aT vT ... vT]T, Additionally we have a set of corresponding labels yj E -1, 1 in-

dicating the class of xi. The two classes, -1 and 1, will correspond to inconsistent (RO)

and consistent(7t) audio-visual observations. We wish to learn some function, f(x)

from training data that can be used to map a new observation x to the appropriate

label with some error criteria we define.

class 1

f(x) <; b (3.24)

class -1

Training data for class 1 can easily obtained by recording long video sequences of

people speaking, while data for class -1 can be easily created through permutations

of the recorded audio and video(x, shares marginal statistics in each class).

The approach described above discriminates based on a single vector x which

contains all N observations. This removes the i.i.d assumption used in the previ-

ous sections. The learned discriminating function may be able to take advantage of

correlations over time. However, it would be useful for comparison to define a dis-

criminative approach that is closer to the likelihood ratio test we described using the

i.i.d assumption.

We can redefine x to be a single audio and video observation. The classifier we

learn will then give an f,(x) that can be used to discriminates dependent audio and

video from independent based on a single observation. Assuming i.i.d observations
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we can define a new classifier based on N samples:

N class 1

fs(xi) <; b (3.25)
class -1

where, to repeat, each xi is an observation [aTvf]T.

3.2.1 Support Vector Machine

The particular technique chosen for this paper is Cortes and Vapnik's C-Support

Vector Classification (C-SVC) which solves the following problem (32]:

1T I

min -wTw+-C (
w,b, 2

subject to y.i(wTO(xi) + b) > 1 - (j, (3.26)

> 0,1i = 1, ..., 1

The basic idea is to find some hyperplane whose normal is w in some high (perhaps

infinite) dimensional space defined by # that separates the training data xi into the

two defined classes. The optimal hyperplane is the one that maximizes the margin

between the classes. Here C is the penalty parameter on the error term. The dual to

this problem is:

l 1
max W2 (a) a3 -- ~>> ~max~ WEa aiajyiyjK(xi, xj)

i=1 i=1 j=1

0 < ai < C, i =1,...,l (3.27)

subject to yiac = 0
i=1

where:

K(xi, xj) O- (xJ)O(xj) (3.28)
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is called the kernel function. The kernel function defines the inner product in the

Reproducing Kernel Hilbert Space (RKHS) that # maps to. To solve the C-SVC we

only need to define the higher dimensional space through K rather than explicitly

defining # and solve the dual problem. The dual problem shows there is a finite

number of a's to find (at most 1). The training vectors with nonzero ai's are called

the support vectors. The discriminating function is defined in terms of these support

vectors:

f (x) = yjiK(x, xi) (3.29)

we can also relate the margin M to w and a:

1
m2 = (3.30)

WTw
1 1

wTw =Z aiajyyjK(xi, xj)AM2 (3.31)
i=1 j=1

We add the notation M- 2 to refer to the squared L2-norm of w (the inverse of the

squared margin).

Therefore, to lean an SVM classifier we only need to defined the kernel function,

pick a value for C and solve the quadratic program described in Equation 3.27. For

this thesis we use a radial basis function (RBF) kernel. This kernel function has single

parameter y and has the form (similar to a Gaussian without a scale factor):

K(xi, xy) = exp(-yjx, - xjII2) (3.32)

We use a simple grid search to find good values for C and y. For each parameter

setting in the grid search we perform 4-fold cross validation. This is done by breaking

our training data into 4 subsets and iteratively training on 3 and testing on a the

remaining subset. We keep the parameters that produce the most correctly classified

test samples during cross validation. We then train the SVM will the full training

data using these parameters. Figure 3-6 shows a contour plot for a sample grid search.

In Figure 3-7 we show the results of training an SVM on simple Gaussian data.
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Our training data consists of two dimensional samples drawn from a joint Gaussian

density with correlation coefficient of .8 for the one class and samples drawn from the

product of marginals for the other. Figure 3-7 shows these samples in addition to the

SVM's decision boundary, i.e. the boundary described by f(x) - b = 0. For this data

we also know the analytic form for the optimal Bayes classifier/hypothesis test. We

plot it's decision boundary L(x) - rl = 0 as a dotted line in Figure 3-7. We see that

the decision boundary found by the SVM is similar to the optimal one. However,

this boundary was found with out any prior knowledge of how these samples were

generated.
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Chapter 4

Informative Subspace Learning

The previous sections have shown how to carry out hypothesis tests to identify audio-

visual association and determine speech correspondence. The basic setup for detecting

audio visual association is shown in Figure 4-1(a). Audio and video observations come

in and a likelihood statistic is calculated. This statistic may be calculated using an

online method that estimates mutual information from the input observations, or

may make use of a model learned from training examples. The generative approach

uses training data to learn distributions for the observations while the discriminative

learns a discriminating function.

Unfortunately both of these approaches are sensitive to the dimensionality of the

observations. The higher the dimensionality of our observations the more training

samples needed to learn a model for them. While theoretically discriminative classi-

fiers should ignore any irrelevant dimensions of the input, in practice as more input

features or dimensions are added performance begins to degrade beyond a certain

point. These issues lead to having inaccurate models for our observations. It was

shown in Section 3.1.4 that the performance of our hypothesis test can be degraded

by such inaccuracies. Additionally, high dimensional data comes with the cost of

added computational complexity.

Audio and video are inherently high dimensional and thus we must address these

issues. We do this by adding a another step to our testing procedure that performs

dimensionality reduction prior to evaluating our likelihood statistic, as shown in Fig-
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ure 4-1(b). This step applies separate functions to the audio and video observations

that projects them into a lower dimensional informative subspace.

fa(a)

S= f,(v)
(4.1)

We would like learn these functions not only so that reduce dimensionality but also

that they preserve the relevant information for determining audio-visual association.

This learning will take place during training.

In this thesis we restrict these functions to be linear. We explore ways to find

a compact set of linear bases, Ha E W"-X" and H, E R x"W where ma < na

and m, < no, to project the observations onto such that they preserve relative

dependency between the audio and video. Using these bases, each feature in the lower

dimensional space is a linear combination of the higher dimensional features. This is

a reasonable approach if we assume the information in our observations is distributed

across dimensions. Such an assumption is likely valid for video of a person's face,

where neighboring pixels share information about facial movement. Furthermore,

linear bases can ignore particular features in the high dimensional space that may be

irrelevant to our problem, such as background pixels in the video.

Only considering linear functions may seem restrictive. However this does riot
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limit us to measuring linear dependencies. Combining these linear projections with

powerful modeling techniques such as KDE or using an SVM classification will still

allow us to capture nonlinear relationships in the data.

In this section we discuss different techniques for for learning these linear bases.

Section 4.1 discusses techniques for reducing dimensionality such that the dominant

axes of variation in the data are preserved. Specifically this is discussed in the context

of the standard techniques of principle component analysis (PCA) in Section 4.1.1.

Section 4.2 introduces two techniques for finding maximally informative subspaces

that preserve dependency between two variables. Lastly Section 4.3 introduces a

technique for finding a lower dimensional data representation that preserves the ability

to discriminate between dependent and independent data.

4.1 Maximizing Energy

We begin by defining a general goal for dimensionality reduction. In general, given a

set of N training examples x 1 , ... , XN E R, we would like to find a m dimensional

subspace we can project this data onto such that we preserve the most relevant

information, where m < n. For this thesis we restrict this subspace to be defined by

m linear bases hl, ..., hn E R. This general description has no meaning unless we

define some criteria for what it means to "preserve the most relevant information."

In this section we discuss the standard technique of Principle Component Analysis

(PCA) where our criteria is to find these bases to best represent our training data in

a least squares sense.

4.1.1 PCA

PCA finds a set of linear bases that are ordered by the amount of variation they

capture. We can later describe new data by projecting it into a subspace defined by

limited set of these bases. We will begin with restricting ourselves to finding a single

basis vector such that we minimize its squared distance to each training vector. That
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is, we wish to find

N

y = arg min I|xi - hl|2 (4.2)
i=1

It is easy to show that solution to this minimization is simply the sample mean. This

is an intuitive result that simple states that if we were restricted to a one dimensional

representation of our data we just pick it's projection onto the mean. However this

tells us very little about the variation in the data.

In order to ignore the mean, PCA subtracts it from the training data and attempts

to represent it as a linear combination of m basis vectors.

m

xi - A = ayihj (4.3)
j=1

where we restrict I|hyII = 1 and hThk = 0 for j # k. Thus a1 ,i, ... , arn, form m

dimensional subspace representation of vector xi.

The goal of PCA is to minimize the squared distance between the training points

and their representation in this m dimensional space. Specifically PCA minimizes the

following criteria

N

JPCA =I (xi -- t) - aj,h 112  (4.4)
z=1 j=1

with the same norm and orthogonality constraints on the bases.

If we were given a set of bases it is easy to show that the set of aj that minimize

JPCA are (see [6])

aij = hT(xi - tt) (4.5)

which is just the projection of the zero-mean training points onto the each basis h,.

Replacing aij with this result and some algebraic manipulation of Equation 4.4
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yields new JPGA which is only a function of our basis vectors:

N

JPCA(H) = -HTCH + (N - 1) * >1xi - till2 (4.6)
i=1

where H = [hi ... h,,,] E Rnxm and C, is the unbiased sample covariance of the

training data.

The bases that minimize JPcA(H) are also the eigenvectors of C,.. This is easiest

to show for the case where m = 1. In this situation it is clear than minimizing

JPCA(H) is the same as maximizing hTQhi. Adding the norm constraint and using

a lagrangian multiplier our new objective function is

J1PCA(hi) = hf Cxhi + AhT Ch, (4.7)

Differentiating with respect to h, and setting it equal to zero yields

J1PCa = 2(Chi - Ahi) = 0
Bh1 (4.8)

Cxhi = \lhi

which is a standard eigenvalue problem. Multiplying both sides by h' and using the

unit norm constraint produces

h TCxhi = Alh Thi1  A 1  (4.9)
hTCxhi = A

Thus we see that the h, that maximizes J 1 PCA is the eigenvector of C, with the

largest eigenvalue.

Bringing this analysis back to an m dimensional representation we see that since

C is real and symmetric the top m eigenvectors will maximize JPCA(H) and will be

orthogonal.

A useful geometric interpretation of PCA is that it picks the principal axes of the

hyperellipsoid cloud formed by the training examples. These axes are defined by the
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(a) PCA on Video Only (b) Joint PCA

Figure 4-2: Comparison of PCA and JPCA. Top 3 components

eigenvectors of the sample covariance matrix C.. PCA keeps the m axes that capture

the most variation. The amount of variation is described by the eigenvalues Aj. If we

were to keep all n principle axes we would be able to described all of the variation in

the data. By only keeping the top m we describe

pv;,(m) (4.10)
e,.

percent of the variation/energy, where

N

e, = tr(C-,) =E Aj (4.11)
j=1

is the total energy of the training data.

When performing PCA with a particular m we are assuming that the relevant

information we wish to keep is contained in the top pv,(m) percent of the variation.

This is not a horrible assumption for audio and video data. For audio we an assume

that the major axes of variation will correspond to speaking. For video we hope that

lip movements will be captured in the top principal components we keep.

Figure 4-2(a) shows the top three principal components obtained from a video

sequence of a single person speaking. For this sequence we see that most variation

seemed to come from slight horizontal head movement while speaking. However, this

is not where we expect the relevant information for assessing audio-visual synchrony

to lie. This is not an unexpected result considering that we did not provide any

information about the audio.
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4.1.2 Joint PCA

Using PCA we can find separate low dimensional representations for audio and video.

This finds the axes of large variation of each modality independent of the other.

Ideally we would like to find the axes of maximum covariation between the audio and

video. In an attempt to achieve this we can combine our audio and video observations

into a single vector and perform PCA.

This is a simple idea, but we must be careful how we combine our observations. It

is dangerous to just concatenate our a and v vectors on top of each other. We must

be aware of the units each modality. If the audio data is represented in units that are

larger than the video data PCA will mainly model audio variation and vice versa.

Therefore, when performing Joint PCA (JPCA), we normalize the units of each

modality so that they have unit energy. That is, for our audio and video data we

perform PCA on
a T T T

avk = [ kVk (4.12)

which gives us a set of bases Ha, = [H T HT JT where Ha C Rnxm and H, E R4"xM.

After finding these bases we apply them to new observations as if Ha and H, En. xc

were learned separately.

Figure 4-2(b) shows the top three basis vectors (only the part related to the video)

found when performing PCA on the joint AV observations. Here we see the first and

third basis emphasis lip movement which is where we expect most of the audio-visual

information to lie. This is clearly an improvement. However, the second component

still accounts for horizontal head movement. This may be due to the fact that the

person was moving synchronously with the audio or that there was so much variation

in the video that it ignored the audio component.

4.2 Maximizing Mutual Information

It was shown in the previous section that we can find a lower dimensional repre-

sentation for our data using PCA. The use of PCA or JPCA was motivated by the
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assumption that the important information in our audio-visual observations were

found along the major axes of variation or covariation. While this is most likely true,

this criteria for preserving variation does not a have a clear link to the hypothesis

testing procedure described in Chapter 3. In this chapter we saw how our hypothesis

test calculates a likelihood statistic that, as more observations are used, approximates

measuring the mutual information I(a, v). It was also shown that the performance

of this test was also dependent on the amount mutual information, particularly when

we estimate our generative model online.

As discussed in Appendix B, mutual information is measure of the amount of

reduction in uncertainty about one random variable due to another. Furthermore

any processing can only reduce the mutual information. That is:

I(a; v) I(fa(a); v) - I(fa(a); f1,(v)) (4.13)

> I(a; fh(v)) I(fa(a); fv(v))

where equality is only achieved when fa(a) and f,(v) are sufficient statistics for a

and v. Appendix B.4.1 reviews the main criteria for a statistic to be sufficient.

Thus we see that we have a potential conflict. We wish to find a lower dimensional

representation for our data in order to improve our ability to learn a good model and

thus improve the performance of our hypothesis test. At the same time, we see that

by projecting our observations down to this lower dimensional representation we can

only throw away information and thus only decrease our maximum performance. The

data processing inequality tells us that only way we can avoid this conflict is if the

low dimensional representations of our observations are sufficient statistics.

While it may be impossible to find sufficient statistics for our audio and video,

we can try to find functions of our data that "nearly sufficient", in that they provide

some lower bound on the data processing inequality. In the case where these functions
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are restricted to be linear, we wish to find the bases Ha and H, that

H*, H* = arg max I(H a; H v)
H,H a (4.14)

= arg max I(i;

which makes I(A; i) a lower bound since we know the true mutual information:

I(a; v) > I(4; i) (4.15)

In the sections to follow we discuss how to carry out the optimization in Equation

4.14 under different assumptions about the distributions of our observations. Section

4.2.1 discusses the use of Canonical Correlation Analysis (CCA) to solve this opti-

mization when we assume our data is Gaussian. This is approach was used by Slaney

and Covell in [20]. Section 4.2.2 discusses the nonparametric approach used by Fisher

et al [12]. Lastly Section 4.2.3 discusses how to regularize these techniques.

4.2.1 CCA

We know that for two Gaussian random variables x and y that their mutual infor-

mation is (see Appendix B):

I(x; y) log (4.16)
2 |C(~ |

If x and y where both Id random variables then jC =r 2- , ICyl = 0, and IC[;,y

-OIX - = o-o (1 - p2 (x, y)) where p(x, y) is the correlation coefficient between x

and y. Plugging these into Equation 4.16 we obtain

1 O(_ _ 2
I(x; y) = - log O2 O2)2 (1 - p2(X, y))
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which shows us that for Id Gaussian random variables MI and correlation coefficient,

p, have a one-to-one mapping.

Using this fact we can show that if we restrict ourselves to single basis vectors for

audio and video, ha and h, our optimization in Equation 4.14 becomes:

h*, h* = arg max I(h Ta; h v)
h.,h a

1
= arg max -log(1 - p2 (h a, h v))

h.,he 2

= arg max p2 (h Ta,h v) (4.18)
h.,h,, a

= argmaxp 2 (, I)
hG,hv

= arg max p((A, v)
h.,hv

where the last step can be made since p can always be made positive. That is if the

extrema of p(a, v) is negative, and thus a minima, it can always be made positive

(and a maxima) by simply negating one of the variables (or projections).

The objective maximization in the last step of Equation 4.18 is the same as the one

for CCA, and its solution can be found by solving the following eigenvalue problems

(see Appendix C for a full derivation):

C aEC Cha =Pha (4.19)

C'CiC Cavh, = p2 hC (4.20)

where we pick the ha and hv with the highest eigenvalue p. In fact by finding all

the eigenvectors and CCA finds many bases, all ordered by ordering them in terms of

their corresponding p's. We will find at most min(na, nv) sets of bases. For each set

of bases ha,i and hvi we obtain a set of canonical variates di = hL a and '~ - hT v

that have a correlation coefficient of pi.

Each set of canonical variates is uncorrelated and thus, since we are assuming

they are Gaussian, independent of all others. That is p(^, sj) 0, p(y, yj) 0 and

p(xi, j) = 0 for i # j. Using the fact that information is additive for statistically
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independent variables, it can be shown that [2]:

I(a; v) = I(etj; i4)

2 (4.21)
= - log(1 - p2)

Thus, we have some way of telling how much information we lose by only keeping the

top m bases given to us by CCA.

4.2.2 Nonparametric Maximization of MI

The previous section showed how to find projections of our audio-visual data that have

maximal mutual information under a Gaussian assumption. However, we may want

to remove this Gaussian assumption and solve Equation 4.14 using a nonparametric

estimate of MI. That is we wish to solve:

H*, H* = arg max I(A;iv)Ha,Hv (4.22)

= arg max i(H~a; H v)
Ha,Hv

where

I(x; y) = H(x) + H(y) - H(x, y) (4.23)

is an estimate of the MI between any two random variables x and y. The estimates

of entropy are of the form

N

H(x) = N log Pi(xi) (4.24)
i1

where P(x) is the KDE from N samples of some random variable x.

There is no closed form solution for the problem in Equation 4.22. Fisher et

al first showed results on audio visual data using a gradient descent algorithm in

[121. We show the basic flow of the gradient descent algorithm used in this thesis
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in Algorithm 3. The input of the algorithm is a set of N pairs of audio and video

samples, a. and vi. Throughout this thesis we will refer to this technique as the "Max

MI" algorithm. This algorithm involves calculating the gradient of the MI estimate in

Algorithm 3 Basic Max MI Gradient Descent

1: Choose an initial Ha = H' and H = H' (perhaps randomly).
2: Project onto these bases to find a - H~a. and i=HTv
3: Learn KDEs p(av),p(a), and f(t) from these projected samples and calculate

4: repeat

5: Calculate da,= a % and di =

6: Use gradient to define targets for our projected data to move to: ati = ai+Ada-
and vti = is + Adiri

7: Use LS Regression to find the Ha and H, that minimize Ei - Hajj 12 and

I vti - HTv, Ff2 respectively
8: Project onto these bases to find A = HTaj and i= Hivi
9: Learn KDEs ( a),pj(a), and P(Vr) from these projected samples and calculate

10: until We reach our maximum number of iterations Nit, or we converge to some
maximum I(a; ')

the low dimensional space with respect to each sample of projected audio and video.

That is, for the audio we need to calculate

d (i; V) _ OHN(A) _ 9H(a, () 4.25)

for each of the N samples and an analogous calculation is made for the video. Ap-

pendix E details two different approaches for calculating the gradient of the entropy

estimate when a KDE is used to represent the distributions.

Targets for our audio and video projections to move to are found by following

the calculated gradients in step 6 of Algorithm 3. We then find the Ha and Hv that

project our original high dimensional samples to these target locations with the least

squared error using simple regression. This two step approach of first finding where

our projected data should move in order to maximize MI and then finding bases

that produce projections as close as possible to those target points, avoids direct

calculation of MI gradient with respect to each element of the bases/projections. We
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will see in the next section how this setup easily allows us to add regularization to

our algorithm.

While Algorithm 3 describes the basic flow of the optimization it does leave out

some important details. Notice that we use a step-size of A in step 6. In general

it is good idea to pick a step-size that is small as possible so we are following the

true gradient. If the A is made too large we may step over the maximum or oscillate

randomly around the solution. However, picking a A that is too small means the

algorithm will take longer to converge.

In practice we add a step to our algorithm that dynamically adjusts the step-size.

At each iteration we compare the previous estimate MI with the most recent. If we

haven't improved then we decrease the step size by some percentage and take a step

back to use the previous bases. If we have improved, then we increase the step size by

the same small percentage for the next step. At the same time we always make sure

our A is between some Ama and Am.. This allows for us to speed up the algorithm

when we are improving performance by progressively taking bigger steps. If we stop

increasing our MI estimate we then "jam on the brakes" and take smaller steps until

we starting seeing improvement again.

It also important to note that the gradient calculations and the MI estimates

dependent on the kernel size used when finding the KDEs for the projected data. In

practice we have found that using kernel sizes that are too small leads to convergence

and local max problems. In general using larger kernels and over-smoothed KDE

seem to give better performance. For this reason we either use the Rule of Thumb

method (see Appendix A) for picking a kernel size at each iteration or choose some

fixed relatively large size.

When using a fixed or relatively constant kernel size we must be take care not to

artificially increase our MI estimate by simply scaling our projected data points. We

can always maximize MI if we scale our data enough so that each projected point is

far enough away from every other point and that the fixed kernel acts like a delta

function. To address this problem we restrict our projected data to lie in a hypercube

of volume 2 m,'+m, so that it can not be arbitrarily scaled to improve the MI estimate.
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This restriction is enforced by moving any target locations out side of this hypercube

to be on its edge after step 6.

Lastly, an additional change can be made to improve the speed of the algorithm

when dealing with a large number of training samples. The more samples we have

the longer it will take to learn our KDEs and calculate the gradients. We can reduce

computation by starting with a random subsample of the training data and performing

the optimization. A new random sampling of the training data is taken every Nranditer

iterations. Here we are trading off the accuracy of our density estimates and MI

gradient estimates for speed. This procedure can also help reduce the probability of

getting stuck in a local maximum. However, there is a dangerous risk of overfitting to

each subsampling if the number of coefficients for the bases we are learning is greater

than the number of samples chosen. We will address this issue in the following section.

4.2.3 Regularization

In the previous section we explored two approaches for finding linear projections

of our audio and video data that have maximum MI. CCA provided a closed form

solution assuming the data was Gaussian, while the Max MI technique removed this

assumption and used gradient descent to find a solution. Both of these approaches

use a set of training samples to learn the linear bases. We make the assumption that

these training samples are representative of the distribution of observations we will

encounter during testing. We expect that when using a large number training samples

these algorithms will find linear projections that generalize well to having high mutual

information on test data. If, on the other hand, we do not have sufficient training

data or it is not representative of our test data our algorithms will not generalize well.

If we have fewer training samples than number of coefficients needed to learn for

our bases we can guarantee that CCA and Max MI will overfit. Take, for example, a

case when we are looking for single dimensional projections of both audio and video,

ha E R4aX and h, E R7-xl. If we have fewer than na + n, training samples have

an undetermined system and we will always be able to find an ha and h, such that

ha, = hTv, for all i. In other words, we can find a projection that gives infinite
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mutual information for the training data.

Even when we have more training samples than the degrees of freedom we may

still overfit to our training data. CCA relies on estimating the covariance of our

audio and video observations. If we do not have enough training samples we will in

turn have inaccurate estimates. In the Max MI algorithm we perform least squares

regression to find bases that project our data close to locations that maximize MI.

If we have too few samples our regression easily be corrupted by outliers. In general

having fewer training samples increase the risk that these algorithms fit to the noise

in the data.

To address these problems we introduce regularization as a means to limit the

effective number of degrees of freedom. We first discuss a simple technique that uses

PCA as a first step dimensionality reduction prior running CCA or Max MI. We then

discuss a more theoretically justified approach in which we add L2 regularization to

these algorithms.

Using PCA

We have discussed in Section 4.1.1 how PCA can be used for dimensionality reduc-

tion. We later argued that its criteria for finding the major axes of variation in the

training data does not have a direct connection to the performance of our hypothesis

test discussed in Chapter 3 in that the low dimensional subspaces found by PCA may

not preserve the information necessary for determining dependence between our ob-

servations. However, PCA or JPCA can be used to find a subspace that has a higher

dimension than we want, but at the same time throws away the subspace of the train-

ing data with very little variation. If we assume that we have not lost the important

information in this medium size subspace we can use this as a preprocessing for either

CCA or Max MI. This preprocessing step attempts to throw away unwanted noise

and reduces the effective degrees of freedom for the algorithms to follow.

We can think of this as a two step dimensionality reduction. The first step forms

a subspace that ignores the irrelevant noise in the data, while the second step weights

the importance of each basis vector in that subspace in terms of preserving mutual
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information. In the end we get a subspace that is a result of linear combinations of

the PCA subspace. Choosing the correct number of PCA components to keep in the

preprocessing step is an open question. We can try to find the optimal number by

using cross validation. Such a procedure is explored in the experimental section of

this thesis.

L2 Regularization

Rather than using PCA as described above we can add the more statistically justified

L2 regularization to CCA and the Max MI algorithm. As detailed in Appendix D

we can interpret L2 regularization in three ways. From a geometric point of view,

L2 regularization simply adds a L2 norm constraint on our bases. Rom a Bayesian

perspective this L2 norm constraint is equivalent to having a Gaussian prior on the

bases. Lastly, we can see how using this type of regularization corresponds to having

a model in which our observations are corrupted by some noise.

Adding regularization to CCA produces Regularized CCA (RCCA) which is the

solution to:

{ha, h,} = arg max hiT Cav h,
a,,h (4.26)

s.t. h (Ca + AaR,)ha h (C, + AR,)h,= 1

The main difference from CCA is that L2 regularization terms are added to C, and

CO. This helps keep these covariance terms full rank and can add prior knowledge to

help reduce the effect of having noise estimates.

Adding regularization to the Max MI algorithm changes it's objective function to:

H* , H* = arg max I(HTa; H v) + AaH RaHa ± AHTRH, (4.27)a aa a AHHRaH427

This change in the objective function only changes step 7 in Algorithm 3. Rather

than performing Least Squares Regression we perform Ridge Regression to find the

the Ha and Hv that minimize E| Ilti- H'aI12+A aHTRaHa and X,| Ivti--- H TvI 2 +
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AHTRH respectively.

Unfortunately, these algorithms add new unknown parameters Aa,Ra, A, and R'.

While picking the correct values for such regularization parameters is still an open

research topic Appendix D gives some insight into how to choose them. In practice,

we pick reasonable forms for Ra and R, (the simplest form being identity matrices)

and then use cross validation to find the best A, and A.

4.3 Maximizing Discriminability

In the previous section we presented techniques for finding an informative subspace

that maximizes mutual information. This fit in nicely with the generative approach for

detecting audio-visual association. Although we have discussed how discriminative

approaches such as the SVM may approximate the likelihood ratio calculated in

the generative tests, their primary concern is to discriminate between two classes of

data. Thus, it may be useful to look at a more discriminative approach for learning

an informative subspace. Here we present a generic technique that searches for a

subspace that maximizes the ability to discriminate between two classes of data. It

is based on a simple extension of the feature subset selection technique for SVMs

presented in [35]. We refer to this approach as Max Discriminate (MD).

We will discuss this approach in terms of a generic classification problem in which

we have two classes of observations x e R. The goal of MD is to learn a function g

parameterized by H that maps R -+ R", where m << n, such that we best preserve

the ability to discriminate between classes in this m dimensional subspace. Our new

observation are ix = g(x; H). Discussing this problem in the context of an SVM we

define:

KH (xi, xj) 4 K(g(xi; H), g(xj; H)) (4.28)

and

W2 (a, H) - M2(a, H) (4.29)
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with
1 1

M- 2(a, H) = aiayiyKH (Xi, Xj) (4.30)
i=1 j=1

The goal is to find the best H. However we need to know in what sense these

parameters are the "best." Some insight can be obtained from the following theorem

[32]:

Theorem 4.3.1 If images of training data of size 1 belong to a sphere of size R

are separable with the corresponding Margin M, then the expectation of the error

probability has the bound:

EPerr <; - - = -E{R2wTw} = E{R2M-2}, (4.31)1 M2 1

where the expectation is taken over sets of training data of size 1.

This theorem shows that the expected error depends on both R and the margin

M. This make sense because we can always increase the margin by scaling our data,

which will also increase R and not improve our performance. R 2 can be found by

maximizing:

R 2(H) = max ZiKH(xi, xj) - 1I3,0,KH (Xi, XJ)
= i=1 j=1 (4.32)

Subject to 13, = 1,,3i > 0

The MD approach performs the following 3 step optimization:

1. For a fixed H0 , find

ao = arg max W 2 (a, HO) (4.33)

2. Using the ao found in step 1 find

H0 = arg min J(a, H) = R2 (H)M- 2(&O, H) + AIIHIlp (4.34)
H

where IIHII, is some p-norm constraint, and A is a free regularization parameter.
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3. Repeat until some convergence criteria

Step 1 is simply carried out by solving the C-SVM on x. What we need to show is

how to minimize J(a, H). We do this with a simple gradient descent algorithm. The

key components to this gradient descent are as follows:

aJ(a, H) M- 2 (a, H) - M2(H)

ah = R2(H) + M 2 (a, H) (H) (4.35)

aM-2(a, H) aKH(xi, xj) (4.36)
ahk a aahn y4.36)

i=1 j=1

9R 2(H) KH (Xi, x3 ) aKH (Xi, X) (437)
a9hk h k

i=1 i=1 j=1

For this thesis we restrict ourselves to linear bases such that:

xii= g(xi; H) = HTx' (4.38)

where H is in R' " . With a RBF kernel this yields:

KH (Xi, Xj) = eXp ( - Y(Xi - X9 )THHT(x - x)) (4.39)

which presents an alternative view of this MD technique. We see that MD is searching

over a more flexible space of kernel functions. Normally with an RBF kernel we search

over a single parameter y. With just 7 we are restricted to a spherical kernel. In this

approach H can be thought of as the inverse covariance of Gaussian-like kernel, allow

more flexibility in the kernel shape. Since in this case we have H to control the shape

and scale of our kernel we -y to be fixed in our optimization.

The RBF kernel has a simple form for its derivative:

aKH(xix = _2'y-x - Xj)(, _ Xj)T Hexp ( -yJH x -x )112 ) (4.40)
aH

with this, and simple p-norm (we use L2) we can easily calculate the gradient of

J(a, H) with respect to H.
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Getting back to the original audio video problem, we have an x which is composed

concatenated audio and video frames and we define

g(x,; H) = HT-xi Ha 1 x (4.41)
0 Hv7 _

to constrain our H to be separate audio and video projections.

To improve speed and reduce computation we use stochastic optimization proce-

dure similar to that used for the MMI technique described in the previous section.

The optimization picks a random initialization for H (Ha and Hv) and follows a sim-

ple gradient descent algorithm with a variable step size using Equations 4.35, 4.36

and 4.37. This gradient descent is performed on a random sampling of our training

data. A new random sampling of the training data is taken every Nrandite iterations.

Some other messy details are found in how we choose a fixed value for 7 and C.

After our first initialization we do a large grid search to find the best values for these

parameters. We explored the use of a local grid search every iteration but found the

values to remain more or less fixed through the entire optimization. It is important

to note that the radius-margin bound described in theorem 4.3.1 is only proven for

case in which the training data is separable. However, we found that using this bound

on non-separable data in conjunction with the C-SVM and the procedure described

above gave us reasonable performance.

This technique is closely related to the feature subset selection procedure in [35].

The only difference is that for feature selection:

g(xi; H) = h. * xi (4.42)

where .* is the element by element product and the elements of h E [0, 11. The

optimization procedure is carried ou by relaxing h to be real valued and imposing an

LO-norm constraint to promote sparseness.
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4.3.1 Simple Illustrative Examples

In order to help justify the use of MD we present a simple example dealing with a

generic classification problem. We define a toy 2 class problem in 2d (u,v) shown in

Figure 4-3(a). There are an equal number of training examples for each class (2000

total). We then artificial create a higher dimensional feature representation of

ui + ni

v, + n2

Xi u + n7 (4.43)

vi + n8

n9

n10

With ni, n 2 , n3 , n 4 -. /(0,.6), n5 , n6 ~ (0,.7), n7, n8 ~ 'P'/(0, 1), and n8, n ~

K(0, 2). This toy data possess the following key properties:

1. Information inherently lies in a lower dimensional space

2. Information is distributed across multiple dimensions

3. Some features are completely irrelevant

4. The information is not linearly separable

therefore,

1. Choosing a more compact feature representation makes sense

2. Feature subset selection is not the optimal solution

3. Linear combinations of the features is the correct thing to do in this Gaussian

case.

We compared three methods for SVM classification on this data. First we trained

on the full feature set, using an RBF kernel and grid search to find the optimal C
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and y parameters. Second we exhausted all possible subsets of 2 features and found

the best solution. Lastly we ran our MD method to extract 2 features (H was 10

x 2). For this simple problem we set A to zero in Equation 4.34 and rand gradient

descent for 100 iterations. Figure 4-3(b) shows the ROC curves for each of the three

methods, while Figure 4-3(c) plots the values for the columns of H.

The results show that MD performs significantly better than the other two. The

feature subset selection chose the first two features. This makes sense in that they

have the smallest amount of noise. What is slightly surprising is that training on the

full set was worse than our method. There are two possible explanations for this.

Firstly, although we searched over a wide range of 7 and C we may not have found

the optimal parameters. However, the more likely explanation is that the standard

RBF kernel weights each feature equally, but for this toy problem a uniform weighting

is suboptimal.

Figure 4-3(c) shows the two features extracted. The first feature is a weighted

combination of the u components, while the second is a weighted combination of v

components. It also shows how both features have weights close to zero for the irrel-

evant components in the original feature space. These features are close to optimal,

although look a little strange in that the second feature has negative weights on v

(Which is fine since the toy problem is symmetric). This example shows a case where

MD is the correct method.
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Chapter 5

Dataset and Preprocessing

For our experiments we use the Massachusetts Institute of Technology's Audio-Visual

TIMIT (AVTIMIT) corpus. This corpus contains speakers recorded at 30 frames per

second in full DV (720x480) resolution with 16kHz sampled audio. The full corpus

contains 223 speakers, 117 male and 106 female. Each speaker is recorded saying 20

utterances/sentences chosen from a total of 450 taken from the TIMIT-SX database.

The first sentence is common to all speakers while the other 19 are different for

each round. There are 23 different rounds each of which has at least nine different

speakers. The last five sentences spoken for each speaker are recorded under different

illumination conditions and are ignored in our experiments.

The video in the corpus contains the speaker in front of a constant background.

The audio is relatively clean with some background noise giving an average signal to

noise ratio of 25 dB. More details about how the corpus was obtained can be found in

[7]. Figure 5 shows some sample video frames from this corpus. We consider a single

audio-visual observation to be a frame of video and the corresponding audio from the

start to end of that frame (1/30 seconds on audio).

Using the raw data from the corpus produces a 345600 (720*480) dimensional

video observation and over 500 dimensional audio observation. As discussed in the

previous section learning models for data of this dimension is impractical. We intro-

duced methods for finding low dimensional informative subspaces to project this data

into. However, these methods would also have poor performance with such extremely
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Figure 5-1: Sample Frames from AVTIMIT Corpus

high dimensionality.

It makes more sense to perform some simple preprocessing remove parts of the ob-

servations that are clearly irrelevant. Obviously, we should preprocesses the video and

only extract the region of the image that contains the person's face. This preprocess-

ing step can also extract useful features commonly used in the domain of audio-visual

speech recognition. In the next section we give a quick overview of the face tracker

we used. This followed by a brief discussion in Section 5.2 on some of the standard

features we tried.

Training

Informative Feature Model
Extraction Learning

Basis Model

Audio Association Association
+ 0 Preprocessing Dimensionality Likelihood Likelihood

Video Reduction Evaluation Statistic

Figure 5-2: Full System Training and Testing Components

5.1 Face Tracking

This thesis focuses on on measuring audio-visual association in human speech. Thus,

it makes sense to only use the region of the video that contains a face. We use

a simple face tracker to extract the lower facial region of each subject. For each

utterance a face detector based on [34] is used to locate the subject's face. This face
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Figure 5-3: Face Tracking

detector supplies the center and width of the face. Once the first detection of a face

occurs we use a simple heuristic to extract a small template of the person's nose.

This template is then used to track the nose region to the next frame using a sum of

squared differences (SSD) error metric. The tracking finds the location in each video

frame with the minimum SSD from the template, searching in a window defined by

the width of the face and using a quadratic fit for sub-pixel accuracy. Figure 5-3

shows a sample frame with the result of the face detector and the nose template used

for tracking.

Using this tracking information we segment out a stabilized view of the lower half

of each speakers face and downsample it to a 55 x 100 image per frame. Bi-cubic

interpolation is used to keep the subpixel accuracy of the tracker. Figure 5-4 shows

some sample extracted lower faces. We see that the tracker does reasonably well at

finding and centering the lips and lower jaw of each person. However, the process is

completely automated and there was no attempt to align the extracted regions across

speakers or even sentences. This provides us a simple tracker that can be run in real

time and forces us to consider the effects of alignment problems.

5.2 Audio Visual Features

In addition to tracking the face to help remove any irrelevant information we also

make use of some standard audio and video features used in the field of AVSR.
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Figure 5-4: Extracted Lower Face

5.2.1 Audio

Our raw audio observation is the sampled intensity waveform obtained by the micro-

phone used for recording. While this raw waveform contains all the information we

can capture about what is spoken it also contains any ambient noise or distortions

introduced by the microphone and environmental conditions in which the recording

took place. We would like to have some representation of the audio that attempts to

ignore these unwanted parts of the signal. Furthermore, even if we obtained a noise

free recording, there may be information in the speech that can be ignored for our

task. There are cues in the speech waveform that can tell us the sex of the speaker,

identify who they are, or even if they have a cold. We may be better off finding a

transform that ignores this information.

Spectrogram

One of the simplest representation for the audio is a spectrogram. For each frame

of audio (corresponding to one video frame) its magnitude spectrum is found by

taking the squared absolute value of its discrete-time Fourier transform. This gives

us a representation that describes the amount of energy in different frequency bands.

The shape of the magnitude spectrum over time can be related to different articulator

parameters that describe speech production. A sequence of magnitude spectra frames

is referred to as a spectrogram.

This representation is obtained through the invertible fourier transform and is
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simply a change of coordinate system. This coordinate system may be better for

identifying audio visual association in that we may expect the position of a persons

mouth to be related to the amount of energy in particular frequency bands. However,

all the information contained in the original waveform is also contained in the spec-

trogram. In addition, taking the fourier transform of a short window of audio may

result in noise estimates of energy at any frequency.

LPC

One way to address the noisy estimates given by a spectrogram is to try and find

a smoothed approximation to it. Linear Predicitive Coding (LPC) finds a reduced

representation for the shape of a spectrum. LPC finds an autoregressive model for

the speech signal which describes a filter that can be used to predict a sample of the

speech waveform, s(t), at sample t from a linear combination of previous samples.

s(t) cls(t - 1) + c 2s(t - 2) + ... + cks(t - k) (5.1)

These learned coefficients, Ck form an all pole filter. The frequency response of this

filter can be viewed as a smoothed version of the signals spectrum. The number of

coefficients chosen, k, is the order of the model. Having a lower order model produces

smoother estimates, while increasing the order progressively converges to the noisy

spectrum. We use a 13th order model, which is conmmionly used in speech recognition

systems.

MFCCs

Another, and perhaps more common, representation used in the speech recognition

community is Mel-Frequency Cepstral Coefficients (MFCCs). Much like LPC, MFCCs

attempt to obtain a smoothed version of the spectrum. They do this by ignoring large

changes in log magnitude of the spectrum. The cepstrum of a signal s(t) is

C(q) = F- (logIF(s(t))I) (5.2)
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where F and F- represent the Fourier and inverse Fourier transform. In the cepstral

domain, q acts as the frequency axis. The cepstral coefficient C(q) at low q represent

the power in the slowly varying components of the spectrum while C(q) at higher q

represent the rapidly varying components which are assumed to be noise (or perhaps

some detailed information about voicing, such as pitch, we wish to ignore). Thus,

to obtain a reduced representation for our signal that ignores irrelevant information

C(q) is typical truncated to the first 13 cepstral coefficients. MFCCs are formed in

similar manor. However, rather than working with a log scale they use a perceptual

motivated mel scale prior to taking the inverse Fourier transform in Equation 5.2

5.2.2 Video

Our face tracker does a good job of removing parts of the image outside the mouth

and jaw region. The tracker's raw output is simply a sequence of 55 x 100 pixel

intensity frames. We assume all the necessary information for determining audio-

visual association is contained in these frames. However, we may be able to find a

more compact or informative representation with some standard image processing

techniques.

DCT

On standard technique for image compression is to use the Discrete Cosine Trans-

form (DCT). The DCT is the real part of the Fourier Transform and transform an

image into the frequency domain (for an image we have frequencies in both the x

and y directions). For most images most of the energy is concentrated in the lower

frequencies. Removing the higher frequency components has a small effect on image

reconstruction. The DCT is commonly used in the AVSR community to find a re-

duced representation for their images by only keeping the top set of DCT coefficients.

In this spectral representation it may be easy to identify information about the lips

or chin since they would most likely correspond to particular frequencies in the y

direction.

76



Figure 5-5: Wavelet Pyramid

Wavelet Pyramid

An alternative spectral representation for an image can be found using wavelets. A

multi-scale and orientation decomposition of an image can be founding using a set of

orthonormal wavelets. Such a decomposition is shown in Figure 5-5. To obtain this

decomposition we use Eero Simoncelli's MatlabPyrTools toolbox [30]. We see that the

pyramid supplies a representation that separates horizontal and vertical frequencies

at various scales. Again we expect the relevant information for speech to lie in the

vertical frequency components (horizontal edges).

Difference Features

The features/representations discussed above are applied to each static frame sepa-

rately. However, it may be useful to incorporate some information about dynamics

of the persons mouth. We do this in a naive way by taking finite differences to ap-

proximate the derivative of the images over time. We do this over a span of 3 frames

in order to keep the same alignment with the static audio frames.

(a) (b) ()

Figure 5-6: Differential Video Features: (a) Difference Image, (b) Horizontal Edge

Filter (c) Horizontal Edge Difference Image

Figure 5-6(a) shows difference image frame. We see that the finite difference
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emphasizes motion of the mouth. However, it is somewhat noisy. Since we are

primarily interested in the motion of the lips we apply a smooth horizontal edge filter

prior to taking the differences. The filter is shown in Figure 5-6(b) and the resulting

horizontal edge difference image is shown in Figure 5-6(c).

Optical Flow Statistics

The difference representation described about emphasizes motion of the mouth but

also contains information about its position as well. The position of the persons mouth

is highly dependent on the tracker as well as the shape of each persons face. Thus,

we may want to ignore this location information and find a feature that concentrate

solely on representing motion. We do this using an ad hoc optical flow representation.

Figure 5-7: Optical Flow

For each frame we look for a set of 100 good features to track. These features are

found using a simple corner detector [28] and are tracked across the next two frames

using a Lucas and Kanade tracker [16] using code from OpenCV [13]. For each frame

a new set of features are picked an tracked. We summarize this information in a 5

dimensional feature vector containing the mean flow magnitude, the mean vertical

flow, the mean horizontal flow, vertical and horizontal flow variance for each frame.
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Chapter 6

Experiments

In this chapter we present a series of experiments and their results. Each experiment

explores parts of the full training and testing system shown in Figure 5-2. We start by

comparing techniques for learning models of AV Association in Section 6.1. We also

explore the use of different audio-visual features in this section. We study whether or

not performance can be in improved by using techniques for learning an informative

subspace in Section 6.2.

6.1 Experiment 1 Comparing Modeling Tech-

niques for Detecting AV Association

6.1.1 Purpose

In this first set of experiments we compare techniques for detecting AV association.

These techniques differ in how observation models are learned and are used. We ex-

plore the sensitivity of each technique to the dimensionality and type of input features.

Additionally we study the effect of using different window lengths for testing. These

tests are performed on synthetic as well as real data from the AVTIMIT database.
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6.1.2 Training and Testing Procedure

In this and all other sets of experiments there are two phases, a training phase and

testing phase. In the training phase we are given a set of associated audio and video

observation pairs. Some of the techniques use this data to learn a model offline, while

other online techniques simply ignore it. In the testing phase we are given a new set

of audio and video samples and must determine whether or not they are associated.

An equal amount of associated and non-associated data is tested.

We produce our training and testing sets using n fold cross validation. This entails

breaking our associated audio-visual data into n subsets. For each fold we train on

n-1 of these subsets and test on the held out data. Given the held out data we derive

a test set by making two classes (with corresponding labels). The associated class is

simply the held out data, while the non-associated data is generated by pairing the

video from the associated class with a randomly chosen segment of audio. This test

data is tested by classifying the observations in a sliding a window as associate or

non-associated data. Each technique differs in the specifics of how they perform this

classification. For each fold we can calculate the probability of error. We record the

average probability of error across all folds as well as the variance.

6.1.3 Techniques Compared

As discussed in Chapter 3 we pose the problem of classifying a window of audio-visual

observations as associated or non-associated in terms of a simple hypothesis test. This

test simply compares a some likelihood statistic of our observations, L(a, v), to some

bias q. The techniques compared in these experiments differ in the way in which they

calculate this likelihood statistic and bias. Table 6.1 lists all the techniques compared

and their key properties.

This group of techniques can be divided into various categories. The first division

separates the generative techniques from the discriminative (SVM). As discussed in

Chapter 3 the generative approaches use some explicit model of the joint audio-visual

distribution, while the discriminative approaches learn a function (that can be though
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Approach is Model is learned Type of model is Bias, 77, is Assumes

Technique Generative Discriminative Offline Online Gaussian Non-parameteric Learned Set significance i.i.d

Gaussian Model i.i.d. x x x x x

KDE Model i.i.d. x x x x x
Gaussian MI (Learned Bias) x x x x x

KDE MI (Learned Bias) x x x x x

RBF SVM i.i.d x x x x x

RBF SVM Full x x x x
Gaussian MI (w/ Perms) x x x x x

KDE MI (w/ Perms) x x x x x

Table 6.1: Techniques Compared
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of as an approximation of L(a, v)) and a bias that minimize the probability of error.

The discriminative approach chosen for this thesis is the C-SVM with a radial basis

function (RBF) kernel. A second division can be made between the techniques that

learn a model offline from training data, and those that learn the model online. We use

model as a generic term for the parameters that control the form of L(a, v). The online

techniques learn these parameters from the samples being tested. For the generative

methods the model is the parameters that describe p(a, v) and for the discriminative

approaches the model is the parameters for the SVM. A third division separates the

techniques that use Gaussian models from those that have a non-parametric sample-

based model (SVM and KDE models). Almost all of the techniques assume that our

observations are i.i.d. The one exception is the RBF SVM Full technique which learns

a classifier whose input is the entire window of audio-visual observations.

A final difference between the techniques is the way in which they learn and use

the bias, j. All the generative techniques which learn their models offline also learn

the bias from training data. They do this by calculating the distribution of their para-

meterized likelihood statistic, L(a, v) for both associated an non-associated windows

of observations and find the bias that minimizes probability of error. However, the

training data only contains samples of associated data. Samples of non-associated

audio and video are generated through permutations of one of the modalities (i.e.

randomly permute the ordering of the audio frames). These synthetic non-associated

samples are also used as the non-associated class for training the SVMs.

The online generative techniques define their bias in two different ways. One

way is to follow the same procedure for learning the bias that the offline techniques

use. The distribution of the likelihood statistic is calculated for both classes of data

and a bias is picked to minimize error. However, unlike the offline techniques these

techniques calculate their likelihood statistic for each window of data using a model

learn solely from that data. In some ways this is not a fully online method in that

it requires some training data to learn the bias, but at the same time allows for the

model to change according to the samples being tested.

The last two techniques in Table 6.1 are purely online techniques. They use their
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bias in a completely different way; the testing procedure is not a simple hypothesis

test but rather a significance test. We follow an online testing procedure similar to

that described in Algorithm 1. We first estimate MI for data being tested, and then

perform a set of permutations on one of the modalities to synthetical produce non-

associated data. For each permutation we estimate MI. We define our significance

level as 1 minus the number of times the non-permuted MI estimate was less than

the permuted MI estimate divided by the number of permutations, or simply 1 - Pf

(Note that this is the opposite of what is normally referred to as significance in most

hypothesis testing literature, but allows us to simply replace our likelihood statistic

with this value and threshold so that values higher than the threshold correspond to a

detection. We apologize for any confusion this may cause).

For our tests we choose to perform 15 permutations for each test. This relatively

small number of permeations allowed us to maintain a reasonable speed for testing

procedure (the computation grows linearly with the number of permutations). We

also choose our bias to be a set value of .85. That is, we classified the data as being

associated if the estimated Pf was less than 15 %. This is a reasonably high P

threshold to choose, but we must consider that our estimate of Pf will be quantized

according to the number of permutations we carry out. In addition to reporting results

using this significance threshold of .85, we also calculate the performance using all

possible significance levels and record the best one.

6.1.4 Variables

In addition to comparing the different techniques described above, we also explore

how changes in the following parameters affect performance:

" The dimensionality of our input.

" The window size we test over.

" The type of input features used.
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The dimensionality of our input is controlled simply by keeping a set number of

PCA features obtained from the training data. Window sizes of 15, 31, 45 and 63

(approximately .5, 1, 1.5 and 2 seconds of data) are tested and compared. A small

subset of features is compared in this round of experiments. A more diverse set is

later compared using the best performing techniques.

6.1.5 Results: Synthetic Data

We start by testing these techniques on a simple set of synthetic data. This data

allows us to explore some basic characteristics of these techniques and acts as a

transition between theory and practice. The first set of data is generated from a

simple Gaussian model such that:

A = $+ na
(6.1)

V + n,

where # is drawn from N(0, 1) and n, is drawn from N(0, .2). For this simple case we

set na to be zero. From this information we know the mutual information between

A and V is .8959 nats and that -D(p(A)p(V) Ip(A, V) is -4.1041. The second set of

data introduces a nonlinearity such that

A =, + na
(6.2)

V sin(oj) + n,

In addition to the nonlinearity we increase the variances of #nt to be larger (N(0, 8)) in

order to capture more of the nonlinear structure. Figure 6-1 shows plots of these two

datasets with samples drawn from the joint distribution as well as random samples

drawn from their marginals.

Training and test data were i.i.d samples drawn from these distributions. We used

1500 training and 500 test samples. We produce non-associated test data through

permutations. Thus we have data that is low dimensional, conforms to our i.i.d

assumption, and has known distributions. This allows us to explore some of the basic
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(a) Synthetic Gaussian Data (b) Synthetic nonlinear Data

Figure 6-1: Synthetic Data

properties of our modeling and testing techniques.The suite of tests were performed

for varying window sizes. We plot the minimum probability of error found for each

test.

Figure 6-2 shows results for the Gaussian data. We see from the results for this

simple dataset that all of the offline model learning techniques performed almost

equally well, approaching perfect performance with a window of 10 or more test

samples. We know that a Gaussian model is optimal in this situation, but we see

that the non-parametric approaches perform equally well for this simple case. This

can be attributed to the fact that the dimensionality of the data is extremely low

and the non-parametric techniques obtained enough samples to capture the Gaussian

structure of the data.

Figure 6-2 also clearly shows a gap between the online and offline techniques.

As the number of test samples increase this gap disappears. Since the data is i.i.d,

given enough test samples an accurate density can be learned online. In addition,

the results show that the online Gaussian MI test outperformed the non-parametric

technique (KDE Online MI) for the smialler window sizes. This agrees with theory

and ones intuition in that the Gaussian assumption is correct for this situation and

the non-parametric technique requires more saiples learn an accurate representation

of this density. That is, the non-paramnetric techniques have more capacity to learn
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P(error) vs Window Length (Gauss)
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Figure 6-2: Performance on Gaussian Data

complex structures, but pay for this capacity by requiring more data.

It is also interesting to note that the purely online methods that use permutation

tests to assess significance have the same performance as the online techniques that

learn a bias for the shorter window lengths. However, the performance of the sig-

nificance testing techniques levels out at 5% probability of error. This is due to the

fact that we fix a significance level at 85 %. We achieve perfect performance with

these techniques if we raise our significance threshold to 98%. This shows us that we

should increase our significance threshold as the window length increases (if we have

i.i.d samples).
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Figure 6-3: LR Plots on Gaussian Data. Shows the mean and standard deviation of

the likelihood ratio under hypothesis H1 (associated, plotted in red stars, upper) and

Ho (non-associated, plotted in blue triangles, lower) versus window length.
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We further explore the behavior of these techniques by looking at the distribution

of the likelihood statistics for both associated and non-associated data and compare

their behavior to the theory outlined in Section 3.1.4. Figure 6-3 shows for each

techniques the mean and variances of the likelihood statistic for each class. A clear

separation between classes is observed for each test as the window size is increased.

The results for the offline and online Gaussian techniques are consistent with theory.

The offline Gaussian model's likelihood ratio converges to approximately .9 for as-

sociated audio and video and -4.2 for the non-associated class. These numbers are

consistent with the actual MI and -D(p(A)p(V) Ip(A, V)) for this data. Additionally

it is shown that the online Gaussian MI technique's likelihood ratio converges to the

actual MI for the associated data and zero for the non-associated data as described

in Section 3.1.4. It is also interesting to note that the SVM i.i.d and KDE models

exhibit almost identical behavior. Both have a smaller separation between likelihood

ratio means and have larger variances than the Gaussian techniques. Similarly the

online KDE technique has a smaller separation between classes and seems to require

more samples before it converges to the offline KDE techniques performance.

We also observe a strange phenomenon in the RBF SVM Full technique. It seems

as the number of samples increase the separation between the likelihood statistic

gets smaller, but a the same time the variance also decreases. This behavior can be

attributed to the difficulty of training an SVM with high dimensional input features.

Lastly, in the plots for the online tests with permutations Figure 6-3 displays the

distributions of significance rather than the likelihood ratio. We clearly see that as the

window length increases the significance when testing the associated class converges

to 1. The distribution of significance for the non-associated class has a mean of 50 %

and a variance that only decreases slightly with increased window length. This again

shows that if we are dealing with i.i.d. samples as we increase the number of samples

we test with we should also increase our significance threshold.

Next we look at the performance on the nonlinear synthetic data shown in Figure

6-4. These results clear show that using a Gaussian model is suboptimal in this situa-

tion. Both Gaussian techniques have almost random performance. The clear winners
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Figure 6-4: Performance on Nonlinear Data

are the KDE and SVM i.i.d techniques. The figure also shows a gap between the

online and offline techniques. The online KDE MI techniques dramatically improve

as the window size increases. However, even with 31 samples it still has a 14% error

while the offline KDE technique is nearly perfect.

The offline RBF SVM Full classifier again seems to exhibit some interesting be-

havior. It had the third best performance with a small window length, but rapidly

became one of the worst performers with window lengths greater than 5 samples. We

can again attribute this to the fact that an increase in the window size corresponds

to an increase in the input feature dimension for the SVM. We may not have had

enough training examples or may not have searched over enough SVM parameters to

learn a useful classifier.

Figure 6-5 shows the mean and variances of the likelihood statistic for this data. It

is clear from this figure that the non-parametric techniques were the only ones capable

of modeling this data. Again we see that the offline KDE and the SVM i.i.d models

have similar results. However we see that the SVM i.i.d model likelihood statistic

has a slightly larger variance. The online KDE model's likehood statistic becomes
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more separable as the window length increases. However, it's behavior is not perfect.

Theory tells us that as the window size increases the likelihood ratio should approach

zero for the non-associated data and the actual MI for the associated data. While

this may be true in the limit, these results show that even with 60 samples of this

nonlinear data the online KDE MI calculation has not converged.

Using synthetic data has allowed us explore these various modeling techniques

in a controlled environment in which we could predict performance. We have shown

experimental results that agree with the theory discussed in Chapter 3. The paramet-

ric approaches require fewer training samples and perform better when the implied

assumptions (Gaussian) are valid for the data. However, with a sufficient amount of

training data the nonparametric approaches worked equally well, and exhibited the

added flexability to handle complex non-Gaussian distributions. Lastly we experi-

mentally verified the performance advantage of having learned a prior model over

using online density estimation.

All of these results were obtained using data that conforms to i.i.d assumption.

Next we will explore how well these modeling techniques will perform on real data.

This will give further insight into the tradeoffs between techniques and how well our

assumptions hold for audio-visual speech.
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Figure 6-5: LR Plots on Nonlinear Data. Shows the mean and standard deviation of

the likelihood ratio under hypothesis H1 (associated, plotted in red stars, upper) and

Ho (non-associated, plotted in blue triangles, lower) versus window length.
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6.1.6 Results: Audio-Visual Data from AVTIMIT

We now turn to testing these techniques on data taken from a small subset of the

AVTIMIT dataset. We follow a similar testing procedure to the one used on the syn-

thetic data. One difference is that our non-associated test data is no longer obtained

through permutations but instead made by combining video with randomly chosen

mismatched audio. In addition, we explore the use of different input features in terms

of how the data is preprocessed and the dimensionality. For these experiments we use

PCA to control the input dimensionality. We record performance when testing and

training on the same individual as well as situations in which the individuals used in

training are different than those used in testing.

The goal of these experiments are to answer some basic questions. The first of

which is simply to find out what level of performance we can achieve in detecting

association for this data. Some other questions we wish to address are: How well

does our i.i.d. assumption hold? How does the dimensionality of the observations

affect the performance of each technique? Can we use simple Gaussian models or does

this data require more complex non-parametric techniques? Can we learn a person-

specific model for audio-visual association? Is it possible to learn a generic model for

audio-visual association? Does our specific choice of features affect performance?

We test the ability to learn a person-specific model on separate individuals. Each

individual contributes around 1500 frames/samples of audio-visual data. We perform

4 fold cross validation on these individuals, each fold training on 3/4 of the data and

testing on the held out 1/4. In order to test our ability to learn a generic model

we use a set of 10 people in which we perform 5 fold cross validation with each fold

training on 8 people and testing on 2.

Note that the PCA components used to control our input dimensionality are

learned only from the training data in each fold. Each experiment keeps a specified

number, d, of these PCA components. PCA is performed separately for each modal-

ity, giving separate d dimensional representations of the audio and video producing

a 2d joint AV space. The same principal components used to make the 2d dimnen-
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sional training set representation is also applied to the test set in each fold. In these

experiments we explore d = 1, 2 or 5.

All our raw experimental results are recorded in Appendix F. Below we discuss

some of the key results. We organize this discussion in terms of the input features

explored.

Using Static Features (Pixel Intensities and MFCCs)

We start by using the raw pixel intensities of the speakers lower face as the video

features and MFCCs as the audio features. The raw results can be found in the

Appendix Tables F.1, F.2, and F.3. We summarize the best performance achieved by

each technique and the associated testing parameters in Table 6.1.6 for the case in

which we test and train on the same person.

We see that we achieve the best performance using a Gaussian Model using 5

PCA coefficients and a long window length. This technique produced a 14 % error

for person 1 and a 6 % error for person 2. This shows that using pixel intensities and

MFCCs it is possible to learn a person-specific model that gives us a reasonable level

of performance. We also see that, much like what we saw with the synthetic data, all

of the techniques generally did better when using longer window lengths. However,

little more can learned from this summarization of the best performances.

We can learn more about the techniques tested by showing their performance as

a function of the window length and input dimension. Figure 6-6(a) shows the per-

formance of each technique as a function of the number of PCA components used for

a fixed window length of one sdcond. This figure shows us some simple trends. First

we notice that the online techniques performance decreases as the input dimension

increases. This is easily explained by the fact that with higher dimensional data we

need more samples to estimate its density. These online techniques only have 31

samples with a window length of one second. A second trend shows that the offline

Gaussian, KDE and SVM i.i.d. techniques improve as the dimensionality increases.

The more PCA components used the less information we lose from the original data.

The more information we have the better our learned model becomes.
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(a) Person 1

Technique Best Avg P(error) # PCA Win Length
Gaussian Model i.i.d. 0.14 5 45,63
KDE Model i.i.d. 0.26 2 63
Gaussian MI (Learned Bias) 0.28 1 45,63
KDE MI (Learned Bias) 0.29 1 45,63
RBF SVM i.i.d. 0.26 5 63
RBF SVM Full 0.30 1 45,63
Gaussian MI (w/ Pernis) 0.30 1 63
KDE MI (w/ Perms) 0.30 1 63

(b) Person 2

Technique Best Avg P(error) # PCA Win Length
Gaussian Model i.i.d. 0.06 5 63
KDE Model i.i.d. 0.26 5 63
Gaussian MI (Learned Bias) 0.20 1 45,63
KDE MI (Learned Bias) 0.25 1 45,63
RBF SVM i.i.d. 0.32 2 45,63
RBF SVM Full 0.27 1 45
Gaussian MI (w/ Perms) 0.16 1 45
KDE MI (w/ Perms) 0.23 1 31

Table 6.2: Person-specific results summary using pixel intensities and MFCCs. The

best performance for each technique is summarized. The number of principal com-

ponents and window length (in samples) used to achieve the best probability of error

are listed. A common separated list of parameters indicates that each parameter

achieved similar performances.
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Figure 6-6: Performance Summary Plots for Person 1 (Pixel Intensity, MFCCs)
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Figure 6-7: Samples drawn for person 1, 1 PCA coefficient (Pixel Intensity, MFCCs)

It is interesting to note that when we only use one principal component that the

online techniques perform much better than the techniques that learn a model offline.

This is clearly evident in Figure 6-6(b) which shows the online techniques doing best

with one PCA coefficient over various window lengths. This conflicts with the results

we obtained using synthetic i.i.d. data.

An explanation can be found in Figure 6-7. This figure shows shows that, unlike

in our synthetic experiments, the i.i.d assumption clearly does not hold for this data

when 1 principal component is used. The figure shows the training data using sep-

arate one dimensional features for the audio and video. The gray circles show all of

the training samples, while the the dots (red,light) and x's (blue,dark) are highlighted

samples from different windows of time. It is clear that these samples drawn from dif-

ferent times are not i.i.d samples drawn from the distribution described by the entire

training set. This explains the better performance of the online techniques. While

the offline techniques were evaluating likelihoods of the test data under distributions

that were inconsistent with the data, the online techniques were still able to measure

the statistical dependence between the audio and video.

In order to help explain why this data is not i.i.d we look at the the PCA compo-

nents from a set of training data. Figure 6-8 shows the first 5 PCA components for
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Figure 6-8: PCA Components and the cumulative amount of energy they capture for

Person 1

audio and video for this data and the cumulative amount of energy each component

captures. The first, third and fourth video component seem to have to model jaw and

lip motion. However, the second and fifth component seem to model translation, and

scale of the face. This indicates that the video was not perfectly stabilized over all

utterances. By just using the first video component there is no way to represent any

shift or scale of the persons lips or mouth region. Depending on where the person's

head is in the video frame it may produce different variations in the first PCA coeffi-

cient, thus producing audio-visual samples that depend on head location. This clearly

shows the importance of having a good face tracker or choosing a representation that

is less sensitive to tracking errors for learning models. It also shows an advantage of

learning models online which only depend on the local distributions of the windows

tested. However, we have seen that, for this situation, the advantage disappears when

we use more principal components. By using the top 5 principal components the of-

fline Gaussian technique could learn a model that incorporated information about

the person's head position and scale. Even though the data is not i.i.d. this general
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111odel Was still able to give us a reasonable level of perforiiance when trained on the

individual being tested.

However, we were not able to learn a good generic miodel with any of the techniques

tested when using pixel intensity and MFCCs as our input representations. When

training and testing on separate individuals, none of the techniques achieved better

than 35 % error (raw results shown in Appendix Table F.3). Figure 6-9 shows the

performiance of each technique as a function of input dimension with a fixed window

length of one second when training and testiiig on separate people. We see that

not only does each technique perfori poorly but in some cases they do worse than

randoiii.
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Figure 6-9: Performance sunnmary plot. Testing and training on different people.

(Pixel Intensity, MFCC)
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Figure 6-10: Samples drawn for 10 people. Each person is indicated by a different

color/shade, 1 PCA coefficient (Pixel Intensity, MFCCs)

We plot the training samples taken from various people using one principal com-

ponent in Figure 6-10, as a simple explanation for this poor performance. Again we

clearly see that the data is not i.i.d. and depends heavily on time and the person

being tested. Additionally, we see that it is difficult to identify any dependence be-

tween the audio and video within each cluster. Thus, it is difficult, if not impossible,

to learn a generic model with PCA and the techniques we are testing.

Using Differential Features (Image and MFCC differences)

Next, we perform a similar set of tests using different audio and video representations.

The audio and video representations are adjacent frame differences of intensity frames

and MFCCs respectively. These differential features may have an advantage in that

they can incorporate dynamics and remove some appearance information that may

have caused non i.i.d samples in the previous tests. We test the same suite of tech-

niques using the same parameters explored in the previous set of tests. Raw results

are reported in Appendix Tables F.4, F.5, and F.6.

We summarize the best performance achieved by each technique for our person-
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(a) Person-Specific (Person 2)

Technique Best Avg P(error) # PCA Win Length
Gaussian Model i.i.d. 0.02 5 63
KDE Model i.i.d. 0.05 1 63
Gaussian MI (Learned Bias) 0.02 1 63
KDE MI (Learned Bias) 0.28 1 63
RBF SVM i.i.d. 0.04 5 63
RBF SVM Full 0.09 1 63
Gaussian MI (w/ Perms) 0.06 1 63
KDE MI (w/ Perms) 0.10 1 63

(b) Generic (10 People)

Technique Best Avg P(error) # PCA Win Length

Gaussian Model i.i.d. 0.13 1 63
KDE Model i.i.d. 0.14 1 63
Gaussian MI (Learned Bias) 0.16 1 63
KDE MI (Learned Bias) 0.40 1 63
RBF SVM i.i.d. 0.17 1 63
RBF SVM Full 0.15 1 63
Gaussian MI (w/ Permns) 0.16 1 63
KDE MI (w/ Perms) 0.21 1 63

Table 6.3: Person-specific and generic results summary using image and MFCC dif-
ferences.
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specific and generic tests in Table 6.3. Again, we see that the offline Gaussian tech-

nique did very well at learning a person-specific model. In fact it only had 2% error for

person 2. However, unlike in the previous tests, we see that a generic model can also

be learned with 13 % probability of error. In addition all the offline techniques did

reasonably well using only one principal component (see Figures 6-11(b) and 6-11(d)).
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Figure 6-11: Performance Summary Plots (Image and MFCC differences). (a)(b)

Results for Person 2 (c)(d) Results for 10 People

These results are very similar to those shown for the synthetic Gaussian data,

indicating that the observations are close to i.i.d. Figure 6-12(a) confirms this by

showing different windows of samples selected from training data. Not only does the
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data look i.i.d, it also looks somewhat Gaussian. Furthermore, Figure 6-12(b) shows

that this i.i.d. assuniption seems to hold across multiple people giving us a good

explanation for why we could learn a generic model with these features.

All Frames
Frames 100-162

0.8 Frames 480-42

0.6 a
x

OAA
0.4 -

0 2

x

-04
-1 -0.0 -0.6 -0.4

(a)

a

3 * '
oxt a

x
a

-0.2 0 0.2 0.4 0.6 0.8

Single Person

Figure 6-12: Training samples using 1

differences)

principal component. (Image and MFCC

Some other interesting observations are that the online KDE MI does the worst

and gets even worse as the dimensionality increased. Since this data seems i.i.d and

Gaussian, their is no advantages to using the online KDE MI techniques. Figures

6-11(a) and 6-11(c) show all of the non-parametric techniques degrading as the di-

mensionality of the input increased. However, they also show that the SVM i.i.d is

less sensitive to dimensionality than the KDE model in this case. While the KDE

techniques attempt to learn a density the SVM only needs to learn a discriminating

boundary and may be more robust.

This experiment has shown that we can in fact learn a generic model for audio-

visual association, and that are specific choice of audio-visual features plays an im-

portant role. Although the best technique produced a 13 % error, we see from Figure

6-13 that by increasing the window length we can achieve even lower error rates.
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Figure 6-13: Probability of error versus window length using 5 PCA components and

a Gaussian Model

Using spatially invariant features (Optical flow)

Another set of tests are carried out on a the same individuals using optical flow

statistics for the video representation. These flow statistics throw out any spatial

information and represent the overall amount of motion, the average x and y motion

as well as the motion variance in each direction. Appendix Tables F.4, F.5, and F.6

show the raw results.

The results for these features were very similar to those when using the image

differences. The Gaussian model technique performed the best for the person-specific

as well as the multi-person tests. It had a 1 to 2 % error on the person-specific tests

and a 10 % error on the 10 person dataset. However, to get any decent performance we

needed to use at least 5 principal components. Figures 6-11(a) and 6-14(a) show how

the probability of error decreases as the input dimension increases for the Gaussian

and SVM i.i.d techniques. At the same time the performance of the other non-

parametric and online techniques degrades.

Figure 6-15 shows the PCA components for the video representation from training

data of a single person. We see the first PCA component picks out the variance of
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Figure 6-14: Performance Summary Plots (Flow and MFCC differences)

the horizontal optical flow. This should capture any non ridged horizontal motion.

One would expect this to be a good indicator of a person opening or rounding their

lips, but the results show that using this feature and the first PCA component of the

MFCC differences is not particularly informative. This shows the danger of just using

PCA to pick a lower dimensional representation. In this particular case the video

representation was already reasonably compact and the highest variance components

found with PCA may not be the most informative features.

Flow Mag

Avg dx

Avg dy

Var do -

Var d

Figure 6-15: Top 5 principal components of the optical flow features
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Other audio-visual features

We have shown above that the audio-visual features we choose impact our perfor-

mance. Although we were able to achieve decent performance when training and

testing on the same person with all of the features tested, only the differential features

produced samples that were close to i.i.d. and could be used to measure association

on individuals who were not seen in the training data. Overall the offline Gaussian

model technique had the best performance. Here we test the rest of the audio-visual

features discussed in Chapter 5 using this technique with 5 principal components and

a two second window length. We only test the case in which we train and test on

separate individuals (using 10 people and 5 fold cross validation). Results are shown

in Table 6.1.6.

MFCC MFCC Diff LPC Sgram
Intensity 0.35 0.43 0.35 0.33
Difference 0.28 0.13 0.37 0.37
DCT 0.37 0.40 0.41 0.28
Flow 0.20 0.10 0.26 0.27
H Edge Diff 0.34 0.15 0.38 0.38
W Pyr 0.33 0.42 0.38 0.27

Table 6.4: Probability of error for different audio visual features. Technique
Gaussian Model i.i.d. , # PCA = 5, Window Length = 63 samples

We see that the differential features outperform the static features. However,

it seems to make little difference which type of differential features is used. Using

image differences, optical flow statistics or horizontal edge differences as the video

feature with MFCC differences for audio results in a probability of error around 13

%. It is interesting to note that the optical flow features do the best given any fixed

audio feature. This is may be due to the fact that the flow statistics throw out all

information about appearance and only capture motion information. This may be

a disadvantage when tracking errors cause non-associated motion in the video. We

leave a more rigorous study of audio-visual features for future work. All that can

be taken away from this simple experiment is that throwing away information about

appearance and using features with some dynamics helps, particularly when making
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a Gaussian i.i.d. assumption across different people.

6.1.7 Summary and Discussion

The goal of this set of experiments was to study the tradeoffs and performance of

different modeling and testing techniques for detecting audio-visual association. Both

offline and online learning techniques were compared. Most of the techniques used a

generative approach while discriminative approaches were explored through the use of

two different SVM techniques. The experiments were designed to explore how these

techniques are affected by the dimensionality and type of the input features used as

well as the number of samples used for testing. Synthetic data was tested in addition

to real data taken from the AVTIMIT database.

The first set of synthetic data tested showed that when the data is i.i.d there was

a performance advantage for the offline models that could learn a prior model from

training data. The performance of these techniques agreed with the theory outlined

in Chapter 3. It was also shown how the simple Gaussian techniques completely

fail on the nonlinear data, while the non-parametric techniques were are capture

more complex relationships. The SVM i.i.d technique and the KDE techniques had

almost identical performance on the synthetic data. However for the linear Gaussian

test data both seemed produce likelihood statistics that underestimated the true

MI of the data. This may be due to the methods chosen for picking kernel sizes.

We deliberately choose rule of thumb for KDE and cross validation for the SVM

techniques to help foster quicker training times. However, other techniques may have

led to better performance. We leave this question open for future work.

Prior to running experiments on real audio-visual data we outlined a set of ques-

tions we would like to have answered. Given the results of our experiments we do our

best to answer these questions here:

What level of performance we can achieve in detecting audio-visual association

for this data? We have shown that when we have training data for the person being

tested we can learn a model that gives us excellent performance. Using differential

features and a window length of 2 seconds we can achieve less than 5 % error in
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detecting when the observed audio and video are associated. Detecting association

without a model built specifically for the person tested was more difficult. However,

we still showed that we could achieve less than 10 % error using only a 2 second

window of data. Using longer window lengths only improves performance.

How well does our i.i.d. assumption hold? This question needs to be clarified.

The audio-visual information that results from speech is inherently non-stationary.

Depending on what is being said and how it is spoken we receive different audio-

visual observations. The real question should be how well can we approximate this

non-stationary processes using an i.i.d. assumption. Our results have shown that

this depends on the audio and video representations that we choose. Using a simple

representation such as pixel intensities and MFCCs produces samples that are clearly

not i.i.d.. The distribution of these samples not only varies over time but also across

different individuals' appearances. While we were able to learn a useful person-

specific model with this data it was impossible to learn a generic model. However,

we showed that by using differential features our observations looked more i.i.d. and

that a generic model could be obtained. Therefore, while our i.i.d. assumption is

not correct for audio-visual speech data we can find features that gives us reasonable

performance.

How does the dimensionality of the observations affect the performance of each

technique? In these experiments we controlled the dimensionality of our data using

PCA. The more principal components we keep the more information we preserve. We

showed that the offline Gaussian model technique, in general, benefited from keeping

more principal components. This was particularly evident in the results for the optical

flow features. To get any decent performance we needed to keep at least 5 principal

components. However, most of the other techniques' performances degraded as the

dimensionality increased. In particular all the online techniques had difficulty with

a joint audio-visual space greater than 2 dimensions. This was to be expected in

that even when we use a two second window we only have 63 samples to estimate a

covariance or form a KDE. This is a limiting factor even when restricting ourselves

to a Gaussian model. If we have a n dimensional joint audio-visual space we need
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to learn n2 /2 parameters for a covariance matrix. With 63 samples and n = 4 we

already have less than 8 samples per parameter. This situation becomes much worse

as n increases.

Our results also showed that the offline non-parametric techniques were very sen-

sitive to dimensionality. As shown in Figures 6-11(a), 6-11(c), 6-14(a), and 6-14(b)

the gap between the offline Gaussian and KDE techniques grew as the input dimen-

sionality increased. This gap seems to be larger than it should be considering that

the offline KDE technique learns its model from a large amount of training data. It

should have had enough samples to give a robust estimate of the joint density, even

if it was truly Gaussian. Perhaps the best explanation for this is that our method

for choosing a kernel size was suboptimal. Similarly the SVM i.i.d. technique may

had difficult with higher dimensional data because we did not search enough parame-

ters (C and the kernel size) when training. We leave exploration of these potential

problems as future work.

Can we use simple Gaussian models or does this data require more complex non-

parametric techniques? Overall we found that using a Gaussian model gave us the

best performance. This may be because we needed more than a two dimensional joint

audio-visual feature space to achieve good performance in most our tests and that

our non-parametric techniques failed for the reasons discussed above. However, we

found features that looked i.i.d. and somewhat Gaussian and thus a Gaussian model

was the correct choice.

Can we learn a person-specific model for audio-visual association? Is it possible to

learn a generic model for audio-visual association? Our results showed that learning

a model for a particular person gives us better performance than using an online

technique or training on different individuals. We also showed that it was possible to

learn a generic model for audio-visual association if our features were close to i.i.d.,

i.e. each person has similar statistics that do not vary are large amount over time.

Does our specific choice of features affect performance? As discussed in the an-

swers to the above questions, the choice of features greatly affects performance. We

showed that using differential features that remove information about appearance
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produced samples that were more i.i.d. and gave us lower error rates.
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6.2 Experiment 2 : Techniques for learning Infor-

mative Subspaces Comparison

6.2.1 Purpose

In the previous set of experiments we compared different techniques for modeling and

detecting audio-visual association in human speech. We showed how the performance

of these techniques varied with the dimensionality of our observations. PCA was used

a standard approach to control dimensionality. However, in Chapter 4 we discussed

alternatives to PCA for learning informative low dimensional subspaces in which to

represent our data. In this set of experiments we compare these alternative subspace

learning techniques.

6.2.2 Variables

We compare the main techniques discussed in Chapter 4. Each subspace learning

technique has its own set of assumptions. Thus, for each technique we restrict ourself

to a particular set of model learning and testing techniques that are consistent with

these assumptions. In addition, we do not consider purely online techniques in these

tests. By assuming we can learn an informative subspace from training data we are

also implying that some model for our data can be learned. Thus, we ignore the

online Gaussian and KDE techniques that use permutations rather than a learned

bias. The subspace learning techniques and their associated modeling techniques are

shown in Table 6.5.

Subspace Learning Method Abbreviation Modeling and Testing Techniques
Joint PCA JPCA Gaussian Model i.i.d , Gaussian MI (Learned Bias)

Canonical Correlation Analysis CCA Gaussian Model i.i.d , Gaussian MI (Learned Bias)
Max MI MMI KDE Model i.i.d, KDE MI (Learned Bias)

Max Discriminant MD RBF SVM i.i.d, RBF SVM Full

Table 6.5: Informative Subspace Learning Techniques and Associated Model Tech-
niques. Details about the subspace techniques can be found in Chapter 4.
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For the majority of our experiments we restrict ourself to learning a two dimen-

sional subspace, separate one dimensional projections of the audio and video. For the

MMI and MD techniques we pick a reasonable set of optimization parameters. We

run these optimizations with four different random initializations of the projection

coefficients and keep the results with the highest resulting objective criteria. To help

improve the speed of these techniques we only use a stochastically sampled set of 800

data points during each iteration. A new set of samples is chosen every 6 iterations.

We use a variable step size and the optimization is run for 100 iterations.

6.2.3 Results : Synthetic Data

We begin with testing the informative subspace learning techniques on synthetic data

for which we can calculate a "optimal" subspace. The first set of data is generated

using the following linear model:

A = M,# + na(
(6.3)

V = Mv# + nv

with

Ma = [1 . 1 ]T
(6.4)

MV = [1 1 1 1 .1]T

A low dimensional Gaussian random variable # is lifted into a higher dimension using

Ma and M,. Noise is then added in this higher dimension with independent random

variables na and n. For this data 0 is drawn from N(0, 1), na from N(0, diag([.01 .5]))

and n., from N(0, diag([.5 .75 1 .5 .5])). A second set of data is generated with an

added nonlinearity such that

a = Ma# + na
(6.5)

v M, sin(27rf#) + nv = Mv#sin + n

using f = .5.
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Each synthetic data set produces an audio and video signal that share a common

underlying low dimensional variable. Information about this variable is distributed

amongst the components of the higher dimensions. Since all the additive noise is

Gaussian and Ma and M, are fixed, it can be shown that a linear projection will

produce a sufficient statistic for #. For the linear Gaussian case:

h, = C,-'Mha ~ a (6.6)
(a) = haa MCla

and

h, = C-- MVMv (6.7)
O(v) = h v = M Cnv

The same projections, ha and he, are optimal for the nonlinear case. However, rather

than h v producing a sufficient statistic for # it gives sufficient statistic for 0.sin. That

is hv = )

For both the linear and nonlinear models we generate 2000 samples. We then

perform 4 fold cross validation in which we train on 1500 of those samples and then

test using the remaining 500. The testing phase takes those 500 dependent samples

and generates another 500 independent samples through random permutations of

a. We then perform an association hypothesis test using the model and subspace

learned in the training phase. A short window length of 5 samples is used for this

simple synthetic data. The training phase consistent of two parts. First we use one

of the methods in Table 6.5 to learn an ha and h,. Second we learn a model for

projections of the training data in the subspace defined by ha and hv.

We begin by using the full data for training and testing. This is compared to

training and testing using the optimal projections described above. These results

were compared to the results from using all of the methods described in Table 6.5

and their corresponding modeling techniques. Table 6.6 shows results for the linear

data.
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I I JP(error)I Gaus-ian Model i.i.d KDE Model i.i.d GauPerian MI KDEMI RBF SVM i.i.d RBF SVM Full
None .0217 ± .0066 .0503 ± .0079 .5000 ± .0000 .4611 ± .0164 .0343 ± .0032 .0685 ± .0085

-o Optimal .0242 ± .0083 .0301 ± .0109 .0885 ± .0147 .1515 + .0186 .0186 ± .0093 .0313 ± .0030
0. JPCA .0348 ± .0070 - .1076 ± .0057 - -

MMI - .0364 ± .0145 - .1558 ± .0155 - -
MD - - - - .0320 1 .0055 .0234 ± .0054

Table 6.6: Results for linear data

When training and testing on the full data we see that, unsurprisingly, using a

Gaussian model works the best (2% error). Table 6.6 also shows that the SVM and

offline KDE techniques also work reasonably well. However, we clearly see that the

online techniques do very poorly with the full dimensional data and only 5 samples

to estimate it's distribution.

Using the optimal projections we see a significant improvement in the online MI

techniques. We also observe that using the optimal projection and a Gaussian model

has the same performance as using the full data. Similarly, so does the i.i.d SVM tech-

nique, verifying that our optimal projections produce sufficient statistics. Thus, if we

can learn the optimal projection we will have the benefit of lower dimensional distrib-

utions for the online techniques to estimate and possibly be able match performance

of using the full data.

Figure 6-16 shows the projections learned by the subspace learning techniques and

the optimal. We normalize the projections to have a unit norm since measuring MI

and learning models for the data is invariant to scale. Clearly each of the methods

found projections close to the optimal in this simple linear case. The main exception

is JPCA. This is an expected result. As discussed in Chapter 4, the objective of

JPCA has little to do with the performance of the association hypothesis test.

Table 6.6 and Figure 6-17 show that the methods other than JPCA have similar

performance to the optimal projection. For this simple linear case we know that using

CCA and a Gaussian model is the correct thing to do. Although CCA performed the

best we also see that the other more general and computationally expensive MMI and

MD techniques had similar performance. Next, we explore the performance of these

techniques on nonlinear data where we expect to see CCA fail and the nonparametric
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Figure 6-16: Learned Projections (Linear Data)

P(error)
Caussian Model iA KDE Model i.L~d Gauslian M1 KDP Ml RBF SVM i.iLd RBP SVM Pull

None .4694 ± .0179 .3290 ± .0251 .4871 ± .0144 .4833 ± .0141 .3967 ± .0438 .4844 ± .0054

Optimal .4515 i .0467 .1162 ± .0086 .4786 ± .0119 .4336 .0223 .1116 ± .0161 .4609 ± .0340

JPCA .4614 ± .0521 - .4682 ± .0250 -

CCA .4556 .166 - .4882± .0106 - -

Max MI - .1568 .1357 - .4396 ±0172 - -

MD -- - .1568 i .1401 .3374 ± .2253

Table 6.7: Results for nonlinear data

techniques to show their worth.

The results for the nonlinear data are shown in Table 6.7. Clearly, we see that

using a Gaussian model is wrong for this data. There is a significant improvement

for the KDE and SVM i.i.d models when using the optimal projections. The lack of

improvement in the KDE MI technique is most likely due the fact we are only using

5 samples for test. Figure 6-18 shows the projections learned for the nonlinear data.

We see that JPCA and CCA did poorly while MMI and MD found projections closer

to the optimal. However, there is more variation in their performance than CCA and

JPCA. Figure 6-19 also shows this variation in the performance. While MMI and

MD have the best performance they also have the largest error bars.

This set of experiments on synthetic data has reenforced much of the theory

discussed in Chapter 4. It was clear that using JPCA was suboptimal for learning

an inforimative subspace well suited to measuring association. We saw that, with
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Figure 6-17: Linear Data: Pe vs Technique

the simple linear data, using CCA and a Gaussian model was optimal. It was also

shown that if we are able to find a projections that produce sufficient statistics for

the underlying dependency between the audio and video we can achieve the same

performance as if we were using the full data. The advantage of finding the subspace

is that we may not need as many samples to learn a good model and our computational

cost is reduced.

The experiments on nonlinear data presented a simple example where CCA fails

and the nonparametric approaches were necessary. We saw similar performance from

the MMI and MD techniques in both sets of experiments. While they did a good

job at finding the optimal projections they also seemed to have to most variation

across cross-validation folds. Unfortunately, these techniques were also an order of

magnitude slower in their training phase. This is mainly a result of us trying mul-

tiple initializations. However, in the case of the MD technique each iteration took a

considerable amount of time even when only 600 samples were used per iteration. Ex-

periments on high dimensional data were impractical with the MD technique. Thus,

in this thesis we only show results on synthetic data and leave exploration of improve-

ment to this algorithm for future work.
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Figure 6-18: Learned Projections (Nonlinear)
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Figure 6-19: Nonlinear Data: Pe vs Technique
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Average Subspace Number of Bases Window
Modeling Technique P(error) Learned w/ per Modality Length
Gaussian Model i.i.d. 0.10 PCA 5 63
Gaussian Model i.i.d. 0.36 PCA 1 63
Gaussian Model i.i.d. 0.12 CCA 1 63
KDE Model i.i.id. 0.48 PCA 5 63
KDE Model i.i.id. 0.44 PCA 1 63
KDE Model i.i.id. 0.08 MMI 1 63

Table 6.8: Results comparison for PCA, CCA and MMI using flow statistics and
MFCC differences (10 People)

6.2.4 Results: Data from AVTMIT

Now that we have reenforced some of our theory for subspace learning on synthetic

data, we are ready to test these techniques on real data. We concentrate on learning

a generic model for association. Our training and testing sets are mutually exclusive.

No individuals or sentences are shared between them. In the previous experimental

section we found that differential features performed the best. Specifically, we were

able to learn a good generic model for measuring association using image differences

and our flow statistics for the video representation.

CCA and MMI on Flow Features

We begin our experiments in this section using flow statistics as the video representa-

tion arid MFCC differences for the audio. These representations are already relatively

low dimensional, producing an 18 dimensional joint AV space. Previously we have

shown that using the top 5 principle components for both modalities and a Gaussian

model produced 90 % accuracy in detecting audio-visual association. Here, rather

than using PCA, we test the use of both CCA and MMI for learning an informative

subspace. We use the non-regularized versions of these methods since we have many

more training examples than number of input dimensions. Table 6.8 presents the

results for this experiment in addition to the previous results obtained using PCA.

When using a single CCA projection for each modality and a Gaussian model we

obtain 12% error. This is a. huge improvement over using a single principal compo-

nent learned by PCA, but similar in performance to using 5 principal components.
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Clearly CCA better preserves the relevant information than simply using PCA. A

more dramatic improvement can be seen when using MMI for the subspace learning

and using a KDE model. We see in Table 6.8 that the simple 2 dimensional subspace

learned by MMI gave us 8% error. With PCA we never did better than 40% error.

It is also interesting that using MMI and a non-paraietric model did best overall,

when previously the Gaussian techniques were doing the best.

To help explain these results we can study the bases learned by both CCA and

MMI. Figure 6-20 and 6-21 show the learned bases and projected data for CCA and

MMI respectively. The first thing we notice is that the bases learned for the video

strongly emphasizes the average flow in the y direction. This is true for both CCA

and MMI. This is a nice intuitive result. We expect the vertical flow to be related

to lip motion. If we look back at the bases learned using PCA in Figure 6-15 we

see that this feature, (Average dy), was mainly modeled by the 3rd basis. The bases

that described the variance in the x and y directions had more variation and thus

PCA picked bases to described those features first. This is why we required so many

principal components to obtain decent performance.

The audio projections found CCA and MMI are difficult to compare. They are

both different and do not have a simple intuitive explanation like the bases found for

the video. However, if we look at the scatter plots in Figure 6-20(c) and 6-21(c) we

see that projecting our data onto these bases learned by CCA and MMI reveals some

dependency structure. We also see that the bases produced similar projections for

both training and testing data. That is, it doesn't look like we have an overfitting

problem.

It is difficult to judge the amount of dependency information contained in the data

from these simple scatter plots. The MMI projections look a little less dependent than

those learned for CCA and neither technique seemed to produce particularly Gaussian

looking data. However, we found that MMI combined with a non-parametric did the

best. Since we are only dealing with 2 dimensional projections here, it may be useful

to look at the decision boundaries described by the models we learned for these

projections. That is, plot L(A, v) = r7 for a single observation. Figure 6-22 shows
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Figure 6-20: CCA Learned Projections / Bases (Flow and MFCC differences)

118

I
0.8

0.6

0.4

0.2

12 14

Traino
.Test

X0 '*9.

A%

S1 -46

Am 010

0
0



-- 0 l F MMI Audio Projection (MFCC)

- 8 1

1,Flow Mag 2, Avgd 3. vg dy 4. Vard
F)mN Feature Dimensione

(a) MMI Video Projection

0

-0.05

--. 1

-0.15

-02

-025

-0.3

-0.35

-0.4

5. Var dy

N *.u~--

-1 -.% .0 -. 02 0 0 . .

-1 -0.8 -0.6 -0.4 -0.2 0 02 O.4 0.6
Projeded Audio

(c) MMI Projection Scatter Plot

2 4 6 8 10
MFCC Dimension

(b) MMI Audio Projection

Figure 6-21: MMI Learned Projections / Bases (Flow and MFCC differences)
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Decision Boundaries
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Figure 6-22: Decision Boundaries learned by MMI and CCA for Flow and MFCC
Diff features

these decision boundaries on aligned axes.

We see that both boundaries have somewhat sinilar hyperboloid shapes (with

some artifacts from finite sampling near the corners for the KDE model). However,

the boundary learned using MMI and a KDE model clearly exploits some non-linear

/ non-Gaussian nature of the data. This gives us some explanation for its improved

performance of 8% error.

CCA and MMI on linage Differences

Next we apply CCA and MMI to a higher dimensional video representation. Previ-

ously, using image and MFCC differences, we obtained 13% error in detecting audio-

visual association. This was using a single PCA bases for each modality. Furthermore,

we found that adding more PCA bases did little to improve performance and actually

hurt the non-parametric modeling techniques. Here, as we did previously with the
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flow representation, we see if we can improve performance by replacing PCA with

one of our informative subspace learning techniques.

The difference here is that our video representation is much higher dimensionality

than our simple flow statistics. Each video frame has 5500 features (55 x 100 image).

The simplest of our subspace learning method, CCA, requires an estimate of the

covariance of these features. For this representation, that means we estimate more

than 15 million parameters for the covariane-rmatrix. Thus, it makes sense to impose

some regularization. Here we simply use PCA to first reduce the dimensionality

to reasonable size and then apply our subspace learning techniques in this lower

dimensional space. Since both PCA and our subspace learning methods produce

linear bases, we can combine them into a single set of linear bases to project our

original data onto. For our experiments we regularize by first reducing dimensionality

of our video with 512, 256, 128, 64, 24, or 5 PCA bases. Using this number of bases, on

average, preserved 97, 95, 90, 82, 69, and 41% of the energy in the video respectively.

We assume that by preserving over 90% of the variation in the video data we are also

preserving the relevant information for detecting audio-visual association.

Again, weuse 10 people for this experiment, with 5 fold cross-validation (training

on 8 and testi g on 2). We restrict our informative subspace learning techniques to

learning a sing I basis for each modality. Figure 6-23(a) shows performance using

CCA and a Gaussian model as a function of energy preserved by our PCA regular-

ization. Surprisingly, we see that regularization only hurts us. The technique did

better as more principal components were kept. The more information we gave CCA

the better it did. There was no sign of overfitting to the training data. The average

probability of error across folds was only 2% when using 512 principal components.

This a significant improvement over the 13% error previously obtained using PCA

alone.

However, we see in Figure 6-23(b), that the when using MMI and a non-parametric

model the PCA regularization did improve performance. This model's performance

was the same or better than CCA and the Gaussian model using 5, 24 or 64 princi-

pal components for regularization, but rapidly became worse using 128 or more. It
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Figure 6-23: P(error) vs % Energy kept during PCA Regularization
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performed best when using 24 bases for regularization, with only 5% error.

This behavior can possible be explained by our optimization procedure for MMI.

Unlike CCA, which finds a global maximum for it's objective criteria, MMI's optimiza-

tion procedure may get stuck in local maximum. We use a simple gradient descent

starting at random initializations to find a solution. The higher the dimensionality of

the data input to MMI, the larger our search space becomes for finding informative

projections/bases. Furthermore, in order to improve speed, we employ a subsampling

technique which only uses a subset of the training data in each iteration. If our data

dimensionality is too high, we may overfit to a particular subsampling of the data.

We try to combat these problems by trying at multiple random initializations, and

uses over 800 subsamples per iteration. Our results show that this was not enough

to avoid local maxima when using over 64 principal components for regularization.

While this highlights some of the main disadvantages of MMI, it also shows the im-

portance of regularization with such a technique. It is also important to note that

MMI still did an excellent job of finding an informative subspace with regularization,

resulting in 5% error. Again, this is a significant improvement over just using PCA.

Previously, when using CCA and MMI on our optical flow features, we found that

the learned video bases mainly modeled vertical motion. This was a nice intuitive

result. Let's see if the projections/bases learned for our image differences emphasize

any particular portions of the video. Figure 6-24 shows the projections learned by

CCA and MMI as function of energy preserved during regularization. We notice that

the more regularization we use (less energy preserved) the more our bases seem to

emphasize the jaw and lip motion. Less regularization seems to produce more noisy

looking bases. However, we found that CCA did the best with those "noisy" looking

bases. What is even more surprising is that the CCA and MMI projections look

almost identical. This result is odd considering that we concluded that MMI must

have found local maxima when we used less regularization. These local maxima look

very similar to the optimal bases CCA learned.

We do not claim to have a solid explanation for this results. However, it turns

out, if we look at any random projection of the top 512 or 256 principal components
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Figure 6-24: CCA and MMI Learned Projections / Bases (Image and MFCC differ-

ences). The number above each projection is the % of video energy preserved for

regularization.

of our training data we get bases similar to the last two CCA and MMI bases shown

in Figure 6-24. This brings into question whether or not CCA and MMI are just

learning "random" projections. We see that this is not the case, specifically for CCA,

in Figure 6-25. Figure 6-25(a) shows the training and testing data projected onto the

subspace learned using 512 principal components for regularization. Clearly we see

some dependency between the audio and video. Additionally we see that the training

and testing data have similar distributions. Thus, it seems we do not overfit.

Figure 6-25(b) shows the projection our our data onto the subspace learned by

MMI under the same conditions (512 principal components for regularization). Vi-

sually there seems to be less dependency between the audio and video in this case.

Thus, it makes sense that we did worst with this MMI projection they we did with

the one learned by CCA Although the testing and training data seem to have similar

distributions in this figure, it may be that we overfit to last subsampling of data used

by MMI, which is mixed into the rest of the training data, or it may be that this

subspace provided a local maxiina.

Lastly we show what our subspace would look like if we used a random combination

of the principal components rather than CCA or MMI in Figures 6-25(c) and 6-25(d).

Clearly we see that while our random bases looks visual similar to those learned by

MMI and CCA, it provides us with much less informative subspace. Therefore, we
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Figure 6-25: Data projected into subspaces learned by (a) CCA (b) MMI (d) Random

for Inage and MFCC Differences. (c) Shows a random linear combination of the top

512 principal components of the training data.

cannot always extract useful informiation from the projections learned by CCA or

MMI. The information they exploit to best capture the dependency between the

audio and video may not be visually obvious.

In addition to using PCA for regularization, we also ran a series of experiments

using L2-regularization. We tried setting Ra and R, to be the identity in Equations

4.27, 4.26 and swept A, and A, from le - 10 to le - 2. However, we could not identify

any trends. We could never match the performance we achieved by siniply using PCA

for regularization. In Appendix D we show that the parameters for L2 regularization
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can be interpreted as defining priors on the bases we learn or the type of noise we

have in our training data. As discussed above, we found that the informative bases

learned by CCA and MMI do not always have an intuitive form. The bases that

looked smooth and seemed to model jaw motion did worse than the bases that had a.

more "noisy" appearance. Thus we do not have a. good intuition about what how we

should choose our regularization parameters. We leave a more detailed study of L2

regularization as future work.

Combining CCA with a non-parametric model

We have shown that using CCA and MMI to learn an informative subspace improves

performance over simply using PCA. Both techniques gave very similar performance,

and sometimes learned similar bases. We saw this when using CCA and MMI on

our flow features. However, while both techniques produced similar bases, we saw

that using a KDE Model had better performance than using a Gaussian one. This

led us to try mixing CCA for subspace learning with a KDE for modeling our data.

CCA provides us with a simple subspace learning algorithm that avoids the local

maximum problems that can occur with MMI. It finds a subspace that has maximum

mutual information if our data is Gaussian. If our data is not Gaussian, the subspace

learned by CCA is only guaranteed to have first and second order statistics such

that the correlation coefficient is maximized. However, this in no way implies that

the projected data will be Gaussian or have maximum mutual information. Thus,

it may be a good idea to model this projected data. with a non-parametric model.

In addition, CCA has the added bonus of always finding a set of orthogonal bases.

Therefore, we can look at how keeping imultiple bases to form a higher dimensional

subspace affects performance.

We ran a set of experiments on the same dataset of 10 people exploring these

ideas. We looked at keeping 1, 2 or 3 bases (1,4 or 6 dimensional subspace) learned

by CCA and compared performance using a Gaussian or non-parametric model for the

projected data. We begin by using flow and MFCC differences for our representation.

Results are summarized in Table 6.9.
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Average Subspace Number of Bases Window
Modeling Technique P(error) Learned w/ per Modality Length

Gaussian Model i.i.d. 0.104 CCA 1 63

Gaussian Model i.i.d. 0.125 CCA 2 63

Gaussian Model i.i.d. 0.098 CCA 3 63
KDE Model i.i.id. 0.064 CCA 1 63
KDE Model i.i.id. 0.028 CCA 2 63
KDE Model i.i.id. 0.005 CCA 3 63

Table 6.9: Results comparison for PCA, CCA and MMI using flow statistics and

MFCC differences (10 People)

Average Subspace Number of Bases Window
Modeling Technique P(error) Learned w/ per Modality Length

Gaussian Model i.i.d. 0.017 CCA 1 63
Gaussian Model i.i.d. 0.007 CCA 2 63
Gaussian Model i.i.d. 0.007 CCA 3 63
KDE Model i.i.id. 0.013 CCA 1 63
KDE Model i.i.id. 0.005 CCA 2 63
KDE Model i.i.id. 0.004 CCA 3 63

Table 6.10: Results comparison for PCA, CCA and MMI using Image and MFCC

differences (10 People)

The first thing we notice is that using CCA with a Gaussian model we see no

improvement in keeping multiple bases. The performance stays close to 10% error,

with a strange bump up to 13% when using 2 bases. The more interesting results is

that combining CCA with a non-parametric model has improved performance. We

get 6% error using a single CCA bases and improve to under 1% error as we use up to

3 bases. These are our best results so far. Clearly, CCA has provided an informative

subspace for this problem, but we needed a non-parametric model.to properly describe

the data in this space. Using 3 bases for audio and video learned by CCA gives us

a 6 dimensional joint space. We show the nonlinear nature of the data in this space

by plotting the training samples used by the KDE model learned in Figure 6-26. We

see some linear relationships between the first audio and video dimensions (1 and

4). However, there are clearly many nonlinear relationships, particularly between the

video dimensions that would be poorly modeled by a Gaussian.

We ran the same set of experiments using image differences for our video repre-
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sentation, using 256 PCA components for regularization. Table 6.10 summarizes the

results. This time we see that even with a Gaussian model we benefit from using

multiple CCA bases, obtaining 0.7% error. However, again we see that the KDE

Model did the best with 0.4% error using a 6 dimensional subspace learned by CCA.

Figure 6-27 shows the KDE model learned on the 6 dimensional subspace. This time

we see more linear relationships, particularly between dimensions 1 and 4, 2 and 5,

and 3 and 6. These are the relationships between the first, second and third sets of

bases learned by CCA.

6.2.5 Summary and Discussion

In this section we explored the use of informative subspace learning techniques to

help reduce the dimensionality of our data and improve performance. All of the

techniques introduced in Chapter 4 were tested; JPCA, CCA, MMI and our MD

method. We began by creating a synthetic dataset in which the audio and video

observations shared a common, underlying low dimensional variable. Information

about this variable was lifted and distributed amongst the higher dimensions of our

observations. We tested two cases; one in which this lifting was completely linear,

and a second ease in which we added a nonlinearity. For both cases we knew the

optimal subspace. We obtain sufficient statistics for the common,underlying variable

by projecting onto the basis of this subspace without losing any information.

The results of the experiments carried out on this data reenforced the theory

discussed in Chapter 4. We saw that when our data was linear and Gaussian, CCA

was optimal. However, it was clear that CCA was the wrong choice for non-linear

data. In the nonlinear case MMI and MD proved their worth finding subspaces that

were close to optimal and outperforming all other techniques. It was also shown that

for both sets of data, JPCA was suboptimal. Its objective criteria tries to preserve

energy rather than preserving the information shared between modalities. Lastly,

we discussed some of the potential problems with the MMI and MD techniques that

resulted from their gradient descent optimization routines. Unfortunately, we found

that our routine for MD was too slow and unstable to use on real, higher dimensional
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data. Thus, we left further study of this technique for future work.

Subsequently, we were left to compare the use of CCA and MMI on real data taken

from the AVTIMIT database. We concentrated on learning a generic model for mea-

suring audio-visual association using these informative subspace learning techniques

for dimensionality reduction rather than PCA which was used in the previous exper-

imental section. Immediately we saw the advantage of these techniques over PCA

when using flow and MFCC differences as our video and audio representations. Pre-

viously, we needed to keep over 3 principle components for each modality to get any

decent performance. However, both CCA and MMI found a single set of bases that

resulted in equivalent or better performance than using PCA. The video bases learned

by both CCA and MMI showed that the average vertical flow statistic was the most

informative feature. PCA found this feature to be less important than the variance of

flow in the x and y directions since these variance features had more variation. The

experiments on these flow features using MMI combined with a KDE model in train-

ing were the first to show a potential advantage of using a non-parametric approach

giving us 92% accuracy in our association detection task. This technique resulted in

better performance than simply using CCA and a Gaussian model.

Next, we applied these techniques using image differences as our video representa-

tion. This representation provided the challenge of having much higher dimensionality

than our optical flow statistics, giving us the opportunity to explore the effect of reg-

ularization. We showed results in which regularization was carried out in a naive

way, using PCA as an initial dimensionality reduction prior to running CCA or MMI.

Surprisingly we found that regularization only hurt CCA. CCA did the best when our

PCA step only threw away 3% of the energy in our video data (512 principal compo-

nents). This PCA plus CCA combination gave us 2% error, a significant improvement

over the results in the previous experiment section when we obtained 13% using PCA

only. We saw no signs of overfitting to the training data. It is important to note that

we did not attempt to run CCA on the raw 5500 dimensional for practical reasons.

Overfitting would most likely have occured in such a case. However, it is clear that

by using at most 512 principal components we did not lose much information and
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the results have shown that CCA had a sufficient amount of training data to avoid

overfitting.

Our results for MMI were different. It was clear that this simple PCA regulariza-

tion helped the MMI technique. By first reducing the dimensionality of the input, we

helped restrict the search space for MMI and thus helped its optimization procedure

avoid local maximums. MMI combined with a KDE model had equivalent or better

performance than CCA and a Gaussian model when the regularization limited the

input dimension to less than 64. Once we went beyond that threshold, MMI's per-

formance began to degrade. Thus, we see that MMI is a more powerful technique,

but has an optimization procedure that limits its practicality. We leave exploration

of improvements to this algorithm for future work.

Another very interesting result when using our image differences as our video

representation was that the bases learned by CCA and MMI were not easy to in-

terpret visually. The bases that looked more informative, emphasizing the jaw and

lip, provided less information than those that seemed to be "noisy" and appeared to

be overfitting. However, this was not the case. The smoothly varying and visually

appealing bases were less informative. This makes it difficult to apply regularization

that imposes a particular prior on our learned bases, i.e. L2-regularization.

Lastly, we explored combining the robust subspace learning method of CCA with a

non-parametric model rather than assuming Gaussianity. This combination produced

our best results. CCA avoids local maxima problems and finds a two dimensional

subspace in which projected data has maximal correlation coefficient. While this

may not correspond to the subspace with the maximal mutual information, it does

capture some dependency. Using a non-parametric approach such as a KDE to model

the projected data in this subspace allows us to potentially capture other dependencies

that are not captured in the second order statistics CCA concentrates on. This was

particular useful when using optical flow features which are highly non-Gaussian. In

some ways CCA is imposing its own form or regularization or capacity control by

only looking at second or statistics. It makes sense to ignore higher order statistics if

we do not have enough data to properly estimate them. Furthermore, CCA provides
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multiple, orthogonal, informative 2 dimensional subspaces that can be combined to

model more of the dependency between the modalities. We obtained less than 1%

error in using this mixture of techniques for both image differences and optical flow.

133



6.3 Experiment 3: Exploring the Importance of

Kernel Size

In Section 6.1 we saw that our KDE modeling techniques were extremely sensitive

to dimensionality. A large degradation in performance occured when the data we

were modeling had more than 4 dimensions. In our discussion of this section we

conjectured that this poor performance may have been a result of having choosen a

bad kernel size. In this section we briefly explore how different methods for choosing

kernel size, and the dimensionality of our data affect our ability to estimate mutual

information using a KDE.

We use our ability to estimate MI as our metric since, in the limit, both our online

and offline modeling techniques are measuring MI as their likelihood statistic in our

audio-visual association hypothesis test. We also simplify our experiments but using

Gaussian data and fixing the amount of mutual information. That is, our synthetic

n dimensional samples of a and v from N(0, Cay), with Ca and C, being identity I,

and choosing Cav so that I(a; v) = 1.

We test both the rule-of-thumb (ROT) and leave-one-out cross validation methods

for choosing a kernel size described in Appendix A. For each dimensionality n tested,

we draw a set of k samples and estimate its density and MI with a KDE using either

ROT or LCV. We do this 100 times for each setting of n and k and record the average

MI estimate. Figure 6-28 shows results for both ROT and LCV. Each line represents

a different n, ranging from 1 to 5 (1 to 10 joint dimension). The estimated MI is

plotted as a function of the number samples used.

These plots lead to some simple conclusions. First, it clear that the way in which

we pick our kernel size has a large affect on our ability to estimate MI. We see two

completely different trends for ROT and LCV. Second, we see that as we increase

the dimensionality of our data, with these kernel picking techniques, our MI estimate

generally gets worse.

The results for ROT show that with 2 dimensions we pick an over-smoothed kernel

and under-estimate MI estimate. As we increase dimensionality, we go from over-
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Figure 6-28: Comparing Techniques for Choosing Kernel Size

smoothing to under-smoothing and overestimating MI. As we increase the number of

samples used in our estimate, the trend of slowly converges to the true MI. However,

visually following the trend, it seems that once we have over 6 dimensions it may take

an extreme number of samples before we converge to the true MI estimate.

The results for LCV show a different trend. As the dimensionality increases, we

are more prone to under-estimating MI. As the number of samples increase, we seem

to converge to the true MI when our dimensionality is below 6. Once we get higher

than that we do progressively worse.

This quick experiment has clearly shown that both kernel size and dimensionality

of our data play an important role in our ability to estimate MI when using a KDE

model. It is important to note that these methods for choosing kernel size are based

on minimizing either the mean integrated squared error (MISE) or KL divergence

between the estimate density and the true density. However, we may be willing to

sacrifice our ability to imatch the true density if we could have a better estimate of

MI, particularly when using an online method. We leave such exploration for future

work.
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Chapter 7

Discussion and Future Work

A main motivation for this thesis is to help promote the development of multi-person

dialog systems by addressing the speech correspondence problem. We simplify this

problem to its core task of detecting audio-visual association. Given pairs of audio and

video observations of human speech, our task is to determine whether not they belong

together. This seemingly simple task is attended by a set of interesting questions:

What is the proper framework in which to discuss such a problem? Can we learn a

simple model for our audio-visual observations. If so, how should they be modeled?

How do we intelligently deal with the high dimensional nature of audio-visual data?

In Chapter 3 we answered the first of these questions, showing how this task can

be naturally addressed using decision theory. We discussed how a simple hypothesis

testing framework can be used for detecting audio-visual association. This statisti-

cal framework makes use of the fact that associated and non-associated audio-visual

data have different distributions. For simplicity, we restrict ourselves to an obser-

vation model in which we assume our audio-visual samples are i.i.d.. We discussed

how generative approaches explicitly model the different distributions for the data

while discriminative approaches exploit these differences to directly learn an opti-

mal decision function. In addition, for the generative approach, we discussed the

tradeoffs between learning a model from training data and learning one online. We

showed that, no matter how or when we learn our generative model, carrying out our

hypothesis test ultimately boils down to some measurement of mutual information.
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In Chapter 4 we addressed the practical issues that arise from using high dimen-

sional audio-visual data. We discussed how standard techniques for dimensionality

reduction, such as PCA, are suboptimal for our problem. We presented the concept

of an informative subspace and introduced CCA and MMI as the proper methods for

dimensionality reduction, in that they preserve the relevant dependency information

between our observations. We show how CCA is optimal when the data is Gaussian

and that MMI provides a more general non-parametric approach. Lastly, we pre-

sented a new technique we refer to as maximum discriminant (MD), which learns a

low dimensional subspace which best perseveres the ability to discriminate between

two different sets of data.

The AVTIMIT database used in our experiments was discussed in Chapter 5.

We showed how we use a simple correlation based tracker to extract the lower facial

region of speaking subjects. Different preprocessing techniques for extracting audio-

visual features were also discussed. We argued that by preprocessing our raw audio-

visual with techniques commonly used by the AVSR community we eliminate obvious

irrelevant information and find features that are closely tied to speech production.

Chapter 6 presented a series of experiments on both synthetic data and real data.

The synthetic data help reenforce our understanding of the theory presented in Chap-

ters 3 and 4. Real data taken from the AVTIMIT database was also tested, allowing us

to see how well this theory held up in practice. We primarily discuss our results in sec-

tions 6.1.7 and 6.2.5, but present a summary of some of our key results here: We saw

how the features we extract during preprocessing can greatly affect our performance.

Static audio-visual features produced non-i.i.d. observations and were only suitable

for learning a person-specific model of audio-visual association. Differential features

varied less across subjects, allowing us to learn a decent generic model for association.

We saw that when our observations were close to being i.i.d. it was advantageous

to learn some model from training data rather than relying on a online testing tech-

nique. Both non-parametric (discriminative and generative) and Gaussian modeling

techniques worked well when dealing with low dimensional observations. However,

performance using the non-parametric techniques rapidly degraded as we increased
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dimensionality. Using PCA for dimensionality reduction, in many cases, we needed to

keep close to 5 principal components to obtain any decent level of performance. With

this 10 dimensional joint subspace our non-parametric techniques were outperformed

by the simpler Gaussian model.

In section 6.2 we showed that by using the informative subspace learning tech-

niques described in Chapter 4 instead of PCA, we could obtain similar performance

with a much lower dimensional representation. While we demonstrated with synthetic

data that the MMI technique had an advantage of being able to capture non-linear

audio-visual relationships, both CCA and MMI were shown to learn similar subspaces

for our audio-visual data. When our input representation was already relatively low-

dimensional (such as flow statistics), MMI combined with a non-parametric KDE

model outperformed CCA combined with a Gaussian model. However, when higher

dimensionality input was used (such as image differences) the optimization routine for

MMI seemed to find local maxima. We improved performance by imposing capacity

control with PCA prior to running MMI, but could not beat the performance of CCA.

This led us to combine CCA with a non-parametric model. That is, we let CCA find

our informative subspace and then modeled our data in that subspace using a KDE

rather than a simple Gaussian model. We argued that CCA imposes some form of

regularization or capacity control by ignoring higher order statistic that are difficult

to estimate with a finite set of training data. Using this approach we obtained close

to 99% accuracy in detecting audio-visual association. This was the average per-

formance on a test set of 10 people in which we performed 5 fold cross-validation,

iteratively training on 8 people and testing on the 2 held out.

In summary, this thesis has presented a solid framework for addressing the problem

of detecting audio-visual association. We have broken up our testing and training

procedure into a set of simple components (see Figure5-2 ); one for preprocessing,

one for dimensionality reduction, and one for the carrying out the final hypothesis

testing. We developed each component separately and explored how each component

affects the overall performance of the system. Preprocessing allowed us to remove

irrelevant information in our data and supply features which are somewhat i.i.d..
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The dimensionality reduction component used a set of bases learned from training

data to supply a low-dimensional, informative representation of our data for the

hypothesis testing component. This leaves the hypothesis testing component free to

measure the likelihood of audio-visual association by treating its input as generic low

dimensionality random variables. We were ultimately able to obtain close to 99%

accuracy in detecting association with this structure (with preprocessing providing

differential features, dimensionality reduction using bases learned with CCA and a

hypothesis test which uses a non-parametric model of the data).

While we have obtained some promising results, our work on this problem is far

from being complete. In the very near future, we plan on continuing our exploration

of this problem by testing a larger portion of the AVTIMIT database. In addition,

we wish to address the many interesting questions raised in our experimental sections

that we were forced to leave unanswered. In particular, we would like to explore new

methods for choosing kernel size to help improve performance of non-parametric mod-

eling techniques when dealing with high dimensional data. We also plan on working

toward improving our optimization routines for both MMI and MD. Furthermore, we

would like to more thoroughly study the role of regularization in the context of the

informative subspace learning techniques used in this thesis.

Lastly we wish to incorporate our framework for detecting association into an

actual multi-person dialog system. Our framework was already designed with a real-

time implementation in mind, detecting association using a sliding window of audio-

visual observations. However, future work must also consider the potential problems

caused by tracking errors and non-frontal faces. We also wish to study how our

framework can be extended to better incorporate dynamics.
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Appendix A

Density Estimation

In Section 3.1 we saw how to design a hypothesis test for our speech correspondence

problems if we had access to the correct models for our audio visual data under each

hypothesis. However, all we have to work with is a set of sample observations and

some general knowledge about their nature (i.e. we know that when the audio and

video are associated their joint density should exhibit some dependency).

In the following sections we will discuss two different approaches to learning a

model for our observations from these training samples. First, we assume a Gaussian

model and show how to estimate its parameters. We then show how to obtain a

non-parametric model using a Kernel Density Estimate. We discuss these techniques

in terms of estimating a probability distribution for some random variable x E R'

when giving a set of N training examples, x, through XN.

A.1 Learning a Gaussian Model

If we assume our random variable x is Gaussian it has a density of the following form:

11 1
Px(X) (27r)n/ 2 | C,|1/2 p 2(x - z) C. (x - ttx)J (A.1)
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which is characterized by two quantities; its mean ., 2 R" and covariance Q, E Re ",

AX = E[x] = xp(x)dx (A.2)

C = E[(x - p,)(x - pj)T] = E[xxT] - pxp (A.3)

Therefore learn a Gaussian model is equivalent to estimating these two quantities.

Typical the means is estimated using the following unbiased estimator (which also

happens to be the estimate of the mean that maximizes the likelihood of our data

assuming Gaussianity):
N

(A.4)
j=1

It is unbiased because:

E[,] =+ E[x] = Ax (A.5)
j=1

Similarly there exists an unbiased estimator for the covariance.

N

QO. = N Ax A (A.-6)
j=1

Although this estimator is unbiased it is not the maximum likelihood (ML) estimate.

The ML estimate uses a factor of 1/N rather than 1/(N - 1) and produces a bias.

What follows is a simple proof that the estimator in Equation A.6 is unbiased:

1 N
E[Cx]l N - ZE=~ T1Z - A ~tXl ±1 EffXft (A.7)
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E[x,47] = >] E[xix]
q=1

= (E[xjx[] + (N - 1)E[xqgj]E[xf])

I T
= (C + + (N - 1)pxpx)

= (Cx +Nyxx)

=E[A.xT]

and

E[##T ]x =
I N N

y2- ] EE[xixT]
i=1 j=1

= N2(NE[xixT] + N(N

1 N )=N (Cx + N pxpx

(A.9)
- 1)E[xjg#]E[xj])

Plugging Equations A.8, A.9 back into Equation A.7 yields:

E [U,] = N- 1Z(C, + y7 - (Cx + Nypx

1
=- (NC + NI-C - Np.ix )

N - i
=cN - C

= Cx

Thus, completing the proof. Note that if x is zero mean than the ML estimate,

Ei xixT/N is also unbiased.

Putting everything together our density estimate is:

Px(x) = 1 exp
(27r)n/216 ( x1i/2 L 1 (x - A)) T C'-1(x - AX)2
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A.2 Kernel Density Estimation

There are many cases in which our data may not fit a Gaussian model. While we may

be able to find some other parametric model that better describes our data, sometimes

it is preferable to use samples of the data describe its own distribution. This is the

goal Parzen window or kernel density estimators. They attempt to approximate p,(x)

using N data samples:

N N

fx(x) E K(x - xi; h) = K(xi - x; h) (A.12)
i=1 Ij=1

where K(x; h) is the kernel function with a bandwidth described by h. The kernel

function is usually symmetric and integrates to 1 so that ^ is a valid density. For

this thesis we restrict ourself to product kernels in which each dimension is treated

independently:

K(x; h) 1 K (A.13)

where K() is a unit-variance kernel and h = [h(1), ... , h(n)]T is a vector containing

kernel sizes / bandwidth for each dimension. For our experiments we simply use a

Gaussian kernel:
1 12

k(x) exp(--x 2) (A.14)
, p~i 2

This provides us we a smooth, easily evaluated kernel with an infinite region of sup-

port.

A.2.1 Choosing a Kernel Size

After choosing a form for our kernel all that is left for us to control is the kernel size.

Choosing an optimal kernel size is difficult task and is an active area of research. Here

we described two popular methods. However, we must first described what we mean

by "optimal." A simple cost functions for measuring the fit or optimality of a kernel
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density estimate is the Mean Integrated Squared Error (MISE):

MISE = E , (P.(x) - p. (x))2dx] (A.15)

where p.,() is the true density. (Note that, for simplicity, we restrict ourselves to

single dimensional densities). If we assume the true density is close to Gaussian and

we use a Gaussian kernel for , () it can be shown that the following "plug-in-estimate"

minimizes an approximation to the MISE:

h(j)ot =(6- 1/5 (A.16)

where
N N

1__ X, = -- (_ __)2 (A.17)

This "rule-of-thumb" for picking a kernel size was originally introduced by Silver-

man [29] and has the advantage of being simple and efficient to calculate. However,

one may question the Gaussian assumption used to obtain this estimate. If we are

assuming a Gaussian density why bother with this kernel density estimation? While

it is true that this kernel size is optimal for a Gaussian density, it still may give

a reasonable estimate for distributions that are more or less symmetric, unimodal,

and have small tails. When dealing with multidimensional data we simply treat each

dimension independently, estmating a different & for each dimension.

An alternative cost function for measuring correctness of fit is the Kullback-Leibler

divergence:

D(px I JP) = Ep [log pXx) - logi(x) (A.18)

In order to minimize this quantity we maximize the part we have control over,

Ep. [logPx(x)]. We estimate this with:

CV = N log P2.:i(xi) (A.19)
N=
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where

i1x(x) = kZ K(x - xi; h) (A.20)

is a leave-one-out estimator of the density. A line search is performed to find the h

that maximizes CV. We refer to this method as maximum likelihood leave-one-out

cross validation. The reason for the leave-one-out estimate is that if all the sample

points were included the solution would be a kernel size of 0, giving use a kernel that

acts as a delta function.

For our experiments we use Alex Ihler's excellent KD-tree based Kernel Density

Estimation class for MATLAB 101.
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Appendix B

Select Elements of Information

Theory

This thesis makes judicious use of concepts described by information theory. In the

sections below we quickly highlight the most relevant material. An excellent resource

for further investigation is [5].

B.1 Entropy

Given a continuous random variable x E R with probability density px(x) and region

of support S, differential entropy H(x) is defined as:

H(x) = E[- log(p,(x))] = - Jp.(x) log p,(x)dx (B.1)

and is sometimes alternatively written as H(p,.) since it dependent only on the density.

Entropy describes the average uncertainty in a random variable. When using the

natural log it is measured in nats and using log base 2 results in units of bits. A useful

interpretation is that entropy is related to the number of bits on average required to

describe the random variable.

As a quick example we can calculate the entropy of a Gaussian random variable
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with zero mean and covariance C,. Using the natural log for convenience we get:

H(x) = Jpx(x) ( - -xT;1 - log(127rCI))

=E[xT CTx] + 1 log((27r) CT)2 2
1

= (n + log(27r"|,|)
2
1

= (log(e") + log((27r)lC,|))
2
1

= log((2er)flCQJ)
2

where in the third step we use the linear

fact that expectation is linear):

E[xTC;lx]=

and cyclic properties of the trace (and the

tr(E[xT C'ix])

E[tr(xT C; 1x)]

E[tr(q 1xx T )(
(B.3)

tr( 1 E [xx T ])

tr(C;'C,)

It is interesting to note that a Gaussian random variable has the largest possible

entropy for any other continuous random variable with the same mean and variance.

If we have two random variables x and y we can talk about joint and conditional

entropy. The joint entropy is simply the same as the entropy defined on new vector

valued random variable [x; y]:

Conditional entropy is:

H(x, y) E,,[, [- log p[.,;y] (x, y)]

H(ylx) E,,1 , [- log px1y(xIy)]
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It can also easily be shown the following chain rule holds:

H(x, y) = H(x) + H(ylx) = H(y) + H(xly) (B.6)

B.2 KL Divergence

Given two densities p,(x) and q,(x) for the same variable the relative entropy or

Kullback-Leibler divergence is defined as:

D (p x||q ) = E [log ( q:(x)j (B.7)

= p x(X) log (x) ) dx

which some measure of distance between distributions. It is strictly positive and

zero only when p,() = qxO. However it is not a "true" distance metric in that it is

not symmetric and does not satisfy the triangle inequality. between two probability

densities.

B.3 Mutual Information

Given two random variables x and mathbfy, we can discuss the amount of shared in-

formation between the two in terms of their mutual information. Mutual information

is defined as

I(x; y) = D(p[x;y](x, y) Ip.(x)py,(y))

= H(x) - H(xly) (B.8)

= H(x) + H(y) - H(x, y)

= I(y; x)

and can be viewed as the reduction in uncertainty about one random variable due to

another. Since it is a special case of KL divergence it is strictly positive. It is also
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symmetric, implying that x tells us as much about y as y does about x.

It is also interesting to note that the mutual information of a variable with its self

I(x; x) is equal to it's entropy H(x). This is why entropy is sometimes referred to as

self information.

Using Equations B.8 and B.2 we can easily show that the mutual information

between two Gaussian random variables is

I(x; y) = (log((2eir)"IC ) + log((2eir)'IC.I) - log((2er)n+mIC[x;y]I))

_1 log _____ (B.9)=1 log

B.4 Data Processing Inequality

One important concept used by this thesis is the found in the data processing in-

equality. It formally states that intuitive notion that any processing carried out on

data can only serve to reduce and at beast preserve the amount of information it can

convey. That is:

J(x;y) I(x; f(y)) (B.10)

and is equal if f() is an invertible function or f(y) is a sufficient statistic for y (as

discussed in the next section).

B.4.1 Sufficient Statistics

The concept of a sufficient statistic is very important in stochastic estimation and

detection as well as information theory. If we have some random variable y related

to some x we say that T(y) is a sufficient statistic if

p(xly) = p&xT(y)) (B. 11)
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which is equivalent to saying we can write the probability of y conditioned on x as

the product of two independent functions:

p(yIx) = f(T(y); x)g(y) (B.12)

Having this form produces:

p(y) f p(yx)p(x)dx
(B.13)

= g(y) f(T(y); x)p(x)dx

and therefore

p(xly) p(yfx)p(x)
p~x~y)y=

f(T(y); x)p(x) (B.14)
f f(T(y); x)p(x)dx

- p(xIT(y))

which shows that Equation B.11 and B.12 are equivalent conditions.

Any statistic of y forms the Markov chain x -- y -+ T(y) or equivalently x <-

y <- T(y) which means the joint density can be written as

p(x, y, T(y)) p(x)p(ylx)p(T(y)Iy)

= p(x, y)p(T(y)jy)

= p(x~y)p(y)p(T(y)Jy) (B.15)

= p(xly)p(T(y), y)

= p(xly)p(yJT(y))p(T(y))

which implies x and T(y) are independent given y. That is

p(x, T(y)y) = p(x, y, T(y)) p(x, y)p(T(y)Iy)
whic mean Ix yT p(y) prov t data pre(y)ssn ineuait

which means I(x; yJT(y)) = 0. This allows us to prove the data processing inequality
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for any function To. Using the chain rule mutual information can be expanded in

the following two ways:

I(x; y, T(y)) = I(x; T(y)) + I(x; yjT(y))
(B.17)

= I(x; y) + I(x; T(y)Iy)

Since mutual information is strictly positive, setting these results to equal each other

I(x; T(y)) + I(x; yjT(y)) = I(x; y) + I(x; T(y) y)

I(x; T(y)) + I(x; yjT(y)) = I(x; y) + 0 (B.18)

I(x; T(y)) = I(x; y) - I(x; yjT(y))

I(x; T(y)) < I(x; y)

which shows we have equality if I(x; yjT(y)) = 0.

However, if T(y) is a sufficient statistic we can plug Equation B.11 into the line 3

of the Equations B.15 and show that

p(x, y, T(y)) = p(xjy)p(y)p(T(y) Iy) (B. 19)

= p(xjT(y))p(T(y)jy)p(y)

This implies that when T(y) is sufficient we have the Markov chains x +- T(y) <- y

and x -+ T(y) -+ y. Thus I(x; yjT(y)) = 0, proving

I(x; T(y)) = I(x; y) (B.20)

Therefore when T(y) is a sufficient statistic we achieve the maximum mutual infor-

mation with x.
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Appendix C

CCA

Canonical Correlation was originally proposed by Hotelling in 1936. Given two zero-

mean random variables X E Rn and Y E Rm, canonical correlation is defined over

one-dimensional projections of the random variable as:

Ef{hTXYThy} hTCxyhy{hZ, ht} = arg max =argmax (0.1)
, E {hT XX T h } J E { hTYYT h} '' h h vhh

where h,. E Wn and h. E R. It looks for the projections of X and Y that have

maximum correlation coefficient p.

C.1 Derivation

Notice that scaling h. or h. will have no effect on the maximum in Equation C.1 This

allows the problem to be reformulated as:

{hX, hl} = arg max h[ Cvhv

s.t. hxChx = hVChy = 1

(C.2)
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Using Lagrangian multipliers the solution for CCA becomes the stationary points of

the following objective function:

JccA(hx, hY, p,, pY) = hT ,vhy - I ( hTChx - 1)- (Ch-3)x2 x 2 Y h-) C3

Differentiating with respect hx and beta yields

JCCA = Cvhy - pOChx = 0 (C.4)

____ = C hx - p -Cyhy =0 (C.5)

Using Equation C.4 and solving for hx gives:

h, = C;TCyhy ( C.6 )
Px

Plugging this into Equation C.5

(1 CT C1C

x -CY C; Cy -PVy)hy = 0

CT C;1Cxyhy = py p.Cyhy (C.7)

CY-1CT -'Cxyhy = pyph

Note that multiplying Equation C.4 by hT and Equation C.5 by hy' and setting

them equal results in

hivC 1x hv - p1 (h iTC, = h CT h - p(h T Cyhy )

hTCQyht - px(l) = h TCvhy - pV(l) (C.8)

P = py = P

where the second step used the constraints of Equation C.2 and the fact that h C h =

h TQ 1yhy. This yields the following eigenvalue problem

Cy-'C;C7-C'yhy =p 2 h (C.9)
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and similarly

CX-1C y~-1CT = = pshv (C.10)

With some rearranging the solution to CCA can be expressed as a single generalized

eigenvalue problem:

=( pi 
(C.11)

C0 0) (hy,i) 0 C) hy,,)

Solving these equations for all eigenvectors yields a set of orthogonal h ,is,(and

hl,is) and can be sorted in order of their eigenvalues (or pi). Therefore instead of

solving for the single best hx and h, a set of the top p = min(m, n) solutions can be

found and we will refer to them as p columns of H, and H,.

However, in practice, it may be simpler to just solve eigenvalue problem in Equa-

tion C.9 for the hs and then use Equation C.6 to solve for the hxs. Note that

p = hTC,,h, and therefore is the correlation coefficient.

C.2 Implementing CCA with SVD

It has been shown above that the canonical correlations between data X and Y

can be found by solving the eigenvalue Equations C.9 and C.10. The solution to

these equations require computing the full covariance of XY to obtain Cx,Cxy, etc.

These costly computations can be avoided by taking advantage of a handy little tool,

Singular Value Decomposition (SVD). Performing SVD on the data gives us

X =UtSXyV' (C.12)

Y UYSYVIT (C.13)

which allows the covariances to be expressed as

C = E[X XT = IUxS VTVXS U11 U S2UT
(C.14)

Cxy = E[XYT] = lUXSXXVYSYUT
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and so on.

Using the SVD and applying it to Equation C.10 we obtain

(UXS VTVSUTUS2UTUSVTVSU - US2UT p2

(USVTV I T V SU T -US UTp 2)k,

Multiplying both sides by S, U, gives

(VTVV T S _Uf- SXUfp 2 h_ = 0

(V TV T V -Ip2)SUT h 0

(KKT - Ip2)SxUfh, = 0

where

K = VxT, = UkSgVT

which leads to

(UkSkUT - I p2 )STUfh,

(Sk2UkT - p2U')S.,UT h.,

(Si - p2 )U STUf h

In order to maximize p we set

h, = UxS 1 Uk

= 0

(C.18)

(C.19)

which gives

p21 = Sk

Similarly it can be shown
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(C.20)
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Appendix D

L2 Regularization

In this chapter we will discuss different interpretations of L2 regularization. The

main goal of imposing regularization in learning techniques is to limit the risk of

overfitting to training data. This risk of overfitting occurs when supplied with less

training examples than degrees of freedom. Regularization is a way to deal with

finite sampling problems such as this in order help our learning procedures generalize

better.

One interpretation of regularization is that it imposes a prior on the learned

parameters, thus reducing the degrees of freedom. Another view is that regularization

provides a robust solution when training data is corrupted by noise. We will review

these and other interpretations of L2 regularization in the context linear regression

and canonical correlation analysis. The majority of this chapter summarizes and

extends the regularization discussion found in [1.

D.1 Least Squares Linear Regression

We start with the extensively studied problem of linear least squares regression. Given

a set N xi and yi pairs observations of linear least squares regression finds the best

linear function of the xis to predict the yjs in a least squared error sense. Here we

restrict the problem such that xi E R" and y E R' for simplicity. The linear function

is represented by the vector h.
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D.1.1 Minimizing Squared Error

Linear regression can be viewed as solving the following:

N

hs =argmmn y- hx) 2  argmin J1,(h)
j=1 (D.1)

hLs* = arg min(y - hTX)(y - hTX)T
h

where y = [y1...yk] E R1xN and X = [X1...XN E R"x. The above equation shows

that we are trying to find the linear function h that minimize the sum of squared er-

rors. The solution to this problem is very straight forward. Solving for the stationary

point of J 8(h) leads to:

OJis(h)
=9 0

y - 2hTXYT hTXXTh)=0

-2(XyT - XXT h) =0 (D.2)

hLs = (XXT)-XyT

hLs =c|CY

C is the sample covariance of xi, XXT/N and Cy is the sample cross covariance

between xi and yi, XyT/N.

D.1.2 Maximizing the Likelihood of h

A second interpretation of least squares regression is that it finds the maximum

likelihood estimate of h give data X and y and the following model:

y=hTX + n (D.3)

with n = [n1...nk] E R1xk and each i.i.d ni being a gaussian random variable with

zero mean and a variance of c . Given this model and h the probability of the data
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is simply

p(X, yjh) = p(n)

N 1 ( hTx )2

27r7 2 J2 (D.4)

1 ( (y - hTX)(y - h TX)T

2 ra l 2)
V2ir "2 n

Finding the h which maximizes this probability leads to

hLS = arg max p(X, yIh)
h

= arg max log (p(X, yIh))
h

= arg min - log (p(X, yIh)) (D.5)
h

= arg min k log V2 (o y - hTX)(y - hTX)T
h "+2o, 2

= arg min(y - hTX)(y - h TX)T
h

which is the same objective function shown previously. Therefore we now have two

equivalent interpretations of least squares. It can either be viewed as minimizing the

squared error between y and a linear function of X or as the maximum likelihood

estimate of h in which y is generated by the Gaussian model in Equation D.3.

D.2 Regularized Least Squares (Ridge Regression)

The solution shown in Equation D.2 depends on the sample covariance of the data.

This can be problematic when we have a small number of samples (small k) or our

data is corrupted by noise or outliers. In fact the sample covariance C, may not

be invertible. In an attempt to combat these problems Ridge Regression adds L2

regularization to least squares linear regression. The role of this regularization has

various interpretations.
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D.2.1 Minimizing Squared Error plus L2 Norm Constraint

One view of Ridge Regression is that it simply adds a norm constraint to the least

squares objective function:

hRR = arg min(y - hTX)(y - h TX) + AhT Rh (D.6)
h

where A is a parameter that controls the tradeoff between the squared error term and

the norm constraint defined by the positive semidefinte matrix R. In its most simple

form R is the identity matrix and the norm is simply the squared L2 norm. The

solution to this problem is as follows

aJRR(h)
aw

ay 2hTXyT + hTXXTh + AhTRh)= 0

-2(XyT - XXTh - ARh) =0 (D.7)

hRR =(XXT + AR)-XyT

hRR = (C,+ AR)'Q

D.2.2 Regularization as a Prior on h

Looking at Ridge Regression from a Bayesian point of view we can think about the

problem in terms of the model in Equation D.3, but this time treat h as a random

variable with some prior probability. Under the assumption h is Gaussian we have

1 /
p(h) = exp 5- .5h TC- (D.8)I27r~hI

and the posterior probability of h given the data is

p(hIX, y) oc p(X, yjh)p(h)

c p(n)p(h) (D.9)

(y - hTX)(y - hTX)T hTC-Wl
2c exp - 2u% 2 ,
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where we have removed all the constants that don't depend on h. Maximizing this

posterior probability leads to

hRR = arg max p(hlX, y)
h

= arg max log (p(hIX, y)))
h

= arg min - log (p(hX, y)) (D.10)
h

hX y hTX)(y hTX)T + hTcw
= arg mmin - +± C

h 2

arg min(y - h TX)(y - hTX)T + o 2hC-wi
h

This is equivalent to the solution shown in Equation D.7 with A set to be o- and

R is the inverse covariance of h. This shows us that Ridge Regression finds the h that

maximizes the posterior probability of our data when we have a Gaussian prior on h.

D.2.3 Regularization in relation to an Observation Noise Model

A third usefully interpretation of Ridge Regression is that is address the problem of

having noisy observations of data. The model in Equation D.3 has noise on y but none

on X. If we assume we actually observe X rather than the true X and X = X + S

where si is i.i.d zero mean Gaussian noise with covariance C, the model is changed

to:

y = hT(1k - S) + n (D. 11)

It can be shown that hRf maximizes of the expected log likelihood of the data under

this model [1]. That is

hRR = arg max Es [log(p(X, yIh, S))]
h (D.12)

= (C9Z + CS)-'CJ
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While [1] shows a full proof of this we present a simple alternative here. The model

in Equation D.11 can be compared with the simple Least squares model in Equation

D.3. We see in this new model we observe X rather than the noise free X. The

solution of the least squares problem involves the sample covariances Q, and C.y.

Under this model we see that:

XXT
N

= ( - S)(X - S) T  (D.13)

N=S(kiskT -XS T ±+SST)

Here the covariance of the noise free data X depends on our observations X and

knowledge of what noise S has corrupted it. Taking the expected value with respect

to S yeilds

Es[C, I kkT - Es[S]X T - kEs[ST| + Es[SST]N / (D.14)

=Cf + CS

where we use the fact that the sample covariance,SS T /N is unbiased since S is zero

mean. That is the expected value of the sample covariance is the true covariance.

Similarly we show that the expected sample cross covariance is

Es [XyT ]
ES[Cry] = NyT

= E[[(X- S)Ny
N (D.15)
1 T

=NkyT _ ES[S]yT

=CNy
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The cross covariance is unaffected by the added noise on X. Substituting these

expected covariances into the least squares solution shows that

h = Es[Cx]-1 Es[Cy] (D.16)

= (CQ + CS)-'CZ.

which is equivalent to D.7 with AR set to be C, and change of notation from observing

X to observing X.

In summary, Ridge Regression yields the general solution shown in Equation D.7

and has the following useful interpretations:

1. Ridge Regression is the solution to a least squares problem with an added norm

constraint. The tradeoff between minimizing squared error and the norm defined

by hTRh is controlled by the parameter A

2. Ridge Regression produces the h that maximizes the posterior probability P(hjX, y)

under the model in Equation D.3 when there is Gaussian prior on h. In this

situation AR is equivalent to the inverse covariance of the prior on h, CW'. A

stronger prior implies a small covariance and large in covariance and thus the

CW7 dominates. Having a weak prior implies the opposite, with the extreme

case when there is an improper uniform prior on h and hRR becomes equivalent

to hLs.

3. The h given by Ridge Regression maximizes the expected log likelihood of the

data under the model in Equation D.11. This expectation is taken with respect

to the noise S added to X. In this interpretations AR represents the covariance

of the noise , Cs.

These interpretations can help in choosing the appropriate A and R for a particular

problem. In most cases, however, simple forms are chosen for R and cross validation

is used to find the best A. In such situations it is sometimes more useful to limit A

to be between 0 and 1 and change the form of the Ridge Regression solution to be
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h.n =(1 - A)((1 - A)C. + AR)-XyT (D.17)

which is equivalent to Equation D.7 with A replaced with A/(1 - A).

D.3 Regularized Canonical Correlation

A full derivation of CCA was given in Appendix C. This derivation was straight

forward and showed how to find vectors h, and h. to maximizes the correlation

coefficient between hTX and hrY, where X is a set of N i.i.d samples of xi E W and

Y a set of N samples of yi E Rrn.

Finding a solution to CCA requires calculating sample covariances CO, CV, and

O~y. Therefore, the solution is sensitive to the same problems with linear regression

such as finite sampling, noisy observations and outliers. This was the inspiration of

Regularized Canonical Correlation (RCCA) or Canonical Ridge Analysis originally

proposed in [33]. In it's most general form RCCA finds to following:

{h, h} = cJ X (D.18)
hT7 (C+ tRx)h v hy(C + Av Ry)h

which like CCA is invariant to the scale of k, and h. which leads to the following

equivalent optimization

{ h, hy} = arg max h TChQb", hV (D.19)
s.t. h(CQ + \xRT)hx h r(CV + AyRy)hy = 1

Following the same procedure outlined in the derivation shown in Section C.1 shows

that solving RCCA is equivalent to solving the following eigenvalue problems.

(Cy + Ay R)-C (C+ -ICT h = p2hx (D.20)

(Cx + ANR. )-1C(Cy + AyRy)-Clh= p2 hz (D.21)
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Comparing the solution to CCA in derived in Section C.1 to that of RCCA hints at

relationship to how one goes from Least Squares to Ridge Regression. A probabilis-

tic interpretation of CCA is presented in [1] and a link between RCCA and Ridge

Regression is made.

The role of regularization in RCCA can be interpreted in a similar manor to that

described in the previous section. That is, if we assume that our observations of

X and Y are corrupted by noise S. and S. only our estimates of C, and C. will

be affected (As shown in Equations D.14 and D.15). Therefore, we see that RCCA

simply plugs in the expected value of C, and C, with respect to the noise, and AxRx

and AR, represent C, and C, respectively.
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Appendix E

Entropy Gradient Calculations

E.1 Law of Large Numbers Approximation

Differential entropy is defined as follows:

h(X) = -E[log (px(x))] = - Jpx(x) log (px(x))dx (E.1)

We can estimate h(X) by using a kernel density estimate

h(X) = -E[log (px(x))] (E.2)

Using the law of large numbers we can approximate the expectation in equation E.2

as:

(E.3)h(X) = - log(x(x))
N=1

To find the gradient of h(X) at a particular sample point x, we must calculate

ah(X) 1 1 a

=N fix(xs) o8xpx(x,)
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where
a 1 a h) ,

x (X) = I a K(x - x,; h) = 1 K (x, - xi; h)
i=1 i=1

(E.5)

with K'() is the gradient of the kernel. (The switch of variable positions in the second

equality of Equation E.5 is a result of K'() being an odd function).

Let us assume the kernel function K() is a product kernel (w/ independent dimen-

sions) such that:
d

K(x; h) = Ki( )
hi hi

(E.6)

where Kj() is a unit-variance kernel and h = [hl, ..., hd]T is a vector containing kernel

sizes for each dimension. Then our kernel gradient is:

K'(x; h) = aK(x; h)
ax

a K(x; h)
ax 1

-K(x; h)
(x 2

. K(x; h)
09Xd

with

d

][ (-li, a 1
h) (xk hk

Equation E.5 is O(N) which leads to O(N 2 ) calculations for the estimating the gra-

dient for the entire set of points.

Here is some help with this not-so-nice notation:

" x a sample data point.

" Xk kth dimension of sample data point.

" xi the ith data point.

" Xi,k= the kth dimension of the ith data point
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K(x; h)

(E.7)

Xk)
hk

a 1 K1 (I)
K(x; h) '19k hk

-LKk(.T )
(E.8)
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E.2 ISE Approximation

We can approximate the p log (p) term in Equation E. 1 with its second order Taylor

series expansion about some value q.

f(p) ff(q) + f'(q)((p - q) + 2(p - q)
2

12
p log (p) q log(q) + (log(q) + 1)(p - q) + -(p - q)2

2q

plog(p) -plog(q)+p-q+ 1(p -q)'
2q

(E.9)

(E.10)

(E.11)

Substituting in p and q being a function of x and plugging into the formula for dif-

ferential entropy we get the following approximation:

h(X) = - Jp(x) log(q(x))dx - J p(x)dx + J q(x)dx -

h(X) = - (p(x) log (p(x)) - p(x) log(P(x) ))dx -
q(x)

I
h(X) = h(X) + D(p(x)lq(x)) - J

) (p(x)

2q(x)
1 (p(x)

2q(x)

- q(x)) 2 .12)

- q(x))2 i.13)

- q(x)) 2 #R 14)

We can choose q(x) to be the uniform distribution u(x) = Vj where VQ, is the

volume of x's region of support. This simplifies the above equation with:

h(X) + D(p(x)IIq(x)) = - p(x) log(u(x))dx = - log(VQ ) Jp(x)dx = log(Vda.15)

thus giving us

)2dx (E.16)

where here we use our kernel density estimate for p(x) since we are assuming we do

not have the functional form.
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Next we want to find it's gradient. Plugging in our kernel density estimate we have:

a~-h(X)
=--

h(X) = -Vof

I Q(x

((x) -

(E.17)

(E.18)

( Q()) dx

(ax(x)) dx

To be consistent with John Fisher's thesis let:

(E.19)

Combining E.17 with E.19 and E.5 gives us:

(X = N
TX h( X) N- > EJ (x)K'(xi - x; h)dx (E.20)

(Note the negative is from K'() being an odd function and the way E() is defined).

A different notation can express the gradient as a convolution:

(6,(x) * K'(x)) ,(X) = -
fexi N

- N
(E.21)

we can further expand f,(x.) :

f,(xi) = J (u(x)
1 N

- 1 K(x -
=1

h)dx - I JK(xj - x; h)K(x
N 1

- x; h)dx (E.22)

- x; h)dx (E.23)

I N
fe (x,) = f,(Xi) -

1

- xj - z; h)dz

Zf.(xi - xj)
j=1

f (Xi) = Ju(x)K'(xi - x;

(E.24)

(E.25)
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where there was a substitution of z for xj - x. The two functions fe() and f,() are

simply:

f, (z) = u(x) * K'(x; h)

=' (K(x; h) * K(x; h))fa(z) = K(x; h) * K'(x; h)

(E.26)

(E.27)
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Appendix

Experiment 1 Raw Results
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Win Length 15 31 45 63 15 31 45 63 15 31 4S 63
Input Dim 5 5 5 5 2 2 2 2 1 1 1 1

Gaussian Model i.i.d
Avg Pe 0.2552 0.2096 0.1373 0.1620 0.3291 0.2586 0.2107 0.2017 0.4481 0.4189 0.3574 0.3990
Stdv Pe 0.0570 0.1355 0.1156 0.1025 0.0937 0.1350 0.2286 0.1143 j. 4: 0.07 .0373 0.1036 0.1126

Avg Bias -0.01 -0.05 -0.03 -0.02 0.01 0.00 0.00 -0.01 0.02 0.02 0.02 0.00
KDE Model i.i.d

Avg Pe 0.3194 0.2904 0.3078 0.4311 0.37362 7 0.3037 .23 0. 09 0.1019 0.14444 0.4057 0.4290Stdv Pe 0.0215 0.0929 0.1363 0.1511 0.134 0.1351 0.1261 0.1143 0.07 0.14:4 0.101 0.0884Avg Bias 0.38 0.00 0.00 0.00 0.13 0.12 0.01 0.49 0.2 0.08 0.02 0.02
Online ausian MI (Learned Bias)I

Avg Pe 0.4672 0.3981 0.4111 0.4268 0.3526 0.2751 0.2586 02997 0.262 0.27 0.2962Stdv Pe 0.0438 0.0307 0.0373 0.0602 0.03 0.0560 0.0502 0.0794 0.108 0.03 0.1828 0.0685
Avg Bias 2.21 0.96 0.67 0.50 0.31 0.20 0.17 0.1 0.0 0.06 0.05 0.03

Onin MD I (Learned Bias)
Avg Pe 0.437 0.4545 0.4500 0.4447 0.371 0.3447 0.3123 0.3497 0.400 0.3100 0.2664 0.2883
Stdv Pe 0.0041 0.0264 0.0286 0.0360.08 0.0533 0.0702 0.1313 0.101 0.090

Avg Bias 1.24 1.54 1.53 1.61 0.6 0.16 0.51 0.49 0.24 0.18 0.15 0.14
RBF SVM i.i.d

Avg Pe 0.3690 0.2750 0.2574 0.268 0.4237 0.3938 0.3493 0.3377 0.413 0.713 0.3362 0.3898Stdv Pe 0.1009 0.1480 0.1704 0.1821 0.0923 0.0334 0.0414 0.0771 0.017 0.0304 0.109 0.1321
Avg Bias 1 0.05 0.16 85 15 0. 0.01 0.19 0.13 0.07 0.11 0.15 0.16 0.16

RBF SYM FullI
Avg Fe 0.3326 0.3391 0.4620 0.4692 0.316 0.3445 0.3484 0.3329 0.3393 0.2770 0.2672 0.3238
Stdv Pe 0.0999 0.0326 0.0308 0.0481 0.0314 0.0932 0.0985 0.1418 0.065 0.0691 0.0168 0.0699

Avg Bias 0.28 0.52 0.25 0.08 00 0.21 0. 0.7 0.28 0.11 0.13
Online Gausian (perm test I

Avg Pe 0.4851 0.4875 0.4926 0.4996 0.3657 0.3817 0.4127 0.4029 0.3444 0.2919 0.3020 0.3641
Stdv Pe 0.0175 0.012 0.0094 0.0009 0.0311 0.0423 0.0414 0.0564 0.1062 0.1191 0.1415 0.0520

Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
Avg Best Pe 0.4552 0.4538 0.4697 0.4935 0.3451 0.3013 0.3307 0.3336 0.3313 0.2614 0.2586 0.2462
Stdv Best Pe 0.0397 0.0177 0.0182 0.0074 0.0312 0.0654 0.0355 0.0742 0.1109 0.1361 0.1637 0.0653Avg Best Bias 0.93 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.73 0.95 1.00 1.00Online KDE MI perm test) 1: Raw Results for Person 1_: x s t s s d F

Wvg Fe 0.4675 0.4514 0.4980 0.4970 0.3910 0.4444 0.4529 0.4713 0.3970 0.3417 0.3619 0.4216Stdv Fe 0.029.3 0.04.34 0.0025 0.0050 0.0702 0.0410 0.0296 0.0529 0.0700 0.1086 0.0972 0.0388
Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.8 0.81 0.85 0.85 0.85 0.85Avg Beat Pe 0.4481 0.4173 0.4877 0.4843 0.3821 0.4060 0.4057 0.4503 0.3746 0.2864 0.2881 0.3436Stdv Best Pe 0.0466 0.0508 0.0143 0.0098 0.0751 0.0686 0.041 0.0759 0.0813 0.1444 0.1236 0.0296

Avg Best Bias 0.92 [ .00 0.7 1.00 0.93 0.87 1.00 1.00 0.75 0.75 1.00 1.00
Table F. 1: Experiment 1: Raw Results for Person 1 : Pixels Intensities and MFCCs

Win Length 15 31 45 63 15 31 45 63 15 31 41 63
Input Dim 5 - 5 5 5 2 2 2 2 1 1 1 1

Gaussian Model i-i-d
Avg Pe 0.1716 0.1015 0.1135- 0.0614 0.3481 0.28 0.2488 0.2805 0.3410 0.3484 0.3061 0.2526
Stdv Pe 0.0518 0.0864 0.0601 0.0553 0.0662 0.5035 0.0426 0.0788 0.0564 0.0906 0.1092 0.1468

Avg Bias -0.02 -0.04 0.04 -0.06 0.03 0.03 0.01, 0.01 0.03 0.01 0.02
KDE Model i.i.d

Avg Pe 0.3403 0.2888 0.2750 0.2666 0.4034 0.3425 0.3045 0.3528 0.3963 0.3578 0.3951 0.3658
Stdv Pe 0.0508 0.0800 0.07.32 0.0771 0.063 0.03 0.1234 0.1619 0.1727 0.216 0.21 0.1922

Avg Bias 0.40 0.10 0.00 6 00 0.10 0. 0.09 1 0.10 0.03 0.03 0.02 0.02
Online Gaussian MI (Learned Bias)

Avg Fe 0.4459136 757 0.4336 0442 0. 0.37 0.33 0.1 0.345 0.1787 0.8 0.2365Stdv Pe 0.0544 0.036 0.0561 0.0368 0.0238 0.05 34 0.031 0.02 0.0492 0.062 0.003
Avg Bias 2.31 0.91 0.65 0.46 67 33 0.16 59 13 0. 0.10 0.08 0.06 0.04

Online KDB MI (Learned Bias)-
Avg Fe 04955 0.4545 ()0.3975 0.31 36 0.4295 0.3762 0.3283 1 0.3371 I0.3325 I0.2429 0.2389 0.2796j
Stdv Fe. 0.0044 0.0334 I0.0359 0.0-32.3 I.0447 I0.0766 0.0800 0.0926 0.0243 I0.0264 0.0872 0.0192

Avg Bias .. .33 1.84 1.78 I1.92 I0.67 I0.62 0.59 I05 0.27 0.21 I0.17 I0.16
RBF SVM i.i.d

Avg Pe 0.3497 0.3133 0.3627 0.3103 0.3977 0.4207 0.3064 0.3403 0.3895 0.3496 0.3864 0.3728
Stdv Pe 0.0336 0.0612 0.1691 0.0843 0.0735 0.0653 0.1288 0.1233 0.0894 0.1280 0.1633 0.1099

Avg Bias 0.00 0.12 0.00 0.00 0.08 0.24 0.23 0.19 1 0.06 0.05 0.05 0.08
RBF SVM Full

Avg Pe 0.4267 0.356 0.4792 0.4987 0.3717 I0.3094 0.4538 0.4006 0.2478 0.2676 0.2414 0.3186
Stdv Pe 0.0684 1 0.0812 0.01 0.0026 0.0658 0.075 0.0849 0.1174 0.0529 0.0333 0.0427 0.14

Avg Bias 0.06 0.8 0.26 0.00 0.32 0.8 0.15 0.34 0.35 0.32 0.27 0.8
O16nline Gaussian MI (perm test) ____ ____ ________

Avg Fe I 0.4627 0.4976 0.-49-59 -0.4978 0.3903 0.3370 0.4037 0.4264 0.3254 -0.2480 -0.2414 0.310
Stdv Fe 0.0313 0.0020 0.0071 0.0026 0.0204 0.0375 0.0396 0.0350 0.0141 0.0324 0.0805 0.0480

Avg Bias f 0.85 0.85 0.85 0.85 0.85 0.86 0.85 0.86 0.85 0.85 0.85 0.85
Avg Best Pe 0.4440 0.4867 0.4799 0.4865 0.3612 0.2931 0.3348 0.3567 0.2985 0.1920 0.1619 0.2487
Stdv Best Pe 0.0420 0.0049 0.0186 0.0140 0.0354 0.0405 0.0332 0.0399 0.0312 0.0607 0.0788 0.0511

Avg Best Bias 0.95 1.00 1.00 0.75 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00
Online KDE MI (perm test)

Avg Pe 0.4112 0.4957 0.4889 0.5000 0.4235 0.4463 0.4578 0.4983 0.3526 0.3084 0.3668 0.4277
Stdv Pe 0.0278 0.0066 0.0162 0.0000 0.0222 0.0333 0.0218 0.0020 0.0323 0.0197 0.0499 0.0218

Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
Avg Best Pe 0.3914 0.4851 0.4701 0.4983 0.3970 0.3938 0.4143 0.4839 0.3340 0.2292 0.2619 0.3436
Stdv Best Pe 0.0246 0.0165 0.0458 0.0014 0.0329 0.0615 0.0171 0.0141 0.0348 0.0370 0.0635 0.0295

Avg Best Bias 0.97 0.75 0.50 0.75 0.98 1.00 1.00 0.75 0.98 1.00 1.00 1.00

Table F.2: Experiment 1: Raw Results for Person 2 : Pixels Intensities and MFCCs
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Win Length 15 131 63 15 31 63 15 31 63
Input Dim 1 5 5 5 2 2 2 1 1 1

Avg Pe 0.5449 0.6333 0.5482 0.4832 0.4583 .4737 0.5127 0.5567 0.5172-
Stdv Pe 0.1403 0.0721 0.0594 0.0475 0.0604 0.0910 0.0259 0.0519 0.0508
Avg Bias 2.23 0.8 -0.44 0.33 0.17 0.09 0.00 0.00 0.00

K ins Mode e ias

Avg Pe 0.4178 0.4470 0.4721 0.4214 0.4671 0.4893 0.5133 0.4716 0.4847
Stdv Pe 0.0780 0.0707 0.0747 0.0474 0.0463 0.062 0.031 0.0547 0.0691
Avg Bias 0.21 0.21 0.00 0.03 0.05 0.04 0.25 0.01 0.00

Avg Pe 0.433 0.4349 0.4907 0.492 0.48 0.4260 0.439 0.43 0.4185
Stdv Pe 0.0439 0.0303 0.0178 0.0104 0.0507 0.0529 0.0526 0.0780 0.0652
Avg Bias 2.23 0.88 0.44 0.03 0.17 0.09 0.09 0.05 0.02

Avg Pe 0.4978 0.46201 0.4234 0.431 40.411 0.4320 0.4494 0.4522 0.4334
Stdv Pe 0.0016 0.0466 0.0147 0.0559 0.0282 0.1027 0.0380 0.0343 0.0502

Avg Bias 0.79 1.59 1.79 0.68 0.65 0.59 0.25 0.18 0.14

Avg Pe .49 0.460 0.4906 0.4782 0.4818 0.4773 0.5096 0.4643 0.487Stdv Ps 0.0483 0.0121 0.0558 0.0162 0.0215 0.0265 0.0306 0.0694 0.0535
Avg Bias 0.02 0.14 0.15 -0.03 0.29 0.8 0.29 0.29 0.85

Avg Pe 0.4884 0.4714 0.4731 0.3881 0.3821 0.4302 0.4684 0.4159 0.4408
Stdv Pe 0.0403 0.0466 0.0649 0.01559 0.038 0.20!5 0.0528 0.0774 0.0473

Avg Bias 0.40 0.32 0.43 0.07 0.16 0.25 0.02 0.02 0.08

OnlinessinM per test) I____

Avg Te 0.4514 0.4464 0.98 0.4.4 0.407 1 0 0.4429 0.4287
Stdv Pe 0.0145 0.0121 0.0005 0.0382 0.0362 0.0412 0.0449 0.0694 0.0535
Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

Avg Best Pe 0.4276 0.4526 0.4971 0.3881 0.3801 0.4302 0.4342 0.4332 0.4134
Stdv Best Pe 0.0175 0.03 0.0022 0.0412 0.0510 0.0543 0.0435 0.0736 0.0645

Avg Best Bias 1.00 1.00 0.80 0.99 0.99 0.80 0.87 0.73 0.75

TaleF.:lxpie n 1:E Raw Rperlt fot0pepeeixlsneniisan)F

Avg 1e 0.4423 0.4446 0.4956 0.4284 0.4569 0.4896 0.4414 0.4486 0.4545
Stdv Pe 0.0213 0.0279 0.0040 0.0464 0.0110 0.0098 0.0363 0.0401 0.0277

Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
Avg Best Pe 0.4343 0.4176 0.4842 0.4132 0.4175 0.4756 0.4303 0.4265 0.4318
Stdv Best Pe 0.0282 0.0360 0.0083 0.0418 0.0271 0.0210 0.0384 0.0541 0.0341

Avg Best Bias 0.97 1.00 1.00 0.95 1.00 1.00 0.84 0.95 1.00

Table F.3: Experiment 1: Raw Results for 10 people : Pixels Intensities and MFCCs
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Win Length 15 31 45 63 15 31. 45 63 15 31 45 63
Input Dim 5 5 5 5 2 2 2 2 1 1 1 1

Gaussian Model i.i.d
Avg Pe 0.2000 0.0842 0.0758 0.0736 0.2351 0.1179 0.0631 0.0205 0.2433 0.0745 0.0906 0.0675Stdv Pe 0.0577 0.0631 0.0937 0.1190 0.0311 0.0554 0.0456 0.0314 0.0468 0.0640 0.0686 0.0708

Avg Bias 0.02 0.00 -0.01 -0.01 0.00 -0.00 0.01 0.00 0.00 0.00 0.00 0.00
KDE Model i.i.d

Avg Pe 0.4336 0.4675 0.4926 0.5000 0.3802 0.3942 0.4184 0.4691 0.2366 0.0960 0.0730 0.0497
Stdv Pe 0.0392 0.0190 0.0085 0.0000 0.0365 0.0260 0.0401 0.0165 0.0727 0.0565 0.0479 0.0554Avg Bias 0.18 0.00 0.00 0.00 0.11 0.10 0.11 0.02 0.03 0.00 0.01 0.02

Online Gaussian MI (Learned Bias)
Avg Pe 0.4243 0.2582 0.2098 0.1620 0.3459 0.2578 0.180 0.25 0 .4313 0.347 2057 0.1016 0.0771
Stdv Pe 0.0235 0.0959 0.0383 0.0719 0.0329 0.0612 0.0442 0.0311 0.0829 0.0766 0.0771 0.0388Avg Bias 2.20 0.83 0.55 0.42 0.27 0.14 0.10 0.09 0.03 0.04 0.04 003

Online KDE MI (Learned Bia
Avg Pse 0.475 ( 0.488 0.420 0.3275 I0.485 ) .18 .3689 0.262 ( 0435 0.397 033 0.2827
Stdv Pe ).' 8 000 .00230 I .12.3 I 444 0.0953 0.0111 0.29 .0461 0.0751 0.3 I0.033 004 0.0437

AvgBia H 2.08 I2.35 I2.29 I2.58 I0.89 11 1.06 I1.16 I0.33 03 0.6 0.26
RBF SVM i.i.d

Avg Pe 0.2262 0.1977 0.1581 0.1680 0.2827 0.2492 0.1908 0.1623 0.3062 0.1719 0.1883 0.0981Stdv Pe 0.0703 0.0447 0.0648 0.0156 0.0317 0.0651 0.0377 0.0540 0.0592 0.1032 0.0908 0.0665Avg Bias 0.20 0.33 0.33 0.19 0.19 0.29 0.27 0.26 0.25 0.26 0.25 0.27
RBF SVM Full

Avg Pe 0.3769 0.3742 0.4032 0.5000 0.2902 0.2258 0.2810 0.4466 0.2418 0.1512 0.1556 0.1289
Stdv Pe 0.0789 0.0831 0.1242 0.0000 0.0327 0.0456 0.0797 0.0708 0.0256 0.0561 0.0630 0.0639

Avg Bias 0.08 0.14 0.02 0.00 0.29 0.28 0.00 -0.02 0.05 0.36 0.23 0.34
Online Gaussian MI (perm test)

Avg Pe 0.4496 0.3676 0.3504 0.3624 0.3507 0.2602 0.2357 0.2578 0.3418 0.2245 0.1439 0.1755
Stdv Pe 0.0211 0.0486 0.0418 0.0763 0.0275 0.0511 0.0342 0.0415 0.0662 0.0616 0.0621 0.0875

Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85Avg Best Pe 0.4205 0.2908 0.2447 0.2578 0.3381 0.2308 0.1918 0.1760 0.3396 0.2116 0.1221 0.1054
Stdv Best Pe 0.0249 0.0801 0.0414 0.0958 0.0253 0.0516 0.0250 0.0354 0.0676 0.0689 0.0678 0.0530Avg Best Bias 1.00 0.98 1.00 1.00 0.78 0.97 0.98 1.00 0.87 0.92 0.95 0.97

Online KDE MI perm test_
Avg Pe 0.4828 0.3503 0.2844 0.2391 0.4123 0.3041 0.2598 0.1908 0.4287 0.2927 0.1832 0.1742
Stdv Pe 0.0207 0.0185 0.1273 0.1218 0.0284 0.0436 0.0248 0.1769 0.0393 0.0623 0.0585 0.0955Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85Avg Best Pe 0.4612 0.3217 0.2672 0.2204 0.4082 0.2982 0.2529 0.1821 0.4138 0.2868 0.1693 0.1581Stdv Best Pe 0.0234 0.0262 0.1271 0.1282 0.0296 0.0435 0.0223 0.1778 0.0211 0.0590 0.0539 0.0781

Avg Best Bias 0.68 0.77 0.90 0.90 0.73 0.87 0.83 0.92 0.85 0.92 0.90 0.93

Table F.4: Experiment 1: Raw Results for Person 1 : Image Diffs and MFCC Diffs

WinbLength 15 31 45 63 15 31- 45 63 15 1 31 45 63Input Dim 11 5 5 5 2 2 2 2 1 1 1 1
Gaussian Model i.i.d

Avg Pe 0.1493 0.1042 0.0295 0.0240 0.1750 0.1042 0.0434 0.0301 0.1985 0.1011 0.0631 0.0444
Stdv Pe 0.0482 0.0227 0.0299 0.0392 0.0538 0.0507 0.0381 0.0400 0.0714 0.0232 0.0120 0.0675

Avg Bias 0.02 -0.01 -0.06 -0.05 0.01 0.00 -0.01 -0.01 0.00 0.00 0.00 -0.00
KDE Model i.i.d

Avg Pe 0.4313 0.4577 0.4840 0.4939 0.3213 0.3064 0.3074 0.3541 0.2131 0.1328 0.0828 0.0514Stdv Pe 0.0324 0.0407 0.0229 0.0122 0.0720 0.1190 0.1512 0.1474 0.0571 0.0120 0.0450 0.0382
Avg Bias 0.10 0.00 0.00 0.00 0.03 0.09 0.10 0.00 0.00 0.00 0.05 0.06

Online Gaussian NI (Learned Bias)
Avg Pe 0.4209 0.2798 0.2488 0.1834 0.390 0.2347 0.1119 0.0919 0.3157 0.1987 0.0656 0.0192Stdv Pe 0.0546 0.0437 0.0142 0.0698 0.0588 0.0933 0.0559 0.0616 0.0216 0.0611 0.0606 0.0157

Avg Bias 2.04 0.80 0.53 0.38 0.28 0.16 0.12 0.11 0.08 0.05 0.05 0.05
Online KDE MI (Learned ias

Avg Ps 0.4877 0.4855 0.4660 0.4355 0.4851 0.4788 0.3984 0.3541 0.4220 0.3534 0.3193 0.2831
Stdv Pe 0.0136 0.0178 0.0301 0.051.1 0.0144 0.0311 0.0410 0.0654 0.0380 0.0139 0.0743 0.0529Avg Bias 2.03 2.38 .3 2.65 0.92 1.1 08 1.17 0.32 0.33 0.32 0.35

BF S i.i.d
Avg Pe 0.2113 0.1543 0.0735 0.0425 0.2448 0.1805 0.1230 0.0729 0.2310 0.1258 0.0915 0.0825
Stdv Pe 0.0608 0.03 0.0354 0.0340 0.0156 0.0746 0.0889 0.0250 0.0749 0.0483 0.0365 0.0792

Avg Bias 0.20 0 0.1 0.17 0.14 0.25 0.33 0.29 0.32 0.39 0.35 0.33 0.35
RBF SVM Full

Avg Pe 0.3456 0.2988 0.4996 0.2930 0.2385 0.2043 0.1462 0.1272 0.1894 0.1762 0.0980 0.0859
Stdv P. 0.1097 0.1396 0.0008 0.1386 0.0570 0.0846 0.0818 0.0174 0.0654 0.0282 0.0431 0.0610

Avg Bias 0.12 0.16 -0.00 0.15 0.56 0.42 0.04 0.10 0.32 0.31 0.35 0.24
Online Gaussian MI (perm test)

Avg Pe 0.4340 0.3546 0.3754 0.3558 0.3918 0.2567 0.1803 0.2670 0.3179 0.2422 0.1574 0.1572
Stdv Pe 0.0484 0.0193 0.0428 0.0260 0.0570 0.0787 0.0391 0.1116 0.0040 0.0525 0.0554 0.0335

Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
Avg Best Pe 0.4075 0.2931 0.2869 0.2483 0.3847 0.2347 0.1225 0.1455 0.3056 0.1971 0.0980 0.0605
Stdv Best Pe 0.0564 0.0458 0.0196 0.0242 0.0584 0.0685 0.0314 0.0769 0.0148 0.0445 0.0647 0.0301

Avg Best Bias 0.98 1.00 1.00 1.00 0.87 0.98 0.98 1.00 0.87 1.00 1.00 1.00
Online KDE MI perom test)

Avg Pe 0.4705 0.3918 0.3332 0.3223 0.4369 0.3895 0.2934 0.2787 0.4007 0.2512 0.2410 0.1442
Stdv Pe 0.0272 0.0911 0.0486 0.0680 0.1080 0.1037 0.0766 0.1213 0.0452 0.0319 0.0315 0.0698

Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85Avg Best Pe 0.4571 0.3781 0.3270 0.3062 0.4224 0.3777 0.2816 0.2483 0.3955 0.2457 0.2123 0.1037
Stdv Best Pe 0.0312 0.0813 0.0499 0.0737 0.1049 0.0932 0.0731 0.1178 0.0463 0.0285 0.0422 0.0313

Avg Best Bias 0.42 0.63 0.87 0.72 0.48 0.78 0.90 0.97 0.88 0.87 0.95 0.93

Table F.5: Experiment 1: Raw Results for Person 2 : Image Diffs and MFCC Diffs
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Win Length 15 31 63 15 31 63 1 15 31 63
Input Dim 2 2 2 1 1 1

Gaussian Model i.l.d
Avg e 0.2716 0.2060 0.1448 0.2579 0.2114 0.1289 0.2693 0.2054 0.1322
Stdv Pe 0.0617 0.0689 0.0852 0.0607 0.0756 0.0589 0.0716 0.0453 0.0711

Avg Blas 0.01 0.01 0.00 0.02 0.01 0.00 0.01 0.00 0.00

Avg Pe 0.4345 0.421 0.5004 0.4173 0.947 0.4583 0.2695 0.2078 0.1370
Stdv Pe 0.0094 0.0156 0.0016 0.038 0.0298 0.0236 0.0583 0.0365 0.0593

Avg Bias 0.23 0.09 0.00 0.07 0.08 0.01 0.01 0.00 0.00
Online Gaussian Il (Learned Biasi)

Avg Pe 0.4394 0.34 0.1996 0.33 0.2837 0.1964 0.3449 0.2122 0.1616
Stdv Pe 0.006 0.0533 0.0668 0.281 0.0401 0.0766 0.0659 0.0637 0.0863

Avg B 0as 2.1 0.76 0.3 0.09 0.12 0.07 0.08 0.05 0.03
Online KUE M1 (Learned Bias)

Avg Pe .44 .4 0.4501 0.4740 0.9
Stdv Pe 0.0099 0.0269 0.0458 0.0308 0.0389 0.059 0.0189 0.0500 0.0557

Avg Bias 1.80 82.20 2.45 0.85 1.14 1.13 0.3 0.32 0.29
kBF SVM i.i.d

Avg Pe 0.41 0.02737 0.22 0.357 0.3194 0.184 0.2944 0.2569 0.1747
Stdv Pe Pc 0.0667 0.0513 0.0890 0.029 0.0952 0.0737 0.0589 0.0489 0.0816

Avg Bias 0.24 1 0.31 0.18 0. . 0.18 0.91 0.17
RbF VM Full

Avg Fe 0.354 0.3487 0.3696 0.4019 0.3 0 0.2493 T0266 0.2236 0.1
Stdv Pe 0.0965 0.0904 0.0941 0.1145 0.412 0.0702 0.0613 0.0673 0.0812

Avg Bias 0.21 0.03 -0.22 0.09 0.10 -0.01 0.19 0.02 0.12
-Online Gaussian vLl (perrm teat)

Avg e 0.4437 0.3490 0.3235 0.3592 0.2931 0.2363 0.3584 0.2692 0.1911
Stdv Pe 0.0061 0.0434 0.0442 0.0308 0.0358 0.0659 0.0614 0.0744 0.0687

Avg B'ias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
Avg Best Pe 0.4271 0.3097 0.2252 0.3556 0.2787 0.1848 0.3515 0.2580 0.1610
Stdv Beat Pe 0.0120 0.0519 0.0460 0.0292 0.0280 0.0737 0.0600 0.0822 0.0816

Avg Beat Bias 0.96 1.00 1.00 0.91 0.93 1.00 0.81 0.91 0.96
Online K e M e (perm test)

Avg Fe 0.4572 0.3657 0.2511 0.4019 0.3250 0.2624 0.3938 0.3444 0.2383
Stdv Pe 0.0180 0.0381 0.0745 0.0223 0.0420 0.0708 0.0630 0.0673 0.0423

Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
Avg Best Pe 0.4475 0.3573 0.2449 0.3966 0.3211 0.2556 0.3905 0.3388 0.2186
Stdv Best Pe 0.0169 0.0374 0.6679 0.0208 0.0435 0.0678 0.0572 0.0631 0.0438

Avg Best Bias 0.69 0.76 0.85 ,0.76 0.85 0.89 .0.87 0.92 0.91

Table F.6: Experiment 1: Raw Results for 10 People : Image Diffs and MFCC Diffs
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Win Length 15 31 45 63 15 31 45 63 15 31 45 63Input Dim 5 5 5 5 2 2 2 2 1 1 1 1
Gaussian Model i.i.d

Avg Pe 0.2075 0.1540 0.0746 0.0109 0.3067 0.2453 0.2455 0.1328 0.4410 0.4397 0.3840 0.4055Stdv Pe 0.0427 0.0523 0.0277 0.0195 0.0658 0.0953 0.0680 0.0997 0.0484 0.0785 0.1627 0.0810Avg Bias 0.00 -0.01 -0.00 -0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
KDE Model i.i.

Avg Pe 0.4090 0.4326 0.4770 0.4970 1 0.3634 0.3495 0.3926 0.4438 0.3951 0.3440 0.3496 0.4125Stdv Pe 0.0212 0.0258 0.0233 0.0061 0.0394 0.0676 0.0611 0.0606 0.0255 0.0853 0.0854 0.1103Avg Bias 0.25 0.11 0.00 0.00 0.05 0.10 0.00 0.04 0.01 0.00 0.02 0.00
Online Gaussian MI (Learned Bias)

Avg Pe 0.4519 0.353 0.2574 0.1145 0.3698 0.2806 0.2082 0.1394 0.44" 0.4373 0.3666 0.3,98
Stdv Pe 0.0384 0.0202 1177 0.0649 0.0627 0.0658 0.0526 0.1102 0.0132 0.0369 0.0293 0.0754Avg Bias 2.02 0.70 10.46 0.33 0.0 0.1 0.08 0.0 0.07 0.02 0.02 0 .02

nline KDE MI Learned Bias)

Avg e 0. 13 0.14655 1 0.4266 0.39 0. [46 0.3262 0.414 0.311 0.4425 .3 3 1 52 0.370 0.3001Stdv Fe 0.0128 0.0 . .4354 .40.0288 9 0.0737 0.0576 0.0375 0.014 0.536 0.0536
Avg Bias 1.91 2.0 1.3 096 0.84 2 0.90 0.83 0.90 0.37 0.33 0.26 0.24

RBF SVM Fui.d
Avg Pe 0.021073 0.1941 0.1254 0.0629 0.2846 0.2629 0.0214 0.147 0.48 0.488 0.3476 0.3776Stdv Pe I 0.0500 0.0138 0.0189 0.0347 60.7 0.084 0.01 I 0 042 0 0.12 0.1652

Avg Bias 0.20 0.30 0.27 0.26 0.2 0.2 0.29 _ 0.3 0.28 0.36 0.3.3 0.33
R.BF SVMFul

Avg Fe U05000 0.4121 I0.420t I .36 04546 0.42071 0.0 1.848 0.485 0.4742 0.4653 0.4939Stdv e j .00 0.1111 0.72 10121.620.08015'0150050.0285 0.02400.145
Avg Bias j 0.03 1 0.00 I0.03 I .0 .00 I0.01 -01 1I-.00 I .3 I0.06 I0.14 I-0.00

Online Gaussian MI (perm test)
Avg Pe 0.4526 0.3350 0.2984 0.1777 0.3638 0.2908 0.2115 0.1581 0.4799 0.4165 0.3869 0.3776
Stdv Pe 0.0456 0.0095 0.1239 0.0844 0.0518 0.0495 0.0536 0.0430 0.0194 0.0422 0.0347 0.0741

Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85Avg Best Pe 0.4299 0.3147 0.2553 0.1328 0.3545 0.2810 0.2004 0.1233 0.4444 0.3887 0.3643 0.3406Stdv Best Pe 0.0524 0.0182 0.0994 0.0445 0.0513 0.0527 0.0597 0.0358 0.0417 0.0429 0.0225 0.0824Avg Best Bias 0.80 0.97 0.95 0.97 0.82 0.92 0.90 0.93 0.35 0.77 0.80 0.78
Online KDE MI (perm test)

Avg Pe 0.4612 0.4028 0.2648 0.1960 0.4104 0.3111 0.2299 0.1773 0.4511 0.3139 0.2713 0.3001
Stdv Pe 0.0454 0.0503 0.0480 0.0945 0.0288 0.0678 0.0531 0.1049 0.0141 0.0260 0.0369 0.0701

Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85Avg Best Pe 0.4571 0.3868 0.2475 0.1842 0.3948 0.2951 0.2299 0.1616 0.4276 0.2955 0.2643 0.2696Stdv Best Pe 0.0457 0.0382 0.0472 0.0914 0.0300 0.0599 0.0531 0.0837 0.0098 0.0352 0.0366 0.0522
Avg Best Bias 0.45 0.78 0.87 0.88 0.68 0.77 0.85 0.80 0.78 0.77 0.90 0.97

Table F.7: Experiment 1: Raw Results for Person 1: Flow and MFCC Diffs

Win Length 15 31 45 63 15 31 45 63 15 31 45 63Input Dim 5 5 5 5 2 2 2 2 1 1 1 1
Gaussian Model i.i-d

Avg Pe 0.1750 0.0854 0.0168 0.0122 0.2433 0.2574 0.1865 0.2230 0.3974 0.4255 0.3955 0.3406Stdv Pe 0.0475 0.0250 I0.0315 0.0232 0.1173 0.2576 0.2673 0.2343 0.0560 0.1224 0.1370 0.0200
Avg Bias -1 0.00 -0.02 -0.01 -0.02 0.00 0.01 0.00 0.02 -0.00 0.01 -0.00 0.00

KDE Model i.i.d
Avg Pe 0.4000 0.4228 0.4504 0.4882 0.3451 1 0.3648 0.4152 0.4085 0.4164 0.4737 0.4799 0.4708Stdv Pe 0.0227 0.0528 0.0429 0.0161 0.0480 0.0372 0.0626 0.0365 0.0427 0.0419 0.1092 0.0699

Avg Bias 00.05 0.00 I0.00 .00 0.03 0.05 0.12 0.02 0.01 0.01 0.01 0.01
Online Gaussian MI (Learned Bias)

Avg Pe 0.3948 0.2574 0.1443 0.1672 0.3825 0.3045 0.2090 0.1398 0.4701 0.4594 0.4947 0.4660
Stdv Pe 0.0491 0.0651 0.0373 0.0984 0.0635 0.1226 0.1377 0.1566 0.0444 0.0212 0.0107 0.0580

Avg Bias 1.87 0.73 0.48 0.36 0.22 0.11 0.09 0.07 0.06 0.03 0.02 0.01
Online KDE I (Learned Bias)

Avg Pe 0.4821 0.4557 0.348010.3262 0.4459 0.4275 0.3869 0.3510 0.4731 0.4071 0.4230 0.4242
Stdv Fe 0.0201 0.0257 0.0512 2 0.0652 0.0339 0.0672

Avg Bias 1.75 2.04 2.06 2.20 0.90 0.90 0.85 0.92 0.38 0.33 0.26 0.26
RBF SVM i.i.d

Avg Pe 0.2113 0.1437 0.0596 0.0282 0.3356 0.3012 0.2586 0.2326 0.4282 0.4270 0.4518 0.4358Stdv Fe H 0.0458 0.0829 0.0412 0.0323 0.1431 0.2101 0.2062 0.2452 0.0246 0.0562 0.0536 0.1296
Avg Bias 0.30 0.35 0.32 0.27 0.17 0.17 0.17 0.18 0.44 0.49 0.50 0.41

RBF SVM Full
Avg Pe 0.3672 0.5000 0.4342 0.4470 0.3389 0.2961 0.3819 0.4570 0.4799 0.4547 0.4947 0.4783
Stdv Pe 0.1552 0.0000 0.1315 0.1059 0.1570 0.2076 0.2040 0.0689 0.0104 0.0262 0.0220 0.0302

Avg Bias 11 0.12 0.02 -0.02 0.00 0.06 0.15 0.09 -0.03 0.03 0.04 0.01 -0.00
Online Gaussian MI (perm test)

Avg Pe 0.3993 0.2817 0.2127 0.2753 0.4000 0.3056 0.2381 0.1860 0.4821 0.4894 0.4816 0.4678
Stdv Pe 0.0489 0.0763 0.0132 0.0473 0.0519 0.1141 0.1101 0.1306 0.0190 0.0172 0.0369 0.0409Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85Avg Best Pe 0.3858 0.2571 0.1500 0.1751 0.3806 0.2962 0.2135 0.1646 0.4601 0.4753 0.4561 0.4307

Stdv Best Pe 0.0549 0.0661 0.0440 0.0593 0.0513 0.1062 0.1233 0.1466 0.0405 0.0153 0.0558 0.0650
Avg Best Bias 0.85 0.95 1.00 1.00 0.77 0.82 0.88 0.92 0.47 0.67 0.23 0.52
Online KDE MI (perm test)

Avg Pe 0.4459 0.4314 0.2500 0.2186 0.4433 0.3703 0.3398 0.2465 0.4522 0.4079 0.4135 0.3645
Stdv Pe 0.0427 0.0701 0.0418 0.0993 0.0670 0.1474 0.1141 0.0975 0.0148 0.0838 0.0730 0.0560Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85Avg Best Pe 0.4287 0.3981 0.2348 0.1995 0.4299 0.3103 0.3324 0.2287 0.4306 0.3844 0.3709 0.3567Stdv Best Pe 0.0415 0.0577 0.0501 0.1026 0.0625 0.1092 0.1125 0.0860 0.0245 0.0865 0.0807 0.0675

Avg Best Bias 0.68 0.65 0.77 0.83 0.57 0.65 0.90 0.72 0.68 0.53 0.70 0.82

Table F.8: Experiment 1: Raw Results for Person 2: Flow and MFCC Diffs
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Win Length 31 63 15 31 63 15 31 63
Input Dim = 5 5 2 2 2 1 1 1

Gaussian Model i.i.d
Avg Fe 0.2517 0.1864 0.0982 0.4237 0.4025 0.3328 0.4226 0.4121 0.3617
Stdv Pe 0.0698 0.0796 0.0543 0.0233 0.0436 0.0539 0.0445 0.0535 0.1131

Avg Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
KOH Model i.i.1

Avg Pe 0.4345 0.4676 0.4822 0.4323 0.4560 0.4746 0.4257 .4322 0.4413
Stdv Pe 0.0391 0.0165 0.0303 0.0203 0.0462 0.0421 0.0352 0.0450 0.0813

Avg Bias 0.22 0.28 0.11 0.00 0.00 0.03 0.00 0.00 0.00
Online Gaussian earnde ias)

Avg Pe 0.4418 0.3351 0.2742 0.4379 (.91 . 9 9 0.4761 0.4318 0.4138
Stdv Pe 0.0184 0.0448 0.0757 0.0272 0.0296 0.0735 0.0351 0.0542 0.0794

Avg Bias 1.91 0.70 0.32 0.20 0.08 0.05 0.08 0.03 0.01
Online KDE M Learned lias)

Avg Pe 0.4914 0.4738 0.4407 0.4786 0.4399 0.4003 0.4678 0.4528 0.4620
Stdv Pe 0.0083 0.0241 0.0608 0.0119 0.0274 0.0442 0.0195 0.0433 0.0385

Avg Bias 1.82 2.02 2.11 0.96 0.91 0.85 0.38 0.33 0.28
RBF SVM i.i.d

Avg Pe 0.2955 0.2514 0.1958 0.4355 0.4228 0.4011 0.4834 0.4773 0.4670
Stdv Pe 0.0653 0.0823 0.0690 0.0703 0.0832 0.0969 0.0483 0.0724 0.0301

Avg Bias 0.17 0.22 0.21 0.13 0.12 0.10 -0.17 -0.17 -0.17
RBF SVM Full

Avg Pe 0.4018 0.4041 0.3688 0.4941 0.487U 0.5002 0.4747 0.4914 0.4821
Stdv Pe 0.0944 0.1042 0.0943 0.0134 0.0124 0.0094 0.0329 0.0245 0.0298

Avg Bias 0.06 -0.29 0.05 -0.16 0.27 -0.02 -0.11 -0.10 -0.13
Avg Best Bias 0.07 -0.14 0.00 -0.14 0.37 -0.04 -0.19 -0.19 -0.20
Online GausAn MI (perm test)

Avg Pe 0.4386 0.3514 0.3065 0.4457 0.4131 0.4021 --0.4806 0.4414 0.4324
Stdv Pe 0.0162 0.0437 0.0577 0.0187 0.0318 0.0686 0.0309 0.0406 0.0714

Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
Avg Best Pe 0.4316 0.3379 0.2710 0.4359 0.4022 0.3756 0.4758 0.4313 0.4072
Stdv Best Pe 0.0114 0.0304 0.0639 0.0218 0.0300 0.0726 0.0368 0.0508 0.0821

Avg Best Bias 0.93 0.93 1.00 0.75 0.67 0.83 0.48 0.81 0.57
Online KDE Mi perm test) _U._4_45 0.4039 0.3570

Avg Pe 0.4632 0.3851 0.3375 0.4304 0.3671 0.2655 0.4457 0.4039 0.3570
Stdv Pe 0.0245 0.0251 0.0924 0.0297 0.0460 0.1261 0.0258 0.0523 0.0820

Avg Bias 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
Avg Best Pe 0.4509 0.3800 0.3177 0.4135 0.3545 0.2565 0.4322 0.4002 0.3485
Stdv Best Pe 0.0241 0.0260 0.0904 0.0241 0.0431 0.1163 0.0245 0.0501 0.0766

Avg Best Bias 0.80 0.80 0.93 0.71 0.71 0.75 0.64 0.72 0.71

Table F.9: Experiment 1: Raw Results for 10 People : Flow and MFCC Diffs
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