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Abstract
In the first chapter I investigate whether firms' physical investments react to the specu-
lative over-pricing of their securities. I introduce investment considerations in an infinite
horizon continuous time model with short sale constraints and heterogeneous beliefs along
the lines of Scheinkman and Xiong (2003) and obtain closed form solutions for all quan-
tities involved. I show that market based q and investment are increased, even though
such investment is not warranted on the basis of long run value maximization. I use a
simple episode to test the hypothesis that investment reacts to over-pricing. With pub-
licly available data on short sales during the 1920's, I examine both the price reaction
and the investment behavior of a number of companies that were introduced into the
"loan crowd" during the first half of 1926. In line with Jones and Lamont (2002), I
interpret this as evidence of overpricing due to speculation. I find that investment by
these companies follows both the increase and the decline in "q" before and after the
introduction, suggesting that companies in this sample reacted to security over-pricing.
In the next chapter of the thesis (co-authored with E. Farhi) we study optimal consump-
tion and portfolio choice in a framework where investors save for early retirement. We
assume that agents can adjust their labor supply only through an irreversible choice of
their retirement time. We obtain closed form solutions and analyze the joint behavior
of retirement time, portfolio choice, and consumption. In the final chapter of the the-
sis (co-authored with R. Caballero) we turn attention to hedging of sudden stops. We
observe that even well managed emerging market economies are exposed to significant
external risk, the bulk of which is financial. We focus on the optimal financial policy of
such an economy under different imperfections and degrees of crowding out in its hedging
opportunities.

Thesis Supervisor: Ricardo J. Caballero
Title: Ford International Professor of Economics
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Chapter 1

Introduction

In the last two decades financial markets experienced significant growth. Progress in

information technology, along with wide ranging deregulation allowed an expansion of

the financial markets in at least three important directions: first, a number of smaller

more innovative firms were able to access stock and bond markets in order to obtain

capital. Second, the supply of such capital increased by the presence of both -sometimes

exuberant- optimism and because of the advent of vehicles like 401k's that gave workers

an attractive alternative to save for retirement through the financial markets (especially

the stock market). Third, financial markets crossed national boundaries offering investors

and firms new investment opportunities.

This expansion made a number of issues concerning the interactions between the

"real" side of the macroeconomy and the financial markets more apparent. First, the

spectacular increase in stock values was accompanied by an increase in investment, which

declined together with the stock market. Assuming that this behavior of the stock market

was due to exuberant optimism, one is left to wonder why investment exhibited this

behavior. Should the classical theory of Tobin's "q" hold, even if "q" does not reflect

fundamentals? The theoretical and empirical implications of this question are the subject

matter of the first paper: I investigate whether firms' physical investments react to the

speculative over-pricing of their securities. I introduce investment considerations in an
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infinite horizon continuous time model with short sale constraints and heterogeneous

beliefs along the lines of Scheinkman and Xiong (2003). I obtain closed form solutions

for all quantities involved. I show that market based q and investment are increased, even

though such investment is not warranted on the basis of long run value maximization.

Moreover, I[ show that investment amplifies the effects of speculation on prices through

an increase in the value of "growth" options. In the empirical section of the paper,

I use a simple episode to test the hypothesis that investment reacts to over-pricing.

With publicly available data on short sales during the 1920's, I examine both the price

reaction and the investment behavior of a number of companies that were introduced into

the "loan crowd" during the first half of 1926. In line with Jones and Lamont (2002),

I interpret this as evidence of overpricing due to speculation. I find that investment by

these companies follows both the increase and the decline in "q" before and after the

introduction, suggesting that companies in this sample reacted to security over-pricing.

In the next paper of the thesis (co-authored with E. Farhi) we develop a model in

order to understand a different type of interaction between the "real" and the financial

side of the economy. Namely, we study optimal consumption and portfolio choice in a

framework where investors save for early retirement. The importance of these interac-

tions became very apparent, especially after the collapse of the stock market in 2000,

when retirement was postponed by many workers with funds invested in 401k's. In the

model we assume that agents can adjust their labor supply only through an irreversible

choice of their retirement time. We obtain closed form solutions and analyze the joint

behavior of retirement time, portfolio choice, and consumption. We find that wealth

plays a dual role: next to determining the resources available for future consumption, it

controls the "distance" to early retirement. This introduces some new sources of wealth

and horizon effects for optimal consumption and portfolio choice, that can be given an

intuitive interpretation as option-type effects.

In the final paper (co-authored with R. Caballero) we turn attention to some implica-

tions of financial market expansion beyond national boundaries. This expansion made us
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observe during the 80's and the 90's ,that even well managed emerging market economies

are exposed to significant external risk, the bulk of which is financial. At a moment's no-

tice, these economies may be required to reverse the capital inflows that have supported

the preceding boom. Even if such a reversal does not take place, its anticipation often

leads to costly precautionary measures and recessions. In this paper, we characterize

the business cycle of an economy that on average needs to borrow but faces stochastic

financial constraints. We focus on the optimal financial policy of such an economy under

different imperfections and degrees of crowding out in its hedging opportunities. The

model is simple enough to be analytically tractable but flexible and realistic enough to

provide quantitative guidance.

The crossroads between Finance and Macroeconomics is an exciting area of research.

This thesis was devoted to only three questions that I feel are important and represen-

tative of the main issues that arise at the intersection of the two fields. I hope that

the papers in this thesis can contribute to a better understanding of these three very

important issues.
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Chapter 2

Speculation, Overpricing and

Investment: Theory and Empirical

Evidence

2.1 Introduction

Standard neoclassical theory predicts that investment is inherently tied with the stock

market through Tobin's "q". The essence of "q" theory is the following argument: if the

repurchase cost of capital is less than the net present value of additional profits it will

bring at the margin, then the company should invest and vice versa. The only thing

preventing the ratio of the two values (known as q) from being always equal to 1 is

adjustment costs: it is expensive to install new capital and thus a deviation of q from 1

can exist, but it should diminish over time. The link between investment and the stock

market follows: the value of a company is the net present value of its profits and thus1

whenever one sees the stock market rising, one should simultaneously observe an increase

11
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in investment in order to bring the numerator and the denominator of the "q" ratio into

line.

However, there is a concern with this line of reasoning. Namely, what happens if the

stock market valuation at times does not reflect the net present value of profits but also

contains terms that ae unrelated to "fundamentals"? Will "q" theory continue to hold

or will decision makers in companies be eclectic about the components of stock market

valuation to which they will pay attention ?

This is the main question I take up in this paper. I start with an explicit reason for

why assets can deviate from fundamentals. Then I introduce investment considerations

and study investors' holding horizons, optimal investment, and the resulting equilibrium

prices in a unified framework.

To be more specific, I use short sales constraints to derive positive deviations of prices

from fundamentals. It is intuitive that the presence of a short sale constraint can cause

the price of an asset to deviate from its fundamental value if market participants do not

have homogenous beliefs. Agents who believe that the current price is above the net

present value of dividends would have to go short in order to take advantage of what

they perceive to be mispricing. However, they cannot do this because of the short sale

constraint. Accordingly, for pricing purposes, it is as if they do not exist, and the price

will only reflect the views of the most optimistic market participants.

This basic intuition was first expressed in a formal intertemporal model by Harrison

and Kreps (1978). A number of papers extended the intuition into various directions.

A partial listing includes Allen, Morris, and Postlewaite (1993), Detemple and Murthy

(1997), Morris (1996) and most recently Scheinkman and Xiong (2003) and Hong and

Stein (2002). All of these papers study an exchange setting without a role for investment.

The present paper extends this literature to allow for investment. In particular the

model presented here is based on Scheinkman and Xiong (2003) with the difference that

I allow firms to adjust their capital stock by investing. Because the model is set up

in continuous time I can derive closed form solutions for prices, investment, trading

12



strategies and investors' horizons. First, I show that traditional "q" theory remains valid

if investors have perfect access to financial markets, they are risk neutral and investment

is determined in the best interest of current shareholders.2 Whether the stock price is high

because of fundamentals or resale premia is irrelevant. A shareholder value maximizing

company will use the stock market valuation as a guide to how much investors can gain

in the stock market by either holding the asset and reaping dividends or by reselling it

to more optimistic investors. Second, I show that investment significantly amplifies the

effects of speculation on the asset prices by affecting the value of growth options embedded

in the company's price. In the present framework, young dynamic companies with low

adjustment costs and high disagreement associated with their underlying productivity

can end up with high levels of q (low levels of book to market) and low expected returns.

The closed form solution obtained for the price of the firm allows a quantification of these

effects and a comparison with actual data.

It is possible however, to imagine circumstances where investment would not react to

market based q and the above logic would fail. For instance, if a major shareholder owns

a significant fraction of a firm and values control she would be unlikely to react to resale

premia because they are irrelevant for her. Similarly, key investors might be afraid of

selling their shares in large amounts because other investors might fear the presence of

asymmetric information. In other words, resale premia are only relevant for investors that

have short horizons and who can realize the full speculative gains associated with them.

If they can't access the markets (or accessing the markets is costly) then the incentive to

invest will be attenuated.4 I derive optimal investment under this alternative and then

discuss a set of observable implications.

Then I address the empirical question: which of the two theories is supported by the

2Risk neutrality is not essential if one is willing to make a specific assumption about the valuation of
income streams by investors in incomplete markets. See the next section for details.

Growth options are defined as the difference between the equilibrium price when investment is
determined optimally and the equilibrium price when investment is set to 0 throughout.

4Similar points were made in Blanchard, Rhee and Summers (1993), Stein (1996) and Morck, Shleifer
and Vishny (1990). All three papers emphasize the distinction between short and long horizons.
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data? Answering this question is difficult because one has to identify a shock to resale

premia but not to fundamentals. Only then can one study how investment reacts to the

former type of shocks. Disentangling fundamental from non-fundamental deviations is a

difficult task. The usual approach in the literature has been to try to find proxies for the

two components. Such an approach is associated with the usual doubts on how successful

one is in creating these proxies. Moreover, certain proxies that are often used are not

obviously related to short selling costs and constraints alone, but capture asymmetric

information or agency problems.

In this paper I take a direct approach: in the 1920's an entire market, known as the

"loan crowd", was active for shorting stock. I use a dataset recently collected by Jones

and Lamont (2002) based on daily coverage of this market by the Wall Street Journal.

The list of companies in this market expanded in several waves. As Jones and Lamont

(2002) argue, the introduction of a company into the "loan crowd" reflects a belief by

investors that this company is particularly overpriced. I provide some additional evidence

to that effect. The behavior of the stock price of the newly introduced companies indeed

seems to confirm such an explanation. Stock prices show a marked runup for several

quarters before the introduction and decrease dramatically thereafter. Not surprisingly,

market-based q presents exactly the same behavior. To complement the dataset of Jones

and Lamont (2002) with balance sheet data, I hand-collected financial data on a number

of these companies from Moody's manuals and studied the behavior of investment in the

years prior to their introduction and thereafter. I find that investment followed exactly

the same behavior as market based "q".

The paper is related to a number of strands in the literature. There is a small

number of papers that have addressed the same set of issues, mostly from an empirical

angle. These include: Fischer and Merton (1984), Morck, Shleifer, and Vishny (1990),

Blanchard, Rhee, and Summers (1993), Stein (1996), Chirinko and Schaller (1996) and

more recently Polk and Sapienza (2002), Gilchrist, Himmelberg, and Huberman (2002).

A central theme of this literature is the importance of investor's horizons. However,

14



the models developed in these papers do not explicitly characterize the optimal holding

horizon (defined as the stopping time at which an investor finds it optimal to resell).

Moreover, these models do not allow one to derive intertemporal implications for invest-

ment and stock prices jointly. For example this makes it difficult to determine why and

when certain Euler relations should hold or fail, and thus is important from an empirical

viewpoint.5 The present paper models everything explicitly in an infinite horizon con-

tinuous time setting and thus one is able to model investor's horizons endogenously and

derive testable implications about the relationship between investment and prices in an

explicit way. The empirical approach to testing the theory is also more direct. Instead

of using proxies to account for mispricing, I use the firms that were perceived to be as

most overvalued at the time as evidenced by the fact that they were introduced into the

loan crowd.6

The paper is also related to a literature in financial economics that uses insights

from investment theory to address issues such as the predictability of returns, the role of

book to market ratios, etc. A partial listing would include Cochrane (1991,1996), Naik

(1994), Berk, Green, and Naik (1999), Lamont (2000). Berk, Green, and Naik (1999) in

particular show how a model with investment can account for some apparent irregularities

in asset pricing as e.g. the power of the Book to Market ratio to predict returns7 . In

this paper I obtain a closed form solution that decomposes the price into a component

5For instance Chirinko and Schaller (1996) derive a test for whether bubbles affect investment or not,
by making the interesting assumption that bubbles lead to predictable returns. From that assumption
they derive the result that if investment reacts to bubbles, certain Euler relations should fail to hold.
However, not every source of predictability can be attributed to bubbles and bubbles will not necessarily
lead to predictability. In the explicit framework of this paper, one can determine both the source of
predictability and its implications for testing. This issue is explained in detail in the sections that follow.

6One direction that is not explored is the behaviour of investment, if decisionmakers are longtermist
but the company is financially constrained. It can be conjectured that in this case investment could
potentially react to market based q even if managers maximize long run performance. See e.g. Stein
(1996), Baker, Stein, and Wurgler (2003). It is interesting to note that in the present paper one does
not need to assume anything apart from shareholder value maximization to arrive at the result that
investment reacts to market based q even in the absence of constraints. It is also conceivable that
constraints could further amplify the result. I discuss this point in further detail in the conclusion of the
paper.

7 This fact is documented in the cross section by Fama and French (1992,1995) and in the time series
dimension by Kothari and Shanken (1997) among others.
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related to assets in place and "growth options" or "rents to the adjustment technology".

Moreover, I can derive the effects of speculation on both components separately. I find

that the "growth options" amplify significantly the effects of speculation. Returns are

predictable and predictability of returns becomes strongest when both fundamentals and

disagreement about fundamentals are high. This is in contrast to the pure exchange

case where predictability only depends on disagreement. It also makes it easier for

quantities like B/M or E/P to predict returns since the price of a company captures

both fundamental and non-fundamental variations. In a quantitative exercise I show

that q can become large even for small degrees of irrationality. This has the potential

to explain quantitatively the very low book to market ratios that one observes during

speculative episodes. Moreover, the model has the potential to produce reasonable levels

of predictability of returns in quantitative terms as is shown by simulating an artificial

CRSP dataset and re-running some Fama and MacBeth regressions of simulated monthly

returns on Book to Market.

An interesting application of this paper concerns the relationship between return pre-

dictability and investment: the reaction of investment to speculative components in prices

could potentially help in distinguishing rational and behavioral views of predictability.

If investment only reacted to fundamental variations and was powerful at predicting

returns, then this would be evidence that the variation in expected returns is due to vari-

ation in risk aversion and not to speculation motives and expectational errors. Lamont

(2000) indeed documents the ability of investment plans to explain aggregate returns.

However, to make the link between investment and variations in risk premia, one would

need to establish that investment only reacts to variations in fundamentals and not to

potentially irrationally optimistic beliefs. The empirical evidence that I provide in this

paper, suggests that investment reacts to both fundamental and speculative terms. Thus,

investment does not seem to be able to provide a clear way to distinguish between rational

and behavioral theories.

The paper is also complementary to the strand in the macroeconomics literature that
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models bubbles in the framework of overlapping generations models. Blanchard and

Fischer (1989) present a textbook treatment, whereas Caballero and Hammour (2002)

and Jacques (2000) are some recent contributions to this literature. This literature

assumes short horizons, whereas in the present paper short horizons arise endogenously.

Moreover, uncertainty is key in the present paper, whereas uncertainty typically plays a

secondary (if any) role in the papers above. However, the simpler setup of overlapping

generations allows one to address a richer set of issues (related e.g. to savings and fiscal

policy) that would be hard in the present setup. In a sense, the model developed here

provides a foundation for models in this literature.

The outline of the paper is as follows: Section 2.2 presents a simple three-period

example that allows an easy presentation of most intuitions of the model. Section 2.3

presents the model in an infinite horizon continuous time setting with a richer set of

dynamics for the beliefs of the agents. In this section I also discuss the properties of

the model and its implications for testing. Section 2.4 presents the empirical evidence.

Section 2.5 concludes. All proofs are given in the appendix.

2.2 A simple example

In this section I present a simple example that will help fix some ideas. I extend this

example in the section that follows to a continuous time setting. I assume that the world

lasts for three periods. There are two states of the world h and 1 and a single productive

asset that pays out ftKt. ft is 0 in state 1 and 1 in state h. Kt is the amount of capital

available to the economy at time t. For simplicity I also assume that labor is not required

to produce output and that the economy is small, i.e. the interest rate is taken as given

and normalized to 0. To introduce heterogeneity of beliefs I assume that there are two

types of agents, which I label agents A and B. There is a continuum of both types having

infinite total wealth and /or an infinite ability to borrow.8

8 This assumption is made by both Harrison and Kreps (1978) and Scheinkman and Xiong (2003) and
is useful in order to drive values towards the reservation price.
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Agent A's Beliefs Agent B's Beliefs

Figure 2-1: Transition probabilities as perceived by agents in groups A and B

Figure 2-1 depicts the transition probabilities that agents in each group assign to

the transition from one state to the other. In particular, agents in group B perceive

each state as equiprobable, while agents in group A are originally optimistic (they assign

probability 0.9 to the high state occurring). If the high state occurs, then they continue

to be optimistic about period 2, otherwise they become pessimistic (in the sense that

they assign probability 0.9 to the low state occurring again). The only crucial feature

of this setup is that agents do not agree on the transition probabilities. Agents cannot

take short positions in the asset. I assume that at time 0 the economy is in state h. The

setup is common knowledge to the agents who agree to disagree.

Suppose initially that there is no investment (i.e. I treat Kt = 1 as a constant).

Moreover there is no depreciation. Equilibrium prices and trading strategies are deter-

mined by backwards induction. The joint assumptions of risk neutrality and infinite

total wealth allow one to set the price equal to the reservation price of the person who

values the asset most. In particular at time 1 and state h the agents who value the asset

the most are agents in group A. The reservation price for agents in group A is given

as P = 0.9xl + 0.lxO = 0.9. The reservation price for agents in group B is given as

18
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PBh = 05x .5x0 = 0.5. Even though agents in group B would be happy to short the as-
1h ~ ~ ~ ~ ~ ~ ~ p

set in this state, they can't. Accordingly the price is given as Plh = max [A, PBh] = 0.9.

Similarly in state (1, ) the price will be given as P11 = 0.5x1 + 0.5x0 = 0.5 since now

agents of type A are less optimistic than agents in group B. At time 0 agents in group A

value the asset at PoA = 0.9x(1+0.9)+ 0.1x(0-+0.5) = 1.76. This is the relevant valuation

for agents in group A because at the node (1, l) they know that they will resell the asset

to agents in group B. For group B the reservation price is PoB
= 0.5x1.9+ 0.5x0.5 = 1.2,

so that the equilibrium price of the asset will be given by P0 = max [PoA, PoB ] = 1.76.

A convenient way of summarizing the above discussion is in terms of the Harrison and

Kreps (1978) formula:

Pt = max [P =: ,max sup E( D, + Pi- (2.1)
oE{AB} oE{A,B} p ( 1

where D. are the dividends paid at the state-time pair s and T is an optimally chosen

stopping time at which an agent decides to sell the asset.

Another recursive relation that is true is9:

Pt = max [E (Dt+l + Pt+)]
oE{A,B}

PT = 0

Interestingly, the price at node 0 is strictly higher than what either agent would be willing

to pay if she didn't consider the possibility to resale the asset later on. In particular, if

one prohibits agents from engaging in transactions at any point other than at time 0, the

price P0 of the asset is given by:

Po = max = max [EO( Ds,) oc{A,B} [ol={cA,B} 
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The value has to be lower than the original price, since agents are deprived of the

possibility to resell. This possibility is embodied in the optimization over stopping times

in formula (2.1). That is: P0 > P0. The difference in the two values is the option value

ascribed to reselling the asset in the future. An additional implication of this formula

concerns predictability of asset returns. If I assume that one of the market participants

has the "right" beliefs then the prices are no longer martingales from her perspective.

This investor views the asset as having potentially negative expected (excess) returns in

certain states of the world. A further interesting interpretation of (2.1) is in terms of the

investor's holding horizon. The interaction of heterogenous beliefs and short sales makes

the optimal stopping time problem meaningful. In contrast, if one assumed homogenous

beliefs then all stopping times would yield the same payoff and accordingly One could

assume that the investor holds the asset until maturity.

Consider now the above example with investment. In particular, assume that there

is a technology that allows agents to reduce todays' dividends by:

i2

tiit + -2

in order to increase next period capital to

Kt+ = Kt + it

I will assume that investment is determined in the best interest of investors who are

endowed with the stock at the beginning of the period' ° . Once again I start backwards in

order to determine equilibrium outcomes. In state (1, h) it is clear that agents of type A

will end up holding the stock no matter which investment strategy is chosen and no matter

which type of agent is endowed with the stock. This is so because for any investment

0 1°In particular I assume (like Grossman and Hart (1979)) that investors arrive at the beginning of the
period with a certain endowment of the stock, they determine the investment policy, dividends are paid
and then they trade their shares in a Walrasian market.
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decision their reservation value will be higher than the reservation value of agents of type

B for the stock. Accordingly, the investment decision will be determined according to

the beliefs of type A agents independently of who is endowed with the company stock at

the time-state pair (1, h). In mathematical terms:

1 + xil,h = E A (f21St = 1, h) (2.2)

where f2 denotes the productivity in period 2. This first order condition is obvious

if agents of type A are endowed with the stock in the state-time pair (1, h). It is also

true however, if the the company stock belongs to agents of type B. To see this, notice

that agents of type B have to balance two effects in making their investment decision.

On the one hand they realize that by investing they reduce the dividends that they can

obtain. On the other hand they increase the resale value of the asset since agents of

type A will be willing to pay more for a company with a larger capital stock. Agents in

group B understand that only agents of group A will matter for pricing purposes in state

(1, h). Thus they are led to understand that a marginal investment of Ait will change the

price that they can gain for the asset by EA (f2lst = 1, h) Ait while reducing the current

dividends by (1 + Xit) Air. Balancing out these two effects leads to the same first order

condition as (2.2).

For the optimal investment rule derived from (2.2) one can determine time 1 dividends

as:

DI=flK-i-X 2

and period 2 capital as:

K2 = K1 + i1

Working backwards by the same logic one can establish that independently of who

controls the company at time 0 the optimal investment strategy is to invest until:

1 + xi = EA (f + ql)
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where q, is given as EA (f2Ist = 1, h) if the state h realizes and as EB (f 2Jst = 1, l) if

the state realizes. It is interesting to note that one can express the stochastic process

for investment in terms of the recursive relations:

+ xi = qt (2.3)

qt = max E [ft+l + qt+i] (2.4)
jE{A,B}

qT = 0

The second of these equations is exactly the same equation that was obtained for the

price in the context of the simple exchange setting. The above discussion motivates

the main concept of equilibrium that I will use in this paper. Namely, I will assume

that the company is maximizing investor welfare and accordingly I will be searching for

investment policies, selling/stopping times, and equilibrium pricing functions that satisfy

the relation:

P(K) a(o{AxB} [ E ( D8 (i, K8) + P,(K))])

where it..T denotes the stochastic process of investment. Clearly, the analysis needs

to be modified, if I assume that agents cannot retrade. For instance suppose that markets

will only be open at time 0 and never thereafter. Then (2.4) should be replaced by the

conventional q relationship

qt = ES [ft+l + qt+l] (2.5)

qT = 0

where j denotes the agent who will bid more for the company at time 0 (in this

example agent A). It is evident by comparing (2.4) and (2.5) that investment will be

necessarily higher in the presence of a resale premium on assets. Also, by the same

argument as in the exchange setting marginal "q" no longer satisfies the usual martingale
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type relationship under the beliefs of any agent. This means that every agent understands

that in certain states of the world investment will be undertaken even though its expected

(excess) return is negative from her perspective. 1112

2.3 A continuous time framework

The primary goal of this section is to derive testable implications of the hypothesis that

investment is affected by resale premia and quantify the effects discussed in the last

section. Moreover this section focuses on the effects of speculation on the value of a

company's growth options and demonstrates how they magnify the effects of speculation

on the stock price. I will expand the previous model to an infinite horizon continuous time

setup with quadratic adjustment costs independent of the capital stock. Continuous time

introduces some tractability into the problem. It allows one to determine closed form

solutions for prices, investment and stopping policies. In particular, I will combine a

framework proposed by Harrison and Kreps (1978) and Scheinkman and Xiong (2003) to

llOne might wonder to what extent the conclusions of this section depend on risk neutrality. It can
be shown that an extension of the ideas in Grossman and Hart (1979) can be used to address the risk
aversion case. In particular, assuming "utility taking" behavior on the most optimistic agents allows one
to generalize (2.4) to a setting with risk aversion by using the marginal utilities of the most optimistic
agents at each node of the information tree to construct a pricing kernel. Details on this construction
are available upon request.

12 So far I assumed nothing about financing policies. This was done because the Modigliani Miller
Theorem continues to hold in this setup despite the short selling constraint. (If one allowed for debt
financing then one would also need to assume unlimited liability in light of the results in Hellwig (1981)).
A proof of these claims can be given by arguments identical to DeMarzo (1988) and is available upon
request. The intuition for why the MM Theorem holds is straightforward. In this setup the firm cannot
do more by trading in its own stock (i.e. by issuing shares) than what the investor can do by selling
her shares in the market. This is true because the only direction in which the investor is constrained is
the short side. Accordingly, if financial policy could create value then it would have to be by promising
to deliver a negative multiple of the company's dividends. This would effectively alleviate the investor's
short sale constraint. Of course there is no financial policy that can do that, and accordingly financial
policy cannot create value for the investor. This analysis also demonstrates one way to introduce active
financial policy in this framework. Suppose for instance that accessing the financial markets directly is
costly for existing investors due to e.g. asymmetric information or fears of nonlinear price impact. Then,
an easy way for the investor to sell stock and realize speculative gains is by having the firm issue stock
and not participating. In reality there seems to be a strong relationship between equity issuance and
speculation as documented by Baker and Wurgler (2000), Baker Stein and Wurgler (2003).
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study speculative premia on assets with a standard investment framework with quadratic

adjustment costs along the lines of Abel (1983), Abel and Eberly (1994), (1998). I also

discuss how one can generalize the basic predictions to a setup with an arbitrary number

of groups of agents and arbitrary linear homogenous adjustment technologies.'3

2.3.1 Setup

Company Profits and Investment

There is a single company and the goal will be to determine its value as part of the

(partial) equilibrium solution of the model. The company's cumulative earnings process

is given by:

dDt = Ktftdt + KtUDdZD (2.6)

In units of installed capital this expression becomes:

dDt 
dt ftdt + tDdZt

Kt

The first component captures a stochastic trend growth rate whereas the second term

captures noise in the company earnings that prevents market participants from perfectly

inferring the level of productivity ft. Kt is the amount of physical capital installed in the

company which "scales" both the trend growth rate and the "noise" in the cumulative

earnings process. D is a constant controlling the "noise", while dZtD is a standard one

dimensional Brownian Motion. The variable ft is not observable and evolves according

to an Ornstein Uhlenbeck process as:

dft = -A(ft-f)dt + a_/dZ[tf (2.7)

where A > 0 is a mean reversion parameter, f > 0 is a long-run productivity rate, af

l3 Unfortunately, in this case it appears very difficult to obtain closed form solutions for prices, invest-
ment etc.
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is the volatility of the Ornstein Uhlenbeck process and dZf is a second Brownian motion

that is independent of dZD. For simplicity I will also assume that the company is fully

financed by equity and there is a finite number of shares of the company whose supply I

normalize to 1. The company can invest in physical capital at the rate it. The evolution

of the capital stock is accordingly given by:

dKt = (-6Kt + it) dt

Investment is subject to quadratic adjustment costs so that the cumulative company

earnings net of investment costs are given by:

dHt = dDt- t + X (i2 ) dt

where x is a constant controlling the significance of adjustment costs and p is the

cost of capital. It will be useful to define p as a fraction () of so that p = pi .

The assumption of adjustment costs that are independent of Kt has the benefit of al-

lowing reasonably tractable solutions, however it comes at the cost of breaking down

the equivalence between average and marginal "q". 14 In the appendix I show how one

can generalize (at least qualitatively) the results of this section to a setup with linear

homogenous adjustment cost technologies of the sort usually employed in the empirical

literature.

Agents and Signals

There are two continuums of risk neutral agents that I will call type A and type B agents.

Risk neutrality is convenient both in terms of simplifying the calculations and abstracting

from considerations related to spanning etc. In addition to the earnings process (2.6)

14 This assumption has been made by several authors in the literature. See e.g. Abel and Eberly
(1994) and the references therein (especially footnote 19)
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both agents observe two signals that I will denote signal 8 A and signal sB. These signals

evolve according to:

dsA = ftdt + asdZ[t + a1- dZA

dsB = ftdt + asdZt

where (dZtA , dZtB, dZtf, dZtD) are standard mutually orthogonal Brownian motions.

Agents have heterogenous perceptions about the informativeness of the various sig-

nals. Agents in group A have the correct beliefs, while agents in group B assume that

the innovations to the sB process are more and the innovations to the sA process less

informative than they actually are. In particular they believe that the signals evolve

according to:

dsA = ftdt + asdZA

dst = ftdt + asqdZ+tf a 1- dZt

This setup is meant to capture situations when there has been a regime shift in the

economic environment and agents disagree about the informativeness of certain signals

because they cannot use past data in order to measure the correlation between various

signals with the underlying productivity process. For instance one could interpret the

above informational setup as a situation where new signals (e.g. the amount of web

site hits of a newly formed dot.com company) arise and analysts are unsure as to how

important they are for future profitability.

Finally, as in the previous section, I assume that there is a continuum of agents of

each type and the total wealth of each group is infinite.1 5

In the appendix I establish an approximate filter for this setup.'6 In particular I show

15This assumption is made by both Harrison and Kreps (1978) and Scheinkman and Xiong (2003) and
is used to drive prices to the reservation value of each group.

16In contrast to Scheinkman and Xiong (2003) I assume a square root process for ft in (2.7) instead
of a standard OU process in order to guarantee positivity of ft. This allows one to put a lower bound
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that the posterior mean LA of agent A's beliefs about f, evolves approximately according

to:

df = -A (f )dt + -=-udBt (2.8)
f

where d.BA is an appropriate linear combination of the innovation processes (ds A - fAdt),

(ds - fA t), (dD -fAdt) with the property that the volatility of dBA is 1.Similarlyt ~Kt
for agent B:

fB
dft = -A (fP f) dt + -of-dBt (2.9)

where dBA is an appropriate linear combination of the innovation processes (ds- ,dt)

(dsg- fdt) (dit - f',dt) with the property that the volatility of dBtB is 1.17
t ~ ~~~ Kt

A quantity that will be central for what follows is the disagreement process. In the

appendix I show that agent A perceives that the process:

t ft

which captures her disagreement with agent B can be approximated by a simple OU

process:

dg = _PgA dt + orgdWA

with < dBA, dWA >= 0. The situation for agent B is symmetric. She perceives that

the process:

gB = A

evolves approximately as an OU process with increments orthogonal to dBtB. Obviously,

knowing ftA, gtA allows one to compute t~ = ftA + gtA. Thus, if one is only interested in

on ft which is convenient for some of the proofs in the appendix. The downside of this assumption is
that filtering becomes much more involved and I have to settle for an approximate filter, the properties
of which seem to be very good.

1 7Intuitively agent B will underweight signal A and overweight signal B and thus she will choose a
different combination of the innovation processes.
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posterior means, the pair (A, gtA) summarizes the entire belief structure. The appendix

presents these approximations in detail and discusses their accuracy. Conditional on

these approximate dynamics for the belief processes the rest of the analysis is exact. It is

also important to note that one could have chosen any belief structure dynamics as long

as it implies disagreement between the agents in some states of the world. The present

one was chosen only for tractability reasons.

2.3.2 Equilibrium Investment, Trading and Pricing

Homogenous Beliefs

I start with the simplest possible case 8 where every agent is of type A and accordingly

everyone agrees on the interpretation of the signals. One could also think of the discussion

in this section as the solution to the investment problem of a long termist risk neutral

decision maker who will never resell her shares. The goal will be to maximize

Pt = axEA j e-r(s-t)dl (2.10)

which can be rewritten as1 9

Pt = max EA e- r(S- t) (fsKs -pis - X(i2) ds

18These results in this section are fairly standard and the reader is refered for details to Abel and
Eberly (1997).

' 9Throughout I will restrict attention to investment policies that satisfy the requirement:

E [j e-r(s-t)Ksd ] = o

which amounts to a standard square integrability condition on the allowed capital stock processes.
Indeed in the present setup the capital stock turns out to be stationary and thus it is easy to verify this
condition.
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One can further rewrite the above objective as20

00 ~s-) ?AK X i 2
Pt = maxEA er(8-t) (fA Ks - (i8)) ds

This is a problem of exactly the same form as the ones considered in Abel and Eberly

(1994),(1997). The solution to this problem (obtained in the appendix) is given by

Proposition 2.1 The solution to (2.10) is given as:

Pt (t A Kt) = (i+ + 2 7 lA)K (2.11)

+ (Cl (A A)2 + C2 (Ay-) +C 3) (2.12)

for appropriate constants C1, C2 , C3 given in the appendix. Optimal investment is given

by:

= (PK - ) + (2.13)X ~X r- + - +~

For 0 < < P (where T is a constant given in the appendix) it can be shown that Pf > 0.

Exactly as in Abel and Eberly (1997), the equilibrium price is comprised of two

components. The first is marginal "q" times the capital stock and the other term captures

the rents to the adjustment technology or "growth options". The first term captures the

expected net present value of profits that can be obtained with the existing capital stock

i.e

PK= + -A (F ~~~~~~~~~~~~(2.14)r + r t 5 t = E e-(r+b)(s-t) fAds (2.14)r +6 r + 6 -A

The second term captures the "rents to the adjustment technology" or "growht options",

i.e. the value of being able to adjust the capital stock in the future:

(C ( A -) +C2 (rA ) + C3) = -E ( er(t) (PK(s)-p) 2 ds (2.15)

2 0This is true since the objective is linear in the state and quadratic only in the control it. For details
on such problems see Bertsekas (1995).
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The first term is clearly increasing in ftA, while the second term is also increasing in

fA . This means that not only does a higher belief about current profitability increase

the expected profits in the future, it also increases the value of growth options. This

is because it becomes more likely that large investments will need to be undertaken in

the future and thus the technology to adjust the capital stock becomes more valuable.

Small adjustment costs (i.e. low values of X) will tend to increase the value of the

adjustment technology. This is intuitive: the less it costs to adjust the capital stock, the

more a company is able to invest (disinvest) and take advantage of temporary increases

(decreases) in fundamentals (tA).

Heterogenous beliefs: Optimal investment, trading, and equilibrium prices

This section discusses the recursion:

P = max supE'IIt er(S-t) (dD8 -(pi + i2 d + e-r(-t)pt+ (2.16)
oE{A,B} is,7 

As is shown in the appendix the crucial difficulty in dealing with this recursion is that it

leads to a multidimensional optimal stopping problem. Fortunately, this problem can be

solved explicitly. In the appendix I show the following result:

Proposition 2.2 The solution to P (ftA, gtA, Kt) is given by2l:

17 fAJ A
P t fA,gAKt) + +{gt A>} +py(IgtA1) Kt+r + r + + A r + + A

+C1 (fA + 1{gtA > 0}gtA - )2 + [2 n( gA)] (ftA + {gA > 0}gtA 7)

+d(- IgAI) +C3

for functions y (gA), n(gA) and d(gA ) and a constant 3. The functions y (gA), n(gtA)

and d(gtA) are integrals and linear combinations of appropriate confluent hypergeometric

21 Under some mild restrictions on the allowed parameters discussed in the appendix.
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functions and are given in the appendix. The constants C1, C2, C3 are identical to the

ones obtained in Proposition 2.1. The optimal investment rule is given by:

11 (f(l -P-) ft -f it = (PK - P) = + l -g + 0 }g +/~Yl(--]gtA]X X r + 6 r + + A +1{ >}+ A + y(- ))
and the optimal stopping time for each investor o E {A, B} is to resell the asset

immediately once if < f,, where o = A if o = B and vice versa.

I organize the discussion of the results in two subsections. I first discuss some proper-

ties of the derivative of the equilibrium price w.r.t. Kt (commonly called "marginal q"),

i.e:

PK= + l {g } g Ar + r+ + A r++A + y(gt)

and then I discuss some properties of the rents to the adjustment technology, i.e.:

C1 (f + {) [C2 (Ig )] A > o0g -) [c + -g|] ( + 1 > 0 -)+d(-Ig1g)+C3

(2.17)

Some observations about marginal "q"

As might be expected from the introductory example discussed in Section 2.2 investment

is unambiguously higher in the presence of speculation. Comparing marginal q in the

presence of speculation to the equivalent expression in the presence of homogenous beliefs

one observes an extra term, namely:

b(gtA ) = I gt > } + A + Yl( gtA) (2.18)

The term yi(-I gA) is a positive term growing in expectation (instantaneously) at
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the rate of interest plus the rate of depreciation.2 2 I.e. it is a pure speculative "bubble"

that arises endogenously. In contrast to "rational" bubbles that can grow indefinitely, this

term is bounded. Moreover, one can determine its magnitude explicitly and speculative

bubbles of this sort can exist even in finite horizon settings.23

Of course investment is inflated only if it is determined as part of shareholder value

maximization. In this case investors are short termist and invest in order to increase

resale value. It is interesting to see what would happen if investment only reacted to

"long-run" fundamentals. Such a situation can arise if e.g. the company is run by a

set of managers / shareholders who do not have frictionless access to the markets for

whatever reason. For instance this group of managers / shareholders might be unwilling

to sell its shares because it values control, or because it perceives that its shares might

have a large non-linear effect on the price of the stock due to asymmetric information,

or simply because there are vesting agreements that preclude sales of stock or finally for

reasons related to capital gains taxes. If these managers/shareholders are of type A, then

investment will continue to be given by (2.14). However, the stocks that are traded in the

market will still contain speculative components and thus the link between "marginal q"

(PK) and investment will break down. I use this observation to develop tests in section

2.3.2.

A second observation is that marginal "q" (PK) is now more volatile than the expres-

sion obtained in the case of homogenous beliefs. Applying Ito's Lemma to (2.18) and

evaluating this expression at the stationary point (gt = 0) one finds an increase in the

22 Formally, for gtA < 0 and any T > t this term satisfies

yj (gtA) = E(e (r+6)(TATt)yl(gA))

where:
r = inft: gtA > 0}

and similarly for gtB.

2 3This term is practically identical to the one obtained in Scheinkman and Xiong (2003) with the sole
exception that the effective interest rate in the present setup is increased by the rate of depreciation.
The reader is refered to that paper for a detailed discussion on the differences between speculative and
rational bubbles.
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volatility of qt (compared to the homogenous beliefs case) of24:

0'g

2(r + +A)

In other words the volatility in marginal "q" (PK) due to the presence of short sale

constraints and heterogenous beliefs is increasing in the volatility of the disagreement

process and decreasing in the interest rate (r), the rate of depreciation () and the rate

of convergence to long run fundamentals (A).

A third observation concerns predictability. Marginal "q" no longer satisfies the

relation:
qt = EA

qt = EA j e-(r+ )(s -t) -Ad sI.Ft

and more importantly, it will no longer be the case that:

qt = E A e(r+5)(st) Ads + e- (r+*)Aqt+A Ft]

In the appendix I show that:

Proposition 2.3 qt satisfies the relationship:

t+A1

qt = E [ e (r+)(8t)fAds + e-(r+)qt+ AIF + (2.19)

EA [jt (r)(st) (r+ )A 1 {g > O}dsFt] (2.20)
,r+J+A

Defining:

Z(gtA; g) = EA [j/la e- (r+ )(s - t) ( A A > Ods.t

24To derive this, apply Ito's Lemma to the expression 1{gtA > } gA + Y1 (-gA ) keeping terms"J r+5+A

that multiply the martingale parts. In the appendix I show that /3 2(r 1)(O) and so b(gA) is2(r+,5+A)y'j(anso bg)i
differentiable everywhere, and accordingly there are no terms involving the local time of the process at
0. This in turn is a consequence of smooth pasting.

33



it can be shown that Zg > 0, Zg > 0

These properties of qt deserve some comment. The first term in (2.19) is the usual

expression one obtains for marginal "q" in the traditional infinite horizon setting. It can

easily be derived from formula (2.14). The second term (Z) is capturing the fact that

returns in a setup with heterogenous beliefs and short sale constraints are predictable.

The properties Zg > 0, Zg > 0 suggest that this predictability will be strongest when the

disagreement process is temporarily high and / or when the volatility in the disagreement

process increases.

Some observations on growth options, stock prices and returns

The rents to the adjustment technology present a richer set of interactions between

speculation, fundamentals and investment. This is to be expected. The ability to adjust

the capital stock becomes more valuable when investment is increased due to speculation.

This effect becomes magnified, when one takes into account that the differences in beliefs

about fundamentals also affect the value of the adjustment technology. As a result

investors speculate not only on the ability of the existing capital stock to generate profits

in the future, but also on the ability of the company to leverage its value in the future

by further increasing its capital stock. As is demonstrated in the quantitative exercises

that follow, the effect of these "growth options" on prices can be large.

Applying Ito's Lemma to (2.17) one can establish the analogs of the results discussed

for the case of marginal "q", i.e. excess volatility and predictability. However, it is

more interesting to analyze the stock price directly. The following result is proved in the

appendix:
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Proposition 2.4 The equilibrium price satisfies:

Pt = EA e-r(t) (fK. - pis -X 2 ds + e-rPt+A.IYt + (2.21)

~~~~~~~~~~~~~~~~ +EAg'K {g>EA [a e-r(s-t) (r + +)A O}dst
t ~~ r + J + A Klg>

+EA [ e- r(s-t) ((gA) + CgA ( _ -)) l{g > O}dslt]

for an appropriate function ~(gA) and a constant C > O. Denoting

= EA [jt+A er(s-t) ((g) + Cg.A (ySA - i)) 1{g > O}dsjr±]

one can show that ch, fg Efag > 0.

The first term in (2.21) is the standard recursive relation that connects profits and the

price next period to the current price. The second term is the predictability due to mar-

ginal "q" that was analyzed in the previous section. The final term is the predictability

due to speculation on the value of growth options. Both the second and third terms are

positive. The last term is increasing in both g and fA and moreover the cross partial

derivative of the third term with respect to ftA and gtA is positive. This demonstrates the

interaction between beliefs about "fundamentals" i.e. (A) and the differences in beliefs

(gA) which arises in the presence of investment. Predictability can be expected to be

strongest in the present setup when both fundamentals and the divergence in beliefs are

large. By contrast in the absence of investment the extent of predictability is independent

of fundamentals. This makes it easier to link predictable variation in returns to variables

that react to both fundamentals and speculation like the B/M. These issues are analyzed

further in a quantification exercise that follows.
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Testing if bubbles affect investment

In this section I will use the theory developed previously in order to derive the properties

of some tests concerning bubbles and investment. I will derive the implications of the

theory for certain standard statistical tests under alternative hypotheses.

The analysis will be focused mostly on marginal q and its relationship to investment.

In the presence of bubbles marginal q is given by:

PK = qt =( f + 7+ {gt > }gt + py(- gt|))
r+ +5 A,

Where the two theories differ is to what extent investment reacts to PK or not. Ac-

cording to H0, q theory is valid even in the presence of speculative premia and accordingly:

1 1
it = -(qt -p) = -(PK -p) (2.22)

x x

According to the alternative

it = (qt - p) (2.23)
X

where q = + A z < qt captures a rational "long run" valuation of marginal
r+t5+)

profits. One intuitive and straightforward test of the two theories is the following. Sup-

pose one starts with a firm where beliefs are homogenous so that short sale constraints

are initially irrelevant. Then, suppose that differences in beliefs arise so that the short

sale constraints lead to the creation of speculative premia on the asset. If the company

decides to conform with (2.22) the basic investment- PK relationship will continue to

hold, whereas under (2.23) investment should be overpredicted.

This idea is effectively behind Blanchard Rhee and Summers (1993). They examine

whether an investment-q relationship estimated over roughly 90 years tends to produce

negative residuals around periods when the stock market is most likely driven by a bubble.

Moreover, they test if positive residuals are observed after these bubbles crash.
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This idea is simple and intuitive. The main identifying assumption behind it, is that

the researcher is able to identify periods of time or specific stocks where the prices are

more likely to be driven by speculative components and not fundamentals. I employ such

an empirical strategy in the next section.

An alternative approach is to take advantage of the excess volatility in PK in the

presence of speculation. As demonstrated in section 2.3.2, PK is excessively volatile

compared to long run fundamental marginal "q" as perceived by agent A. Compared to

qt, PK is more volatile by:

o'9aY (9tA)

which-evaluated at gA = 0 gives:

a9
2(r + +A)

This would introduce classical measurement error in a regression of investment on PK.

Accordingly, for companies whose stock contains speculative components, one should

expect a biased downward estimate of q compared to companies without speculation.

Actually, one can compute the magnitude of this bias. If one decomposes the variance of

PK into a fundamental and a nonfundamental component then the attenuation bias due

to classical measurement error would be equal to:

aq2

(r+6+))2 1

A2 + (+)] 1 + 2 ()

The attenuation bias increases with the ratio of the volatility in the disagreement

process relative to the variability in q. As one approaches homogenous beliefs this

volatility goes to 0 and the attenuation bias disappears.2 5

25 This basic idea is behind a number of papers that blame the poor performance of q theory on
excessively volatile stock prices relative to some notion of long run fundamentals. For instance see Bond
and Cummins (2001), or the survey of Chirinko (1993). Of course, this attenuation bias is only present
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Another straightforward test of the theory is to create some measure of qF and com-

pare its performance in a "horse" race with PK. Such a method is devised in Abel and

Blanchard (1986) and also used in Blanchard Rhee and Summers (1993). I use such an

approach in section 2.4.3 as one of the robustness checks that I perform.

A final methodology is based on Euler equations.2 6 This approach takes advantage

of the predictability introduced into PK by the relation (2.19). This methodology is very

appealing from a theoretical viewpoint because it does not require a lot of assumptions

apart from predictability in the variation of marginal "q" which is true for the model

discussed. In particular, following essentially the same ideas as in Chirinko (1993) I show

in the appendix that the following relationship holds if investment reacts to fundamentals

only (irrespective of whether there are nonfundamental components in the price):

1
E [It-e-(r+)It+l- Ht + C tl] = (2.24)

It denotes the change in the capital stock between t - 1 and t, Ht are the observed

profits between t- 1 and t divided by the capital stock, and X, C are constants deter-

mined in the appendix. If-by contrast- investment reacts to speculation one can use the

predictability of returns derived in the previous sections to show that:

1 1
E It -e-(r+)It+l - Ht + CI.t-l] > 0

I give an explicit derivation in the appendix. An interesting implication of the results

in section 2.3.2 is that one can make additional statements about the strength of the

predictability as a function of the properties of the disagreement process. Moreover, one

if companies react only to long run fundamentals.
2 6Similar ideas to the ones discussed here are proposed by Chirinko and Schaller (1996). However

in this paper predictability is assumed rather than derived from first principles. This makes it hard
to say with confidence whether predictability is due to rational variations in the discount factor. At a
theoretical level, without an explanation for why bubbles exist it becomes difficult to connect them to
predictability as Chirinko and Schaller (1996) explain in Appendix A of their paper when they study
rational bubbles.
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can pin down its sign. This gives additional predictions that can be fruitfully used in the

cross section.

The appendix to this section also shows how to generalize the findings to arbitrary

linear homogenous adjustment technologies and an arbitrary number of investor groups.

The main advantage of doing so is that a) marginal and average q become equal, allowing

one to obtain a measure of marginal q (PK) through average q and b) the investment to

capital ratio (in contrast to absolute investment) becomes a function of q. Moreover the

observations about equation (2.24) continue to hold with Kt, replacing It. However, itKt-1

seems difficult to obtain closed form solutions for prices in this case.

A basic quantification exercise

In this section I examine the ability of the model to produce quantitatively plausible

magnitudes for q and the extent of predictability. The model has a number of parameters

that can be classified in two categories: a) parameters that are mainly related to the

underlying productive and adjustment technologies, b) parameters that are related to

the beliefs of the rational agent and c) parameters that are related to the beliefs of the

irrational agent. The main parameter of interest is the degree of disagreement which is

controlled by 0. Accordingly, the results are reported as a function of 0. The rest of the

parameters are used in order to produce sensible first and second time series moments

of returns, marginal q, average q, the investment to capital ratio and the dividends to

price ratio in the absence of speculation. I chose the values a = 0.1, r = 0.05, A = 0.1,

f = r + , cr = 0.25f, X = 2, p = 0.6, D = 0.57, as = .27

2 7With these parameters I simulated the model to determine prices, investment and capital if all agents
are rational and 0 = 0. I simulated 80 years of data dropping 10 years in order to enforce that initial
values are drawn from the stationary distribution. The results are given in the following table

B/M Marg. Q D/P Returns
Mean 0.599 0.995 0.038 0.054
Std. Dev. 0.148 0.264 0.021 0.181
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To compare, the study of Kothari and Shanken (1997) reports an average for B/M of 0.69 with a
standard deviation of 0.22 whereas the dividend yield is given as 0.036 with a standard deviation of 0.014.
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Figure 2-2: Behaviour of various quantities in the model: The top left panel depicts
the "disagreement" ratio as a function of 0. The numerator of this ratio is the standard
deviation of the stationary distribution of the disagreement process gt. The denominator
is the (average) standard deviation of the beliefs of the rational agent. The top right
panel depicts average and marginal q in the presence and absence of speculation. In all
cases the capital stock is fixed at its stationary value in the absence of speculation. The
fundamentals (f) and the disagreement process (g) are evaluated at the stationary values
f = f, g = 0. The bottom left panel repeats the same exercise as the top right panel with
the sole exception that f is evaluated at one positive standard deviation above its mean
f. The bottom right figure simulates a sample of 2300 companies over 27 years to have a
similar setup as Fama and French (1992). The crosses denote the 5 F-F portfolios with
the lowest B/M as reported in p.442 of their paper adjusted for an annual inflation rate
of 7.2% between 1963 and 1990. The circles indicate simulated values. For 75% of the
companies qb = 0 whereas for the rest qb = 0.9. The rest of the parameters are: = 0.1,
r = 0.05, A =0.1, f =r +6 J, a = 0.25f, X =2, p = 0.6, UD = 0.5a, oa =a
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Figure 2-2 depicts various quantities of interest. The top left panel allows one to

"translate" levels of q0 in terms of the disagreement ratio between the rational and the

irrational agent. The disagreement ratio is constructed as the ratio of the standard

deviation of the stationary distribution of gA to the average standard deviation of the

posterior belief distribution of the rational agent. For instance a ratio of 1 means that

the standard deviation of the stationary distribution of the disagreement process is equal

in magnitude with one standard deviation of the posterior beliefs of the rational agent. 28

The top right panel reports results of the following exercise: fixing the capital stock at its

steady state value in the absence of disagreement, I compute average q and marginal q for

various level of 0. I also report average q in the absence of speculation (i.e. if all agents

are of type A) for comparison.2 9 All quantities are evaluated at g = 0, f = f, so that

marginal q is equal to 1. As can be observed, the presence of disagreement increases both

marginal "q" and average q or "Market to Book". The increase in marginal q is identical

to the effect documented in Scheinkman and Xiong (2003) with the sole exception that

r is replaced by r + . The second effect is the significant increase in average q or market

to Book. In this example, if all agents share homogenous rational beliefs, marginal q is 1

and average q is about 1.6. When heterogenous beliefs and speculation enter the picture

marginal q is increased mildly (not more than 50 percent) but the rents to the adjustment

The average value of marginal q and the average value of returns are predetermined by construction at
1 and 0.05 by the choices of r and f. The simulations unsurprisingly produce values very close to these
parameters. Kothari and Shanken (1997) report an equal weighted return of 15.3 and a value weighted
return of 9.4 % with standard deviations of 38.8 and 23.9 % respectively. However these returns are
not real returns. Adjusting for an average annual inflation of 3.27% from 1926 to 1990 and taking into
account the volatility of inflation produces real returns close to the ones reported in the simulation.
Moreover the chosen values imply that regressions of the investment to capital ratio on average q return
a value of 0.078 which corresponds to the values that are obtained in the empirical section.

28 In practical terms this implies that the rational agent will not be able to tell with 95% confidence
that the irrational agent is wrong "most" of the time.

29 One might be puzzled why average q increases with 4 in the absence of speculation. This is because 4
- besides controlling disagreement- also tightens the confidence intervals of the rational agent. However,
this effect is of second order. Moreover it can be completely avoided if one were to also modify as with
b in order to keep the variance of posterior beliefs of the rational agent constant.

41



technology (or growth options) are increased substantially. 30 31. The bottom left panel

repeats the above exercise when fundamentals are at one positive standard deviation, i.e.

f = f+ut where ast is the stationary standard deviation of f. This picture demonstrates

that effects are amplified when fundamentals are strong. In summary, growth options

form a non-negligible source of valuations in the presence of speculation. The values

produced are in line with the relatively large values of market to book found in the data

during speculative episodes.

The bottom right panel reports results on the ability of the model to produce both

reasonable book to market ratios and predictability. I simulated paths of 2300 companies

over 27 years assuming that all companies are identical, except for 32 .The returns of

these companies and the Book to Market ratios were simulated under the assumption

that for 75% of the companies there is no disagreement ( = 0) whereas for 25% agents

disagree with = 0.9. With these assumptions I calculated equal weighted returns for

10 portfolios formed on Book to market as described in Fama and French (1992). The

bottom right panel of figure 2-2 plots the resulting returns and compares them to the

results reported in Fama and French (1992)33. I focused only on the portfolios with the

5 lowest B/M ratios since this paper is concerned with overpricing. The results suggest

that the present model can produce degrees of predictability very similar to the ones

observed in the data. Fama-MacBeth regressions produce coefficients of roughly 0.38

compared to 0.5 reported in Fama and French (1992). Moreover, a number of alternative

parameter values seem to suggest that one needs to assume that only a small number of

companies needs to be overpriced in order to explain the data. However the disagreement

in these companies needs to be relatively large.

30It can be shown that this picture is independent of the level of X, since I normalize by the steady
state capital stock.

31Of course as time passes average q will fall because the capital stock will start to increase
32 Once again a number of initial years (prior to the 37 that form the simulation study) was dropped

to make sure that initial capital stocks, fundamentals and disagreement are drown from the stationary
distribution.

33To compare the results I subtracted a 7.2% annual (or 0.6% monthly) from the results in Fama anf
French (1992) in order to compute real returns
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2.4 Empirical Evidence

2.4.1 Overview

In this section of the paper I use the theoretical results obtained in order to test the most

central predictions of the model. The presence of a short sale constraint should increase

valuations for the underlying assets, while the behavior of investment will depend on

the shareholders' ability and willingness to sell their shares and take advantage of the

speculative components in asset prices. The H0 hypothesis in this section will be that

investment reacts to both "long run" fundamental components and short run speculative

components. The alternative (H1 ) is that it reacts only to the former.

What is difficult, in order to operationalize this notion is to disentangle shocks to

fundamental marginal "q" and shocks to the resale premium. If one can identify a

negative shock to the resale premium (due for instance to a relaxation of the short

sale constraint) then under H0 the basic "q"-type relation should be able to accurately

predict a drop in investment. Under (H1) there should be no drop in investment and the

"q" relationship would falsely predict one. Similarly, during the buildup of speculative

components in prices the basic "q" type relationship should overstate the increase in

investment under (H1 ).

Various studies have used proxies to disentangle fundamental from non-fundamental

sources of valuation, such as breadth of ownership, discretionary accruals, equity issuance,

etc.34 A problem with this approach is that most of these indications of mispricing could

be explained in an alternative way that is not related to the speculative component of

prices. They provide indirect ways of controlling for mispricing.

In this paper I adopt a more direct approach to identifying shocks to the speculative

component of stock prices. In particular, I test "q" theory on a set of companies for

which data on the existence of a market and the costs to market participants of short

34See e.g. Polk and Sapienza (2002), Gilchirst et. al. (2002)
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selling a company's stock is publicly available.

The study focuses on the 1920's, because short selling was done via a public market,

and data on short selling was available in the Wall Street Journal. This data set was

collected by Jones and Lamont (2002). I describe this data set in more detail in the next

section. The interest will be focused on an episode during the beginning of 1926 when 32

industrial companies were added to what was called "the loan crowd"3 5 , i.e. a market for

borrowing and lending stock. As is explained in Jones and Lamont (2002) the most likely

reason for the introduction into the loan crowd was that market participants considered

these companies as particularly overpriced compared to their fundamental value.

This introduction can be interpreted as a relaxation of the short sale constraint.

Accordingly, in line with the theory developed, one should expect to observe a drop in the

stock price of the companies after their introduction into the "loan crowd", independent

of whether H0 or the alternative holds. Results of this nature were established in Jones

and Lamont (2002). I reconfirm their results for the subsample that I consider and

provide additional evidence concerning the "q" ratio of these companies.

Then I study investment. The drop in the price that is observed for most of the

companies in the subsample can be reasonably interpreted as the effect of a correction to

"overpricing". I then proceed to compare the behavior of investment for these companies.

There are at least two easily testable implications. First, I run standard regressions of

the form:
i,t _

-- Oi + t + 3qi,t-l + ei,t (2.25)Kit-l
for "control" companies that have been in the loan crowd for some time and the cost

of short selling them is low36. I compare the results of these regressions to the equivalent

regressions for the companies of the "treatment" group. What one should observe under

H0 is that the coefficients of are the same up to sampling error. Otherwise, the

35 Even though there were additions later on to this list most of them came after the August of 1930,
a period where the U.S. enters the great depression.

36 Companies in the control group are comprised of all companies that were in the loan crowd at least
2 years before 1926 and their rebate rates were at least 2% in February 1926.
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coefficient fi should be biased downward because of the measurement error type problem

analyzed in subsection 2.3.2.

Another simple observation is that under (H1 ) one should expect the residuals in

regressions of the type (2.25) to be negative on average immediately prior to inclusion

and significantly positive thereafter. These intuitive and simple implications of the theory

are tested in detail in the sections that follow. Sections (2.4.3) and (2.4.4) run the tests

described in section 2.3.2 to check if the long-termist hypothesis H1 can be rejected.

2.4.2 Data

The data for the empirical study come from various sources. Data for the loan crowd

market are from Jones and Lamont (2002). 37 They collected data from end of the month

Wall Street Journals (WSJ). The data collected provide information on rebate rates from

1919-1933. The list of companies that were on the WSJ list was very small in 1919 (less

than 20 industrial companies) and expanded in 4 waves described in Jones and Lamont

(2002). The first wave occurred in 1926 when 32 industrial companies were added to the

list along with a number of railroad companies that I ignore in this study. The other

waves came after August 1930, a period during which the U.S. economy was going into

a deep recession.

The Wall Street Journal reports the names of the companies along with the so-called

rebate rates. The difference between a rebate rate and the prevailing interest rate is the

cost of short selling. This is illustrated by an example given in Jones and Lamont (2002):

suppose A lends shares to B and B sells the stock short. When the sale is made the

proceeds go to A and not to B. A is effectively using collateral to borrow and thus must

pay interest; to B. At the end of the loan A repays cash to B and B returns the shares to

A. The rate of interest received by B is called the rebate rate or "loan" rate. Accordingly,

stocks with 0 rebate rates are the most expensive to short whereas stocks with positive

and high rebate rates are relatively inexpensive to short. In other words, the rebate rate

37 For details of this data set the reader is refered to that paper.
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is the price that brings the loan market back to equilibrium.

To form a control group for the study I selected only companies that were in the loan

crowd before 1926 and were trading at rebate rates above 2% in February of 1926. This

yielded 15 companies that form the control group. For these companies I assume that

short sales were possible and relatively inexpensive since 1919.

The "treatment" group is comprised of companies that enter the loan crowd from

January 1926 to June 1926 with the vast majority entering at the end of February. There

are 32 industrial companies that meet these criteria38 . Virtually all of these companies

enter at a rebate rate of 0 which captures either very high shorting demand or limited

supply of short selling. Conceivably, it also captures conservatism with the creation of

a new market. In either case I adopt the interpretation given in Jones and Lamont

(2002) namely, that these are stocks that were considered as particularly overvalued and

thus the demand for shorting the stock exceeded the amount the normal broker could

accommodate "in house"3 9.

To produce measurements of "q" I could not rely on standard sources of data like

COMPUSTAT, since there is no widely available, electronic source of balance sheet data

going back to 1918. Accordingly, data was hand-collected from Moody's Manuals of

Investments for the years 1918-29.4o A particularly difficult problem with balance sheet

data from the 20's is that companies did not have to comply with any particular form

38Some of the companies were dropped for one of the following reasons: a) Data could not be found
for at least 3 years prior to February 1926 b) the fiscal year ended more than 3 months before or after
December 31. c) the company was a pure holding company d) there was an important merger e) Most of
the company's balance sheet was undepreciated goodwill. With these selection criteria I tried to address
issues related to IPO's, non-synchronous data, issues related to governance and measurement error in q.
In contrast to common practice I did not winsorize the data in any way, (i.e. by truncating q) because it
is precisely the large variations in q caused by speculation that form the object of this study. The final
sample consisted of 25 companies. For 3 of them I was able to construct q but could not find profit data
for some of the years 1922-26. To safeguard that the results do not capture IPO related issues, I ran all
of the main regressions on the subset of companies that I had data reaching back to at least 1918. The
results were unaltered.

3 9I.e. by using the accounts of one customer who is long the stock to lend it to another who wants to
short sell.

40I am indebted to Tom Nicholas for providing a data set that contained balance sheet data on some
of the companies investigated.
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of data reporting. Especially detailed profit and loss data are typically unavailable.

An additional problem is that most companies did not start reporting depreciation and

accumulated depreciation reserves until 1926. This introduces measurement error in the

investment data which -fortunately- is the left hand side variable. To create the time

series for "q" I used the same procedure as Nicholas (2003). This procedure is basically

the standard Lindenberg and Ross (1981) procedure adapted to the typical balance sheet

data of the 1920's. q is computed as the product of common shares outstanding times

the price of common shares plus the market value of preferred stock41 plus the (book)

value of debt. The replacement cost of capital is determined by the usual Lindenberg

and Ross (981) type recursion:

kit = kit-1 (1 ±A ) + p)(NA1it - NA ,t 1)

where NAVtBV is the net asset value of physical capital (Plant, Equipment, and

Property).42 This was the only variable related to physical capital consistently provided

for all companies. pi is the inflation rate obtained from the Historical Statistics of the

United States: 1790-1950. p and are the rate of technological obsolescence and the

depreciation rate respectively and were set to 0. This choice was dictated by the fact

that NAVt yV already includes depreciation. The inventories were computed at book

value whereas liquid assets were computed as the difference of total assets and the sum

of the book value of plant, equipment and property and inventories.

Investment was hard to compute accurately for many of the firms under consideration.

411I follow Tom Nicholas (2003) here and determine the market value of preferred stock as if it were a
perpetuity discounted with Moody's Average yield. This approach is dictated by data availability. To
check if this introduces any significant measurement error, I looked at the price of preferred stock for a
few companies that I could find data on preferred stock and computed q with actual prices for preferred
stock. The estimate of q was practically unaffected.

42 The algorithm was initialized with kl 8 - NAV 191 8, or setting NAV equal to the first available
observation year if data could not be found for 1918.
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By a basic accounting identity it is the case that:

Ii,t = Di,t + NAViV - NAVitvy1

where Di,t is the accounting depreciation of the assets during year t and Ii,t is gross

investment. The above relationship can be rewritten as

Iit Dit NAV~V- NAVit 1

NAV7YVl = NAViBVl + NAViBVl

DirAs long as v_ is given as a company specific constant plus some error that is

orthogonal to q, i.e.

NAV = c + Eit E (ei,tIq1...T) = 0NAVv

then this induces classical measurement error. However, investment is the left hand

side variable so that consistency of the estimated parameters is not affected, only their

confidence intervals.43

For some regressions a variable that I label profits is also used. This variable refers

to accounting profits after interest and depreciation, Hi,t, that were reported consistently

for most companies. Unfortunately, cash flow variables could not be constructed because

depreciation was not reported for most companies. The variable that I call profit rate is

Ili,t 44defined as rit = it 44

Stock price and capitalization data were obtained from CRSP for the months following

December of 1925 whereas the Commercial and Financial Chronicle was used for stock

price data prior to December 1925.

43To check the influence of measurement error on the results, I ran the investment regressions on a
subset of companies where depreciation rates were available and so I could compute investment accu-
rately. The results were practically identical, suggesting that the measurement error is indeed classical,
i.e. orthogonal to the regressors.

44Unfortunately, separate sales and cost data were not reported for most companies and as a result
I cannot address effects of imperfect competition in the usual way that this is done in the literature.
Measurement error in the profit rate is partially taken care of in the section on Euler equations by
estimating everything with instruments and allowing for fixed effects.
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Control Group

Obs Mean S.D. 5% 10% 25% 50% 75% 90% 95%
investment 152 0.076 0.221 -0.077 -0.046 -0.007 0.024 0.078 0.213 0.434
q 167 1.075 1.197 0.377 0.436 0.567 0.683 0.914 2.212 3.875
profits 150 0.207 0.335 -0.030 0.020 0.045 0.092 0.197 0.599 0.858

Treatment Group

Obs Mean S.D. 5% 10% 25% 50% 75% 90% 95%
investment 228 0.080 0.213 -0.078 -0.053 -0.013 0.022 0.116 0.264 0.535
q 254 1.250 0.914 0.382 0.477 0.708 1.012 1.499 2.373 2.839
profits 219 0.392 0.585 -0.010 0.022 0.093 0.195 0.455 0.907 1.811

Table 2.1: Table of Summary Statistics sorted by treatment and control group. 5%, 25%
etc. correspond to the respective quantiles of the distribution.

2.4.3 Results

Summary Statistics

Table 1 gives some summary statistics of the data. The profit rates of the companies

have different distributional properties. Companies in the control group have relatively

less dispersed profit rates with a lower mean than the companies in the treatment group.

The companies in the treatment group also have a higher and more volatile q compared

to the ones in the control group. Both of these observations conform well with the setup

of the theoretical model: one would expect a higher variability in the profit rate to leave

room for diverging opinions and accordingly cause average q to be more volatile. At first

glance there are no obvious differences in the distribution of the investment to capital

ratio.

The companies under consideration are relatively large. Companies in the control

group belong to the two highest capitalization deciles of CRSP, whereas companies in

the treatment group are slightly smaller with the median company in the 7th CRSP

capitalization decile.
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(1) (2) (3)
V-weight Eq-weight R- Rsize

NEWQ(1) -0.039 -0.023 -0.032
(0.014) (0.013) (0.012)

NEWQ(2) -0.023 -0.015 -0.014
(0.006) (0.007) (0.007)

Observations 1147 1147 1147

Table 2.2: Monthly abnormal returns for companies in the treatment group. NEWQ(1)
and NEWQ(2) are dummies that take the value 1 if the return is observed in the first
quarter of introduction to the loan crowd and 0 otherwise. NEWQ(2) is defined sim-
ilarly for the second quarter. A separate beta type model is estimated for each stock
with 32 monthly returns. The first column contains results when the index is taken
to be the Value weighted CRSP index and the second column contains results for the
Equal weighted CRSP index. The third column matches stocks by CRSP capitalization
decile and contains results from a regression of this difference on a constant and the two
dummies described above. The standard errors are computed with a heteroskedasticity
robust covariance matrix that allows for clustering by month.

The behavior of q and excess returns

A central prediction of the theory developed earlier is that the presence of short sale

constraints will lead to "overpricing" (irrespective of whether investment reacts to it or

not).

Figure 2-3 gives a visual impression of such an effect. It depicts the average first

difference in q" year by year for companies in the treatment and the control group.

The average first difference in q is identical for both types of companies until 1923.

From that point on, companies in the treatment group start having large positive first

differences compared to companies in the control group. 1926 presents a structural break.

Companies in the treatment group have a large negative adjustment. To the contrary,

companies in the control group have a positive first difference in q in 1926. The difference

between groups of the yearly difference in q is -0.314 with a standard error of 0.138 for

the year 1926. This drop is large both in economic and statistical terms.
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Diff.Q-Treatment and control Group

1922 1924 1926 1928
years

I Dq-Tr. Dq-Con.

Figure 2-3: Plot of
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Excess returns can help in testing the overpricing hypothesis statistically. The usual

case-study methodology of studying the excess returns of stocks around a particular

"event" presents one major difficulty. First and most importantly, CRSP starts in Jan-

uary of 1926, so that one cannot run regressions to determine the "betas" of the stocks

on the market before their introduction and I am forced to estimate these "betas" from

subsequent observations. Table 2.2 presents regression results for the model:

Rit- rt = ai + f3i(RMt - rt) + 1 l {NEQ1 } + 1 {NEWQ2} + eit

where (RMt- rt) is the (excess) return on a market wide index, Rt - rt is the

excess return of security i at time t and the dummy variable 1{NEQ1} is 1 if the

observation belongs to the first quarter in which the stock has been introduced into the

market, and 1 NEWQ2} if the observation belongs to the second quarter. In other

words these dummies are capturing the average abnormal return in the months following

the introduction of the stocks into the "loan crowd". Columns (1) and (2) show an

economically very significant drop in the holding period return in the 2 quarters following

the introduction. In column (1) I use the CRSP Value weighted index in order to control

for market-wide effects whereas in column (2) I use the equal weighted index. After a

stock is introduced into the loan crowd an average -3.9% (monthly) abnormal return can

be expected in the first quarter and a -2.3% in the subsequent quarter. To make sure

that this is not just a size-related effect column (3) matches the returns of the companies

in the sample with the portfolio returns of the CRSP capitalization decile in which they

belong. In other words, I construct Rt - Rcapt,, and regress this magnitude on a constant

and the dummies described above. In all cases the results are very similar varying only

in the strength of the effect.
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Investment and q

This section studies the relationship between investment and q. Figure 2-4 depicts the

comovement between average first differences in (beginning of period) q and investment

for companies in both the treatment and the control group. The only thing that can be

said is that the link between investment and q is not apparently different in any way

between the two groups. Investment seems to follow both the upturns and downturns

of q for companies in the treatment group. Moreover q co-moves with investment even

during periods where one would suspect that the stock prices are driven primarily by

non-fundamental forces.

Tables 2.3 and 2.4 present some formal econometric tests. Table 2.3 shows results of

simple regressions of investment on "q"' for various subgroups. Column (1) estimates a

regression of investment on beginning of period q allowing for an individual fixed effect

and a time fixed effect. The first column runs this regression on all the data in the

sample whereas the second column restricts attention to companies in the control group.

The third and fourth columns run the same regressions on companies in the treatment

group pre and post 1926. The first two rows correspond to different methods of removing

individual fixed effects. The first row eliminates individual effects by estimating them out

(fixed effects regression) while the second row eliminates fixed effects by first differencing.

The third row estimates a fixed effects median regression.

The fixed effects and first differences estimator produce similar results for all the

subgroups suggesting that measurement error in q45 (due to e.g. mismeasurement of the

replacement cost of capital) is not very important.46 47 The standard errors are wide since

45See e.g. the results in Grilliches and Hausman (1985) on measurement error in panel data.
4 6 Moreover it suggests that the errors satisfy a strict exogeneity condition (E(eitlq il...T) = 0) not just

a sequential exogeneity assumption (E(eit qil...t-1) = 0). I tested for this directly by including one lead
of q in the fixed effects specification. The coefficient was both economically and statistically insignificant.
This suggests an interpretation of the errors in the investment regression as adjustment cost shocks. See
e.g. Chirinko (1993) and Chirinko and Schaller (1996).

470ne caveat is in order. If there is correlation in the measurement error then first differences and
fixed effects could be producing the same answer even though measurement error is present and as a

53



Q-lnvestment Diagram: Treatment

cN

-

dI--

N 

1920 1922 1924 1926
years

Ci -

._

n -

NC

1928 1930

Q-lnvestment Diagram: Control

1920 1922 1924 1926 1928
years

| ~~ Dq - - D-invII Dq D-inv

Figure 2-4: The left panel is a plot of average first differences in investment and q for
companies in the treatment group. The solid line denotes average first differences in q
and the dashed line average first differences in investment. The right panel depicts the
same magnitudes for companies in the control group. q is evaluated at the beginning of
the period.
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the amount of data is very limited. q is significant in the first differences specification if

one includes the entire set of companies and is also significant (for both specifications) for

the companies in the treatment group prior to 1926. The point estimates ae somewhat

surprising. They are substantially larger than in the usual Compustat sample.4 8 One

potential explanation for this is that most companies are large, industrial stocks so that

problems related to financial constraints, intangibles etc. become less prevalent. The

point estimates are very large for companies in the treatment group prior to 1926. This

suggests that companies do not distinguish between the sources of variation in q. Else,

the estimates on q in this regression should be downward biased.

Row (3) in Table 2.3 and Figure 2-5 demonstrate some distributional properties of

the error term. Row (3) estimates median regressions for subgroups. The estimates are

roughly comparable for all subgroups, suggesting that the large estimates of "q" in the

fixed effects (or the first differences) specification for companies in the treatment group

are driven by a skewed error distribution. This is confirmed by a look at Figure 2-5

which plots residuals of the fixed effects regression for the two subgroups. This picture

reveals two patterns. First the median residual is roughly the same for companies in the

treatment and the control group. Second, the distribution of the error term is shifted

to the right for companies in the treatment group for the years 1924 and 1925. This

suggests that a number of companies adjusted to market based "q" and possibly in a

non-linear way, not captured completely by the simple linear q model.

Table 2.4 contains results on interactions of q with year and treatment effects. Under

H0 one should expect all columns to not be significantly different than 0. Under the

alternative the first two columns should be significantly negative. No matter how they

are estimated, the interaction effects in the first two columns are positive, suggesting that

result coefficients are downward biased. To address this I also estimated the adjustment cost parameter
using Euler relations in section 2.4.4 which produced similar results to the ones reported here.

48 Abel and Eberly (2003) give estimates of 0.03 and 0.02 for the fixed effects and the first difference
regression. The highest estimates for the linear model are produced by using analyst forecasts as in-
struments. The number they obtain for this specification is 0.11 very close to the numbers reported
here.
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one cannot reject the base hypothesis that investment reacts to both fundamental and

nonfundamental sources of "q". If instead of interactions of q with treatment and year

dummies one uses simple interactions of year and treatment dummies the coefficients prior

to 1926 remain positive and become negative thereafter for companies in the treatment

group, which again supports H0 .

I also estimated the model on companies in the treatment group that could be charac-

terized as representative of the "high-tech" companies of the time4 9 (mostly automobile

related companies). The motivation behind this estimation is simple: there is increased

uncertainty (and hence room for disagreement) about the fundamentals of companies in

emerging sectors making short selling constraints more relevant and overvaluation more

likely. In addition the automobile sector of the time was characterized as "speculative" by

most financial publications50 . Accordingly, under H1 this should be the sector in which

one would expect to see a heavily downward biased q. Running investment-q regressions

in first differences in this subset confirms the previous findings since the estimate on q

remains at 0.19, well above the estimate for the control group.51

Fundamental q, profits and investment

In this section and the next I run some robustness checks. In particular, I investigate

whether the alternative hypothesis (H1 ) can be rejected, (namely that the results ob-

tained are attributable to profits and "fundamental" q). By constructing a measure for

fundamental q one can also indirectly test the identifying assumption of the previous

section, namely that most of the variation in q for companies in the treatment group

comes from non-fundamental sources. Ideally, one would like to obtain some measure

49I chose American Brake Shoe and Foundry, Simmons Co., Nash Motor Cars, Hudson Motor Cars,
Mack Trucks and American Locomotive as a sample of companies that were active in the emerging
industries of the time.

50(such as the Standard Trade Statistics, a predecessor of S&P)
51Moreover, to safeguard that the results on companies in the treatment group do not capture phe-

nomena related to IPO's I ran the regressions on the subset of companies in the treatment group for
which I could find stock prices in the Commercial and Financial Chronicle at least back to 1919. The
coefficients on q were roughly equal to the ones reported for all companies in the treatment group.
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(1) (2) (3) (4)
All Control Tr. -pre 26 Tr. - post 26

q-FE 0.084 0.073 0.335 0.094
(0.047) (0.084) (0.161) (0.109)

q-FD 0.112 0.1 0.322 0.077
(0.050) (0.133) (0.152) (0.064)

q-Med. 0.06 0.094 0.076 0.03
(0.015) (0.060) (0.122) (0.119)

Observations 359 142 132 60

Table 2.3: Results of regressions of investment on beginning of period q. Time and indi-
vidual fixed effects are included but not reported. The first line contains the results of
the fixed effects regression, whereas the second line eliminates fixed effects by first dif-
ferencing. The last line is a median regression with fixed effects. The columis correspond
to the subgroups. The first group includes all companies, the second only companies in
the control group. The third and fourth columns report results for the treatment group
pre 1926 and post 1926. Standard errors for the fixed effects and the first differences are
computed with a robust covariance matrix allowing for clustering by company. For the
median regression standard errors, a bootstrap procedure is used.

(1)

FE

FD

Med.

Pre-1926
0.097

(0.047)
0.157

(0.070)
0.004

(0.024)
Observations 359

(2)

24-25
0.094

(0.051)
0.06

(0.042)
0

(0.020)

(3)
27-28
-0.018
(0.034)
0.023

(0.045)
-0.016
(0.022)

359 359

Table 2.4: Results of regressions of investment on beginning of period q and various
interaction terms. Time and individual fixed effects are included but not reported. The
first column reports results on an interaction dummy that is equal to q if the company
is in the treatment group and the year of observation is prior to 1926. The second
and third colums are defined similarly. The first line reports results of the fixed effects
regression, whereas the second line eliminates fixed effects by first differencing. The last
line is a median regression with fixed effects. Standard errors for the fixed effects and
the first differences are computed with a robust covariance matrix allowing for clustering
by company. For the median regression standard errors, a bootstrap procedure is used.
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Figure 2-5: This picture presents the residuals of the (fixed effects) investment on begin-
ning of period q regressions for the years 24 and 25 (top panel) and 27 and 28 (bottom
panel). The left figure on each panel is the (kernel-smoothed) density of the residuals
whereas the right figure is a histogram (10 bins) of the residuals. The solid line in the
left figures corresponds to the residuals for the treatment group whereas the dashed line
depicts residuals for the control group. Similarly a 0 in the right figures denotes residuals
in the control group and a 1 denotes residuals in the treatment group.
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of fundamental q from analysts' forecasts on company profitability. Bond and Cummins

(2001) propose such a method based on I/B/E/S forecasts. Similar data are unfortu-

nately not available for the 1920's. Accordingly, I will use a "brute" force approach to

create fundamental q from reported profits.

In particular I use the methodology in Abel and Blanchard (1986) to determine fun-

damental q for each company. I run a 2x2 first order VAR of company profits and q

on lagged company profits and q for the entire sample, assuming that the coefficients

are the same for all the companies in the sample.5 2 I then use the estimated coefficient

matrix along with a linear approximation to the infinite horizon expression for marginal

q to construct a new measure of fundamental q53. I used a separate discount factor for

each company. To determine the weighted cost of capital for each company (from the

perspective of a long termist investor) I used the CAPM in conjunction with the betas

estimated in section 2.4.3 and then created a weighted cost of capital by using an interest

rate of 4% for the debt of the company an interest rate of 7% for prefered stock and the

remaining share of the capital structure I weighted at the cost of equity implied by the

CAPM assuming a market wide expected return for common stock of 10%. Depreciation

was taken to be 9%.54

Roughly speaking this new measure of q is meant to operationalize the notion that

fundamental q is the expected sum of discounted marginal profits which are (roughly)

equal to 7r = ns for linear homogenous technologies. In order to create expectations for-Ks

52 Icapture the presence of individual heterogeneity by including a fixed effect in each regression of the
VAR. This creates a difficult estimation problem, known in the literature as the dynamic panel data
problem. The problem arises because the time series dimension is very short in order to invoke standard
asymptotic theory. Thus the estimates of the intercepts will be biased. I estimated the coefficients
of the VAR with both standard fixed effects and the Arellano and Bond methodology. Even though
the coefficients produced by the VAR were somewhat different, in both cases they led to the same
conclusions about the role of fundamental "q". In this section I concentrate on the results for the fixed
effects regression.

53For details of this procedure see Abel and Blanchard (1986)
54I also used a flat discount factor of 0.84 for all companies and varied the required return on the

market between 7 and 12%. The results were almost identical to the ones reported here for variable
discount factors suggesting that the results are not very sensitive to the specific assumptions one makes
about returns etc.
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the future profit rates, one uses a predictive VAR approach. Then the dynamics of the

process are used to create "long run" expectations.

An obvious concern with such a procedure is its accuracy. In particular one could be

worried that the estimate of fundamental q obtained in this way would be contaminated

by severe measurement error which might make it very difficult to test any hypothesis of

interest. A check for this is provided by running a simple regression of first differences

in market based q on first differences of fundamental q for the different subgroups of

companies. At the very least, one would expect actual q and the constructed measure

of fundamental q to co-move closely for companies in the control group. Similarly one

would expect the two measures to show disparities for companies in the treatment group

prior to 1926. The results of this regression are given in columns (1)-(2) of table 2.5.

Roughly half of the variation in q (R2 = 0.43) is captured by the constructed measure

of fundamental q for companies in the control group. The performance of this regression

for companies in the treatment group prior to 1926 is -as expected- worse (R2 = 0.08),

suggesting that q is driven mostly by non-fundamental sources.

The next 4 columns of table 2.5 present horse races between fundamental "q" and

market based q. Column (3) presents results for the treatment group prior to 1926.

Time effects are included, but not reported. Individual fixed effects are eliminated by

estimating all equations in first differences. The estimate for market based q is practically

the same as that in Table 2.3, and the estimates on fundamental q are statistically

insignificant. Column (4) runs the same regression with lagged profit rates instead of

the constructed measure of fundamental q. The motivation for this regression is the

following: if one assumes that profit rates follow a first order AR(1), then fundamental

q would be just a scalar multiple of the lagged profit rate. Under H1 this should be

the only significant variable. Once again column (4) shows that H0 cannot be rejected

for companies in the treatment group whereas H1 can. In fact, if one dropped time

fixed effects (a Wald test confirms that they are jointly insignificant), then the coefficient

on market based q becomes highly significant, whereas the coefficient on fundamental
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(1)

Dq-T.-pre 26
(2)

Dq-Con.
(3) (4)

Inv-TR.-pre 26
(5) (6)

Inv-Tr.-pre 26
Dqf 0.39 2.54 0.184 0.13 0.221

(0.24) (0.57) (0.185) (0.17) (0.14)
Dq 0.302 0.31 0.457 0.467

(0.171) (0.170) (0.172) (0.174)
Lag Dprofs 0.085 0.060

(0.089) (0.080)
Inter25*Treat -.167

(.128)
Inter25*Tr1eat*Dq .247

(.117)
Observations 79 112 79 79 79 79 273
R-squared 0.08 0.43 0.29 0.29 0.25 0.25 0.15

Table 2.5: This table presents results on the relationship between "fundamental" q (qF),
market based q, and investment. The first two colums present results of a regression
of first differences in actual "q" on first differences in fundamental "q". Column (1)
presents these results for the treatment group prior to 1926 whereas column (2) presents
these results for companies belonging to the control group. The next four columns present
regressions of investment on actual, fundamental q, and the (lagged) profit rate. Columns
(3)-(4) present these results for the treatment group prior to 1926 and columns (5)-(6)
present the same results if one drops the (jointly insignificant) time effects. Column
(7) introduces interactions between the 1925 time effect and treatment (Inter25*Treat)
and interactions between the Treatment, the 1925 dummy, and beginning of period q
(Inter25*Treat*Dq). The F-test that these variables are jointly 0 rejects at the 0.022
level. Robust standard errors are reported.

q and lagged profits remain insignificant. These results are reported in columns (5)

and (6). Column (7) runs a regression with fundamental q, individual fixed effects

and time effects for all observations and includes an interaction between a treatment

dummy, the 1925 date effect, and market based q. Under H1 this coefficient should be

insignificant. However, the coefficient on the interaction is significant, suggesting that

H1 can be rejected.

61

(7)

Inv.-All



2.4.4 Euler Equations

I conclude with some Euler tests. This is an alternative robustness check, with the

advantage of not requiring an estimate of fundamental q. The test in this section can

be motivated by the discussion in section 2.3.2. In particular I will focus on testing

the overidentifying restrictions embodied in the Euler relations discussed in 2.3.2. One

disadvantage of this test is that its power is likely to be very small. The reason is intuitive.

This test can only detect violations of the overidentification restrictions if predictability

is strong, adjustment costs are small and the rest of the errors in the investment equation

(sometimes called adjustment cost shocks) are relatively unimportant. To increase the

power of the test, I will accordingly focus only on investment behavior of treatment

companies around 192655.

Table 2.6 presents results on various Euler relationships. Columns (1) and (2) estimate

simple Euler relations of the form

qi,t = E [e(r+6) (rit + qi,t+l) It] (2.26)

for companies in the treatment and the control group respectively. Instruments in-

clude (beginning of period) and lagged q, along with lagged and twice lagged investment

to capital ratio and profit rate.56 Even though the point estimates are similar and eco-

nomically plausible, the test of overidentifying restrictions cannot reject for the case of

control companies whereas it can reject for companies in the treatment group, suggest-

55 The increase in the power of the test comes from the fact that investment by a long-termist manager
should not have reacted to the large fluctuations in the price during that period. However, if investment
is short termist then one should be able to reject H1 more easily precisely because of the large fluctuations
in the price around this period.

56 To account for risk premia, I also regressed ,ri,+q1 ,t+1 on the a beta estimated separately for each
company (on post 1926 CRSP data) and a constant in a Fama-Macbeth fashion. Then I included
variables like q that were in the information set of the agents at time t and checked if they are jointly
signifant in the usual Fama and French (1992) fashion. Variables at time t turned out to be significant
for companies in the treatment group even after adjusting for a company specific beta.
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ing the presence of predictability for companies in the treatment group 57 Column (3)

presents results from estimating the adjustment cost parameter from the Euler equation

Ii[ t e_(r+b) Ii-t+l (i(-e -(r+ 6)) +t - - 1E [KK a(I- e )+ t - e 1 -Iri) IFt- = 0
~~Ki,t-(+)ti 71i't I~-l =

(2.27)

on companies in the control group in two steps. First I estimate e-(r+6) from equation

(2.26). Then I substitute into (2.27) and take first differences to eliminate individual

fixed effects. I use twice and three times lagged q, investment/capital ratios and profit

rates as instruments and adjust the standard errors for the first step estimation error.

This should be viewed as yet another robustness check of the results presented in section

2.4.3. The point estimate obtained is slightly larger than the ones obtained in table

2.3 and so are the standard errors, reflecting the fact that instrumental variables are

used instead of OLS to estimate this parameter. More importantly, the overidentifying

restrictions cannot be rejected. These results are to be expected. If companies in the

control group are not overpriced then the regressions in 2.4.3 and (2.27) present just

two alternative ways of estimating the adjustment cost parameters as shown in Chirinko

(1993). Interestingly, if mispricing exists, does not affect investment and the investment

decision is made in a rational way, then (2.27) should continue to hold. In the appendix

I show how to construct a test based on this observation. I construct a new variable y

as a linear combination of differences in investment and differences in the profit rate for

companies in the treatment group as follows:

di (1 i 26 _e(r+) ( ) +Xe(r+6)(A7ri,1925)
Ki,1925 Ki,1924 X

This linear combination depends on parameters that can be consistently estimated from

57 It is unlikely that the rejection is driven by other sources of misspecification (e.g. non-linear ho-
mogenous technologies, misspecification of rt etc) because in that case the test would rejct for both the
control and the treatment group.
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control group observations using (2.26) and from simple regressions of investment on q

like the ones performed in section 2.4.3. If (2.26) holds for companies in the treatment

group, 3 should be 0 in the following regression of y on q1924 and a constant under H1 :

d e(r±6 ) K1,1rM x
Ki,1925 Ki,1924 X

(2.28)

Column (4) presents results on the parameter in (2.28) estimated on companies in

the treatment group. Standard errors are adjusted for two step estimation. The test

rejects H1 since,/ is significant.

In conclusion, no matter how one runs the test of H0 vs. H1 there seems to be

evidence that the companies in the treatment group did react to market based q. This

seems to be true despite the fact that a significant fraction of the variation in market

based q seems to have been driven by non-fundamental sources.

2.5 Conclusion

This paper addressed the question of whether investment should be expected to react to

"speculative" components in stock prices. The answer obtained in the theoretical section

of the paper is affirmative. In the presence of short sales restrictions and heterogenous

beliefs, investors can gain by either holding the asset and reaping its dividends, or by

reselling it. From an individual point of view, both are sources of value. If one further

assumes that the purpose of a company is to maximize shareholder value, then the

conclusion that investment will react to both fundamental and speculative sources of

value follows. One can however think of situations where this short-term reasoning is no

longer optimal. Indeed, investors with holding horizons that are sufficiently long might

choose to disregard speculation altogether.
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(1) (2) (3) (4)
q+profits q+profits Euler Est. Euler-Test 1926

Lagged q 1.19 1.162
(0.065) (0.049)

Profits 0.192
(0.600)

q-Lag 2 -0.779
(0.299)

Observations 184 125 82 22
Overid P-val: 0.01 0.43 0.71
R-squared 0.27

Table 2.6: Euler Equation Tests and Tests of Overidentifying Restrictions. The first and
second columns test the overidentifying restrictions embodied in (2.26) for the treatment
and the control group respectively. The instruments are lagged and twice lagged q, profit
rates and investment. The third column estimates the adjustment cost parameter for
companies in the control group using (2.27). An efficient GMM procedure is used with a
robust covariance matrix. The fourth column contains estimates for the parameter 1 in
(2.96). Standard errors for this regression are computed with a robust covariance matrix
and are adjusted for first step estimation error as described in the appendix.

This raises the empirical question: Which theory is supported by the data? The theo-

retical framework developed allowed a discussion of empirical tests in a unified framework.

More importantly, it provided more concrete predictions about sources of predictability,

excess volatility, and their strength depending on the dispersion of beliefs. These implica-

tions were tested in the framework of an episode in the 1920's. At that time, a number of

companies were introduced into a market for lending stock (the so called "loan crowd").

The main finding of this paper is that the buildup of speculative components was followed

by company investment as well.

One could argue that the incident studied is isolated. However, in many respects one

can find many parallels between the '90's and the '20's. Large technological progress

was followed by widely varying views on the growth potential of various sectors. The

information superhighway was to the '90's what the automobile was to the '20's. The

radio and the new advertising and distribution channels (shopping through catalogues -
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the birth of large retail stores) were in many respect analogous to on-line shopping in the

'90's. These technological innovations in production and distribution fueled speculation

in the stock market and reduced the hurdle rates for investment in both historical periods.

One direction that was left unexplored in this paper concerns active financial policy.

In the model of this paper I did not introduce any frictions or financing constraints, that

would lead to a role for active financial policy. However, as discussed in Stein (1996) the

presence of financing constraints can provide a further argument why investment and q

would be tightly linked even if decisionmakers are long-termist. It would be interesting

to study the behaviour of long-termist decisionmakers in this intertemporal model under

the assumption that they have to rely on equity to finance investment. It is likely that in

such a setup one would be able to derive additional relationships between equity issuance,

investment and returns that would allow one to disentangle whether investment reacts

to q because of short termism or because of an active financing channel. I pursue this

line in current research.
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2.6 Appendix: Proofs

Proofs for section 2.3.1

The essential difficulty in solving the filtering problem in section 2.3.1 consists in dealing with

the non-linearity introduced by (2.7). If one were to replace (2.7) by:

dft = -A(ft- f)dt + dZf

then one could replicate the arguments in Scheinkman and Xiong (2003) to show that the

posterior mean process is given by:

dftA -(At -)dt+ 02+7 (dsA
-

+ (dsB - ftAdt)

- tAdt) (2.29)

+ - (dD- ftAdt)+2 0-

for agent A and similarly

dftB = -A (ftB -) dt+
os0a + 

LsT (C

+ 7 (dsA YtBdt) + 2

(2.30)
B _ -Bdt)
-Pdt)

for agent B where 7 is given as:

\f(A 2) (2ar2 + 2)

(2.31)2 1
+D

Then the arguments in Scheinkman and Xiong (2003) can be used to arrive at the dynamics
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of the disagreement process gA (respectively gB):

dgA - -pgA dt + rgdWA (2.32)

where p, ug are given by:

= V \ U 8I r2 2 1p )~ -¢, a n-+ (1 -- N2)0'2 + -
og = V2eta

Moreover it is easy to show that dWA is orthogonal to the innovations in dhA and dWB is

orthogonal to the innovations in dot. The reader is referred to Scheinkman and Xiong (2003)

for details.

If one wants to account for the fact that the volatility in (2.7) is non-constant, an approxi-

mate way to proceed is by means of the extended Kalman filter, which is proposed in Jazwinski

(1970)58. This filter can be constructed by using a time varying a (i.e. depending on the path

of fti) instead of the constant y in formula (2.31):

(A 2 2ft ft (2 1\
d -2 A+ - t + (1 _ 2)a2 - (i) 2 + 2 E {A,B} (2.33)dt Or~s f f \o DfJ

d I
It is easy to verify that substituing f = f and requring d- = 0 one can recover equationdt

(2.31). In principle one could solve at explicitly for a given path of fti. Agent As beliefs about

the mean of f would then be characterized (approximately) by the two-dimensional system

58Unfortuanately, this filter does not make a claim to approximate the optimal non-linear
filter, even though in applications it seems to have quite reasonable properties. Various sources
discuss the properties and the efficiency of this filter for "small" noise.
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(2.33), (2.29). For small A, small a and large will be given approximately by:

V (0 + (1 2) 2- 2 + ) a
^ = V2 -+ 17 +~

(2.34)

To see why, rewrite equation (2.31) to get:

(s-a ft )i + ( _ 02),2 ft 2 2(A + -4) t + (1 -2) - + ) ( 2 ))) dt =

- asf 71 + 7I+(1 - 2)( -( +2-DIf o e a prox mat s ~ 1the th " olti n

If one approximates a - 1 then the "solution"f

-2w t
e2w(

- t) (1 b2 )
,yt = -/0e + e -= A-/: [~~~

to this ODE is given by:

J2 1 )((, _ 7)2 _ 2) (2.35)

where:

a 2 +w=A+4k--+ 7 (4-+4
a., s '7D

w is the factor by which past 7t are weighted. For large t one can ignore the first term in (2.35).

Moreover, if w is large, then one can basically ignore the effect of past y and approximate the

above integral (as t o co) by

((2) (1-02) + +4) ;72) - ( + 4) (t )Nt-~~ ~2w
Solving this quadratic equation and setting A = 0 one gets (2.34). With this simplification the

dimensionality of the problem can be reduced since now -yi depends only on ft. Replacing (2.34)
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into (2.29) in the place of a leads to the approximate belief processes:

dftA = A (fA ) dt + (2.36)

70 af [I 2 (dSA fAdt) + 7 (ds- ftAdt) + 2 dD - Adt) (2.37)

f [I 2 9 (dsA-fYAdt) + -2 (dsB -.hAdt) + 4 (dD-.td) (-9

where

70 d92 17- 8 D~~~G G

Since d d -Adt dDfa dt ae (standard) Brownian motions in the mind of agents

af= 0(4kao+ 7)2+ ( )2 (ad)2
which leads to formulas (2.9) and (2.8). Moreover, as long as do not differf D~~~~~~f 

wh~~~~~~~O D ae

significantly from 1 (i.e. the volatility in LA, f is relatively small) then (2.32) will continue

to be a reasonable approximation to the disagreement process.59 Figure (2-6) demonstrates

the performance of these approximations for the quantitative calibration in section 2.3.2. The

top left figure compares the solution to (2.33) (obtained by an Euler Scheme) to (2.34). There

are two observations about the figures. First the two volatilities comove quite closely and

59 0ne could derive an alternative approximation to this disagreement process by subtracting
dfjA from df/3 and then approximating all terms to the first order. Such an approximation
would yield something close to the OU process used here for reasonably small qb.For simplicity
I chose the approximate OU process described in the beginning of this section to be able to
compare the results to Scheinkman and Xiong (2003).
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second the posterior standard deviation (captured by yt) does not vary too much. These two

observations help understand the next three panels. The top right panel is depicting the exact

solution to the extended Kalman filter obtained by solving the two dimensional system (2.29)

and (2.33) and the approximate filter obtained by using (2.36) instead. The two processes

basically cannot be disentangled from each other, since they practically coincide. The bottom

left panel depicts the performance of the extended Kalman Filter against the actual process ft.

It is easy to see that the extended Kalman Filter performs well in "recovering" the path of ft.

Finally, the bottom left panel depicts the difference in beliefs between agents A and B obtained

from the approximate equation (2.32). Once again, the approximation is sufficiently good

that one cannot disentangle the two processes, since they are practically identical. From these

simulations it can be reasonably claimed that the approximation used is sufficiently accurate

for all practical purposes.

2.6.2 Proofs for section 2.3.2

Proof. Proposition (2.1) I use a standard verification argument to verify that (2.11) provides

the solution to (2.10). One can start by conjecturing a solution of the form:

P ('A, Kt) = qF (LA) Kt + UF (A) (2.40)

Substituting this conjecture into the Hamilton Jacobi Bellman equation:

1 2 A XA -. 2max 0f Af - A(ftA - f)Pf + PK (-AK + it) - rP + fAKt - pit - (it2) = 0 (2.41)nIt [2 f~f 2J

one arrives at the conclusion that (2.40) satisfies (2.41) if and only if the functions qF (tA)

and uF (A) solve the ordinary differential equations:

1 2 ft A F -A FFaf -- qf -(ftA - f)qF - (r + 5)q + A 0 (2.42)

1 2 ftA F-r (q _ p) 2 (2.43)-af -=-Uff - - fJUf - r _ (2.43)
2C Ttf- (t - )t -rt F --qp2X
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Figure 2-6: Simulation of a typical path of the model. The top left panel depicts the
behaviour of the exact (under the extended Kalman Filter) and the approximate volatility
of the posterior beliefs. The top right panel depicts the exact conditional mean process
(under the extended Kalman Filter) and the approximation to the exact solution. The
bottom left picture depicts the true f and the posterior mean f as obtained by the
extended Kalman Filter. Finally, the bottom right panel depicts the exact disagreement
process (assuming both agents use the extended Kalman Filter) and the approximation
proposed. The parameters for this example are the same as the ones used in Figure 2,
namely: 6=0.1, r = 0.05, A = 0.1, f = r +6 5, a = 0.25f, D = 0.5a, a. =a
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The solution to equation (2.42) can easily be determined as60 :

F (fe) = r + r +6+ A
r+5 r+6+A

whereas the solution to ul (tA) is given as

ZI(fA) = C1 (fA 7)2 +C2(A -_7) +C3

with:

2
C,= 1 1 1t 1 A

C1 =- ( )
1 11 1

Xr+2) (r+6+A)
i 2

7(1 _-) 2
r+o6

+ 

a , 1 1 1

2 r+2Ar+6+A]2 7r+2Ar+5+A
(i - p-)

1, r + 

r2c lfo1

where = p-L.The derivative of Pt w.r.t JA is given by:

1 (f
r + + AKt + 2C1 (t-A) C2

As long as 2C1 (A _ 7) + C2 > 0, Pf > 0. Since ftA will always be positive it remains to check

that:

-2Clf + C2 >0

or

<1- r+56 1 (+
r+6+Ar+2A r+A- 2f ) -P

As might be expected, for the special case where p = 0 the above equation is always satisfied

N

60In this paper only particular solutions of ODE's will be considered. Economically this means
that "rational bubbles" will not be allowed, i.e. terms that grow unboundedly in expectation
at the riskless rate. See Abel and Eberly (1997) on this point. In contrast only "resale premia"
will be analyzed, that are determined in the next section.
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2.6.3 Proofs for section 2.3.2

Two preliminary results will help in the construction of an explicit solution.

Lemma 2.1 Consider the linear second order ordinary differential equation (ODE):

a2

-y - pxy'-(r + 6)y = 0 (2.48)

Then there are two linearly independent solutions to this ODE and are given by

VU (r+4, 2' X2) if x 0

y(x - l r( +r++)r(i)M(26, X2) -U(t, 4 ,X2) if x>O
y2(x) = Y1 (-x)

where U() and M() are Kummer's M and U functions6l. yi (x) is positive, increasing and

satisfies lim- _oo yi (x) = 0, lim,+o yi (x) = o. Accordingly, y2(x) is positive, decreasing

and satisfieslimx_oo y (x) = o, lim=-+oo yl(x) = 0. Moreover any positive solution that

satisfies equation (2.48) and lim -.-oo y(x) = 0 is given by: y, (x) where ,f > 0 an arbitrary

constant. Similarly any solution to (2.48) that is positive and satisfies: lim=,o y(x) = 0 is

given by y2(x) where > 0 is an arbitrary constant.

Proof. Lemma (2.1) The proof is essentially the same as the proof of proposition 2 in

Scheinkman and Xiong (2003) and therefore large portions are omitted. If v(z) is a solution to:

zv"(z) + (- z) v'(z)- v(z) = 0 (2.49)2 f s s ia n2 p

61 These functions are described in A bramowitz and Stegun (1965) p.504.
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then y(x) = v (0x2) satisfies (2.48). The general solution to equation (2.49) is given by62:

v(z) = M I 2+ Z + r+6 1 Z
2p '2' z -t-U (22p '2'Z

where the functions M( and U( are given in terms of their power series expansion in

13.1.2. and 13.1.3. of Abramowitz and Stegun (1964). The properties Y > 0, ylz > 0,

limoo yl (x) = 0, lim-,+oo yl (x) = oo can be established as in Scheinkman and Xiong

(2003). It remains to show that the Wronskian of the two solutions (2Y - yy2) is different

from 0 everywhere. This is immediate since yl(x), y2(x) > 0 and y' (x) > 0, y2(x) < 0. 

Lemma 2.2 Consider the linear (inhomogenous) second order ODE:

y- pxy' - (r + 6)y =-f(x) (2.50)

Then the general solution to (2.50) is given as:

y[ j y(z)y2(z)-l(z)(z ) dz + C1] yl(x) +

+ [j - 2 f(z)Y(z) dz } C2]
[ o Yl (Z)y2(z) - Y1(Z)/2()) + Y2x

provided that the above integrals exist. Moreover the derivative y'(x) is given as:

[ ((z)y2(z)-yl(z)y(z)) dz +C1 yl(x) +

Fr ( 2f(Z)y(Z)1
+ (z)Y2(z)-Ydz + C2 y2 (x)

62 See. Abramowitz and Stegun (1965) p. 504
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Proof. Lemma (2.2)The proof is a basic variations of parameters argument and is omitted.

For details see e.g. Section 9.3. in Rainville, Bedient and Bedient (1997). 

By setting C1 = C2 = 0 in the above Lemma one gets the so called particular solution,

which will depend on a, p, r and the specific functional form of f(x). I will denote the solution

y(x) to this equation as:

G(f(x); ag, p, r + 6)

and proceed in steps to provide a proof to proposition 2.2. The first step is to make a guess

on the form of optimal investment that is verified later. In particular suppose that the firm's

investment policy is given by:

Conjecture 1 The optimal investment policy in equilibrium is given as:

+ A rt +t (-+ ) 0= + {Y(-gA) (2.51)x r+6 + A r+++A

where 3 is a constant that can be determined as:

13= 1 (2.52
2(r + 6 + A)Y (0) (2.52)

and yl is the function described in the Lemma 2.1.

The next step will be to determine the equilibrium prices, stopping times for agents etc.

conditional on the investment policy described. To do this it is easiest to compute the "infinite"

horizon value of the company to an investor of type A conditional on the policy (2.51). One can

focus without loss of generality on the determination of the reservation price for agent A since

the problem for agent B is symmetric. Formally, the goal will be to determine the functional:

V(KtfA,gt) =t EA [j eX( t) (fSK-pi- (i2)) ds] (2.53)
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This function captures the value of the asset to an "infinite" horizon investor of type A who

takes the conjectured investment policy (2.51) as given.

Proposition 2.5 The solution to (2.53) is given by:

V (Kt, jtjIt) = [r6 + r + + A

+ (C1 (YA y) +C2(fA ) +C3)
•89 ),t_7 C
+,U(gtA)

where u(gtA) < 0 and CI1, C2, C3 are the same constants as in Proposition 2.1. Moreover ug < O.

Proof. Proposition (2.5) According to the Feynman Kac Theorem the solution V (Kt, A, gA)

to (2.53) must satisfy the partial differential equation:

AV + ftAKt - it (p + it) = 0 (2.54)

where A is the infinitesimal operator given by:

AV = 2f f Vff + gV - A(fA -f)Vf -pgtAVg + k (-Kt + it)-rV

Conjecturing a solution of the form:

V = h (ftA)Kt+z (g A)

and substituting this conjecture back into (2.54) one can determine conditions that h( and z(

have to satisfy in order to satisfy (2.54). h( has to satisfy:

2 fA 2 
orf t hff + Org hgg - A (f -7)hf- Pg hg - ( + )h + fA = 0
2 f 2 - (f -?h
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A particular solution is given by63 :

h (ftA) = + 6-

whilez (fA, gtA) solves the partial differential equation:

U2 -;-A 2
A( X.

2j zff + zgg - A(f - 7)Zf P- pt z9 - rz + h(f, g)it-it (P + 2it) = 0 (2.55)

It is easy to show that:

h(f, g)it- it (P + 2it) = 2 ( + rt 5 p - (b(gA)) (2.56)2 TX r+6 + TA2

and

b(gtl) =y Y(-gtA 1) + 1 IgtA > 01 gA
r+6+FA

(2.56) allows one to derive an explicit solution for (2.55) by solving two ordinary differential

equations zl (ftA), u(gtA) that satisfy:

f ~ ~~ ? ) z : ~ T 7 A+~ ¥ 
2 t Azff-A(ft -f)Zif - rz + + + ++A = °f0 (2.57)

f--=- 2X r+J r +,1 -A 2
2 ug- gug- ru - (b(gA)) = 0 (2.58)

2 2~~X

zl(ftA) solves the exact same ODE as uF (ftA) in Proposition (2.1) and thus it will be the case

that:

Zi(fA>) = C1 (1A A)2+C (?"i) ctI~)c ftA-f)2-+'C2 (A-_7)-C3

for the same constants as in Proposition (2.1) . Finally, one can use the results in Lemma

630Obviously there are other solutions that "explode" at the rate r but we will only be interested
in bounded solutions in this paper.
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2.2 to construct the solution to (2.58). It is given by:

u(g) = G (- (b(g) )2;og,p,r <2X~~<

To show that ug < 0, observe that b(gA) is a strictly increasing, positive and continuously

differentiable function of gA, so that:

1 b( ) 2 A[-.I (b(gi))J = _ (gi )bg <0

Differentiating (2.58) w.r.t. gA gives:

2uggg - pgugg - (r + p)ug--b(gA)bg = 0

Defining ug = z d one can rewrite this equation as:

-g zd- pgzd _ (r + p)Zd b(gA)bg = 

which has the particular solution:

G (- ( )bg; ag, p, r +

which is unambiguously negative. This formal analysis can be made rigorous by invoking a

set of results known as Malliavin Calculus (see e.g. Fournie et. al. (1999)). 64 

With an expression for the value of the asset to an agent who does not intend to resell it

ever in the future, one can proceed to guess an equilibrium pricing function and an optimal

stopping policy. An informed "guess" is that the optimal stopping policy is of a particularly
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simple form: Agent A should sell once fA < ft' and agent B should sell once ft < fA. This

is the case because there are no transactions costs in this model. Accordingly, each agent sells

the asset once she stops having the most optimistic beliefs in the market. In particular one can

re-express the reservation price for agent A as long as gtA < 0 (so that it is agent A who is the

highest bidder) as

P(K fA, g) = V (Kt, A g) + s(Kt, t ) (2.59)

Similarly, the reservation price for agent B (as long as gtA > 0 or equivalently gB < 0) is

given by symmetry as:

P(Kt, ft , ) = V (Kt, Pt) + s(Kt, Pg) (2.60)

A further conjecture that will be verified shortly is that for gtA < 0, s is given as:

s(K, f,g) = yl (g)K + n(g) (A _ ) + v(g) (2.61)

for some functions n and v. In other words the reservation price for each agent is just the

infinite horizon valuation of the dividends plus a speculative component. Using (2.59) one can

get the following result:

Lemma 2.3 If the reservation price function for agent B is given by (2.60) then the reserva-

tion price for agent A is given by:

P(Kt f,g) = V (Kt tAg) + (2.62)

+ sup Ee-rT [V (Kr, fr, gr) - V (Kr, frA, gAr) + s(Kr, fr, gf 42.63)

= v (Kt,,tAg) + (2.64)

+supEerr [r+ +A y iY(-g'))Kr +wUr )] (2.65)
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for w(fA, gA ) given by:

w(f, gT) = [C2 + n(-g)] g+Cl (g) 2+u(-g)-u(gT)+ [n(-g) + gA2Ci] (fA - f) +v(-g)

Proof. Lemma (2.3). The argument is essentially identical to the one given in Scheinkman

and Xiong (2003). I give it here for completeness. Using (2.59) one can get:

P(K, A, gtA ) =

sup [ E e (- t, -pi-t 2 dt) (-r(K,,fg;) =

fr e-r
- "-. +e-T L +e-rr [V (KT, Pr, g

supE [ +e- rT [V (K, r ,

= V(Kt,jtA,gtA) +supEe - rr

= VA + sup Ee - rT
7

[

If)

t (fAKt -pit -it) dt+

+ ,6y1(g)Kr + n(gf) ( - ) + v(gB)]

eo e-rt (fKt - pit - i2) dt+
rB) - V (Kr, fA, gA) + flyi(g)KT + n(gr) (r - f) + v(g)] J

- +- + y (9)) K, + C29 + U(B) - U(A)++C ( -) + n(g ) (P ) + V(9 ) -
r+6+A+1Y19T)) KT + [C2+ n(-g)] g + C ( ) +

+u(-g) - u(gT) + [n(-g) + g 2Cl] (f - f) + v(-g)

where the last line follows from the identities:

f = f + ^B ^A A

gD = _gar

Defining the function w(fr, gT) s

W (f g) = [C2 + n(-g)] gA + C1 (A)2 + u(-gA) - u(g) +

+ [n(-g) + gA2C1] (A _ 7) + v(-g)
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concludes the proof. 

In light of Lemma (2.3) it remains to establish that (2.61) is right, i.e. that there exist

appropriate functions n(-), v(.), and an appropriate constant I such that:

flYl (gt )Kj + n(gj ) (fA -7 ) + v(gA ) = sup Ee [ ++ +r6y( Kg,r +6+ A+p1-gJ rwJg)
(2.66)

In other words it remains to establish the existence of functions n(gtA), v(gA) and a constant IS

so that the Value function of the optimal stopping problem on the right hand side has the form

on the left hand side inside the continuation region, i.e. inside the region where agent A finds it

optimal to hold the asset. The right hand side problem is a three dimensional optimal stopping

problem (in Kt, ftA, gtA) and in general there is no method to solve such problems analytically.

This is in contrast to one dimensional optimal stopping problems where continuity along with

smooth pasting is enough to determine the stopping region and the associated value function

in most cases. Fortunately, the simple form of the conjectured continuation region allows one

to solve this problem as is demonstrated in the next proposition:

Proposition 2.6 There exist functions n(gtA), v(gA) and a constant S such that the function:

(KtAA = /fyl(gA)Kt + n(gt) (ftA - f) + v(gtA) if gA < (2.67)
=A gtA ^st, t, A + ,y,(-g AT)) K + W(fr, gA) if gtA > 02.67)

satisfies

AV = if gt <0

is twice continuously differentiable in the region gtA > 0 and in the region gtA < 0 and once cont.

differentiable everywhere. The constant S is given by:

1 1

2(r + +A) +,y(o)

and the functions n(.) and v(.) are given in the proof.
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Proof. Proposition (2.6) The first step is to construct the Value function under the assump-

tion that both the conjecture for the optimal stopping region and the equilibrium investment

strategy is correct. Since for gA < 0 the conjectured optimal strategy is to hold the asset, one

can formulate a necessary condition for the value function of the optimal stopping problem

on the right hand side of (2.66). Namely, it has to be the case that inside this region:

As = 

or:

0 Sff + sgg - P(fA -f)sf -Pi sg + (2.68)2 f 2r 

+sK -K+ ( + 1(A -+) -rs (2.69)

An informed guess is that this PDE has a solution of the form:

flyi (gKt + C (fA gtA)p~(t)Kt+(f t)

Plugging this into (??) one gets the set of equations:

r20 JYs- Af(r + + )y (2.70)

0= } A} f + (g - A(fA - 7)Cf pg + (2.71)

+Oyi(g) ) ;(-- + t a +pyl(gA))-r (2.72)

It is immediate that the function yl(gtA) constructed in Lemma 2.1 satisfies (2.70) by con-
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struction65. One can determine a solution to equation (2.71) by postulating that the solution

u is given by:

( Agjt) = v(gtA) + n(gA) (jA y)

and upon substituting this conjecture into (2.71) it is easy to see that v(gA) and n(gA)

have to satisfy the two ordinary differential equations:

-g2 1 (A f )
vgg -pgAvg - rv + -Iy6(Y=) ( +I5Y( ))) = 0 (2.73)

2 x r / 
£72 AA 1 ____ A)= 
Angg -pgng(r+A)n(gA)+- yl(g) = (2.74)
2 X r+e+AI

In the gA < 0 region, the general solution to (2.73) and (2.74) is given by:

V(gt) = Cly()(gtA) + c 2yr)(gA) + vp(gA)

n(gA) = y/r+A) (gA) + 2'y2+ (gA) + np(gtA)

where vp(gA),np(gA) are the particular solutions to the above equations obtained by

Lemma 2.2:

(_g fl (1-p~ (_gA ) r,vp(gt) = G [1 (Yg-Il_) A, p( _ _ )) r

X~ ~ ~~~~% p, r + 
np(gtA) = G [- (+ + A)Y(-gt ); a p r +A]

and y(?)(gt),y(x)(gtA) are defined in an identical way to yl(gtA) and y2(gtA) of Lemma 2.1

with the only exception that r + 6 is replaced by x. It is also clear that since Y(- gAI) is
a bounded function, the above integrals are finite. Moreover, it is easy to check that the

65Moreover it is the only solution that vanishes as gtA -oo
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particular solutions to the above equations satisfy vp(0) = 0 and n () - 0.66 Finally, to keep

only solutions that do not explode as gA -oo one can set c2 = c2 = 0.

Observe that the conjectured Value function is of the form posited in the left hand side of

equation (2.66). To conclude with the construction of a candidate pricing function, it remains

to determine the constants in such a way that the resulting value function for the optimal

stopping problem (2.66) is both continuous and cont. differentiable everywhere. For gtA > 0 the

conjecture is that agent A resells to agent B, so that the value function for this case is given

by the value of "immediate exercise" i.e.

s (K f g A + Yl (_-gtA) ) Kt + w(fXA, g) if A >0

In each of the two regions (gtA <0, gtA > 0) the function V is twice cont. differentiable,

accordingly continuity and differentiability only needs to be enforced at gA = 0. The left limit

of V at gA = 0 is given by:

/Yl1(0)Kt + v(0)+ n(0) (A _ )

whereas the right limit is obtained by evaluating (4+A + Y (- _g)) Kt + w(ftA, gA)

around gA = O. This yields after obvious simplifications:

3yl(0)Kt + v(0) + n(0) (A - )

66Since they are symmetric around 0 and continuously differentiable.
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so that continuity is immediately satisfied. Differentiability requires that:

1
,6yj(0) =- lay,(o)

r+5+ A
Cy(r+)'(0)

2lyl (0)

= -y(+)' (o) + 2C1

= -2u'(0) + C2 + n(O)

which implies that:

1 1

2(r+ + A) y(O)
~ c 1Cl

y(r+\)(0)

C1
-2u'(0) + C2 + n(O)

2y(r)I(O)

.

In order to be able to invoke a verification Theorem for optimal stopping one needs addi-

tionally the following two results:

Proposition 2.7 The function s constructed in Proposition (2.6) satisfies:

s(ftA, g , K) =

( g+A Kt + 2ClgA(IA - f)+C 1 (gA)2 +C2g + u(-g ) - ( ))+(Ag, -g, Kt) =

( v (K B)-V (Kt, gt ) + s(Kt, P , )

Proof. Proposition (2.7) The definition of s in Proposition (2.6) allows one to compute

s(fA + gtA, -gtA, Kt) as:

s(ftA + g, _gt, Kt) = {fy1(-gtA)Kt + n(-ggA) (A + gA - f) + v(-gtA) if gt > 0

- iX +y(gtA) Kt + W(fA -gtA ) if gtA < 0+~ ~~~~ + g
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and since

w(f + gAgJ A) = - [C2 + n(gJA)] gtA + C, (gtA)2 + U(gt) - u(-gtA) +

+ [n(g ) - gt 2C1] (7A + t -) + v(gA)

one gets after a number of simplifications irrespective of whether (gtA > 0) or (gtA 0)

S(LA, gtA Kt) =

A+ (gtA) + C2tA + U(AgA Kt + 2CgtA(ftA-7)+C C1 (gt)_+C2g+U t (gtA))r+J+A + s(fA +g ,_-gt Kt)

.

The single most important step towards verifying the results is to verify that:

As <0

in the region (gt > 0). In particular, the following result is true:

Proposition 2.8 Suppose

A 67(A) p < A 67r+b+A\

(B) p- 3A - 2r > 

Then

As < 

for gtA > 0.

67It is trivial to show that under this condition Kt > 0 and moreover < p
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Proof. Proposition (2.8) For gtA > 0 the operator A is given for any function V as:

2 7f 2 ggs+vk -6Kt + - (
X '

_ Pg. 7
A(ftA f)V -pgt V9 +

- + 4- gA+9t -f g Y1A(_g2))) r+ + Om(-g i rV
+ J r + J + A

The conjectured s is given as:

(Kt fA, gtA) = (r + AA) K + w(ft, gt)

where (from Lemma 2.3) w(ftA, gA) is given as:

w(ftA, 9t) = [C2 + n(-gtA)] g tA±C1 (g) 2 + u(-gj) - u(g) +

+ [n(-gtA) + g2C1] (tA _ -f) + V(-g)

It will be easiest to apply the operator on each term separately:

A gtA +../yl (_gA) K -

r++[(r± +AY1(9t )) Kt] =

(pr++6) Kt
x ( + + A) rt+ ++

X-- '- A9t- / A)Y ( - -gt) fi + ~.i - /3Y (-gt)
+X r+6+A +3 (g r6 r56+A 
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A [[C2 + n(-t9t)] t + C1 (t) ]

= -(p + r)gtAC2 + C1<9 - C(2p + r) (gtA)2 +

+g (2 ngg(-9gt) - p(-gt )n9(-gtA )
- rn(_-g))

pgAn(-g) - rn (-g )

A [[n(9t) + g 2C1] (tAf()] =

- pgA (-n9 (-gA) + 2C1) -(r + A) [(-9 )9= ( g (gA)

* (~ _ 7)

= ( 2 ngg(-A) - p(-gtA) (ns(-gA)) _

-(p + r + )2Cg (yAf)

(r +A) n(A,)) (fA_ 7)

Using the definitions of u(-) and v(.) from Propositions 2.6 and 2.5 the above expressions

become:

A [u(-gtA) - u(t)] = (ug9 ) p(-g)u(-g) _ ru( )) A 2-u 9g - ru =2~~~
1 2,/3y,(-gt)gt

- 2X r+ +A
+ (gjt) 

(r + + A)2

= 2Vgg(-9gA) - p((-gA)v9 (-gA)) - rv(_-gA )
2

_ 1 (~yn(_gA) f (1 AP / _gtA)
X 'r +~ + 3lQt)
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Collecting terms and using from Proposition 2.6 the fact that:

ngg -pgng - (r + A) n( -=- + + A) Y (9t )

and substituting it follows that:

A [[C2 + n(-g9t)] gt + C1 (gt) 2] = -(p+r)gtAC2 + Clu2 - C(2p + r) (gA)2+
+++g( ( + ) yl(-gtA) + An(-gt))

-pgt n(_gA)_ - ogn(-gA)

A [[n(- t) + gt 2C1 ] (ftA -7)]

- (r + +A) Y(g) (A
-(p+r+A)2Cgt (t _f)

-7)

Collecting terms, simplifying and using the definitions of C1, C2, C3 in Proposition 2.5 one

can conclude that:

= (_ (P+ + 5)gA Kt +
r+6+ 9t t+

1 A

_1(pX \)g 2lt- 7)X

1 a1 2 1 1

P-AX 2 r+2A
(r +A)

r+5+A

1 1 - (gtA) 

2X P -+2A (r+6 + x)2j
-(p - A)gjtn(-gtA) + o. [C - n9 (-gA)] (2.76)

The first term is unambiguously negative if Kt > 0, the second term is negative since (p - A)
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is positive68 and we have assumed p < p so that 2C (A -f) +C 2 > 0 . The third term will

be negative since p- A > 0. The terms in the fourth line requires some further analysis. In

particular, notice that

(Cl -ng(-gt)) -

2 (cl _Clyl )( )_npg(gA))

09 ( l (--(° A) 9pg( 

Thus one can rewrite (2.76) as:

-(p - A)gt n(-gt) + ogCl 1( - 1 (i)) - anpg(-g ) (2.77)

As expected, (2.77) at gtA = 0 is 0 by smooth pasting. Thus it is sufficient to show that

(2.77) is declining for gtA > 0. To do this, differentiate once w.r.t to gtA, to get:

-(p - A)n(-gAt) + (p_ -)gAn 9(-gtA) + 2ng(_g A) (2.78)

Now one can use the definition of n(g) to get:

2 (-gtA) 2 ( + A) Y A(-gA) + 2p(-gtA)ng(-gtA ) +2 (r + A) n(-gtA)
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and substitute into (2.78) to arrive at:

-(p + A)gAn(-gA)

-2 ( ) y ( tA)
X r-l5-!A

-[p - 3 - 2r] n(-gA)

which will be smaller than 0 under assumption (B), since both n(-) and n9 (-) are greater

than 0. 

Combining the properties established above one arrives at the equilibrium pricing function

of Proposition 2.2. By Proposition 2.5 and the results in Proposition 2.8 it is straightforward

to verify that P(ftA, gt, Kt) satisfies the following properties:

£P = O ifgtA <0

CP < 0if gtA > O

where:

LP=rnax(AP+fK-ip ii)•LP -max (A P + f K-i (p-+ X2 i)) O

and

~-2AP 2 g ggff t ffi+orgg -pgPg+PK(-6 Kt+it) - rP

Moreover P(fgA, t K) is C1 everywhere and C2 except at gtA - 0. Consider now any

policy it and a stopping time r. Then Ito's Lemma implies:

e-rPr= Po+ e-rtAPdt+ dMt/r 1:
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where dMt is a (local) martingale. Since Pt > 0, one can conclude that E (fo dMt) < 0

and thus:

E (erTPr) < Po+E [f >P + f Kt -it (P + 2 it) d-

E [.;ftAKt -it ( + it) t

Then the following set of inequalities follows

Po > PO+E [J CPdt] > Po+E [p AP + fAKt -it (P + 2) dt]

> E (er) +E At Kt - it (p + X2it) dt]

Thus there is no set of investment policy / stopping policies that can yield more than Po.

Moreover, the conjectured investment and stopping policies turn the above inequalities into

equalities. Thus, the conjectured equilibrium prices and policies form an equilibrium.

2.6.4 Proofs for section 2.3.2

Proof. (Proposition 2.3) Ito's Lemma for continuously differentiable functions implies that

b(gtA ) satisfies:
t+A

e-(r+)'bt+a = bt + e- (r+)(s- t ) (Abs)ds + Mt+A (2.79)

where Mt+T is a martingale difference satisfying:

E [Mt+AIt] =0

and Abs is given as:

-bg - pgbg - (r + )b
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It is easy to show by using the definition of Y () that:

Ab =- (r + + A) gAlg{A > } < 0

Combining this with the fact that:

qt= + f-f +b(gA)r +6 r + + A]

leads to the first assertion. The last assertions can be proved by using the results in Fournie

et. al (1999). In particular:

9Z = E9
[ it+-

e+A -(r+6+P)(8-t)1{g > O}ds
It

which is clearly positive. A similar method can be used to show that E > O.
-9

2.6.5 Proofs for section 2.3.2

Proof. The proof is a straightforward application of Ito's Lemma to

Pt = Vt + st

taking into account equation (2.76). To establish the rest of the result one can focus only on:

-= CEA [X e-r(s-t)gA (fsA_-7) 1{gA> 0}dst]gs~~~~ ~dlF

and pass the expectation inside the integral and use the independence of fjA and gA to get

that:

A C [fA e-r(8-t) (EA (jf -) fIt) (EAg81{g > I.Ft) ds]
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and since

EA (f> -7It) = (ftA-7)e AS

one gets:

-= (A _ c [ft+A e(r+A)(s8t) (EAg1{gsA> O}|t) ds]

so that:

air4 E je-(r+t)(s-t) EA A {A > }JFt) ds > 0
=A C ]>

This term is of the same form as the term obtained in Proposition 2.3 and the rest of the

results can be proved in an identical manner. 

2.6.6 Proofs for section 2.3.2

In order to give a proof of (2.24) it is useful to start by modelling the evolution of the capital

stock for discrete time intervals:

KT Kte6(TTt) + e6(T)isds + tKT = Kte 6(T-t) + J e 6(T- i,ds + it
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where eit captures adjustment cost shocks69 and satisfies a strict exogeneity condition:

E (eitIqt=..T) = 0

so that:

E (KT- Kte- (Tt) Et) = E e-8(T-s)isdsYt) =

1 T 8( -)=XE (te-(-qds.Ft + C

pJ e-6(T-S~~~~~~~~~~~~~~~~~~~~~~~~~ds 4 v (i~~~~~~~~~~~~~~~~~~~~~~~e. marginal q~~~~~~~~~~~~~~~~&-7(~e ariafLT e6(T-B)d f fswhere C = .Now if qt = L + (i.e. marginal q
X

(2.80)

(2.81)

run fundamental notion of q) it is easy to demonstrate that

E ( e-(T-s)qsdsFt = B1 + B2qt (2.82)

where B 2 ftT e-6 (T-8)ds as A -, 0 and B 2 -- 0 as A oo. This is in essence the Barnett

and Sakellaris (1999) critique. Normalizing T - t = 1, it will be the case that B2 < 1 and

thus the estimate that will be obtained in a regression of it on beginning of period marginal "q"

69I haven't modelled adjustment costs and time variation in capital prices explicitly. Such a
modification is easy to do. One just assumes that the adjustment cost technology is given by:

X (it + nt)2

2

where nt is some stochastic process. Similarly one can introduce variability in prices by
modifying the dividend stream to:

dDs - X (it + nt)2 - Ptit

If adjustment costs are independent of the capital stock all of these modifications affect the
rents to the adjustment technology only.
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will produce a downwards biased estimate of in the sense that OLS will consistently estimate
x

B 2 1. If depreciation (6) is small and fundamentals persist for a while, (i.e A is small) then B2x

will be not much different than 1.70

Under the assumption that investment only reacts to long run fundamental q one can rewrite

(2.81) as:

E (It [Ft-I) - QtF- + C (2.83)

where -in order to simplify notation- I have defined:

It = Kt - Kt-le 6

and

QQF1 = E ( e(t-) qs dslYt-1)

As demonstrated before, QtF1 can be expressed as B1 + B2qt_1 under the assumptions of

the model. Therefore one can rewrite (2.83) as

E (It [t- 1) = -BlqtF1 + C (2.84)
X

701In the presence of predictability this issue becomes even more involved because equation
(2.19) has to be augmented by terms involving gtA which is correlated with beginning of period
qt. One can base a test on this fact by testing the orthogonality between beginning of period
qt and the error in the regression of investment on beginning of period qt as proposed by
Chirinko and Schaller (1996) equation (15). However, this is a test of whether bubbles exist,
not whether they influence investment. It also appears to be less powerful than a test based on
equation (2.19). The reason is that predictability in the Chirinko and Schaller (1996) test is
multiplied by { and the error term consists of the (possibly biased expectations error) and the
adjustment cost shock. These two facts might make it difficult to observe predictability even if
it exists. A practical way to obtain consistent estimates of X is to approximate ftT e(T-S)qsds
by a weighted average of beginning and end of period qt , project this quantity on beginning
of period quantities and then use the predicted values in the regression. In other words to
estimate two stage least squares. I used such an approach too in the empirical section of the
paper and the results were unaltered.
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Leading this once, one gets:

E (It+1,) =-B, f + C (2.85)
x

However notice that qF and qFLl are related by:

t-qF -= E [je-(r+S)(8-(t-1))jds + e-(r+)ql'] (2.86)
1

so that (2.84),(2.85), and (2.86) are related by:

-E [-+) -e-( 6)It+- B1 e(r+6)(8(t-1)) fsds + C(1- e-(r+6))I.'t- ] = o
X 1

For small r, 6 this Euler Equation can be well approximated in terms of the observed profit

rate:

E [It- e -("+"),,+,--Bir + C(1- e-(+ "))-t_ = 0 (2.87)

where the profit rate is given as:

It = = f Ods + D dZPD
t- Ks j _

K. ~ ~ ~~~~~~1 1
The results in the text follow once one defines: C = C(1 - e- (r+6 )) and B1 =x

Generalizing to arbitrary linear homogenous adjustment cost technologies

To generalize the results to arbitrary linear homogenous adjustment cost technologies and

an arbitrary number of investor groups it will be most useful for expositional reasons to consider

a discrete time setup and focus on a quadratic adjustment cost function for simplicity. Moreover

I will assume 0 depreciation and a price of investment of 1. Once again the equilibrium price,

98



investment and selling times will have to satisfy:

Vt = Dt+Pt= maxsupE IdsD+d T Vl
jEJ r,i _

(2.88)

where j e J is indexing the various groups of investors who have heterogenous beliefs, d = 1rl+r 
Dt is defined as

Dt = [ft - Kt

and:=ft Kt 2 Kt

and:

Kt+ = Kt + it+l

I will also assume that investment is determined at

idea is to show the following:

Lemmna 2.4 A set of prices, investment policies and

only if it satisfies:

i+ lVt=Dt+Pt=maxsupEJ lift-t -

J it+l Kt

the beginning of the period. The basic

stopping policies satisfies (2.88) if and

(2.89)2xK it +)

Proof. Lemma (2.4). The proof is a generalization of the result shown in Harrison and

Kreps (1978') and is available upon request. U

With Lemma (2.4) the rest of the steps follow essentially standard arguments. One can

show that marginal q is equal to average q, where q is now given by the recursion:

qt = Ej t d ft+l K qt+
'*(2xKt+2/ )
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j is given as

it[ x/ it+ 21 j = arg max supEj ([f t+ X (+ 1 K dV
J it Kt 2 K,-t] t-~

and optimal investment is:
it+l _qt-1

Kt X

From here it is not difficult to derive that marginal and average q are equal by standard

arguments (see e.g Chirinko (1993)). Suppose that now one were to define:

it =A + X jZt+j = a-t
2~ -f '~ Kt / -OKt

If one assumes the presence of a rational agent A in the model it is immediate that under

her beliefs it will no longer be the case that:

EA [qt - d [It+ + qt+l] I|t] = 0 (2.90)

nor that:

EA itt+ d ~ t+ -][it) + Clt = (2.91)[--kt-d~- K+ li +C ,=

However, if investment is determined by a long termist rational investor (2.91) will hold

even if (2.90) fails for the reasons explained in the text.

2.6.7 Proofs for section 2.4.4

For this section I use the standard assumption in the literature that adjustment costs are linear

homogenous in capital, time is discrete and the adjustment cost technology contains both time
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and individual fixed effects. Then by steps similar to 2.3.2 one can derive that:

E [ ift e-(r+6) + -I(- e-(r+')) + (t- e-(r+)(t+l +-7rit I.t- = (2-92)
LKi,t- Ki,t 1

which can be rewritten as:

it+l (r+) it - i(e(r +) - 1) - (te (r+ ) + t+ - e(r+5)7ri,t + it
Ki,t Kj,t-1 x

where

E [eitt-1] = 0 (2.93)

In particular:

E [eitql..t-] = 0

I am going to formulate the test in first differences in order to eliminate fixed effects, so

that:

A it= e K,t- - -e(+') (/Ari,t) + Eit+l -Eit (2.94)

where I have defined for convenience:

1K = 
x

C = AXt+ - Ate(r+)
( = At+l-A(te(r+°5)

The unknown parameters are e(r+6), and . If one knew these parameters then one could

determine eit+l -- it. To utilize the entire sample I estimate both and e- (r+6 ) from the system
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of Euler relations:

(2.95)qi,t = e(r+)E [1ri,t + qi,t+l.Jt]

Ki,t =- ai + ct + Kqi,t-1 + sit
ri,t-1

estimated on all data in the control group.71 Then one can substitute the estimated para-

meters into (2.94) to get:

A ( I,,1 926 -= efr+&)A ( Ij,1925 ) -( _ ^e(+5)(Aji, 1 92 5 ) + ei1926 - Ei1925K i,,1925 e i,192

To test the hypothesis of interest one can modify this equation to:

y ( Ii,1926 -_e(r+6)A ( ,1925 ) +e(r+)(Tri,1925) = Pqi,924+ + Ei1926 Ci1925 (2.96)
Ki,192 5 Ki,1924

According to H1, 8 should be 0. Moreover, qI924 should be orthogonal to the errors, so that

an OLS regression of y on qi,1924 will produce a consistent estimate of . Of course standard

errors need to be adjusted for the first step error. I undertake this adjustment by using the

results in Newey and McFadden (2000) section 6.

71I use only the control group to simplify the computation of standard errors for the two step
estimator of .
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Chapter 3

Saving and Investing for Early

Retirement: A Theoretical Analysis

(joint with E. Farhi)

3.1 Introduction

Two years ago, when the stock market was soaring, 401(k)'s were swelling

and (..) early retirement seemed an attainable goal. All you had to do was

invest that big job-hopping pay increase in a market that produced double-

digit gains like clockwork, and you could start taking leisurely strolls down

easy street at the ripe old age of, say, 55. (Business Week 31 Dec 2001)

The dramatic rise of the stock market between 1995 and 2000 significantly increased

the proportion of workers opting for early retirement.' The above quote from Business

Week demonstrates the reasoning behind the decision to retire early: a booming stock

market raises the amount of funds available for retirement and allows a larger fraction of
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the population to exit the workforce prematurely. As a matter of fact, retirement savings

seem to be one of the primary motivations behind investing in the stock market for most

individuals.

Despite the growing relevance of early retirement, the existing literature has not

studied the interactions between retirement, portfolio and consumption choice explicitly.

In this paper we develop a theoretical model to address these interactions in a utility

maximizing framework. We assume that agents are faced with a constant investment

opportunity set and a constant wage rate while they are at work. Their utility exhibits

constant relative risk aversion and is nonseparable in leisure and consumption. The major

point of departure from preexisting literature is that we model the labor supply choice as

an optimal stopping problem: an individual can work for a fixed amount of time and earn

a constant wage but is free to exit the workforce (forever) at any time she chooses. In

other words, we assume that workers can work either full time or be retired. Individuals

are faced accordingly with three decisions: 1) How much to consume 2) How to invest the

savings and 3) When to retire. The incentive to retire comes from a jump in their utility

function, once they stop working, due to an increase in leisure. If retired, they cannot

return to the workforce. We also consider two extensions of the basic framework. In the

first extension we disallow the agent to choose retirement past a prespecified deadline.

In a second extension we disallow her to borrow against the NPV of her human capital.

The major results that we obtain can be summarized as follows:

First, we show that the agent will enter retirement when a certain wealth threshold

is reached. In this sense, wealth plays a dual role in our model. Not only does it

determine the resources available for future consumption, it also controls the "distance"

to retirement.

Second, the option to retire early strengthens the incentives to save compared to the

case where early retirement is not allowed. The reason is that saving not only increases

consumption in the future but also brings retirement "closer". Moreover, this incentive is

wealth dependent: as the individual approaches the critical threshold, the "option" value
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of retiring early becomes progressively more important and the saving motive becomes

stronger.

Third, the marginal propensity to consume (mpc) out of wealth declines as wealth

increases and early retirement becomes more likely. The intuition is simple: an increase in

wealth will bring retirement closer and as a result will decrease the remaining time of the

individual in the workforce. Similarly, a decline in wealth will postpone retirement. Thus,

changes in wealth are somewhat counterbalanced by the behavior of the remaining NPV

of income and thus the effect of a marginal change in wealth on consumption becomes

attenuated. Once again this attenuation is strongest for rich individuals who are closer

to their goal of early retirement.

Fourth, the optimal portfolio is tilted more towards stocks compared to the case

where early retirement is not allowed. An adverse shock in the stock market will be

absorbed by postponing the retirement time. Thus, the individual is more inclined to

take risks, because she can always postpone her retirement time instead of cutting back

her consumption if the stock market drops. Moreover, in order to bring retirement closer,

the most effective way is to invest the extra savings in the stock market instead of the

bond market.

Most of these results can be encapsulated in option pricing terminology: the ability

to time retirement is like an American option that is most valuable when the likelihood

of exercising it is high. This in turn will be the case when wealth is high. If we allow for

a mandatory retirement deadline, then the value of this option also depends on the time

to its expiration.

This paper is related to a number of papers in the literature, which is nicely surveyed in

Ameriks and Zeldes (2001). The paper closest to ours is Bodie, Merton, and Samuelson

(1992) (henceforth BMS). The major difference between BMS and this paper is the

different assumption about the ability of agents to adjust their labor supply. In BMS

labor can be adjusted in a continuous fashion. However, there seems to be a significant

amount of evidence that labor supply is to a large extent indivisible. Most workers work
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either full time or not at all, when they are retired. As BMS claim in the conclusion of

their paper

Obviously, the opportunity to vary continuously one's labor without cost

is a far cry from the workings of actual labor markets. A more realistic

model would allow limited flexibility in varying labor and leisure. One current

research objective is to analyze the retirement problem as an optimal stopping

problem and to evaluate the accompanying portfolio effects.

There are at least two major directions in which our results differ from BMS. First,

we show that the optimal stopping decision introduces an option-type element in the

decision of the individual, which is entirely absent if labor is adjusted continuously.

Second, the horizon and wealth effects on portfolio and consumption choice in our paper

are fundamentally different than in BMS. For instance, the holdings of stock in BMS are

a constant multiple of the sum of (financial) wealth and human capital. This multiple

is not constant in our setup, but instead depends on wealth2 . Third, in our setup we

can calibrate the parameters of the model to observed retirement decisions. In the BMS

framework calibration to microeconomic data is harder, since individuals do not seem to

adjust their labor supply continuously.

Moreover, the model as presented here exhibits a closer resemblance to some actual

retirement systems observed in the US and other countries and can provide a "first best"

benchmark against which one could measure the effectiveness of defined contribution

plans, 401(k)'s etc. and their implications for optimal retirement and savings decisions.

We elaborate on the necessary modifications in the conclusions to this paper. At a larger

scale, one can use the insights of this model to understand why countries with larger

flexibility in terms of the retirement decisions (like the US) can be expected to display

increased market participation compared to countries with less flexibility (like Europe).

In conclusion, the fact that labor supply flexibility is modeled in a more realistic way

21f we impose a retirement deadline, this multiple also depends on the distance to this deadline.
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allows a closer mapping of the results of the model to real world institutions than is

allowed by a model that exhibits continuous choice between labor and leisure.

Technically, the paper uses methods proposed by Karatzas and Wang (2000) for

solving optimal consumption problems with discretionary stopping. The extension that

we consider in sections 5 uses some ideas proposed in Carr, Jarrow and Myerni (1992)

and Barone-Adesi and Whaley (1987), while section 6 extends the framework in He and

Pages (1993) to allow for early retirement.

The role of labor supply flexibility is considered in Basak (1999) in a general equi-

librium model with continuous labor/leisure choice. It is conceivable that the results

presented in this paper could form the basis for a general equilibrium extension. As a

matter of fact, it is well known in the macroeconomics literature that allowing indivisible

labor is quite important if one is to explain the volatility of employment relative to wages.

See e.g. Hansen (1985) and Rogerson (1988).

The model is also related to a strand of the literature that studies retirement decisions.

A partial listing would include Stock and Wise (1990), Rust (1994), Laezar (1986), Rust

and Phelan (1997), Diamond and Hausman (1984). In our setup it is possible to study

retirement explicitly. We believe that the closed form solutions that we provide for

the optimal retirement time could be useful in structural estimations. Furthermore,

the model allows one to calibrate the parameters to commonly estimated hazard rate

functions for retirement.

Some results of this paper share some similarities with results obtained in the litera-

ture on consumption and savings in incomplete markets. A highly partial listing would

include Viceira (2001), Chan and Viceira (2000), Koo (1998), Caroll and Kimball (1996)

on the role of incomplete markets and He and Pages (1993) and El Karoui and Jeanblanc

Pique (1998) on issues related to the inability of individuals to borrow against the NPV

of their future income. This literature produces some insights on why consumption as

a function of wealth should be concave and has some implications on life cycle portfolio

choice. However, the intuitions are quite different from the ones analyzed in this paper.
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In the present paper the results are driven by an option component in agent's choices that

is related to their ability to adjust their time of retirement. In the incomplete markets

literature results are driven by agents' inability to effectively smooth their consumption

due to missing markets.3

As this paper was completed we became aware of independent work by Dybvig and

Liu (2003), who study a very similar model to the one in section 6 of this paper. Dybvig

and Liu (2003) are using this model to compare institutional frameworks with voluntary

vs. mandatory retirement decisions. In this paper we are interested in determining

the effects of the option to retire early on portfolios and consumption decisions. Thus,

our paper is suited to study the current institutional framework while the framework in

Dybvig and Liu (2003) can be used to analyze the implications of alternative institutional

frameworks.

The structure of the paper is as follows: Section 2 contains the model setup. Section 3

describes the solution methodology. Section 4 describes the analytical results if one places

no retirement deadline. Section 5 contains an extension to the case where retirement

cannot take place past a deadline. Section 6 discusses extensions to the case where a

borrowing constraint is imposed and section 7 concludes. The technical details and all

proofs can be found in the Appendix.

3.2 Model Setup

3.2.1 Investment Opportunity Set

The consumer can invest in the money market, where she receives a fixed strictly positive

interest rate r > 0. Formally, the "price" of an asset invested in the money market evolves

3Chan and Viceira (2000) combines intuitions of both literatures. However, they assume labor/ leisure
choices that can be adjusted continuously.
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as
dP0 -= rdt
PO

We place no limits on the positions that can be taken in the money market. In

addition the consumer can invest in a risky security with a price per share that evolves

as

P= pdt + ordBt
P1

where p > r and a > 0 are given constants and B is a one-dimensional Brownian

motion on a complete probability space (, F, P).4 We define the discount process as

_ 1 -rt?(t) Po(t ) =e

and the likelihood ratio process

Z*(t) = exp {- KdB. - l2t } Z*(O) = 1

where K is the Sharpe ratio

tK =

We finally define the state price density process (or stochastic discount factor) as

H(t) = y(t)Z*(t), H(O) = 1

It is a standard result, that these assumptions imply a dynamically complete market5.

Thus, the price of a contingent claim paying a continuous dividend stream Dt, as implied

by no-arbitrage is
E [f~t H 8 D 8 ds]

Ht

4We shall denote by F = {Ft} the P-augmentation of the filtration generated by B.
5 See e.g. Karatzas and Shreve (1998) Chapter 1
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3.2.2 Portfolio and Wealth Processes

An agent chooses a portfolio process 7rt and a consumption process ct > 0, which are pro-

gressively measurable and satisfy the standard integrability conditions given in Karatzas

and Shreve (1998) sections 1 and 3. She also receives a constant income stream Yo as

long as she works and no income stream once in retirement. Retirement is an irreversible

decision. Until section 3.5 we will assume that an agent can retire at any time that she

chooses.

The agent is endowed with an amount of wealth WO -. The portfolio process

7rt is the amount invested in the risky asset (the "stock market") at time t. The rest,

Wt-7rt, is invested in the money market. Short selling and borrowing are both allowed.6

As long as the agent is working, the wealth process evolves as

dWt = rt {(Idt + dBt} + {Wt-wrt} rdt- (ct- o) dt (3.1)

Applying Ito's Lemma to the product of H(t) and W(t), integrating and taking

expectations we get for any stochastic time r that is finite almost surely7

E (H()W(T) + H(s) [c(s) - yo] ds) < Wo (3.2)

6Until section 3.6 of the paper we will place no extra restrictions on the (financial) wealth process.
In section 3.6 we will investigate additionally the implications of the restriction Wt > O.

7In detail, we apply Ito's Lemma to H(t)W(t) to get:

H(t)W(t) + H(s)c(s)ds = W0 + j H(s) [ar - irW] dB.
o o

If we impose the condition W(t) > - along with non-negativity of consumption, we see that
H(t)W(t) + ft H(s)c(s)ds is a local martingale bounded from below and hence a supermartingale. By
the optional Sampling Theorem we get:

E H(t)W(t) + f H(s)c(s)ds) < Wo

for any stopping time r- that is finite almost surely.
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This is the well known result that one can reduce a dynamic budget constraint of the

type (3.1) to a single intertemporal budget constraint of the type (3.2). If the agent is

retired the above two equations continue to hold with Y0 = 0.

3.2.3 Leisure, Income and the Optimization Problem

To obtain closed form solutions, we will be assuming that the consumer has a utility

function of the form

U(lt, ct) = /-'_c_)-''_ 7(.3U(t, a 1 * ' * >0 (33)

where ct is per period consumption, t is leisure and 0 < a < 1. We assume that

the consumer is endowed with units of leisure. t can only take two values 11 or 1. If

the consumer is working, then It = 11, while during retirement t = 1. We will assume

that the wage rate w is constant, so that the income stream is Y0o = w(1 - 11) > 0. We

will normalize 1 = 1. Observe also that this utility is general enough so as to allow

consumption and leisure to be either complements (* < 1) or substitutes (* > 1).The

consumer maximizes expected utility

max E [j e-atU(l, ct)dt + e- T j e-(t--)U(, ct)dt (3.4)
Ct ,T' )'

where f3 > 0 is the agent's discount factor.8 The easiest way to proceed is to start

backwards by solving the problem

U2(W) = max E[ e-(t-T) U(i, ct)dt
Ct ~rt 

U2(WT) is the Value function once the consumer decides to retire and W, is the wealth

8By standard arguments the constant discount factor could also incorporate a constant hazard rate
of death A.
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at retirement. By the principle of dynamic programming, (3.4) can be rewritten as

max E [ e-tU(l, ct)dt + e- U2(W) (3.5)
Ct ,W ,Wr L) o J

It will be convenient to define the parameter -y as

,y= 1- a(1-ff*)

so that we can re-express the per-period utility function as

U(l, c) =- 1(1-a)(l-y*) 17
1 -- y

It is straightforward to show under these assumptions9 , that once in retirement the

Value function becomes

U2(Wr) (i1-a)_* (1)7 W1 7

where
y 2(r+2 +

We will assume throughout that 0 > 010° in order to guarantee that the Value function

2is well defined and we will also assume that l - r < , in order to guarantee that retire-

ment takes place with probability 1. It will be convenient to redefine the continuation

Value function as

U2 (W) = K W -- 
1 -y

where

K=(l-a) 1* ( 1)7B

9 See e.g. Karatzas and Shreve (1998), Chapter 3.
°Observe that this is guaranteed if - > 
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Since 1 > 11 = 1 we have that

I 1K4 > -ifY<1 (3.6)

1 1
K4 < -if-y>1 (3.7)

3.2.4 Continuous labor/leisure choice

In order to compare the results obtained in this paper to the results in BMS, we list

the solution to the intertemporal consumption/portfolio/leisure choice problem, when

an agent can vary labor and leisure continuously. We observe first that the solutions

presented here and in the rest of the paper will depend on 2 state variables: a) the

wealth at time t and b) on the distance to mandatory retirement (T- t), if we impose

a mandatory retirement date. Both in this section and throughout the rest of the paper

we will set t = 0 without any loss in generality. Accordingly, we will report co, 7r0 as the

"solutions" to the problem, which will be shorthand for c(Wo, T), r(Wo, T). However,

it is important to note that under this convention T refers to the remaining periods to

retirement, not the actual time of retirement.

In particular, we will consider the following 4 cases:

1. The agent never retires, and her leisure choice is fixed at t = 11 = 1 throughout,

so that her income is given by w(l- 11) = Yo.

2. The agent retires in T periods and accordingly It = 1, Yt = 0 after T periods. While

working her leisure choice is fixed at It = 11 = 1,so that her income is given by

w(l-11) = Yo.

3. The agent never retires, and her leisure choice is determined optimally on a con-

tinuum at each point in time, so that It + ht = 1 where ht are the hours devoted to

work and the instantaneous income is wht.

4. The agent retires in T periods and accordingly t = 1, Yt = 0 after T periods. Her
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leisure choice -while working- is determined on a continuum at each point in time,

so that t + ht = I where ht are the hours devoted to work and the instantaneous

income is wht.

By the methods in BMS it is not difficult to show that the optimal portfolio and

consumption process for these cases are given by

1.

-r = ir( (Wo N + o) (3.8)

C = c(Wo)= (WO + ) (3-9)

2. ForT> 0:

7r = 1r (W, + T)YO(- e- Wr)) (3.10)
co = c(Wo, T)= WO+(.1

Co = c(WoT)= [(K - e_+ ] (W +y( rer)) (3.11)

3.

7r = 7r(Wo) =-- (WO + ( )) (3.12)

C = c(W) = C (Wo+ ( )) (3.13)

4. For T > 0:

7to = 7r(Wo, T)= c(Wo + y O( l - e -r 3) )a=7'=f0 y(leT) r) (3.14)

C = c(Wo, T) =f 2(T) (Wo + yo( - e- T) (3.15)r ( ~

114



where C is an appropriate constant and f 2(T) an appropriate function of T, but not

of Wo.

There are at least three observations about all the solutions obtained. First, the

marginal propensity to consume (mpc) out of wealth (- -) is constant (as in cases 1 and

3) or depends on T only (as in cases 2 and 4). Moreover, the holdings of stocks (ro0)

satisfy °O = const. in all cases. For the cases 1 and 3, ro is independent of T. For
&Wo

the cases 2,4 the dependence of 7r0 on T is captured solely by the term e- rT in equations

(3.10) and (3.14). No other horizon effects (dependence of the solution of T) or wealth

effects (dependence on Wo) are present in the optimal portfolio choice of individuals. We

will refer to these equations throughout for comparison.

3.3 Solution

We now return to the setup of section 3.2.3 and present the solution of the joint retirement

/consumption and portfolio choice problem, when retirement is an irreversible discrete

decision. By the notational convention adopted in the previous section, we can set

without loss of generality t = 0 and report the optimal policies as a function of Wo.

Proposition 3.1 Using the constants

1 - 2 1 - ( 2 -2i t- 8~%2 =272 ~~~~~~~< 02

~A _ (72- 1)0 O
_A 1 + lf__ ) (K _- -1) 

C = [ ]--- >C2 =1 > 0
CA >
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and assuming that

r (' + 72) 
a 72 - 1

the optimal policy triplet < *t, WF, - > is

a) If Wo < W= (72 - 1)K I 0- o

(1 +72 1Y) (K7 f-1) 

t = (A*etH(t))-f{ < t < }

WT = W

? = inf{t: A*etH(t) = A}

where A* solves the equation

'2C2 (A*) 2-1 I (A*)- +- W o0 ~ r
(3.16)

and accordingly is a function of Wo. The optimal consumption and the optimal port-

folio as a function of Wo are given by

cO = c(Wo) = (A*(Wo))-4

ro= (WO) = -2(72 1)C2A*(Wo)'y2- l + A*(Wo))

where the notation A*(Wo) is used to make the dependence of A* on Wo explicit.
(-Y-1 )K 

(+2_) (K 1 v the optimal solution is to enter retirement
(1+72 1_ , ) (K 7 O 1) 

immediately (? = 0) and the optimal consumption /portfolio policy is given as in Karatzas

and Shreve (1998) section 3.

11In the appendix we show that this condition is redundant in many special cases since it is implied by
0 > . We believe that 0 > 0 implies this inequality more generally, but haven't been able to prove it in
full generality apart from some special cases given in the appendix.
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Up to the constant A* which is defined implicitly as the solution to (3.16) all other

quantities are given explicitly. Accordingly, for a given level of wealth W0 at time 0 it

is possible to compute the associated A* and this in turn allows computation of optimal

consumption at time 0 (c0 = (A*)) and the optimal portfolio r0. The next sections

examine the properties of this solution in detail.

3.4 Properties of the solution

3.4.1 Wealth at Retirement

The wealth at retirement is given by Proposition 3.1 as

W = W = (7 -1)K90 y0
(1 + 721 -Ya) (Ki - 1) 'r

As Proposition 3.1 asserts, for wealth levels higher than that, it is optimal to enter

retirement, whereas for wealth levels lower than that it is optimal to remain in the

workforce. Not surprisingly W is strictly positive, i.e. a consumer will never go into

retirement with negative wealth since there is no more income to support consumption

after retirement. Also note -as might be expected- that W is increasing in y0. This is

intuitive: The incentive to go on working is coming from the additional income and if

income is low, the incentive to retire early is very high. Also, it is easy to show that the

incentive to retire early is increasing in 1, the extra leisure in retirement.

3.4.2 Optimal Consumption

We concentrate on a consumer with wealth lower than W, so that she has an incentive

to continue working. Optimal consumption prior to retirement is given by Proposition

3.1 as

Co = (A*)-7
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where A* solves (3.16)

7 2 C 2 (A* ) 21 - (A*)-y + - + Wo= 0 (3.17)
r

In the appendix we show that 0 > 0 implies

1 -72 > (3.18)

It is now useful to rewrite (3.17) as

-72 + = Wo + Yo (3.19)
9 r

A first observation is that this equation is the standard relation between consumption

and the sum of financial and non-financial wealth in Merton (1971) type setups with

income, except for the term C2c (l- 2) . The difference here is that the individual

has an added incentive to save (since 7Y2 < 0, C2 > 0) for a given level of wealth, since

she wants to attain early retirement. Even though we cannot provide an explicit solution

to this equation we can still calculate the marginal propensity to consume out of wealth

and its derivative by using the implicit function theorem. We first define the marginal

propensity to consume as
&c0mpc = ao

We differentiate both sides of equation (3.19) w.r.t. W0, to get

(-72(1 - 2)C2c(l-72)-l + mpc = 1 (3.20)

One first observation from this equation is that mpc is strictly below 0 since 72 < 0,

C2 > 0. Compared to the infinite horizon problem (where one stays in the workforce

forever) the marginal propensity to consume out of wealth is strictly lower due to the

option value embodied in (3.17). One can also study the dependence of the mpc on
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wealth. Differentiating once more and using equation (3.18) gives

mpc' = -pc 3 (-'/2(1 - 'y2)(y(1 - 72) - 1)C2c~(1- 72)- 2) < 0

In other words, the marginal propensity to consume out of wealth is a decreasing

function of wealth and accordingly the consumption function is concave. The marginal

propensity to consume is declining in wealth because an increase in W0 brings retirement

closer and thus reduces the net present value of remaining income. This in turn happens

because the consumer follows a "threshold" type policy for her retirement: If wealth is

high, the time to retirement is "close" and thus the increase in W0 is counterbalanced by

the equivalent decrease in the net present value of remaining income.

Reversing signs in the above argument, it is also true that the effect of a drop in wealth

on consumption will be mitigated by an increase in the net present value of remaining

income. Alternatively speaking, a negative shock to wealth will only partially affect

consumption. A component of the drop will just postpone plans for early retirement and

this will in turn increase the net present value of income to be received in the future.

These results show one important direction in which the present model sheds some

new insights into the relationship between retirement, consumption and portfolio choice:

in the framework of BMS a utility function of the type (3.3) along with a continuous

choice of leisure and a constant wage rate would have produced a marginal propensity to

consume that is independent of wealth. (One can verify this by inspection of the solutions

in subsection 3.2.4). However, with endogenous retirement, wealth has a dual role. First,

as in all consumption and portfolio problems, it controls the amount of resources that

are available for future consumption. Second, it controls the distance to the threshold

at which retirement is optimal. This second channel is behind the behavior of the mpc

analyzed above.1 2

12It is also the key factor behind the behavior of optimal portfolios that will be analyzed in a subsequent
subsection
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3.4.3 Optimal Retirement time

The optimal retirement time in this model can be derived easily by well known formulas

about the first hitting time of a Brownian Motion. To accomplish this note that Zt

defined as = A*e~tHt = A*e(-r)t- I 2t- rBt follows the process

dZt
Z = ( - r)dt- dBt Zo = A*
zt

and an easy application of Ito's Lemma applied to Zt = log(Zt) yields

dzt= (B-r-1K2) dt-KdBt, zo =log(A*). (3.21)

Also recall (from Proposition 3.1) that the optimal stopping time is given by the first

time the process Zt reaches A, where A is given by

(72-) p Od

t 1+ 721 -Y-) (K l 0- 1) r 

Expressing the above quantities in logarithms we conclude that the time to retirement is

given by the first hitting time of t to the (lower) Barrier

z log (A)

Since we have assumed that/3 - r < T2, the drift term in (3.21) is strictly negative

and thus the stopping time is finite almost surely. The distribution of the event that

retirement has not occurred until a given time T is given by the distribution of the
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running minimum of a Brownian motion with drift13

P {min(zt, t [0, T]) > z}= N -(I-A*)+(X-r-21.)T)

N(9-( - -A * ) + ( 3 - r - 2)TN~~~KI
where N( is the cumulative normal distribution.

As W -- W it is easy to show that log(A*) approaches z and thus the above expression

becomes essentially 0, as would be expected.

3.4.4 Optimal Wealth Process and Portfolio

Combining the optimal solution of Proposition 3.1 with the intertemporal budget con-

straint (3.2), we arrive at the optimal wealth process

E (ft H (*e08H,) 4 ds) - Yo[f H + E [HW]
Ht Ht

It consists of three components: The NPV (net present value) of the optimal consump-

tion process until the retirement time , the (negative of) the remaining NPV of income

to be received until time F and the NPV of the amount of wealth that the consumer will

have at time ?.

In other words one can think of the wealth process as a contingent claim that pays

(A*etHt) - for 0 < t <j

Wat 

and is short a claim that looks like a "barrier" bond, i.e. a claim that pays a constant

amount yo until - and 0 afterwards. Recall that the barrier z- log (A) is more likely to
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get hit as the stock market is rising. As one can imagine accordingly, positive shocks

to the stock market reduce the value of such a barrier bond since they bring it closer

to "expiration". In other words this claim has a negative "delta" in the language of

contingent claim pricing. Since it enters into the wealth process with a negative sign

this claim increases the incentive to take risk in the stock market. This is another

manifestation of the fact that the "option value" of work increases the willingness to

increase one's exposure to the stock market.

By Proposition 3.1, the optimal portfolio is given by

0 (72 - 1)C2 (*)72 - + -- (A*)-)

But since

7 2 C2 (A*)72-1 + Y + = 1 *)-

from (3.16), we obtain that

0 ro= - (w0+ ) + 2 C2 (*)2- ((72 - 1) +)

The first term is equal to a standard Merton type portfolio for an infinite horizon

problem as in equation (3.8). The second term is positive. To see this, notice that

(72- 1) + < 0

by equation (3.18)and the result follows upon observing that 72 < 0, C2 > 0. More-

over, one can observe that

Tu, C2a(s) -A1]th i A

Thus, as A* --, oo the importance of this term disappears, whereas as A* -A this

122



term approaches its maximal value. It is easiest to interpret this result by observing that

a) A* is a decreasing function of wealth (W0 ) and b) A is the lowest value that A* can

attain before the agent goes into retirement". In words, when an agent is very poor, the

relevance of early retirement is small and thus the portfolio chosen resembles a simple

Merton type portfolio. By contrast as wealth increases, so does the likelihood of early

retirement and this term becomes increasingly important. The option value of work

increases the incentive to take risk compared to the benchmark of an infinite horizon

Merton portfolio.

It is interesting to compare the above result with the results in BMS. As is shown

in formulas (3.8) through (3.14) that replicate results in BMS, the amount allocated to

stocks as a fraction of total resources (financial wealth + human capital) is a constant. In

our framework this fraction depends on wealth, since wealth controls both the resources

available for future consumption and the likelihood of attaining early retirement. Not

only does the possibility of early retirement increase the incentive to save more, it also

increases the incentive of the agent to invest in the stock market because this is the most

effective way to obtain this goal.

3.4.5 The correlation between consumption and the stock mar-

ket

In this subsection we examine the correlation between consumption and the stock market.

The results of this section demonstrate a duality between the results in section 3.4.2

and 3.4.4 and show that the correlation between the stock market and consumption is

constant for agents prior to retirement, despite the fact that the mpc is non-constant.

The reason is quite intuitive and can be seen by examining formula (16) in Basak (1999)

which continues to be true in our setup

14 Actually, it is not difficult to show by the results in the appendix that A is the solution to equation
(3.16) if Wo = W.
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~ -VC' dco , +-hcov dP, dl (3.22)
T- Uc' Pi

UM is the cross partial of U w.r.t the hours worked and dl is the variation in leisure. In

our setup dl = 0 prior to retirement. Moreover, /, r, are constants in our framework.
Uc

Accordingly, co' (dp, d) is a constant too. It is important to note that this result

was obtained solely by the fact that dl = 0 along with the assumption of a constant

investment opportunity set and CRRA utilities. In other words the consumption-CAPM

holds in this framework prior to retirement.

This fact might seem surprising in light of the results we obtained for the marginal

propensity to consume out of wealth. One might expect that a declining mpc would be

sufficient to produce a low correlation between the stock market and consumption. The

resolution of the puzzle is that a decrease in mpc in this model is accompanied by an

equivalent increase in the exposure to the stock market through a portfolio that is more

heavily tilted towards stocks. In other words, even though consumption becomes less

responsive to shocks in the wealth process, at the same time the shocks to the wealth

process become more volatile because of a riskier portfolio.1 5

An important remark is that the above discussion relies heavily on partial equilib-

rium. To see if labor supply flexibility can indeed explain the observed smoothness of

aggregate consumption and accordingly a large equity premium one would have to study

a general equilibrium version of this model (as Basak (1999) does for continuous choice

of labor/leisure). In that case a fraction of the population would be entering retirement

at each instant and would be experiencing consumption changes (because they receive

an increased endowment of leisure). So, at the aggregate the simple consumption CAPM

CUcc (dP dc
It-r=- Uco I - -

15 This can be formally shown by applying Ito's Lemma to c(Wo) together with the dynamics of the
wealth process (3.1) and the optimal portfolio 7r(WO) to arrive at (3.22)
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would no longer hold. It can be reasonably conjectured that in this framework the

behavior of the interest rate and the equity premium would be very different than in

Basak (1999). Even in the base case of CRRA utilities and multiplicative technology

shocks, the equity premium and the interest rate would exhibit interesting dynamics.

However, this issue is beyond the scope of the present paper.

3.4.6 The marginal propensity to consume: A simple quantita-

tive exercise

We conclude this section with a calibration exercise. Our aim is to show how the mpc

varies for various levels of wealth, if an individual is saving for early retirement. We

provide more quantitative results in the next two sections, when we provide an approx-

imate solution to the problem with a deadline for retirement and consider borrowing

constraints.

We picture the situation of an individual in her 30's and choose the parameter K that

captures the "eagerness" to retire so that retirement will take place with a probability of

more than 60% by the time she is 6516. For the parameter y of risk aversion we choose

3, while the parameters affecting the investment opportunity set are chosen as follows:

= 0.07,/3 = 0.03, r = 0.03, = 0.2.

We assume that the consumer starts with an initial wealth W0 = 2 and normalize

Y0 = 1, so that all magnitudes are in units of yearly income. With these assumptions we

can plot the distribution of the retirement time which is given in Figure 3-1.

The marginal propensity to consume out of wealth is plotted in Figure 3-2. A con-

sumer begins with a marginal propensity to consume of roughly 0.029 and this number

declines to 0.019 for consumers close to retirement. As we show in a subsequent section

these drops are more significant once we introduce borrowing constraints.

16 For the parametric assumptions that we make, it turns out that a parameter choice of K = (04)
produces such a distribution of the retirement time.
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Figure 3-1: Cumulative distribution of the time to retirement.
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2 4 6 8 10 12 14 16 18 20
Financial Wealth (Wd)

Figure 3-2: Marginal propensity to consume out of wealth. The leftmost value of wealth
corresponds to Wo = 2 while the rightmost value corresponds to the wealth level at which
the consumer will enter retirement.
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These figures suggest that a drop in the wealth of a rich individual (high W0) will only

partially affect her consumption, while it will have stronger effects on a poorer individual

(low Wo). The reason is that in our framework a drop in wealth postpones retirement

and thus is balanced out by an increase in the NPV of remaining income.

3.5 Retirement before a deadline

None of the claims made so far relied on restricting the time of retirement to lie in a

particular interval. The exposition concentrated on the infinite horizon case because this

allowed for explicit solutions to the associated optimal stopping problem. In order to

analyze the case where retirement cannot take place after a prespecified deadline, one

should use some approximate method to solve the associated "finite horizon"17 optimal

stopping problem. Formally, the only modification that we introduce compared to section

3.2 is that equation (3.5) becomes

FTAT
max E[ e-ftU(l, ct)dt + e-'rU 2(Wr)

Ct,Wr 

where T are the remaining periods to mandatory retirement. In the appendix we first

show the following analog of Proposition 3.1 that obtains a "solution" to the finite horizon

problem in terms of a functional equation by using ideas proposed in Carr, Jarrow, and

Myerni (1992)

Proposition 3.2 Let T be the remaining periods to mandatory retirement. Consider the

17 An important remark on terminology: The term "finite horizon" refers to the fact that the optimal
stopping region becomes a function of the deadline to mandatory retirement. The individual continues
to be infinitely lived.
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strictly convex function V(A, T)

yO(1-( e-T) 7 --1 _1- e-_ _= r + 0

+ 7 (K¼O-1)A z

1 -7
T

-yoA e-rtN (d2t) dt
o

T

0
e-OtN (dut) dt

(log(A) + (

if y > 1 and

- r -2 ) t - og(At)

logA ( -r- 2) -t log

log(A) + ( - - -2) t - log(A)

log(A) + (-r _ -2) t -log(_t)V ~ ~~~~ cH(l =

if 7 < 1. Consider also the solution to the functional equation obtained by

V(At, T-t)= K vKAt , for all O<t<T
1- l7

(3.23)

Finally, determine A* as the solution to

V'(\*, T) =-Wo (3.24)

Then the optimal consumption, wealth at retirement and portfolio are determined as
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1 
a) If Wo < Wo= K _o

t = (A*eItH(t))- l{t < }

W, = WF

r = inf{t: A*etH(t) = A}

The optimal consumption and portfolio processes as functions of Wo, T are given by

Co = C(Wo, T) =(A*)

= r(Wo, T) = A
A*ffwO

1
b) If Wo > Wo = K4 Ayo ' the optimal solution is to enter retirement immediately

(-- = O) and the optimal consumption /portfolio policy is given as in Karatzas and Shreve

(1998) section 3.

Unfortunately, this solution to the problem is not very operational without some

tractable way to solve equation (3.23). For this particular problem it turned out that an

analytical approximation along the lines of Barone Adesi and Whaley (1987) seems to

be performing very well in terms of actually computing the solution to (3.23) and all the

associated quantities in closed form. Moreover, this approximation allows us to compare

the solutions obtained in the previous section with the ones obtained here in a very direct

way. The appendix establishes the following

Proposition 3.3 Define

A( T K}0 1 -+] y0 1-e- T
VE(AT) = 1- A /y 0 - 1erT

1 A-Y [K Or)+1+ y
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Then V(A; T) in Proposition 3.2 is approximately given by

C2TAYT + V(A,T), if A > Ao

7 K(A)) if) < AO

where

(2 o1)T y(1- e- rT)
AO r ~~~~~~~~~~~~~~~(3.25)

-(1 + 72 17) (KTOT - 1) r

OT is given by
9

[(K7O i) eOT + i]

C2T is given by

[1% (72 - , ]yo(1-e-rT)
1-iF-Y21_--7) --C2T = - (e T) (3.26)

_1

and y2T is given by

1 - 22- (1- 2 + 8 (1eT)2
72T = 2

This approximate V(A,T) is continuously differentiable everywhere and VA(A, T) maps

(0, oo) into (-oo, Y (1 - e-rT )). For this approximation equation (3.24) becomes

.1 I z yo( - e - rT )

~2TC2T ()'~2T 1 (A)} + y)+ +Wo = 0 (3.27)
9OT r

Figure 3-3 gives a visual impression of the accuracy of this approximation. In particu-

lar a Binomial Tree along the lines of Cox, Ross, and Rubinstein (1978) was used in order

to obtain At numerically and the resulting solution was compared to the approximate an-

alytical solution. The analytical approximation captures the qualitative properties of the

solution to the functional equation (3.23) with good accuracy. The most important ad-
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vantage of this approximation, is that it leads to very tractable solutions for all quantities

involved. This can be seen most easily by observing that equation (3.27) is practically

identical to equation (3.16). The only difference is that all the constants now depend on

T. As a result all of the analysis in section 3.4 can be replicated easily for the case where

a deadline for retirement is present. Economically, the only new dimension introduced is

that all quantities depend explicitly on the distance to mandatory retirement, and thus

one can study interaction effects between wealth and the age of an investor18. Here we

will focus only on the implications of the model for portfolio choice.

By equation (3.10) the portfolio of an agent with mandatory retirement in T periods

and no option of retirement earlier than that is

I (r 1 e-rT)
r.and. = rmand. (Wo,T) =-- W0 + y0 e )

A constant fraction (~ ) of the net present value of resources available to the individual

(W + Yo 1-e T ) is invested in the stock market irrespective of her age. In this sense the

portfolio exhibits no horizon effects or wealth effects beyond the ones present in the term

(W0 + YO le ): if one were to divide the stock holdings r-and by the sum of financial

and non-financial wealth then the result would be a constant.

However, in the presence of early retirement this result is no longer true. Even after

normalizing the portfolio by (W0 + yo 1--er ) the fraction invested exhibits time and

wealth effects. One can apply the same reasoning as in section 3.4.4 to arrive at the

18As implied by the distance to mandatory retirement.
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optimal holdings of stock 7ro0 in the presence of optimal early retirement

7r / ( Wo+Yo ) + Y2TC2T (A*)72T- 1 (72T -1)+ = (3.28)

- !l! ( Wi~y -e-rT)
= 1 Wo + oat -

o'7~~~~~~yco (1-erT) (A* 2T- (1 ) [ 7 (72T 1) ]
a r 70 2T + (2T- )1 - 1+7T-~)- 

where A* is given by (3.27). Once again, next to the usual Merton type portfolio in

the presence of mandatory retirement in T periods, one also obtains a portfolio that is

related to both time and wealth.

Figure 3-4 plots the term:

N 7r 0

Wo + yo(1-e-rT)
r

for various levels of wealth and periods (T) until the retirement deadline is reached.

Equation (3.10) implies that this term would be constant, if no possibility of early retire-

ment was present.

There are two patterns that emerge from Figure 3-4. First, f0 is decreasing rapidly

as the relevance of early retirement becomes less important, i.e. as one approaches

the retirement deadline. Moreover, the optimal portfolio is increasing in the resources

available to the individual. A richer person (high W0) invests a larger percent of her total

resources in the stock market.

These findings allow an interpretation in terms of option pricing intuitions. Early

retirement in this model is like an option. And as most options, its value is larger a)

the more likely it is that it will be exercised (in/out of the money) and b) the more

time is left until its expiration. Accordingly, the importance of the second term in (3.28)

is decreasing as T and/or W0 is small. The fact that i0 depends on both wealth and

the horizon makes it important to qualify one of the conclusions that is usually reached
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Figure 3-3: Optimal exercise boundary for a binomial tree approximation and the ana-
lytical solution proposed.
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in models with continuous work/leisure choice. It is undoubtedly true that keeping W0

and Y0 constant, a decrease in T will make an individual invest less in the stock market.

However, older but not yet retired individuals typically have more financial wealth and

as a result will have an increased incentive to invest in the stock market as a result of

that. Accordingly, it could well be that a 50-year old holds more stock (both in absolute

terms and relative to the sum of financial and non-financial wealth) than a 30-year old

in the present model despite the fact that the one is closer to retiring than the other.

By contrast in the framework of BMS the portfolio as a fraction of financial and non-

financial wealth exhibits neither horizon nor wealth effects since it is a constant. One

unambiguous result however, is that retirees will be holding less stock as a fraction of

their total wealth than non-retirees. This is in direct analogy to BMS: taking away one

margin on which individuals can adjust will necessarily lead to more risk averse behavior.

3.6 Borrowing constraint

So far, we have been assuming that the agent was able to borrow against the value

of her future labor income. In this section we impose the extra restriction that it is

impossible for the agent to borrow against the value of future income. Formally, we

add the requirement that Wt > 0, for all t > 0. To preserve tractability, we assume in

this section that the agent is able to go into retirement at any time that she chooses,

i.e. we do not impose any deadline. This makes the problem stationary and as a result

the optimal consumption and portfolio policies will be given by functions of W0 alone.

Moreover, we can set t = 0 without loss of generality since the optimal policies will not

depend on time.

Post-retirement, the borrowing constraint is never binding because the agent receives

no income and has constant relative risk aversion. This implies that once the agent is

retired, her consumption, her portfolio, and her value function are the same with or

without borrowing constraints. In particular, if the agent enters retirement at time r
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with wealth W, her expected utility is still U2(W).

The problem of the agent is now

maxT E[ e-tU(li, ct)dt + e-TU 2(Wr) (3.29)

subject to the borrowing constraint

Wt > O,Vt> O, (3.30)

and the budget constraint

dWt = 7rt{t Ldt+adBt} + {Wt -rt} rdt-(ct -yol{t < r}) dt. (3.31)

By arguments similar to the ones in section 3.2 we can rewrite these two constraints

as

E [j HScsds + HrW,] < E [j Hsyods + Wo,

E [ft H8c8ds + HrWT] E [ft Hsyods]
Ht > Ht ,¥t >O.

In other words, in addition to the usual budget constraint, we place the requirement

that the net present value of future expenditures is always no more than the net present

value of remaining income.

We present the solution in the following proposition

Proposition 3.4 Under technical conditions (3.69) and (3.70) in the appendi 9 , there

exist appropriate constants C1, C2 , ZL, ZH, m1, 72 (also given in the appendix) and a pos-

itive decreasing process Xt* with XO = 1 so that the optimal policy triple < t, W?, - >

is

19 We conjecture that these conditions can be shown to hold quite generally, but haven't been able to
prove this. Verifying them numerically in any specific application is however straightforward.
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1 _L
a) If Wo < W= K1ZL

^ = (A*etXt*H(t))1{t < }

W?=WW = W

= inf{t: A*Xt*eatH(t)= ZL}

and A* is given by

'YlC1 (>*)71-l +Y 2C2 (*)72-1 _ (A*)+ Wo = 0 (3.32)r

Using the notation A*(Wo) to make the dependence of A* on Wo explicit, the optimal

consumption and portfolio policy is given by

co = c(w) (*(Wo)) 

70 = wO) = A* (w °)
) A(W)

where A* (Wo) denotes the first derivative of A*(WO) with respect to Wo.
_- 1 _1

b) If Wo > W = K ZL the optimal solution is to enter retirement immediately

( = O) and the optimal consumption policy is given as in the standard Merton (1971)

infinite horizon problem.

In the remainder of this section we compare the results we obtained in section 3.4 to

the optimal policies resulting from Proposition 3.4.

A simple intuitive argument shows that (compared to section 3.4) wealth at retirement

is smaller with borrowing constraints than without: W < W. (W is the threshold at

which an individual facing no borrowing constraints goes into retirement). The reasoning

is the following: Given a level of wealth W, the agent will achieve the same utility U2 (W)

if she goes into retirement at t whether she faces borrowing constraints or not. But the

expected utility the agent will achieve by postponing her retirement decision to t + dt is
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strictly lower if she faces borrowing constraints (the inequality is strict because there is a

non-zero probability that the constraint will bind between t and t + dt ). As a result, the

value of waiting is strictly lower with borrowing constraints than without, i.e. W < W.20

Figure 3-5 compares the marginal propensity to consume for the same parameter

values as the ones used in Section 3.4. The figure depicts the mpc for 3 scenarios: The

first scenario is one where an individual chooses her retirement time optimally on an

infinite horizon without borrowing constraints. This corresponds to the case analyzed

in section 3.4. The second case is one where an agent faces borrowing constraints but

can never enter retirement. This corresponds to the case analyzed in He and Pages

(1993). The third scenario is the one analyzed in this section, namely the situation of

an individual facing both an optimal retirement decision and borrowing constraints. The

wealth level is varied between 0.1 and the level at which a (borrowing unconstrained)

individual enters retirement.

The basic result of figure 3-5 is that borrowing constraints amplify the effects of early

retirement significantly. The behavior of the mpc for the third scenario is always between

the first and the second scenarios. For large levels of wealth the presence of borrowing

constraints is immaterial, and it is only the optimal stopping aspect of the problem that

drives the behavior of the mpc. Thus, for large levels of wealth the behavior of the mpc

is similar to the case where there are no borrowing constraints. The opposite is true for

low levels of wealth. Then, the main force driving the mpc is the presence of borrowing

constraints and the possibility of early retirement is immaterial.

The optimal portfolio can be computed by steps similar to section 3.4. The implicit

function theorem gives

1 1A*'- -= _ (~- 1)C1 (*) 71-' + 72(Y2 - 1)C2 (*)721 + a ) (*) (3.33)

20However, this effect seems to be relatively small quantitatively. For example, with Yo = 1,y = 3,
= 0.07,,/ =0.03,r = 0.03,a= 0.2 and K = (4) we get W= 18.13 and W= 17.18.--,w e 8.3adW=1.8
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Figure 3-5: Marginal propensity to consume out of wealth. The leftmost value of wealth
corresponds to W0 = 0.1 while the rightmost value corresponds to the wealth level at
which the consumer will enter retirement: 18.13 for the case without borrowing constraint
and 17.19 for the case with borrowing constraints.
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and by steps similar to section 3.4 we obtain the optimal portfolio as21

7r = (-- 0 )+ -- C1 (*)71-1 ( - 1) + + 2C2 (A*)2- (72 -) )

The first term is equal to a standard Merton type portfolio for an infinite horizon

problem. One can show that the second term is negative and decreasing in A* (increasing

in wealth), while the third term is positive and decreasing in A* (increasing in wealth).

7r0 is therefore decreasing in A* (increasing in wealth) as in section 3.4.

Figure 3-6 compares optimal portfolios for various cases. Depending on whether

early retirement is allowed or not and whether borrowing constraints are imposed or not

we get 4 cases. One observation is that the optimal portfolio in the presence of early

retirement is more tilted towards stocks whether we impose borrowing constraints or

not. Similarly, the optimal holdings of stock are smaller when one imposes borrowing

constraints (whether one assumes early retirement or not). In this sense, the presence of

borrowing constraints partially mitigates the incentive to invest in stock. In the presence

of borrowing constraints the nominal holdings of stock for low levels of wealth approach

0.22

3.7 Conclusion

In this paper we proposed a simple partial equilibrium model of consumer behavior that

allows for the joint determination of optimal consumption, portfolio and the retirement

time of a consumer. Essentially closed form solutions were obtained for virtually all

quantities of interest. The results can be summarized as follows: The ability to time

one's retirement introduces an option type character to the optimal retirement decision.

21It is important to remember here that the term portfolio refers to the total holdings of stocks (in
dollars).

22 However, if one computed a portfolio as a function of wealth then that ratio would be infinite at 0
as shown by He and Pages (1993). We therefore find it more informative to speak of nominal holdings
of stock.
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This option is most relevant for individuals with a high likelihood of early retirement

and affects both their incentives to consume out of current wealth and their investment

decisions. Quite generally, the presence of the option value to retire will lead to portfolios

that are more exposed to stock market risk. The marginal propensity to consume out of

wealth will be lower as one approaches early retirement, reflecting the increased incentives

to reinvest gains in the stock market in order to bring retirement "closer". The likelihood

of attaining early retirement in turn is more relevant for individuals who are young and/or

wealthy.

An important practical implication of the present model is that the relationship be-

tween stockholdings and age is likely to be more complicated than what is suggested in

BMS. This can be most easily seen by dividing the stockholdings by total wealth (finan-

cial wealth + the net present value of future income) in order to control for the effects

discussed in BMS. The resulting fraction in our model is not constant as in BMS, but

has clear option pricing properties and depends on both wealth and the horizon. Even

though the fraction of total wealth invested in the stock market decreases as an individual

ages for a given level of (financial) wealth, this fraction increases as wealth increases for

a given time to retirement. In reality middle aged individuals are likely to be richer than

25-year olds and as a result it is very likely that they will be the major holders of stock

even after normalizing their stockholdings by either financial or total wealth. This might

help explain the hump shaped holdings of stock as a function of age which is found in

certain studies.2 3

There are many interesting extensions to this model that one could consider. A first

important extension would be to include features that are realistically present in actual

401(k) type plans like tax deferral, employee matching contributions and tax provisions

related to withdrawals. Then the solutions developed in this model could be used to

determine the optimal saving, retirement and portfolio decisions of consumers that are

contemplating retirement and taking tax considerations into account.

143

23See e.g. Ameriks and Zeldes (2001)



A second extension of the model would be to implement it econometrically in order

to disentangle the fraction of early retirement that could be explained by variations in

stock market returns. In a more stylized model Gustman and Steinmeier (2002) find

some evidence that the recent extraordinary behaviour of the stock market was key in

driving early retirement.

A third extension would be to consider the international evidence on stock market

participation and try to link it to the flexibility of retirement systems in various countries.

The model suggests that increased labor supply flexibility might be key in trying to

understand why consumers participate less in the stock market in countries with less

flexible retirement systems. Naturally, such an analysis would make it interesting to

study the general equilibrium consequences of retirement systems as in Basak (1999). It

is very likely that -even though at the individual level the consumption CAPM holds-

at an aggregate level the resulting "representative agent" would behave like an agent

that chooses her leisure decision on a continuum. Thus the consumption CAPM would

not hold at the aggregate level and one could investigate cases where this would help in

resolving certain asset pricing puzzles.

We leave these issues for future research.
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3.8 Appendix

3.8.1 Proofs for section 3.3

The goal of this section is the proof of Proposition 3.1. We start with some useful definitions

that are standard in the convex duality approach24

For a concave, strictly increasing and cont. differentiable function U: (0, oo) - R satisfying

U'(O+) = limU'(x) = oo and U'(oo) = lim U'(x) = 0
xO0 X-OO

(3.34)

we can define the inverse I(0 of U'(). I(0 maps (0, oo) -. (0, co) and satisfies

I(O+) = oo, I(oo) = 0

A very convenient concept is that of a Legendre Fenchel transform (U) of a concave function

U: (,oo) -- R

U(y) = max [U(x) - xyl] = U(I(y)) - yI(y),
X>0

<y< 0 (3.35)

It is easy to verify that U() is strictly decreasing and convex and satisfies

U'(y)

U(x)

= -I(y), O<y<oo

= min [U(y) + xy] = U(U'(x)) + xU'(x), 0 < x < 00
y>0

(3.36)

The inequality

U(I(y)) > U(x) + y [I(y) -x]

24 This section is based on Karatzas and Wang (2000). For a more explicit presentation see
also Karatzas and Shreve (1998)
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follows from (3.35).

With these definitions we can proceed to extend the duality approach proposed by Karatzas

and Wang (2000) to address portfolio problems with discretionary stopping to a setting with

income.

We start by fixing a stopping time r and defining

J(W; rs, c, r) = E e-'Ul(c)dt + e- U2 (WT)

where we simplify notation by defining Ul(ct) = U(ll,ct). We obtain the following set of

inequalities for any admissible pair (cs, 7rs) and any positive number A

J(W; 7rs, CS, T) = E[ e-tUl(ct)dt + e- U2(Wr)

< E[ e-ftU1(AeptH(t))dt + e-'rU2(Ae'H(r))]

+AE [H(T)W, + f H(t)c(t)dt]

< E[J e-ftU(AeItH(t))dt + e-TU2(Ae/3TH(r))]

+A (Wo + E [fo H(t)yodt])

with equality if and only if

W = I, (Ae'o-Hi) and c(t) = I1 (eI6tHt), for all 0 < t < 

E [H(r)W, + j H(t)c(t)dt = Wo + E [fTH(t)yodt]
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These inequalities are standard in the convex duality approach to solve optimal portfolio

problems. The first inequality follows from the definition of U1, U2 as given in (3.35) and the

second line from the intertemporal budget constraint (3.2).

Observing that the above set of inequalities holds for all feasible policies (7r8, c8, r) and all

A > 0, we have that

V(Wo) < sup nf [J(A; r) + AW] (3.38)

where V(Wo) is the value function of the original problem and J(A; r) is given by

J(A; r) = E [J [e-1tiU(AeltH(t)) + AH(t)yo] dt + e-fTU2 (Aef6TH(r))]

Intuitively, the constant A > 0 plays the role of a Lagrange Multiplier on the intertemporal

budget constraint (3.2).25

An interesting observation is that since the inequalities become equalities for the policy

(3.37) it follows that we could solve the consumption-portfolio easily if we fixed an arbitrary

stopping time. Indeed the entire consumption path and the wealth at r are known up to the

constant A > 0 that can be determined in such a way that the intertemporal budget constraint

holds with equality. Following arguments similar to the ones in section 6 of Karatzas and Wang

(2000) one can show that for any given r

XT(A)-E[fo H(t)(II(Aef6tH(t)) - yO)dt + H(T)I2(AeTHT)], A (0, c00) (3.39)

is a continuous strictly decreasing mapping of (0, oo) to (-E [fo H(t)yodt] , 00) with a

25An important difference to Karatzas and Wang (2000) is that the income process appears
inside J. This is to be expected since the optimal stopping time for the income process affects
the net present value of income to be received.
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continuous strictly decreasing inverse so that in particular there exists some A* = W(Wo) s.t.

E [I H(t) [Ii(A*eItH(t))- y] dt + H(r)I2 (A*e3tHr)] =Wo

The existence of a portfolio financing a claim with payoffs

W = I2(A*e/rHr) (3.40)

ct = Ii(A*e6tH(t))l{t < 4r (3.41)

can be established by the martingale representation Theorem and is omitted. We summarize

in the following result

Lemma 3.1 For any r that is finite almost surely we have

VT(WO) = inf [(A; T) + AWo] = J(A*; r) + A*Wo

where

A*= (Wo)

and the supremum is attained by (3.40),(3.41). Moreover

V(Wo) = sup Vt(WO) = Sup nf [(A; T) + AWo] = sup [(A*; r) + A-Wo1r 7> j

This result shows that once the optimal stopping time has been determined then the deter-

mination of the optimal consumption and portfolio strategies are easy to obtain. Karatzas and

Wang (2000) show that one can reduce the entire joint portfolio-consumption-stopping problem

into a pure optimal stopping problem by investigating cases in which the following inequality

becomes an equality

V(Wo) = sup if [J(A; -) + AW] < nf sup [(A; r) + AW] = inf [V(A) + AW] (3.42)
'r A>OL A>O~ I . AL
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where

V(A) = sup J(A;-r) =supE [ [e-BtUi(AeftH(t)) + AH(t)yo] dt +e- U 2 (AeBH(r))

(3.43)

The inequality (3.42) follows from a standard result in convex duality26.

The interesting fact about (3.43) is that it is a standard optimal stopping problem, for

which one can apply well known results. In particular, the parametric assumptions that we

made in section 3.2.3 allows us to solve this optimal stopping problem explicitly. We do this in

the following Lemma.

Lemma 3.2 Assume that

+__y)_< i 1 (3.44)
0 72 -1

where
1- - (1 2) 2+ 8

72 -- 0
2

The function V(A) is strictly convex. We can obtain an explicit solution to the optimal stopping

problem of (3.43). Defining

Zt = AeI3tHt

we have that V(A) is given by

C2A\72 - yYC2
72_ 7 ! A + A, if A > Af7-10 r

K if A < A
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where

(72-1)0 YO

-= (1 +21yf) (Kid-1) 

C2 is given by

_ (Ta+y-1-1]

The optimal stopping strategy is to stop the first time the process Zt reaches A. V(A) is

continuously differentiable everywhere and V'(A) maps (0, oo) into (-oo, a).

Proof. (Lemma 3.2). Take 0 < A1 < A2 < 00, s E (0,1) and A3 = sA1 + (1 - s)A2. Denote

by r the optimal stopping time when A = AI and similarly for r-, r*. We then have

V(A3) = (\3;3) <

sJ(A1; r*) + (1 - s)J(A2; r)

< sV(A1) + (1 - s)V(A2 )

The first (strict) inequality follows from the (strict) convexity of U1, U2 whereas the second from

the definition of V(A) (Equation 3.43.)We proceed by calculating the solution to the optimal

stopping problem. It is easy to show that

c1-

U1(A) = max -Ac=
c 1-Y

= 7 A~~1-7

and

U2 () = mnax(K 1 -AX)=

_ K _ A-1-"
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so that the expression (3.43) becomes

sup E -ft 7 Aett~dt + - Or 7supE [f eWt1 ^' (AeitHt) 7 dt + e-T (1 / K' (AePtHt) ) + Ayo Htdt
,rES 1 - 7Y-

Consider the process

zt = AefPtH = = AHoe(-r- 2 )t - Bt

so that
dZtt= (f - r) dt - dBt, Zo = A

With this new notation we can rewrite the above optimal stopping problem as

supE [e -( ' (Zt) + yoZt dt+ err K (Zt) )]

To solve the pure optimal stopping problem we proceed as in Oksendal (1998) p. 213 and we

define

f(Z,t) = et (1 z7 +yOZ)

g(Z,t) = e-at 1 (Zt))

f(Z, t) represents the per-period payoff before stopping and g(Z) represents the payoff upon

stopping. Then the infinitesimal Operator acting on G(Z, t, w) = g(Z, t) + w gives

AG _OG 8G 1.27202 (1% - y O9G--~ ~ ~ Z - z~ a= +(_r)zE+G +1e t + Z O

_ etZ [(Z) [KIG-1] 1- 7yo] (3.45)

As is shown in Oksendal (1998), it can never be optimal to stop the process while AG is positive.

Accordingly the continuation region will always be contained in the set (Z, t: AzG > 0) For y < 1

151



1
and the fact that KiG - 1 > 0 (by Equation 3.6) the operator A~z will be positive whenever

(Zt)-I [KIO-1] < o17

(Zt)- < 
K';O - 1K? e-1

Zt >

1
For 7y > 1 and the fact that KiO -1 < 0 we obtain exactly the same inequality. This shows

that a reasonable guess for the continuation region is

Z < Zt < 00

for some Z satisfying

z< __A

Z KO- 1
To determine the solution, we apply the standard methodology of smooth pasting, i.e. we

search for O(Zt) satisfying the following properties

0q 1022Z+ 2 2 (y Z : ZA 0

-'8 + +yo-2Z) = oZ 0 on U (3.46)-f~+fi-r Z +2-Z '; + l _ I
(Zt) > (1 7 -K (Zt) )(3.47)

_I,0 + ( -r) Z 09+ 2 0 Z K+ ( 1 f + yoZ < 0 on R\U (3.48)

q(Zt) iC 1, C2 on 1(3.49)

where U is the continuation region and D is the exercise boundary. The general solution to

(3.46) is given by

+(Z) = C1
Z yl + C2ZY2 - z 1 + YO z

y-1 o r- - Oq---

where

1 - 2 /(1 - 2-) 2 + 8
71,2= --
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It is straightforward to verify that

71 > 0,72<0, 71 +72 = 1-2 - r
tK2

Since the continuation region is of the form Z< Z < oo we require

C1=

and thus we are left with determining the optimal exercise point and the constant C2 and Z.

We can do that by invoking (3.49) to get the set of conditions

C2Z72 1 _Zi y0 Z
2 -1-l + O--.72-19 -I r

72c~z~--~- ~_z- + -o
0- r

=7 1 (z~;1 -= ' -- Y K-Y (Z) 

I 1= -KZ-f

(3.50)

(3.51)

Notice that we can rewrite the above as

C2Z2-1_ 7 1Z-1 Y+ y72 -1 - +r
7 2 C2Z-2 - oZ- + o

0 - r

1-7 K-
= 1=-KIYZ--

Solving for Z leads to

Z-- (72- 1)0 YO
-- ~~~~~~~~~~~~~~~~2(1+721_7) (K-0_1) r

1 1
Observe that Z-7> 0 for > 1 since 72 < 0 and KIt- 1 < . For < 1 we can show

that _y''+YYthat + 72 1-) < 0 and accordingly Z-i > 0 as follows: 1 + 721-7 = 1 -+2, so that

it is equivalent to show that 1 - 7Y + 772 < 0. Using the fact that 0 > 0, we see that >

2 (/ - r)). This in turn implies that

1-Y 7+77 T2 < 1-7( + 2 )-1-Y7( + 2 ) < 0.
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This verifies that Z> 0 for y < 1 too. Similarly,

ZY 21 >0
(1-- 72 -1Y_ 

C2 -_ 1> 0

since

1-l (721 ) - 1 1-7 > 0

The previous considerations allow us to guess that the solution to the optimal stopping problem

under consideration is given by

C2Z72 " Z +-Z, if Z > Z (3.52)7-)1 r

K; (Zt) )if Z < Z (3.53)

We proceed to verify that this is indeed the optimal stopping time by considering the rest of

the conditions (namely (3.48) and (3.47)). To verify (3.47) we need to show that

7 1 =.' yo 7 (K z =C2Z72 Z +-Z> >K7Z)-1 r 1--

for Z > Z. We do this by considering the difference

T(Z) = C2Z2 + 1 K - Z + -Z

It is clear that T(Z) satisfies: T(Z) = 0 and T'(Z) = 0 by construction. The claim that

T(Z) > 0 for Z >Z will be proved if we can show that T'(Z) > 0 for Z >Z. T'(Z) is given by

T'(Z) = C272Z2-1 + Z- (K - ) + YO
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or

T'(Z) = C272

Observe that for Z >Z we have that

(Z 72-1

VZ

and accordingly

C272 (-)
72-1

Z -12+-1-za2-1 +
z 

(Z>AVZ

1

I(

_1
-f

Z72- > 272 (Z\
VZ

since 72 < 0, (72 - 1) < -, so that

T'(Z) (Z) -1 [C272Z721 +Z-4 (K7

But

C27 2 Z 7-2 +Z-7 (K7 Yo

r

by the fact that T'(Z) = 0. Accordingly (3.54) becomes

T'(Z) > 1 - > 

for Z > Z.This verifies that T(Z) > 0 for Z > Z.

We are left with checking that (3.48) holds. This will be true if

(K7-1< \K - 1

since this will guarantee that

-rO + '(I3 - r) + "Z22 + 1 - 7Z +YOZ) 0

by the observations we made about the sign of A in (3.45).27 To check (3.55) we need to

27Observe that for Z <Z the function under consideration becomes: 1 -Kl (Zt) 
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+ YO
r (3.54)

(3.55)

on R\U

1

0
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show that

Z- =(7 2-1)0 yo > y
(1 + 72 1-a) (K'y 8-1) K K0 - 1

We need to distinguish cases. For 7 < 1, (K 0 - 1) > 0 and thus the above inequality can be

rewritten as
(72 - 1)0 >1 -

(1+72 1- )r 7

or equivalently

r ( a+72) 1 (3.56)
72-1

Observe that we arrive at the same inequality for > 1 too with identical steps. This is exactly

assumption (3.44). The previous reasoning allows us to obtain the function V(A) by observing

that Z(0) = Ae°H0 = A, so that

V(A) = C2 AY2 + if A>A'Y~~--1 I if >__

71 0-1- rV(A) = (1 7 K () if < 

where A z ~~(72 -1)6 y
(( +21a (K 0 -1) )

The function V(A) is continuously differentiable everywhere and convex. Accordingly, we can

calculate the derivative

V'(A) = 7 2 C2 A72-1 A- + Y, if A > A6 r

V'(A) = (-K A-) if 0<A<A

The range of V'(A) for positive A is (-oo, Y) implying that the equation

V'() = -oV'(A) = -o
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will always have a solution as long as Wo E (-a, oo), since V'(A) is an increasing continuous

function. 

Remark 3.1 Notice that in contrast to Karatzas and Wang (2000) the function V(A) does

not have to be decreasing due to the presence of income. As a matter of fact we show that V'(A)

takes values in (-oo, YO).

Remark 3.2 Assumption 3.44 can be shown to be always satisfied as long as 0 > 0 in two

special cases: i) if y > 1 and/3 > r or ii) if /3 = r . We conjecture that 0 > 0 is sufficient for

assumption 3.44 more generally but we haven't been able to prove it algebraically.

Proof. Remark (3.2)To see this, observe that we can rewrite (3.44) as

r+ (-r)y > (-r)-y 2-Y,

r > (r-0)y(1-7 2)

This inequality is clearly satisfied if 0 > r, that is if

7-1tr 2 - r-- + ->0.
y 2'y 7 -

Observe that this last equation is verified if y > 1 and /3 > r.To show ii) assume now that

/,3 = r and that y is arbitrary as long as 0 > 0. Multiplying both numerator and denominator

of (3.44) by 72 and using the fact thata 2(Y2 - 1) = we reduce to showing that

K 2 72 2rl
2- -+~ < 1

Now using the definition of = r1 1- a2 and the fact 71 + 72 = 1 we reduce the above

problem to checking that the ratio

r l3z"2 <r 1 2 <1
2 
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which will be trivially the case if y > 1. For y < 1 this will be true if

7 -1 > 1-1-?

but this is immediate since
1

71 > a
7

The following result shows the connection between V'(A) and X(A; Fx) of Equation (3.39).

",\ is the optimal stopping rule associated with A and is given in Lemma 3.2.

Lemma 3.3 V'(A) and X(A; ,) are related by

V'(A) = -x(>; ?A)

Proof. (Lemma 3.3).The proof is very similar to Karatzas and Wang (2000). The convexity

N

of Uj, j = 1, 2 implies that

Uj(y)(x - Y) < Uj(x) - Uj(y) < Uj(x)(x - y)

so that (for Ihl < A) we get

V(A + h) - V(A) = V(A + h) - J(A; m) > J(A + h;x) - J(A; m) >

> hE [ [H(t)Uii'(AeItH(t)) + H(t)yo] dt + H(-A)U2(AefrAH(r?)) =-(A; A)

where we have made use of the definition of x(A; TA) in Equation (3.39) and Equation (3.36).

The result follows after taking limits as h -- 0. 

This Lemma shows that the derivative of V(A) informs us of the amount of initial wealth
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that would be needed in order to sustain a stream of income and retirement wealth of

Ct = Ii(AettH(t))l{t < FA}

W = I2(Ae qH(qT))

To prove Proposition 3.1 we use this observation in order to replace the inequality in (3.42)

with an equality sign and thus compute the Value function of the problem of interest.

Proof. (Proposition 3.1) We will verify that the triplet

= (A*eItH(t))-l{O < t <?}

= inf {t: A*e6tH(t) =A}

W~ = I2(A*e6H()) = I2() =W

where A* is given by (3.16) is an optimal policy. We start by showing that this policy is feasible.

To see this, consider the function V(A) as obtained in Lemma 3.2. Since V(A) is strictly convex,

and V'(A) maps (0, oo) to (-O, oo) we know that there exists a unique A* > 0 s.t.

V(A*) + A*Wo = inf [V(A) + AWo]
JA>0

which can be rewritten as

V(A) + AWo > V(A*) + A*Wo VA > 0

Moreover, A* as obtained in equation (3.16) minimizes [(A) + AWo] over all A > 0, since

V'(A) = -WO

By Lemma 3.3

Wo = -VI(A*) = -X(A*;T*) = E [ [H(t)(A*eftH(t))Y) - H(t)yo] dt +H(.)W

159



so that we can create portfolios that can finance the consumption stream

F = Ii(A*e/tH(t))1{t < A

and the retirement Wealth

Wp. = I2(A*e A* H(A*)) = W

We now verify optimality of this policy as follows

V(Wo) > E [ e-"tU (I (A*eItH(t)))dt + e-"A*U2 (I2(A*e"A*H(F,*))) =

= E e-6tUl (Ii (A*eftH(t)))dt + e-A\ 2 (I2(A*e/A* H(;F*))) +

A*E [H(rA,* )w + j H(t)Htdt

= E [ [e-OtUl(Ii(A*e8tH(t))) + A*H(t)yo] dt + e-ffA*U2 (I2(\*e\*H(r.)))+ A*Wo =

= V(A*) + A*W0 = inf [(A) + AWo]
),>0

The first equality follows from the definitions of U1, I 1,U2, I2. The second equality follows from

the intertemporal budget constraint and the last from the definition of V(A). The fact that

V(W0 ) > infx>0 [(A) + AWo] along with (3.42) delivers the result that

V(Wo) = inf [(A) + AW0 ]

A>O~ ~

In particular the optimal policies are given by < ct, WT ,x* > . The final claim of the

proposition concerns the optimal portfolio. To actually compute it in feedback form we make

use of formula (3.8.24) in Karatzas and Shreve (1998)

lC A*(Wo)
7-0 --

A*o (WO)
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where A*(Wo) solves equation (3.16). The implicit fimunction theorem gives

= - 72(72 - 1)C2A* 2- 1
)Vo

11 A*-I

Proofs for section 3.5

Proposition 3.2 can be established by virtually identical steps as Proposition 3.1. The only

substantial difference to section 3.3 is that now V(A, T) solves the optimal stopping problem

V(A, T) = sup E [ e-tUl(AeptH(t)) + AH(t)yo dt + e 6rU2(Aei6H(r))r<T l] (3.58)

Accordingly Proposition 3.2 will be established once we can show the following result

Lemma 3.4 The function V(A, T) is strictly convex in A.. Let

Zt = AetHt

and consider the solution Ztt E [0, T] to the functional equation

= Z Yo(1 - er(T - t))
r

+l -- Z__t+ -Zt1 -
1 - e- (T-t)

C
+ K e-O(T- t))

+ 7 (K9- 1)Zyt1--7,
T

-yoZ t e- rtN (d2s-t) dt
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3.8.2

(3.57)

7 1 xz- K ;YZt 

e-0(8-t)N (dls-t) dt
t



(log(Zt) + ( - r - 2) ( -t) -log(Z s(log(Zt) + ( -

(log(Zt) + -_ .) (s -t) - log(L)

(Vogt)+ /s- - t

( log(-Z4) + (:r2 (s - log(L)
Vs -

I , J

-+ .2(s-t))

+ K2 ( )

+ 2(s t))

if y < 1. The optimal stopping strategy to (3.58) is to stop the first time the process Zt reaches

Zt.

Proof. (Lemma 3.4) To save on notation we set without loss of generality t = 0. The

first assertion can be established along the same lines as the proof of Lemma 3.2. The second

assertion follows by an argument similar to Carr, Jarrow, and Myerni (1992) Applying Ito's

Lemma to e-f tV(Zt, T - t)28 one gets

e-TV(ZT, 0)
=_ ~~ +-t _ VdZ

= V(A,T)+j e- dZt+

T
+ _- f t

Jo[ (5Z2 i2

N

+ 9 Zt( - r) - rV + aOv) dt

Using the fact that inside the continuation region

Z25 2 
OZ2 2 

N-)V
- r) - rV +-

at

28Even though the second derivative of this expression can have jumps one can use a gen-
eralization of Ito's Lemma to obtain this expression that only requires the function to be in
Cl.
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) 2 1
dls-t

d2s-t

if y > 1 and

(s-t))

s- t)

(3.59)

. \

r - r-2 ) (S - t) - log(Z2

'Y 'Y - -11

- Zt If
1 - ly

= S 

=

I

=



one can rewrite (3.59) as

___ -13a 1-T_

1 -eT KK ZT = V(ZT, 0) = V(A,T) + j0 e a dZ +

/0 ett( zt + Z) l{Zt > Zt}dt+

+ ^lK7 O e-3tZt l{Zt < Zt}dt

where {Zt > Zt} is the continuation region and {Zt < Zt} is the stopping region.29 Adding

and subtracting

e-t Z(l + yot 1Zt < Zt}dt

and taking expectations one gets

V(A,T) = E( eat (l 7 -Zt 7 +YoZt dt + 1 l7 e TK ZT7;)

__ (T 1tZt-dt)
+1 -->E (Je (Zt (K9 -1) + i yoZt)l{Zt < Zt}dt

The first part of this term coincides with the term that one would get in the problem where

retirement would be mandatory in T periods. The second term is an "early exercise premium".

It captures the extra value of being able to stop at any time prior to T. One can obtain an

explicit expression for the first part of this equation

E( e( (1 _ 'Zt y+ YoZt dt + 1 e TK ZT) =

zo(l - e-rT) +
r
01- -1 - e- ° T )T

+ 7 Zo 1 e + K7 e-°T

To determine the second part needs knowledge of the unknown Zt. However using the fact that

,~ 1 -1 -V(O, T) =- K Zoz,)1-7

29To obtain the result that the continuation and the stopping regions take this form one can
proceed as in Oksendal (1998)
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allows one to obtain an integral equation for Zt, t = O..T as follows

_ yo(l - e- r(T- t))
- t _

+ E1 -

1

( T

Kt

1 -e- (T-t)
+ KI 4 (T - t)

e-S (Zz (K7 -1) + 7 yoZs)

Using Fubini's Theorem we can further rewrite

E (sl{zs < ZtlZt = Zt)

1{Zs < Z}Zt = Zt)

= Zte(6-r)(s-t)N (d2-t)

= Zt e(P-°)(s-t)N (dls-t

dls-td2s-t are given in the statement of the Lemma. 

The rest of the assertions of proposition 3.2 follow easily from results established in section

3.3.

We proceed with the proof of Proposition 3.3

Proof. (Proposition 3.3) Only a sketch is given. The idea behind the approximation is to

observe that

VE(A;T) = E L e-[dtU(AetH(t)) + AH(t)yo] dt + e-TU2(AefiH(r)) =

1e - OT 1-e + A K e-
1- r 1- y+Ayo1-7 9 r1-

which can be shown by elementary methods. The next step is to study the difference between

P(A;T) = V(A;T)- VE(A; T)

which we will refer to as the early exercise premium. One can then show that inside the
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continuation region the "early exercise premium" P(A; T) solves the PDE

-3P + Pz( -r) + PzzZ2,2 -PT = 0

By the same approximation idea as in Barone-Adesi and Whaley (1987) we will postulate a

solution of the form P = Y(T)f(Z,Y(T)), take Y(T) = 1 -e -f 3i t and ignore Py. This allows

to reduce the problem to the determination of solutions of the equation

fz(fi-r)+! Z22fzzf y f =Ofz~ -r)2 Y(T)

which is a simple linear ODE. The solution is given just as in the infinite horizon case by

f(Z) = C2TZ72T

where 1- - +(12 2 
'2T 2

2~~~~~~~

To determine the complete solution we require continuity and smooth pasting of V(A; T) to

7A KY. Then by arguments identical to the infinite horizon case we get (3.25) and (3.26).1-0'

The rest of the results follow easily. a

3.8.3 Proofs for section 3.6

In what follows we sketch how to obtain the solution to this problem and prove proposition

3.4. The basic modification of the approach used so far is that V(A) needs to be minimized

over a set of decreasing processes in a manner analogous to He and Pages (1993). The reader

is refered to that paper for a number of technical details.

We start by fixing a stopping time r and defining

J(W; r, cs, r) = E [ e-t1Ui(ct)dt + eU2(WT)
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for any admissible pair (cs, 7rs) satisfying (3.30) and (3.31). Let AXt be a non-increasing

process starting at Xo = 1 with A > 0. We obtain the following set of inequalities for any

admissible pair (cs, Ir,)

J(W; rs, cs, r) =
= E [je-tUl(ct)dt + e-trU2(W)]

< E[J eotU (AXte6tH(t))dt + e-0U2(AXe'rH(r))]

+AE [XrH(T)Wr + j XtH(t)C(t)dt]

Integrating by parts and using the fact that X0 = 1, the second term of the right hand side

can be rewritten as

E [f XtHtctdt + XrHrWrJ = E[j XtHt(ct -yo)dt + XTHTWT + XtHtodt] =

E [J XtHtyodt + HTWT + fHt(ct - yo)dt

+E [ Ht Et [fI Hs(cs -yo)ds + HrWr] dXt]
Ht

so that we have
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J('V; rs, cs, T) < E [ e-tU1(AXteftH(t))dt + e- 3TU2 (AXleI31H(T))]

XtHtyodt + HTWT + j Ht(Ct - o)dt]

±AE [J H Et [fT HS(cs- yo)ds + HWIFt] dX ]
+AE Ht Htdt

E[ E[ e-OtUl(Xte:tH(t))dt + e-rU 2(XreOrH(r))]

+A (Wo + E [fXtHtodt])

where the last inequality comes from the fact that

Et [ft HS(c - yo)ds + HTW,] dXt < 0, and
Ht

E [ Ht(ct - yo)dt + HTWT] < Wo.

The equality occurs if and only if

W_ - I2 (elXrHr) and c(t) = I, (e3tXtHt), for all 0 < t < r

E [H(r)Wr + ± H(t)c(t)dt] = Wo + E [J H(t)yodt]

and
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Et [ftT Hs(cs - yo)ds + HTWT] dXt = O.
Ht

Evaluating the above set of inequalities at the optimal stopping time r, and observing that

it holds for all Xt decreasing, we have that

V(WO) sup inf [({,xA}r) + AWo] (3.63)

where V(Wo) is the value function of the original problem and J(Xt; r) is given by

J({Xt};Xr,A) = E [If. [e-tUll(AXteltH(t)) + AXtH(t)yo]

Let

- sup J({Xt}; -r, A)
7'

= supE [
7.O

[e-tN(AXtePtH(t)) + AXtH(t)yo] dt +e- U2 ( AXtel H (r))]

V(A) = inf V({Xt}, A)
{xt}

and define the process Zt:

Zt -= Ae3tXtHt
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V({Xt}, A) =

and

(3.64)
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We now proceed by analogy to the case without borrowing constraints. It can be shown

that3 0

V(Wo) = sup inf [J({Xt}; r, A) + AWo] = inf sup [J({Xt} ; r,A) + AWo] = inaf [V(A) + AW0].
. {A,Xt} {A,Xt} T A

(3.67)

The optimal policy functions are given by

W, = I2 (*e6rXt*Hr) and c(t) = I (A*e *tXHt), for all 0 < t < T (3.68)

where A*,r*,Xt*' solve (3.67). To solve the infimization over the space of decreasing

processes one can proceed in a fashion analogous to He Pages (1993) to construct the Value of

the min-max game of equation (3.67). The following generalization of Lemma 3.2 is required

Lemmna 3.5 For appropriate constants C1, C2, ZL, ZH (given in the proof) define the function

V(A) as

N 7 ~-~~~~7 1 y0A
V(A) = C1 + C2A2- + - if ZL < A < ZH,

- - r

V(A) = (1 AKA ) if A<ZL,

- _?_J___ ~-21~l YoZHV(A) =C1ZH + C2ZH2- 7 1 Z o + if A ZH,

Assume moreover that

- .~OV 1 &V 2 (1__7 ~-~v+ ( - ) A-v+ - A ,~ +A + yoA < forA<ZL (3.69)

30This proof is available upon request. It is ommited because it effectively replicates the steps
in Karatzas and Wang (2000), combined with the results in He and Pages (1993)
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and

V ( 1 7K (A) ) everywhere (3.70)

Then V(A) provides the value to the game

V(A) = sup inf [J({Xt}, r)] = inf sup [({xt}, r)]

Define also the process

Zt = AeItHt

The optimal stopping policy is to stop once Zt crosses ZL whereas the optimal Xt decreases

once Zt = ZH.

Proof. (Lemma 3.5) We give a sketch. To keep the notation consistent with section 3.3

we focus at time 0 without loss of generality and use the fact that at time 0 Zo = A. We will

denote Z = Zo for convenience. The purpose is to determine the value 0(Z) of the game

0(Z) =Sup inf [J({Xt} T)] = inf sup [J({Xt},-)]
x,) MxI )jIt r, V r 

i.e. to fix a given initial value of the multiplier A = Z = Zo and determine a decreasing process

Xt* and a stopping time r* so that Xt* minimizes J conditional on A and r and r* maximizes

J conditional on Xt* and A. In this context it is not difficult to establish a verification theorem,

asserting that 0(Z) is the value of the game, as long as we can find a function 0(Z) and two

barriers ZL and ZH with ZL < ZH satisfying
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-) Z 1 0Z 2 ,+ yoZ-~(~ + ( -rZ- +-- ;+
Oz 2 OZ2 z +yo ¢(Z)1 _ _2 2S2 ( 7 Z1 y o Z'

_:X0+ ( -r) Z ""++l-z^+ a za+ Z)OZ 2 OZ2 + /,

Oz
o

OZ

= 0 for Z E (ZL,ZH) (3.71)

> _K, (Zt) 

< 0 forZ<ZL

0(Z) is C1, C2 a.e.

< 0 everywhere

= OforZE(ZH,oo)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

A proof of this verification Theorem can be given along the lines of Theorem 3 in He and

Pages (1993) and standard arguments for optimal stopping problems along the lines of Oksendal

(1998) and is available upon request. We now proceed to construct a function and two barriers

that satisfy these equations. The general solution to

o 2 2 2 + (1 Y Z + Z)= ---,30 ~ ~ ~ ~ + i yoZ =0
OZ 2 ~iz 1 -)

is given by

O(Z) = CZ l + C2Z72 7 _ z 1 yoZ
ly- 1 9 7.

where Y1 and 72 are given by

and

72 =

It is straightforward to verify that

71 > 0, 72 < 0.
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To enforce the condition (3.74) we will search for ZL, ZH and C1 , C2 so that

C,1 ZL1 + C2 ZL2 -7 _ 1 Z 7_iZIL ryoZL
+--

lClZL11 + 72C2Z2 1 - Z 1 + -

~lC1ZH]- + Y2C2ZH1- Z - {-+-7--YClZH -~~Z H 8~ 
C2ZH -_ 1ZH 6 +r + (lZ zw~+ OZH)

= (1 ^/ K4 (ZL) )

= (-K (ZL)-7)

= 0

= 0

For notational simplicity, we will define

A1 = C1Z L 1,

A2 = C2 z L ,
1

B = (ZL)-,

C= ZH

With this new notation the above 4x4 system becomes

A1 + A2

7 1 A1 + 72 A2

7 1 A1 CTl- 1 + 7 2 A2 C7 2- 1

,6 (A l Cl-l + A2C72- 1)

r 7-1 1(

Yo-

= B C -

= 0 r

= -y0 ( - 1 + 1_-- 1
The first two equations allow us to solve for A1 and A2 as functions of B

UOf-. - ( I 1 A 1' , , , i 
r - 72J r '-" - - Li -u 72- J T )

'Y2 --7)-(Ky -) B (1 --)

72- Yl
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The last two equations also allow us to solve for A1 and A2 as functions of B and C

A1

A2

I&(i - 7+ rY.) + -L( ), C'B-7i) ~ -
C1'2 1 ( 2 - 7Yl)

By equating the A1 and A2 obtained from the two subsystems, we get

[72( - )C- - C B
- 7i

r ( 1 -71+ r_)+ [71__l(_- )C - - ]B
C'2 -1(72 -71)

Yo (1 - 72) + K - ) B ( 1 -72 )
72- 71

(1 - 7-i) + (K -- ) B (i-iy-1)
72- 71

= 0,

= 

.We can rewrite these two equations as

r [(1- 7 2)C'Y- - (1 - 72 + ry2)]

[Y 1 i )- 71 C72 -- Yi '2 I - -)C- C CT2-1 (K4 - ) (1-721)r [(1-1)C72 -1(1-Y1 +-~)]

get the following non-linear equation for C

72-TY-1 I) C - C - c'y'- (K4Y ( '- 2#)r [(1 - 2)CY2- - (1 - 2 + r-y)]2_1 _ C _) _

r° [(1-71)C72-1-_ (1--71-]+r )]

1~--'~1--1(- c- y-)C- C- -C72-1 (K -V) (1 7 Y Y1 )

Thus we are left with determining C from this equation and then, substituting above to
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obtain B, A1 and A2 .Given A1, A 2, B, C, we can recover ZL, ZH and C1 , C2 . Conditions (3.72)

and (3.73) are stated as part of the assumptions of the Lemma (compare equations (3.69) and

(3.70)). Finally, condition (3.75) can be shown by elementary methods. 

The solution proposed has the same form as the one obtained in Section 3.3. An agent should

enter retirement when her wealth is sufficiently high. This will occur when Zt is sufficiently low,

which in turn is more likely to be the case when the stock market experiences a period of good

returns. Similarly, the borrowing constraints will bind once Zt is high, which will typically be

associated with a period of low performance in the stock market. The consumption process will

posses a similar behavior to the one described in He and Pages (1993).

The rest of the proposition follows steps similar to section 3.3.
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Chapter 4

Hedging Sudden Stops

Precautionary Recessions: A

quantitative framework (joint with

R. Caballero)
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4.1 Introduction

Most emerging economies need to borrow from abroad as they catch up with the devel-

oped world. Unfortunately, even well managed emerging economies are subject to the

"sudden stop" of capital inflows. At a moment's notice, and with only limited consider-

ation of initial external debt and conditions, these economies may be required to reverse

the capital inflows that supported the preceding boom.

The deep contractions triggered by this sudden tightening of external financial con-

straints have great costs for these economies. Not surprisingly, local policymakers struggle

to prevent such crises. During the cycle, the anti-crisis mechanism entails deep "precau-

tionary recessions:" tight monetary and fiscal contractions at the first sign of symptoms

of a potential external crunch. Over the medium run, the tools of choice ae the build

up of large stabilization funds and international reserves, and taxation of capital inflows.

All of these precautionary mechanisms are extremely costly.

The case of Chile illustrates the point well. Chile's business cycle is highly correlated

with the price of copper, its main export good: so much so that this price has become a

signal to foreign and domestic investors, and to policymakers alike, of aggregate Chilean

conditions. As a result of the many internal and external reactions to this signal, the

decline in Chilean economic activity when the price of copper falls sharply is many times

larger than the annuity value of the income effect of the price decline. This contrasts

with the scenario in Australia, a developed economy not exposed to the possibility of

a sudden stop, where similar terms-of-trade shocks are fully absorbed by the current

account, with almost no impact on domestic activity and consumption.1

In this paper we do not attempt to explain why international financial markets treat

Chile and Australia so differently, or even why the signal for the sudden stops should be

so correlated with the price of copper. Instead, we take the "sudden stops" feature as

a description of the environment and characterize the optimal hedging strategies under

176

lSee, e.g., Caballero (2001).



different assumptions about imperfections in hedging markets. We also characterize the

precautionary business cycle that arises when hedging opportunities are very limited.2

The main technical contribution of the paper is a model that is stylized enough

to allow extensive analytical characterization, but is also flexible and realistic enough

to generate quantitative guidance. The model has two central features: First is the

sudden stop, which we characterize as a probabilistic event that, once triggered, requires

the country to reduce the pace of external borrowing significantly. Second is a signal.

Sudden stops have some element of predictability to them. We start by studying a simple

environment where there is a perfect signal (e.g., the high yield spread, or the price of an

important commodity for the country) that triggers a sudden stop once it crosses a well

defined threshold. We then study the more realistic case where the threshold is blurred

and a sudden stop, while increasingly likely as the signal deteriorates, may occur at any

time.

Within this model, we develop two substantive themes. First we characterize precau-

tionary recessions: that is, in the absence of perfect hedging, the business cycle of the

economy follows the signal even if no sudden stop actually takes place. This is because

as the likelihood of a sudden stop rises, the country goes into a precautionary recession.

Consumption is cut to reduce the extent of the adjustment required if a sudden stop does

take place.

The second and main theme is aggregate hedging strategies. An adequate hedging

strategy not only reduces the extent of the crisis in the case of a sudden stop, but

also reduces the need for hoarding scarce assets and for incurring sharp precautionary

recessions as the signal deteriorates. We study two polar-opposite types of generic hedging

instruments or strategies, as well as their intermediate cases. At one end, the hedging

2We focus on the aggregate financial problem vis-a-vis the rest of the world, in an environment where
domestic policy is managed optimally and decentralization is not a source of problems. Needless to say,
these assumptions seldom hold in practice. Such failures compound the problems we deal with in this
paper by exacerbating the country's exposure to sudden stops. See, e.g., Caballero and Krishnamurthy
(2001, 2003) and Tirole (2002) for articles dealing with decentralization problems. The literature on
government's excesses is very extensive. See, e.g., Burnside et al (2003) for a recent incarnation.
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contract relaxes the sudden stop constraint one-for-one. That is, each dollar of hedge

can be used to relax the constraint. The other extreme is motivated by crowding out:

if the resources obtained from the hedge facilitate the withdrawal of other lenders, then

the main effect of the hedge is to reduce the country's debt in bad states of the world

but not to provide fresh resources. By its nature, this type of hedging is an excellent

substitute for precautionary recessions, but it cannot remove the sudden stop entirely.

The paper concludes with an illustration of our main results for the case of Chile. We

estimate the probability of a sudden stop as a function of the price of copper and calibrate

the parameters needed to obtain sharp consumption drops such as those experienced by

Chile in the recent contraction of 1998/99. We then describe different hedging strategies

and their impact on the volatility and levels of consumption. We discuss credit lines and

their indexation to the signal as one way of reducing asymmetric information problems.

For example, we argue that Chile could virtually eliminate sudden stops, precautionary

recessions, and its large accumulation of precautionary assets, with a credit line that

rises nonlinearly with the price of copper. The cost of this line, if fairly priced, should

be around 1-2 percent of GDP. This is very little when compared with the costs of the

precautionary measures currently undertaken, including large accumulation of reserves,

limited short-term borrowing, and precautionary recessions.3

Currently, although futures markets exist for much of the income-flow effects of com-

modity price fluctuations, the size of the financial problem is much larger than that. The

markets required for these strategies do not exist, at least in the magnitude required. In

this sense, our framework also serves to highlight quantitatively the usefulness of these

markets and allows us to begin gauging the potential size of the markets to be developed.4

3In his Nobel lecture, Robert Merton (1998) highlights the enormous savings than can be obtained
by designing adequate derivatives and other contracting technologies to deal with risk management. He
also argues that emerging-market economies stand to gain the most. Our findings in this paper fully
support his views.

4See, e.g., Krugman (1988), Froot, Scharfstein, Stein (1989), Haldane (1999), Caballero (2001), for
articles advocating commodity indexation of emerging markets debt. The contribution of this paper
relative to that literature is to offer a quantitative framework and to link the hedging need not to
commodities per se, but simply as a signal of much costlier financial constraints.
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In section 2 we describe the environment and characterize the optimization problem

once a sudden stop has been triggered - this provides the boundary conditions for the

"precautioning phase." In section 3 we study the phase that precedes a sudden stop when

the country self-insures. The main goal of this section is to characterize precautionary

recessions. Section 4 describes aggregate hedging strategies under different imperfections

and the degrees of crowding-out in these markets. Section 5 illustrates our results through

an application to the case of Chile. Along the way, we outline an econometric approach

to gauging the likelihood of a sudden stop and its correlation with an underlying signal.

Section 6 concludes and is followed by an extensive technical appendix.

4.2 The Environment and the Sudden Stop Value

Function

Intertemporal smoothing implies that, during the catch up process, emerging economies

typically experience substantial needs for borrowing from abroad. For a variety of reasons

that we do not model here, this dependence on borrowing is a source of fragility. The

sudden tightening of financial constraints, or the mere anticipation of such an event,

generates large drops in consumption. In this section, we formalize such an environment

and characterize the optimization problem once a sudden stop has occurred. The next

sections complete the description by characterizing the phase that precedes the crisis.

4.2.1 The Environment

Endowment and Preferences

We assume that the endowment grows at some constant rate, g, during 0 < t < oc.

Thus, the income process (y(t), t > O), is described by:

dy(t) = g dt, y(O) = o, g >0.
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Two aspects of this process are to be highlighted. First, it is deterministic. In the

economies we wish to characterize, sudden stops are significantly more important than

endowment shocks as triggers of deep contractions.5 From this perspective, the main

importance of endowment shocks is their "collateral" effect, and hence their potential

to trigger a sudden stop. We simplify the model along this dimension and group any

collateral effects contained in endowment shocks with the signal process (to be described

below). Second, since g > 0, there is an incentive for the country to borrow early on.

Reflecting its initial net debtor position, the country starts with financial wealth,

X(0) = X0 < 0. However, the country's total wealth must be positive at all times:

Xt > - Yt t> 0,r-g
where r denotes the riskless interest rate and it exceeds the rate of growth of the endow-

ment, r > g.

Let ct and c represent date t consumption and "excess" consumption, respectively,

with:

Ct* _ ct- yt, 0 < <1.

The representative consumer maximizes:

Et [j u(c )e-(8-t) ds] (4.1)

with
* 1-7

u(ct) -1 _ > 0,y > O.

The parameters a and y are the discount rate and risk aversion coefficient, respectively.

For simplicity, we assume r = a throughout. The functional form of the utility function

captures an external habit formation, with a habit level that is increasing at the rate of

5 0f course, sudden stops reduce growth as well, but we capture these effects directly through the
decline in consumption. In this sense, y can be thought of as potential, rather than actual, output.
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the country's growth rate. This is a natural assumption in economies that exhibit strong

growth, since future generations are likely to have a higher standard of living than the

current ones.6

A frictionless benchmark

It is instructive to pause and study the solution of problem (4.1) subject to a standard

intertemporal budget constraint (and absent a sudden stop constraint):

dXt = (rXt - c + yt) dt

X0 given

with y* - (1 - )y.

By standard methods it can be shown that the solution to this deterministic problem

is given by:

ct = r (Xo + Yr ) for all t>O,

and the "total resources" of the country remain constant throughout:

Xt + Yt= X0 + y° (4.2)r-g r-g
so that

* Xt 1lim -
t-oo yt* r-g

and, accordingly:
Xt 1- lim -t-,o Yt r- g

6 Accordingly, this type of utility function allows us to impose (in a simple reduced form) a barrier
on the amount of indebtedness of the country at any point in time of:

( - g)YXt > (1-K)Y t >O.r-g
and on saving, since:

yt - ct < (1 - )yt t > O.
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Moreover, for any level of the debt-to-income ratio below its limit value, the ratio Xt
it

decreases monotonically to- 1gr--g

This case serves as a frictionless benchmark in what follows.

Signal

There is a publicly observable signal, st, correlated with the sudden stop and, for sim-

plicity, uncorrelated with world endowments. This signal follows a diffusion process:

dst = dt + adBt.

In our basic model, st is a perfect signal and a crisis is triggered the first time the

signal reaches a threshold, s, from above. We associate with this event the stochastic

time, r:

r= inf{t E (0, oo) : t < s}.

In our second model, the signal is imperfect. In this case, a sudden stop can happen at

any point in time. It is only its likelihood that is (smoothly) influenced by the signal st.

In this case, the specification of the stochastic time, T, depends on the realization of a

stochastic jump process, the intensity of which is given by

At = exp(ao - alst).

Sudden Stops

We place no limits on the country's borrowing ability up to the stochastic time r. At

this time, the country faces a "sudden stop." We do not model the informational or

contractual factors behind this constraint, or the complex bargaining and restructuring

process that follows once the sudden stop is triggered. Since our goal is to produce a

quantitative assessment of the hedging aspects of the problem, we look for a realistic and

fairly robust (across models) constraint. For this, we simply model the sudden stop as a
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temporary and severe constraint on the rate of external borrowing. In particular, since

the "natural" aggregator of a country's total wealth is the net present value of its total

resources, we place the constraint on:

X + _rr-g
We assume that at time T, financial markets require the country to increase its total

resources by ( > egT within T periods. Formally:

(X+T + Y+T) >( X+ ) (4.3)rg rg
It is obvious that this constraint will be always binding because as we showed in a previous

subsection, at the unconstrained benchmark (Xt + g) remains constant at all times.

It is then straightforward to show that this constraint can be expressed as a constraint on

the maximum allowable amount of debt/gdp at time T + T, as a function of the debt/gdp

ratio at time -. To see this, redefine

( = egT + 0(1 - e- (r- g)T) (44)

and observe that the constraint becomes:

X7 +T > XT [e9T + (l- e-(r-g)T)] + y)(1 - e- ( - g)T)r--g

or
Xi+T > XT [e9T + (1 - (r-g)T)] q+(1 -e(r-g)T)

YT+T ~ e9gT + e9T(r-g)
Higher levels of 0 imply higher levels of ( and thus make the constraint tighter. It

is also trivial to verify that for the special case = 0 this constraint literally reduces to
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the requirement that debt/gdp cannot grow any further between - and r + T:7

XT+T > XT

Yr+T r,

Finally, it is interesting to note that one can think of (4.5) as a constraint on the min-

imum balance-of-trade surpluses the country has to accumulate over the next T periods.

To see this, start with the intertemporal budget constraint:

XT +T r+T
XT + e-r(t-T)y dt =e /T

or:
r+T

XT- e-rTX+T = +T

and replace (45) into it, to obtain:
and replace (4.5) into it, to obtain:

e-r(t-T)c dt + e-rT XT+T

e-r(t - T)c dt - Y*(1 - e (r - g)T)r-g

Jr+T
e r(t-r) (Ct -*) dt < X(1-(e-(r-g)T e-rT(-e-(r-g)T) e-rT_

or, finally:

r+T dT+T
/e-,(t-T) (y - Ct) dt > XT((e - (r- g)T + ;be - rT ( 1 - e - (r- g)T ) ) - -1)+ be-rT

,J~~~~ T 
e-r(t-T)y* dt.

This gives us the constraint in terms of the balance-of-trade surpluses required from

a country that is faced with a sudden stop. These required surpluses rise with the level

of debt (recall that XT < 0), q5, and the endowment of the country.

7 Even for the = 0 case the constraint we consider is binding at the time of the sudden stop. This
is due to the fact that the debt/gdp ratio is always growing for an unconstrained country as we showed
in section 2.1.1.
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4.2.2 The Optimization Problem

Let us assume for now that the only financial instrument is riskless debt, so there are no

hedging instruments indexed to s or r. In this case, the country maximizes the expected

utility of a representative consumer:

-0 o 1-a -

V(Xt, yt*) = maxE J Crdt

s.t.

dXt = (rXt - c + yt*)dt

-- ~b~~~~~~y* (1 - e - ( r - g ) T )

XT+T Ž X+T- X [egT + (1 - e-(r-g)T)] + ,Y0 (- - (r )TeTr-g
dy = g dt
yt

dst = pdt + adBt

lim X(t)e - = 0, a.s.
t---oo

and either

r = inf{t E (0,o): st < s} or

Imperfect Signal: r = inf{t E (0, oo):
jT
o

At = ea°-alst z "exp(1)

where z is independent of the standard Brownian Ft-Filtration.

4.2.3 The Sudden Stop Value Function and Amplification

We solve the optimization problem in three steps. Starting backwards, we first solve

for the post-crisis period, then for the sudden-stop period, and finally for the period

preceding the sudden stop. In this section we present the first two, and trivial, steps.

The goal of these is to find the value function at the time of the sudden stop, VSS(XT, y),

which then can be used to find the solution of the optimization and hedging problems

before the crisis takes place.
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Post Sudden Stop: t > r + T

Since

crisis,

we made the simplifying assumption that the country suffers only one financial

the maximization problem for t > r + T is simply:

f00 Ct r(t(')) dt
V(XT+T, Y+)-xr+T) = Max 1-C; JT 1+T 7

s.t.
00oo T o

Ctye- r(t -(r+T)) dt XT+T + er(t(T))dt
T +T

(4.6)

(4.7)

This problem has the trivial solution:

ct = rW2 T-r+T < t < oo (4.8)

with

W = X,+T + Yr+Tr--g
This constant can be interpreted as the "excess" wealth at date r + T (that is, the wealth

in excess of that which is needed to cover the reservation-consumption level Kyt).

Sudden Stop: r < t < -r + T

With the continuation value function, V(X,+T, Y;+T), from above, we can now write the

maximization problem for the sudden stop phase:

'-+T ,*1-a
VSS(X,, y*) =max j ct -e-r(t-T) dt + erTV(Xr+T, Y+T)

s.t.
If+T r+T

CJe-r(t-T) dt= X +
XT+T > XT+T
XT+T > X,+T.

yt e (t) dt - TXi+T

(4.10)

186

(4.9)



Since the country is growing and wishes to expand its consumption at a faster rate

than the constraint allows, the sudden stop constraint, (4.10), is always binding (see the

appendix for a formal proof):

XT+T = XT+T. (4.11)

Given this result, the optimization problem is straightforward. It is a deterministic

consumption problem subject to a final wealth condition. A few steps of algebra show

that:

CT w
c - e_,.TW1 , T < t < T + T (4.12)

with

W1 = XT + y(1 - e( )T) _ e-rTX
r--g

It is easy to see from these expressions that as XT+T rises, c falls. The country

has to cut back consumption during the crisis in order to satisfy a tighter sudden-stop

constraint.

We are now ready to determine the sudden-stop value function:

VSS(XTx Y;)
r+T (rWe)l-y er(tT) dt +

1 -7

+e- rT | o (rW)l e-r(t-(+T)) dt
+T 1-7

(rW)l- y (1 e- rT) (rWe) 1- 7 (e-rT)
1- 1 r + 71 - - ' -

It is easy to verify that our careful choice of the constraint pays off at this stage. The

value function simplifies to:

VSS(xT, y*) = K(!) (Xr + rY-)1 - 7

= K V(X", y4r)
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where V(XT, yr) denotes the value function in the absence of a sudden-stop constraint

and K is a constant given by:

K = (1-e erT)y(1 - e-rT ) y(l - e-(r-g)T) e-(r-)T)- +e -rT (( e- (r-9)T) + egT) 1-.

(4.15)

That is, the dimension of the state space effectively is reduced from two, (X,yr),

to one, (X + i_-). Moreover, up to the constant K, we have arrived at a value func-

tion that is identical to the one in the problem without sudden stops. This problem

corresponds to the trivial case of an infinite horizon consumption-savings problem under

certainty. Note that for 7 > 1, which we assume throughout, K > 1 and increases with

,/.8

While the particular simplicity of our formulae is due to stylized assumptions, the

basic message is more general. The model also can be understood as an approximation to

a potentially more complicated specification of constraints that result in higher marginal

disutility of debt in the event of a crisis.

4.3 Precautionary Recessions

Let us now address our main concern and begin to characterize the country's optimization

problem prior to the sudden-stop phase. Since we have assumed that there are no hedging

instruments contingent on s or r, the country's only mechanism for reducing the cost of

a sudden stop is to cut consumption and borrowing before it takes place. We show that

in addition to a precautionary savings result, the amount of self-insurance varies over

time, because sudden stops have some elements of predictability in them. In particular,

8Observe that for y > 1 the function z_- is negative for all Z > 0. Thus K > 1 reflects that the
constrained value function is lower than the continuation value function for the unconstrained problem.
The reason we need -y > 1 is that the flow aspect of the constraint implies that having a higher XT
does not relax the constraint one for one, because the lender does not reduce its demands by the same
amount during the sudden stop. When y is below one, this effect is strong enough to discourage saving
for the crisis.
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when the signal of a sudden stop deteriorates, the country falls into what can be labelled

as a "precautionary recession:" that is, a sharp reduction in consumption to limit the

cost of the potential sudden stop. Such behavior is widely observed in emerging market

economies, where private decisions and macroeconomic policy tighten on the face of

external risk.

In practice, such a problem is complex for many reasons, one of the most important

being the uncertainty that surrounds the factors that trigger such crises. In order to

isolate the main issues, we proceed in two steps. First, we study a case where there

is a perfect (stochastic) signal: A sudden stop occurs when this signal hits a minimum

threshold, , for the first time. Second, we add (local) uncertainty: while sudden stops

still are more likely as the signal deteriorates, they can occur at any time.

4.3.1 Perfect Signal: The Threshold Model

In the threshold model, the dynamic programming problem is:

Ir r * 1-a

V(Xt,st, yf) = maxE [j cu e-r(u-t) du + e-r(-t)Vss(X, Y)lFt] (4.16)V~ ~~~~~~ 1X -t yt./ (uy)Ft (.6
where

T = inf{(t: s < s) A o} (4.17)

and the evolution of (Xt, st, yt) is given by:

dXt = (rXt-ct + yt) dt (4.18)
dytdy = g dt (4.19)
yt*

dst = ,adt + adBt. (4.20)

The boundaries of the value function, V(Xt, st, yt), can be found readily. On one end,
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we showed in the previous section that:

V(XTSy*) = K ) (4.21)
1-

where K > 1 measures the intensity of the crisis and is given in (4.15).

On the other end, we show in the appendix that as st goes to infinity, the value

function converges to the value function of the deterministic problem with no sudden

stops:

lim V(X~ s y)= (4.22)

That is, the value function becomes independent of the signal as the crisis event becomes

less and less likely.

The value function V satisfies the following Hamilton-Jacobi-Bellman (henceforth

HJB) equation:

0 = max - Vxct -rV + Vx (rX + yt) + Vy*gyt + Vs + -V 2 (4.23)

subject to the boundary conditions (4.21) and (4.22).

In the appendix, we show that the solution has the form:

(x +
V(Xt, st, yt*) = a(st)7 r (4.24)1-7-

for some twice differentiable function a(st). The latter satisfies the boundary conditions:

lim a(s) = (1) (4.25)
solo ~r

a(s) = K11/ () (4.26)

and solves an ordinary differential equation that can be obtained in three steps. First,
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carry out the maximization in (4.23) with respect to ct to get:

C = x) /7 (4.27)

(x.+-)
Second, substitute this into (4.23). Third, divide the resulting expression by r-1--y

These steps yield:

1-ra + pas + I 2 -1) ( 8) + ass) =0 (4.28)

which can be solved numerically subject to (4.25) and (4.26). We show in the appendix

that the solution to this ODE exists and is unique. We plot this function (multiplied

by r) in the left panel of Figure 4-1. The function a(s) is decreasing with respect to s.

As the signal deteriorates toward s, this function rises rapidly, reflecting the increasing

value of wealth (and marginal wealth) as the sudden stop becomes more likely.

This setup allows for an explicit characterization of the optimal consumption policy

in feedback form. Given the value function, it follows from (4.27) that the optimal

consumption policy takes the form:

(Xt+ )
c; = a(st) (4.29)

The effect of the signal can be seen clearly in this expression. As s rises, a(s) falls toward

its frictionless limit. Conversely, when the signal worsens, consumption falls for any given

level of income and debt. This is precisely the precautionary recession mechanism: as the

crisis becomes imminent, consumption falls in order to reduce external debt and hence

exposure to the sudden stop.

Applying Ito's Lemma to the right hand side of (4.29), we obtain the country's (excess)

consumption process:

dc* 1e ) (a) 2 dt- a(rdB. (4.30)
ct = a( + 1)ac; 2 ~aa
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This process reinforces the above conclusion and shows that consumption has a nontrivial

diffusion term. Without hedging, consumption "picks up" the volatility and fulfills the

function of a hedging strategy.

Up to the functions , which can be evaluated numerically, the rest of the termsa,

in this expression have a straightforward interpretation. The first term is positive and

captures the effect of precautionary savings, whereas the second term (-ao) is also

positive and captures the sensitivity of consumption to signal news. Positive news about

the signal increases consumption whereas negative news decreases it. This is the outcome

of the country's attempt to accumulate resources as the sudden stop becomes imminent.

As can be seen in the right panel of Figure 1, which plots , this effect becomes more

intense as the signal deteriorates. That is, the sensitivity of consumption to news about

the signal increases during downturns.

4.3.2 Imperfect Signal: The jump model

Countries do not have a perfect signal for their sudden stops. Variables such as terms-

of-trade and the conditions of international financial markets raise the probability of a

sudden stop, but it is never as stark as in the threshold model. In this section we capture

this dimension of reality by making the trigger of a sudden stop a probabilistic function

of the underlying signal.

The setup and optimization problem are exactly as in (4.16)-(4.20), with the exception

of the stopping time, r, in (4.17). Now the sudden stop is a Poisson Jump-Event with

intensity:

A(st) = eaO- a lst, a > .

Thus, we replace (4.17) for:

-r = inf{t E (0, c): j A(st)dt < z}, A(st) = e ° -
lst, z exp(1).

Once the sudden stop takes place, events unfold exactly as in the threshold model.
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In particular, the value function still takes the form:

VSS(X, y*) = K (1) ( )

The only difference is that Vss now can be reached from any s for which A(s) > 0, rather

than from just s. In this case the HJB equation for the value function is:

____? 1 20 = maxc - Vxct*}-rV + Vx (rX +y*) + !yg+ A(st) [Vs s -V ] .

With essentially identical steps as in the previous subsection, we can show that our

stylized framework still yields a simple solution of the form:

(Xt + rt*g)-

1-V =b(sW )7

Precautionary Savings

Let us pause and focus on the case where sudden stops are totally unpredictable, al = O.

Since in this case b(s) is no longer a function of the signal s, replacing the function V in

the HJB equation yields a simple algebraic equation for b:

1-rb+ bA[(b)-1 =0.

where

b--K; r

It is now straightforward to obtain the (excess) consumption function from the enve-

lope theorem:

(Xt + ry )
A lgi eir tb 

Applying simple differentiation to this expression, we obtain the country's (excess) con-
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sumption process:

dc _ _A [() -1 ] dt

Relative to the threshold model, there is a new drift term in the excess consumption

process. This term reflects the additional precautionary savings attributable to the local

uncertainty introduced by the strictly positive probability of a sudden stop taking place

in the next instant. But, because this probability is not correlated with the signal s, there

are no precautionary recessions. In this case, the pattern of saving for self-insurance is

not a source of business cycles.

Precautionary Recessions

Let us now return to the general case, where a1 > 0. After a few simplifications, substi-

tuting the function V in the HJB equation yields the following ODE:

1-rb+bsp+ (-1) ) +bss 22+ A(st) [()-1 =0, (4.31)

which differs from (4.28) only in the last term.

The bounmdary conditions are also different. First, when s goes to infinity there is

still a strictly positive probability of a crisis. Second, as conditions worsen, there is no

equivalent to the threshold s where a crisis happens with probability one. Let

b*= lim b(s).
8s-00

b*= lim b(s).

b* and b are given by:

b 1

b, = K1_ 1r
b* =K11/Y r
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Again, it is straightforward to obtain the (excess) consumption function from the

envelope theorem:

Ct- b(s) (4.32)

Finally, applying Ito's lemma to the right hand side of (4.32), we obtain the country's

(excess) consumption process:9

dc [ ( b) + !A(st) [(b) -i] dt - '? odBt (4.33)

This case integrates the insights of the previous models. There is ongoing precau-

tionary savings attributable to local uncertainty, but the amount varies with the signal.

For the same reasons of the previous section, is strictly negative, so that the conclu-

sions of the previous section also carry through here. A deteriorating signal increases

the need to accumulate resources and accordingly makes consumption respond more to a

one-standard-deviation increase in the signal by a factor of - b a. Finally, the drift term

includes a new precautionary term (A(st) [(b)' - 1]), which we also found in the case

a, = 0, and captures precautioning against the Poisson jump event that can occur at

any time. In the application section of the paper we quantify these effects in the context

of Chile.

4.4 Aggregate Hedging

Precautionary savings and recessions are very costly and imperfect self-insurance mecha-

nisms for smoothing the impact of a sudden stop. In this section, we enlarge the options

of the country and allow it to hedge using derivatives and insurance contracts. Of course,

the effectiveness of the hedging strategy depends on the contracts and instruments that

are available to the country, how these contracts enter into the sudden stop constraint,

9 We are obviously focusing on a case where the jump has not yet taken place so that dq = 0, where
q is the poisson event.
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and how accurate the crisis-signal is.

The issue of how the fresh funds relax the country's constraint is at the core of the

current debate about optimal assistance mechanisms and is not well understood. We

do not try to solve this debate but rather characterize optimal hedging strategies under

different scenarios. We begin by exploring two polar cases: In the first case, the hedge

cannot relax the constraint directly but only improves the initial conditions of the country

once it hits the constraint. This would be the case, for example, when the resources from

the hedge are used entirely to pay other lenders.1 ° In the second case, the country can

buy hedging that directly relaxes the sudden stop constraint. That is, each dollar received

from the hedge can be used to fulfill the sudden stop constraint.

In this section, we isolate the above distinction and focus on the simpler threshold

model. We do this for analytical tractability, because we can use complete-markets tools

in this model that allow us to obtain closed-form solutions. We use these results as an

approximation benchmark for the more realistic imperfect signal case, which is the focus

of the empirical section.

4.4.1 Hedging Precautionary Recessions

Assume for the moment that the country has no mechanism of injecting net resources

into the sudden stop constraint. However, the country faces complete hedging markets

before the sudden stop arises. In this sense, we can interpret the sudden stop as a time

when all financial markets close and the country is left only with its resources at the

outset of the crisis: X-.

An alternative interpretation is that the hedge is used (crowded out) by existing

lenders and the sudden-stop constraint remains unchanged, except for the positive effect

of a reduced initial debt (hence, there is a reduction in the required balance of trade

surplus).

10 Recall that our model has no straight default. Implicitly, however, it does allow for limited
rescheduling.
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Let us re-write the dynamic budget constraint for t > 0 as:

dXt = (rXt - ct* + y)dt + 7rtdFt

where dFt denotes the profit/loss in the futures position and rt is the number of future

contracts.

Since under the assumption of zero risk premium and any constant convenience yield

for copper, d, we have:

t -= Ste(r-d)(T-t)

we can apply Ito's lemma to obtain:

dFt = aFtdBt.

Defining the portfolio process as pt = rtFt, we obtain the new dynamic budget con-

straint:

dXt = (rXt - c + yt*)dt + ptodBt. (4.34)

Thus we modify the dynamic programming problem in (4.16) to allow for a hedging

portfolio Pt (correspondingly, we refer to this hedging portfolio as p-hedging):

Fr '1-

V(Xtsty) =maxE [t l e-r(u-t) du+e-r(T-t)vsS(X,y)Ft] (4.35)V (Xsy) c,p 1 - d4
where

r = inf{(t: s < s) A oo}
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and the evolution of (Xe, st, Yt) is now given by:

dXt = (rXt - c + yt*) dt + ptadBt (4.36)
dy;dyt = gdt (4.37)
y;.
dst = ,!dt + adBt. (4.38)

It turns out that the solution to this problem is simpler than the no-hedging problem

because we can use well-known techniques from the complete markets case." Following

a derivation similar to the no-hedging case, one verifies that the value function of the

problem in the presence of complete hedging is given by (see the appendix):

V(Xt, yt*, St) = aP(st) (xt+ )
1-

with

aP(st) 1 (1 + e-\'(B--)(Ki 1)) (4.39)r
1 1 +~U~A j+ = 2+2u~r

Ur2

Correspondingly, the consumption policy in feedback form is:

ct* (Xt+ * (4.40)
aP(st)

While it may appear from this expression that not much has changed with respect to

the no-hedging case, this is not so. To see this, apply Ito's lemma to the right hand side

and simplify (see the appendix), to obtain:

dc* = O.

"This is possible because markets are complete at all dates but r.
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That is, excess consumption is constant throughout the pre-sudden stop phase. There

are no more precautionary recessions, and the signal does not affect consumption.

How can this be reconciled with the consumption expression in (4.40)? The answer

is in the behavior of Xt. While in the no-hedging case Xt was simply made of riskless

debt, it now includes a hedging portfolio component, Pt:

e Al(S i)KS ) I A / ~~(Kyt.Pt = -A1 + 
1 + e-A1l(--)(K -1) r -9

which once replaced in

dXt = (rXt - c + yt)dt + ptadBt

implies that all the variation in precautioning is absorbed by Xt rather than by con-

sumption.1 2 The hedging portfolio, p, is always negative. Its absolute value is largest

when the signal is at the trigger point s and goes to 0 when the signal goes to infinity.

This means that the country is always shorting the asset that is perfectly correlated

with the signal, and the amount of shorting rises as the signal worsens. The counterpart

of this investment position is a reduction in the countries' external debt as the signal

deteriorates.

However, this form of insurance will not entirely remove the consumption drop during

the sudden stop. All the country can do is to arrive at the sudden stop with less debt,

and hence to reduce the size of the trade surpluses it is required to have during the crisis.

Because of this drop, the country still cuts consumption and borrowing throughout the

pre-sudden stop phase for precautionary reasons. It is simply no longer state (signal)-

dependent.

12The appendix provides a formal proof of this statement, which follows steps similar to those in
Karatzas and Wang (2000), and return to a fuller characterization in the implementation section.
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Optimal consumption before the sudden stop is constant at (see the appendix):

X0 + y 05X r-g

E [ e- rt dt + e- rr K/?]r

Since K > 1, it clearly is lower than the level of consumption in a framework without

sudden stops:

c* < c*NSS = r (Xo + ).r-g

4.4.2 Hedging Sudden Stops

Let us now assume that there is a second asset, H, with the property that it can be

excluded from the sudden stop constraint and hence can be used directly to overcome

the forced savings problem. This can be thought of as a credit line that does not crowd

out alternative funding options (we refer to this case as h-hedging).

Formally, the problem becomes:

TT/Lr ~~~~~~~~ C* 1--y
V(Xt, st, yt) = max E [ e-r(u-t) du + e-r(T-t)vss(X, H, *)Ft(441)

cy*,pu,1/u,dNu 1 -I

where

r = inf{(t: s < s) A o} (4.42)

and the evolution of (Xt, Ht, st, Yt) is now given by:

dXt = (rXt - c + yt*) dt + ptodBt - dNt (4.43)

dHt = rHt + AtdBt + dNt (4.44)

dyt = gdt (4.45)

dst = Pdt + adBt. (4.46)

Ht > 0, > 1 (4.47)
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Observe that we now have a second portfolio process i and an increasing process dNt

representing additions into the second type of asset. Moreover, every addition into Ht

from Xt is accompanied by a markup fee, > 1. Since the income flows arrive in the

form of X, the presence of a markup would seem to imply that Ht is dominated by Xt.

However, this is not the case precisely because Ht has the ability to relax the constraint:

XT+T > X. In other words we assume that at time r the holdings of the asset HT will

be added to XT- in order to relax the constraints as we explain below.

To be more precise, let us re-write the sudden stop constraint as:

> X (<t1 -(r-g)T) + e) + Mo Yr (1 - e - (r- g )T )
X x < T,XT+T _ X,- ($(1 - e -) q (1 - e- 0 < _ g _e.

(4.48)

Notice that the constraint now reads X- rather than XT. This is because the country

can use its holdings of H, to relax the constraint directly, so that we can write:

XI+ = XT- + HT. (4.49)

It follows that the constraint will be non-binding if

HT > h* (X - + ) (4.50)

where

h* -((1-e - (r-)T) + egT - 1). (4.51)

To see why this is so, note that for H- = h* (X- + ) at time T+ total resources

become:

XT+ = XT- + HT

= X,- ((1 - (r-g)T) + egT) + k r _ (1 - -(r-g)T) + (egT - 1) 

r-g r-g
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However, as we established in equation (4.2), the unconstrained solution automatically

satisfies the relation:

XT+ + - = X+T + Y+___,r-g r-g
which implies that XT+T > X, i.e. the constraint is satisfied automatically for H, >

h* (XT- + r-)-
A modification of the martingale approach of Karatzas and Wang (2000) is particu-

larly well suited to finding and characterizing the solution < c,pt, ,Xt, Ht, dNt > in

this context. Applying Ito's lemma to e-'Xt and e-rtHt, and because we have a bounded

portfolio and a stopping time that is finite almost surely, for any feasible consumption-

portfolio plan we get:

E(e-rrX) = X0 + E ( yt( - Ct*) e-rt dt - e-rtdNt)

E(e-r'rH) = Ho + E ( e-rtdNt .

Combining the above two equations we get:

E(e-rr (XT + ~Hr)) = X + (Ho + E (f yt - ct*) e-rt dt

We will assume that at time 0 the country starts with H0 = 0, so that we end up

with:

E(e-rr (XT + H-)) = X0 + E (y t - ct) e-rt dt). (4.52)

An interesting interpretation of this equation is as follows: Suppose the country is offered

a contingent credit line that it can structure as it desires. I.e., it can choose HT "state by

state." But assume too that it pays a "'markup," , on this credit line. Then the price

of the credit line is:

P = E(e-rTHr).
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With this definition we can rewrite (4.52) as:

E(e-rrXr) = (Xo - P,) + E ( (yt - c*) e- r dt

which is the standard budget constraint (e.g. of Section 4.1.) after subtracting the initial

cost of the contingent credit line from X0.

From now on, it will prove useful to express the amount of the credit line as a fraction

of (X- + ) so that:

hT Hr
(Xr + Y.*r

For values of h < h* the constraint will be binding and consumption will drop during

the sudden stop. It is not difficult to show that in this case consumption after the sudden

stop (t > r + T) is equal to:

Cr+T=r(l +h*) (XT_ + Yr ).

which follows from (4.4) and (4.8).

Given XT-, this is the same quantity as in the no-hedging case because the sudden

stop constraint binds as long as h < h*. However, the effect of the credit line is to raise

consumption during the sudden stop phase (r < t < r + T) since H, is entirely used

during this period. Consumption during the crisis is now equal to:

r= (X )(1 + h- erT(1 _ (rg)T) _ (-r)T)X-(1 -h - e-
whih fr h= hries -to

which for h = h* rises to

r(l + h*) Xr- + r ) c+r -g =C-T
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Accordingly, the value function at time r is:

(X-+ £ )VSS = C( (453)1-7

C = () [(1 + h*)l-l{h=h*} + Kll{h<h*}]

where: 13

K1 = (1 - e-rT)(l + h -e-rT(1 + h*)) 1- + e- rT (1 + h*) - <K.

Now the optimization problem has the same form as before except that the intertem-

poral constraint takes into account the fact that the consumer essentially faces two types

of assets, X and H.

Adopting the Cox-Huang (1989) methodology and its application to problems involv-

ing a random stopping time in Karatzas and Wang (2000), we are able to reduce the

problem to the following static problem:

min max E C e-rt dt + er VSS(X, H) -k ( cte-rt dt + e- r (XT + Hr)
k ct,Xr,Hr 17 O

s.t. E ( t*ce-t dt + e-rT (XT + H)) = Xo + E (JL y-rt dt

where Vss is given by (4.53).

The presence of dynamically complete markets allows us to reduce the problem to an

essentially static problem. Parties can contract on the payoffs to be transferred "state

13 It might seem puzzling why C = ()" (1 + h*) - y when h = h* and not C = ()7. The reason

is that total resources at time + are now given by (1 + h*) (XT- + rY-g). Actually one can easily
show in the framework of the threshold model that in the absence of a markup, it will be the case that
(1 + h*) (T- + ) = X,-- + r- where X"C denotes the level of X,. in the complete absence of

sudden stops.
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by state." In other words, the objective inside the brackets is maximized state by state

and the optimal payoff is replicated dynamically.

It is easy to show that in this framework one can derive optimal consumption to be:

= k ,t E (0,).

where k is a constant that is determined in such a way that the intertemporal budget

constraint is satisfied.

The crucial step is the maximization of the problem involving the continuation value

function at time r. In the appendix we show that the solution to this problem is:

I

x-= k- r-± - _

r(1 +h*) r-g

h pt =- h*-(1-e-rT)(1+h*) [1-( ]

with

(~- 1)< r- -e_rT(lh ) <1.e-rT(l + h*) <1

Notice that as - 1, h - h*. As might be expected in this case, where it costs

nothing to avoid the constraint, the country will optimally choose h = h*. If > 1 it will

be true that h < h* and some consumption adjustment during the sudden stop will be

required.

Because of the homotheticity of the problem, the optimal credit line ratio does not

depend on the level of initial wealth. To complete the solution to the overall problem,

let us return to the time 0 budget constraint and combine everything to solve for c*:
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c* = [E [e-r t dt + [e r (1 +h*)r (XO +r ) =
r ( + h*) r- g

[i_- + e-(s-) (1 + hoPt~)FI]- i A
=~~~~~~~~~ +o[ r r (1+ h*) r- ( -g

where as usual:
A I + V/p2 + 2 2r (454)

a2

The credit line reduces the magnitude of the sudden stop, which translates into higher

pre-sudden stop consumption. However, since h°Pt < h*, there is still scope for hedging;

pt takes the slack and eliminates the remaining need for a precautionary recession. The

economy still suffers through the sudden stop, but significantly less than without hedging.

4.4.3 Imperfect Signal

In general, crises will be correlated with a signal but not perfectly. This complicates

the p-insurance case but the nature of the solution is similar to that of the threshold

model. On the other hand, the fact that r can occur for any s, considerably complicates

the h-hedging case. In this section we develop the former case to contrast it with the

perfect-signal scenario. We return to the h-hedging case in the empirical section.

The steps of the derivation are similar to those in the threshold model, and we relegate

them to the appendix. The optimal (excess) consumption and portfolio policies become:

Ct* = - -) (4.55)/b(st)

Pt = st) ( r g) (4.56)

Unfortunately the function bV(s) can no longer be characterized in closed form, but it
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can be computed numerically.

Applying Ito's lemma to the right hand side of (4.55), we obtain the process:

dc _ (A(st) [(b )?_ i 1])dt (4.57)

Comparing this expression to that of the unhedged case in (4.33), shows that the

possibility of hedging eliminates the diffusion term. However, unlike the hedged case

in the threshold model, there is still pre-sudden-stop precautionary savings and these

fluctuate over time as the signal changes. This happens because the sudden-stop jump

is not directly contractible.

4.5 An Illustration: The Case of Chile

In this section we illustrate our main results through an application to the case of Chile.

This is a good case study since Chile is an open economy, with most of its recent business

cycle attributable to capital flows' volatility. Moreover, the price of copper (its main

export) is an excellent indicator of investor attitude toward Chile.

4.5.1 Calibration

While our purpose here is only illustrative, and hence our search for parameters is rather

informal, we spend some time describing our estimation/calibration of the key function

A(s).

Estimating A(s)

Sudden stops are very severe but rare events. This makes it hard to estimate A(s) with any

precision. However, we still highlight our procedure because it provides a good starting

point for an actual implementation. Similarly, a key issue is determining the components

of the signal, s. Given the limited goal of this section, we use only the logarithm of the
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price of copper. In a true implementation it also would be worth including some global

risk-financial indicator, such as the U.S. high yield spread or the EMBI+, and removing

slow moving trends from the price of copper 1 4

With these caveats behind us, let us describe the reduced-form Markov regime switch-

ing model we use to estimate A(s). Unlike the standard regime-switching model, ours has

time-varying transition probabilities. Our left-hand side variable is aggregate demand,

Yt, which we assume to be generated by the process:15

Yt = Ho + l{zt=}1l + aztoe, e N(O, 1), / 1 < 0.

The growth rate of Yt depends on an unobserved regime Zt that takes values 0 and 1.

When the value of the regime is 0, the regime is "normal" and growth is just a normal

variable with mean p0 and variance a. Otherwise, the regime is "abnormal" and growth

has a lower mean, o + pl, and a variance a'. The transition matrix between the two

states is assumed to be the following:

Pr(zt+l = O-zt = 0, Xs,sE(t,t+l)) = exp- ft+l A(x)du = Poo Pr(zt+l = l1zt = 0, Xs,se(t,t+l)) = Pm

Pr(zt+l = O-zt = 1, Xs,se(t,t+)) = P10o Pr(zt+l = llzt = 1, XS,SE(t,t+)) = q

where Pol = 1 - po, Plo = 1 - q, and Xt stands for the regressors that enter the hazard

function (the logarithm of the price of copper in this application).'6 For the purpose

of estimating A(s), we use annual GDP data starting from 1976 to 1999 and monthly

14Removing the slow moving trend not only seems to improve the fit but also is a key ingredient in
designing long run insurance and hedging contracts. Few investors/insurers are likely to be willing to
hold long-term risk on a variable that may turn out to be non-stationary.

5 All aggregate quantity data are highly correlated during large crises; hence the particular series used
is immaterial for our purposes.

6 Strictly speaking the quantity exp-tt+1 A(x_)du is unobservable, since we cannot observe the con-
tinuous path of copper, only discrete points. However, we can obtain copper data at reasonable high
frequencies so that we can safely ignore this issue and calculate the integral by a Rieman sum as

exp- ftt+ ,(x,)du ; exp- E -,(x,,)Au
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copper data for the same period (source, International Financial Statistics).17

For estimation, we use a Bayesian approach that is suitable for the very few datapoints

that we have. Bayesian inference seems natural in this context, since it allows exact

statements that do not require asymptotic justification. To estimate the parameters of

interest (namely (ao, a,)) we use a multimove Gibbs Sampler as described in Kim and

Nelson (1998,1999) and is based on the filtering algorithm of Hamilton (1989). For details

we refer the reader to these references. The basic idea is to augment the parameter set

by treating the unobserved states as parameters. Then we fix a draw from the posterior

distribution of (go, ao, al, q, a0 , al) and conditional on these parameters we draw from

the posterior distribution of the states in a sigle step as described in Kim and Nelson

(1999). Given the draw from the posterior distribution of the states we sample the

conditional means 0 p using a conjugate normal / trucated normal prior which leads

to a normal / trucated normal posterior. 8 Conditional on the states and the draw

from (o, ,l) se sample from the posterior distribution of (0, al) using inverse gamma

priors which lead to posteriors in the same class. Similarly, fixing the states and the

draw from (, ,uA, 0 , a,) we draw q using a conjugate beta prior leading to conjugate

beta posterior. The sampling of (a0, a,) presents the difficulty that there does not

seem to be a natural conjugate prior to use and thus we use a Metropolis Hastings-

Random walk-accept-reject step where we sample from a bivariate normal centered at

the previous iterations' estimate as described in Robert and Casella (1999). This provides

us with a new draw form (, I0 o, al, q, a0 , a,) and conditional on this new draw we

can iterate the algorithm by filtering the states again, based on the new draw etc. It is

then a standard result in Bayesian computation that the stationary distribution of the

parameters sampled with these procedure (treating the unobserved states as parameters

17There is a caveat here. Our extended-sample starts from 1972, but all the years up to 1976 are
part of a deep contraction due to political turmoil combined with extremely weak external conditions.
However, since the extended-sample starts during abnormal years these do not influence the estimation
of A(s) (which is estimated from the transitions from normal to abnormal states). It is in this sense that
the sample relevant for the estimation of the latter starts in 1976. For details see below.

1
8 For details see Albert and Chib (1993).
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too) coincides with the posterior distribution of the parameters.1 9

A first output of this procedure is Figure 4-2 which plots the probability of being in

an abmormal state.The model recognizes roughly three years out of the 24 as abnormal

years: the early 1980s and the recent episode following the Asian/Russian crises. The

early 1980s episode corresponds to a devastating debt-crisis, and was significantly more

severe than the recent one. In fact, the recent episode appears to be a mix of a milder

sudden stop and a precautionary recession.

An interesting observation about these probabilities is that they allow us to identify

the abnormal regimes with great confidence. To improve the tightness of the poste-

rior confidence intervals concerning the parameters of interest (aos, al) we observe that

conditional on the states the (log-) likelihood function becomes:

E [Xi log(poo (ao, al)) + (1 - X,) log(pol (ao, a,))]
Zi=O

where Xi takes the value 1 if there is no transition to state 1, and takes the value 0

otherwise. It is interesting to notice that the likelihood for (ao,al) depends on the

data only through the filtered states. In other words all other parameters of the model

including the GDP-data are relevant for our purpose of estimating (aO0, a,) only to the

extent that they influence the identification of the states. In other words if we were to

condition directly on the states we would be able to get rid of the noise introduced by

filtering.

Given the few data points and the quite clear identification of the abnormal states

19To reduce computational time and satisfy the technical conditions required for the applicabibity of
the Gibbs Sampler, we used proper priors for (o, pi) and (ao, a1 ) and improper priors for the rest of
the parameters. The proper prior for (o, pl) was Normal / Truncated normal with means (0,0) and a
diagonal covariance matrix. The standard deviations where chosen to be roughly 5 times the range of the
sample, so that the priors had effectively no influence on the estimation. Similarly for (ao, al) we used
independent normal priors centered at 0 with a standard deviation of 10. Even when we experimented
with more diffuse priors the algorithm produced virtually identical results but computational time was
significantly increased, because convergence was significantly slower. Most importantly though, for the
results that we report in Table 1 and that we use in the calibration exercise we used completely flat
priors.
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Probability of abnormal regime

1975 1980 1985 1990 1995 2000

Figure 4-2: Probability of abnormal regime
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Posterior Distributions
mean std. Deviation 10 25 50 75 90

So -2.522 1.067 -3.826 -3.027 -2.316 -1.789 -1.420
a, -5.170 3.387 -9.259 -6.802 -4.708 -3.040 -1.515

Table 4.1: Posterior Distributions of the Parameters (o, al) Conditional on the States
that are Identified as Abnormal. 10, 25 etc. refer to the respective quantiles.

we report directly the posterior distribution of (ao, al) conditional on the early 80's and

1999 being the abnormal states. we report the posterior distributions of the parameters

(o0, al) conditional on the states that are identified as abnormal.2 0 Table 4.1 reports

these results.

Correspondingly, in what follows we use a0 = 2.5, a1 = 5.2 as our benchmark values

for the function A(s).

Other parameters

We calibrate 0 and T to generate the average cumulative consumption drop caused by

the sudden stops in the sample, which is about 8-10% of GDP. One such configuration

is T = 1 and b = 0.35erT.

The parameters and -y are calibrated to generate reasonable amounts of steady-

state debt (and hence reasonable amounts of insurance needs) together with significant

precautionary fluctuations (see below, in particular, to explain much of the precautionary

recession experienced by Chile at the early stages of the 1998-9 episode). For this, we

set = 0.8 and -y = 7.

The interest rate r is set to 0.09 and the growth rate to 0.03. The latter is a constant-

rate approximation to a path that grows significantly faster than that level for a few

years, while the country is catching up, and then decelerates below that level forever.

20I.e., states that have a posterior probability of being abnormal above 0.75. The conditioning is done
in order to increase the precision of the estimates and seems to be warranted just by a visual inspection
of Figure 4-2.
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We normalize initial GDP (yo) to 1, and set the initial debt-to-GDP ratio, X0, to 0.5.

Finally, we approximate the process for copper by a driftless Brownian motion with

constant volatility a, which we estimate using monthly data from 1972 to 1999 (source,

IFS). We find a value of roughly a = 0.23 and normalize the initial value of s to 0.

4.5.2 Aggregate Hedging

Recall that our concern in this economy is to stabilize both precautionary recessions and

sudden stops. Let us start with the former.

Hedging Precautionary Recessions

Evaluating at t t 1, and s = 0 in the calculation of b, we can approximate the volatilityYt b'

of log consumption in our model before the sudden stop takes place by:

-(1- ) b 0.01.

That is, despite the absence of income fluctuations in our model, fluctuations in

precautionary behavior can account for about a fourth of consumption volatility in the

regimes that are characterized as normal by our algorithm. More importantly, the contri-

bution of precautionary fluctuations is particularly relevant near sudden stops, as shown

by Figure 3.

Panel (a) in this figure shows a random realization of the path s that runs for nearly

eight years before a sudden stop takes place. The main features of this path are not too

different from the realization of the price of copper during the 1990s. In particular, the

large rise in s near the middle of the path followed by a sharp decline toward the end of

the period is reminiscent of the path of the price of copper from 1996 to 2000.

The dashed line in the bottom left panel (b) illustrates the corresponding path of

(excess) consumption generated by our model without hedging. The drift in the process

is due to average precautionary savings. More interestingly, one can clearly see the
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Figure 4-3: p-Hedging for the Chilean case

precautionary recessions caused by the decline in s. The dashed line in the top right

panel (c) shows the impact of the latter on the current account. In particular, the sharp

decline in the deficit in the current account from 6 to about 3.5 percent of GDP toward

the end of the sample. This suggests that about half of the current account adjustment

observed in Chile during the 1998-9 crisis can be accounted by optimal precautionary

behavior in the absence of hedging. The rest of the adjustment could be accounted for by

excess adjustment (some have argued that the central bank contracted monetary policy

excessively during this episode) and by the partial sudden stop itself (the "sovereign"

spread tripled during this episode).

Now, let the country hedge by shorting copper futures, which do not relax the sudden

stop directly but only through their effect on XT (p-hedging). The solid lines in panels
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(b) to (d) show the paths corresponding to the dashed paths of the unhedged economy.

Panel (b) clearly shows that hedging, even of this very limited kind, virtually eliminates

precautionary fluctuations. Interestingly, panel (c) shows that the insulation of consump-

tion from precautionary cycles is not done through a smoothing of the current account,

which looks virtually identical in the hedged and unhedged economies. The difference

comes from the fact that the improvement in the current account as s deteriorates comes

from hedge-transfers in favor of the country. The latter are reflected in a sharp decline

in external debt as s worsens (panel (d)).

As a practical matter, it is important to point out that the hedge-ratios required to

achieve this success are very large. The size of the implied portfolios can be calculated

as (evaluating at s = 0):

d Vo + (1-c)J ) -0.56.
T 'r-~g

That is, the notional amount in the futures position would have to exceed 50 percent

of GDP. This is very large when compared with the existing futures markets for copper,

pointing to the need to develop these or related markets for sudden-stop-insurance pur-

poses. However, it is not a disproportionate number when compared with the very large

and much costlier practice of accumulating international reserves (around 30 percent of

GDP).

Finally, and as indicated in section 4, this strategy - if subject to full crowding

out- is not very effective in smoothing the sudden stop itself. Our estimates show that

in case of a sudden stop, consumption with hedging of this sort exceeds consumption in

the unhedged case only by about 2% for consumption drops of roughly 8-10%.

Hedging Sudden Stops

Let us now analyze the opposite extreme and assume that hedging directly relaxes the

sudden stop constraint (h-hedging). Full insurance in this case requires a transfer in the
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s = 0 0.536 0.247 0.517
s = 1.5oa 0.323 0.139 0.523

Table 4.2: Values of E[e- r ] for Different Combinations of (a0 , a,).

case of a sudden stop of:

h* (X0 + (1 -)Y0) = ((1 - e-(r- g)T) + egT - 1) (X0 + (1r)y) 0.15.
r -g r -g

Importantly, note that 15 percent of GDP exceeds the 8-10 percent we calibrated

the decline in consumption to be in the case of a sudden stop. This is because 15

percent covers not only the drop in consumption in case of a sudden stop but also the

precautionary savings and recession that precedes the sudden stop.

In order to calculate the NPV of such a claim, we must multiply the number above by

E[e-rr]. Since the latter depends on the initial value of the signal s and on the estimates

of a's, which are very imprecise, we report in Table 4.2 the value of E[e - rr] for different

combinations of these parameters.

Using the benchmark case, we see that "fairly" priced full insurance would cost the

country about 8 percent of GDP (0.15 times 0.536) if contracted when the price of

copper is at "normal" levels and about 5 percent (0.15 times 0.323) when at very high

levels. While these amounts are small when compared with the cost of sudden stops

and precautionary recessions, they still involve amounts which are probably too large for

these countries to undertake, even if such markets existed.

Fortunately, much of the advantage of insurance can be obtained with significantly

217

(2.5,5.2) (5,5.2) (2.3,0)



smaller amounts of insurance. In what follows, we take h as given and solve:

maxE e- rS 1-ds + e-rVSS(y - )

~,x.~~~ -7

s.t.

dXt = (rXt - ct + yt*) dt

Xo+ =Xo- -Po

Po= E [e-rh(Xr- + - ).

In other words we assume that the country starts with an initial debt X0 -, and

purchases insurance costing P0 which is priced fairly and denominated as a fraction h < h*

of the quantity X,- + -- ' The setup is common knowledge to both the borrower and the

lender, so the lender prices this claim understanding the subsequent optimization problem

of the borrower and accordingly the resulting path of X,- + r&. Using this particularr-g

type of contingent claim results in a problem that we can easily solve numerically with

the tools we developed in the previous sections, plus a fixed point problem for the initial

price of the insurance, P0
21 The results are summarized in Table 4.3.

The first row shows P0 , the second c;, while the third row shows the maximum value

attained by excess consumption along the path before the sudden stop. The next three

rows show consumption right before the sudden stop takes place, during the sudden stop,

and after the crisis, respectively. The final row describes the standard deviation of cT+

for a sample of 1000 simulations. The first three columns present values for So = 0, while

the last three columns do the same for so = 1.5a.

There are three main lessons to be learned from this table. First, clearly much of

the cost of a lack of insurance is paid for with the large precautionary behavior that the

economy needs to undertake without insurance. The level dimension of this effect can

21Even though the contingent claim signed by the borrower and the lender seems complicated, it isn't
since X,- + ri is not varying very much and can be approximated reasonably well by Xo + r-g,

especially for large h.especially for large h.
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so: 0 1.5a
h/h*: 0 0.4 0.8 0 0.4 0.8

Initial Cost 0.000 0.032 0.063 0.000 0.019 0.039
c*4~ ~ ~0.198 0.243 0.252 0.213 0.247 0.252

c*o 0.226 0.248 0.253 0.243 0.252 0.254
c.* 0.212 0.244 0.252 0.224 0.247 0.253
Standard Deviation of c * -c_ 0.010 0.002 0.002 0.011 0.002 0.001
C,*+ 0.125 0.175 0.229 0.131 0.177 0.230
C*+T 0.300 0.269 0.259 0.313 0.271 0.260
Standard Deviation of c*+ 0.013 0.002 0.001 0.014 0.002 0.001

Table 4.3: h-Hedging

be seen in the value of c;, while the cyclical component can be seen in the difference

between c*x - c*-. Second, much of the precautionary costs can be removed with very

limited amounts of insurance; a value of h = 0.4 does nearly the same as one of 0.8.

Third, the sudden stop itself is significantly harder to smooth, but it is still possible to

make a difference with h significantly less than h*.

Asymmetric Beliefs and Contingent Credit Lines

Before concluding, we discuss an important practical issue. Sudden stops are not en-

tirely exogenous to the country's actions and there is significant asymmetric information

about these actions between borrowers (the country) and lenders. Suppose then that the

financial markets overstate (from the viewpoint of the country) the constant part of the

hazard, a 0. In particular, we assume that the lender takes this constant to be a L . The

borrower on the other hand takes this number to be aB << a L . Let the expectation

operators of the borrower and the lender be EL and EB, respectively, so that the problem
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becomes:

[l C'1-7 ]maxEB e-C cds + e-rlVSS(X)
c:,X1 -

s.t.

dXt = (rXt - + yt) dt

XO+ = X0- -Po

Po = EL [e-r h(X + r-g '

In this case the country obviously will find the price of the insurance "unfairly"

high. One way to reduce the extent of this problem is for the country to add another

contingency to the credit line. It is clear that in this case the country would benefit from

making the line contingent on the value of s. Since the country sees crises not related to

s as much less likely than the markets - for example, it may be certain that it will not

run up fiscal deficits - it is optimal for it not to pay for insurance in states when s is

high. Let us capture this feature by assuming that the borrower and the lender enter an

agreement whereby the lender agrees to pay:

f(sT)h (X pt + r )

to the borrower and the fraction of h paid out depends on s:

exp(-w(s. + 2o))
1 + exp(-w(s, + 2a))

Obviously 0 < f(s,) < 1. Taking aL = 2.5, a B 5 and w = 3, i.e. a claim that pays

quite steeply when and only when ST is very low (2 standard deviations below 0), the

results are reported in the first half of Table 4.4, and contrasted with the case without

the additional contingency.

By adding the additional state contingency, a country that is confident of its "good
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uncontingent w=3
h/h*: 0 0.4 0.8 0.4 0.8
Initial Cost 0.000 0.032 0.063 0.009 0.020

cP~~; ~0.219 0.247 0.250 0.238 0.246
c_ 0.219 0.246 0.251 0.245 0.255
c*+ 0.128 0.175 0.228 0.155 0.187
Standard Deviation of c+ 0.009 0.002 0.001 0.016 0.026

Table 4.4: h-Hedging with asymmetric Beliefs

behavior" is able to lower the price of the claim without incurring a very significant rise

in risk exposure.

4.6 Final Remarks

In this paper we characterized many aspects of sudden stops, precautionary recessions,

and the corresponding aggregate hedging strategies. For this, we built a model simple

enough to shed analytical light on some of the key issues but realistic enough to provide

some quantitative guidance.

We showed that even after removing all other sources of uncertainty, the combination

of infrequent sudden stops and the mere anticipation of them has the potential to explain

a large share of the volatile business cycle experienced by emerging market economies.

This important source of volatility could be overcome with suitable aggregate hedging

strategies, but these would require developing large new financial markets.

In our application, we hinted at one aspect of the insurance arrangements that could

facilitate the development of such markets by reducing the inherent asymmetric infor-

mation problems. We argued for credit lines and financial instruments being contingent

on indicators that are exogenous to the country. Thus, for example, Chile could remove

many of the signaling problems it fears from the IMF's Contingent Credit Lines by adding

a clause linking the size of the line to the price of copper. Mexico could do the same by
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indexing its line to the price of oil and US GDP, and so on. Moreover, it is highly unlikely

that the broad non-specialists markets could be tapped without such contingencies.

There are several aspects of an aggregate risk management strategy that we left

unexplored. In particular, we did not model the maturity structure of debt and how this

changes with the signal, s. Similarly, we did not discuss accumulation of international

reserves, as these are dominated by our credit lines. However, building reserves financed

with long-term debt may partially substitute for overpriced credit lines. In order to

address these issues properly, we also need to have a better understanding of the behavior

of the supply side as the signal worsens. Of course, a country would want to postpone

accumulating reserves and borrowing long term until the crisis is imminent, but it is

highly unlikely that the lenders will go along with this strategy. We intend to explore

these dimensions in future work.
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4.7 Appendix

4.7.1 Propositions and Proofs for section 2.3.

Proposition 4.1 The optimal solution of the T period problem is:

c t (kl)-, <t<r+T (4.58)
1 9T

XT+T = max{X, (k ) r- (4.59)
Ir r- g

and kl is determined as the (unique) solution to:

XT + y(1 - e (r - g)T) (k1)- (1 -e - rT) (4.60)X~~r + r g - - q e-rTx~.+T (4.60)r-g r

Moreover the maximum in (4.59) is always given by X. That is, the constraint is always

binding. Combining the above statements, we have that the optimal consumption-wealth pair is

given by (4.12) and (4.11).

Proof. To establish the first assertion we need to show that the proposed policy satisfies

(we normalize = 0 and thus y.egT - YT without loss of generality)

T T (OPu 1 -7
-

eJ-rU ' 1 ) -Ydu + e-rTV(XPt + Y_ > J e-ru du + e-rTV(XT + r-g
1 -- Y T-g - 1--Y r --g

for any other admissible policy pair cu, XT, for 0 < u < T. By feasibility we have

X0 + |Te *ydu > T | e-ruc*du + e-rTXT

XT X

where we can focus without loss of generality on deviations that satisfy the first equation

as an equality. By concavity of the utility function and the terminal Value function it follows
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that:

T uc~l-'y r TLe-rU--t du + e-rTV(XT + YT )

- (f Ie -ru() du + e-rTV(X t + g)

[eruC~--'l Y- -T - -e- rT re- ru du + erT(V(X ))

eru (cuPt) (c -cPt)du + erTVI(X° + ' )(XT- XT)

Now we need to distinguish between two cases: a) if XT t > X then V'OPt = k = (cpt)

for a constant k1 such that the budget constraint (4.60) is satisfied and the result follows upon

substituting in the last expression:

k1 ( er(c - cuP)du + erT(XT- x )) o

since both policies satisfy:

Xo + e-ruyudu = e-rUc*du + e-rTXT

b)When XTt = X, it is still the case that (c)t) = k1, and because the alternative

candidate policy is feasible, it also satisfies XT > X = XTPt. Because of concavity of V this
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also implies V'(X- + -g) < k. These two arguments can be combined to get:

IT- ru (ct) ( -cuoPt)du + e-rTV(X )(XT -X)f0 r--g

oTe-uk-(- _cut)du + erTV(X + T )(XT- XT)
rT( f)u+r -

Je-ruk" (cu - V)du + erTkl(XT - XT) = 0

This verifies the optimality of the proposed policy.

For the second assertion, that the constraint is always binding, the argument runs as follows.

Suppose otherwise. Then k1 is given as:

1(ki) ___YI( ) = X + Y
r r-g

Under our (counterfactual) assumption we should have:

X ((1 - e-(r-g)T) + egT)

X (1 - (1 - e-(r-)T)

+ Y (1-er-g

_ eT)>_ YT r-g(1r-g

-(r-g)T) < XT + y(1 - eT)
r-g

- e0(1 - e- (r- g)T) - e9T)

X < Ir- gr-g

(1 - 0(1 - e-(r-9)T) - egT) < 0
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But (4.61) contradicts non-negativity of consumption when combined with the transverality

condition limto. e-rtXt -= 0. 

4.7.2 Propositions and Proofs for section 3.1

In this section we proof all the steps of the perfect signal case. The proofs of the imperfect

signal case follow the same steps but has a few steps which are much harder to proof, hence we

only validate them though our numerical simulations.

The proof consists of the following steps. First we establish rigorously the boundary condi-

tions that the value function should satisfy. Then we prove the existence of a unique solution

to the ODE presented in the text subject to the required boundary conditions. Then we verify

the "tail" condition on the value function that we use in order to apply a (classical) verification

Theorem along the lines of Fleming and Soner (1993) p.172.

Proposition 4.2 The value function of the problem with sudden stops for s > s satisfies:

lim V(X,s, 1Y) = (4.62)
8--+OO r 1-7

Proof. We focus on the 7y > 1 case. The proof proceeds in two steps and does not depend

on whether we allow hedging or not (i.e., whether we require that the portfolio p = 0 or whether

p is determined as part of the optimization problem). First one obtains an upper bound on the

value function of the problem with sudden stops, which in this case is naturally given by the

value function of the problem in the absence of sudden stops:

vNSS =(! ( + r g)
r 1-7

To see why this is an upper bound notice that the following inequality holds for any feasible

policy:

E [ er(ut) (u) + 1{r < }er(t)K (x + )7 Ft]
ZE~ e-r(u-t')-'du +1-r< ooe-r(,-t)zK ) rX-g Ft I-Y
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- 1 -,yx Y 1- -< E [JT e-r(U-t)(l) du+ 1{-r < oo}e-r('-t) () (XT 9) IFt] =

E [je-r(u-t) (cU) du + 1{- < o}e-r(T-t)VNSS(XryF)IFt

..*d 1-'<yol
(x.+ ;~*)1Y

since for Y > 1, ( -+ ) < 0. This holds true for any feasible consumption /portfolio

policies and thus, when one evaluates this inequality at the optimal plan c4°Ptpu:

V(Xt, St, yt) =

E e-r(u-t)( ) du + 1{r < oo}e-r(r-t)K IFt <

E [ C er(u-t) (l) du + 1l - < oo~e-r(,-t) (l) ( r + ) I]
1-Y 1 -- Y

maxE e-r(-t) (l du + l{r < o}e-r(- (X ) = VNSS(Xt, yt*)=

- (t + r-g)1
r -1-Y

The last equality follows from the principle of dynamic programming. Since this holds for all st it

is also true as st --+ oo. This establishes the upper bound. The lower bound is established upon

observing that the consumption /portfolio policy in the absence of sudden stops NSS,pNSS

(=0) is still a feasible consumption /portfolio plan in the presence of sudden stops (since it

satisfies the intertemporal budget constraint and also Xt > -a for all t ). It is also withinr-g
the class of policies that mandate Pu = O. Accordingly we have the two inequalities:

VSS'P= (Xttt,y) > E [ e -jr(ut) du + e-r(- t)l{r < oo}K( (X + IFt
1 -y Y1 -Y

[L
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ot r [ Ue t C.NS
VSS, P=PP (Xt, sty E[ eyr(ut) (e) _du + e-r(T-t)l{r < oo}K ( ( a IFt

However by standard arguments it is easy to show that as s - oo, Pr(r < Q) --+ 0 for all

finite Q, and thus

lim E e-r ~ (Cu c*Nss) 1-vy (1/ ( X ss 4- r --~)rim E e __r(U __t) __ du + e-r(r-t)Kl{r < oo} IFt =
r--n - 7 1-

e0 rSS t) *NSS 1- 7y dUj 
= E er(ut) (c dulFt= vNSS(xt,yt)=

1 1(t TVr-g)r) 1 -
1- 7y

Since the upper and the lower bound coincide to VNSS as s -- oo, the claim is established.

Before we can invoke a standard verification Theorem we establish the existence of a solution

to the following ODE:

YC - 7rC + jiC8 + Cssa2 = 0 (4.63)

Even though this second order non-linear ODE does not seem to have any closed form

solution it is not hard to establish that it has a unique solution that satisfies the required

boundary conditions. This is done in the following proposition:

Proposition 4.3 The ODE (4.63) has a unique solution satisfying the boundary conditions

(4.25), (4.26), with the change in variables a7 = C.

Proof. The steady state of this 2nd order nonlinear ODE can be obtained at once as:

Css= (1) (4.64)
(1)
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The Theorem now basically follows from the stable manifold Theorem upon reformulating

the system as a system of two first order ODE's, realizing that the system has one positive

and one negative eigenvalue and applying the stable manifold Theorem (see e.g. Verhulst(2000)

p.33.) The argument is particularly easy and thus we do not provide any details apart from the

fact that the linearized system has one positive and one negative eigenvalue. Indeed, one can

approximate the solution by means of a linear approximation around the steady state value to

get:
S)(S)- 2 =I

2a (C$$ ) + ( -1) (cS$) - (C- C s )-rq/C +/SaCs + ~Cssa2 = 0 (4.65)

The two eigenvalues of the characteristic polynomial of this equation are:

A1,2 = i /'2c 2 (4.66)

Obviously one eigenvalue is positive, one is negative and this establishes the claim after a

few straightforward steps and the use of the stable manifold Theorem. 

Remark 4.1 A simple reformulation of the ODE (.63), yields the function a(s) that we use

in the text and is obtained by defining:

C = a/

and rewriting the ODE as:

+ +~ra + _.y~a + 120
yat- + rat + ya'-1a + 1or ((_y - 1)a-2 (a.)2 + ay-lass) = 0

or:

1-ra + as + . 2 ((7 - 1) ) + ass) = 0 (4.67)
2 a
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subject to the boundary constraints:

a(s) = K () (4.68)

lim a(s) = () (4.69)

The last step in verifying the fact that the conjectured Value function is indeed the Value

function for the problem at hand is to invoke a verification Theorem along the lines of Fleming

and Soner (1993) p. 172. Before we do that we prove an almost obvious Lemma that is of

independent interest:

Lemma 4.1 Consider a consumption policy that has the feedback form:

c; = A(st) (Xt + ) K- 1/'Yr < A(st) < r st E (-s, +oo)

Then Xt > X N sS, where XtN SS is the asset process that results when one uses the optimal

consumption policy in the absence of sudden stops:

cs = r (xtSs + g)

Proof. This result is trivial. One solves for the asset process that results from the two

policies to find that

XtNSS = Xo Y; (et-1)r-g

The equivalent calculation for the optimal policy ct conditional on a path of st gives:

d (e-(rt - A()d)Xt) = -(r- A(st))e-(rt-fo A(su)du)Xt + e-(rt-t A(s)du)dX =

e- (rt-fA(8u)du) [r - A(st) g9e9t
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Now integrating both sides and rearranging gives:

X = Xo + yg e(rt-f A(s")du) (f e-((r-g)i-fO A(s")du) (r - A(si) - g)di) =

X- -g (et - e(rt-oA(sudu)r-g

The result now follows since A(st) < r Vst E (, +oo). 

To invoke a verification Theorem we finally need to show that:

Lemma 4.2 Assume () < C(st) < K ()' Vst E (s, +oo). Then

lim E e-rtl{T > t}C(s) (t r 0

Proof. For any t it is the case that

E e -rtl{T > t}C(s) (XYpt + - ) ]

Ee-r'{T > t}K() ( 'j-

KE e-rtl{ > t} () (t - 9)j 

The first inequality follows from the assumption and the fact that ( - is a nega-1--v

tive number. The second from the previous lemma and the monotonicity of the value function

and the last limit follows from the fact that one can trivially show that in the standard model

without sudden stops e-rt (1)7 1 -' ,) 0-

The final step is to prove that any solution to a(s) (respectively C(s)) will be bounded.

This can be done in a rather straightforward manner:
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1
Proposition 4.4 The function a(s) = C, is a decreasing function that stays between K 11/ 7

and !.

Proof. We will derive the result by means of two contradictions. Suppose a(s) solves (4.67)

subject to the boundary conditions (4.68),(4.69). To establish the claim we just need to show

that a(s) is everywhere decreasing. (If it exited the "band" [, 'K1/ Y] it would have to have

at least one section where it would be increasing). To establish that it is decreasing, we are

going to establish 2 contradictions by studying points that could be local maxima or minima.

So suppose indeed that there exists one point s* that is a local extremum. Then as(s*) = 0

and accordingly we have 2 cases:

1) 1 - ra < O. Then it has to be true (in order to satisfy the ODE) that ass > 0, so that

s* would have to be a local minimum. But in order for a(s) to satisfy the Boundary condition

at infinity there would have to exist another s** > s*, that would have to be local maximum,

which is impossible since it would still be in the region where 1 - ra < 0. (Since -necessarily-

a(s*) < a(s**)).

2) 1 - ra > 0. Then it has to be true that a < 0, so that s* would have to be a local

maximum. But in order to satisfy the boundary condition at infinity there would have to be

a local minimum s** to the right of s* satisfying a(s**) < a(s*) and ass(s**) > 0 which is

impossible. 

Now one can apply a standard verification Theorem and verify that indeed the proposed

function V is the Value function for the problem.

The following Lemma derives the properties of the consumption process:

Lemma 4.3 The optimal consumption process satisfies:

el 2' 7 '~ a - adc 1(7 +1) aS t dt

Proof. Straightforward application of Ito's Lemma to:

(Xt + r-g)
c = a(st)
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along with equation (4.67.) 

4.7.3 Propositions and Proofs for section 4.1.

We first show that the excess consumption process,c*, is constant. There are two ways to see

this. The first one is to apply Ito's lemma to c and observe that both parts of the resulting

Ito process (informally speaking the dt and the dBt terms) are identically zero. Another more

direct way is to use the martingale methodology developed by Karatzas and Wang (2000) to deal

with this problem along with standard formulas for distributions of hitting times of Brownian

Motion. This approach is particularly appealing in the context of this section because of the

presence of complete markets (up to the point where the sudden stop takes place).

We start with the first approach. We have the following result:

Lenmma 4.4 Under perfect hedging "excess" consumption, ct*, is constant for t < r

Proof. To simplify notation somewhat we define

aP(st) - (e-(s--s)(K - 1) + 1 (4.70)r

and observe that this function solves the ordinary differential equation:

1-a2ap p rap 1 = 0 (4.71)

The consumption policy can then be reexpressed by means of (4.40) and (4.70) as

1 (t yt_(1-- .)
C= aP(st) (Xt + g 

and the portfolio policy as:

Pt = -S Xt + Yt(l -a r- g
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Applying Ito's Lemma to the right hand side of this expression gives:

dc* = Cdt + C2dBt

where

( + Yt(l - ) (a, IL (as)2 + aPao.2) +

(rXt - (Xt + Y - )) + (1-) t + gYt( 1 - ) +

(Xt + yt(1-K) 1 )a 2 rt -~ q-g ]ar-

1 ( yt(l -))(aP 2 ( ) )2aP -a2 - raP+1 =0
le?)2 j + r-g ) 2-a s8s+as 1

and

C2 1 (X + t(1- )) (a_)
C2 - - rt r-g a

.

In other words perfect hedging leads to complete smoothing in our example, despite the

possibility of a fall in consumption when the state variable crosses the critical level.

Let us prove the same result with the martingale methodology developed by Cox and Huang

(1989) and Karatzas, Lechoszky and Shreve (1987), as it will facilitate the proofs later on. For

our exposition we will be using the results in Karatzas and Wang (2000).

Lemma 4.5 Without loss of generality, take t = O. The optimal policy is given as:

4 = (k-/')l{u < r}

X- (1 (k ) - 1/ - y

r r - a/

where k solves the intertemporal budget constraint:

Xo + Y~ = k - 1/ E e-rudu + e-r(K1r{dr < oo}r-g r
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or

k ~~~~r-g
(E oT e-rudu + e-rr K111 1{ r < oo )

Proof. We provide only a sketch of the proof. The reader is referred to Karatzas and

Wang (2000) for details. 22

The objective is:

maxE 1 e-rudu + erV(Xy )l{ < °°}
c~ ,pU, 1-

s.t

dXt = (rXt - c + yt*)dt + aptdBt

and the rest of the evolution equations remain unchanged.

We proceed to show formally that the proposed strategy is optimal borrowing from Karatzas

and Wang (2000). Let us denote for an alternative admissible strategy (c*, X*) satisfying the

intertemporal budget constraint with equality the Value of the objective:

J(c,p) = E
-*1 -7 
l_-e-rudu + e-rT V(X, y)1{r < °°}

1-7~~~~

where

V(XTyT) = K (1) ( )
1 -')'

22 Karatzas and Wang (2000) do not strictly cover the case we are considering here, since
our problem is on an infinite horizon. Even though it seems easy to extend their approach to
cover our case too, we refrain from doing so and just note that the techniques used for the
limited hedging case at the beginning of section 4 along with the observation about the optimal
policy and the differentiability of the a-function are enough to apply a standard verification
Theorem.

235



Let f denote the Fenchel - Legendre Transform of the function f:

f(k) = max f(x) - kx
X

so that this maximization e.g. for

C*1-7ru
e- r =maxe- r

1-' 7

(1-7 ( i- kc* 1
1-7

yields:

cpt = (k-/)l{u < r}u -

and similarly for XT.

Then it is the case that:

= E (jrud +e - rr V(X,, y,*)l{ Ir <

( E C e-rudu + e-rrV(Xr, Yr)l{r <

< E< E ( l e- rdu + e- V( Xr yr) l{ r<

+k E f e-rucudu + e-rrX1l{r < o})

(T +

< E ] -j e-rudu + e-rV(Xr, yr)1{r <

-E (O e-rUdu+e-rTV(X°Pt,y)l{r < oo} +

+k [(Xo+ig) (Xo+ r)]

r- ( e rudu+erV(X ){ < -)g
E=-l e-rudu + e--V(Xr°t, y') l{f' < oo}
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This verifies optimality of the strategy. We will now use the optimal strategy to obtain the

Value function using well known formulas about the first hitting times of Brownian Motions.

V(Xo+ ) =r-g

1~~~~ -7(x0 k+ ' (Ej'-y + k (rdu)e K1 )( Ki o -o-/
(x 1 (E e-rudU + e- 1{- < 00} =1-7 -- r (Xo+ YO '

( r-9) (E e-rU + e-rr K1 /'l {r < ooo} =

____+_r__ __ (!1) (1 e- A(8-) + e- ( ) =
1-7 r ' 

(Xo + Y)1 (- r-g 7~~~~)( X rY_ (e 1-

The only important step in this straightforward derivation is going from the second to the

third line. This involves a well known formula which can be found e.g. in Harrison (1985) p.

47 

4.7.4 Proofs and Propositions for section 4.2

Proposition 4.5 For 1 < < * where:

1

1 + e-rT (1 + h*)[(-(1+h*)(1-e-rT)) -l~~e-rT~Kl(h,)[(l _ h*-) )'I_1
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the solution to the problem (4.72) is given by:

1ch =- k-a, t ( r)

XT = k- k I - *
r( + h*)r -r-g

hopt = h*-(1-e -rT)(1 +h*) 1- ]

F is defined by

erT(1+h*)rd -"T(1 + h*) +

and h* is given in the text.
1

k-y is given by:

I E [e-1- ( + hP)r- 1k- - [f e- ru + E)
r (1+ h*) (X0+ Y )r-g

and since:

E [e- rT] e - A( s- s)

where A is given in (4.54), we get finally that:

; I __-__ _ re-:(s -) (1 + h *Pt~)F ]-1= ki [ (=!)r r (1+ h*) (x + , t E (O, 7)

Proof. Adopting the Cox-Huang (1989) methodology and its application to problems

involving a random stopping time Karatzas-Wang (2000) we are able to reduce the problem to
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the following static problem:

min max E[fT
k c*,X.,H [J

e _ + e rvSS Rr ( ruCu +er (Xr + tHr)lTdu + e- V 3(Xr, Rr) - k e-rucu + e-(x+ Hr)1 - kio I]

where V s s is given by (4.53). By maximizing the objective inside the integral one can derive

optimal consumption to be:

c = k ,t E (0,r)

The crucial step is the maximization of the problem involving the continuation value function

at time r:

max [VSS(X,, H,) - k(X, + H,)]
Ht,Xt

(4.72)

where V s S is given above. Assuming for the moment that

H, < (xT-

we can solve the problem (4.72) using (4.53), to get:

(r)j~ [(1 -er B(B ( + Y- ) +i)+ e- rT (1 + h*) - a (X- + rg )- ]

where:

B = 1- e-rT(1 + h*)

Let us define

=(r)
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so that we arrive at:

klB + e- rT (1 + h*)l-~ (Xr-

or:

r-g) -
k (1 - B)

e-rT (1 + h*)l-7

X- + r-g
1k(l - CB)= ( _

e- rT (1 + h*)1 --
1( kl( - ((1-e-rT(1 + h*))) -

e- erT(l+h*)(l+h*)-- J
_ 1

1
(1 +h*)

[ eT(1+ + 1
le-rT (1 + h*)J

It is an interesting observation (that we will use later) to note that since > 1, CB < 1 we

get:

r d 1- (4.73)
e- rT (1 + h*) (4 )

1
and we have that 0 < r < 1,r- > 1.

Now the holdings of the second (hedging) asset are determined as:

B k 1(1
e-rT (1

(B (k (1
e-rT(

1- B) ' z
+ h*) -y

-+B) I ]
+ h*) 7)y
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(1 - erT)Y
-7

+H,)

+ H)- ( 1-e-rT)(1 T-erT-

-1y

r - g = ki

= kC



-B (e
Ve-rT

1
(1- B) -7

(1 + h*)l-7

To get the ratio

X + ;Er-g

we combine the preceding equations to get:

1

- (1 - e-rT(1 + h*))

We first verify that indeed h < h*.

h = (1- e-rT)(l + h*)

-= (1e -r eT)(1 + h*)

This is true since:

I

(~) - -(1+h*-erT(1 + h*)) + h*

[(- 1I] h* h*r~ 

since:
1

= 1 > 1

er T (1+h*) + 1

(since > 1) and thus (1-e-rT)(l + h*) [()- 7-1] <O.

Finally we want to provide conditions in order to exclude that h becomes negative and this

will be the case whenever:

h*
(1 + h*)( - e-rT)) 
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or

< erT(1 + h*) )(eT)) I +1(1 + h*)(1- -- T)+

or
1

1 + e - rT (1 + h*) [(1- (1+h*)(-e-rT)) -4.74)1]

Accordingly we only focus on cases where c< *.

As might be expected due to the homotheticity of the problem, the optimal reserve ratio

does not depend on the level of initial wealth. To complete the solution to the overall problem

let us return to the time 0 budget constraint and combine everything together to get:

1
YO -k~~~E ] 1 E[e-rrj r- lXo + k- i E e-rUdu + k- +r - g [JJr (1 +h*)

+hoPtk- ~ E [e-rr rF-
r (1 + h*)

which shows that k can be determined as:

r -g=- [E [/,' cruddu] + E (1 + h) 7j Xo + Y 

and we have that r < 1, Fr- > 1. The final step of the proof is to use the formula for

E [e- r lr] from section 4.2. 

PRemark 4.2 The optimal portfolios can be derived in a manner similar to section 4.2. Their

magnitude is much smaller in this case.

4.7.5 Propositions and Proofs for section 4.3

We give a sketch of the claims. Formal proofs would proceed along the lines of the respective

proofs in section 3.1. We focus only on pt insurance for simplicity. In this case the Bellman
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Equation becomes:

o = mx{(* ) Vx*} + maxpVx X+Vx 2p}-

-rV + Vx(rX + y*) + Vyy*g + Vz + io.2v + A(st) ( +i ) - V

Once again the optimal consumption and portfolio policies are given by (assuming a C 2 -

Value function):

C* = Vx

and
Vx.

P -vxx

Notice that the portfolio strategy is a "pure" hedging strategy, in the sense that there are

no demands due to risk premia (we assumed them away by positing that the sources of risk are

uncorrelated with aggregate consumption growth). In this way we are able to distill out the

pure hedging component, excluding mean-variance motives. As before we conjecture a value

function of the form:

V(Xt, yt, st) = CH(st) 1 * 7

where CH(st) satisfies the same boundary conditions as in the no-hedging case (section

3.2.). Under this conjecture the optimal portfolio process becomes:

CZ(St) (Xt + r-g)
yCH(st)

Notice that the sign and magnitude of hedging is influenced by the derivative of C(st)
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with respect to st. One can show that this is a decreasing function and thus not surprisingly

the hedging demands are negative, i.e. they involve short sales. Plugging back into the value

function and simplifying we get a second order non-linear ODE for C(st).

a:-C rCHC + CHj + CH f2 (1 -)( )2 + A(St) [C_-CH] = 
- 8 2 2 rYCH

Now defining

CH -= (bH)Y

we get

0 = - (bH) 7 - - rTy(bH) + -yt(bH)-1lbsH + _ty(bH)-1 [- 1) + b

1 2 (1 - y)7y2 (b )2 [bH]2 + A(st) [A- (bH)]
2 y~~(bH)7y

or after simplifying:

0 = 1 - rbH + Fibs 2 1ss + 1

Notice that once again this ODE is very similar to the ODE with no hedging, namely:

0=1 -rb+bs + [(Y7-1) O +bss a2+ A(st) [C-1

pt ha n 22 bup to the absence of the term 1ao('y - 1) (b;)-. In terms of the b-function the optimal2 b~~~tem

244



consumption and portfolio policies become:

(Xt + rig
- (xt+)

bH(st)

H~(St) (xt :
bH St (Xt +r-g )Pt = "(st)

It ~bH (St)

Lemma 4.6 Under perfect hedging "excess" consumption, i.e.

ct - Yt = c;., t < r

follows the process:

ProofThed a v y i c w dtf h pC(st) ] )
Proof. The proof proceeds in a virtually identical way as in section 4.2. 
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