
Annotation Persistence over Dynamic Documents

by

Shaomin Wang

Submitted to the Department of Civil and Environmental Engineering W
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in the Field of Information Technology

at the

Massachusetts Institute of Technology

February 2005

© 2005 Massachusetts Institute of Technology
All right reserved

Signature of Author

Certified by

MASSACH USEUS IN148TWTtE
OF TECHNOLOGY

FEB 2 4 2005

LIBRARIES

Department of Ci iand Environmental Engineering
October 5, 2004

......
Steven R. Lerman

Professor of Civil and Environmental Engineering
Thesis Co-supervisor

d \ 1)

Certified by
V. Judson Harward

Principal Research Scientist, Center for Educational Computing Initiatives
Thesis Co-Supervisor

I <el I I A

Accepted by -. ,..-I

Andrew Whittle
Chairman, Departmental Committee on Graduate Studies

Annotation Persistence over Dynamic Documents
by

Shaomin Wang

Submitted to the Department of Civil and Environmental Engineering
On October 5, 2004, in Partial Fulfillment of the Requirement for the Degree of

Doctor of Philosophy in the Field of Information Technology

Abstract
Annotations, as a routine practice of actively engaging with reading materials, are heavily
used in the paper world to augment the usefulness of documents. By annotation, we
include a large variety of creative manipulations by which the otherwise passive reader
becomes actively involved in a document. Annotations in digital form possess many
benefits paper annotations do not enjoy, such as annotation searching, annotation multi-
referencing, and annotation sharing. The digital form also introduces challenges to the
process of annotation. This study looks at one of them, annotation persistence over
dynamic documents.

With the development of annotation software, users now have the opportunity to
annotate documents which they don't own, or to which they don't have write permission.
In annotation software, annotations are normally created and saved independently of the
document. The owners of the documents being annotated may have no knowledge of the
fact that third parties are annotating their documents' contents. When document contents
are modified, annotation software faces a difficult situation where annotations need to be
reattached. Reattaching annotations in a revised version of a document is a crucial
component in annotation system design.

Annotation persistence over document versions is a complicated and challenging
problem, as documents can go through various changes between versions. In this thesis,
we treat annotation persistence over dynamic documents as a specialized information
retrieval problem. We then design a scheme to reposition annotations between versions
by three mechanisms: the meta-structure information match, the keywords match, and
content semantics match. Content semantics matching is the determining factor in our
annotation persistence scheme design. Latent Semantic Analysis, an innovative
information retrieval model, is used to extract and compare document semantics.

Two editions of an introductory computer science textbook are used to evaluate the
annotation persistence scheme proposed in this study. The evaluation provides substantial
evidence that the annotation persistence scheme proposed in this thesis is able to make
the right decisions on repositioning annotations based on their degree of modifications,
i.e. to reattach annotations if modifications are light, and to orphan annotations
if modifications are heavy.

Thesis Co-supervisor: Steven L. Lerman
Title: Professor, Civil and Environmental Engineering

Thesis Co-supervisor: V. Judson Harward
Title: Principal Research Scientist, Center for Educational Computing Initiatives

Acknowledgements

I would like to thank the following people for their generous support which made this

work possible.

Professor Steve Lerman for his wise guidance, encouraging advice, and patience;

but most important for being there for me during my stay at MIT.

Dr. Jud Harward for his excellent advice, direction and support. His suggestions

on potential thesis topics led me to this very interesting work.

The members of my thesis committee Professor Jerome Connor and Professor

Suzanne Flynn for their encouragement and support.

Ms. Ellen Faran, director of MIT Press, for her help on finding books with

multiple editorial versions.

The people at the Center for Educational Computing Initiatives.

My parents and my brother for their love and encouragement.

Finally, I wish to acknowledge the intangible contribution of my wife, Jun Yan, to

whom this thesis is dedicated.

5

6

<This thesis is dedicated to my wife,

Jun

7

8

Contents

Abstract 3

Acknowledgements 5

1 Introduction 11
1.1 Annotations: from Papers to Digital Documents 11

1.1.1 Paper Annotation Taxonomy - Forms and Functions 11
1.1.2 The Benefits Digital Format Brings to Digital Annotations 17
1.1.3 The Challenges Digital Annotations Face 18
1.1.4 Digital Annotation Representation .. 20

1.2 Annotation Systems and Architecture .. 23
1.2.1 Overview of State-of-Art Annotation Systems and Architecture 24
1.2.2 Representative Annotation Systems .. 26

1.3 Annotation Persistence Mechanism ... 34
1.3.1 Document Modifications .. 34
1.3.2 Robust Criteria of Intra-Document Locations 36
1.3.3 Related Works on Annotation Persistence Mechanism 38

1.4 Annotation Persistence over Dynamic Documents - a Specialized Information
R etrieval Problem .. 4 8
1.4.1 A Specialized Information Retrieval Problem 48
1.4.2 IR Evaluations and IR Models ... 49
1.4.3 Problem Revisited - Concepts and Keywords 55
1.4.4 Strategies and Solutions .. 59

1.5 Sum m ary .. 63

2 Natural Language Statistics and Entropy Measure of Keywords 70
2.1 Statistical Nature of Natural Language .. 70

2.1.1 Z ipf's L aw ... 70
2.1.2 Impact of Zips's Law on Information Retrieval 78

2.2 Information Theory and Entropy Measure of Keywords 80
2.2.1 Information Theory and Shannon's Entropy 81
2.2.2 Normalized Word Entropy .. 86

2.3 Sum m ary .. 88

3 Latent Semantic Analysis 91
3.1 Introduction 92
3.2 Theory Background and Methodologies .. 95

3.2.1 Term-Document Matrix .. 95
9

3.2.2 Singular Value Decomposition ... 100
3.2.3 Words and Documents Representations and Comparisons 107
3.2.4 Singular Value Decomposition of Sparse Matrices 108

3.3 A pplications 111
3.4 L SA - E valuation ... 117

3.4.1 Softw are T ools .. 118
3.4.2 L SA Flow C hart .. 119
3.4.3 T he C orpus .. 122
3.4.4 Computation Cost .. 123
3.4.5 Effectiveness of Retrieval ... 124

3.5 Sum m ary ... 134

4 Design and Evaluation of Robust Annotation Persistence Scheme 136
4.1 Design of Robust Annotation Persistence Scheme 139

4.1.1 Annotation Anchor Formulation .. 139
4.1.2 Reattachment Confidence Index .. 145
4.1.3 Design and Calibration of Reattachment Algorithm 146

4.2 Evaluation of Robust Annotation Persistence Scheme 168

5 Conclusion 188
5.1 Thesis Sum m ary 188
5.2 Future R esearch .. 193

Appendix: Sample Document Retrieval Results of LSA 195

References 212

10

Chapter 1

Introduction

1.1 Annotations: from Papers to Digital Documents

Annotations, as a routine practice of actively engaging with reading materials, are heavily

used in the paper world to augment the usefulness of documents. By annotation, we

include a large variety of creative manipulations by which the otherwise passive reader

becomes actively involved in a document.

Annotations in digital form possess many benefits paper annotations do not enjoy,

such as annotation searching, annotation multi-referencing, and annotation sharing. The

digital form also introduces challenges to the process of annotation. This study looks at

one of them, annotation persistence over dynamic documents.

In the following, we first review the practice of making annotations on paper, the

taxonomy of annotation forms, and their functions. We then review the benefits digital

format brings to annotations as well as the challenges digital annotations face. We

elaborate one of the challenges, which is the focus of this study, annotation persistence

over dynamic documents. Lastly, we present a generic definition of digital annotation

based on Marshall's classification which will be used through out this study.

1.1.1 Paper Annotation Taxonomy - Forms and Functions

There have been a number of studies to examine the practice of paper annotations, in

terms of their forms and functions. For example, in a study comparing reading paper and

online documents, O'Hara and Sellen (1997) outlined several general annotation forms

and functions from the usage perspective. In their opinion, annotation markings could

serve as signals of direct short cut into the content for readers when re-reading the

documents. They are used to extract key points or structures when re-reading. The very

act of making such marks also aids the understanding and remembering the reading
11

materials. Brief notes written separately for later reference provides "a pool of text and

ideas". In a study by Brown and Brown (2003), the general mechanism of annotation is

viewed as a key concept of integrating reading with writing.

The most comprehensive study on the taxonomy of paper annotations, though, is from

Ovsiannikov et. al. (1999) and Marshall (1997), although they approached the problem

from very different perspective.

As part of USC's Brian project, Ovsiannikov et. al. studied the taxonomy of paper

annotations in a questionnaire targeted mainly at researchers and those in an academic

environment. The respondents were graduate and undergraduate students, professors and

a few professionals. Three main questions were asked. How do people annotate papers?

How are the annotations used once they have been created? What are the features ideal

annotation software must have?

Marshall approached the problem from a different perspective. She examined the

used textbooks of college students from a cross section of courses and disciplines.

In the following, we summarize their findings.

Annotation Forms

After the examination of fifteen different sets of used college student textbooks, over 150

books in all, Marshall classified paper based annotations into four groups based on

whether the annotation is within-text (e.g. highlighting text, circled words) or it is in the

margins (e.g. scribbled notes in a margin, asterisks and stars) and whether the annotation

is explicit in meaning (e.g. brief notes) or opaque personal coding (e.g. red underlining

indicating importance). Table 1.1 is the annotation taxonomy developed by Marshall in

terms of annotation forms.

12

Within-text Marginal or blank space

Underlining; Brackets, angle brackets, and
Highlighting; braces;
Circles and boxes around Asterisks, and stars;

Telegraphic words and phrases Circles and boxes around whole
pages;
Arrows and other deictic devices
to connect within-text markings
to other marginal markings

Brief notes written between Short phrases in margin;
lines, especially translations Extended notes in margin;

Explicit of words in foreign language Extended notes on blank pages
texts in the front of the book;

Problems worked in margins

Table 1.1 Form of annotations written in books (Marshall, 1997)

The survey conducted by Ovsiannikov et. al. (1999) revealed that the common types

of the annotations on papers, rated by the frequency of usages, are text mark up, writing

on margins, writing at the top, writing separately from the paper, and writing between

lines (Fig. 1.1)

13

Mark-up

Write on margins

Write at the top

Write separately

Write between lines

0 0.2 0.4 0.6 0.8 1

Frequency of Use

Figure 1.1 Annotation forms (Ovsiannikov et. al., 1999)

The most common annotation type is to highlight portions of text with a marker. It is

used to highlight key ideas and concepts in the paper. It helps reader to memorize the

contents. In the future, when readers re-read the paper, it draws the reader's attention and

helps to quickly recollect the paper's main ideas.

Writing on the margins comes as the close second in terms of usage. In the process of

reading a paper, readers can come up with their own ideas, critical remarks, questions and

notes reflecting their opinions on the subject. Margins have space to record readers'

thoughts next to the annotated text.

The three less popular ways of making annotations are writing at the top of the

documents, making notes separately from the original paper and writing between lines.

Writing on the top of the documents or making notes separately often serves as a

summary of a paper. The notes are further distanced from the local context of the paper,

thus requiring a higher level of engagement with the paper and additional mental effort,

which explains its lower popularity in practice.

Writing between the lines or crossing out phrases is very common in the paper

authoring and editing process.

14

Although Marshall did not rate the importance or preferences of each annotation form

in her taxonomy, she presented a classification which separates the annotation contents

from annotation locations. As each annotation is a marking made on a document at a

particular place, a generic annotation representation can be composed by its content and

its location. Annotation content, from the taxonomy of Marshall, can be implicit or

explicit, while its location can be within-text or marginal. We will give a generic

definition of digital annotation representation in the end of this section based on

Marshall's annotation form classification.

Annotation Functions

Marshall reconstructed annotation functions from the material evidence of the used

textbook annotations. She summarized that annotation usually serves one of the following

functions:

* procedural signals for future references

* place markings and aids to memory

* in situ locations for problem working

* a record of interpretive activity

* a visible trace of the reader's attention

Marshall also mapped the annotation forms into functions shown in Table 1.2

15

Form Function

Underlining or highlighting higher-level Procedural signaling for future
structures (like section headings); attention
telegraphic marginal symbols like asterisks;
cross outs.
Short highlighting; circled words or Place marking and aiding
phrases; other within-text markings; memory
marginal markings like asterisks.
Appropriate notation in margins or near Problem working
figures or equations
Short notes in the margins; longer notes in Interpretation
other textual interstices; words or phrases
between lines of text.
Extended highlighting or underlining Tracing progress through

difficult narrative
Notes, doodling, drawings, and other such Incidental reflection of the
markings unrelated to the materials material circumstances of
themselves reading

Table 1.2 Mapping annotation form into function (Marshall, 1997)

The survey conducted by Ovsiannikov et. al. revealed four primary annotation usages

after annotations are created: to remember, to think, to clarify and to share.

People tend to forget the contents of papers. Annotations can serve as "indexes" to

quickly recollect the main points of the paper. They help readers memorize the paper's

contents.

In the process of reading a paper, readers can come up with their own ideas, critical

remarks, questions and notes reflecting their opinion on the subject. The very act of

writing those ideas out on the margin helps people to think.

Apart from markups helping readers to memorize and writing on margins helping

readers to think, the author argues that sometimes readers are interested in rephrasing the

contents into their own words by writing in margins, thus personifying contents by

clarification.

The fourth usage of annotations is annotation sharing, which is common in group

collaboration. This is very brief given that the usage is so different and that digital

annotation makes this more effective.
16

It is interesting to see that although Marshall and Ovsiannikov come up with different

lists of annotation functions, they are indeed equivalent. They are just ways of making a

taxonomy of annotation functions from different perspectives.

1.1.2 The Benefits Digital Format Brings to Digital Annotations

Having documents in digital format has brought unprecedented benefits over their paper

counterparts. Digital documents are easier to edit, reproduce, distribute and search.

Having annotations in digital form will confer upon documents many benefits that paper

annotations do not enjoy. The following are particularly important.

* Annotations can be searched.

As we reviewed earlier, annotations are used as means to quickly recollect the main

ideas or structures of the documents. They serve as "indexes" to quickly find the

important ideas and keywords, much like a book index, although they are dispersed

throughout the document. For digital annotations, searching annotations is an

automated and convenient process. When searchable, annotations can be accessed not

by their positions in a paper, but rather by their content.

0 Annotations can themselves be annotated.

When in digital format, annotation itself can become a thread of interest, thus become

a target for annotation. This could become very useful in group collaborations.

* Annotations can point to multiple locations in a document, or even multiple

locations in multiple documents.

When we read papers or books, we see similar keywords, and related concepts can

appear in multiple places in the same document. Paper annotations restrict the ability

to reference our annotations to multiple places of interests. In digital annotation, this

restriction no longer exists. Annotations can reference not only multiple places in one

document, but also can reference multiple places in many documents. This function

greatly expands our reach when making annotations. It puts the annotation in the

context of the entire set of documents of our interest, rather than the context of one

location in one document.

0 Annotation itself can be multimedia.

17

Since we are only interested in annotations on text in this study, however, the

annotation itself can be multimedia. It could include text, images, or even video clips.

* Annotations can contain hypertext links.

In paper annotation, we are restricted by the space of the physical material. Our

annotations have to be concise or even telegraphic. In digital annotations, this

restriction no longer exists. Not only can we put much larger contents into our

annotations, but also our annotation contents can include hypertext links to link to

outside materials of interests.

* Annotations can be shared.

In paper annotations, sharing can only happen with the physical passing or copying of

the paper material. In digital annotations, sharing becomes a convenient feature. In

fact, many annotation systems developed so far have annotation sharing as an

important goal.

1.1.3 The Challenges Digital Annotations Face

Just as digital format can bring unprecedented benefits to annotations over their paper

counterparts, digitization also brings unique challenges to digital annotations. Such

challenges include the following:

Digital annotations need to be highly expressive. Annotations on paper are highly

expressive and individual in form; digital annotation should respect this fluidity. This

goes against the idea of using a palette of common symbols, colors and pen types. It

suggests a more freeform capability is needed.

Digital annotations should be format independent. As more and more document

formats are developed, a robust digital annotation system should be immune to document

format change.

The focus of this study, another challenge, is annotation persistence over dynamic

documents. In the following, we elaborate on this issue.

Annotation Persistence over Dynamic Documents

With the development of annotation software, quite different from paper annotations,

users now have the opportunities to annotate documents which they don't own, or to

18

which they don't have write permission. This creates both benefits and challenges. Unlike

paper annotations where only one person can annotate his own document at a time, in

digital annotation, anyone can annotate the same document at the same time without

interference. Theoretically, any user can annotate any document within his/her reach (in

the networked sense) without owning the document. In annotation software, annotations

can be created and saved independently of the document. The documents being annotated

could have no knowledge of the fact that third parties are annotating their contents. A

document intra-location referencing mechanism is usually created in the third party

annotation software, which is used to position annotations in the documents when the

annotation software merges the annotations with the documents.

This is very similar to hypertext linking, where the webpage link targets have no

knowledge of the pages that link to them. Thus when a target changes its URL, the links

to them become broken. In digital annotations, when document contents are edited, the

initial text and surrounding context that third party annotations reference could also be

changed, which can lead annotations to become "unattached". When annotation fails to

be reattached to the document when document text is edited or changed, the annotation is

"orphaned". We name this problem as "annotation persistence over dynamic documents",

which is the focus of this study.

In paper books, we often make a considerable number of annotations as we actively

engage with the materials. If a second version of the same book is published, we face a

frustrating situation. We have to keep both versions because the first version contains our

valuable notes on the main ideas and concepts of our interest. If the books are in digital

form, could we move annotations on the first version automatically and "intelligently"

over to the second version?

World Wide Web presents us enormous amount of information. We make annotations

on some of the webpages of interest. When the contents of the webpages are edited, could

we reattach our annotations "gracefully" to the newer contents of the webpages without

losing our original annotations?

This is the problem we are going to address. We assume the document changes are

uncoordinated, that is we have no knowledge when or where the document contents are

changed. Thus it is infeasible to save the record of all the changes the document has gone

19

through. At the time of the annotation reattachment, we only know two states of the

document, the initial state when the annotations were made and the current state when the

document contents have been changed. The solution to this problem is to develop a

"robust" mechanism that could "intelligently and gracefully" reattach annotations when

document contents are changed.

Many existing annotation systems silently leave the "unattachable" annotations

"orphaned", either display them at the end of the document or put them at the bottom of

the browser.

A large-scale annotation software study was conducted by Cadiz J.J. et. al. (2000)

using Microsoft Office 2000. Approximately 450 people created 9000 shared annotations

on about 1250 documents over 10 months. When studying the factors that influence

system usage, it turned out that the primary reason people stopped using the entire system

was annotation orphaning. Annotation orphaning is an understandably frustrating

problem. As put it by Cadiz J.J. et. al. (2000) in his paper, "The power of annotations

stems from being context-based, and they are worded with the context assumed. Without

the context, many annotations are useless. From the annotator's standpoint, it can be

extremely frustrating to take the time to comment on a document, only to see the

comments become meaningless through orphaning."

1.1.4 Digital Annotation Representation

Annotation on multimedia requires different techniques for different media type. In this

study, we are only interested in annotation on text. An annotation is a marking made on a

document at a particular place. A generic annotation representation can be composed by

its content and its location (or anchor) inside a document. Annotation content, based on

the taxonomy of Marshall, can be implicit or explicit, while its location can be within-text

or marginal. Here we use "anchor" instead "location" to represent the information that is

used to address into the document. Adopting object oriented programming semantics, an

object of "annotation" contains an object of "content" and an object of "anchor" (Figure

1.2)

20

Figure 1.2 Annotation class compositions

Each anchor, based on whether it is within-text or marginal, can contain anchor text

and surrounding context.

Figure 1.3 is an example of annotation with implicit content (highlighting) and

within-text anchor (highlighted text). We define the highlighted text as "anchor text" and

surrounding text as "surrounding context".

21

Class Annotation
{

Object Content;
Object Anchor;

}

Highlight with within-text anchor:

Anchor Text Surrounding Context

Figure 1.3 Annotation example: highlight with within-text anchor

Figure 1.4 is an example of an annotation with explicit content (margin notes) and

marginal anchor (curly prentices).

o Annotations are procedural signals for future
references

o Annotations are place markings and aids to
memory

S o Annotations are in si locations for problem
working

o Annotations are a rec rd of interpretive activity
o Annotations are a visi le trace of the reader's

attention
x o Annotati s are incid ntal reflections of the

material cir sance

Content Anchor Text (surrounding context)

Figure 1.4 Annotation example: comments with margin anchor

22

Information Retrieval (IR), as a subject of science and engineering, has
been studied for many years. In the past 20 years the area of IR has
grown well beyond its primary goals of indexing ext and searching for
useful documents in a collection. Nowadays, IR is broadly interpreted to
include such technologies as ad hoc and distribute retrieval, cross-
language IR, summarization, filt ing, and classific tion of information.
With the introduction of WW , IR once again gai ed a place with
other technologies at the cen r of the stage of com ter science.
Nowadays, IR has become art of our ily life. Fre uently, when we
go online, we select our vorite searc ine, type a sentence and
find our information ne d.

1.2 Annotation Systems and Architecture

What features should ideal annotation software have? We expect digital annotations to

present at least the equivalent visual expressive power to their paper counterparts. In

functionality, we expect digital annotations to enjoy many benefits that paper annotation

lacks.

Figure 1.4 shows the comparison of various annotation features favored by the

respondents in the survey conducted by Ovsiannikov et. al. (1999).

Annotation of pictures

Write on margins

Keyword search

Insensitivity to document format

Mark-up

Write between lines

Write at the top

Pen input

Export Annotations

Instant document access

Multilinks/Non-local referencing

Recorgnize handwriting

Multimedia comments

0 0.2 0.4 0.6 0.8

Importance

Figure 1.4 Important annotation software features (Ovsiannikov et. al. 1999)

The ability to markup pictures or figures tops the respondents' lists of preferred

functions. Pictures or figures usually carry important semantic information about the

document. On paper, readers can easily annotate pictures or figures along with the text,

but annotating pictures in software requires different technology and algorithms than

annotating text. These methods remain to be developed. Hence in this study, we confine

our interest to annotating text only.

23

7 -77

1

Writing on the margin, the ability to search annotations, and being able to handle

multiple document formats together come as close seconds in the survey.

The next three features are the abilities to markup text, write between lines and write

at the top of the document.

It is interesting to note the ability for pen-based input and handwriting recognition

don't come near the top of the list, since handwriting comments and drawings are very

common and convenient in paper annotations. The author attributes this to the fact that

proficient text typing may often be faster and easier than handwriting in a computer

environment.

The ability to make multilinking and non-local annotations also appears on the list. It

is consistent with our previous discussion that this is part of the advantages of digital

annotations over paper annotations.

There are many annotation systems developed over the past ten years, both in

academic researching settings and commercial products. An overview of the literature on

the state-of-the-art annotation systems follows. Then we look in more detail at a few

annotation systems, which are unique or representative either in system architecture

design or their robust annotation persistence scheme.

1.2.1 Overview of State-of-Art Annotation Systems and Architecture

Virtually all commercial document-processing software (e.g. Microsoft Word, Lotus

Notes, Adobe Reader) supports some form of annotations. Microsoft Word allows users

to highlight a portion of the contiguous text and to use the command "Insert-comment" to

add footnote-like annotations in a separate window. When a user points the mouse to the

highlighted text, a pop-up box shows the name of the user who created the annotation and

the annotation contents. In Microsoft Word, annotations are stored within the document

file. Users must have the write permission to add annotations. Collaborations can only be

achieved by passing the document file to other users. Lotus Notes allow discussions

around a document over a network, but comments can only be made on the document as

a whole, and not to individual sentences or paragraphs.

Similar to Microsoft Word, Re:mark (AMBIA, 1996) is a commercial plug-in to

Adobe Reader to allow annotations on PDF files. With Re:mark, users can add text notes,

24

draw, color-highlight and strikeout right on the document. Users can link files, such as

sound clips, to the document. All linked files and comments become part of the

document.

With the web, several companies and research institutes have created client-server

systems that provide the ability to annotate web pages (Roscheisen et. al., 1995; Davis

and Huttenlocher, 1995; Ovsianniko et. al., 1999; Kahan and Koivunen 2001; Phelps and

Wilensky, 1997; Yee, K-P; Third Voice; HyperNix; NovaWiz; uTok; Zadu;E-quill)

One of the early works on annotation systems, which is built on NCSA Mosaic, is the

ComMentor (Roscheisen et. al., 1995), developed by the Stanford Integrated Digital

Library Project. In this system, annotations are considered as the third-party, lightweight

meta-information. The meta-information is stored separately from the main documents in

a so-called meta-information server. For the user, ComMentor provides the ability to

highlight a piece of text in a page and attach a small image with the user's face on it. This

image serves as a link to the annotation.

To avoid potential modification in web pages, CoNote (Davis and Huttenlocher,

1995) developed at Cornell University, allows users to annotate only predefined

positions. CoNote requires inserting special HTML-like markup tags before a document

can be annotated. In CoNote, the user's permissions to create, delete, read or reply to

annotations are determined by the user's role, such as viewer, reader, user or author. The

system also supports authentication and annotation search. The authors provide evidence

that CoNote use improved class performance and established a greater sense of

community among students.

CritLink (Yee, K-P) uses a proxy-based approach to render annotations on the web.

In a proxy-based approach, annotations are stored and merged with a web document by a

proxy server; the browser user only sees the result of the merge. Typically, presentation

of the annotations is limited to the presentation styles available through HTML. The

proxy approach inherently restricts the presentation styles that can be used for

annotations.

More systems use a browser-based approach to render annotations. In a browser-

based approach, the browser is enhanced (either by an external application or plug-in) to

merge the document and the annotation data just prior to presenting the content to the

25

user. Annotation data are stored in a proxy or a separate annotation server. Work

referenced in Kahan and Koivunen 2001; Phelps and Wilensky, 1997 and Third Voice all

fall into this category.

One company, Third Voice, drew considerable initial attention with its software, but

has been hindered by concern that their system allows undesirable graffiti to be posted on

major web sites. Third Voice uses plug-ins to enhance the web browsers. Annotations are

displayed as side notes to the web page. Users can annotate any web page or some text on

the page with discussions on selected topics. The discussion can be closed to a group of

participants or open to anyone. Annotation representation and hosting are proprietary to

the company.

Another recent system, which allows annotations for streaming video content on the

web, is MRAS from Microsoft Research (Bargeron et. al., 1999). The system allows

controlled sharing based on annotation sets and user groups. It supports text and audio

annotations and it uses email for notification.

There are many commercial annotation systems developed during the Internet bubble

times (HyperNix; NovaWiz; uTok; Zadu; Equil). They now either no longer exist

(HyperNix; NovaWiz; uTok; Zadu) or are being acquired (Equil). Their systems are like

the systems we have reviewed above in terms of the functioning and system design.

1.2.2 Representative Annotation Systems

We now turn our attention to a few systems which are unique in their design principles

and represent the forefront research in annotation systems.

Annotation technology

As part of the Brain Project in the University of Southern California, a software prototype

"Annotator" was developed to make on-line annotations on the World Wide Web

(Ovsianniko et. al., 1999).

Annotator adopts a proxy-based architecture as shown in the following Figure 1.5. A

Java plug-in must be installed on Netscape or Internet Explorer to view the web

documents along side the annotations.

26

The client browser is configured to send all its HTTP requests to the annotation

proxy, which forwards the requests to the appropriate web server. At the same time, the

proxy contacts the annotation database to fetch the related annotation records, if any. The

annotation records are merged with the returned web documents on the fly and are

returned to the client browser.

When the client browser posts to the proxy server trying to add or modify

annotations, the proxy parses the file, and extracts and saves the related annotation

records to annotation database.

WWW -- TCP/IP

Bro-se
Annotation

4
Proxy

World Wide
Annotation Web
Database

Figure 1.5 Proxy-based architecture

Users of the "Annotator" can perform the following functions with annotations:

* Creating, modifying and deleting annotations.

" Viewing annotations along with documents

" Indexing and browsing annotations

" Searching annotations

" Referencing one continuous chunk of document text or multiple discontinuous

and non-local document texts in a annotation

" Sharing annotations

27

Each Annotation record contains an annotation content record and multiple (in the

case of multilinking and non-local referencing) annotation anchor records.

To implement the principle of document format independence, the anchor

representation does not rely on document markup or structures; it contains only a portion

of the text in the anchor's proximity (Figure 1.6). The text strings are subsequently

hashed and saved as part of an annotation anchor record. A string or sub-string match of

anchor text with the document is performed to position the annotation anchors.

Unique ID 2591
URL http://bsl.usc.edu/papers/bg.html
Color 0000FF
Font Style Italic
Text "Our proposal that the basal ganglia ... "

Keywords Basal ganglia, inhibition

Figure 1.6 "Annotator" annotation records

Annotea

"Annotea" (Kahan and Koivunen, 2001) is a W3C collaborative web annotation project

based on general-purpose open metadata infrastructure where the annotations are

modeled as a class of metadata. It uses mostly W3C open source technologies, such as

RDF, XLink, XPointer and HTTP.

The Resource Description Framework (RDF) is a language for representing

information about resources in the World Wide Web. XLink is a language which allows

elements to be inserted into XML documents in order to create and describe links

between resources. It uses XML syntax to create structures that can describe links similar

to the simple unidirectional hyperlinks of today's HTML, as well as more sophisticated

links. XPointer, which is based on the XML Path Language (XPath), supports addressing

into the internal structures of XML documents. It allows for examination of a hierarchical

document structure and choice of its internal parts based on various properties, such as

element types, attribute values, character content, and relative position.

28

"Annotea" adopts a browser-based architecture where the browser is modified to

merge the web documents and the annotation data just prior to presenting the content to

the user (Figure 1.7). The client browser uses the Amaya editor/browser, an open source

program developed by W3C that supports HTML and a variety of XML markup schemas.

Client Browser
Annotation plug-in

Annotations

Annotation
Server

Annotation
Database

Figure 1.7 Browser-based architecture

In "Annotea", annotations are treated as the statements made by a third party about a

web resource. Thus they are metadata about a document. Resource Description

Framework (RDF) is used as the metadata language to represent annotations. RDF is a

language for representing information about resources in the WWW. At its most simple

level, RDF provides (resource, property, value) triples (Figure 1.8). A single triple is a

statement that indicates that a resource has a given property with a given value. Figure

1.8 could read as: resource "AnnoURI" has a property of "creator" with a value of

"Jose".

29

resource property value

AnnoURI dc:creator Js

Figure 1.8 RDF triple model

A RDF representation of the annotations is presented in Figure 1.9. It is a type of

"Annotation" defined in RDF namespace. It is created by "Ralph" at the date of

"1/10/200 1". It annotates the context of "XXX" of the document of "Xdoc.hmtl". The

annotation body (content) is "postit.html".

XDoc.html
Annotation annotates

r df:type context

Ralph

d c~ c r at o rb o d y p s t it .h t m l

created dc:date

2000-01 -1 OT I7:20Z 2000-01-I0T17:20Z

Figure 1.9 The RDF model of an annotation

30

The schema definition for properties of RDF models is defined in Table 1.3

fdf type An indication of the creator's intention when making an annotation; the
values should be of rdf:type Annotation or any of its subclasses

annotates The relation between an annotation resource and the resource to which
the annotation applies

body The content of the annotation
context Context within the resource named in annotates to which the annotation

most directly applies. Eventually this will be an XPointer. It may include
a location range too.

dc:creator The creator of the annotation
created The date and time on which the annotation was created
dc:date The date and time on which the annotation was last modified
related A relation between an annotation and a (collection of) resource(s) that

augment the resource that is the body of the annotation. This may point to
related issues, discussion threads, etc.

Table 1.3 The basic annotation properties

Annotea defined a general annotation super class in RDF schema

(http://www.w3.org/2000/10/annotation-ns#Annotation), and several sample subclasses

are defined as well based on the annotation super class (Table 1.4). Users or groups may

need to create new subclasses based on their needs.

Annotation
Advice
Change

Comment
Example
Explanations
Question
SeeAlso

A super class describing the common features of annotations
A subclass of Annotation representing advice to the reader
A subclass of Annotation describing annotations that document or
propose a change to the source document
A subclass of Annotation describing annotations that are comments
A subclass of Annotation representing examples
A subclass of Annotation representing explanations of content
A subclass of Annotation representing questions about the content
A subclass of Annotation representing a reference to another resource

Table 1.4 Basic annotation classes

31

Users of the Annotea can perform the following functions with annotations:

" Creation, modification and deletion;

" Browsing;

Note also that:

" Annotations are typed in the sense that annotations could have further

semantic classification such as annotation can represent an "advice", a

"comment", a "question" etc.

* Annotations can be filtered by types, author name and annotation server.

In Annotea, the anchor mechanism to address into the documents depends on

XPointer, thus the documents need to be in highly structured format, such as XML.

Multivalent Annotations

Built on top of the Multivalent Document Model developed in UC Berkeley (Phelps and

Wilensky, 1996, 1997). Multivalent Annotations is yet another representative work trying

to bring annotations to digital documents.

Rather than packing all possible content types of a document in a single specification,

the Multivalent Document Model slices a document into layers of homogeneous content,

to which additional layers maybe added at a later stage. Each layer can be associated with

multi-agents or "behaviors" which provide interactions with other layers and users.

The following figure shows the semantic layers added to a scanned image with user

annotations as the last layer.

32

User annotations

Math as Tex

geolocation of map

biblio references

character positions
user
outline area

page image program
point @ char
range @ region

semantic layers behavior

Figure 1.10 Semantic layers of a scanned image

In the Multivalent Model, the content and functional behavior of each layer can be

located on different servers. In response to a request to view a given conceptual

document, the client queries relevant servers, loading content and functional behavior

essential to the requested operations. Multivalent Annotations can be categorized as a

browser-based architecture.

To provide a robust way of reattaching annotations in the event of document changes,

multivalent annotation anchor representations are composed of three types of "location

descriptors": a unique identifier; a tree walk; and context strings.

We will investigate in more detail the robustness of the re-anchoring mechanism of

its approach in the next section.

33

1.3 Annotation Persistence Mechanism

As we stated earlier, one of the most challenging and interesting problems annotation

software faces is to develop a sound annotation persistence scheme over document

versions. Citing from the study of a large-scale usage of annotation systems (Cardiz et.

al., 2000), annotation orphaning or bad annotation re-anchoring can become the prime

cause that leads people to give up using the entire annotation system.

In this section, we first look at the different types of document modifications between

versions. We then answer the question, "What are the criteria for a robust annotation

persistence mechanism?" Lastly, we review and evaluate the existing literature on the

various annotation persistence methodologies.

1.3.1 Document Modifications

Documents may be modified in a variety ways between versions. We are especially

interested in the changes the author made independently of (or unaware of) annotations

made by a third party. This is quite common when readers annotate the first edition of a

digital document while the author makes changes to it and publishes a newer version

thereafter.

In our study of annotation persistence mechanism, we do not pay attention to the

annotation content, i.e. what we put into our annotations; they could be a highlight, a

paragraph of comment, or even a video clip. What we are interested in is the

underlying text our annotation rests upon, i.e. the anchor text and surrounding context as

defined in Figure 1.2 and Figure 1.3.

What kind of changes could anchor text and surrounding context go through in the

face of document modifications? They could be rewording, moving text, or more

drastically, deleting the anchor text and surrounding context.

Microsoft Research (Bernheim et. al., 2001) developed a modification classification

scheme based on the annotation's anchor text. Table 1.5 below presents different types of

modifications that an annotation's anchor text may undergo in the document modification

process.

34

Table 1.5 Annotation anchor modification types (Bernhein et. al. 2001)

In our study, we also pay significant attention to the annotation anchor's surrounding

context. As we believe surrounding context provides additional assistance in positioning

annotation anchors for the following reasons:

1. When users make annotations, they are putting their mindset in a particular

semantic context. Annotations are more meaningful and compelling in this

semantic space. The semantic context is reflected in both the annotation's anchor

text and surrounding text.

2. Anchor texts may be repetitive in the document, as most often people annotate

important words, which are distributed through the entire document. The

surrounding context differentiates the original anchor from the other occurrences

of those words.

3. The exact document text related to an annotation is often ambiguous. Marshall

(1998) suggests that people frequently place their annotations carelessly.

35

Modifi- Modifi-
cation cation Description
Type

Minor Between 1 character and half of the
Delete anchor is deleted.

Delete Medium
Delete More than half of the anchor is deleted.

Total Delete Entire anchor is deleted.
Minor Between 1 character and half the

Reword anchor is reworded.

Medium More than half the anchor is reworded,
Reword Reword reorganized, or split into multiple

pieces.
Total Complete anchor is reorganized.

Reword Typically only a few key words remain.
Anchor Anchor text itself doesn't change, but

Move Text Indirect the text around it does.
Anchor Anchor

Text Text Direct Anchor text moves within the
paragraph or changes paragraphs.

Paragraph The paragraph in front of the
Move Indirect annotation's paragraph changes.
Para-
graph Paragraph The paragraph containing the

I Direct annotation moves forward or backward.

We also could argue that the annotation's surrounding context could have the same

modification classification scheme as anchor text has, it could also go through

modifications like rewording, moving and deleting or combination of all three.

The changes for both anchor text and surrounding text can be more complex, as

annotation anchor text can go through one set of changes while the annotation's

surrounding context goes through another. For example, the annotation text might be

reworded while the surrounding context could be partially deleted.

1.3.2 Robustness Criteria of Intra-Document Locations

In a more general picture, if we allow annotations (made by third parties) to be in

arbitrary locations in a digital document, is there a way we can robustly refer these

document locations in the future in the event of independent document modifications?

Or more specifically, suppose we made annotations to a particular location in a

document. After the document goes through a series of changes, from minor (e.g. some

rewording) to more drastic changes (e.g. deleting), could we meaningfully recover that

location within the document with some confidence?

In a study by Thomas and Wilensky (2000) of UC Berkeley, the term "intra-

document locations" is used to refer to an object within a document in need of

positioning. They define "locations" as "indices into document content". By robust, they

mean that "one should be able to make an intra-document reference to a location within

an arbitrary resource, save this description, and then re-establish the location in the

future, after a document has undergone some class of mutations".

In their study, Phelps and Wilensky further claim that "... to achieve robustness, two

elements are needed: a location descriptor, which describes a location, and a

reattachment algorithm, which attempts to reposition the descriptor within a possibly

mutated target resource". We adopt their terminology in this thesis.

Phelps and Wilensky suggested in their study that intra-document location descriptors

and their associated reattachment algorithms should provide the following robust

mechanism:

1. "Robust to common changes in the referenced document"

36

2. "Gracefully degrading in the face of increasing change to the document" -

Reattachment should proceed only if the computed location is likely to be the

same location semantically as before the mutation. Hence minor changes should

not pose much threat to reattachment; larger changes should cause reattachment to

fail proportionally to the degree of change. If the change is too great, reattachment

should fail. The reattachment algorithms should measure the likely quality of

matches, and have a means to report failure to the user.

3. "Based on document content" - Location descriptors should be based on

document content only, independent of presentation characteristics. Basing

location descriptors on presentations (e.g. geometric location of the interface or

browser) proves to be unreliable as geometric location will change in light of

document mutations (e.g. a Adobe's PDF file) or geometric location will change

for a "flowed" document such as HTML when users resize the browser interface.

4. "Work with uncooperative servers " - A cooperative server is a server that is

aware of the third party references to their documents. It will track, store all

document changes related to third party references (or annotations) and may even

notify the interested parties when related documents get changed. Given that the

majority of the web servers are behaving as uncooperative servers, robust

strategies should assume no server cooperation and should be able to calculate all

useful location descriptions for possible future location reattachments without the

cooperation of the source document server.

5. "Extensible, to multimedia and various document types" - Phelps and Wilensky

argue in their study that "documents may contain multimedia elements, such as

images and video, and new document types are developed regularly. A robust

location mechanism should extend naturally to accommodate these and new

varied types in the future, without breaking existing locations."

6. "Relatively small" - In order for the reattachment mechanism to be practical,

location descriptors should be relatively small. Saving the complete trail of

editing of documents should be ruled out.

7. "Straightforward to implement" - The simplicity and ease of implementation

should be vital for the wide support of the robust location mechanism.

37

In addition to the criteria laid out by Phelps and Wilensky, we propose another

important criterion:

8. Document Format Neutrality - As more and more documents are published in

various networked digital formats, a robust mechanism should allow the location

descriptors to be document format neutral. Internal document structure differs

significantly from one document format to another. Including internal document

structure in the location descriptors from one type of document format could limit

the method's applicability to other document formats. Since we can't make any

assumption about the internal document structure, we must base our anchor

location algorithm only on the document's text. This rules out the possibility of

including a popular document structure like XML or HTML (or XPointers) in the

scheme design. In upholding the rule of documentformat neutrality, we add

additional benefits such as interoperability across different document formats. Our

scheme could allow annotating a document in one format and later being able to

view and edit the annotations on the same document in a different one.

1.3.3 Related Works on Annotation Persistence Mechanism

As we pointed out earlier, annotation persistence mechanism is an essential part of

annotation software development. All annotation software developed so far has, one way

or the other, tried to address or solve this problem. Earlier, we reviewed a document

modification classification scheme based on possible modifications made to anchor text

and surrounding context; we then reviewed the robustness criteria given by Phelps and

Wilensky. In the following, we will look at all the annotation software systems developed

so far, review in detail their location descriptors and reattachment algorithms, and

evaluate their robustness in term of the document modifications and robust criteria.

Annotating "Frozen" Documents

Adobe Acrobat Reader and Microsoft eBook Reader are among the systems which

assume that annotated digital documents will never change. In these systems, annotations

are typically positioned by very simple means, such as geometric locations (page number

38

+ a place coordination), or character offsets. Documents will never be modified, so

annotations will never need to be repositioned.

Many other systems do not explicitly require documents to be frozen, but work best

when there are no document modifications. In these systems, annotations are typically

positioned by calculating a digital signature from the content of the page to which the

annotation belongs. When the document indeed does change, these systems either silently

dispose of the annotations or put them in a separate window as orphaned annotations. E-

Quill, Third Voice, and Microsoft Office Web Discussions are commercial systems that

have taken this approach.

Annotating Predefined Locations

To compensate for potential changes in the web pages, some systems allow users to

annotate only predefined locations. CoNote (Davis and Huttenlocher, 1995) inserts

special HTML-like markup tags; annotations can only be made on the locations where

those tags exist. By limiting the locations where annotations can be placed, the system

has better control in the face of document modifications.

More Complex Annotation Descriptors and Reattachment Algorithms

Many systems use more complex algorithms to re-position annotations. They all store a

combination of annotated text, surrounding text, and internal document structure

information so that the annotation may be repositioned later. Annotator (Ovsianniko et.

al., 1999), ComMentor (Roscheisen et. al., 1995), WebVise (Gronbak et. al., 1999),

Robust Locations (Thomas and Wilensky, 2000), and Annotations using Keywords

(Bernheim and Bargeron, 2001; Bernheim et. al., 2001) are systems that take this

approach. ComMentor stores key words that attempt to uniquely identify annotated text.

WebVise stores a "locSpec" for each annotation that includes a bookmark or HTML

target name, annotated text, surrounding text and a character count of the start position.

In the following, we review in more detail a few systems that are robust to varying

degrees. Each system tries to solve the problem using different re-positioning algorithms.

. Annotea

39

Earlier, we reviewed Annotea's architecture and system design. Annotea is a W3C

collaborative web annotation project based on general-purpose open metadata

infrastructure where the annotations are modeled as a class of metadata. It uses mostly

W3C open source technologies, such as RDF, XLink, XPointer and HTTP.

In Annotea, annotated documents need to be well-formed structured documents, such

as XML. XPointer is used to address into the annotated context within XML/HMTL

documents. XPointer proves to be an unreliable intra-document location mechanism

because it can handle only limited document modifications, and it can only be used for

well-structured documents. The annotation mechanism used in Annotea violates our

robust criteria rule number eight. Using XPointer as the intra-document location

mechanism proves to fail for many common document changes.

0 Annotator

In Annotator, a location descriptor records a portion of text in the anchor's proximity.

The string to be remembered must be long enough to be unique in the whole document.

Its length is determined by a heuristic algorithm, which verifies the uniqueness

conditions. In reality, the search sub-string can be as short as several characters, or as

long as almost the whole document.

Annotator argues that it is against the copyright law to store copies of data from

copyrighted material in a publicly accessible database without explicit permission of the

publisher. Because of the copyright problem and uncertainty of the length of the location

descriptor strings, Annotator hashes the sub-string. In the implementation, the string need

not be positioned at the very beginning of the anchor, but can be off a few characters

from these points. Annotator also records the few initial characters of these strings as a

hint to improve the speed of search for the anchor points within a document.

Annotator essentially adopts a text matching algorithm to re-attach annotations. The

literature has no explanation on how the string is hashed and how the reattachment

algorithm works when documents undergo changes, even slight ones. But simple string

matching cannot survive even moderate modifications of the anchor text.

* Multivalent Annotation

40

Building on the Multivalent Document Model, Phelps and Wilensky (2000) developed a

strategy called "robust locations" to address the annotation re-anchoring problem and to

try to meet the robust criteria defined earlier in this review.

The core of their strategy is to,

1. "provide automatically generated location descriptors, which comprise

multiple descriptions of a location, each of which captures different aspects of

the documents."

2. "use heuristics when a descriptor does not resolve directly to a location to

hypothesize the intended location, along with a measure of the degree of

confidence in the hypothesized location"

In Multivalent Annotation, anchor information includes three location descriptors

o A unique identifier (UID)

o A tree walk

o Context.

A unique identifier (UID) is a name unique within the document, as per ID attributes

in SGML/XML. UIDs are put into the document by the document owner. "They normally

survive even the most violent document modifications, except their own deletion", Phelps

and Wilensky argue.

A tree walk (similar to the concept of XPath in XML) describes the path from the root

of the document, through internal structural nodes, to a point at a leaf. Phelps and

Wilensky use "tree walk" as the central component of the robust location strategy. They

argue that "tree walks incrementally refine the structural position in the document as the

walk proceeds from root to leaf, they are robust to deletions of content that defeat unique

ID and context locations"

Context is a small amount of previous and following information from the document

tree. Multivalent Annotation proposes a context record containing a sequence of

document content prior to the location, and a sequence of document content following the

location. Context records could be in arbitrary length. In their implementation, 25

characters are used as context text.

In Multivalent Annotations, the robust location reattachment algorithm is performed

in three steps. It first uses the unique identifier, then the tree walk descriptor, and then the

41

context descriptor, continuing only if the previously tried methods are ineffective. Each

of these steps is described below.

1. Unique ID sub-method

If the location has a UID, and the same UID is found in the revised document,

presumably the location is resolved. If no identical UID is found, proceed to the tree walk

sub-method.

2. Tree walk sub-method

Tree walk is used as the main reattachment method in Multivalent Annotation because of

the likely sparcity of UIDs. As show in the following figure (Figure 1.11), a tree walk is

immune to the changes to the following sibling subtrees. The walk is also safe with non-

structural changes to previous sibling trees.

42

Book

Chapters

Sections

0 1 2 ... n

0 1 2 .. n

2'

0 1 2 n

Figure 1.11 Tree walk sub-method

Tree walk, however, fails when a new previous sibling is introduced or one is deleted.

In Multivalent Annotation, other than the child node numbers, the node names are also

recorded. They will be used when tree walk fails after the initial walk.

Suppose the matching a tree walk of a robust location against the actual running tree

successes up to the leaf, but the leaf is of the wrong type. The matching is tried on the

following sibling node, then on the previous sibling, and then on the second following,

the second previous and so on until the no names match. If the match fails previously, the

same strategy is employed. If no match can be found, Multivalent Annotation assumes

that a new level of hierarchy was introduced, and skips a level of the tree. If still no

match was found, they hypothesize that a level of hierarchy was removed, and skip the

43

current location node/offset descriptor pair. If none of these attempts yields a match, the

match attempt fails.

Each departure from the original description adds a weighted value to an overall

"unreliability" factor for the match.

This algorithm makes saved tree paths robust against any number and combination of

sibling insertions, deletions and reordering at any or numerous levels of the document

tree. The search pattern prefers siblings closest to the saved location, rather than, say,

searching from the parent's first child to its last, reasoning that closet match is most likely

the best match.

3. Context sub-method

If the structural document tree has been changed too much for the tree walk's tactics to

recover an annotation's location, the context method is used.

As with tree walk, the closest match to the original position is the preferred one. A

search is done forward and backward, with the nearer match chosen. If neither direction

matches, more and more of the context is searched until a match is found, or until the

length of the string used for the search drops below a threshold.

The initial search position is set from the furthest extent that the tree walk described

above could be resolved. It no match is found within the subtree, the search climbs up the

tree by one node and tries again within that subtree until a match is found or it has

climbed to the root.

As with tree walk matching, an overall unreliability factor for the match is computed.

If some but not all of the context is matched, unreliability is increased.

The algorithm used in Multivalent Annotation depends highly on the structure of the

document format. It failed to pass our robustness criteria rule number eight.

The tree walk method works in some circumstances, but we suspect the tree walk

method will not be able to survive the complications in the ways the document could be

modified. The claim of the method satisfying rule number one still needs to be

questioned.

44

0 Robust Anchoring Annotations Using Keywords

Microsoft researchers (Bernheim and Bargeron, 2001; Bernheim et. al., 2001) approach

the annotation reattachment problem from the user's point of view. In a study performed

by Microsoft Research, a group of users were recruited to evaluate a simple text matching

annotation-positioning algorithm. The algorithm saved only the anchor text selected by

the user and then used partial string matching to find a position in the modified

document. No information about the surrounding context of the annotations was saved.

The study result is interesting; it suggests that participants paid little attention to the

surrounding context of an annotation, indicating that users might not consider the

surrounding context very important for annotations made on a range of text. Results

suggest that algorithms may want to give the surrounding context relatively little weight

when determining an annotation's position.

The evaluation further revealed that unique words in the vicinity of an annotation are

distinguishing anchor characteristics, which should be tracked among successive versions

of a document.

Based on the user's evaluation, Microsoft introduced keyword anchoring, a robust

anchoring method designed based on what users expect to happen to annotations when

the documents change. The algorithm primarily uses unique words from the annotated

document to anchor and re-position annotations, and it ignores any specific internal

document structure.

Location descriptors includes:

o HMTL book markfor the selection: an IE specific string used to quickly anchor

annotation in documents that have not changed (can be ignored to ensure the

anchor is completely independent of the document format)

o Offset from start of document

o Length of the anchor text

o Information start and endpoints of the anchor text: a small of amount of text

from the document surrounding the start and end of the anchor text

o Information about the keywords in the anchor text: a list of unique words from the

anchor text and their locations within the anchor text

45

Reattachment Algorithm:

The reattachment algorithm first assumes the document has not changed. The bookmark

and document offset information are used to find the anchor. When the initial attempt

fails, the algorithm looks for keywords from the anchor in the modified document.

The algorithm loops through all keywords in the original anchor and creates each

"candidate anchor" whenever there is a keyword match (called "seed" keyword in this

case). Each "candidate anchor" is assigned a base confidence score. The confidence

scores of the "candidate anchors" will be raised by performing the following steps:

1. Looking for keywords in the vicinity

If there are other keywords in the vicinity of the original anchor (within two times

of the initial anchor length), the algorithm extends the candidate anchor to include

it. The algorithm also measures the distance between the newly found keyword

and the seed keyword. The confidence score is modified based on the relative

change in distance between the seed keyword and newly added keyword. The

higher the confidence score is raised, the more similar the distribution of the

keywords between the two document versions.

2. Looking for the start and end points of the anchor text

After including as many keywords as possible in each candidate anchor, the

algorithm tries to match start and end points of the original anchor to each

candidate anchor. If there is a match, the confidence score is raised. Again the

increase of the confidence score is based on how closely the new distance from

the seed keyword to the start/end point matches the distance in the original

anchor.

3. Comparing the length and offset of the found candidate anchor to the original

anchor.

The method further compares each candidate anchor (after steps 1 and 2), to the

length of the original anchor and its location in the document. Confidence scores

are then increased or decreased depending on if the found anchor's length and

location compares favorably with those of the original one.

4. Looking for surrounding text from end points

46

Finally, for the cases when there are many multiple matches of the anchor text in

the modified documents, the surrounding text is used to differentiate among them.

Confidence scores are then modified based on this comparison.

After going through all the steps, the candidate anchor with the highest confidence

score is used to reposition the annotation.

In summary, the algorithm seeks the best match in terms of the number of matching

keywords, their relative distribution in the anchor text, the anchor text's initial and ending

text match and the anchor's relative position in the whole document.

Keywords Selection:

The keywords are determined by selecting the words in the anchor text that are most

unique with respect to the rest of the document. For a particular document, a map of word

frequencies is calculated. When the user creates an annotation, all words in the anchor

text that only occur once in the document are selected. If there are fewer than three words

in the anchor text that occur only once in the document, words with increasing frequency

are selected until at least three keywords have been found.

The method developed in Microsoft Research upheld the rules that document format

should not matter and that reattachment algorithm depends only on document text. The

method used in selecting keywords sounds simple, though we foresee problems will arise

when the document grows large. The semantic significance of keywords depends on the

distribution of the keywords in the documents rather than the frequency alone. The

algorithm essentially seeks the best match in terms of the number of matching keywords,

their relative distribution in the anchor text, the anchor text's initial and ending text

match and the anchor's relative position in the whole document. In many cases, the

method would fail to properly position the annotation,

1. If the anchor texts are reworded in a way that it contains quite similar semantic

contents, but uses different keywords.

2. If the anchor texts are reworded in a way that word sequences are changed

although they express exactly the same meaning.

We also believe that reattachment algorithms depending only on keyword match is

fundamentally flawed, as many times, users make annotations because they are

47

particularly interested in a specific concept, which might not include any significant

keyword at all.

1.4 Annotation Persistence over Dynamic Documents - a Specialized

Information Retrieval Problem

1.4.1 A Specialized Information Retrieval Problem

The problem we are facing in this study is a very interesting and unique one. It is an

Information Retrieval (IR) problem. We call it a specialized IR problem because of its

well-defined user queries and information collection once the documents of interest are

pre-defined.

In our study, what we are interested in is to transfer annotations "robustly" between

document versions. We pay no attention to what is written into the annotation itself, but

rather consider solely the document text underlying the annotation ("anchor text and

surrounding context"). In our problem, the user query is well defined. The user query is

the "anchor text + surrounding context" in the original version of the document, and the

information collection is the revised version of the document. Our IR system should

attempt to find the most "relevant" piece of text in the revised version of the document in

response to the user query ("anchor text + surrounding context") in the original version of

the document. If we assume users can make annotations anywhere in a document, the

study boils down to using any piece of text in the original edition of a document to find

the most "relevant" piece of text in the revised edition of the document.

Information Retrieval (IR), as a subject of science and engineering, has been studied

for many years. In the past 20 years, the area of IR has grown well beyond its primary

goals of indexing text and searching for useful documents in a collection. Nowadays, IR

is broadly interpreted to include such technologies as ad hoc and distributed retrieval,

cross-language IR, summarization, filtering, and classification of information. With the

introduction of WWW, IR once again gained a place with other technologies at the center

of the stage of computer science. Nowadays, IR has become part of our daily life.

Frequently, when we go online, we select our favorite search engine, type in a sentence

and find the information need.
48

IR has proven to be a hard subject. The difficulties are attributable to mainly three

reasons.

1. Because of the ambiguities inherent in natural language, the information is often

misinterpreted.

2. Characterization of the user information needs is not a simple problem. Often, the

information need is imprecisely or vaguely stated by the user.

3. Unlike most of the algorithms in computer science that have a "right answer", IR

techniques are essentially heuristics because there is no right answer, or we don't

know the right answer. As relevance is at the center of the information retrieval,

to be effective in its attempt to satisfy the user information need, a IR system must

somehow 'interpret' the contents of the documents and rank them according to a

degree of relevance to the user's query.

Since we can define our problem as a specialized IR problem, in the following, we

first review the three retrieval evaluation criteria widely used in IR research - Precision,

Recall and Ranking. We then review the three classic categories of IR models, Boolean

Model, Vector Model and Probabilistic Model, and their extensions. Later, we revisit our

original problem. We look at the differences between "conceptual search" and

"mechanical word search" when performed by humans and computing machines, and

their relationships to the reattachment problems under common human annotation

practices. We also review Latent Semantic Analysis, an extension to vector model, which

is an automated method to compare documents and queries based on their semantic

similarities. Lastly, we formally define our problem and lay out strategies to solve it.

1.4.2 IR Evaluations and IR Models

IR Evaluation Criteria - Precision, Recall and Ranking

Before we turn our attention to review the IR models, we first look at the three measures

to evaluate retrieval performances -precision, recall and ranking.

In talking about retrieval models and how to improve them, it helps to remember

what distinguishes an effective retrieval from a fruitless one. To be truly effective, there

are generally three things we want from a retrieval system.

49

1. We want it to give us all of the relevant information available on our topic.

2. We want it to give us only information that is relevant to our search.

3. We want the information ordered so that most of the relevant results come first.

The first criterion, getting all the relevant information available - is called recall.

Without good recall, we have no guarantee that valid, interesting results won't be left out

of our result set. We want the rate of false negatives - relevant results that we never see -

to be as low as possible.

The second criterion - the proportion of documents in our result set that is relevant to

our search - is called precision. With too little precision, our useful results get diluted by

irrelevancies, and we are left with the task of sifting through a large set of documents to

find what we want. High precision means the lowest possible rate of false positives.

The following figure shows the concept of recall and precision given an information

collection and an information request.

Relevant Docs Collection
in Answer Set

IRal

Ra
precision = _

Answer Set
IR Relevant DocsJA

A A

recall = RaR
|R|

Figure 1.12 Precision and recall for a given example of information request

There is an inevitable tradeoff between precision and recall. Search results generally

lie on the continuum of relevancy, so there is no distinct place where relevant results stop

and extraneous ones begin. The wider we cast our net, the less precise our result set

becomes. This is why the third criterion, ranking, is so important. Ranking has to do with

whether the result set is ordered in a way that matches our intuitive understanding of

what is more and what is less relevant.

50

IR Models

Interest in information retrieval has existed long before the Internet. There have been

many models proposed over the years. In their classic IR book, "Modem Information

Retrieval" (Baeza-Yates and Ribeiro-Neto, 1999), Ricardo Baeza-Yates and Berthier

Ribeiro-Neto defined the following formal characterization of IR models

Definition An information retrieval model is a quadruple [D, Q, F, R(qi, d)]

where

1) D is a set composed of logical views (or representations) for the documents in a

collection

2) Q is a set composed of logical views (or representations) for the user information

needs. Such representations are called queries.

3) F is a frameworkfor modeling document representations, queries, and their

relationships.

4) R(qi, d) is a ranking function which associates a real number with a query

qj E Q and a document representation d E D. Such ranking defines an ordering

among the documents with regard to the query qj.

All IR models can be classified into three classic categories, Boolean, Vector and

Probabilistic. In the Boolean Model, documents and queries are represented as sets of

index terms. In the Vector Model, documents and queries are represented as vectors in a

multi-dimensional space. In Probabilistic Model, probability of relevance is calculated

based on the assumption that the terms are distributed differently in relevant and non

relevant documents, Over the years, extensions and refinements have been suggested to

each classic model. Figure 1.13 is taxonomy of information retrieval models from the

book of "Model Information Retrieval" (Baeza-Yates and Ribeiro-Neto, 1999).

51

Classic Models:
Retrieval: Boolean

Ad hoc Vector
Filtering Probabilistic

Set Theoretic:
Fuzzy
Extended Boolean

Algebraic:
Generalized Vector
Lat. Semantic Analysis
Neural Networks

Probabilistic:
Inference Network
Belief Network

Figure 1.13 Taxonomy of information retrieval models
(Baeza-Yates & Ribeiro-Neto, 1999)

Boolean Model

The Boolean model is the most simple of these retrieval models. It is based on set theory

and Boolean algebra. The terms in a query are linked together with AND, OR and NOT.

This method is often used in search engines on the Internet because it is fast and simple.

Unfortunately, the Boolean model suffers major drawbacks. First, users have to have

some knowledge to the search topic for the search to be efficient; a wrong word in a

query could rank a relevant document non relevant. Secondly, frequently it is difficult to

use simple Boolean expressions to express information needs. Lastly, since Boolean

model is based on a binary decision criterion, the retrieved documents are all equally

ranked with respect to relevance.

Alternative models have been proposed to extend and refine the classic Boolean

Model to solve these problems. Expanded term weighting operations make ranking of

documents possible, where the terms in the document are weighted according to their

frequency in the document (Salton 1983). Fuzzy operators are used in place of Boolean

operators (Lee et. al., 1993). Weighted query can be expanded to include synonyms using

a thesaurus (Kwon et. al., 1994).

52

Vector Model

Recognizing the use of binary weights in Boolean Model leads to poor relevance

evaluation, the Vector Model assigns non-binary weights to index terms in queries and

documents. As each document and user query is represented by weighted index terms,

mathematically, they are represented as t-dimensional vectors. The degree of similarities

of between the document vector (dj) and user query vector (4) can be computed as the

correlation between the two vectors. This correlation can be quantified, for instance, by

the cosine of the angle between these two vectors (Figure 1.14).

d.

d .*q
sim(d,,q) =

Figure 1.14 Cosine of two vectors

The vector model procedure can be divided into three stages. The first stage is the

document indexing, where content bearing terms are extracted from the document text.

The second stage is the weighting of the indexed terms to enhance retrieval of documents

relevant to the user. The last stage ranks the document with respect to the query

according to a similarity measure.

0 Document Indexing

Many words don't carry semantic meanings, such as the and is. In the process of

document indexing, those non-significant words (function words) are removed from the

document vector, so the document will only be represented by content bearing words.

The indexing can be based on term frequency, where terms that have both high and low

frequency within a document don't carry much document association power. In practice,

term frequency has been difficult to implement in automatic indexing. Instead, a stop list

that holds common words is used to remove high frequency words (stop words). In

53

general, 40-50% of the total number of words in a document is removed with the help of

stop list.

0 Term Weighting

Index term weights can be calculated in many different ways, but the main idea

behind the most effective term-weighting techniques is based on the principles that

support clustering techniques. Term weighting can be explained by controlling the

exhaustivity and specificity of the search, where the exhaustivity is related to recall and

specificity to precision. The term weighting for the vector model has entirely been based

on single term statistics (or with an assumption that terms are not related). There are two

main factors that contribute to term weighting: term frequency factor and collection

frequency factor.

The term frequency factor measures the frequency of a term t, inside a document di.

The term frequency factor provides for quantification of intra-cluster similarity, which

provides one measure of how well that term describes the document content.

The collection frequency factor measures the inverse of the frequency of a term t

among the documents in the collection. The collection frequency factor provides for

quantification of inter-cluster dissimilarity, which assumes that the terms that appear in

many documents are not very useful for distinguishing a relevant document from a non-

relevant one. Experimentally it has been shown that these document discrimination

factors lead to a more effective retrieval, i.e. an improvement in precision and recall

(Salton and Buckley, 1996).

A classic term weighting strategy is called tf - idf scheme. Assume N be the total

number of documents in the collection and n, be the number of documents in which the

index term k, appears. Let freq, be the raw frequency of term k, in the document d,

(i.e., the number of times the term k, is mentioned in the text of the document di). Then

the tf of term k, in document di is given by:

freq1 y
=(q

max, (freq ,j)

54

Where the maximum is computed over all terms that are mentioned in the text of the

document d, .

Let idf1 be the inverse document frequency for ki. It is given by

idf1 = log
n.

tf - idf term-weighting is defined as:

w', = tf , x idf = freq X logN

max, (freq,1) n

Ranking scheme

The similarity in vector space models is determined by using associative coefficients

based on the inner product of the document vector and query vector, where word overlap

indicates similarity. The inner product is usually normalized. The most popular similarity

measure is the cosine coefficient, which measures the angle between the document vector

and the query vector. There are other measures, such as Jaccard and Dice coefficients

(Salton 1988).

Probabilistic Model

Another classic retrieval method is probabilistic retrieval, where the probability that a

specific document will be judged relevant to a specific query is based on the assumption

that the terms are distributed differently in relevant and irrelevant documents. The

probability formula is usually derived from Bayes' theorem.

1.4.3 Problem Revisited - Concepts and Keywords

Earlier in this Chapter we reviewed the state-of-art research in annotation systems and

architecture. We concluded that the function of reattaching annotations among document

versions is a required element for any annotation system to be successful. We also

concluded that annotation persistence over document versions is a complicated and

55

challenging problem, as documents can go through various changes among versions.

Before we reviewed the state-of-art annotation re-anchoring methods, we defined robust

criteria for annotation re-anchoring mechanism. We concluded in our review that none of

the current mechanisms proposed in the literature fully satisfies our robust criteria. In the

last part of this Chapter, we revisited our problem and stated that the study of annotation

persistence over dynamic documents can be formulated as a specialized information

retrieval problem.

In the following, we look at the problem from another point of view. We look at the

differences between two common ways of searching, "Conceptual search" and

"Mechanical word search". One ("conceptual search") is used most often by human

brains and the other ("mechanical word search") is well-suited for computer automation.

After the brief discussion of the two types of searches, we review a new retrieval models,

Latent Semantic Analysis, which allows a computer to do human work, i.e. it retrieve

documents based on semantic concept matching. Next, we look at the two common

practices of annotations, annotation on concept and annotation on important words, and

their relationship to the search types of conceptual search and mechanical word search as

we develop our annotation reattachment strategies.

Conceptual Search vs. Mechanical Word Search

When a human is given a task to find all articles having to do with Egyptian Civilization

from a stack of newspapers and magazines, it is very unlikely he would read through each

article word-by-word, looking for that exact phrase. Instead, he would probably skim

through each article's headline searching for those that might have to do with ancient art

or history, and then read through the ones he finds where there might be a connection to

the topic of interest.

If, however, he is given a task of finding information about a term such as singular

value decomposition from highly technical journals or text books, the chances are high

(unless he is a mathematician) that he would have to go through each article line-by-line,

looking for "singular value decomposition" to appear in the sea of jargon.
The two searches would yield very different results. In the first one, we might find

many articles that are very relevant to Egyptian Civilization, even though the exact words

56

might not appear in the article at all. Articles about Metropolitan Museum of Art, New

York, and the Tomb of Tutankhamen or even article on archaeology might surface.

With the math articles, we might find all the articles with the exact phrase Singular

Value Decomposition. Unless we knew about relevant mathematics, it is unlikely we

would pick articles about matrix algebra that did not contain the search phrase, even

though a mathematician might find those articles very relevant.

The two searches represent opposite ways of searching a document collection. The

first is a conceptual search, based on a higher-level understanding of the user's need and

the search space, including all kinds of contextual knowledge. The second is a purely

mechanical search, based on an exhaustive matching between the search phrase and the

collection of documents. It requires no understanding of either the query or the document.

Computers are perfect for doing mechanical comparisons. Human beings can never

take a purely mechanical approach to a text search problem, because human beings can't

help but notice semantics, structures and implications. Computers know nothing about

context, and excel at performing repetitive tasks quickly.

Current full text search engines, no matter how complex, find their results using just

such a mechanical method of exhaustive searching. While the technique it uses to rank

the results may be very sophisticated (Google is an example of innovation in choosing a

system for ranking), the actual search is based entirely on keywords, with no higher-level

understanding of the query or documents.

Could a computer retrieve documents based on semantic concept matching between

query and documents? In the following we review one promising approach, called Latent

Semantic Analysis (LSA), an innovative extension to IR Vector Model. LSA was first

developed at Bellcore in the late 1980's, and is the object of active research.

Latent Semantic Analysis

Latent semantic analysis adds an important step to the vector model. In addition to

recording which content bearing words a document contains, the method examines the

document collection as a whole, to see which other documents contain some of those

same content bearing words. LSA considers documents that have many words in

57

common to be semantically close, and ones with few words in common to be

semantically distant.

Retrieval models suffer from two well-known language related problems called

synonymy and polysemy. Synonymy means that an object can be referred to in many

ways, i.e., people use different words to search for the same object. An example of this is

the words car and automobile. Polysemy is the problem of words having more than one

specific meaning. An example of this is the word jaguar that could mean a well-known

car type or an animal. The prevalence of synonyms tends to decrease the recall

performance of retrieval systems. Polysemy is one factor underlying poor precision.

LSA offers a dampening of synonymy. By using Singular Value Decomposition

(SVD) on a term by document matrix of term frequency, the dimension of the

transformed space is reduced by selection of the highest singular values, where the most

of the variance of the original space is. By using SVD the major associative patterns are

extracted from the document space and the small patterns are ignored. The query terms

can also be transformed into this subspace and can lie close to documents where the term

does not appear. The advantage of LSA is that it is fully automatic and does not use

language expertise.

Intuitively, the reduced dimension (-100 - 300 orthogonal space) may be viewed as

artificial semantic concepts; they represent extracted common components of many

different words and documents. Each term or document is then characterized by a vector

of weights indicating its strength of association with each of these underlying semantic

concepts. Similarities between terms and documents are then measured by how closely

they contain similar semantic concepts.

Empirical studies of LSA have demonstrated LSA has better recall and precision

performance than traditional vector models. LSA has also been examined analytically. By

comparing LSA to multidimensional scaling it has been shown that LSA preserves the

document space optimally when using the inner product similarity function (Bartell et. al.

1992). By using Bayesian regression model it is shown that by removing the small

singular values, statistically dubious information are being removed and also

specification errors are reduced (Story, 1996).

58

In Chapter 3, we elaborate on LSA methodology and evaluate the method against a

collection of Wall Street Journal articles from the late 1980s.

Annotation on Concept and Annotation on Domain Semantically Significant Words

While humans most often conduct "conceptual searches" when they are trying to find the

information they need, they often avoid "mechanical keyword searches". When it comes

to annotation, the story is different.

Humans make annotations on both important words and important concepts. Very

often, when we read articles, books, especially in scientific studies, we annotate domain

semantically significant words, because they represent new jargon within a certain

conceptual context.

At some other times, our annotations address key concepts. We often highlight a

paragraph because it introduces new ideas; we underline a list of directions because it

represents procedures to finish certain tasks. In many cases, whole paragraphs might not

contain any semantically significant words at all.

It is generally difficult to automatically identify domain semantically significant

words. We need to point out that semantically significant words are usually not the same

as rare occurring words. In object oriented programming context, the word

"polymorphism" is usually both rare occurring word and semantically significant word;

while "class" is semantically significant word, but not rare occurring word.

In this study, we don't make special efforts to identify semantically significant words.

We will, however, take the advantages of our ability to extract document semantic

concepts and our ability to automatically identify rare occurring words to help reposition

annotations.

1.4.4 Strategies and Solutions

As we reach the concluding part of the first chapter, we are now ready to layout our

strategies to solve the "annotation persistence over dynamic documents" problem. In the

following, we present our design of annotation anchor formulation and specify the

guidelines of reattachment algorithm.

59

Anchor Formulation

In section 1.1.4, we presented a generic annotation definition. By adopting the object

oriented programming convention, an object of "annotation" contains an object of

"content" and an object of "anchor". "Anchor" contains location referencing information

to address into a document and position the annotation properly.

To uphold the rule of document format neutrality, our method needs to depend on

document text only. This rules out the possibility of using internal document structures,

such as XML. However this does not mean we can't use the semantic meta-structure of

the documents, such as the anchor text is located within "Chapter 1 Introduction/i.4

Annotation Persistence over Dynamic Documents - A Specialized Information Retrieval

Problem/i.4.4Strategies and Solutions". The meta-structure information could be readily

parsed and generated automatically (or with very light human intervention). We include

meta-structure information of "anchor text and surrounding context" as one location

descriptor in our anchor formulation.

To address the need of maintaining concepts which anchor text and surrounding

context contains, the anchor formulation contains a location descriptor which describes

the semantics of the anchor text and surrounding context (thus "concepts").

We also like to add another location descriptor which contains a lists of rare occurring

words (we call them "keywords" in the future references). The problem we are studying

is a specialized information retrieval problem in that we are looking for similarities

between document versions. That fact that rare occurring words appearing in both

versions of the document indicate that there is a strong likelihood that the paragraphs

where these words appear are related.

What words are keywords? Or put another way, what words in a document are

statistically more significant so that such words appearing in, one version of a document

could be used as reliable tokens to uniquely identify the "same" texts in another version

of the document? We call the ability of words to resolve document locations as words'

indexing power. Keywords are rare occurring words.

Figure 1.15 presents the full definition of Annotation Class; each object of

"annotation" is composed by an object of "content" and an object of "anchor". Each

60

"anchor" has three location descriptor object, -- meta-structure location descriptor;

keywords location descriptor; and concept location descriptor.

Class Anchor

f
Object Meta-structure information location descriptor;

Object "Keywords" location descriptor;

Object "Semantic concepts" location descriptor;

}

Figure 1.15 Annotation Class Representation

Reattachment Algorithm

The anchor formulation and reattachment algorithm in this study are designed with a goal

of satisfying the robust criteria stated in section 1.3.2.

In the case when there are only minor modifications made to annotation's anchor text

and surrounding context, we expect the reattachment algorithm to pick the right location

in the revised document with high confidence. In the case when there are increasing

changes to the documents, the reattachment algorithm should present a list of possible

answers with a ranking with confidence scores. In the case when the document changes

are radical, the reattachment algorithm should orphan the annotations rather then reattach

61

Class Annotation

{
Object Content;

Object Anchor;

}

them with low confidence. We will elaborate our reattachment algorithms in detail in

Chapter 4.

62

1.5 Summary

In Chapter One, we started by reviewing the practice of making annotations on paper, the

taxonomy of annotation forms and their functions. By adopting Marshall's classification,

annotations fall into four groups based on whether the annotation locations are within-

text (e.g. highlighting text, circled words) or they are in the margins (e.g. scribbled notes

in a margin, asterisks and stars) and whether the annotation contents are explicit in

meaning (e.g. brief notes) or opaque personal coding (e.g. red underlining indicating

importance).

We identified the benefits digital format brings to annotations. The list includes such

benefits as: annotations can be searched; annotations can themselves be annotated;

annotations could reference multiple locations; annotation contents could be multimedia;

annotation could be shared.

We also identified many challenges digital annotations face. We elaborated one of the

challenges, which is the focus of this study, "Annotation persistence over dynamic

documents". We made an observation that Annotation persistence over dynamic

documents is a common problem in the digital annotation world, as documents, such as

digital books and the WWW, are most often "incorporative". By citing from a large-scale

annotation software study conducted at Microsoft, a failed annotation persistence scheme

over dynamic documents in annotation software can be costly. It was the primary reason

people stopped using the annotation software system.

We presented a generic definition of digital annotation based on Marshall's

classification. A digital annotation object is composed of the two properties, of

annotation content and annotation anchor, where annotation anchor contains information

to address into a document to position the annotation properly.

In the second section of Chapter One, we first presented an overview of the current

state-of-art annotation systems and architecture. We then elaborated on the design of a

few systems which represent the forefront of research in annotation system development.

In commercial document-processing software, annotations are normally stored within

document files, and users need to have write permissions to add annotations. There are a

few systems which limit the annotations to only predefined document positions. Most

63

research annotation systems, however, allow users to annotate any arbitrary web

documents.

The two main categories of annotation system architecture are proxy-based and

browser-based. In a proxy-based approach, annotations are stored and merged with a web

document by a proxy server; the browser user only sees the result of the merge.

Typically, presentation of the annotations is limited to the presentation styles available

through HMTL. The proxy approach inherently restricts the presentation styles that can

be used for annotations. In a browser-based approach, the browser is enhanced (either by

an external application or plug-in) to merge the document and the annotation data just

prior to presenting the content to the user. Annotation data are stored in a proxy or a

separate annotation server.

We then reviewed in detail three systems, Annotator, Annotea and Multivalent

Annotations. They are all developed as research projects. In Annotator, system adopts a

proxy-based architecture. It allows annotation functions such as annotation creation,

modification and deletion; annotation indexing and searching; annotation multi-

referencing; annotation sharing. To keep the principle of document format independence,

the anchor representation in Annotator does not rely on document markup or structures, it

contains only a portion of the text in the anchor's proximity. The text strings are

subsequently hashed and saved as part of annotation anchor record. A string or sub-string

match of anchor text with the document is performed to position the annotation anchors.

Annotea adopts a browser-based architecture. It uses mostly W3C open source

technologies, such as RDF, XLink, XPointer and HTTP. The client browser uses the

Amaya editor/browser, an open source program developed by W3C that supports HTML

and a variety of XML markup schemas. In Annotea, Resource Description Framework

(RDF) is selected as the metadata language to represent annotations. A general annotation

super class in RDF schema is defined and several sample subclasses are defined as well

to showcase the flexibility of extending annotations to include more annotation sub-types.

In Annotea, the anchor mechanism to address into the documents depends on XPointer,

thus the documents needs to be in highly structured format, such as XML.

Multivalent Model can be categorized as another browser-based architecture. Rather

than packing all possible content types of a document in a single specification,

64

Multivalent Document Model slices a document into layers of homogeneous content, to

which additional layers maybe added at a later stage. Each layer could be associated with

multi-agents or "behaviors" which provides interactions with other layers and users. User

annotations are treated as one layer. To provide a robust way of reattaching annotations

in the event of document changes, multivalent annotation anchor representations are

composed of three types of "location descriptors", a unique identifier; a tree walk; and

context strings.

In the third part of Chapter One, we first looked at the different types of text

modifications document could undergo between versions. We then answered the question
" what are the criteria for a robust annotation persistence mechanism?" Lastly, we

reviewed and evaluated the existing literature of the various annotation persistence

methodologies.

Document text may be modified in a variety ways between versions. Text

modifications can include rewording, moving, or more drastically, deleting, as well as the

combination of all three. In this study, we not only pay attention to the anchor text, we

feel the semantics of the surrounding context also play an important part in positioning

annotations. We argue the changes for both anchor text and the text of surrounding

context could be more complex, since the annotation anchor text could go through

different kinds of changes from the annotation's surrounding context.

All annotation software developed so far has, one way or the other, tried to address or

solve the annotation persistence problem. How do we measure the effectiveness or

robustness of those methods? What are the guidelines annotation persistence mechanism

development should follow? In this section, we reviewed the robustness criteria given by

Phelps and Wilensky in their study. Besides the criteria proposed by Phelps and

Wilensky, such as, "Robust to common changes in the referenced document";

"Gracefully degrading in the face of increasing change to the document "; "Based on

document content"; "Work with uncooperative servers" etc., we also emphasize the need

to uphold the criterion of Document Format Neutrality. This rule requires us that we

should not make any assumptions of the internal document structure and our location

descriptor should be based on document text only. If adopted, this criterion rules out the

65

possibility of including a popular document structure like XML or HTML (or XPointers)

in the scheme design.

In the last part of this section, we reviewed in more detail a few systems that are

robust to varying degrees. Each system tries to solve the annotation persistence problem

using different location descriptors and re-attachment algorithms.

In Annotea, annotated documents need to be well-formed structured documents, such

as XML. XPointer is used to address into the annotated context within XML/HMTL

documents. This limits the document format and we believe XPointer is not robust for

many common document changes.

Annotator argues the importance of document format neutrality. In Annotator, the

location descriptor is based on document text only. It records a portion of text in the

anchor's proximity. Its length is determined by a heuristic algorithm, which verifies the

uniqueness conditions. Annotator argues that it is against the copyright law to store

copies of data from copyrighted material in a publicly accessible database without

explicit permission of the publisher. Because of the copyright problem and uncertainty of

the length of the location descriptor strings, Annotator hashes the sub-string. Annotator

essentially adopts a text matching algorithm to re-attach annotations. The literature has

no explanation on how the string is hashed and how the reattachment algorithm works

when documents undergoes changes, even a slight one. But simple string matching

cannot survive even the moderate modifications of the anchor text.

In Multivalent Annotation, three location descriptors are used to position annotations,

a unique identifier (UID); a tree walk; and context. Multivalent annotation assumes

document in structured form (XML/SGML), thus it does not meet our robust criterion of

document format neutrality. Multivalent annotation uses tree walk as the workhorse for

its algorithm. Just like XPointer, we suspect the ability of tree walk as a robust

mechanism to survive the complications of significant document modifications.

Microsoft research developed a robust anchor mechanism using keywords. A survey

based on the trial of an annotation algorithm suggested that users pay "little attention " to

the surrounding context of an annotation, indicating that users might not consider the

surrounding context very important for annotations made on a range of text. The survey

further revealed that unique words in the vicinity of an annotation are distinguishing

66

anchor characteristics, which should be tracked among successive versions of a

document. Acknowledging the need to base the location descriptor only on document

text, the algorithm primarily uses unique words from the annotated document to anchor

and re-position annotations, and it ignores any specific internal document structure. In

their method, the anchor includes such information as: offset from start of document,

length of the anchor text, start and end points text of the anchor text, and a list of

keywords in the anchor text. The algorithm essentially seeks the best match in terms of

the number of matching keywords, their relative distribution in anchor text, the anchor

text's initial and ending text match and the anchor's relative position in the whole

document. While, we feel the method used in selecting keywords sounds simplistic, we

foresee problems will arise when document grows large. The semantic significance of

keywords depends on the distribution of the keywords in the documents rather than the

frequency alone. In many cases, the method would fail to properly position the

annotation. For example, when anchor texts are reworded in a way that it contains quite

similar semantic contents, but uses different keywords, adopting this method will fail to

provide a match. In another instance, if the anchor texts are reworded in a way that word

sequences are changed significantly although they express exactly the same meaning, the

matching will give very bad confidence score. We also believe that reattachment

algorithms depending only on keyword match are fundamentally flawed, as many times,
users make annotations because they are particularly interested in a specific concept,
which might not include any significant keyword at all.

As we reach the end of our evaluation, although all systems and annotation

persistence mechanisms proposed so far are robust to varying degrees, none fully satisfies

our robust criteria. The design of a new mechanism is called for.

In the fourth section of Chapter One, we first defined the problem of annotation

persistence over dynamic documents as a specialized information retrieval problem. We

call it a specialized IR problem because of its well-defined user queries and information

collection once the documents of interest are pre-defined. In this problem, the user query

is the "anchor text + surrounding context" in the original version of the document, and

the information collection is the revised version of the document. The IR system should

attempt to find the most "relevant" piece of text in the revised version of the document in

67

response to the user query ("anchor text + surrounding context") in the original version of

the document. If we assume users can make annotations anywhere in a document, the

study boils down to using any piece of text in the original edition of a document to find

the most "relevant" piece of text in the revised edition of the document.

Before we turned our attention to review the IR models, we looked at the three

measures to evaluate retrieval performance -precision, recall and ranking. Precision is a

criterion which measures the proportion of documents in the retrieval set that is relevant

to the search. Recall is a measure of the proportion of relevant documents in the retrieval

set over the total relevant documents in the document collection. Ranking has to do with

whether the result set is ordered in a way that matches the intuitive understanding of what

is more and what is less relevant. We expect a good IR models to provide high recall,

high precision retrieval with good ranking mechanism.

All IR models can be classified into three classic categories, Boolean, Vector and

Probabilistic. In the Boolean Model, documents and queries are represented as sets of

index terms. In the Vector Model, documents and queries are represented as vectors in a

multi-dimensional space. In Probabilistic Model, probability of relevance is calculated

based on the assumption that the terms are distributed differently in relevant and non

relevant documents.

Before we presented our design of anchor formulation and reattachment algorithm,

we took a step back by looking at the problem from another point of view. We looked at

the differences between two common ways of searching, "Conceptual search" and

"Mechanical word search". One ("conceptual search") is used most often by human

brains and the other ("mechanical word search") is well-suited for computer automation.

After the brief discussion of the two types of searches, we reviewed one of the retrieval

models, Latent Semantic Analysis, which allows a computer to do human work, i.e. it

retrieve documents based on semantic concept matching.

We studied the human annotation practice. We observed that humans most often

make annotations on both important words and important concepts. In terms of

annotation reattachment when documents are modified, in the case of important words

annotations, we would like to reattach annotations to those important words, although we

prefer to select those instances where the context of these words are as semantically close

68

to the original context as possible. In the case of annotations on concept, when documents

are modified, we would like to reposition the annotations to the semantically most similar

text in the second version of the documents. In more complicated cases where

semantically significant words and concepts are both being addressed in the annotation,

our solution should match both semantically significant words and concepts in the second

version of the documents. It is difficult to identify domain semantically significant words,

in this study, we take semantic concept into consideration only.

In the last part of this section, we presented the strategies to solve annotation

persistence over dynamic documents problem. In the design, the anchor formulation

includes three location descriptors which address three different aspects of the annotation

anchor and surrounding context characteristic. "Meta-structure information location

descriptor" tries to capture the Macro-semantic structure context location of the

annotation's anchor; "keywords location descriptor" includes all the "keywords" within

annotation's anchor text; "semantic concept location descriptor" captures the "concepts"

annotation's anchor text and surrounding context contains.

The annotation reattachment robust criteria require that the reattachment algorithm

needs to follow the following guidelines. In the case when there are only minor

modifications made to annotation's anchor text and surrounding context, the reattachment

algorithm should pick the right location in the revised document with high confidence. In

the case when there are increasing changes to the documents, the reattachment algorithm

should present a list of possible answers with a ranking with confidence scores. In the

case when the document changes are radical, the reattachment algorithm should orphan

the annotations rather then reattach them with low confidence.

69

Chapter 2

Natural Language Statistics and Entropy Measure of

Keywords

In the first chapter, after we made an extensive review of digital annotation classification

and practice, we identified the problem of annotation persistence over dynamic

documents as a specialized information retrieval problem. To meet the criteria of a robust

annotation persistence scheme, we designed our annotation's anchor to include three

location descriptors to capture the three different aspects of the annotation's anchor

information. One of the location descriptors is to include all the keywords annotation's

anchor text contains.

What words are keywords? Or put another way, what words in a document are

statistically more significant so that such words appearing in one version of a document

could be used as reliable tokens to uniquely identify the "same" texts in another version

of the document? We call the ability of words to resolve document locations as words'

indexing power.

Before we delve into the explanation of the entropy measure of keywords, we first

look at one of the important characteristics of the statistical nature of natural language -

the distribution of word occurrences in a text corpus and its governing law - Zipf's Law.

2.1 Statistical nature of natural language

2.1.1 Zipf's Law

Some words appear more frequently than others. Some words appear in nearly all

documents. Many words are infrequent. If we rank all words in decreasing order of

70

frequency of occurrences, is there a rule for the frequency of occurrences of each word as

a function of its rank? The relationship, which was first noticed in the early 1930s by a

Harvard linguistic professor George Kingsley Zipf, which is now called Zipf's Law.

There are many ways to state Zipf's Law but the simplest is procedural. Take all the

words in a body of text, for example a collection of Wall Street Journal articles, and count

the number of times each word appears. If the resulting histogram is sorted by rank, with

the most frequently appearing word first, and so on ("a", "the", "for", "by", "and"...),
then the shape of the curve is a "Zipf curve" for that text. If the Zipf curve is plotted on a

log-log scale, it appears as a straight line with a slope of -1 (Figure 2.1).

Words by raik order, Log (wIords by rankotder)

Figtire 2.1 Distr tibutioni of scorted wvord frequeicie's

Zipf stated in his initial publication (Zipf, 1949) that the frequency of the r - th most

frequent word is Yrtimes that of the most frequent word.

If we define the following in an English text corpus,

r : rank of a word;

N : total number of words in the corpus;

D : total number of unique words

P,.: frequency of word with rank r (=number of occurrences of word of rank

r divided by N)

71

Zipf's Law states:

r* p =A; (2.1)

where A ~ 0.1

In the following, we examined Zipf's Law against a corpus of a collection of three

year of Wall Street Journal articles.

Some statistics about the corpus are shown in Table 2.1

Number of documents 150,981

Average length of each document 245
(words)

Total number of word occurrences 36,920,947

Number of unique words 164,799

Table 2.1 Statistics of the corpus of Wall Street Journal articles (1987-1990)

We examined the top 50 most frequent words from the corpus. We ranked them in

Table 2.2 and calculated r * Pr for each ranked word. It is interesting to notice that the

most frequent word is "the" and the second most frequent word is "of'. The two most

frequent words "the" and "of' account for 8% of total word occurrences. The top 50

words account for 40%. r * Pr ~ 0.1, although the value of r * Pr deviates more from 0.1

for the top most frequent words.

72

Table 2.2 Examination of Zipf's Law against a corpus of three years of Wall Street
Journal articles with 36,920,947 total word occurrences; 164,799 unique words

Predicting Occurrence Frequencies Based on Zipf's Law

Based on Zipf's Law, we can make some interesting deductions.

If we assume a word that occurs n times as having a rank of r,, , then since

Pr = n/N, equation (2.1) becomes,

r = AN/n
n /(2.2)

73

Since several words may occur n times, assume rank given by r applies to last of

the words that occur n times. Then we can make this statement,

rn words occur more than n times, rn,, words occur more than n + 1 times.

Assume I is the number of words that occur exactly n times, then we have

= AN AN AN
In n n+1 (2.3)

If the corpus contains D unique words, then the highest ranking term occurs once

and has rank

D = AN/1 = AN (2.4)

The proportion of words with frequency n is,

__ 1I /D =
n / (2.5)n n +1)

From equation 2.5, we can deduce that:

> the proportion of words occurring once is 1/2

> the proportion of words occurring twice is 1/6

> the proportion of words occurring three times is 1/12

Table 2.3 summarizes the predicted proportion of occurrences compared to the actual

proportion of occurrences in the corpus of Wall Street Journal articles.

74

Number of Predicted proportion Actual proportion Actual number of
occurrences of occurrences occurring n times words occurring n

(n) (n +1) in /D times

1 0.500 0.379 57,202
2 0.167 0.140 21,171
3 0.083 0.081 12,209
4 0.050 0.053 8,077
5 0.033 0.039 5,824
6 0.024 0.029 4,396
7 0.018 0.023 3,517
8 0.014 0.019 2,894
9 0.011 0.017 2,504

10 0.009 0.014 2,110

Table 2.3 Frequencies from a corpus of three year of Wall Street Journal articles with

36,920,947 total word occurrences; 164,799 unique words.

We can make the following observations from the Table 2.3:

> Nearly half of the words in the corpus appear only once and twice

> About 70% of the words in the corpus appear less than 5 times.

Zipf's Law and Reality

A law of the form y = k * x' is called a power law. Zipf's Law is a power law with

c = -1. On the log-log plot, power laws give a straight line with slope c , or -1 in the

case of Zipf's Law.

Figure 2.2 is the comparison of Zipf's Law to the real data from Brown Corpus

(Croft, 2001). Zipf's Law is quite accurate except for very high and very low ranks.

75

1 10 100 Iwo0 10OW 000

Figure 2.2 Zipf on Brown Corpus (Croft, 2001)

A more general power law was introduced by Benoit Mandelbrot (1954).

Mandelbrot's generalization of Zipf's Law is still very simple: the additional complexity

lies only in the introduction of the two new adjustable constants, a number added to the

rank (p) and a number added to the power (/8), Mandelbrot's Law is shown in Equation

2.6.

1
pr - * (2.6)

(r + p)

Figure 2.3 shows the optimal fit of Mandelbrot's Law to Brown corpus with

parameter of p =100 and 8 =1.15.

76

4D

1 10 100 am1U 100000

Figure 2.3 Mandelbrot's function on Brown corpus (Croft, 2001)

Explanation of Zip's Law and other applications

Zipf's Law is an experimental law, not a theoretical one. The causes of Zipfian

distributions in real life are a matter of some controversy. Zipf attributed it to the

"principle of least effort". In the case of English text, the nature of communication is

such that it is more efficient to place emphasis on using shorter words. Hence the most

frequent words tend to be short and appear often. The underlying theme is that efficiency,

competition, or attention with regards to resources or information tends to result in Zipf s

Law distribution.

Many social and natural phenomena have been shown to follow Zipf s Law,

including:

> Populations of cities

> Income of companies

> Income of individuals

77

Size of earthquakes

> Size of settlements

2.1.2 Impact of Zipf's Law on Information Retrieval

Most large English text corpora follow Zipf's Law and thus have similar statistical

characteristics. These statistics influence the effectiveness and efficiency of data

structures used to index documents. They are the bases for determining words with

significant resolving power - the ability to discriminate document contents. There are also

implications from the statistics for infrequent words, which demonstrate significant

indexing power - the ability of identifying documents that contain unique words. In the

following, we look at the implications of Zipf s law on the whole spectra of words, from

common words which appears often to rare words which seldom show up in a document.

Stopwords

A few words are very common. In the examination of the three year Wall Street Journal

articles, we observed that the most two frequent words "the" and "of' account for 8% of

total word occurrences. Top 50 words account for 40% of total word occurrences. Words

that appear too frequent don't carry any real semantics of the document content. They are

so called stopwords in the IR world. A stopword is a word that does not carry meaning in

natural language and therefore can be ignored, such as 'a', 'the', 'by' etc. In document

indexing, a stopword list is usually used to eliminate the high frequency words. This

allows us to significantly reduce the space overheard of indices for natural language texts.

Infrequent words or words with rare appearances

Many words appear very infrequently. In the study of the three years Wall Street Journal

articles, nearly half of the words in the corpus appear only once or twice. About 70% of

the words in the corpus appear less than 5 times. From the information retrieval point of

view, it is very difficult to gather sufficient data on rarely occurring words for meaningful

statistical analysis. (e.g. for correlation analysis for query expansion). Infrequent words,

however, possess strong indexing power, the ability for words to resolve uniquely the

documents they resides.

78

Words in the middle

What can we say about words in the middle of the spectrum of word occurrences? Luhn

(195 8) stated that they are the words which have strong resolving power - the ability to

discriminate document contents.

In 1958, Luhn published a paper titled "The automatic creation of literature abstract".

In the paper, Luhn states: "It is here proposed that the frequency of word occurrence in

an article furnishes a useful measurement of word significance. It is further proposed that

the relative position within a sentence of words having given values ofsignificance

furnish a useful measurement for determining the significance of sentences. The

significance factor of a sentence will therefore be based on a combination of these two

measurements. " He made an assumption that frequency data can be used to extract words

and sentences to represent a document.

Luhn proposed two cut-offs to Zipf's curve (Figure 2.4). The upper cut-off excludes

all common words; the lower cut-off removes rare ones. Luhn states that both common

and rare words don't contribute significantly to the content of the document. Luhn went

on further to claim that the resolving power of words to discriminate content (or

semantics) reaches the peak at a rank order position half way between the two cut-offs,
and decays to zero for rare and common words. Thus words in the middle are significant

in document semantic analysis. In Chapter four, when we explain Latent Semantic

Analysis, we will explore more of Luhn's idea.

79

a.) Ippe&

tmk order

Iv 'Lover

Figure 1.4 Luhn cut-offs (Rijsbergen, 1979)

2.2. Information Theory and Entropy Measure of Keywords

In implementing the annotation persistence mechanism proposed in Chapter One, we

need to answer several questions. One of them is about keywords. Assume we are given a

document; we subsequently make annotations on arbitrary document locations. As we

proceed to produce, as designed in Chapter one, each annotation's anchor representation,

one of the location descriptors, the keyword location descriptor, needs to include a list of

keywords this annotation's anchor text contains. How are we going to generate a list of

keywords automatically based on the annotation's anchor text?

In this chapter, we delay presenting the full strategy to automatically generate the

keyword list based on an annotation's anchor text to Chapter Four. However, we present

the central ingredient of keyword selection --- the criteria we use to evaluate which word

is statistically more significant than others.

In Chapter One, we reviewed a study conducted by Microsoft Research that

developed a robust anchor mechanism using keywords. In their implementation, keyword

selection is based on word frequencies in a document. The less frequent a word appears

80

in a document, the more important it is. The algorithm starts words that occur once, twice

and so on.

Is word frequency the best criterion for determining keywords? Assume we have a

large text document and two words appear with equal frequencies (or occurrences) in the

document. One word, however, clusters to a few document locations; while the other is

dispersed more evenly in the document. Which word is statistically more significant? We

say word one. Word one points to a fewer document locations and it is less evenly

distributed inside the document. When used as an index, word one can resolve document

locations with more certainty, thus with stronger confidence - we say it has greater

indexing power. The greater the word indexing power is, the statistically more significant

the word becomes and more readily this word can be used to find unique parent

documents.

Can we measure word's indexing power quantitatively? The answer is yes. The tool is

entropy.

In the following, we first review briefly Information Theory and Shannon's Entropy.

We then present the formulation of Normalized Word Entropy, which is used as our word

significance indicator to evaluate the keywords. Lastly we report the evaluation of

Normalized Word Entropy against sample words from the Wall Street Journal articles.

2.2.1 Information Theory and Shannon's Entropy

Information Theory

Claude E. Shannon laid down the foundation of information theory in his landmark paper

entitled A mathematical theory of communication (Shannon, 1948). In this paper,
Shannon presented all the main theoretical ingredients of modem information theory. In

particular, Shannon formulated and provided proofs of the two main coding theorems.

Shannon's theory of communication is based on the so-called Shannon paradigm

(Figure 2.4).

81

optic fiber
computer or magnetic tape computer or

human acoustic medium man

message

Source Channel --- -1 Receiver

perturbations

thermal noise
read or write errors

acoustic noise

Message:
> sequence of symbols, analog signal (sound, image, smell ...)
> messages are chosen at random
> channel perturbations are random

Figure 2.4 Shannon paradigm

A data source produces a message which is sent to a receiver through an imperfect

communication channel. The possible source message can generally be modeled by a

sequence of symbols, chosen in some way by the source which appears as unpredictable

to the receiver. In other words, before the message has been sent, the receiver has some

uncertainty about what will be the next message.

Most real life physical channels are imperfect due to the existence of some form of

noise. This means that the message sent out will arrive in a corrupted version at the

receiver (some received symbols are different from those emitted), and again the

corruption is unpredictable for the receiver and for the source of the message.

The two main questions posed by Shannon in his early paper are as follows:

82

Suppose the channel is perfect (no corruption), and suppose we have a

probabilistic description (model) of the source, what is the maximum rate of

communication (source symbols per channel usage), provided that we use an

appropriate source code. The problem is presently termed as the source coding

problem or as the reversible data compression problem. The answer to this

question is given by Shannon's entropy of the source.

> Suppose now that the channel is noisy, what is then the maximum rate of

communication without errors between any source and receiver using this

channel? This is the so-called channel coding problem or error-correction coding

problem. The answer here is the capacity of the channel, which is the upper bound

of mutual information between input and output messages.

The two main results of information theory are thus the characterization of upper

bounds in terms of data compression on the one hand, and errorless communication on

the other.

A further result of practical importance is that (in most, but not all cases) source and

channel coding problems can be decoupled. In other words, data compression algorithms

can be designed independently from the type of data communication channel that will be

used to transmit (or store) the data. Conversely, channel coding can be carried out

irrespective of the type of data sources that will be used to transmit information over

them. This result has led to the partition of coding theory into its two main subparts.

Source coding aims at removing redundancy in the source messages to make them

appear shorter and purely random. On the other hand, channel coding aims at introducing

redundancy into the message to make it possible to decode the message in spite of the

uncertainty introduced by the channel noise.

Shannon's Entropy

A key feature of Shannon information theory gives information a numeric measure based

on probabilistic model. Solutions of many important problems of information storage and

the transmission are then formulated in terms of this important measure about

information. The numeric measure of information has a very concrete optional

83

interpretation: it roughly equals the minimum number of bits needed, on average, to

encode the message in question.

Let X be a discrete random variable taking a finite number of possible values

AX = {x I, X..., x } with probabilities {p, , P 2 ,..., Pn } respectively such that pi > 0,

ZP(x) = 1.
xceA

The entropy of X is defined by

H(X) P(x) log 1 2.7
xe A, P x).

with the convention for P(x) = 0 that 0 x log 1/0 = 0, since lim 0 log 1/0 = 0. The

expression (2.7) is famous as Shannon's entropy or measure of uncertainty.

The concept of Shannon's Entropy play a central role of information theory and is

sometimes referred as the measure of information content or the measure of uncertainty.

The entropy of a random variable is defined in terms of its probability distribution and

can be shown to be a good measure of randomness or uncertainty.

Shannon's entropy has following properties,

H(X) 0 with equality if pi = 1 for one i.

H(X) log(X) with equality if pi = 1/Xj for all i. (XI denotes the number of

elements in the set A'.)

It should be noted that entropy is a function of the distribution of X. It does not

depend on the actual values taken by X, but only on the probabilities.

A classic demonstration of entropy is the entropy measure of a binary source (e.g. a

biased coin toss). H(X) = -p log p - (1- p) log(1 - p) = H 2 (p), where p denotes the

probability of either of the two values of X. Figure 2.5 shows the binary entropy

function H 2 (p) with respect to p .

Properties of H 2 (p):

SH 2 (p)= H 2 (- P)

" H 2 (0)= H(1)=0

84

- H 2(0.5) = 1 (if two is used as the base for the logarithm)

" H 2(P)<1

0.8

0.6

0.4

0.2

0

0.00 0.20 0.40 0.60 0.80 1.00

P

Figure 2.5 Binary entropy function: H 2 (P)

How do we interpret entropy measure of a binary system, for example, if the system

is a coin toss?

In a system of coin tosses, if the coin is a fair coin with head and tail appearing with

equal probabilities (p = 0.5), the entropy of the system (coin tosses) attains its greatest

value and measures 1 if the base 2 is used for the log function. From the data

compression point of view, for efficient encoding, each coin toss requires 1 bit of

information to transmit. From the point of view of system uncertainty, the system of a

fair coin toss is the most uncertain binary system, thus its entropy measures the highest.

In case of a biased coin toss, the entropy of the system is less than 1. For efficient

encoding, a sequence of biased coin tosses contains less "information" than a sequence of

unbiased tosses, so it require on average less than 1 bit to transmit.

85

7-

------- - ------ - -- ---I-------

- - -- -----------

1

-a

36

0

For heavily biased coins, the entropy approaches zero, which means that system

contains very little "information" and it is a very "certain" system. We almost know what

the outcome of the each coin toss is, thus it requires on average near zero bits to transmit.

Shannon's entropy is a measure of uncertainty of the message. It depends on the

receiver's prior knowledge as well as the message itself. The more uncertain the message

is, the higher the Shannon's entropy values. In the case of a random variable, the more

uniformly distributed, the higher the entropy becomes.

2.2.2 Normalized Word Entropy

In word analysis, the more uniformly a word is distributed in document collections, the

less semantic it carries (such as stopwords). The more skewed a word is distributed in a

document collection, the more indexing power it has (such as rare occurring words). For

the first case, the entropy measure is very high, while for the later, the entropy is close to

zero.

Here we present the definition of Normalized Word Entropy:

We define the following from a text corpus T,

N: total number of documents;

w : word i;

di: document j;

Cj: number of times wi occurs in d;

ti = jc 1 : total number of times wi occurs in the corpus T;

We define Normalized Word Entropy ci for wi,

_ N C C. .

log N > t t 2.8

e, has following properties,

> O0 1;

> =1 if c1 , = t1/N , meaning wi occurs equal times in all documents

86

> 6 = 0 if exists j, where c11 = ti, meaning wi occurs only in one

document.

A value of E1 close to 1 indicates a near uniform distribution of w, across all

documents in the corpus. A value of e close to 0 indicates w is present in very few

documents.

The smaller E6 , the stronger w 's indexing power is, and thus the more statistically

significant w is.

Table 2.4 shows the normalized entropy measurements of sample words from the

corpus of the three years Wall Street Journal articles. For each row in the table, the

normalized word entropy is shown along side with the frequencies (or occurrences) of the

word in the corpus.

Words Normalized Entropy Frequency

The 0.9321 2040063
Stock 0.8312 65644
Bank 0.7737 40920
Bush 0.6107 6533

Bailout 0.5163 774
Chile 0.4308 496

Cinema 0.3806 373
Aviator 0.2167 18
Bandit 0.1816 10
Splat 0.0504 11

Spurge 0.0450 13
Virago 0.0273 10
Spitball 0.0196 16

adveryorials 0.0173 19
Ballad 0.0000 18

Gunsmith 0.0000 1

Table 2.4 Normalized word entropy for sample words in the corpus of

three years of Wall Street Journal articles.

Table 2.4 helps us to draw the following conclusions on normalized work entropy.
87

Stopwords have high entropy value. H(stopwords) ~1.0.

Words occurring only once in the corpus have entropy value of zero.

> Generally, the less frequently the word appears in the corpus, the smaller

the entropy value is.

> In words that appear equally frequently, entropy is larger for those that are

distributed in more documents, smaller for those that are clustered in a few

documents.

> When word entropy is smaller, the word has stronger indexing power.

We would also like to point out that word entropy is corpus related, word

"stock" may have a different entropy value in the domain of financial corpus and

corpus on computer science education.

2.3 Summary

In this chapter, we started by reviewing Zipf's Law, which governs the statistics of word

occurrences. We evaluated Zipf's Law against a corpus of the three years of Wall Street

Journal articles. Luhn separates the spectra of ranked words into three areas. Common

words are those which appear very often in documents. Rare words seldom appear in

documents. Luhn declares words in the middle ranks as significant words which

demonstrate strong resolving power.

Common words are also called stopwords in IR. The most two frequent words can

account for 10% of total word occurrences. The top 6 words usually compose 20% and

top 50 words nearly 50% of total word occurrences. As common words don't carry the

semantics of the contents, a stopword list is usually used in document indexing to

eliminate all common words. This helps to significantly reduce the space overheard of

indices for natural language texts.

Rare words compose a large portion of the word vocabulary. In our evaluation of the

corpus of three years of Wall Street Journal articles, nearly half of the words in the text

corpus appears only once or twice. About 70% of the words in the corpus appear less

than 5 times. We claim infrequent words have strong indexing power, implying they can

be used as tokens to almost uniquely identify the documents from which the words are

taken.

88

Luhn stated that words in the middle range of the spectrum of the ranked word list

have strong resolving power; they are strong contributors to the content and semantics of

the documents. Because of their significant semantic load and relatively rich occurrences

in the document corpus, they are used exclusively to compare semantics between

documents.

In the second half of the chapter, we presented entropy criteria to measure words'

indexing power - the ability for words to resolve document locations with strong

certainty. The greater the word indexing power is, the statistically more significant the

word becomes, and more reliably the word can be used to find unique document

locations.

We reviewed briefly Information Theory and Shannon's Entropy. We then present the

formulation of Normalized Word Entropy, which is used as our word significance

indicator to pick out the keywords which have strong indexing power.

Shannon studied the theoretical limits for data compression and transmission rates.

The two main results of information theory are the characterization of upper bounds in

terms of data compression on the one hand, and error-less communication on the other. In

Shannon's theory, compression limits are given by Entropy and transmission limits are

given by Channel Capacity.

Shannon's entropy measures the expectation of information content. It is a measure of

uncertainty. The more uncertain the system is, the higher the entropy of the system. In the

case of a random variable, the more uniformly distributed the variable is, the higher the

entropy of the variable.

We presented the formulation of Normalized Word Entropy, which gives a [0 - 1]

value for each word. Normalized Word Entropy measures the word distributions for each

word in a text corpus. The more uniformly the word is distributed in the documents, the

higher the Normalized Word Entropy, and closer the entropy value approaches to 1. The

more skewed the word is distributed in the corpus, the lower the Normalized Word

Entropy is. In the case if a word appears only once in a text corpus, the Normalized Word

Entropy of this word is zero.

89

The smaller the Normalized Word Entropy, the greater the word indexing power.

Thus words with small normalized word entropy are better keywords which can be used

to resolve uniquely the parent document locations.

90

Chapter 3

Latent Semantic Analysis

In chapter one, we designed the annotation's anchor to include three location descriptors

to capture three important characteristics of the annotation's anchor information:

> Meta-structure information location descriptor

> Keyword location descriptor

> Semantic concept location descriptor

When making decisions on transferring annotations between versions, the

reattachment algorithm needs to compare the three location descriptors of the original

annotation anchor with those of candidate annotation anchors. A heuristic evaluation

mechanism is then used to weigh the comparison results to select the best match.

In chapter two, we presented a criterion to measure the "significance" of words. We

made an assumption that keywords contained in keyword location descriptors should

present strong indexing power - the ability for words to resolve document locations with

strong certainty. The observation of human annotation practice on keywords also tells us

that most of the keywords users annotate possess strong semantics and often appear
"rarely" in documents. For example, a keyword readers annotate often in an object

oriented programming (OOP) textbook is "polymorphism", which represents a strong

semantic concept in OOP and usually appears in just a few selected locations in the

textbook.

Our criterion in measuring "keywords" is Normalized Word Entropy, which falls in

the range of [0, 1] for each word. The smaller the Normalized Word Entropy, the greater

the words indexing power.

In this chapter, we review and evaluate a technique supporting the formation and

usage of the semantic concept location descriptor - Latent Semantic Analysis (LSA).

91

LSA will help us to answer questions such as, "How are semantic concepts extracted

from texts?" and "How can we compare the semantic similarities between texts?" Before

we delve into the detailed explanation of how semantic concept location descriptors are

composed and used, we first review the theory of Latent Semantic Analysis.

In the first section of Chapter 3, we will present a brief introduction to LSA. We

review the two salient problems that plague the lexical text matching methodologies in

IR. We look at the assumptions LSA makes on the existence of implicit higher semantic

structures in word-document associations. In section 2 of this chapter, we review the

theoretical background of LSA and its methodologies. In section 3, we review the

applications of LSA in information retrieval, information filtering, knowledge induction

and representation, and text-based research. In section 4, we evaluate LSA against a text

corpus of three years of Wall Street Journal articles and lay out the foundations for

measuring and comparing an annotation's anchor semantics.

3.1 Introduction

Automatic document indexing combined with lexical word matching still are the

predominant information retrieval methods for text documents, especially those on World

Wide Web. Current full text search engines, no matter how complex, find their results

based on exhaustive word search and lexical word matching. While the technique used to

rank the results may be very sophisticated (Google is an example of innovation in

choosing a system for ranking), the actual search is based entirely on word matches, with

no higher-level understanding of the query or documents.

In the case of a search for a conceptual topic, lexical matching methods can be

unreliable and inaccurate. The problem is two-fold. On the one hand, individual words

indexed for the documents provide unreliable evidence about the conceptual topic or

meaning of a document. On the other hand, the words that users use to search often are

not the same as those words indexed from for the documents of interest. Deerwester et.

al. (1988) attribute the deficiencies of the lexical word matching methods to two well-

known language related problems, synonymy and polysemy.

Synonymy. There are many ways to express a concept. Words people use to describe

semantic concepts usually depend on people's educational background, their knowledge

92

of the subject area, linguistic habits or even personal preferences. Synonymy means that

an object can be referred in many ways, i.e., people use different words to search for the

same subject. A typical example is the words car and automobile; where both refer to

nearly exactly the same semantic object. One is used more often in formal settings,

however, than the other. Based on lexical text matching, a query containing only "car"

will not be able to retrieve documents which contain "automobile" but not "car". The

prevalence of synonyms tends to decrease the recall performance of retrieval systems.

Polysemy. Polysemy is the problem of words having more than one specific meaning.

An example of this is the word jaguar that could mean a well-known car type or an

animal. A query term including "jaguar" will retrieve documents on both the car brank

and the animals if lexical matching is used. Polysemy is one of the factors which lead to

poor precision.

Methods have been proposed to improve the poor recall performance of the IR system

due to synonymy. One of the proposals is to use automatic term expansion or

construction of a thesaurus. Term expansion uses term matching, but augments a user's

original terms with related words, e.g., from a special thesaurus, in hopes of hitting more

targets in the collection. For experienced searchers, this method provides more search

terms, but pays a price in scatter. Terms with multiple meanings may hit spurious targets,
leading to rapid degradation of precision (Jones, 1972).

LSA offers a dampening effect on synonymy, though the effect on polysemy is less

pronounced.

LSA assumes there exist implicit higher semantic structures, known as latent

semantic structures, in term-document associations. Terms tend to be similar if they

appear in the same kind of documents, whether or not they actually occur within identical

word contexts in those documents. Documents are semantically close if they have many

similar words in common, and semantically distant if they have few words in common.

This assumption correlates very well with how a human being, looking at content, might

classify a document collection.

LSA examines the document collection as a whole; it looks at patterns of word

distribution (especially word co-occurrence) across a set of documents. LSA starts with

the formation of a term-document matrix, a matrix with all documents from the collection

93

listed along the rows, and all content words from the collection along the columns. Each

cell of the matrix initially contains the frequency of the word (the row) appearing in the

document (the column). Cell values are usually subject to modifications by global and

local term weights.

The Term-document matrix is always sparse as each document usually contains only

a tiny fraction of the content word vocabulary. The size of the matrix depends on the size

of the corpus. Its sparsity is usually in the range of 0.1% to 0.5%.

The key step in LSA is decomposing this matrix using a technique called singular

value decomposition (SVD). By performing SVD on a term-document matrix, the

original matrix is decomposed into three matrices, a left orthogonal matrix; a center

diagonal matrix; and a right orthogonal matrix. The dimension of the transformed space

is reduced by selection of the highest singular triplets, where the majority of the variance

of the original space lies. The reduced space reveals the latent semantic structure in the

term-document associations. By using SVD, the major associative patterns of terms and

documents are extracted from the document space, and the smaller patterns are ignored.

LSA works by projecting the usually large, multi-dimensional term-document space

(measured in the thousands) down into a smaller number of orthogonal "semantic"

dimensions (say 300). Intuitively, in doing so, words that are semantically similar will get

clustered together, and will no longer be completely distinct.

In the process of dimension reduction, information is lost. Information loss sounds

like a bad thing, but in reality it removes noise. By dimension reduction, more subtle and

minor associative patterns of words and documents are removed, revealing major

association patterns that are latent in the document collection. Similar things become

more similar, while dissimilar things remain distinct. This reductive mapping is what

gives LSA its seemingly intelligent behavior of being able to correlate semantically

related terms and documents. Essentially, we are really exploiting a property of natural

language, namely that words with similar meaning tend to occur together.

The computational advantage of LSA is that it is fully automatic and does not use

language expertise.

94

3.2 Theoretical Background and Methodologies

3.2.1 Term-Document Matrix

To discover the major latent semantic structures in word-document associations, LSA

first constructs a matrix of co-occurrences between words and documents, namely the

term-document matrix (term is used here instead of word).

Before the construction of the term-document matrix, the document preprocessing is

typically performed for all documents in the corpus.

Document Preprocessing

Document preprocessing is a procedure that normally includes several text operations in

IR. Baeza-Yates (1999) listed the following common text operations under document

preprocessing:

> Lexical analysis of the text with the objective of removing digits, hyphens,

punctuation marks, and word capitalization.

> Elimination of stopwords with the objective of filtering out non-semantic carrying

words.

> Stemming of words with the objective of removing affixes and retrieving

documents containing syntactic variations of query terms.

> Selection of index terms with the objective of selecting proper words/stems to

index documents.

In the following, we explain the need of each text operation for LSA as well as the

procedures to perform each text operation adopted in this study.

Lexical analysis of text

LSA pays no attention to the order of words or the syntactic structure of passages,
which makes it different from other language modeling methods, such as n-gram

modeling or context free grammar. LSA takes a so-called "bag-of-words" paradigm,
which disregards collocational information in word strings. When making a lexical

analysis of text for each document, all information except the collection of words

95

composed purely of alphabetic characters (with no order) is removed, such as digits,

punctuations, hyphens, quotation marks and word capitalizations.

Stopwords

Many of the words in documents carry no semantic value. These include articles,

conjunctions and other functional words (the, and, despite), as well as words that are too

ubiquitous across the corpus to have any real meaning. They are called stopwords in IR.

In document indexing, they are normally eliminated. LSA is a methodology trying to

extract semantic structures latent in the association of words and documents. Non-

semantic bearing words, such as stopwords don't contribute to this analysis. The usual

way of dealing with stopwords in LSA, is to eliminate them entirely from the term list.

Creating a stopword list is not a trivial task, however. It is something of an art, since

the choice of stopwords depends very much on the nature of the data collection and the

frequency threshold used in deciding what constitute a "frequently used" word.

To avoid making clear a decision on what words should be stopwords, a different

strategy can be used in which all words except very low frequency words are included in

the construction of term list. After construction of the term-document matrix, a global

weight is then calculated for each word, which in turn is then applied to all the cell values

in each row of the term-document matrix. The global weight is set near zero for

stopwords, thus the impact of stopwords on LSA is minimized. We will elaborate more

on this approach when we discuss the term-weighting strategies in the later part of this

section.

Stemming

A stem is the portion of a word that is left after the removal of its affixes. Stemming is

the process of changing all variants of words to their respective stems or to a standard

form like the infinitive for verbs. Stemming is thought to be useful for improving IR

performance because it reduces the variants of the same root word to a common root and

it reduces the number of distinct index terms. The argument supporting stemming seems

sensible, though there is controversy in the literature about the benefits of stemming for

retrieval performance (Baeza-Yates, 1999).

96

No consensus has been reached in the IR community about the effect of stemming on

IR. In fact, different studies lead to conflicting conclusions. Frakes (1992) compared

eight distinct studies on the potential benefits of stemming. In his study, he favored

stemming, but the results of the eight experimental studies he investigated don't provide

satisfactory consensus to support stemming. As a result of the uncertainty over the benefit

of stemming, many web search engines don't use any stemming algorithm whatsoever.

In a sense, stemming is done to capture likely synonyms. Since LSA deals with

clustering synonyms to some extent, the additional value of stemming is an open question

(Deerwester, 1988). If words with the same stem are used in similar documents, they are

clustered closer to each other; otherwise they are clustered apart. For example, in

analyzing an encyclopedia, doctor is likely to occur in the same articles as doctors but

less likely to occur with doctoral. In this study, we don't use stemming.

Selection of (indexing) terms

To construct the term-document matrix, we need to make decisions on selecting terms,

though the terms selected are not for indexing purpose (we don't index terms in LSA}.

Selecting terms in LSA follows same principles as that of selecting terms for indexing.

Earlier we present Luhn's cut-offs to Zipf's curve (Figure 2.4), in which Luhn stated

that words in the middle of the spectra of word occurrences have strong resolving power -

the ability to discriminate document contents. The upper cut-off excludes all common

words, while the lower cut-off takes off rare ones. Luhn states that both common and rare

words don't contribute significantly to the content of the document. Luhn went on further

to claim that the resolving power of words to discriminate content (or semantics) reaches

a peak at a rank order position half way between the two cut-offs, and decays to zero for

rare and common words. Thus words in the middle are significant in document semantic

analysis.

Terms that appearing too often (stopwords) should be eliminated. In our

implementation, we don't eliminate them, but rather applying global weights which are

close to zero to them to minimize their influences on the analysis.

Terms that appear rarely in the corpus have little association power. They are not

included in the term list when constructing it. The term list in this study is constructed by

97

selecting top ranking words from a rank-sorted word list; thus low ranked (e.g. those that

appear only once or twice) words are essentially eliminated in the term list.

Construction of Term-Document Matrix

Let V, |VI = M', be the underlying vocabulary and T a training text corpus, comprising

N articles (documents). Typical order of M' and N is in the orders of 10,000 and

100,000, respectively. T may comprise a hundred million words or so. LSA first takes

the top M ranked terms from V , excluding terms that appear rarely in the corpus (e.g.

1
total occurrences less than three times). Zipf's Law tells us normally M' < -M .

2

We then construct a matrix of term-document co-occurrence, A. On the rows are

elements of the truncated term list of total vocabulary with M unique terms. On the

columns are N documents. The value of each cell is the occurrences of term w, in

document d, .

98

Document

c :j
Term

Term Number of
times term i
appears in
document j

Figure 3.1 term-document matrix

Term Weighting

In Chapter 1, when reviewing the Vector Model in IR, we pointed out the desire to apply

term weights to index terms. The same logic applies to cell values of the term-document

matrix. Dumais (1987) suggested applying both local and global weightings to increase

and decrease the importance of terms within or among documents. Dumais (1987) further

suggested using word entropy as global weighs and normalizing document length as local

weights.

Using the same terminology we used to decide word entropy in Chapter 2, we have

the following definitions from an English text corpus T,

N: total number of documents;

w,: word i;

di : document j;

c, 1 : number of times w, occurs in

99

t, = c : total number of times w, occurs in the corpus T;

ni total number of words presented in dj ;

the Normalized Word Entropy c, for wi is then defined as,

1 N c ij .i1og ___ tlog
-log N j=1tit 3.1

Dumais suggested applying the following weight to cell (i, j),

C. .
(1 - n)nl. 3.2

The global weighting implied by 1- c reflects the fact that words appearing in the

corpus don't carry the same semantic weight. For stopwords, the global weighting 1 -

approaches zero, which effectively removes the influence of stopwords.

3.2.2 Singular Value Decomposition

Theoretical Background

Singular value decomposition is closely related to a number of mathematical and

statistical techniques in a wide variety of other fields, including eigenvalue analysis,

spectral analysis, and factor analysis.

Given an (m x n) matrix A , without loss of generality, assume m n and

rank(A)= r , the SVD of A, denoted as SVD(A), is defined as

A = USV T
3.3

where UTU=VTV= In and S = diag(s,...,sn), s, >0 for 1 i : r, s, =0 for

i ! r+1.

It can be easily shown that orthogonal matrices U and V are the eigenvectors of

AA T and A T A respectively.

100

AAT = US 2U T

and

A A = VS 2V T

U and V are called left and right singular vectors. Singular values of A are the non-

zero diagonal elements of S, which are the nonnegative square roots of the eigenvalues

of AA T .

Singular value decomposition (SVD) is unique up to certain row, column and sign

permutations. If the diagonal elements of S are constructed to be all positive and ordered

in decreasing magnitude with dimension (r x r), then U has a dimension of (m x r), V

has a dimension of (n x r) and their values are unique. The set {u, ,si ,v, } is called the i-th

singular triplet.

The following two theorems demonstrate how the SVD can reveal important

information about the structure of a matrix. (Berry, 1995).

THEOREM 3.1. Let the SVD of A be given by 3.3 and

S1 2 S2 -- >S > Sr+ S n 0

and let R(A) and N(A) denote the range and null space of A, respectively. Then,

1. rank property: rank(A) = r, N(A) = span{vr+ ,..., v, }, and

R(A) = span{ui,...,ur}, where U =[UIU2 -U] and V= [vv 2 ... v].

r

2. dyadic decomposition: A = u* s * vS .
i=1

3. norms: A =s1 +...+s , and A=s1 .

The rank property, the most valuable aspect of the SVD, allows us to use the singular

values of A as quantitative measures of the qualitative notion of rank. The dyadic

decomposition, which is the rationale for data reduction or compression in many

101

applications, provides a canonical description of a matrix as a sum of r rank-one

matrices of decreasing importance, as measured by the singular values.

THEOREM 3.2. (Eckart and Young). Let the SVD of A be given by 3.3 with

r = rank(A) p = min(m, n) and define

Ak i 'S 'V 34
Ai = i- ,- 3.4

then

min||A - B|1 =||A - ' Ak1 S' 3.5
rank(B)=k

3.5 implies that matrix Ak, which is constructed from the k-largest singular triplets of A,

is the closest in the least square sense to A. Equation 3.5 is the basis for concepts such as

data reduction and image compression.

Dimension Reduction

The SVD reveals important latent semantic structure by decomposing the term-document

matrix into a left orthogonal matrix U, a right orthogonal matrix V, and a diagonal

matrix S. These matrices reflect a breakdown of the original relationships into linearly

independent vectors or factor values.

An important step in LSA is the dimension reduction after SVD. Instead of using the

full representation of U, V and S with r unique triplets, only the first k largest

singular triplets are maintained to approximate the term-document relationship (k << r).

As we stated earlier, mathematically, Ak is the closest in the least square error sense

rank-k matrix to A.

Figure 3.2 is a geometric representation of the SVD model. U and V are considered

the term and document vectors, respectively, and S represents the singular values. The

shaded area in U and V and the diagonal line in S represent the constituents of A in

Equation 3.4.

102

Truncating A to Ak is an important procedure, in which the most important latent

semantic structure is captured; yet at the same time, the noise and variability of word

usage that plague word-based retrieval methods is removed. The number of dimensions

k is usually much smaller than the number of unique words M. Words are projected

into k dimensional orthogonal space with similar and closely related words being

clustered together. Words that occur in similar documents, for example, will be near each

other in the k -dimensional space even if they never co-occur in the same document. This

feature further implies that some documents, which may not share any words with a

user's query, may still lie near it in k -space, and thus be retrieved as being relevant.

Term Document
Vectors k Vectors

k k

A S V
(Ak)

k

mxn mxr rYr rxn

Figure 3.2 Geometric representation of the matrix A and Ak

In vector space representation, after dimension reduction, each word and document is

projected into the truncated high dimension space as a vector. Intuitively, in the high

dimensional space, each orthogonal dimension may be thought of as an artificial concept;

it represents one concept extracted from many different words and documents. As a

whole, the space comprises the whole set of semantic concepts embodied the corpus with

minor semantics ignored. Each word and document, after the projection into this space, is

then characterized by a vector of weights indicating its strength of association with each

of these underlying concepts. That is, the "meaning" of a particular term, query, or

103

document can be expressed by k factor values, or equivalently, by the location of its

vector in the k -space.

Consider the words car, automobile, vehicle, traffic, and tile. The word car,

automobile, and vehicle are synonyms, traffic is a related concept, and tile is not related.

In most retrieval systems, the query automobile is no more likely to retrieve documents

about car than documents about tile, if the precise term automobile was not used in the

documents. It would be preferable if a query about automobile also retrieves articles

about cars and vehicles, or even articles about traffic to a lesser extent. The derived k-

dimensional feature space can represent these useful term interrelationships. Roughly

speaking, the words car, automobile and vehicle will occur with many of the same words

(e.g. motor, Toyota, sedan, engine, truck, automaker, model, etc.), and they will have

similar representations in k-space. The context for traffic will overlap to a lesser extent,

and those for tile will be quite dissimilar. The main idea of LSA is to explicitly model the

interrelationships among terms (using the truncated LSA) and to exploit this for

information retrieval.

It is important to note that reduced dimensional matrices don't reconstruct the original

term-document matrix perfectly because the reduction of dimension eliminates noise and

the unreliability of word usages. It is also important that the reduction is not so big that

the SVD loses major semantic components. The choice of k should be large enough to fit

all the real structure in the data, but small enough so that we don't also include sampling

errors or unimportant details.

LSA is a Euclidean model which is a linear approximation model. In reality,

conceptual relations among words and documents certainly involve more complex

structures, including, for example, local hierarchies, and non-linear interactions between

meanings. More complex relations can often be approximated better by increasing the

number of dimensions.

Since LSA is an information retrieval model, the ability to reproduce the greatest

amount of detail in the semantic concept space is not the measure of success, but rather

the ability to give the best retrieval effectiveness.

In a study by Landauer et. al. (1998), the ability of LSA to capture synonyms was

tested against a standard vocabulary test. LSA was first trained by running SVD analysis

104

on a large corpus of representative English, and then an eighty-item synonym test was

taken from retired versions of the Educational Testing Service (ETS) Test of English as a

Foreign Language (TOEFL). To assess the role of dimension reduction, dimensions

ranging from 2 to 1032 were used to represent the semantic space. Figure 3.3 plots the

success rate of synonyms versus the numbers of dimensions used in LSA. In log-linear

coordinates, the TOFEL test results showed a very sharp and highly significant peak.

LSA got 52.7% correct with 3000 and 325 dimensions, 13.5% correct with just two or

three dimensions and 15.8% correct rate with no dimension reduction at all.

0

C
0

t

0
0L
0

0l
0.

0.6-

0.5-

0.3

0.2-

0.1-

1 10 100 1000 10000

Number of Dimensions in LSA (log)

Figure 3.3 The effect of number of dimensions on performance in an LSA

corpus-based representation of meaning in a synonym test (from Landauer, 1998)

A central theme of LSA is that term-term inter-relationships can be automatically

modeled and used to improve retrieval. LSA examines the similarity of the "contexts" in

which words appear, and creates a reduced-dimension feature-space representation in

which words that occur in similar contexts are near each other. That is, the method first

105

creates a representation that captures the similarity of usage (meaning) of terms and then

uses this representation for retrieval.

Figure 3.4 illustrates the effect of LSA on term representations using a geometric

interpretation. Traditional vector methods represent documents as linear combinations of

orthogonal terms, as shown in the left half of the figure, so that the angle between two

documents depends on the frequency with which the same terms occur in both, without

regard to any correlations among the terms. Here, Doc 3 contains Term 2, Doc 1 contains

Term 1, and Doc 2 contains both terms. In contrast, LSA represents terms as continuous

values on each of the k orthogonal semantic dimensions. As depicted in the right half of

Figure 3.4, since the number of factors or dimensions is much smaller than the number of

unique terms, terms will not be independent. When two terms are used in similar contexts

(documents), they will have similar vectors in the reduced-dimension LSA

representation. LSA partially overcomes some of the deficiencies of assuming

independence of words, and provides a way of dealing with synonymy automatically

without the need for a manually constructed thesaurus.

Standard vector Space Model Reduced Dimension LSA Model
(ndims = nterms) (ndims = k << nterms)

Doc 1

Doc 3 Q Doc 3

Doc 2 Ter M Te'r m 20 Eoc,
Doc 2

0
Doc 1

i 0r LSA Dimension 1

Figure 3.4 Term representations in
the standard vs. reduced dimension LSA model

106

3.2.3 Words and Documents Representations and Comparisons

Words Representations and Comparisons

LSA clusters words with semantic meaning closer to each other in a reduced high

dimensional space. An important question is how to measure the similarity between one

word and another. After the SVD dimension reduction of the term-document matrix, each

word wi (corresponding to a row in the term-document matrix) is now represented by a

(1 x r) vector in the reduced high dimensional space, [UkSk],. Uk is called term vectors

(Figure 3.2)

Adopting the most popular similarity measures from Vector models in IR, the cosine

of the angle between two vectors wi and wj can be calculated as

sim(wi,wj) [UkSk]i [UkSk] 3.6
|[UkSk] 1 X [UkSk] J

The smaller the angle between word pairs w, and wj in the reduced k dimensional

space computed by SVD, the more similar they are semantically.

When making semantic comparisons between words, the words need to exist in the

term list of the term-document matrix.

Document Representations and Comparisons

Just like the comparisons between words, comparing two documents from the training

corpus measures the cosine of the angles between two column vectors of the matrix Vk .

Vk is called document vectors (Figure 3.2). Rows of VkSk are the coordinates for

documents from the training corpus.

[VkSk] [vk Sk]T
sim(di ,di) = [3.7

1k Sk X [k Sk I

107

The angle between documents d, and di is measured by Equation 3.7. Just as in the

comparisons between two words, the smaller the angle between document pairs d, and

dj , the more similar they are semantically.

New Query Representation

When retrieving information, the user's query (usually a document) must be represented

as a vector in k-dimensional space and compared to other documents. The previous

results show how to compare the semantic similarities between words and documents

from the training corpus. It is also very important that documents that don't appear in the

training corpus can be compared to those that do. A query (like a document) is a set of

words. After the same application of document processing when generating term-

document matrix, the query vector can be represented as,

q= q UkS - 3.8

q is obtained by first projecting pre-processed query vector to the orthogonal

semantic space Uk (which gives q'Uk), then applying column reweighting by Sk . The

query vector is the weighted sum of its constituent term vectors. The query vector can

then be compared to all existing document vectors, and the similarity ranking can be

made by comparing the cosine of the vector angles.

3.2.4 Singular Value Decomposition of Sparse Matrices

Computationally, the singular value decomposition of sparse matrices is the most costly

operation in LSA. In this section, we review the methods that are best suited for sparse

matrix SVD and their respective computational cost.

The term-document matrix is a sparse matrix. The classical methods for determining

the SVD of dense matrices (the Golub-Kahan-Reinsch method and Jacobi-like SVD

methods) are not optimal for large sparse matrix SVD. Since these methods apply

orthogonal transformations (Householder or Givens) directly to the sparse matrix. As a

result, they incur excessive fill-in and thereby require tremendous amounts of memory. In

108

addition, these methods compute all the singular triplets, which is computationally

wasteful when our interest lies in getting the few largest singular triplets.

Before we review briefly the methods of sparse matrix SVD, we first look at the two

canonical symmetric equivalent problems to an asymmetric matrix SVD. The term-

document matrix is asymmetric. Its canonical symmetric equivalence is usually sought to

compute the sparse SVD.

Equivalent Eigenvalue Problems

Assume a sparse matrix A with dimensions of m x n (m >> n) has rank of r. A

symmetric matrix B can be defined as

B = A) 3.9B=A 0J
It can be shown that the eigenvalues of B are the 2r pairs, ± si, where s is a

singular value of A. The following Lemma demonstrates how to derive the SVD of A

from the eigen pairs of the matrix B.

LEMMA 3.1. Let A be an m x n (m >> n) matrix and B defined by Equation 3.9.

1. For any positive eigenvalues, s of B, let (u, ,vi)T denote a corresponding eigen

vector of norm -5. si is a singular value of A and u, , v, are respectively, left

and right singular vectors of A corresponding to s.

2. For s = 0, if B has corresponding orthogonal eigen vectors (u1 ,v1)T with

v # 0 and u # 0 for j=1,- --,t for some t >1, then zero is a singular value of

the matrix A, and the corresponding left and right singular vectors can be

obtained by orthogonalizing these uj and v1 , respectively. Otherwise, A has full

rank (rank(A) = n).

109

An alternative solution is to compute the eigen pairs of either the m x m matrix AA' or

the n x n matrix ATA. The following lemma indicates the relationships between these

symmetric eigenvalue problems and that of their asymmetric form.

LEMMA 3.2. Let A be a m x n (m >> n) matrix with rank(A) = r.

1. If V = {v, V2 , -.V } are linearly independent n x 1 eigenvectors of A T A so that

VT(A T A)V = diag(s,s,- .- ,s2), then s, is the i-th nonzero singular value of A

corresponding to the right singular vector vi . The corresponding left singular

1
vector, ui, is then derived by u1 =- Av .

S.

2. If U = {u , u2,- ... U,} are linearly independent m x 1 eigenvectors of AA T so that

UT(AAT)U = diag(s2, s ,_ . ,s2), then s, is the i-th nonzero singular value of A

corresponding to the left singular vector vi . The corresponding right singular

vector, vi , is then derived by v, = -A u .
S.

Sparse Matrix SVD Methods

Berry (1992) presented four methods for solving equivalent sparse symmetric eigenvalue

problems, including two Lanczos-based methods: Single-Vector Lanczos (LASVD) and

Block Lanczos (BLSVD); and two subspace methods: Subspace Iteration (SISVD) and

Trace Minimization (TRSVD). All four methods are mathematically quite complicated

and have been extensively described by Berry in his paper.

In his paper (Berry 1992), Berry also presented fundamental comparisons of all four

methods in model complexity, memory requirements, parallelism, and parameter

selections. With regard to speed of computation (in CPU time), Berry indicated that the

Single-Vector Lanczos method (LASVD) is the fastest method for approximating several

of the largest singular triplets with low or moderate accuracy.

Computational Cost of SVD

110

The primary cost of all the algorithms proposed by Berry (1992) lies in the total number

of sparse matrix-vector manipulations required. If we denote AA as the density of A,

which is defined as the total number of nonzero cells in A divided by the total number of

cells (m x n), then the total cost in floating point operations per iteration is given by

(Berry, 1992),

NSVD = R[2(1 + AAn)m + 2(1 + AAm)n]

In a typical scenario, AA is in the range of [0.25%, 0.5%] (Dumais, 1997), and the

value of R is between 100-300. this expression can, therefore, be approximated by

NSvD ~ (4RAA)mn ~ mn

For the values of m and n typically in the order of 10,000 and 100,000, NSVD

measures up to a few billion floating-point operations (flops) per iteration. On a desktop

machine (such as a 800-MHz PC, rated at approximately 120 Mflops), this translates into

(up to) a few minutes of CPU time. As convergence is typically achieved after 100 or so

iterations, the entire decomposition is usually completed within a matter of hours.

3.3 Applications

LSA was first developed for information retrieval purposes. Standard evaluations have

proved its effectiveness over other retrieval methods (Funas et. al. 1998). Because LSA is

a completely automatic method, it has been applied to a wide range of problems.

In LSA, queries can be either terms, documents, or combinations of the two (as in

relevance feedback). The returned objects can also be terms and documents. Returning

nearby terms is useful for some applications like online thesauri, or for suggesting index

terms for documents.

In LSA, the term-document matrix is used to retrieve terms and documents. The same

concept can be applied to any descriptor-object matrix. We typically use only single

terms to describe a document, but phrases or n-grams could also be included as rows in

the matrix. Similarly, an entire document is usually the text object of interest, but smaller,

111

more topically coherent units of text (e.g. paragraphs, sections) could be represented as

well.

In the following, we first review the application of LSA in information retrieval and

information filtering. In information retrieval application, we emphasize the evaluation of

LSA over standard test collections developed in the information retrieval community to

showcase the effectiveness of LSA as a novel information retrieval method. We then

review a few innovative applications of LSA to showcase its broad impact beyond

information retrieval.

Information Retrieval

Information retrieval applications are characterized by relatively stable databases, but

rapidly changing ad hoc user queries. A number of test collections developed by

information retrieval communities are usually used to evaluate the effectiveness of the

retrieval system. In these test collections, a set of user queries is calibrated, and their

relevance judgments (i.e. for each query, every document in the collection has been

judged as relevant or not to the query) are available. Thus, the standard evaluation

criteria, precision and recall, can be measured in these test collections for each retrieval

system. Average precision across several levels of recall can then be used as a summary

measure of performance.

LSA has been evaluated against several information science test collections. The

average precision using LSA ranged from comparable to 30% better than that obtained

using standard keyword vector methods (Dumais, 1991; Furnas 1988). The LSA method

performs best relative to standard vector methods when the queries and relevant

documents do not share many words, and at high levels of recall.

Figure 3.5 shows the precision-recall curves for TERM matching, a 90-factor

(k = 90) LSA, SMART, and Voorhees systems on the MED dataset. MED is a

commonly studied collection of medical abstracts, which consists of 1033 documents and

30 calibrated queries. TERM represents a straight forward term matching method.

SMART is a standard keyword vector method (Salton 1968). The Voorhees data were

obtained directly from her paper in which she used a vector retrieval system with

112

extended Boolean queries (Voorhees, 1985). SMART and Voorhees methods are

representative of state of the art information retrieval systems.

MED: Precision-Recall Curve

00.6

Recall

Figure 3.5 Precision-recall curve for TERM matching, a 90-factor LSA,

SMART, and Voorhee systems on MED dataset (Dumais, 1997)

As we pointed out earlier, one of the common and usually effective methods for

improving retrieval performance in vector methods is to transform the raw frequency of

occurrence of a term in a document by some function (see Chapter 1, section 1.4.2). Such

transformations normally have two components. Each term is assigned a global

weighting, indicating its overall importance in the collection as an index term. The same

global weighting is applied to an entire row (term) of the term-document matrix. It is also

possible to transform the term's frequency in the document; such a transformation is

called a local weighing, and is applied to each cell in the matrix.

Hannan (1986) studied the IRX (Information Retrieval Experiment) at the National

Library of Medicine using a standard vector retrieval method. Harman found that both Idf

and Entropy weighting produced large performance advantages. Harman found the

following advantages over her baseline term overlap measures: Idf 20%; Entroy 24%,

LogEntropy 35%; LogEntropy/normalized-document-length 44%.

113

Dumais studied the effect of term weighting on the performance of LSA (Dumais,

1991). Dumais found Idf and Entropy global term weighting improved performance by

an average of 30%, and improvements with the combination of a local Log and global

Entropy weighting were 40%.

Information Filtering

Information filtering is a problem closely related to information retrieval. Information

filtering is characterized by relatively stable information needs, but a rapidly changing

data. Information filtering is also known as information routing; selective dissemination

of information; electronic clipping services; and personalized information delivery.

Applying LSA to information filtering is straightforward. Initial samples of

documents are analyzed using LSA/SVD tools to build a reduced-dimension semantic

space. A user's interest is then represented as a vector in this space. Each new incoming

document is projected into this space and then compared to the vector representing user's

interests. Similar documents are routed to the user. Relevance feedback is used to

improve the representation of user's interest over time.

Foltz (1991) studied the effectiveness of using LSA for information filtering. In their

study, a semantic LSA space is built for a set of articles that have previously been judged

by a user to be interesting or not. To determine if a new article is relevant, it is projected

into ("folded in", as used in LSA literatures) the semantic spaces on the basis of

contained terms. If the article appears close to other interesting articles in the space, then

it is considered likely to be interesting to the user. Otherwise, if the article appears closer

to other non-interesting articles, it is considered not interesting to the user.

The study indicated LSA improved prediction performance over keyword matching

an average of 13% and showed a 26% improvement in precision over presenting articles

in the order received. The results indicate that user's preferences for articles tend to

cluster based on the semantic similarities between articles.

Foltz and Dumais (1992) studies different methods to predict which technical memos

best match people's technical interests. Two methods are used to describe technical

interests, one based on sets of keywords that the testers provided, and the other using

feedback about previous memos they found relevant. Two information retrieval methods

114

were tested to make the predictions, one using standard keyword matching, and the other

using LSA. All four methods effectively selected relevant memos. In this study, the best

method for filtering was LSA with feedback about previous relevant memos.

Cross Language Retrieval

It is important to note that LSA makes no assumptions about English syntax or semantics.

Words are tokenized by delimitation of spaces and punctuation. It is also important to

note that in LSA applications, no stemming has been used to collapse words with the

same morphology. If the words with the same stem are used in similar documents, they

will be represented as vectors closer to each other in the reduced dimensional semantic

space; if they don't appear in similar documents, they will not be judged to lie

semantically close. These characteristics of LSA methodology imply LSA is applicable to

any language. It can also be applied to cross-language retrieval if there exists a common

LSA space in which words in different languages with similar semantic meanings are

close to each other.

Landauer and Litterman (1990) described one method for creating such a LSA space.

In their study, an initial sample of documents is translated by humans, or perhaps, by

machine to create a set of dual-language training documents. These same documents, but

in different languages, are then merged into a single document. The LSI method ignores

word order, therefore, treats the merged document as a bag of freely intermingled words

in multi-languages. The collection of documents with each document including multiple

versions in different languages (French and English in their experiment) is used to form

the term-document matrix. The same words, but in different languages, are treated as

independent terms. The resulting reduced dimension semantic space is then a space

which contains vectors of both English and French words and combined documents.

Words that are consistently paired in translation will be given identical representations in

LSA space, whereas words that are frequently associated with one another will be given

similar representations.

The next step in their method is to add (or "fold in") documents in just English or

French. The same process is adopted for representing the English or French documents,

in which each document is a weighted vector sum of its constituent terms. The result of

115

this process is that each document in the database, whether it is in French or English, has

a language-independent representation in terms of numerical vectors. Users can now pose

queries in either English or French and get back the most similar documents regardless of

language.

Experimental studies showed that the completely automatic multilingual space was

more effective than single language space. The retrieval of French documents in response

to English queries (and vice versa) was as effective as first translating the queries into

French and searching a French only database.

An extension to three languages (English, French, and German) of cross-language

information retrieval is performed by Rehder et. al. (1997) with larger document

collections and much noisier training data.

People Matching

LSA has also been used to match people instead of documents. An expert locating

system, known as Bellcore Advisor, was developed by Streeter and Lochbaum (1988) to

find local experts relevant to users' queries. A user's query or information was matched

to the nearest documents and project descriptions, and the author's organization was

returned as the most relevant group or organization.

In another applications (Dumais and Nielsen, 1992), LSA is used to automate the

assignments of submitted conference papers to reviewers. In this application, a semantic

space is first built by analyzing the available textual databases, which contain the relevant

domain knowledge. Submitted papers, which are represented by their titles and abstracts,

are projected into the semantic space as vectors. Abstracts from the past work of the

reviewers are used to represent the reviewers' expertise. Reviewers (twenty five in this

study) are automatically represented as points in the k-dimensional LSA space. Hundreds

of submitted papers were then matched to the closest reviewers. These LSA similarities

along with additional constraints to ensure that each paper was reviewed p times and

that each reviewer received no more than q papers to review were used to assign papers

to reviewers for a major human computer interaction conference. Study indicated that

these completely automatic assignments (which took roughly twenty minutes) were as

good as those of human experts.

116

Noisy Input

Because LSA does not depend on lexical word matching, it is especially useful when the

input text is noisy, as in OCR (optical character recognition), open input, or documents

with spelling errors. If there are scanning errors and a word (polymorphism) is misspelled

(as polymophism), many of the other words in the document are spelled correctly. If these

correctly spelled context words also occur in documents that contain a correctly spelled

version ofpolymorphism, then polymophism probably will be near polymorphism in the

k-dimensional space.

Nielsen et. al. (1994) used LSA to index a small collection of abstracts input by a

commercially available pen machine in its standard recognizer mode. Even though the

error rates were 8.8% at the word level, information retrieval performance using LSA

was not disrupted (compared with the same uncorrupted text). Kukich used LSA for a

related problem, spelling correction. In this application, the rows were unigrams and

bigrams and the columns were correctly spelled words. An input word (correctly or

incorrectly spelled) was broken down into its bigrams and trigrams, the query vector was

located at the weighted vector sum of these elements, and the nearest word in LSA space

was returned as the suggested correct spelling.

3.4 LSA - Evaluation

In this section, we present our evaluation of LSA against a text corpus of three years of

Wall Street Journal articles. The text corpus in this study is not a calibrated text collection

(in the sense that no relevance judgments available), thus it is impossible to measure the

precision and recall performance of the LSA retrieval system. The intention of the

evaluation in this section, though, is not to compare the effectiveness of LSA with other

retrieval models (we believe LSA is effective based on the study reviewed in section 3.3),

but rather to evaluate:

1. the tools developed in this study, which are used for different purposes, in

different stages of latent semantic analysis.

2. computation cost of LSA, including SVD, and the word/document retrieval cost.

3. sample retrieval results and overall effectiveness of the LSA system.

117

3.4.1 Software Tools

CMU-Cambridge Statistical Language Modeling Toolkit

CMU-Cambridge statistical language modeling toolkit is a set of Unix software tools

designed to facilitate language modeling work in the research community. It is a popular

toolkit widely used in academic, government, and industrial laboratories all over the

world (Clarkson and Rosenfeld). It includes tools to process general text data, such as

generating word frequency lists and vocabularies; word bigram and trigram counts;

bigram and trigram related statistics; various backoff bigram and trigram language

models etc. It also includes tools to use the resultant language models to compute such

quantities as perplexity; out-of-vocabulary (OOV) rate; distribution of backoff cases etc.

In this study, only the first two tools are used, namely the tools to generate the word

frequency list and tools to generate the vocabulary.

SVDPACKC

SVDPACKC (Berry et. al. 1996) is a software package written in ANSI C, which

includes the implementations of the four algorithms proposed by Berry (1992) to

compute the singular valued decomposition (SVD) of large sparse matrices. Normally,

only the largest 100 to 300 singular triplets (singular values and corresponding left and

right singular vectors) are determined in these algorithms.

Each algorithm (Single-Vector Lanczos; Block Lanczos; Subspace Iteration; and

Trace Minimization) is applied to both canonical symmetric matrices. Thus the package

includes eight stand alone C programs to calculate the sparse matrix SVD.

The following table presents the naming convention for all the standalone C

programs.

118

Table 3.1 SVDPACKC program naming convention

For example, las2 is the Single Vector Lanczos algorithm with the symmetric matrix

of AT A .

As indicated by Berry (1992), the Single-Vector Lanczos method is the fastest

method for approximating several of the largest singular triplets for low or moderate

accuracy. Comparing the effect of the choice of symmetric matrix (E = 1 or 2), when ill-

conditioning is not likely, the use of las2 is recommended because of smaller

eigensystems and less memory requirements. Otherwise lasI should be used which is a

root-free method and approximates +/- pairs of each singular value of A.

In this study, we use lasl as our choice of SVD algorithm for the term-document

matrix.

3.4.2 LSA Flow Chart

Figure 3.6 is a flow chart showing the intermediate functions and software in each step

towards building a LSA database retrieval system.

119

MMTE[.c]
Field Description Possible Entries

bl Block Lanczos

MM Method la Single Vector Lanczos
(Algorithm) si Subspace Iteration

tm Trace Minimization
d Document File

T File Type p Input Parameters File
o Output File
s Source File

Eigensystem 1 Cyclic Matrix B defined by (3.9)

E Or 2 A T A Matrix
Output Channel from (for comparison purposes)

SVDPACK (Fortran-77) 2,3,8,9- Output Channel

Text Corpus
(with context cue added)

e.g. eliminate
punctuations;
capitalization ...

Document
preprocess tools

Preprocessed Text Corpus

generate vocabulary;
ranked frequency list

generate term-
document matrix with
cell modifications

CMU language
toolkit

>

Term-document
matrix generator

Preprocessed Text Corpus

Vocabulary and ranked
frequency term list

Term-document matrix
(with local and global cell

weightings applied)

120

Singular value
decomposition of
sparse term-document
matrix

Database:
100 ~ 300 largest singular triplets

queries

Server side
query parsi
LSA semar
comparison

LSA Server

SVDPACKC

program:
ng;
tic space projection; similarity
between terms, documents

Figure 3.6 LSA flow chart

121

3.4.3 The Corpus

We use a text corpus of three years of Wall Street Journal articles (1988-1990) in this

section to evaluate the effectiveness of LSA (It is the same text corpus we used in

Chapter two to evaluate work entropy). The text corpus we use in this evaluation have the

following statistics.

Number of documents 150,981

Average document length (in words) 245

Total number of word occurrences 36,920,947

Number of unique words (vocabulary) 164,799

Number of unique words that appear 107,579more than once
Number of unique words that appear 86426more than twice
Number of unique words that appear 60316more than five times
Number of unique words that appear 52403more than seven times

Table 3.3 Statistics of the three years of Wall Street Journal article collections.

The term list we use to generate the term-document matrix is the top ranked 50,000

words, which essentially eliminate all the vocabulary of less than seven total occurrences

in the text corpus.

The document list we use to generate the term-document matrix is the first 150,000

documents. Thus the term-document matrix is a 50,000 by 150,000 matrix. The number

of non-zero cells is 17,779,714, which makes the sparsity of the term-document matrix

0.24%.

122

3.4.4 Computation Cost

As reviewed earlier, SVD of the sparse term-document matrix is the major component of

total computational time. The subsequent term/document retrieval cost is significantly

lower. Table 3.4 is the cost estimate of the three major LSA components

Components Computation time BigO estimation

SVD 4RAAmn O(m x n)

Term retrieval iRm O(m)

Document retrieval iRn O(n)

Where:

R: number of singular values and vectors in SVD 100 300
AA: sparsity of the term-document matrix 0.25% - 0.5%

I: number of similar terms/documents retrieved for ~ 20
each query

m number of terms in the order of
10,000

n number of documents in the order of
100,000

Table 3.4 Computation cost of LSA

The following table summarizes the SVD statistics after a successful run using las2

(Single Vector Lanczos method on A T A) against the 50,000 X 150,000 term-document

matrix on a Pentium 4 PC with 2.80 GHz CPU and 2.0GB RAM. Table 3.5 indicates that

the total of 321 eigenpairs are derived in a matter of an hour on a very powerful PC. All

other algorithms, BLSVD, SISVD, TRSVD, take two up to five time more CPU than

LASVD when A T A is solved. When the B matrix (Equation 3.9) is used for SVD

analysis, the memory requirements are much bigger (from 3 to 5 times) compared to

those of the A T A matrix. In this study, we did not test the alternative method.

123

Number of Terms (rows) 50,000

Number of Documents (cols) 150,000

Order of matrix AT A 50,000 X 50,000

Max. No. of Lanczos steps 800

Max. No. of eigenpairs 800

Allocated memory 1.82MB

CPU time 50 minutes

Number of eigenpairs solved within 321
accuracy convergence requirements

Table 3.5 Statistics of the 50,000 by 150,000 term-document matrix SVD

3.4.5 Effectiveness of Retrieval

In this section, we present a few sample retrieval results of both terms and documents in

tabular forms. From the observation of these results, we can get a much deeper

understanding of the power of LSA in retrieving terms and documents that are

semantically close.

Word Retrieval

In word retrieval, we evaluate the power of LSA by investigating the retrieval results of

several words that are semantically very distant. In this way, we can clearly see the

clustering power of LSA - the power that can bring similar words together, but separate

semantically different words far apart.

In this section, we pick words in three different semantic concept spaces, namely

financial, medical and political concept.

In the following, we present the retrieval results of the words. For each query word,

we list the top 15 words that are semantically most close from the vocabulary list (50,000

in this case) with the semantic angles between them listed at the side.

124

Before we show the retrieval results of nouns, Table 3.6 and Table 3.7 are the LSA

retrievals of two adjectives, rise and increase. In table 3.6, the query term is rise. The

retrieval list includes both synonyms and antonyms of rise as well as words semantically

close to rise. It also includes risen as the 5th most semantically close word. Earlier in

section 3.2.1, we made a case for not using stemming in LSA as we believe LSA

provides the capability of clustering words with same stems if they appear commonly in

same contexts. LSA clearly clusters rise and risen very close to each other in Table 3.6.

Table 3.7 also indicates LSA clusters increase and increases together.

Semanticquery word Word angleto)
angle(0

decline 21.15
drop 27.08

surge 30.56
accelerated 30.96

risen 31.03
slowed 31.89

rise pace 33.15
growth 33.57
Inflation 34.34
overall 34.90
fueled 35.19

comparison 35.21
gross 35.69
jump 36.01

increase 36.22

Table 3.6 LSA query result of rise

125

Semanticquery word Word ane(o)
angle(0

decrease 31.36
rise 36.22

reduced 38.53
boost 38.86
drop 39.13

growth 39.23increase overall 39.90
decline 40.57

increases 40.62
reflect 40.75

excluding 40.82
offset 42.48
yearly 43.56

forecast 44.51
gross 44.62

Table 3.7 LSA query result of increase

Table 3.8 and Table 3.9 show the retrieval results of two words from financial area,

stock and exchange. Most retrieved words are closely related to the query words in both

retrievals. However it also contains words which are not related. For example in Table

3.9, yesterday is retrieved as highly related word to exchange. The normalized entropy of

yesterday measures 0.812, which is very high, indicating it is a frequent and common

word (thus possibly a stopword in this document corpus). Remember we apply 1 -

normalized word entropy as the global word weight, thus yesterday will appear in the

LSA reduced space as a vector with very small norm (vector length).

126

Semantic
concept b

exchange

yesterday '

Semantic
concept a

words with very small norm
(or vector length) -- stopwords

Figure 3.7 LSA measures of stopwords with others

Figure 3.7 indicates the small zone close to the origin as the zone where stopwords

will gather in the reduced LSA space. In general, even if a stopword is close to a low

entropy word in a corpus, the relation has little significance to us because stopwords

carry so little semantic weight.

Since we use angles between vectors to measure the semantic similarities, it is likely

that a stopword is "close" to a query word if their vectors have very small angles between

them.

In table 3.8 and 3.9, there exist a few possessive words (i.e. words ending with 's).

They are negligence in document preprocessing in which case all punctuations should be

removed, including ""'. Since they are left unprocessed, the possessive forms are treated

as independent words from their root words with. None-the-less, LSA result shows that if

these words appear in common context with the query words, they are labeled as

semantically close words. In Table 3.9, exchange 's is retrieved as semantically close

word as exchange.

127

query word Word Semantic
angle ()

plummeting 38.09
delisted 42.24

exchange 43.35
empire's 44.92
composite 44.94
mercury's 45.50
options 46.32

stock oneida 46.39
basket 46.70
trading 47.44

where's 48.11
halted 48.35
penny 48.71
splits 48.81

unremarkable 49.12

Table 3.8 LSA query result of stock

query word Word Semantic
angle (0)

composite 41.71
stock 43.35

delisted 43.90
mercury's 44.21

trading 44.86
disciplined 48.86

amex 49.21

exchange empire's 49.52
closed 50.48

unremarkable 51.16
yesterday 51.81

colbert 51.85
unchanged 51.89

exchange's 52.28
options 52.46

128

Table 3.9 LSA query result of exchange

Table 3.10 and Table 3.11 are words from medical field, drug and prozac. The

observation indicates that they are clustered much more close by than words from the

financial area (by comparing semantic angles).

query word Word Semanticangle (o)
depressant 11.32

prozac 11.55
psychotic 11.70

unemployable 11.79
deters 12.04
ulcer 12.10

investigational 12.65

Drug relieving 12.81
hypertension 13.20

gastrointestinal 14.01
lymphadenopathy 14.07

mylan 14.21
prolongs 14.46

acceptability 14.52
addicts 14.63

Table 3.10 LSA query result of drug

129

query word Word Semantic
angle ()

depressant 6.63
drug 11.55
ulcer 14.40

unemployable 16.07
hypertension 16.17
acceptability 17.01

gastrointestinal 17.19
prozac relieving 17.23

deters 17.35
mylan 17.59

baldness 17.69
investigational 17.86

psychotic 18.05
lymphadenopathy 18.25

lovastatin 18.82

Table 3.11 LSA query result ofprozac

When we made the case of no stemming, we used an example of doctor, doctors and

doctoral. We hypothesized that the first two words, doctor and doctors are mostly likely

to appear in semantically close context, but the word doctoral would mostly be used in

different context. Table 3.12 to 3.13 show us just that. LSA retrievals of query words

doctor and doctors are mostly related to the medical world, but the retrieval of doctoral

indicates that it is mostly used in the context of the education field, e.g. this is a doctoral

dissertation.

130

Semanticquery word Word angleto)
angle(0

patient 35.39
dani 36.52

bolognesi 37.39
curable 39.42
relman 39.83
zagury 40.43

doctor disease 40.85
pizzo 40.87

physician 40.94
infection 40.94

acetylcholine 41.14
doctors 41.45
therapy 41.69

alzheimer's 41.81
sentries 41.83

Table 3.12 LSA query result of doctor

Semanticquery word Word angleto)
angle(0

patient 21.01
physician 25.88

physician's 25.99
illnesses 27.52
doctors' 28.89
relman 28.97
infants 30.00

doctors expectancy 30.99
obstetrics 31.70

tuberculosis 32.35
surgeries 32.48

clinics 32.93
disease 33.27
inpatient 33.61
therapy 33.75

Table 3.13 LSA query result of doctors

131

Semanticquery word Word angleto)
angle(0

author 50.80
graduates 51.66

dimes 51.90
lecturer 52.18
tenured 52.33
bednorz 53.01

accomplishment 53.29

doctoral housewife 53.43
parodied 53.48

suffocating 53.49
black 53.56

erudite 53.64
humanities 53.64

polio 53.65
chaucer 53.67

Table 3.14 LSA query result of doctoral

Table 3.15 and Table 3.16 are words from political field, bush and administration.

We can clearly see the clustering power of LSA.

Semanticquery word Word angleto)
angle(0

nonlethal 25.47
administration's 27.69

Veto 29.21
aides 29.28

confrontations 29.67
byrd 31.63

house 33.06

bush fitzwater 33.14
marlin 34.15
soars 34.46

democrats 34.76
initiative 35.02
senate 35.26

lawmakers 36.00
dole 36.45

Table 3.15 LSA query result of bush

132

Semanticquery word Word angle (o)

lawmakers' 24.25
administration's 29.57

interdiction 30.56
narcotics 32.64

anti 32.67
institutionalize 34.98

offensive 35.86
administration antidrug 35.90

kingpins 35.98
initiative 36.24
recast 36.58

contemplates 36.60
aid 36.81

ceaseless 37.05
trafficking 37.30

Table 3.16 LSA query result of administration

Document Retrieval

The document retrieval results clearly demonstrate the power of LSA to retrieve

semantically similar documents to user queries. We list some sample results in the

appendix.

From the study of the retrieval results, we can make following observations:

" The top ranked retrieved documents are semantically very similar to the query

document.

" When retrieved results are ranked by semantic angles between query document

and retrieved documents, we see clearly patterns of the direct correlation between

semantic closeness and ranked order. The higher the ranked order the retrieved

document is, the semantic much closer it is to the query document.

" Top ranked documents may not contain common words in the query documents,

thus they are being retrieved as relevant documents.

133

3.5 Summary

In Chapter Four, we reviewed and evaluated Latent Semantic Analysis. Two well-known

language phenomena which plague the information retrieval performance of lexical word

matching are synonymy and polysemy. Synonymy means that an object can be referred in

many ways, i.e. people use different words to represent the same semantic subject.

Polysemy is the problem of word having more than one specific meaning. LSA offers a

dampening effect on synonyms, though the effect on polysemy is less pronounced.

LSA assumes there exist implicit higher semantic structure in term-document

associations. Terms tend to be similar if they appear in the same kind of documents,

whether or not they actually occur within identical word contexts in those documents.

Documents are semantically close if they have many similar words in common, and

semantically distant if they have few words in common.

LSA starts with the construction of term-document matrix, with each cell represents

the co-occurrences between words and documents. In this section, we reviewed the

several text operations which are normally performed in IR, such as lexical analysis of

text, treating stopwords, stemming and selection of terms for term-document matrix. We

presented the global and local weighting strategies for each cell of term-document matrix.

The central component of LSA is the singular value decomposition of the term-

document matrix. The SVD reveals important latent semantic structure by decomposing

the term-document matrix into three sets of matrices, a left orthogonal matrix, a right

orthogonal matrix and a diagonal matrix. An important step in LSA is the dimension

reduction after SVD. By dimension reduction, LSA is able to extract the major latent

semantic structure, at the same time, eliminates noise and unreliability of word usages.

Term-document matrix is a large sparse matrix. In this chapter, we discussed the

numerical solutions to decompose a large sparse matrix.

LSA has been an active research subject. In this chapter, we reviewed the many

applications LSA has been applied. Since LSA is a completely automatic method, it has

been applied to a wide range of problems.

In the last part of the chapter, we evaluated LSA against a text corpus of three years

of Wall Street Journal articles. The text corpus in this study is not a calibrated text

134

collection, thus it is impossible to measure the precision and recall performance of the

LSA retrieval system. Still, the evaluation against the text corpus allows us to evaluate

three things, 1) the tools developed in this study; 2) the computation cost of LSA; 3) the

sample retrieval results and overall effectiveness of the LSA system.

The retrieval results by LSA present us an opportunity to see its power of retrieving

words and terms that are semantically close. In word retrieval, we picked words in three

different semantic concept spaces, namely financial, medical and political. The results

clearly showed the ability of LSA to cluster words based on their semantic meanings. In

document retrieval, the results showed LSA is able to pick up documents which are

semantic similar, though they might not share many common words.

135

Chapter 4

Design and Evaluation of Robust Annotation

Persistence Scheme

In Chapter One, after we made extensive review on the state-of-the art research on digital

annotation, we arrived at several important conclusions,

> Building a robust annotation persistence scheme over dynamic documents is a

crucial and indispensable component in designing an annotation system.

> To meet the requirements of such a robust annotation persistence scheme,

annotation anchor information can be extracted from the study of annotation text

only (i.e. annotation anchor text and surrounding context)

> Annotation persistence over dynamic documents is a specialized information

retrieval problem.

These conclusions lead us to design the annotation's anchor formulation by exploiting

all potential information embodied in the annotation's anchor text and surrounding

context. In Chapter one, we designed the annotation's anchor to include three location

descriptors to capture three important aspects of the annotation's anchor information,

> Meta-structure information location descriptor

> Keyword location descriptor

> Semantic concept location descriptor

Meta-structure information represents the metadata context in which the annotation's

anchor resides, such as Chapter 1 Introduction/Section 1.3 Concurrency. This

information can be readily extracted when document texts are parsed. We differentiate

the tree-like information from XPath, since we make no attempt to convert the document

format to XML format. If the document is in XML format, then the meta-structure

information will normally be its XPath locator. The depth of the tree-like metadata
136

context information is restricted to the high level structures manifested in the document

text itself. We make no attempt to further de-segment the text into sub-contexts.

Matching of the meta-structure information is part of the important criteria to evaluate the

relevance of the candidate annotation anchor with the original annotation anchor. Our

observation of text modification tells us that when the meta-structure of the document is

maintained, text within the meta-structure segments in the original version usually stays

(though with or without modifications) in the revised version; when the meta-structure of

a document is modified, text usually follows with its meta-structure segment in the newer

version. Pre-match of the meta-structure information among the original and revised

version of a document can be easily carried out by humans. Once this matching is

performed, the meta-structure information associated with each text segment can be

compared. Mismatch of the meta-structure information reduces the confidence of

annotation persistence between the candidate anchor and the original anchor.

The second location descriptor contains a list of "keywords", words which possess

strong indexing powers. As indicated in Chapter 2, when words appear rarely in a version

of a document, the re-appearance of those words in the newer version of the document

presents an artifact indicating that the two paragraphs containing those words are very

likely related. In Chapter Two, we used normalized word entropy to measure the

indexing power of words. The property of entropy implies that the more uniformly

distributed a word is, the higher its entropy value is. Rare appearing words usually have

small entropy values.

The third location descriptor contains the semantic concept of the annotation text,

which is the determining factor in our annotation persistence scheme design. Annotation

persistence is only meaningful for the original anchor and the candidate anchor when

they contain semantically similar content/context. The power of annotations stems from

being semantic context-based, and they are worded with the semantic context assumed.

When the semantics of the context change, annotations lose their applicability. In Chapter

Three, we investigated and evaluated an information retrieval model which is capable of

extracting text semantics and retrieving similar texts based on semantic comparisons.

As indicated in Chapter One, a robust annotation persistence scheme needs to include

two elements, anchor representation, which describes an annotation anchor location

137

within a document, and a reattachment algorithm, which attempts to reposition the

annotation anchor within a possible mutated target. In this chapter, before we present the

reattachment algorithm, we will finalize our definition of the annotation anchor

representation. We will elaborate further on the parsing of the meta-structure information

associated with each text segment. We then provide the reasoning behind the selection of

the threshold of choosing "keywords". For the text semantics, we quantify the semantic

closeness of document texts into a continuous numeric number ranging from 0 to 1, with

1 meaning two document texts are identical and 0 means they are completely different.

One of the most important steps in designing the reattachment algorithm is to define

an index which can be used to measure reattachment confidence among annotation

anchors. We call this index the reattachment confidence index, which is a quantitative

measure of how close a candidate anchor is to the original anchor. In this chapter, we

present the definition of the reattachment confidence index. A small training test is

performed to calibrate the confidence index to quantify the proportions of contributions

from the three location descriptors. Based on the score of the reattachment confidence

index, the reattachment algorithm will make evaluate the reattachment of an annotation,

whether it is reattached with high confidence, medium confidence, or left orphaned.

In the second half of this chapter, a full-scale evaluation of the annotation persistence

scheme is performed. By examining a pre-edition and post-edition of an introductory

computer textbook, we first identify the differences between the versions and then we

mark the texts in the pre-edition which are subsequently modified in the post-edition as

one of the followings:

> lightly modified; minor editing, rewording, but otherwise should be treated as the

same as the pre-edition version

> moderately modified; a large part of the text is modified and reworded, the

semantics of the post-edition version overlaps those in the original pre-edition

version, but there are some additional concepts/terms which are not present in the

pre-edition text;

> heavily modified; totally deleted from pre-edition or heavily rewritten with little

semantic overlapping with post-edition version

138

Ideally, the application of the annotation persistence scheme should present the

following results; if the annotation is made on a lightly modified pre-edition text, the

persistence scheme should make the reattachment to the post-edition text with a high

success rate and with high confidence index values; if the annotation is made on

moderately modified pre-edition text, the persistence scheme will only be able to identify

post-edition text with medium confidence index value, and the scheme will present users

alternative options for possible reattachment solutions; for heavily modified annotation

text, the scheme should orphan the annotation with high confidence rather than re-

positioning them with low confidence in order to minimize the false positives in IR

terms.

4.1 Design of Robust Annotation Persistence Scheme

4.1.1 Annotation Anchor Formulation

In Chapter One, we design the annotation's anchor to include three location descriptors to

capture three important aspects of the annotation's anchor information,

> Meta-structure information location descriptor

> Keyword location descriptor

> Semantic concept location descriptor

In this chapter, we elaborate in detail how each one is represented and, in particular,

answer the following questions,

> How is meta-structure information parsed and compared?

> What is the threshold of determining a word to be a "keyword" and how are

"keywords" compared among annotation anchors?

> Can we quantify the closeness between document texts in a continuous spectrum

ranging from 0 to 1?

Parsing and Comparison of Meta-Structure Information

Each document naturally presents some form of content structures. In a technical book,

this structure can easily be obtained from studying the table of contents. For example, we

obtained a pre-edition and post-edition copy of an introductory computer textbook from

139

MIT press. Both book versions contain a table of contents section. In the pre-edition of

the book, it contains total thirteen chapters and four additional appendices. Each chapter

is further divided into sections and subsections. For example in Chapter Four,

"Declarative Concurrency", there are eleven sections. Within each section, there are a

several subsections. A typical path from the root to a leaf of the content structure looks

like this,

- Chapter 4 Declarative Concurrency

- 4.3 Streams

- 4.3.4 Stream Objects

Under section 4.3.4 Stream Objects, we pick one paragraph of text:

We call a stream object an object because it has an internal state that is accessed

in a controlled way (by messages on streams). Throughout the book, we will use the term

"object"for several such entities, including port objects, passive objects, and active

objects. These entities differ in how the internal state is stored and how the controlled

access is defined. The stream object is the first and simplest of these entities.

If the document is in XML format, the meta-structure information is the XPath of the

above paragraph. No additional processing of the text is needed. XML is clearly the

easiest format to derive meta-structure information. However, since we don't make

presumption about the text format, we don't need to convert to XML in order to extract

meta-structure information. Depending on the characteristics of the available document

format, any proper text parsing strategies can be used.

The textbook we obtained is in pdf format. We converted them to ASCII text with

lines returns clearly marked. Here is the strategy we build to parse the meta-structure

information for particular paragraph of content.

We build the parser by first parsing the table of contents of the textbook to build a

table-of-contents tree. The parser then scans sequentially from the beginning of the book

to, say, the above paragraph. In our case, each node representing content structure

140

information is written as a separate single line in the textbook (e.g. "Chapter 4

Declarative Concurrency " appears in the textbook as a single line first, then after some

contents, "4.3 Streams " also appears as a single line, as does "4.3.4 Stream Objects ").

When a parser reads each line, it checks if this line of text represents a line of textbook

content structure by comparing it to the table-of-contents tree we build earlier. If yes, it

will record and update the current content structure information. Each paragraph of

document text thereafter is then associated with the current content structure information

until a new line of content structure information appears.

When a user makes an annotation using our test annotation editor (say on above

paragraph), the content structure information (i.e. Chapter 4 Declarative

Concurrency/4.3 Streams/4.3.4 Stream Objects) is saved into the database along with

annotation text and annotation contents.

In our design of the annotation persistence scheme, a one-time pre-match of the

content structure information between two different versions of the document is

performed if there are differences. This involves human understanding of the document

structure and judgment of the document structure changes. For example, in the pre-

edition of the textbook, the entire section 2.5 Memory management under Chapter 2,
Declarative Computation Model is merged into section 2.4 Kernel language semantics in

the post-edition. Section 2.5.1 Last call optimization in the pre-edition of the textbook

becomes 2.4.6 Last call optimization in the post-edition of the textbook. 2.5.2 Memory

life cycle; 2.5.3 Garbage collection; 2.5.4 Garbage collection is not magic; and 2.5.5 The

Mozart garbage collector in the pre-edition all are merged into a new section in post-

edition, 2.4.7 Active memory and memory management.

141

Pre-edition Post-edition

2.5.1 Last call optimization 2.4.6 Last call optimization
2.5.2 Memory life cycle
2.5.3 Garbage collection 2.4.7 Active memory and
2.5.4 Garbage collection is not magic memory management
2.5.5 The Mozart garbage collector

Table 4.1 Meta-structure matching table to pre-match the

meta-structure information among versions

Table 4.1 shows the pre-matching of meta-structure information among the different

versions. When we compare the meta-structure information associated with original and

candidate annotation anchors, if they are different, the initial meta-structure matching

table is examined to see if a match can be found. If so, the meta-structure information is

considered equivalent. Otherwise, the meta-structure information of the original and the

candidate anchor are considered different.

To come up with a quantitative measure of the comparisons of meta-structure

information between annotation anchors, we define a Boolean index, meta-structure

information index (mi).

If meta-structure information matches between annotation's original anchor and

candidate anchor,

mi= 1

If meta-structure information does not match between annotation's original anchor

and candidate anchor,

mi= 0

Threshold of Being "Keyword" and Definition of Keyword Index

Like selecting stopwords in IR, determining the threshold that determines "keywords" is

not an easy task, since the relative frequency and entropy of words change continuously

from low to high. If we use normalized word entropy to decide if the word is a keyword,

we need to decide the cut-off point, i.e. words whose entropy value is smaller than the

142

cut-off point, are considered to be keywords, and those whose entropy value is greater are

not.

Making a decision of entropy cut-off point depends on the length of the document or

the size of the corpus. Assume we have a single document, if the document is very short,

we may chunk document into a limited number of semantically self-containing segments.

Being a keyword in our context implies it has strong indexing power, the power of

referencing the segment of text uniquely. If the number of document segments in the

collection is small, the frequency of the occurrences of keyword must be very small to

guarantee its referencing power, which suggest the entropy cut-off number for choosing

"keywords" must be very close to 0. (In terms of frequency of occurrences, it means

roughly only 1 or 2 occurrences of words in the entire document). With the growth of

document length, the cut-off number naturally shifts away from 0, which allows more

frequently appearing words to be keywords.

As we indicated in Chapter Two, Luhn proposed two cut-offs to Zipf's curve (Figure

2.4). The upper cut-off excludes all common words; while the lower cut-off takes off rare

ones. Luhn states that both common and rare words don't contribute significantly to the

content of the document. Luhn went on further to claim that the resolving power of words

to discriminate content (or semantics) reaches the peak at a rank order position half way

between the two cut-offs, and decays to zero for rare and common words. Thus words in

the middle are significant in document semantic analysis.

From the perspective of Latent Semantic Analysis, when the document collections are

large, the choice of lower cut-off (which removes rare occurring words) generally needs

to balance between the memory limitation of the computation machine and the

contribution of semantics from rare occurring words. We know based on Zipf's law, rare

occurring words compose a large portion of documents total vocabulary. For example,
words occurring only once compose nearly half of the vocabulary, words occurring twice

compose nearly 1/6 th of total word vocabulary and so on. Including rare occurring words

in the LSA terms will significantly increase the size of the term-document matrix, thus

requiring a much larger computation memory. At the same time, the contribution of

semantics from rare occurring words decreases with the rarity of word occurrences.

143

Clearly, the choice of entropy cut-off point should also be one of parameters in the

reattachment algorithm, which need to be calibrated. The selection of the cut-off point

will have an impact on the performance of the reattachment scheme.

In Chapter Three, we evaluated normalized word entropy for a very large corpus.

Table 2.4 shows the entropy measures of words along with their frequency of occurrences

in the corpus. We made some limited testing and we consider a cut-off value of 0.2-0.25

is a reasonable good threshold. A value of 0.2 ~ 0.25 of normalized word entropy

correspond to 20-30 word frequency of occurrences in the whole corpus (in this case,

corpus is very large).

In this chapter, we study and evaluate our model of annotation reattachment. We have

selected a pre-edition and post-edition textbook as our target. The textbook is about 900

pages long with 24500 total word occurrences and 6800 unique words. This is a relatively

small text corpus, but it is a reasonably large book. The evaluation of entropy reveals that

words with normalized entropy value of 0.2 ~ 0.25 corresponds roughly to a frequency of

6-7 occurrences in the document.

In this study, we use 0.25 as our entropy cut-off number for selecting keywords.

To compare keywords between annotation's original anchor and candidate anchor, we

define a Keyword Index (ki). If we define nk as the number of keywords that exist in

annotation's original anchor, nI as the number of keywords that exist in the annotation's

original anchor as well as in annotation's candidate anchor (thus, nk nk)' the keyword

index is defined as:

ki= n-k if ni n 0
nk

ki= NaN if nk =0

In the event that there is no keyword found in annotation's original anchor, keyword

index is not applicable.

Keyword index essentially measures how much of a percentage of keywords that are

still left in the newer version of text when annotation is reattached. Keyword index

144

measures 0 if no keyword is left in the candidate annotation anchor; it measures 1 if all

keywords are maintained in the candidate anchor.

Scaling of Semantic Closeness between Document Texts to [0, 1]

In Chapter Three, we measured the semantic closeness of two documents by the semantic

angles between them. Theoretically angles between two high dimensional vectors can

range from 0 to 180 degrees. Semantic angles between two document vectors, however,

range normally from 0 to 90 degrees, with 0 being identical and 90 far different.

Document vectors are vectors with non-negative values (cell values are frequency of

occurrences of words if no local and global modifications are applied). This property of

document vectors implies that document vectors are clustered only in a local sub-space of

the high dimensional space.

We use a linear scale to quantify the semantic closeness between two document

vectors. Assume the semantic angle measured between two document vectors is 0. We

define a Semantic Similarity Index (si) as

Si-
90

Semantic Similarity Index measure from 0 to 1, with 0 indicating two documents are

identical and 1 indicating two documents are semantically quite different.

4.1.2 Reattachment Confidence Index

One of the most important components in designing the reattachment algorithm is to

define an index which can be used to measure reattachment confidence among annotation

anchors. We call this index the Reattachment Confidence Index (rc), which is a

quantitative measure of how close a candidate anchor is to the original anchor.

The reattachment confidence index includes contributions from the three location

descriptors. The portion of the contribution from each individual location descriptor

needs to be calibrated. We define the reattachment confidence index as the following,

145

rci= ami+ 8 ki+ y (1-si)

rci= (ami+ y (1-si))/(1-?) ifki= NaN

Where a + # + y = 1, (a , 6J, and y > 0, indicating all contributions are positive).

Since all three indexes, meta-structure information index (mi), keyword index (ki) and

semantic similarity index (si) all measure between 0 to 1, the reattachment confidence

index is a value between 0 and 1 as well, with a value of 1 indicating annotation anchors

are identical and a value of 0 indicating annotation anchors are very different.

In the next section, we calibrate parameters of a, P and y, which represent the

proportions of the contribution to the reattachment confidence index from each individual

index.

4.1.3 Design and Calibration of the Reattachment Algorithm

To make the reattachment algorithm a useful solution, not only does it need an index to

measure the closeness between the annotation's original anchor and the candidate anchor,

the reattachment algorithm should also make one of the following three choices based on

the valuation of the index:

1. The candidate anchor in the newer version of the document preserves great

similarity to the original anchor. The annotation can be transferred to the newer

version with high confidence.

2. Somewhat similar candidate anchors are found in the newer version of the

document. The algorithm suggests users should decide if the annotation can be

reattached.

3. No similar anchor can be found in the newer version of the document, and the

annotation should be orphaned.

Theoretically, the three choices that the reattachment algorithm can make should

correspond to three increasing levels of changes/modifications on the annotation's anchor

text. If the annotation's anchor text is only lightly modified (including minor editing,

deleting, rewording), the reattachment algorithm should favor the first choice. If the

146

if ki # NaN

annotation's anchor text is heavily modified or even deleted from the original version of

the document, the reattachment algorithm should choose to orphan the annotation. When

the modification is in the middle, the reattachment algorithm can leave the users to decide

what they want to do with the annotations. Even in this case, the reattachment algorithm

should suggest the possible reattachment candidates.

In order for the reattachment algorithm to decide which of these choices is

appropriate to reposition an annotation based on the value of reattachment confidence

index, two threshold values for the reattachment confidence index are needed.

We define 2 as the lower threshold,

if rci < A , the annotation should be orphaned;

and q as the upper threshold, (q > A)

if rci > q, the annotation should be repositioned with high confidence;

There is one more constraint before we start to present the full definition of the

reattachment algorithm. Throughout this thesis, we have strongly argued the importance

of the semantics of the context where annotations reside. Annotation persistence is only

meaningful for annotation anchors when they contain semantically similar content or

context. The contribution by the semantic similarities between annotation anchors to the

reattachment confidence index should take a much larger weight than those by keywords

and the meta-structure information. This constraint implies

n >> a

and

147

At this point, we are now able to make a formal description of the design of the

annotation reattachment algorithm.

Design of Annotation Reattachment Algorithm

The problem:

* Two versions of documents, VI and V2; V2 is a mutation of VI; the changes

from V1 to V2 include, rewording, deleting, moving, or a combination of all

three.

* Annotations are made on arbitrary locations on VI

* How to reposition annotations automatically on V2?

The solution:

* Select annotation's anchor text and surrounding context from VI

* Extract features (meta-structure information, keywords, and semantics) from the

annotation's anchor text and surrounding context in Vi.

* Select candidate anchor texts and surrounding contexts from V2 and extract

features

* Derive meta-structure information index (mi), keyword index (ki), and semantic

similarity index (si) by comparing features between anchors of VI and V2.

* Derive reattachment confidence index (rci = a mi + 8 ki + y (1-si))

* Sort candidate annotation anchors by rci values.

* Take the candidate annotation anchor with the highest rci (ricmax). Compare ricmax

with the lower and the upper rci threshold. If it is greater than upper rci threshold

(q), annotation is repositioned to the candidate anchor with great confidence. If it

is lower than lower rci threshold (A), annotation should be orphaned. If it is in

between [2 , q], the reattachment algorithm recommends the user to decide if the

annotation should be repositioned among a selection of candidate annotation

anchor locations.

* The parameters of a, /3 , y, 7 and 2 are positive values between 0 and 1, with

constraints of / >> a, y >> 3, and 7 > 2.

148

Calibration of Annotation Reattachment Algorithm

There are total of five parameters in the design of annotation reattachment algorithm,

0 a, 8 and y are all positive values (between 0 and 1) representing the proportion

of contributions to reattachment confidence index from the three individual

indices.

0 7 and 2 are upper and lower rci thresholds. Based on these values, the

reattachment algorithm makes decisions on whether and where the annotation

should be reattached.

To calibrate the parameters in the annotation reattachment algorithm, a small training

test is usually performed. In the training test, the document with versions is pre-analyzed

with mutations between versions clearly marked. In the training document, text segments

with modifications between versions are pre-marked to fall into one of the following

three categories:

" Lightly modified; minor editing, rewording, with the semantics largely preserved

between versions. The reattachment algorithm should reposition the annotation on

this text segment with high confidence.

* Moderately modified; a large part of the text is modified and reworded, and the

semantics between versions overlap. The system may not be able to reposition the

annotation on this text segment with high confidence.

" Heavily modified; total deletion, or rewriten with semantics largely different in

the newer version. The system should orphan the annotation.

The annotation reattachment algorithm is run against the training document, and the

parameters are adjusted to make the system recommendation on the repositioning of

annotations consistent with those recommended by human judgment.

In this study, we obtained a textbook (yet to be published) from MIT Press written by

two professors from the Swedish Institute of Computer Science. The textbook has two

versions, a pre-edition version and post-edition version. The textbook is an introductory

level college computer science book. The book is about 900 pages long. It includes 13

chapters and 4 appendices. The following table is a top-level table-of-contents of the

book.

149

Table 4.2 Table of contents of the pre-edition textbook

Since we have only one book with versions available to test our theory, we use this

book as both training and test data. In this study, we use Chapter 1 to calibrate the

reattachment algorithm. We identify the version changes in Chapter 1, pre-mark them and

then use the pre-marked results to calibrate the parameters in the reattachment algorithm.

One of the important steps in LSA is to build the latent semantic high-dimensional

space by analyzing a large domain corpus. We don't have a large domain corpus on

computer science. In this study, we used the texts from the two book versions as an

approximation of the domain corpus. We feel that because of the diverse contents of the

book and length of the texts, the semantic space built from the book are a good

approximation to the domain semantic space, and that it is powerful enough to cluster

text segments of the book by their semantic contents.

150

Table of Contents
Chapters

1. Introduction
2. Declarative Computation Model
3. Declarative Programming Model
4. Declarative Concurrency
5. Message-Passing Concurrency
6. Explicit State
7. Object-Oriented Programming
8. Shared-State Concurrency
9. Relational Programming
10. Graphical User Interface Programming
11. Distributed Programming
12. Constraint Programming
13. Language Semantics

Appendices
A. Mozart System Development Environment
B. Basic Data Types
C. Language Syntax
D. General Computation Model

To build a high dimensional semantic space, we first perform the text pre-processing

on the book. Since LSA is a study on text only, all figures/pictures and

equations/formulations were removed. We segmented texts from the book (in two

versions) naturally by paragraph boundaries. We feel they are usually long enough to

contain unique and strong semantics. We made no attempt to group paragraphs or

segment them further into larger or smaller units, say, by their semantic similarities.

From the study of the texts in Chapter One of the textbook, we identify several

modifications ranging from minor to major. We list them as followings,

Minor Changes:

Case 1:

Pre-edition

Post-edition

Functional abstraction. The definition of Comb
uses the existing function Fact in its definition.
It is always possible to use existing functions
when defining new functions. Using functions to
build abstractions is called functional
abstraction.

'
Functional abstraction. The function Comb calls
Fact three times. It is always possible to use
existing functions to help define new functions.
This principle is called functional abstraction
because it uses functions to build abstractions.

151

I

Case 2:

Pre-edition A program can give wrong results even after it is
proved correct. This could happen if the system on
which it runs is not implemented correctly. How
can we be sure that the system satisfies the
semantics? Verifying system is a major
undertaking. This requires verifying the operating
system, the hardware, and the physics upon which
the hardware is based! These are all important
tasks, but they are beyond the scope of the book.
We place our trust in the Mozart developers,
software, hardware companies, and physicists.

Post-edition A program that is proved correct can still give
incorrect results, if the system on which it runs
is incorrectly implemented. How can we be
confident that the system satisfies the semantics?
Verifying this is a major task: it means verifying
the compiler, the run-time system, the operating
system, and the hardware! This is an important
topic, but it is beyond the scope of the present
book. For this book, we place our trust in the
Mozart developers, software companies, and
hardware manufacturers.

Case 3

Pre-edition

Post-edition

We would like to have our program executing
several concurrent activities, with each activity
running on its own pace. This concept is called
concurrency. There should be no interference
between the activities, unless we decide there is
a need of communication between them. This is how
the real world works outside of the system. We
would like to be able to do this inside the system
as well.

We would like our program to have several
independent activities, each of which executes at
its own pace. This is called concurrency. There
should be no interference between the activities,
unless the programmer decides that they need to
communicate. This is how the real world works
outside of the system. We would like to be able to
do this inside the system as well.

152

Case 1 to Case 3 are classical modifications a document text can go through between

versions. The modifications in all three cases are considered minor, although some

editing and rewording are made to the text. The semantics between versions are kept

intact. The reattachment algorithm should reposition these cases with a high degree of

confidence.

Deletion

Case 4:

Pre-edition This chapter has introduced the following
computation models: Declarative model (chapters 2
and 3). Declarative programs define mathematical
functions. They are the easiest to reason about
and to test. The declarative model is important
also because it contains many of the ideas that
will be used in later, more expressive models.

Case 5:

Pre-edition Concurrent declarative model (chapter 4) . Adding
dataflow concurrency gives a model that is still
declarative but that allows a more flexible,
incremental execution. Lazy declarative model
(section 4.5). Adding laziness allows calculating
with potentially infinite data structures. This is
good for resource management and program
structure.

Case 6:

153

Pre-edition Stateful model (chapter 6) . Adding explicit state
allows writing programs whose behavior changes
over time. This is good for program modularity. If
written well, i.e., using encapsulation and
invariants, these programs are almost as easy to
reason about as declarative programs.

Object-oriented model (chapter 7) . Object-oriented
programming is a programming style for stateful
programming with data abstractions. It makes it
easy to use powerful techniques such as
polymorphism and inheritance.

In addition to these models, the book covers many
other useful models such as the declarative model
with exceptions (section 2.7), the message-passing
concurrent model (chapter 5), the relational model
(chapter 9), and the specialized models of part
II.

Case 4 - 9 are all deletions from the pre-edition textbook. They are summary

statements for future chapters. Ideally, we would like to orphan them. If semantics of

some paragraphs in the future chapters bear significant similarities to these summaries,

we may wish to let users decide if they want to move annotations.

We did not find a case where we considered the modification of the text is larger than

a minor change, but less than a heavy one. Nevertheless, we feel this represents an

adequate training set to calibrate the parameters of the annotation reattachment algorithm.

By following the design constraints of the reattachment algorithm parameters we set

earlier, after trial and error, we find the follow sets of parameters satisfy our model

requirements.

154

Case 7:

Pre-edition

Case 8:

Case 9:

Pre-edition Shared-state concurrent model (chapter 8) . This
model adds both concurrency and explicit state. If
programmed carefully, using techniques for
mastering interleaving such as monitors and
transactions, this gives the advantages of both
the stateful and concurrent models.

Pre-edition

a = 0.15

P = 0.15

y = 0.75

q = 0.70

A = 0.50

By adopting this set of parameters, the rci is defined as,

rci= 0.15mi+ 0.15ki+ 0.75(1-si)

The annotation reattachment algorithm will then automatically reposition annotations

on the newer version of the document as following:,

" Reposition annotation if a candidate anchor exist where max rci > 0.70

" Orphan annotation if all candidate anchors' rci < 0.50

" Present users candidate anchors if max rci is between 0.50 and 0.70.

In the following, we present the result for each case.

155

Minor Changes: Case 1:

Annotation anchor Functional abstraction. The definition of

text in pre-edition Comb uses the existing function Fact in
its definition. It is always possible to

Text use existing functions when defining new
functions. Using functions to build
abstractions is called functional
abstraction.

Metalnfo - chapter 1 introduction to programming concepts
o 1.3 functions

rci Ranking Keywords / comb 0.9190

(in post-edition) (1-entropy)

Functional abstraction. The function Comb
calls Fact three times. It is always

Rank I1st: Text possible to use existing functions to
help define new functions. This principle
is called functional abstraction because
it uses functions to build abstractions.

rci = 0.8151 Metalnfo chapter 1 introduction to programming concepts
mi =1 o 1.3 functions

ki = 1 Keywords v comb
si = 0.2642 (1-entropy)

Because it uses functions to build

Rank 2nd Text abstractions. In this way large programs
are like onions with layers upon layers
of functions calling functions.

rci = 0.4515 Metalnfo * chapter 1 introduction to programming concepts
mi 1 o 1.3 functions

ki = 0 Keywords
si = 0.5626 (no keyword maintained)

Functional programming consists of
defining functions on complete values,
where the functions are true functions in
the mathematical sense. A language in

Rank 3 Text which this is the only possible way to
calculate is called a pure functional
language. Let us examine how the
declarative model relates to pure
functional programming.

Metalnfo - chapter 2 declarative computation model
rci 0.3524 o 2.7 advanced topics
mi= 0 2.7.1 functional programming

ki = 0 languages

si = 0.4966 Keywords (no keyword maintained)

156

In Case 1, the text is aboutfunctional abstraction. Users are very likely to annotate on

this paragraph since this is the first time the book introduces this concept. It represents a

term which bears significant semantics. It is interesting to note though, both "functional"

and "abstraction" are not considered keywords in our entropy measure. The entropy value

of "function" is 0.5300 and entropy of "abstraction" measures 0.4736. Both are greater

than the threshold of 0.25. From the observation of the ranked lists, since semantic

similarity index contributes to a much bigger weight to the rci, it is generally the case that

semantic similarity decays with the ranking list. This case is an interesting exception and

demonstrates the importance of the contributions from the unique words ("comb" in this

case) and the meta-structure.

157

Case 2:

Annotation anchor
text in pre-edition

RCI Ranking
(in post-edition)

I I

Text

A program can give wrong results even
after it is proved correct. This could
happen if the system on which it runs is
not implemented correctly. How can we be
sure that the system satisfies the
semantics? Verifying system is a major
undertaking. This requires verifying the
operating system, the hardware, and the
physics upon which the hardware is based!
These are all important tasks, but they
are beyond the scope of the book. We
place our trust in the Mozart developers,
software, hardware companies, and
physicists.

MetaInfo chapter 1 introduction to programming concepts
o 1.6 correctness

Keywords
(1-entropy)

/
/

V/

verifying
verifying
trust
developers

I companies

0.8677
0.8677
0.8236
0.7575
1

Rank 1st:

rci =0.8377
mi= 1
ki -1
si = 0.2318

1 T

Text

MetaInfo

Keywords
(1-entropy)

A program that is proved correct can
still give incorrect results, if the
system on which it runs is incorrectly
implemented. How can we be confident that
the system satisfies the semantics?
Verifying this is a major task: it means
verifying the compiler, the run-time
system, the operating system, and the
hardware! This is an important topic, but
it is beyond the scope of the present
book. For this book, we place our trust
in the Mozart developers, software
companies, and hardware manufacturers.

- chapter 1 introduction to programming concepts
o 1.6 correctness

/ verifying
V verifying

trust
developers

/ companies

158

i-

Rank 2n

rci = 0.3054
mi= 1
ki = 0
si = 0.7780

Text

MetaInfo

Keywords

A program is correct if it does what we
would like it to do. How can we tell
whether a program is correct? Usually it
is impossible to duplicate the program's
calculation by hand. We need other ways.
One simple way which we used before is to
verify that the program is correct for
outputs that we know. This increases
confidence in the program, but it does
not go very far. To prove correctness in
general we have to reason about the
program. This means three things:

* chapter 1 introduction to programming concepts
o 1.6 correctness

(no keyword maintained)

We use mathematical techniques to reason

Rank 3 rd Text about the program using the semantics. We
would like to demonstrate that the
program satisfies the specification.

MetaInfo * chapter 1 introduction to programming concepts
rci = 0.2993 o 1.6 correctness

mi= 1 Keywords (no keyword maintained)
ki = 0
si = 0.7867

In Case 2, the text is talking about program errors which are possibly caused by

systems other than its own. The rewriting of the text clearly is more succinct, but the

semantics of the text are kept intact. Annotations on the text on pre-edition should clearly

be transplanted to the post-edition version with high degree of confidence.

159

Case 3:

Annotation anchor
text in pre-edition

RCI Ranking
(in post-edition)

Text

We would like to have our program
executing several concurrent activities,
with each activity running on its own
pace. This concept is called concurrency.
There should be no interference between
the activities, unless we decide there is
a need of communication between them.
This is how the real world works outside
of the system. We would like to be able
to do this inside the system as well.

MetaInfo - chapter 1 introduction to programming concepts
o 1.10 concurrency

Keywords
(1-entropy)

/ ,

/
/

activity
pace
interference

0.7777
1
0.8015

Rank 1st:

rci = 0.7790
mi = 1
ki = 0.6667
si=0.2442

Text

We would like our program to have several
independent activities, each of which
executes at its own pace. This is called
concurrency. There should be no
interference between the activities,
unless the programmer decides that they
need to communicate. This is how the real
world works outside of the system. We
would like to be able to do this inside
the system as well.

MetaInfo - chapter 1 introduction to programming concepts
o 1.10 concurrency

Keywords
(1 -entropy)

/ pace
V interference

Rank 2 nd

rci = 0.3192

Text

MetaInfo

We introduce concurrency by creating
threads. A thread is simply an executing
program like the functions we saw before.
The dierence is that a program can have
more than one thread. Threads are created
with the thread instruction. Do you
remember how slow the original Pascal
function was? We can call Pascal inside
its own thread. This means that it will
not keep other calculations from
continuing. They may slow down, if Pascal
really has a lot of work to do. This is
because the threads share the same
underlying computer. But none of the
threads will stop. Here is an example:

- chapter 1 introduction to programming concepts
o 1.10 concurrency

160

I

I

mi 1
ki = 0
si = 0.7582

Keywords
(no keyword maintained)

This creates a new thread. Inside this
new thread, we call {Pascal 301 and

d then call Browse to display the result.
Rank 3r Text The new thread has a lot of work to do.

But this does not keep the system from displaying
99*99 immediately.

Metalnfo chapter 1 introduction to programming concepts
rci = 0.2647 o 1.10 concurrency
mi = 1 Keywords
ki = 0 (no keyword maintained)
si =0.8361

Case 4 to Case 10 are deletions. In the following table, we report the results of C4, C7

and C8.

161

I

Case 4:

Annotation anchor
text in pre-edition

RCI Ranking
(in post-edition)

Rank 1st:

rci = 0.4122
mi=0
ki = 0
si=0.4111

Text

Metalnfo

Keywords
(1-entropy)

Text

Metalnfo
Keywords
(1-entropy)

This chapter has introduced the following

computation models: Declarative model
(chapters 2 and 3). Declarative programs
define mathematical functions. They are
the easiest to reason about and to test.
The declarative model is important also
because it contains many of the ideas
that will be used in later, more
expressive models.

- chapter 1 introduction to programming concepts
o 1.17 where do we go from here

/ easiest 0.8236

This book sticks to the traditional usage
of declarative as stateless and
imperative as stateful. We call the
computation model of Chapter 2
"declarative", even though later models
are arguably more declarative, since they
are more expressive. We stick to the
traditional usage because there is an
important sense in which the declarative
model really is declarative according to
the literal meaning. This sense appears
when we look at the declarative model
from the viewpoint of logic and
functional programming:

0 chapter 6 explicit state

(no keyword maintained)

This chapter has given a quick overview
of many of the most important concepts

in programming. The intuitions given here
Rank 2 "d Text will serve you well in the chapters to

come, when we define in a precise way the
concepts and the computation models
they are part of.

rci = 0.3648 Metalnfo - chapter 1 introduction to programming concepts

mi =1 o 1.17 where do we go from here

ki = 0 Keywords
si = 0.6932 (no keyword maintained)

162

There exist many computation models that
dier in how expressive they are and
how hard it is to reason about programs
written in them. The declarative model is
one of the simplest of all. However, as
we have explained, it has serious
limitations for some applications. There

Rank 3 rd Text are more expressive models that overcome
these limitations, at the price of
sometimes making reasoning more
complicated. For example, concurrency is
often needed when interacting with the
external world. When such interactions
are important then a concurrent model
should be used instead of trying to get
by with just the declarative model.

Metalnfo chapter 4 declarative concurrency
rci 0.3330 o 4.7 limitations and extensions of

mi =0 declarative programming
ki = 0 " 4.7.5 picking the right model

si 0.5242 Keywords (no keyword maintained)

In case 4, the text is a summary paragraph on future chapters 2 and 3. It talks about

declarative models and programming. Although paragraphs are semantically related to

declarative models and programming, their semantics are not strong enough to overcome

the mismatch of meta-structure information and keywords. They are orphaned in this

case.

163

Case 7:

Annotation anchor Object-oriented model (chapter 7).

text in pre-edition Object-oriented programming is a

Text programming style for stateful
programming with data abstractions. It
makes it easy to use powerful techniques
such as polymorphism and inheritance.

Metalnfo * chapter 1 introduction to programming concepts
o 1.17 where do we go from here

RCI Ranking Keywords / polymorphism 0.8602
(in post-edition) (1-entropy)

Stateful model with inheritance.
Inheritance is the essential di erence
between object-oriented programming and
most other kinds of stateful programming.
It is important to emphasize that
inheritance is a programming technique;

Rank Ist: Text the underlying computation model of
object-oriented programming is simply the
stateful model (or the shared-state
concurrent model, for concurrent object-
oriented programming) . Object-oriented
languages provide linguistic support for
inheritance by adding classes as a
linguistic abstraction.

rci = 0.4498 Metalnfo * chapter 7 object oriented programming

MiO0 0 Motivations

ki =0 Key 7.1.1 inheritance

si =0.3574 Kyod
____=_0.3574 __ (1-entropy) (no keyword maintained)

This chapter introduces a particularly
useful way of structuring stateful
programs called object-oriented
programming. It introduces one new
concept over the last chapter, namely
inheritance, which allows to define ADTs
in incremental fashion. However, the
computation model is the same stateful

Rank 2 nd Text model as in the previous chapter. We can
loosely define object-oriented
programming as
programming with encapsulation, explicit
state, and inheritance. It is often
supported
by a linguistic abstraction, the concept
of class, but it does not have to be.
Object-oriented programs can be written
in almost any language.

rci = 0.3848 Metalnfo * chapter 7 object oriented programming

164

mi = 0
ki = 0
si = 0.4503

Keywords
(no keyword maintained)

d Tchapter 7 covers object oriented

Rank 3r Text programming and shows how to program with
inheritance.

MetaInfo chapter 1 introduction to programming concepts
rci = 0.3793 o 1.4 classes

mi = 0 Keywords
ki = 0 (no keyword maintained)
si = 0.4580

Like Case 4, Case 7 is also deleted from the pre-edition version. It is a summary

statement for chapter 7, object oriented programming. The most semantic similar

statements are all from Chapter 7, but as Case 4, they are not labeled as moderate

modifications, hence Case 7 is orphaned. Case 8 is similar below.

165

Case 8:

Annotation anchor
text in pre-edition

RCI Ranking
(in post-edition)

Text

Shared-state concurrent model (chapter 8). This
model adds both concurrency and explicit state. If
programmed carefully, using techniques for
mastering interleaving such as monitors and
transactions, this gives the advantages of both the
stateful and concurrent models.

MetaInfo - chapter 1 introduction to programming concepts
o 1.17 where do we go from here

Keywords
(1-entropy)

/ mastering 1.0

Rank 1st:

rci = 0.3795
mi=0
ki = 0
si = 0.4577

Text

Shared state concurrent model (see chapter 8
defined in section 8.1). This is the declarative
model extended with both explicit state and
threads. This model contains concurrent object
oriented programming. The concurrency is more
expressive than the declarative concurrent model
since it can use explicit state to wait
simultaneously on one of several events occurring
this is called nondeterministic choice. Reasoning
with this model is the most complex since there
can be multiple histories interacting in
unpredictable ways.

MetaInfo - chapter 4 declarative concurrency
o 4.7 limitations and extensions of

declarative programming
- 4.7.6 extended models

Keywords
(1-entropy) (no keyword maintained)

Rank 2 nd

rci = 0.3624
mi=0
ki = 0
si = 0.4824

Text

Why not use declarative concurrency?
Given the inherent diculty of programming in the
shared-state concurrent model, an obvious question
is why not stick with the declarative concurrent
model of Chapter 4? It is enormously simpler to
program in than the shared-state concurrent
model. It is almost as easy to reason in as the
declarative model, which is sequential.

MetaInfo - chapter 8 shared state concurrency
Keywords

(no keyword maintained)

166

E

I

I

167

Too much concurrency is bad. There is a model,
the maximally concurrent model, that has even
more concurrency than the stateful concurrent
model. In the maximally concurrent model, each
operation executes in its own thread. Execution
order is constrained only by data dependencies.
This has the greatest possible concurrency. The
maximally concurrent model model has been used
as the basis for experimental parallel programming

Rank 3 rd Text languages. But it is both hard to program in and
hard to implement eciently (see Exercise). This is
because operations tend to be fine-grained
compared to the overhead of scheduling and
synchronizing. The shared-state concurrent model
of this chapter does not have this problem because
thread creation is explicit. This allows the
programmer to control the granularity. We do not
present the maximally concurrent model in more
detail in this chapter. A variant of this model is
used for constraint programming (see Chapter 12).

MetaInfo * chapter 8 shared state concurrency
rci = 0.3608 o 8.2 programming with concurrency
mi = 0 - 8.2.1 overview of the different
ki = 0 approaches

si = 0.4846 Keywords
(no keyword maintained)

4.2 Evaluation of Robust Annotation Persistence Scheme

Section 4.1 finalized the design of the annotation persistence scheme. In this section, we

evaluate this model. As indicated earlier, we calibrated reattachment parameters using

texts from Chapter 1 of the available textbook. We evaluate the model using the other

chapters.

We have studied the pre-edition and post-edition texts of all the other chapters in the

textbook. We mark paragraphs of text that possess modifications between versions. We

also label them as one of the three choices of the modifications, i.e. lightly modified,
moderately modified or heavily modified.

Our model is then applied to all text paragraphs with modifications. We classify them

with the rules we set up in our annotation persistence scheme. The algorithm results are

then compared with the perceptions of a human reader.

In this chapter, we first present a few examples where pre-edition texts are modified.

We then present a table summarizing the model evaluation results.

Sample Evaluation Results

In the following, we take a snapshot of a section in Chapter Five of the pre-edition

(Figure 5.1 and Figure 5.2), along with its companion section in the post-edition version

(Figure 5.3 and Figure 5.4). Reading both sections, it is easy to see the modifications

between versions. First, there are large chunks of text at the beginning of the chapter 5 in

the pre-edition that are deleted in the Chapter Five of the post-edition. Three paragraphs

of introductory comments on "extending the declarative concurrent models" are also

modified. After we run each paragraph in the snapshot section of Chapter Five in pre-

edition through the algorithm, we present the findings by our model.

168

Message- Passing Concurrency

()idy it b did Atr yu Ni ti,.' cc 11t 1114: 1. 4 4 Wa: 1 a siitglif b] dy, bilt
waso; madotel 11p of nt mm, sunil stol-bhlet inscts which butzzod fikc anry1L

11r Jts Nv as thc-ir comipawt swarii that kept akn diffeOrclt shapt-s.
11 1 wrend(1 Story, Micacl' Ei. (1 1929 P)1

M Uss'ag e 1asIt, 1is a proagram miHg stl vin hich 1111 prjogr2am a')lsiSts 4)f itdepeindent

eit ities iltht inteztrCt Ly stidi t (ach oth er SageS lii'hriiIly, i.'.. witholt

itin ,r t reply. M(SNage Passing is important in three areas:

* It is the Lbasic framlowtork for lti-agelt lshtem, ak discip.ii that views coiplX
syste(ms as a set 4f intt'iratin1 'ages An are idt [epend. i 111tities that work
t ar'd their 1w l.ha1 goals. If wt iti11 is de'igniied1 pIV'it'y I theni the

agent's call alSo Iclli1ve g1ba1 'oals. Fo exhamiplto resolltce allocatioili hae doie

liitintily Lby selfish t111)s tai itermt ard>iig iietliai111s iiis;piredi by a

* i is the natural s tyl for i distruted system. i.e., zt sit of CmIlllpiters 11;11 a1Il

C111111nmmic'att vrith eilh 01r t hrough ai letork. It is lnat url 11ias it rIetlects
ill J strunurt fit.' svsti'l1 aint its Csts Disnributed sYstems are Loothnilg utbit-

nitous lwC'tse of tle Ctil iited (itXpaiti the hnurnet. Old e te Cloie0or

prgral i g ist rib utd sv(11. such. as RIP C(ORBA, and RMl. ar' basd Oil
syniirlIUs Coiinin~ii'at1 L I t'tll)tit'S, siuCIi \'\ IL services, are' uVA.[-

chronons. The tehnijlo's of this t'liaIter apply directly t) csy1nhr1)1l(11s t chiolo-
g 1e (Th t pa11 tilrtis -f41 pigit.i].g distributed sy ".14 Slls r'e _Xplorcd fur41er

i I chapter 1,1

* it lends iislf will to builing lig eit'alIle systm. is it th tins' i .passing

ct'itis t i1 'ldt, if olt fias thi , otlh'rs al (nItiilll execiut'i(". Ill o propt1rly

desiged svstem. 1he others retlrg''i 1themsevs to c41t[inlte r)ov.Xiiig a' s1 erVice.

This idea is 111ed by4 It'h Erlatii loIage, NVhich is uied in ieleIlmlmnicatons awl

(14 '1ln' t c(111111utaO iM 111 lol 1011 11101 5stgI' p11isn IA a 111 1XtensiM Of Ot dblar-

al iv canuri1t ItdI. We thlie ust this mo11d.eil t1 show how t 1r'a wit ih

Figure 5.1 First page of Chapter Five in pre-edition

169

Extenrding the declarative cOncurrenIt inode!

.11(e deCuoliiVe cmiC.urri1 nt 11104l1 4 tile 11(81 CFPtJrot ciililF)t li14vt f iM)Ple
i~lFdt(Tltiiis1F Ibis liiits fil', kinds if 'vvgra we ra4 writt ill lilt, iiF l.

Fr fixilmpl,. we Sow 1 that ii s iS ii.jssible te> wil a 8 clii 'iist'1Vei p1'r1F wifr
(tIe server Toes Ft kilFw which iiit will s-idt i' liet iiI'4g '

e esao 1snglw re alol cxhns k.1d11.1oe(m:L~lt llids
tllsl '111V e C "sep ,. ~i~l~~l oaun~to hlnl 1

Ieo la n Cliornl call sondi Ille. , es to l.(h dl ,Ild git a111Y timie ;tnd the(s,-rvor
(' li rea 1 l th, eSuge fvIAL.I 1.110 C1101111 . '11is rem~v,thpes hil itt ni'm oll vwAt
tiI Fiiis of Oi F i CIM Wrili-. A cfiti lstrvel i progy amF caii Yivi ii lilFfoilttil- ro'slits
(A) diffetieit exeutioijs biciuse the orI d1. of client s'nds is iot d.'iiteilnd. this

itifitls hi.at litF iiii8ile-ssiiing) i.l ii iifdftefioiiist i aid htirote no I jiligec
if lclrat ire.

XXO 11So a si.i[ple kind i cliiaeI cllle F. jpt I hat lits ?al FsS4F' strtOi
Seldig a llessage to tHie p'it c('ilisis thn' iimess'11F gF ti) iiPpeII'r Fn tfh pirti str(-aIii.
A F SCekI prugrain iiiint ttecltitil"i, tif associATi ;A POit with o str.li thjFieft. W"'
Cill the rSuIlting fititv port Aohjct. A port objtot loeF Is all its iiis5Flges fi-'ii1 the

pinit stramii ai. i tdseiiis iti'ssag(eS ti (FlwT [ri (bjicts tbritgh t i pI.ts, Lwtli
[' it F FIjioPt is defilmed [Iy a .i ~rsixs pliiied'i that is dFIFc[tlftiv.e. t.is keel is s'lii

tf th a(ivat ag's (if Ihe .'clartie ne [I'l.

Structure of the chapter

*le itftF Flitiist s of t he Iiilowiig paits:

* Sst Fio 5.1. dfiits the iils"F.gF-paSsiiig F urrent mdeF. It dfi 'wis [Ii e port
C('(pt anid tle kernel lavinge,

S>F'tioii 5.2 intr1fd lces thl)ii)Fpt f Iot FFjtCts. which wt, u''t 1y mIbiiiin1

p' rts withi stra icuinhject s

* Sicti III 5_3 shows [Iow to (It simIpIeI kiIds o if miies't.gf. pro t 1fIs wit It p It I)bje(,s.

* S iion 5A x)lins tow r' design prIiAs With ceicirrett i mpFfents. i
dF If if. l ii Ftlii t S F1. 4ive' a iitd 111.4 o h l iiod Fol-v F4i i1 coiiii 1 ii1 v.

* Section 5. giVi's a case stdI IFy of t his meth vlfgy, It FIsF's port obj'its to build
4 lift foFitrol sYst4'ili.

* Sectioll c'.i slows how I(Ise Hit messag)-passing mi'l directlv, withoii t sing

thW ['ii '!jeit FbstiF'tien. this (8 be liardei to v'asIi abt th tii tisil" [FrF
Objefct., nt it is Stniti U(.tsefit.

* Section 5.7 g2V'S an intr1d'htii Ll E g. a prOrii g langiFa-, ised on
pirt objeits th~a is usd 1 tnId hihir rel iale systems

* SeCtioi 5. explains Fll' nFe advanced topic: the Itn nde eti1telil list iC 1 iCiirrelit m4od.

wiich is internji' . hate in expI'Ssiveniiess betwet 'ii thi' dltlara ivo 1(c1CUrriletit liO(I
aid 'lli) 1& rfF- -assili hil F i 1 ChtI l.

Figure 5.2 Second page in Chapter 5 of pre-edition

170

Chapter 5

Message-Passing Concurrency

.1), Th In P did AreyiL notice th al the iiivtr wa ilnot A sI ,

solid bxy I1it was mniade up 01 iinmnerable small steel- me insects
which 1uzzed lke ajlgry Ints. It WAS t heir (4 Ill t 1 A) 1 iia I

kept I Aig di1i'erelt S, vwi
Thi10 Nevernlding Story. Niichuwl End:: (1929 1995)

In t lie List ibiApter we lit hw in pitgii Wit II stroin P1 1jLctsl. whih is
b h 4 1d i te la I ItiV (I t IcnU I lIt. 13.t it hAs thI v limilitA IL il t t IIt cM al1111It hI indliII

observb icndlet eriiisii. For exAle. We vite A digi 1 logit: sinliliqtor iII

wiicb e. a(Ml st 'r Jn oj iect kt n"w S e. etI y which 4b jeCt will senIld it the ii xt ili's-

siacei. W (cn111p01r 1)14In A eiqit /server xwithre the sever dts nut kin 1 wici
client will. send it lit t mit essge.e

WeV (:AIn remol(ve this lim,i;ttIn y extendil"n the inod ml with an aisvnclhro itnis
COImm.iUiiicAtIi i 1 Ii ihalitl. The y ut can sen iiessges t tihte' (hAlisidl ;liid

illtj servier canl read I hlli 'rom t ch limiel. W X sX itA siimijplt kind (A 41 calicnel
cilled ;c per th'!At 11s an Associteld streamtii. Sending A i ssag to tlie por0it cAluses

thmssagle to a r) o1)ii t he port's strom.

Th1 .xfenided nidel is (..1cai1 the1(1 met xxsuc J-passtnq I11 re, t mn ode -L Since this
II.m I ld. is In 4.4.deter inii c sti , it is no 1lo r e 1 : l1uchIrtive. A client /serve ' (11grm

an gIv> different results I different executions beca1s4 the Order of client seids
is notA detormlied.

A uisfhul i>prgrmi 1111g st vle for this ImIodlel is to associte A port t emI st rImIt
ojeci. T1.m..bjt'ct redS ill its Beess;gs roi t11 port, iid sends messAges in

other sI reim objects t Irp It heir p(rts u This style keeps InIs of t le AIvaItages
of the declairiv e mn Idel. EL;clI st reamn I cbject is dfined by a IrecIrsiiV pro)tie
thot "is deelave

wAnot her progrinuniug 51yle is to use the io det directty. progrnin11g with I
ilits.(iltlowv NVriAbles. thieAds. ;i1d procedlutr's. This style cii be utseult for

building ciitUrreIny icbstrcioils. butit i Is lnot recorrnnnidlit Ielod for h2i.-' pro11grans

)1cli cuse it is harlert to raitsc IAbit.

Figure 5.3 First page of Chapter 5 in post-edition

171

Structure of the chapter

11 4ll In]pter co' ss (5t1 441 fII Plb)Willg panrts:

* Sectioi 5.1, defi1-es t 14' S~ re-] i ng il4(c (m ll-r tiI iil('f . It defilles 114
1)()Irl ci0l1e'pt :ol t kerlel 1ge It A") defilles pelt (A)1jecls. wiihfi

9 Seeti n 5.2 int rodIles tile eOlcept (4 pert ob Ijcts, whilich we get by (01l-

hinjill p41115 with st ait 1 l)hje>ts.

* SCt iOui .3 sl' wS IaR A t1o 6 silIlple kid.s (df 1 :s t(' pr 1 4 w'Is itli p)O i t

* Sectill 5. lOws Pw 1hw h e .desioli prcgrnmis w it hA (eli 11111i 1011.1.1)p1 eits. It
USeS p)t 44 jects tO boild 1 lift),liOI Sr t

* Sectn) 5.5 ShOWS h1ow 1o) 11se 1ho' lIeSse-p1sn 1)(el (ireotly, witt44i

iSilg he p)lt 4W(-t .I I)s Ir. ii I1I. I is c i I w1 II we (f. I X tian 1lsillu

p[t (ijects, [it) it is soll tilles uisefil.

* S(4tifi 5.J gives (Ill int h)du1tiOl 14 Lfni' a r aing laguage 1iase.

Oll pmort (J)Jects. Erbl" I" dvsi,'lled f'Or '11d 11',(d I1 ll e lnaitc t0

1pplicatimis. wXV re fille-('rt4led 111' 14 '114 ITII ' Illd t(Iruil(t 1145 ate illipah1L1lit

f Sect 1lm 5. exp\l las (me mt11 1 ced (J i hes I 44'. t W '0 11 1 In i tiQ ('11-1llt

Mnodel. Whlicll I's illt ernjedimte ill (.,xj.rvs-iiewls,_ h lweel') (11o, declt ive\1'(COU-

C14111ct)imfel and tle inesa'e-passili' 100+4 ol ts lls apt er.

5.1 The iessage-passing concurrent model

Un' lil('Ssa'4- ~lu Cll'nIltreilt 1lfeIdel 4'XtIlds tHie declarative 4oieviIllt it1tIeI
bv Idilli p4r .4144' 5.1 sioWS Iwe hellel fan'' lkn(e. cmni-

it1111i'at 144.1 1141 . 1 P]44rt ale r o, ig'l (elr de lfrative Sillo) thlie'v allew (4b eval
l(101d14eted'11.ill51 ll i JIl If el)(I ll d ' 41l:41 t(:1m 4 II 4p t 1ind tIleir 44er .11is

114t d'terulmill d. Jowever. t1e pa1't (A Ile 4 1pltati wi il 4. fnt d1- 5 c1 U)(1tS
c(1l still 1e e('lnr iv . I is 111o':m15 tlitt w Il ca , W' 1:111 Still 1154' Is lYt 4A, the

l''ellng t eC'flligpi.4s 114. 4.14 d"iaiat iI' 1 holCrl4it .40'd4f4.

5.1.1 Ports

A Iiw' is ;m. AF1T ti :bit 11v51 t)1wpr(11ns, 411.1111lely Crreolli ug 1Ioa chi.el :)11(1 Selldillg

* {NewPort S P}: crede :. 14W' p4 t With lentry p(:'ilt P atnld st iea:ilii S,

(pyrigL @ 200.1-3 by P. Van Bcov and S Iaridi. All rights r-ervd.

Figure 5.4 Second page of Chapter 5 in post-edition

172

Paragraph 1: Orphaned annotation

Since this paragraph is deleted from pre-edition, after examine the post-edition, we

decide any annotation made against this paragraph should be orphaned. Our annotation

persistence system makes the right decision.

173

Annotation anchor Message passing is a programming style in

ext in pre-edition which a program consists of independent

Text entities that interact by sending each
other messages asynchronously, i.e.,
without waiting for a reply. Message

__ _ passing is important in three areas:

MetaInfo chapter 5 message passing concurrency
Keywords

RCI Ranking (1-entropy) (no keyword found)
(in post-edition)

We can remove this limitation by
extending the model with an asynchronous
communication channel. Then any client
can send messages to the channel and the

Rank Ist: Text server can read them from the channel.
we use a simple kind of channel called a
port that has an associated stream.
Sending a message to the port causes the
message to appear on the port's stream.

rci = 0.4208 MetaInfo " chapter 5 message passing concurrency
mi = 1 Keywords
ki = NaN (1-entropy) (no keyword found)
si= 0.7033

Rank 2"a nText Section 5.3 shows how to do simple kinds
of message protocols with port objects.

rci = 0.3925 MetaInfo " chapter 5 message passing concurrency
mi = 1 Keywords
ki = NaN (1-entropy) (no keyword found)
si = 0.7377 _

Paragraph 2: orphaned annotation

Annotation anchor
text in pre-edition

RCI Ranking
(in post-edition)

Text

It is the basic framework for multi-agent
systems, a discipline that views complex
systems as a set of interacting "agents."
Agents are independent entities that work
toward their own, local goals. If the
interaction is designed properly, then
the agents can also achieve global goals.
For example, resource allocation can be
done efficiently by selfish agents that
interact according to mechanisms inspired
by a market economy [177, 224].

MetaInfo - chapter 5 message passing concurrency
Keywords

(1-entropy)
/
v/
/
V/

V/

V/

V/
/

/
/

/

framework
multi
agent
discipline
agents
agents
goals
agents
goals
allocation
agents
mechanisms
inspired

0.9118
0.7952
0.8016
0.7525
0.8896
0.8896
0.8791
0.8896
0.8791
0.8602
0.8896
0.7738
0.8602

To design a concurrent application, the
first step is to model it as a set of
concurrent activities that interact in
well defined ways. Each concurrent
activity is modeled by exactly one
concurrent component. A concurrent
component is sometimes known as an agent.
Agents can be reactive have no internal
state or have internal state. The science
of programming with agents is sometimes
known as multi agent systems often
abbreviated as mas. Many different
protocols of varying complexities have
been devised in mas. This section only
briefly touches on these protocols. In
component based programming agents are
usually considered as quite simple
entities with little intelligence built
in. In the artifi cial intelligence
community agents are usually considered
as doing some kind of reasoning.

174

Rank 1st: Text

MetaInfo hapter 5 message passing concurrency
o 5.4 program design for concurrency

5.4.1 programming with
rci = 0.2487 concurrent components
mi = 0 Keywords / multi 0.7953
ki = 0.4615 (1-entropy) v agent 0.8016
si = 0.7434 / agents 0.8896

v agents 0.8896
v agents 0.8896
/ agents 0.8896

This paragraph of text is deleted from the pre-edition. Our examination of the book

versions suggests annotations on this text should be orphaned. Our annotation persistence

scheme correctly makes the decision.

175

Paragraph 3: orphaned annotation

Annotation anchor
text in pre-edition

RCI Ranking
(in post-edition)

Text

It is the natural style for a distributed
system, i.e., a set of computers that can
communicate with each other through a
network. It is natural because it
reflects the structure of the system and
its costs. Distributed systems are
becoming ubiquitous because of the
continued expansion of the Internet.
Older technologies for programming
distributed systems, such as RPC, CORBA,
and RMI, are based on synchronous
communication. Newer technologies, such
as Web services, are asynchronous. The
techniques of this chapter apply directly
to asynchronous technologies. (The
particularities of programming
distributed systems are explored further
in chapter 11.)

MetaInfo J chapter 5 message passing concurrency

Keywords
(1-entropy)

V.,

v/
V/

V.,

V/

/
V.,

/

reflects
costs
becoming
ubiquitous
continued
expansion
older
rpc
corba
services
explored

0.9118
0.8602
0.8016
0.9118
0.8602
1
0.8602
0.8236
0.9118
1
0. 0.824

176

A distributed system is a set of
computers that are linked together by a
network distributed systems are
ubiquitous in modern society. The
canonical example of such a system the
internet has been growing exponentially
ever since its inception in the late
1970s. The number of host computers that
are part of it has been doubling each
year since 1980. The question of how to
program a distributed system is therefore
of major importance this chapter shows
one approach to programming a distributed
system. For the rest of the chapter we
assume that each computer has an

Rank Ist: Text operating system that supports the
concept of process and provides network
communication. Programming a distributed
system then means to write a program for
each process such that all processes
taken together implement the desired
application. For the operating system a
process is a unit of concurrency. This
means that if we abstract away from the
fact that the application is spread over
different processes this is just a case
of concurrent programming. Ideally
distributed programming would be just a
kind of concurrent programming and the
techniques we have seen earlier in the
book would still apply.

Metalnfo chapter 5 message passing concurrency
o 5.4 program design for concurrency

- 5.4.1 programming with
concurrent components

si = 0.4776 Keywords /' ubiquitous 0.9118
(1-entropy)

As the case of paragraph 2, our model correctly decides to orphan annotations.

177

rci = 0.3793
mi =0
ki = 0.0909

Paragraph 4: orphaned annotation

Annotation anchor
text in pre-edition

RCI Ranking
(in post-edition)

Text

Metalnfo
Keywords

(1-entropy)

It lends itself well to building highly
reliable systems. Since the message-
passing entities are independent, if one
fails the others can continue executing.
In a properly designed system, the others
reorganize themselves to continue
providing a service. This idea is used by
the Erlang language, which is used in
telecommunications and high-speed
networking (see section 5.7).

- chapter 5 message passing concurrency

/ highly
/ reliable
/ reorganize
/ providing
/ service
v/ telecommunications

08015
1
0.9118
0.9190
0.8236
0.9118

Section 5.6 gives an introduction to
erlang a programming language based on

Rank Ist: Text port objects. erlang is designed for and
used in telecommunications applications
where fine grained concurrency and
robustness are important.

rci 0.3974 Metalnfo " chapter 5 message passing concurrency
mi 1 Keywords / telecommunications 0.9118
ki =0.1667 (1-entropy)
si 0.6822 1 1

The annotation persistence model makes the right decision to orphan annotations for

this paragraph of text.

178

I

Paragraph 5: system suggests users to decide

Since this paragraph is deleted from pre-edition, after examine the post-edition, we

decide any annotation made against this paragraph should be orphaned. The annotation

persistence system fails to orphan an annotation in this case, but rather chooses to let the

user to decide. This is labeled as a misclassification.

179

Annotation anchor We define a computation model for message

ext in pre-edition passing as an extension of the
Text declarative concurrent model. We then use

this model to show how to program with
message passing.

MetaInfo chapter 5 message passing concurrency
Keywords
(1-entropy) (no keyword found)

RCI Ranking
(in post-edition)

Section 5.7 explains one advanced topic
the nondeterministic concurrent model

Rank I s'- Text which is intermediate in expressiveness
between the declarative concurrent model
and the message passing model of this
chapter.

rci = 0.6194 MetaInfo " chapter 5 message passing concurrency
mi = 1 Keywords
ki = NaN (1-entropy) (no keyword found)
si = 0.4622

The extended model is called the message
passing concurrent model. Since this
model is nondeterministic it is no longer

Rank 2" Text declarative. A client server program can
give different results on different
executions because the order of client
sends is not determined.

rci = 0.4795 MetaInfo " chapter 5 message passing concurrency
mi = 1 Keywords
ki = NaN (1-entropy) (no keyword found)
si = 0.6320

Paragraph 6: annotation reattached

Annotation anchor
ext in pre-edition

RCI Ranking
(in post-edition)

Rank 1St:

rci = 0.7092
mi = 1
ki = NaN
si = 0.3531

Text

Metalnfo
Keywords
(1-entropy)

Text

Metalnfo
Keywords

(1-entropy)

The declarative concurrent model of the
last chapter cannot have observable
nondeterminism. This limits the kinds of
programs we can write in the model. For
example, we saw that it is impossible to
write a client/server program where the
server does not know which client will
send it the next message.

a chapter 5 message passing concurrency

(no keyword found)

In the last chapter we saw how to program
with stream objects which is both
declarative and concurrent. But it has
the limitation that it cannot handle
observable nondeterminism. For example we
wrote a digital logic simulator in which
each stream object knows exactly which
object will send it the next message. We
cannot program a client server where the
server does not know which client will
send it the next message.

" chapter 5 message passing concurrency

(no keyword found)

System correctly predicted that annotation should be repositioned in the newer

version in this case.

180

'I

I -

t

Paragraph 7: annotation reattached

Annotation anchor
text in pre-edition

RCI Ranking
(in post-edition)

Text

MetaInfo
Keywords
(1-entropy)

The message-passing concurrent model
extends the declarative concurrent model
by adding just one new concept, an
asynchronous communication channel. This
means that any client can send messages to
the channel at any time and the server can
read all the messages from the channel.
This removes the limitation on what kinds
of programs we can write. A client/server
program can give different results on
different executions because the order of
client sends is not determined. This means

that the message-passing model is
nondeterministic and therefore no longer
declarative.

N chapter 5 message passing concurrency

(no keyword found)

The extended model is called the message
passing concurrent model. Since this model
is nondeterministic it is no longer

Rank Ist: Text declarative. A client server program can
give different results on different
executions because the order of client
sends is not determined.

rci = 0.7365 MetaInfo chapter 5 message passing concurrency
mi = 1 Keywords
ki = NaN (1-entropy) (no keyword found)
si = 0.3200

This is an interesting case. The study of this case brings up a constraint we have

imposed in our model implementation. If the constraint is relaxed, we think it represents

an immediate improvement we can make to our model design.

When we study the corresponding content in pre-edition and post-edition versions, we

find that the initial paragraph in the pre-edition was modified in several ways. It not only

went through rewording, but it was also decomposed into two contiguous paragraphs in

post-edition,

181

i

The message-passing concurrent model extends the
declarative concurrent model by adding just one new concept,
an asynchronous communication channel. This means that any
client can send messages to the channel at any time and the
server can read all the messages from the channel. This
removes the limitation on what kinds of programs we can write.
A client/server program can give different results on
different executions because the order of client sends is not
determined. This means that the message-passing model is
nondeterministic and therefore no longer declarative.

becomes the following in post-edition,

we can remove this limitation by extending the model with
an asynchronous communication channel. Then any client can
send messages to the channel and the server can read them from
the channel. We use a simple kind of channel called a port
that has an associated stream. Sending a message to the port
causes the message to appear on the port s stream.

The extended model is called the message passing concurrent
model. Since this model is nondeterministic it is no longer
declarative. A client server program can give different
results on different executions because the order of client
sends is not determined.

Although the model picked up one of the paragraph and suggested repositioning

annotations to it, it nevertheless reveals one of the problems existing in the design and

implementation of the annotation persistence model.

Since the system selects candidate anchor by single paragraphs, if the document

modifications include separation of a large paragraph into several smaller paragraphs, the

chances that the model will misclassify the case becomes high.

Through out the model evaluation, we have taken single paragraph of text as a unit of

operation, both in textbook latent semantic analysis and annotation's original/candidate

anchor selection.

It makes perfect sense in LSA to build the latent semantic space by segmenting

document by its natural paragraph boundary as long as the most paragraphs contain

enough semantic information. If the most of the paragraphs after segmentation are very

short (e.g. a very short sentence), the LSA space built on them may not be a good latent

semantic space representation. After latent semantic space is built, however, any two

texts (regardless if they are from the paragraphs with which LSA space is built upon) can

182

be compared semantically. In our case, we can perform semantic comparisons between

any pair of single paragraphs, or any pair of groups of paragraphs.

For annotation's original anchor text selection, by allowing only single paragraph

selected for original anchor, we are making a constraint on users which disallows them to

annotate multiple continuous paragraphs.

For annotation's candidate anchor text selection, by choosing only one paragraph, we

are ignoring the possibility that a combination of multiple continuous paragraphs maybe

more similar to the annotation's original anchor text.

The problem can be solved by introducing a dynamic paragraph grouping scheme.

We propose the following:

o First, after the first run of the annotation persistence scheme, we identify the

candidate anchor locations with every candidate text being a single paragraph.

We rank them.

o Second, for each candidate anchor, the upper and lower neighboring

paragraphs (need to be continues though) are combined to find the collective

groups (again need to span continuously in the newer version) with the highest

rci value

o Third, re-rank the list.

o Fourth, follow the guidelines to make annotation reposition decisions.

We are running short to implement this automatic optimization idea to the annotation

persistence scheme. However, we performed a manual test on the above idea by

combining the paragraph before the selected paragraph with the selected paragraph from

above table to form a single text. We then measure the rci of between this combined text

with the query document. The rci came in as 0.7347 (wish is very close to 0.7365).

If we follow the above strategy, we still chose the uncombined solution as our

reattached annotation anchors. The dynamic paragraph grouping scheme does not change

the reattachment decisions. However, we think the dynamic paragraph grouping scheme

will be effective on the following cases:

1. Original anchor contains multiple paragraphs, thus candidate may contain

multiple paragraphs as well.

183

2. if the original anchor text is decomposed into many smaller continuous

paragraphs.

The effect of dynamic grouping on the performance of the scheme should be studied

in the future.

184

Paragraph 8: Annotation reattached

Annotation anchor
text in pre-edition

RCI Ranking
(in post-edition)

Text

MetaInfo
Keywords
(1-entropy)

We use a simple kind of channel called a
port that has an associated stream.
Sending a message to the port causes the
message to appear on the port's stream. A
useful programming technique is to
associate a port with a stream object. We
call the resulting entity a port object. A
port object reads all its messages from
the port's stream, and sends messages to
other port objects through their ports.
Each port object is defined by a recursive
procedure that is declarative. This keeps
some of the advantages of the declarative
model.

- chapter 5 message passing concurrency

/ associate 0.867736096909849

Rank 1st:

rci = 0.7760
mi = 1
ki = 1
si = 0.3200

Text

MetaInfo
Keywords
(1-entropy)

A useful programming style for this model
is to associate a port to each stream
object. The object reads all its messages
from the port and sends messages to other
stream objects through their ports. This
style keeps most of the advantages of the
declarative model. Each stream object is
defined by a recursive procedure that is
declarative.

1 0 chapter 5 message passing concurrency

/ associate

The system correctly predicted where annotations should be repositioned in the newer

version.

185

Results Summary

The following table presents a summary of the model predictions compared to human

perceptions.

In the whole text, we identified a total of 89 cases of minor modifications; we expect

the annotation persistence scheme to classify them as candidates for repositioning with a

high degree of confidence.

We also identified total 36 deletions and heavy modifications; we expect the

annotation persistence scheme to classify them as candidates for orphaning annotations.

There are 8 cases, where we think the modification is in the moderate range, and we

expect the annotation persistence scheme to classify them as cases for users to choose.

Here are the comparisons,

Human perceptions Model predictions
Reattach Suggest users Orphaned

annotations to decide annotations
Light modifications 89 82 7

(92%) (8%)
Moderate modifications 8 6 2

(75%) (25%)
Heavy modifications 36 5 31

(13%) (86%)

Table 4.3 Comparison of model predictions of annotation persistence

decisions and human perceptions of the document modifications

Table 4.3 provides convincing evidence that the model predicts most of the

annotation persistence decisions correctly based on human perceptions of the degree of

annotation text modification.

186

Discussion of the Results and the Model

In most of the moderate level text modification cases and several cases where only light

modifications are applied to pre-edition text, the pre-edition texts are modified in such a

way that its contents are expanded and the pre-edition paragraph is decomposed into

several smaller paragraphs in the newer version. The similarity of the pre-edition

paragraph with each smaller post-edition paragraph is lessened. We believe this is the

cause for many misclassifications. Implementing the dynamic paragraph grouping

scheme is foreseeable capable to improve the prediction capability of the annotation

persistence scheme in this scenario.

In the evaluation of model effectiveness, we recognize that since each person may

agree/disagree on the degrees of the text modifications, his/her decision on whether the

annotations should be reattached/orphaned/suggested-for-users-to-decide may be

different. This suggests that we may be have introduced bias into our final results (Table

4.3). To eliminate human bias, clearly an evaluation of the system by a large number of

readers is preferred in order to evaluate the effectiveness of the system.

The design of the annotation persistence scheme, especially the calibration of the rci

and the rci thresholds to determine the annotation repositioning decisions needs further

discussion. Since we use only a small test example to calibrate the contributions of each

location descriptor and rci threshold, its effectiveness is in question, especially in the

boundary cases.

When making decisions on what to do with annotations based on rci values, we paid

attention only to the candidate anchor with the highest rci value. It is often the case that

the distribution of rci values (also the component indices, mi, ki and si) tells a great deal

about the decision on annotation repositions. What if there are more than one rci values

which are bigger than upper rci index? Clearly, this represents one subject of future study

to improve the model selection decisions.

187

Chapter 5

Conclusion

5.1 Thesis Summary

Annotation persistence is a vital component when designing a digital annotation system.

In Chapter One, we present an overview the state-of-art research on annotation system

design and annotation persistence methodologies.

We started by reviewing the annotation taxonomy of annotation forms and functions.

We adopted Marshall's view that annotation can be either implicit or explicit based on its

content, while its location can be within-text or marginal. We defined a generic

representation of digital annotation, where each annotation object is composed of its

"content" and "anchor". Among them, "anchor" contains location reference information

which is used to address into a document. In this section, we also identified the benefits

digitization brings to annotation, as well as the challenges digital annotations face. We

elaborated on one of the challenges annotation persistence over dynamic documents

which is the focus of this study. A large-scale annotation software study conducted in

Microsoft indicated that the inability to reattach annotations once a document changes

can be costly, and in fact, it was the primary reason people stopped using the entire

system.

In the second section of the Chapter One, we reviewed the state-of-art research on

annotation systems and architecture. We elaborated on a few annotation systems

developed in industry and at research institutes that represent the forefront of research in

annotation system development.

In the third section of the Chapter One, we concluded that annotation persistence over

document versions is a complicated and challenging problem, as documents can go

through various types of changes among versions. Before we reviewed the state-of-art
188

annotation re-anchoring methods, we defined robust criteria for the annotation re-

anchoring mechanism. We concluded in our review that none of the current mechanisms

proposed in the literature fully satisfies our robust criteria.

In the last part of Chapter One, we revisited our problem and stated that annotation

persistence over dynamic documents can be formulated as a specialized information

retrieval problem. We designed the annotation's anchor to include three location

descriptors to capture three important characteristics of the annotation's anchor

information:

> Meta-structure information location descriptor

> Keyword location descriptor

> Semantic concept location descriptor

To meet the annotation persistence robust criteria, we require the reattachment

algorithm design to follow the following design guideline; in the case when there are only

minor modifications made to an annotation's anchor text and surrounding context, the

reattachment algorithm should pick the right location in the revised document with high

confidence; in the case when there are increasing changes to the documents, the

reattachment algorithm should present a list of possible answers with a ranking by

confidence scores; in the case when the document changes are radical, the reattachment

algorithm should orphan the annotations rather then reattach them with low confidence.

In Chapter Two, we started with an evaluation of an important nature language

phenomenon, Zipf's Law. We then investigated Luhn's theory on word's cut-offs. Luhn

proposed two cut-offs to Zipf's curve. The ranked word frequency spectra are then

separated into three groups, common words, rare words and words in the middle of the

spectra which contain strong content discriminating abilities.

Common words are also called stopwords in IR. As common words don't carry the

semantics of the contents, a stopword list is usually used in document indexing to

eliminate all common words. This helps to significantly reduce the space overheard of

indices for natural language texts.

Luhn stated that words in the middle range of the spectra of the ranked word list have

strong resolving power; they are strong contributors to the content and semantics of

189

documents. Because of their significant semantic load and relatively rich occurrences in
the document corpus, they should be used exclusively to compare semantics.

Rare words compose a large portion of the word vocabulary. We claim infrequent

words have strong indexing power, i.e. the ability for words to resolve document

locations with strong certainty.

We use entropy to measure a word's indexing power. Entropy values are normalized

such that all word entropy falls with in [0 - 1]. Normalized Word Entropy measures the

word distributions for each word in a text corpus. The more uniformly a word is

distributed in the corpus, the higher the Normalized Word Entropy is, and the closer the

entropy value approaches 1. The more skewed the word's distribution in the corpus, the

lower the Normalized Word Entropy is. In the case when a word appears only once in a

text corpus, the Normalized Word Entropy of this word is 0.

The smaller the Normalized Word Entropy, the larger the word indexing power. Thus

words with very low normalized word entropy are better keywords and can be used to

resolve the parent document locations.

In Chapter Three, we reviewed and evaluated Latent Semantic Analysis. Two well-

known language phenomena which plague the information retrieval performance of

lexical word matching are synonymy and polysemy. Synonymy means that an object can

be referred in many ways, i.e. people use different words to represent the same semantic

subject. Polysemy is the problem of a word having more than one specific meaning. LSA

offers a dampening effect on synonyms, though the effect on polysemy is less

pronounced.

LSA assumes there exist implicit higher semantic structures in term-document

associations. Terms tend to be similar if they appear in the same kind of documents,

whether or not they actually occur within identical word contexts in those documents.

Documents are semantically close if they have many similar words in common, and

semantically distant if they have few words in common.

LSA starts with the construction of the term-document matrix, with each cell

representing the co-occurrences between words and documents. In this section, we

reviewed the operations which are normally performed in IR to prepare a text, such as

lexical analysis of text, treating stopwords, stemming and selection of terms for term-

190

document matrix. We presented the global and local weighting strategies for each cell of

the term-document matrix.

The central component of LSA is the singular value decomposition of the term-

document matrix. The SVD reveals important latent semantic structure by decomposing

the term-document matrix into three sets of matrices, a left orthogonal matrix, a right

orthogonal matrix and a diagonal matrix. An important step in LSA is the dimension

reduction after SVD. By dimension reduction, LSA is able to extract the major latent

semantic structure, and at the same time to eliminate noise and unreliability of word

usages.

The term-document matrix is a large sparse matrix. In this chapter, we discussed

numerical solutions to decompose a large sparse matrix.

LSA has been an active research subject. In this chapter, we reviewed the many

applications to which LSA has been applied. Since LSA is a completely automatic

method, it has been applied to a wide range of problems.

In the last part of the chapter, we evaluated LSA against a text corpus of three years

of Wall Street Journal articles. The text corpus in this study is not a calibrated text

collection, so it is impossible to measure the precision and recall performance of the LSA

retrieval system. Still, the evaluation against the text corpus allows us to evaluate three

things, 1) the tools developed in this study; 2) the computation cost of LSA; 3) the

sample retrieval results and overall effectiveness of the LSA system.

The retrieval results by LSA present us an opportunity to see its power of retrieving

words and terms that are semantically close. In word retrieval, we picked words in three

different semantic concept spaces, namely financial, medical and political. The results

clearly showed the ability of LSA to cluster words based on their semantic meanings. In

document retrieval, the results showed LSA is able to pick up documents which are

semantically similar, though they might not share any common words.

In Chapter Four, we completed the design of the robust annotation persistence

scheme. We finalized the anchor representation design by answering three questions, how

meta-structure information is parsed, how the keyword threshold is determined, and how

to quantify the semantic closeness between documents into a continuous numeric value

ranging from 0 to 1. We went on further to define the three indexes (mi, ki, and si) to

191

represent the quantitative matching of three location descriptors between annotation

anchors. mi measures the match of the meta-structure information between annotation

anchors. ki measure the percentage of keywords contained in the original annotation

anchor left in candidate annotation anchors. si measures the semantic similarities between

annotation anchors. The reattachment confidence index, which is a linear scoring index

with contributions from the three individual indexes, is used to measure the closeness

between original annotation anchors and candidate anchors.

We finished the design of the reattachment algorithm by declaring two RCI threshold

values. The upper threshold value represent the threshold based on which the annotation

persistence scheme will decide if the annotation should be reattached with a high degree

of confidence. The lower threshold value represent the threshold based on which the

annotation persistence scheme will orphan annotations.

A textbook with pre-edition and post-edition versions was used to calibrate and

evaluate the annotation persistence model. We calibrated the model with the data from

portions of the textbook and went on to evaluate the model with the rest of the data from

the textbook.

In the evaluation process of the textbook with versions, we identify the modifications

of the text among versions. We mark the texts in the pre-edition which are subsequently

modified in the post-edition into one of the three categories, lightly modified, moderately

modified and heavily modified. We assume that degrees of the text modifications

coincide with the three decisions we can make on annotation reattachment, 1) whether

annotations should be reattached with high degree of confidence; 2) whether candidate

anchors should be left for users to decide; or 3) whether the annotation should be

orphaned.

The results of the evaluation of the model showed us that the model is very effective

in reattaching annotations with a low level of misclassification errors. Among the cases

where we find only light modifications are made to the texts, the model predicts that, for

92% cases, annotations can be reattached with high degree of confidence. Among the

cases where heavy modifications are made to the text, the model predicts 86% of cases

where annotations should be orphaned.

192

5.2 Future Research

In concluding this thesis, in this section, we would like to point out the improvements we

can make to the proposed annotation persistence scheme. We address the need for mass

evaluation of the model. We also explore the applications of the model to the World

Wide Web.

Dynamic Paragraph Grouping

In the last section of Chapter Four, we elaborated the need and the strategy of dynamic

paragraph grouping when making annotation persistence operations. The strategy of

dynamic paragraph grouping will improve the performance of the model in the following

two scenarios: 1) if users make annotations on multiple continuously distributed

neighboring paragraphs; 2) if the original annotation anchor text is decomposed into

many smaller continuously distributed paragraphs. Dynamic paragraph grouping is an

easy step to add to the current annotation persistence mechanism.

Model Parameter Calibrations

A thorough study on the selection of the parameters of the model is called. How do we

select the entropy cut-off point to select keywords? Are there any automatic and better

ways of selecting rci index coefficients during reattachment confidence index

calibration? Can we classify annotation decisions based on the distribution of the rci

values, rather than using two fixed upper and lower threshold values?

Annotation Multi-Referencing

One of the advantages of the digital form brings to digital annotation is the digital

annotation's capability of having multi-references. Annotations can point to multiple

locations in a document, or even multiple locations in multiple documents. The

mechanism proposed in this study can be applied directly to this scenario as well.

Mass Evaluation

Mass evaluation is required to measure the effectiveness of the proposed annotation

persistence scheme. In the evaluation of model effectiveness, we recognize that since

193

each person may agree/disagree on the degrees of the text modifications, his/her decision

on whether the annotations should be reattached/orphaned/suggested-for-users-to-decide

may be different. This suggests that we may have introduced bias into our final result

summary. To eliminate human bias, clearly an evaluation of the system by a large

number of readers is preferable in order to evaluate the effectiveness of the system.

Application to Web Documents

One of the goals of developing annotation software is to allow users to annotate web

documents. The annotation persistence scheme proposed in this study is only applicable

if domain knowledge about the document can be obtained. Although it is difficult to get

the information directly for web documents, there are some ways to infer that

information. For example, we can check out the key index words and derive the domain

of the knowledge by examining the collective keywords. We can look up the domain or

the URL which may contain useful information to derive domain knowledge as well.

Metadata for web documents continues to evolve and web annotation represents a major

research direction.

194

Appendix

Sample Document Retrieval Results of LSA

The average length of each document in the corpus of the three years of Wall Street

Journal articles is 245 words. The lengths of all documents vary considerably. There are

documents that contain only one or two sentences as well as documents that are

considerably long. In the following we randomly pick three query documents with

varying lengths and retrieve the top five semantically mostly similar documents from the

corpus.

195

The query document in Table A. 1 is about the rise of the British industrial

production rate. The first three retrieved documents are all about British industrial

production rate as well. The fourth ranked and the fifth ranked documents are

about different economic indicators from different countries. Their semantic

distances are further from the top three ranked documents.

Table A.1 LSA query result of a document about "British industrial production"

196

Query seasonally adjusted british industrial production increased
document one point five percent in january from a year earlier and zero

point four percent from december the central statistical office
Retrieved said.
document

british industrial production rose three point seven percent
in november from a year earlier but declined zero point three

Rank 1 percent from october the central statistical office said in a

(14.310) provisional report.
output by manufacturing industries alone grew five

percent from the year before but fell zero point five
percent from october

Rank 2 british industrial production rose four point seven percent in

(15.220) june from a year earlier but fell zero point nine percent from may
the central statistical office said in a preliminary report .

british industrial production in july rose one point eight
Rank 3 percent from june but was down zero point five percent from a

(15.670) year earlier according to provisional data released by the united
kingdom central statistical office.

Rank 4 swiss consumer prices rose one point six percent in january

(16.160) from a year earlier and zero point three percent from december
the government said.

Rank 5 wholesale prices in switzerland rose two point two percent

(16.310) in july from a year earlier and zero point one percent from june
the government said.

In Table A.2, it is clear that the top ranked retrieval document is semantically

very close the query document. The rest of the documents, however, are all about

common stock buybacks, but they are talking about different companies.

Query
document

Retrieved
document

Rank 1
(20.710)

Rank 2

(23.440)

norwest corporation a minneapolis bank holding company
said its board authorized buying back from time to time as many
as two million common shares.

norwest said the repurchased shares will be used to meet
periodic stock issuance requirements under the company's
employee savings and investment plan. they also will be used
for employee stock options a shareholder dividend reinvestment
plan conversions of convertible debentures and for other
corporate purposes .

norwest said it has about forty four point five million
common shares outstanding . the buy back represents four point
five percent of the total .

norwest corporation said it plans to buy as many as nine
hundred thousand shares of its common stock from time to time
in the open market and private transactions .

the bank holding company said the shares will be used for
its employee savings and investment plan for conversions of
convertible debentures and for other corporate purposes .

at june thirtieth norwest had thirty point three million
common shares outstanding.

the holding company for eastchester savings bank said it
will distribute rights to buy preferred stock to common stock of
record october sixteenth . under certain circumstances the rights
would allow holders to buy common shares of eastchester or its
buyer at half price. the company currently has four million
shares outstanding.

puget sound bancorp said its directors have authorized the

Rank 3 repurchase of as many as five hundred thousand of the
company's fifteen point nine million common shares outstanding

(24.130)
the bank holding company said it expects to use the shares

for an employee stock purchase and stock option plan.
national city corporation said its directors approved the

repurchase of one million of its common shares.
the bank holding company said the stock will be held as

Rank 4 treasury stock until it is reissued for stock option plans or in
(24.150) connection with continuing conversion of national city's eleven

point two five percent convertible subordinated debentures
national city has forty point nine million common shares

outstanding. about three hundred thousand shares were issued

197

last year under stock option programs for senior and middle
management.

separately shareholders voted to triple the number of
authorized but unissued common shares to one hundred fifty
million. national city has about fourteen billion dollars in assets

wesbanco incorporated said its board approved the
repurchase of as many as eighteen thousand of its common

Rank 5 shares .

(25.000) the bank holding company said the stock would be used for
the company's employee stock ownership plan possible
acquisitions and other corporate purposes . wesbanco has about
two million shares outstanding.

Table A.2 LSA query result of a document about "common stock buyback"

198

Table A.3's query document is a very long document. It is about Du Pont, one

of its chemical product c.f.c.s., and the fact that Senate's trying to stop Du Pont

from producing the environmentally hazardous product. Documents ranked from

1 to 5 show the clear semantic closeness decay from the query document.

Query
document

199

newspaper ads run by du pont company in the mid nineteen
seventies have come back to nag the chemical giant .

three environmentalist u. s. senators have dredged up the ads
in which du pont promised it would stop producing chemicals
known as chlorofluorocarbons if they were found to harm the
environment .

more than a decade of scientific studies later thirty one
countries have signed a treaty declaring chlorofluorocarbons
known as c. f. c.s a menace to the earth's protective ozone layer.
and du pont is still the biggest u. s. producer of c. f. c.s .

the time has arrived for the du pont company to fulfill that
pledge wrote senators . max baucus d. montana robert stafford r.
vermont and david durenberger r. minnesota to du pont chairman
richard heckert .

the lawmakers suggested du pont stop production of c. f. c.s
within a year because they deplete the ozone layer that shields
the earth from the sun's ultraviolet rays which can cause skin
cancer and other environmental damage. but du pont's mr.
heckert wrote back refusing saying that would be unwarranted
and counterproductive and more drastic than scientific evidence
justifies .

in its ads and separately in testimony on capitol hill du pont
had promised should reputable evidence show that some
fluorocarbons cause a health hazard through depletion of the
ozone layer we are prepared to stop production of the offending
compounds. since then the u. s. has banned use of most c. f. c.s
which also have been called fluorocarbons in aerosol sprays. c.
f. c.s also are blamed for a seasonal hole each year in the ozone
layer over antarctica.

the senate plans to vote next week to ratify the international
pact to freeze and then to roll back by fifty percent world
production of c. f. c.s by mid nineteen ninety nine . c. f. c.s
developed by du pont in the nineteen thirties are widely used as
cooling agents in air conditioners and in refrigerators and in
making plastic foams and computer cleaning solvents

wilmington delaware based du pont supports the treaty but
argues that at the moment scientific evidence does not point to
the need for dramatic c. f. c. emission reductions such as a

complete stop of production .
steve seidel a senior analyst with the environmental

protection agency says there is scientific consensus that chlorine
from c. f. c.s attacks and destroys ozone molecules in the upper
atmosphere . however he said there is dispute about how

Retrieved drastically c. f. c.s must be reduced to stem dangerous levels of
document ozone depletion.

du pont company said it plans to phase out production of
environmentally harmful chlorofluorocarbons in a move that
could pressure other producers and nations to help stop the
destruction of the earth's protective ozone layer .

the chemicals and energy concern didn't specify when it
would end production. but it indicated the phase out and
substitution of environmentally safer products would take
several years and require world wide cooperation .

wilmington delaware based du pont adopted the new policy
after analyzing data compiled by an international scientific panel
that linked chlorofluorocarbons or c. f. c.s to the ozone depletion
problem.

du pont which estimates that it makes twenty five percent of
the world's c. f. c.s markets the compound under the trademark
freon . the company said its goal is an orderly phase out of fully
halogenated c. f. c. production coupled with the introduction of
alternative chemicals and technologies . fully halogenated c. f.
c.s contain chlorine which has been found to destroy the ozone

Rank 1 layer .
(16.630) c. f. c.s are used as cooling agents in refrigerators and air

conditioners as cleaning agents and in making plastic foam.
substitutes for most major applications haven't been adopted. c.
f. c.s had been widely used as propellants in aerosol containers
but the u. s. banned that practice in the nineteen seventies after c.
f. c.s were found to destroy ozone molecules in the upper
atmosphere .

ozone depletion is a major environmental problem . the
ozone layer screens out harmful ultraviolet rays that can cause
skin cancer eye ailments and other health problems as well as
environmental damage.

analysts said du pont's withdrawal from the industry could
boost prices of products that use c. f. c.s but would have little
effect on the chemical giant. the company said c. f. c.s
accounted for less than two percent of earnings and sales last
year. that means its c. f. c. sales totaled about six hundred
million dollars contributing as much as thirty five million dollars
to du pont's nineteen eighty seven profit of one point seven nine
billion dollars .

200

allied signal incorporated the second largest u. s. producer
of c. f. c.s said it is waiting for the national aeronautics and
space administration to release the complete international study
on which du pont based its decision . a du pont scientist was on
the study panel but the company said it based its analysis on an
executive summary of the data released earlier this month. in
the meantime morristown n. j. based allied signal isn't taking any
steps to curtail its c. f. c. production though it is working on
development of substitutes .

though analysts saw little effect from du pont's gradual
withdrawal from c. f c. production the news apparently sparked
a sell off . du pont shares fell three point one two five dollars to
close at eighty two dollars and fifty cents in new york stock
exchange composite trading yesterday. the issue was the
biggest loser among the dow jones industrials and one of the ten
biggest decliners overall . allied signal shares also slid closing at
thirty two dollars down one point one two five dollars in big
board trading.

referring to the ozone depletion problem we take this very
seriously an allied signal spokesman said and we are in
agreement with du pont that any solution is going to take an
international approach.

pennwalt corporation the nation's third largest producer of c.
f. c.s also called the ozone depletion issue a global problem and
called for a world wide end to c. f. c. production as soon as
practical. but the philadelphia based company didn't indicate it
is taking any unilateral steps to curb production.

joseph p. glas director of du pont's freon products division
said the company hopes to drum up support for an international
treaty known as the montreal protocol which calls for reductions
in c. f. c. use. the treaty was reached last september and signed
by thirty one nations but it can't take effect until at least eleven
countries representing two thirds of the world's c. f. c.
production ratify it. so far only mexico and the u. s. have done
so.

mr. glas said his vision is to stick to the timetable set in the
protocol which would reduce c. f. c. production twenty percent
by nineteen ninety three and then very quickly start stepping it
down to a ninety five percent reduction by two thousand three .
the treaty uses nineteen eighty six as a base year and would
reduce production by only fifty percent . the protocol has come
under criticism from environmentalists as too lenient.

in a rare show of support environmental groups generally
applauded du pont's action. this is an excellent example of
corporate environmental leadership that ought to be emulated
world wide said daniel j. dudek senior economist with the

201

environmental defense fund . this really is a breakthrough.
obviously du pont has been a large part of the problem but du
pont surprised everyone and the policy shake up is going to be a
large part of the solution.

geoffrey webb international director of friends of the earth
said i think there could be a domino effect world wide . the
industry has tried to band together to put up a common front and
du pont's action could break the logjam. nevertheless he
criticized the company for not establishing a firm timetable.

du pont's action reverses its previously reported stand made
earlier this month when three environmentalist u. s. senators
dredged up newspaper ads that du pont ran in the mid nineteen
seventies . in the ads and separately in testimony on capitol hill
du pont had promised to stop producing c. f. c.s if they were
found to harm the environment. the three senators citing the
treaty declaring the chemicals a menace called on du pont to
fulfill its pledge . du pont chairman richard heckert wrote to the
lawmakers saying their suggestion to stop c. f. c. production
within a year would be unwarranted and counterproductive and
more drastic than scientific evidence justifies .

du pont's phase out plan some analysts said will mean that
prices of some consumer and industrial products that use c. f. c.s
are likely to rise because substitutes will be more expensive and
new designs may be needed for products such as compressors
for air conditioners .

john henry an analyst at shearson lehman hutton
incorporated predicted du pont's decision ultimately could boost
its earnings . they will be introducing new products and are
entitled to a higher profit margin he said .

saving the earth's protective ozone layer isn't going to be an
easy job. du pont company's acknowledgment last week that
the ozone is at risk has focused attention on the severity and
urgency of the problem. du pont's solution is simple stop
making the chemicals that are believed to be the culprit . but the
world has become so heavily dependent on those chemicals
known as chlorofluorocarbons or c. f. c.s that accomplishing the

Rank 2 goal will be risky and costly.
(16.990) the task will require world wide cooperation and good

substitutes . it will cost hundreds of millions of dollars in
research and plant construction. moreover weaning the world
too quickly from c. f. c.s could eliminate tens of thousands of
jobs trigger bankruptcies and even cause new health risks .

du pont has certainly sent a strong signal to those who
thought they'd wait it out and not do anything acknowledges
kevin fay executive director of the alliance for responsible c. f. c.

202

policy which represents producers and users of c. f. c.s . but
how fast can we do it.

adds karl loos vice president of chemicals and plastics at
arthur d. little a boston consulting firm we're in turmoil . we're
all looking for the answers and they aren't clear right now

invented in the nineteen thirties c. f. c.s make refrigerators
and air conditioners produce cool air . they're used in plastic
foam and cleaning agents . they were once used as propellants
in aerosol containers until the practice was banned in the u. s. in
the late nineteen seventies . without c. f. c.s food would spoil
office workers would wilt and cars would be less comfortable.
in the u. s. alone c. f. c.s represent a twenty eight billion dollar
industry that employs about seven hundred fifteen thousand
people in five thousand companies.

it wasn't until nineteen seventy four that scientists raised the
possibility that c. f. c.s might be eating away at the ozone the
layer of stratosphere that screens out the sun's harmful ultraviolet
rays . the rays can cause skin cancer eye ailments and other
health problems as well as environmental damage to crops and
fish populations .

c. f. c. producers du pont is the largest of the five major u. s.
suppliers began back then looking for substitutes . the research
effort today involves hundreds of scientists . du pont estimates it
has invested about thirty million dollars so far including ten
million dollars last year. it expects to spend even more this year
. though other companies are spending somewhat less the
problem has been given top priority in the industry officials say

the stakes are high. companies may invest hundreds of
millions of dollars in new plant construction to make substitute
products so they want to be sure the substitutes aren't toxic and
don't fail to serve the purpose. early on for example du pont
thought it had come up with a good substitute for cleaning
electronic equipment and then discovered the compound caused
sterility in male rats .

products may be obsolete by the time they are ready to
market. such was the case in the late nineteen seventies when
pennwalt corporation developed a replacement for c. f. c.s in
aerosol cans . by the time the company had finished testing the
product for toxicity aerosol users had moved on and decided to
use a hydrogen compound instead.

we were left with an approved product and no market says
peter miller manager of pennwalt's isotron division.

there also may be production problems . at allied signal
incorporated the second largest c. f. c. producer in the u. s.
bernard sukornick director of fluorocarbon research cites the
risks of investing in commercial plant production for a new

203

product before it is known from pilot studies whether the final
manufacturing process is indeed adequate .

we're taking considerable risks and shortcuts says mr.
sukornick we're risking much more from a financial point of
view than this type of industry usually takes .

in the rush to find substitutes it is difficult to assess whether
a product is the best possible outcome . as a scientist i can't
stand here and tell you that i have gone through every
combination says mr. sukornick. i know i haven't looked at the
problem in enough ways to be satisfied intellectually but i have
no time. i have to take what i've got and go with it.

for manufacturers that use c. f. c.s in their products the risks
aren't as easy to define . they are potentially devastating if the
process moves too quickly. under the worst circumstances
producers would stop making c. f. c.s before substitutes are
available . shortages would develop prices would skyrocket and
manufacturers of appliances such as refrigerators would go
bankrupt.

du pont's plan to cease c. f. c. production has heightened
anxieties . although the company promises an orderly transition
to the total phase out it could stop making c. f. c.s at any time .
if others followed and substitutes weren't available shortages
could develop that would put some customers out of business.

in addition the du pont announcement runs the risk of
encouraging congress to legislate restrictions that the industry
would find unpalatable according to industry officials .

if du pont says we choose to get out of this du pont goes on
says mr. fay of the c. f. c. alliance. but g. e. can't just say we
won't make refrigerators . it's a much tougher position for user
industries . adds arnold braswell president of the air
conditioning and refrigeration institute which represents
manufacturers we're very nervous .

yet another challenge is cooperation. while du pont has
boldly stated its intentions to eventually cease production of c. f.
c.s it hasn't said when it will do so no other producer has yet
jumped on the band wagon. du pont estimates that it makes
twenty five percent of the world's c. f. c.s but recognizes that it
can't solve the world's problem alone.

indeed du pont's plan goes significantly beyond the montreal
treaty signed by thirty one countries last fall . the treaty calls for
a fifty percent reduction in nineteen eighty six levels of c. f. c.
production by nineteen ninety eight but not a total phaseout .

for c. f. c. users the dilemma is different . richard barnett
chairman of the c. f. c. alliance says equipment manufacturers
won't retool their plants until they can know with certainty
which c. f. c. substitutes the producers will stick with. when

204

these customers retool he says it has got to be right . they can't
afford to change two or three times .

the u. s. by an eighty three to zero vote in the senate became
the first major producer and consumer of ozone depleting
chemicals to ratify a treaty limiting their production.

thirty one countries signed the treaty that was reached in
montreal last september to curb the global use of
chlorofluorocarbons also known as c. f. c.s . the senate's vote
was considered crucial to winning enough support world wide to
put the treaty into effect by january nineteen eighty nine .

the treaty can't take effect unless ratified by at least eleven
countries representing at least two thirds of the world's c. f. c.
production . mexico is the only other country to ratify so far .
japan's parliament is expected to vote before june u. s. officials
said .

c. f. c.s are widely used as cooling agents in refrigerators
and air conditioners as computer cleaning solvents and in
making plastic foam. after it was discovered in the mid
nineteen seventies that chlorine from c. f. c.s attack and destroy
ozone molecules in the upper atmosphere the u. s. canada and
some scandinavian countries banned the use of c. f. c.s in most
aerosols though not for other uses .

depletion of the earth's ozone layer is of concern because the
ozone screens out harmful ultraviolet rays which can cause skin
cancer cataracts and environmental damage . scientists blame c.
f. c.s for a seasonal hole in the ozone layer over antarctica . the
national aeronautics and space administration today plans to
issue new estimates on global ozone depletion.

the treaty would hold production of the most commonly
used c. f. c.s at nineteen eighty six levels . then production
would be reduced twenty percent by mid nineteen ninety four
and fifty percent by nineteen ninety nine . the agreement also
calls for a freeze on consumption of related chemicals known as
halons in nineteen ninety two .

many environmentalists argue the treaty doesn't go far
Rank 3 enough in restricting c. f. c.s to save the ozone layer. however

(17.230) the agreement will prompt the search for substitute chemicals .
meanwhile prices for depleted supplies of c. f. c.s are expected
to at least double .

five u. s. companies make c. f. c.s and now sell about seven
hundred fifty million dollars a year of the compounds . the
compounds in turn are used in products and services that bring in
billions of dollars a year according to the chemical industry .
under the treaty companies making and using c. f. c.s in nineteen
eighty six would be assigned quotas which could be traded. the

205

two largest producers are du pont company and allied signal
incorporated .

the u. s. accounts for about one third of world c. f. c.
production. other big producers are the soviet union japan and
several european nations .

in nineteen thirty thomas midgley junior a general motors
corporation chemist stood before a scientific audience and
inhaled a whiff of a new refrigerator coolant to prove its safety

mr. midgley showed no ill effects . since then uses of that
chemical and related substances have blossomed in products
ranging from air conditioners to throwaway packaging .

but governments world wide and thousands of u. s.
companies including g. m. now face hard choices as evidence
mounts that such compounds are eating away the fragile natural
layer of ozone that shields the earth from ultraviolet rays . u. s.
officials warned recently for instance that forty million more
americans than previously expected face skin cancer over the
next century if global use of ozone destroying chemicals isn't
checked . substantial ozone loss is also likely to harm crucial
plant and sea life and affect the world's climate many researchers
believe .

evidence of widespread chemical depletion of the ozone
layer which begins eight miles above the earth's surface is far

Rank 4 from conclusive . scientists are still debating the causes behind
(18.35) recent reports of ozone loss over the south pole and elsewhere .

yet the risks of waiting for science to find definitive answers is
too great officials of some governments say. of particular
concern some say is that the huge reservoir of ozone destroying
chemicals already in the atmosphere is growing and is expected
to persist for decades . if we can't control these chemicals now
we probably won't get a second chance says victor buxton a
canadian environmental official.

this week some forty five nations including the u. s. and
canada are meeting in geneva switzerland in a bid to hammer out
global limits on ozone destroying chemicals . some activists
believe the process if successful could set the pattern for
resolving other industrial pollution dilemmas that threaten all
nations .

getting industry to curb its appetite for these compounds
however may be a problem. u. s. chemical makers aren't racing
to create safer products . auto makers like g. m. may face costly
plant overhauls for example. while some u. s. manufacturers
are cutting down on these chemicals others aren't even when

206

alternatives exist. and american industry uses only about thirty
percent of the world's production of such compounds

chlorofluorocarbons or c. f. c.s the most pervasive ozone
destroying chemicals are used as coolants in refrigerators and air
conditioners as solvents in electronics manufacturing and in
making plastic foam insulation and foam cups and packages.

the largest producer is du pont company which markets c. f.
c. products under the brand name freon . other major producers
include allied signal incorporated pennwalt corporation kaiser
aluminum and chemicals corporation and racon incorporated.
there are other ozone destroying compounds such as halons a
chemical group used in high tech firefighting equipment.

the ozone debate began in nineteen seventy four when two
university of california chemists f. sherwood roland and mario j.
molina argued that c. f. c.s don't decompose in the lower
atmosphere as do most other compounds . instead they theorized
c. f. c.s slowly drift into the upper atmosphere where they
eventually break down starting a complex chemical reaction that
destroys ozone a naturally occurring form of oxygen .

reports of the chemists' work sparked a massive u. s.
consumer boycott of aerosol deodorants hair sprays and similar
products that depended on c. f. c.s . in nineteen seventy eight the
environmental protection agency banned c. f. c.s as propellants
in most aerosols resulting in a forty percent decrease in u. s.
industrial demand for the chemicals .

the action however proved only a stopgap . though the
propellant ban still is in effect c. f. c. sales in the u. s. have since
zoomed back to pre aerosol ban levels largely sparked by the
explosive growth of such products as foam throwaway
packaging and increasing demand for c. f. c.s as a solvent by
electronics manufacturers . researchers say it doesn't matter how
c. f. c.s are used whether in a spray can or a hamburger package
eventually they all are released into the atmosphere .

global sales of the compounds are also rising because
among other things most european nations didn't follow the u. s.
aerosol ban.

lacking easy targets such as spray cans consumer action
alone isn't likely to blunt the growing use of c. f. c.s . the family
car for example is filled with c. f. c. based products ranging from
the coolant in its air conditioner to the padding for its seat and
dashboard .

because of the compounds' pervasive use u. s. companies
that eluded regulation in the nineteen seventies probably won't
escape again in any tightening of regulations . they know the
handwriting is on the wall says kathleen a. wolf an analyst with
rand corporation a santa monica california based consulting

207

concern . in recent months a number of u. s. concerns such as g.
m. ford motor company and international business machines
corporation have formed in house task forces to study ways to
reduce c. f. c. use.

the mobile air conditioner found in the vast majority of
american cars is a major source of c. f. c. pollution in the u. s. c.
f. c. based coolants are frequently released into the air when the
systems undergo repair. while some u. s. cities such as tampa
florida are moving to have bus air conditioner repairmen trap the
compounds for recycling the impact of recycling on the problem
is limited . engineers say about sixty five percent of a car's air
conditioner coolant leaks before it ever gets to a repair shop .

auto makers say they are attacking the problem on several
fronts. g. m. engineers for example are looking at tightening
existing systems with new gaskets and other devices says richard
klimisch the company's top environmental official. but rather
than shoulder the huge financial burden of developing new types
of air conditioners g. m. is relying on chemical companies to
develop alternative coolants he says .

as was the case during the first ozone layer controversy
battle lines are forming over who c. f. c. producers or auto
makers will pay for research and development of
environmentally safer compounds. g. m. officials say both du
pont and the british based i. c. i. industries p. 1. c. have agreed
only to produce test batches of a possible ozone safe air
conditioner replacement coolant known as f. c. one thirty four a.

they're interested in making f. c. one thirty four a but there
are questions over who is going to pay for the toxicity testing
and the types of sales guarantees they want from us mr. klimisch
says . f. c. one thirty four a was first developed in the late
nineteen seventies but both chemical and auto makers dropped
work on the compound when government pressure to expand the
scope of c. f. c. regulations eased in the early nineteen eighties .

u. s. chemical producers clearly aren't rushing to develop
substitutes . morristown n. j. based allied signal for example
dispatched sales teams nationwide this summer in a bid to get
electronics manufacturers to switch to c. f. c.s from other
solvents according to chemical distributors . an allied signal
spokesman declined to comment on the matter.

du pont after disputing the c. f. c. ozone link for twelve
years recently conceded that the compounds could pose a future
ozone threat and called for global limits on their use . company
officials say they have restarted research into f. c. one thirty four
a but aren't planning heavy spending on it until regulatory action
or consumer demand justify it. the principal problem with f. c.
one forty three a production is the lack of a chemical catalyst to

208

produce the substance in commercial quantities.
u. s. chemical producers however may soon face

competitive pressures . i. c. i. industries has also restarted work
on f. c. one thirty four a. a japanese chemical maker diakin
kogyo company and a german concern hoechst a. g. hold f. c.
one thirty four a production patents says richard lagow a
university of texas chemistry professor and a consultant to the e.
p. a. on the c. f. c. issue . both du pont and i. c. i. officials say f.
c. one thirty four a development is at least five years away.

some companies aren't waiting. at digital equipment
corporation plants in andover massachusetts and salem n. h.
water based systems recently replaced c. f. c.s in some
electronics cleaning processes says james rogers a company
environmental manager. he says the maynard massachusetts
based producer of computers and computer parts has set the
immediate goal of capping c. f. c. use followed by a phase out
where practical. we feel the consequences of underreacting to
the ozone threat are worse than the consequences of overreacting
he says .

other companies could apparently do without the c. f. c.s
they currently use . for instance while some mcdonald's
corporation foam packages for its mcdlt hamburgers contain c. f.
c.s others don't. a spokeswoman for the oak brook illinois based
fast food company says c. f. c. based packages don't keep a
hamburger hotter but simply reflect c. f. c. use by some of
mcdonald's foam package suppliers. mcdonald's hasn't yet
decided whether to switch suppliers the spokeswoman says . she
adds however that the company has met with suppliers in recent
weeks to discuss the issue .

world wide the pressure also is building to control c. f. c.s .
a global approach is critical say some regulators and activists
because an estimated seventy percent of the world's c. f. c. use
occurs outside the u. s. intensified demand from developing
nations is also projected in future years as their purchases of air
conditioners refrigerators and other items grow.

the global freeze proposals under study at the geneva
meeting this week would exploit the law of supply and demand.
by capping c. f. c. production some regulators argue prices of
ozone destroying chemicals would rise forcing users to seek
alternatives . that would provide chemical makers with the
incentive to develop safer products they say.

richard benedick the state department official heading the u.
s. delegation at geneva said recently that he expects the world's
nations to agree byjuly on the need to limit ozone destroying
chemicals . after reaching a general accord nations can debate
specific limits on the chemicals' uses revising them downward or

209

upward as scientific data build he added.
others are less sanguine . european chemical producers for

instance still advocate substantial c. f. c. growth. if the global
talks stall senator john chafee r. r. i. recently said he will push
for legislation restricting imports of some c. f. c. based products .
the e. p. a. is also under a court ordered may deadline to decide
on added c. f. c. regulations .

science may not be able to provide policy makers with firm
guidance . preliminary data from antarctica for example indicate
that annual ozone loss there may result from both chemical and
as yet unexplained regional and seasonal factors says robert
dezafra an atmospheric physicist at the state university of new
york stony brook.

yet mr. dezafra a member of the recent u. s. scientific
expedition to antarctica says he is worried . every day he says
the cloud of c. f. c. in the atmosphere is building pushing the
world further along a process it won't be able to reverse . says
mr. dezafra we got a late start studying this problem and we're
getting an even later start finding a solution .

the environmental protection agency said it is considering
fees on windfall profits that may result from new production
quotas for chemicals thought to be depleting the earth's ozone
layer .

the e. p. a.'s comment came as the agency as expected set
production quotas that could sharply drive up the price of
chlorofluorocarbons or c. f. c.s .

the quotas which affect the five u. s. producers of c. f. c.s
would bring the country into compliance with a treaty signed in
montreal last september aimed at reducing world wide
production. under the quotas producers cannot exceed their
nineteen eighty six production of c. f. c.s in any one year.

Rank 5 the quotas go into effect in july nineteen eighty nine if
(20.490) eleven of the treaty signatories representing two thirds of world

production have ratified the treaty by january first nineteen
eighty nine . at the end of last month thirty seven nations had
signed the treaty and six nations had ratified it including the u. s.

we want producers to produce substitutes faster and users to
use substitutes faster said eileen claussen an e. p. a. official for
air and radiation issues .

but producers argued that the profits would help pay the
expense of switching over to substitutes .

du pont company which last week announced that it would
no longer be making c. f. c.s by the year two thousand said the
fee would be unnecessary because the industry is already

210

moving rapidly toward finding substitutes . du pont the world's
largest producer of c. f. c.s is planning to spend thirty million
dollars this year on research and development of substitutes and
said higher prices it receives for its products will never become
profits .

you'll end up taking away the incentive for alternatives
development or for conservation said joseph steed environmental
manager for du pont's c. f. c. division.

pennwalt corporation the third largest u. s. producer said its
research budget has increased by four times and that it expects to
modify or close plants soon to phase out all its c. f. c. production
eventually .

if somebody thinks we're going to make money out of all
this they're dreaming said peter miller manager of pennwalt's c.
f. c. division. we'll do everything we can to fight the fee.

the e. p. a. said it will also consider holding an auction of
rights to produce the limited amount of c. f. c.s as another way to
curtail any windfall profits .

c. f. c.s are used in car and building air conditioning
cleaning agents and plastic foam. scientists believe c. f. c.s
contribute to the breakdown of the ozone layer which screens
out ultraviolet rays . excess ultraviolet rays can cause skin
cancer and other health and environmental problems .

laurie hays in philadelphia contributed to this article .

Table A.3 LSA query result of a document about "Du Pont company"

211

References

AMBIA (1996). Re:mark. Markup and reviewfor Adobe Acrobat software. User's Guide.
Http://www.ambia.com/remark.html.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999) Modem Information Retrieval. Addison-
Wesley.

Bargeron, D., Gupta, A., Grudin, J., Sanocki, E. (1999) Annotationsfor streaming video
on the web. system design and usage Studies. Proceedings of the Eighth International
World Wide Web Conference (WWW8).

Bartell, T. Brian, Cottrell, W. Garrison and Belew, K. Richard K (1992) Latent Semantic
Indexing is an optimal special case of multidimensional scaling. SIGIR Forum (ACM
Special Interest Group on Information Retrieval), p. 161-167.

Bernheim, A. J. and Bargeron, D. (2001) Robust anchoring annotations using keywords,
Technical Report MSR-TR-2001-107.

Bernheim, A.J., Bargeron, David, Gupta, A., Cadiz, J. J. (2001) Robust annotation
positioning in digital documents, SIGCHI'01, Seattle, WA.

Berry, M. W. (1992) Large scale singular value computations, Internat. J. Supercomputer
Appl., 6, pp. 13-49.

Berry, M. W., Do, T., O'Brien, G., Krishna, V., and Varadhan, S. (1996) SVDPACKC
(Version 1) user's guide. Computer Science Department, University of Tennessee.

Berry, M. W., Dumais, S. T., O'Brien, G. W. (1995) Using linear algebrafor intelligent
information retrieval, SIAM Review, Vol. 37, No. 4, pp. 573-595.

Brown, P.J. and Brown, H. (2003) Annotation: a Step towards the read/write document.
http://www.dcs.ex.ac.uk/-pjbrown/papers/annotaiton-guide experiment.pdf.

Cardiz, J., Guptat, A. and Gruding, J. (2000) Using web annotationsfor asynchronous
collaboration around documents. Proceedings of CSCW'00, Philadelphia, PA.

Croft, B. (2001) Class notes. CMPSCI 646: Information Retrieval.

212

Davis, J. and Huttenlocher, D. (1995). Shared annotation for cooperative learning.
Proceedings of the 1995 Conference on Computer Supported Cooperative Learning
(CSCL 1995).

Deerwester, S., Dumais, S. T., Funas, G. W., and Landauer, T. K. (1988) Indexing by
Latent Semantic Analysis, J. of the American Society for Information Science. 41(6):
391-407.

Dumais, S. T. (1991) Improving the retrieval of information from external sources,
Behavior Res. Meth., Instruments, Computers, 23, pp. 229-236.

Dumais, S. T. (1994) Latent Semantic Indexing (LSI) and TREC-2, In D. Harman (Ed.),
The Second Text Retrieval Conference (TREC2), National Institute of Standards and
Technology Special Publication 500-215, pp. 105-116.

Dumais, S. T. (1997) Using Latent Semantic Indexing (LSI) for information retrieval,
information filtering and other things, Cognitive Technology Conference, April 4.

Dumais, S. T. and Nielsen, J. (1992) Automating the assignment ofsubmitted
manuscripts to reviewers, in SIGIR'92: Proceedings of 15th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
Denmark, ACM Press, pp. 233-244

E-quill. http://www.e-quill.com/.

Foltz, P. W. (1990) Using latent semantic indexingfor information filter, in Proc. ACM
Conference on office Information Systems (COIS), pp. 40-47.

Foltz, P. W. and Dumais, S. T. (1992) Personalized information delivery: an analysis of
information filtering methods, Communications ACM, 35, pp. 51-60.

Frakes, W. and Baeza-Yates, R. (1992) Information Retrieval: Data Structures and
Algorithms. Prentice Hall, Englewood Cliffs, NJ, USA.

Furnas, G. W., Deerwester, S., Dumais, S. T., Landauer, T. K., Harshman, R. A., Streeter,
L. A., and Lochbaum, K. E. (1988) Information retrieval using a singular value
decomposition model of latent semantic structure, Proc. SIGIR, pp. 465-180.

Gronbak, K., Sloth, L. and Orbak, P. (1999) Webvise: browser andproxy supportfor
open hypermedia structuring mechanisms on the WWW, Proceedings of the Fifth
International World Wide Web Conference, Toronto.

Harman, D. (1986) An experimental study offactors important in document ranking, In
Proceedings of ACM SIGIR, Pisa, Italy.

HyperNix, http://www.hypernix.com.

213

Jones, S. K. (1972) A statistical interpretation of term specificity and its applications in
retrieval, Journal of Documentation, 28(1), 11-21.

Kahan, J. and Koivunen, M-R. (2001) Annotea: an open RDF infrastructure for shared
web annotations, Proceedings of the WWW10 International Conference, Hong Kong.

Kwon, 0-H, Kim, M-C, and Choi, K-S. (1994) Query expansion using domain-Adapted,
weighted thesaurus in an extended boolean model. CIKM 94, Proceedings of the
Third International Conference on Information and Knowledge Management, P. 140-
146.

Landauer, T. K., Foltz, P. W., and Laham, D. (1998) An introduction to Latent Semantic
Analysis, Discourse Processes, 25, 259-284.

Landauer, T. K. and Littman, M. L. (1990) Fully automatic cross-language document
retrieval using latent semantic indexing, in Porc. 6 th Annual Conference of the UW
Center for the New Oxford English Dictionary and Text Research, UW Center for the
New OED and Text Research, Waterloo, Ontario, pp. 31-38.

Lee, J. H., Kim, W. Y., Kim, M. H. and Lee, Y. J. (1993) On the evaluation of boolean
operators on the extended boolean retrieval framework. Proceedings of the Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, P. 291-297.

Luhn, H. P. (1958) The automatic creation of literature abstracts, IBM Journal of
Research and Development, 2, 159-165.

Marshall, C. C. (1997) Annotation: from paper books to the digital library, Proceedings
of Digital Libraries, Philadelphia, PA.

Marshall, C. C. (1998) Toward an ecology of hypertext annotation, Proceedings of
HyperText '98, Pittsburgh, PA.

Nielsen, J., Phillips, V. L., and Dumais, S. T. (1994) Information retrieval of imperfectly
recognized handwriting, Behavior and Information Technology.

NovaWiz, http://www.novawiz.com.

O'Hara, K. and Sellen, A. (1997) A comparison of reading paper and online documents.
Proceedings of CHI'97, Conference on Human Factors in Computing Systems,
Atlanta, GA.

Ovsianniko, I. A., Arbib, M. A. and Mcneill, T. H. (1999) Annotation technology, Int. J.
Human-Computer Studies 50, 329-362.

214

Phelps, T. A. and Wilensky R. (1996) Multivalent documents: inducing structure and
behaviors in online digital documents. Proceedings of the 2 9 th Hawaii International
Conference on System Sciences, Maui, Hawaii.

Phelps, T. A. and Wilensky, R. (1997) Multivalent annotations, Proceedings of the First
European Conference on Research and Advanced Technology for Digital Libraries,
Pisa, Italy.

Phelps, T. A., Wilensky, R. (2000) Robust intra-document locations. Computer Networks
33, 105-118.

Rehder, B., Littman, M. L., Dumais S., and Landauer T. K., (1997). Automatic 3-
language cross-language information retrieval with latent semantic indexing, in
The Sixth Text Retrieval Conference, pages 103--110. National Institute of Standards
and Technology Special Publication.

Roscheisen, M., Mogensen, C. and Winograd, T. (1995) Shared web annotations as a
platform for third-party value-added information providers: architecture, protocols,
and usage examples. Technical Report CSDTR/DLTR.

Salton, G. (1968) Automatic Information Organization and Retrieval, McGraw Hill, New
York.

Salton, Gerard. (1983) Introduction to Modem Information Retrieval. McGraw-Hill.

Salton, Gerard. (1988) Automatic Text Processing. Addison-Wesley Publishing
Company.

Salton, G. and Buckley, C. (1996) Term weighting approaches in automatic text
retrieval. Information Processing and Management Vol. 32 (4), P. 431-443.

Shannon, C. E. (1948) A mathematical theory of communication, Bell System Tech. J.,
vol. 27, 379-423 and 623-656, July and October.

Story, R. Roger (1996) An explanation of the effectiveness of latent semantic indexing by
means of a Bayesian regression model. Information Processing and Management,
Vol.32 (3), p.329-344.

Streeter, L. A. and Lochbaum, K. E. (1988) An Expert/Expert Locating System based on
Automatic Representation of Semantic Structure. In: Proceedings of the Fourth IEEE
Conference on Artificial Intelligence Applications, Computer Society of the IEEE,
San Diego, CA: 345 - 349.

Third Voice. http://www.thirdvoice.com.

UTok. http://www.utok.com.

215

Yee, K-P. The CritLink Mediator. http://crit.org/critilink.html.

Zadu. http://www.zadu.com.

Zipf, H. P. (1949), Human Behavior and the Principle of Least Effort. Addison-Wesley,
Cambridge, Massachusetts.

216

