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Abstract— We present a post-processing technique that selec-
tively reduces the salience of distracting regions in an image.
Computational models of attention predict that texture variation
influences bottom-up attention mechanisms. Our method reduces
the spatial variation of texture using power maps, high-order
features describing local frequency content in an image. Modi-
fication of power maps results in effective regional de-emphasis.
We validate our results quantitatively via a human subject search
experiment and qualitatively with eye tracking data.

I. INTRODUCTION

Much of the art of photography involves directing viewers’
attention to or away from regions of an image. Photographers
have developed a variety of post-processing techniques, both
in the darkroom and on the computer, to reduce the salience
of distracting elements by altering low-level features to which
the human visual system is particularly attuned: sharpness,
brightness, chromaticity, or saturation. Surprisingly, one low-
level feature that cannot be directly manipulated with existing
image-editing software is texture variation. Variations and
outliers in texture are salient to the human visual system [1],
[2], and the human and computer vision literature show that
discontinuities in texture can elicit an edge perception similar
to that triggered by color discontinuities [3], [4], [5], [6].

We introduce a technique for selectively altering texture
variation to reduce the salience of an image region. Our
method is based on perceptual models of attention that hy-
pothesize that contrast in texture contributes to salience. We
review the filter-based model of texture discrimination and the
computational models of visual attention based on it (Sec. II)
before presenting the following contributions:

Image manipulation with power maps. Higher-order image
features have been heavily used in image analysis. For exam-
ple, power maps encode the local average of the response to
oriented filters. We show how power maps provide a flexible,
effective representation for manipulating frequency content in
an image. We introduce a perceptually-motivated technique for
selective manipulation of texture variation (see Figure 1).

Psychophysical study of texture and attention. We conduct
two user studies as experimental validation of our technique’s
effectiveness: A search experiment to measure quantitatively
the effectiveness of our technique at directing attention in an

Fig. 1. High frequencies have been made more uniform in this texture
equalized image. False-color power maps show the change in high-frequency
distribution.

image and an eye tracking experiment to record qualitative
changes in fixations and scan paths.

II. BACKGROUND

A. Texture segmentation and discrimination

Texture discrimination and texture edge detection have
received much attention in computational and human vision
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Fig. 2. Texture discrimination and manipulation in 1D. Please see the detailed description in Sec. II-A.

[3], [4], [6], [7]. These approaches compute local variations in
frequency content to detect texture edges. Most roughly follow
Malik and Perona’s biologically-inspired model [4], illustrated
with a 1D example in Figure 2. The first stage of most
texture discrimination models is linear filtering with multi-
scale oriented Gabor-like functions (Figure 2(b)). Because
it is band-limited, the response to such a filter averaged
over a small neighborhood is usually zero; the positive and
negative lobes of the response cancel each other. The signal
must be rectified to obtain a meaningful measure of the filter
response in a neighborhood. Possible solutions include full-
wave rectification (absolute value) and energy computation
(square response); the absolute value is shown in Figure 2(c).
Low-pass filtering (pooling) of this response produces the local
average of the filter response strength; we call this the power
map (Figure 2(d)).

In addition to its applications in edge detection and im-
age segmentation, this approach to texture discrimination has
inspired texture synthesis methods that match histograms of
filter responses [8]. We show how power maps can be applied
to a different problem: image manipulation.

B. Computational models of visual attention

Visual attention is driven by top-down and bottom-up pro-
cesses. Top-down mechanisms, which describe how attention
is influenced by scene semantics or the task, are important to
understanding attention. However, in this paper, we focus on
image processing independent of content.

Bottom-up processes describe the effect of low-level prop-
erties of visual stimuli on attention. A number of influential
computational models of attention have explicitly identified
salient objects as statistical outliers in low-level feature dis-
tributions [9], [10], [11]. Other well-known models implicitly
capture the same behavior [12].

Most models focus on the response to filter banks that
extract contrast and orientation in the image. Various non-
linearities can then be used to extract and combine maxima
of the response to each feature. These first-order salience
models capture low-level features such as contrast, color, and
orientation. Increasing or decreasing the presence of outliers
or large variations in the feature distribution for a region of
the image results in a respective increase or decrease in the
salience of the region, as exploited by traditional image editing
techniques [13], [14], [15].

In psychophysical experiments, Einhäuser and König [16]
observed salience effects due to texture variation that could not
be explained by first-order models. The second-order model
recently introduced by Parkhurst and Niebur [1] captures these

effects by performing the computation of first-order models on
the responses to a first-order filter bank (what we call power
maps) rather than on image intensity. This strategy motivates
our method of manipulating power maps to alter contrast in
texture.

III. TEXTURE EQUALIZATION

We introduce a post-processing technique to de-emphasize
distracting regions of a photograph by reducing contrast in
texture. Informally, our goal is to invert the outlier-based
computational model of saliency to perform texture equaliza-
tion. Recall that this model defines salient regions as outliers
from the local feature distribution. Our technique modifies
the power maps described in the previous section to decrease
spatial variation of texture as captured by the response to
multiscale oriented filters. A plethora of such filters have been
developed for texture discrimination. We use steerable pyra-
mids because they permit straightforward analysis, processing,
and near-perfect reconstruction of images [17], [18].

A. Power maps to capture local energy

We compute power maps using the texture discrimination
approach of Sec. II-A. Local frequency content is computed
using steerable pyramids, and a power map is computed for
each subband s. Because s is band-limited and has local
average is zero, we perform a full-wave rectification, taking
the absolute values of the steerable coefficients. We apply a
low-pass filter with a Gaussian kernel gl to compute the local
average of the response magnitude; we call the resulting image
sl the power map.

sl = |s|⊗gl (1)

We choose a variance σl for the Gaussian kernel that is
large enough to blur the response oscillation but small enough
to selectively capture response variations. We have found that
a value of σl = 5 pixels works consistently well. Note that
because the low-pass filter has the same size for each subband,
for coarser scales the power map averages responses over a
larger region of the image.

B. Log power manipulation

Because the computation of power maps includes an
absolute-value rectifying non-linearity, propagating modifica-
tions on the power map to the image is not straightforward. In
particular, linear image processing results in negative values
that are invalid power map coefficients; the power map is com-
puted from absolute values. While these invalid coefficients
do not interfere with analysis, for image editing they must



me scaled rather than summed. We perform all subsequent
processing in the natural logarithmic domain of the power
map. An additive change to the log power map translates
to a multiplicative change to the original steerable pyramid
coefficients.

C. Reducing global texture variation

The power maps capture local frequency content in the
image. High-pass filtering of the power maps reveals the
spatial variation sh of frequency content over the image. Recall
that this variation is defined for each subband s.

sh = ln(sl)− (ln(sl)⊗gh) (2)

We have experimented with different values of σh for the
Gaussian kernel gh. In contrast to the low-pass gl , the high-
pass filter must scale with the size of the subband such that if
it is translated to image-space, it is the same at each pyramid
level. We have found that a value of σh = 60 pixels for the
finest subband works consistently well. We have found that
the technique is robust to this choice and that the value of σh
has a small effect on the final output.

To reduce texture variation in the image, we remove some
portion of the high frequencies of the power maps, which is a
trivial image processing operation. However, we must define
how a modification of the power map translates into a modifi-
cation of the pyramid coefficients. Recall that we are working
in the log domain to perform multiplicative modification to the
power map and steerable-pyramid coefficients. A subtraction
on the log power map corresponds to a division of the linear
coefficients:

s′ = se−ksh (3)

Values of k = 1,2,3 to work well. At the boundary between
low and high values of the power map, the high-pass of the
log power map goes from negative to positive, resulting in a
scaling up the coefficients on the low side and scaling down
on the other side (Figure 2 (g) and (h)).

Clamping. Uniform regions correspond to zero values of the
power map. When adjacent to highly-textured regions, they
result in extreme high values of the high-frequency of the
power map sh, resulting in a large applied scaling factor that
can amplify the small amount of noise present in uniform
regions of the original subbands. To prevent such artifacts, we
use a simple non-linearity to clamp isolated extreme values
in the scaling (high-pass response) map to a fraction of the
maximum:

s′h =
csh

c+ sh
(4)

where c = kc max(sh). In practice, we have found that a value
of kc = 0.5 works well for most natural images.

D. Correcting first-order effects

Our technique smoothes the spatial variation of local fre-
quency content. However, we found that the non-linearities
involved in clamping and log manipulation can also result
in changes in first-order properties such as overall sharpness.
We correct for this first-order change by re-normalizing each
subband to the average of the original:

s′ = s′
mean(|s|)
mean(|s′|)

(5)

This is similar in spirit to Heeger and Bergen’s multiscale
texture synthesis [8]. We also perform a histogram match on
the pixel values from the input to the reconstructed output.
This ensures that the average intensity of the image is not
altered by our technique.

IV. RESULTS

We have implemented our texture equalization method in
Matlab and have applied it to a variety of images. Figure 1
shows a texture equalized photograph. The false-color visu-
alization of the power maps shows how texture variation has
been reduced and boundaries between regions of high and low
texture variation softened.

For selective de-emphasis, we use an alpha mask and blend
processed and unprocessed images. In Figure 3, we reduce
texture variation in the leaves surrounding the tiger, improving
foreground/background separation. Note that we have applied
our technique to only the luminance channel, leaving the
chrominance unchanged. This decision is motivated by the
low sensitivity of human vision to high frequencies in chromi-
nance.

At first glance, one might guess that texture equalization
simply adds uniform noise. Our technique amplifies existing
high frequencies to make texture variation uniform. This
strategy preserves key features of the objects in the image
while adding white noise imposes an overall graininess.

Gaussian blur is an alternative de-emphasis technique that
can introduce depth-of-field effects. The reduced sharpness
can be undesirable, particularly if the distracting element
is at the same distance as the main subject. In addition,
blur removes the high-frequency content of an image region,
which can emphasize the medium frequencies and result in
a more distracting object. (see Figs. 4 and 6.) In contrast,
equalization makes high-frequencies more uniform, creating
a “camouflage” effect that masks medium-frequency content.
Gaussian blur and texture equalization are complementary
tools in an artist’s toolkit. Our technique works well when
the distracting region is already somewhat textured. Blur
works well when depth-of-field effects are already present and
medium frequencies are not distracting.

Please see the full-resolution, color images at http://
csail.mit.edu/˜sarasu/pub/texture05.

V. PSYCHOPHYSICAL VALIDATION

We have conducted two psychophysical experiments to
evaluate the effectiveness of our de-emphasis technique: a



Fig. 3. Highlights in the leaves and other distractors prevent clear foreground/background separation in the original photograph. Texture equalization
de-emphasizes these distractors, increasing salience of the tiger.



Fig. 4. Example search stimulus and close-ups of de-emphasis techniques applied to a stimulus object.

visual search task for quantitative validation and eye tracking
for qualitative evaluation.

A. Visual search experiment

Saliency is commonly studied through visual search for a
target object in the presence of distractors. Subject response
time is a reliable indicator of target saliency [19]. We recorded
subject responses to unmodified images and those in which
texture had been equalized everywhere except for the search
target, finding that search time is reduced when distractors
are de-emphasized. We also used the search task to compare
Gaussian blur and texture equalization.

Experimental procedure. Data were collected from 12 vol-
unteers. Each subject was shown a series of 45 stimulus images
at 1600× 1200 resolution. Each image depicted a collection
of objects arranged in a distinct layout on a uniform white
noise background (Figure 4). Grayscale images were used to
remove attentional bias for color. For each layout, one of six
conditions was randomly displayed:
Original. The unmodified image.
Texture-equalized. All parts of the image, except for the
search target, are texture equalized. To reduce texture vari-
ation, the following parameters were used: low-pass filter
σl = 5, high-pass filter maximum σh = 60, high-pass clamping
factor = 0.5, and final scale factor ks = 2.
Gaussian-blurred. Blur of σ = {0.25, 0.50, 1.0, 1.25} pixels
is applied to all parts of the images except the target.

Each subject was shown a search target before viewing
a layout and was instructed to locate the target and click
twice with the mouse: once immediately upon locating the
object and again on the object itself. Time to fixation was
approximated by the first-click response time. The second click
was used to verify that the target was found. A fixation screen
was displayed between consecutive images, and subjects were
required to click on the center of the screen to proceed; this
ensured that all mouse movements originated at the center
of the screen for consistent timing. Trials in which the users
second click did not match the search target were discarded
from our timing analysis. To prevent a learning effect, no
subject was shown the same layout twice.

Analysis. The mean response time for the texture equalized
images was 2.916 seconds, compared to 3.7594 seconds for
unmodified images. This 22.43% speed-up supports our hy-

TABLE I
MEAN RESPONSE TIMES FOR SEARCH EXPERIMENT. TEXTURE

EQUALIZATION RESULTS IN A SPEED-UP OF MORE THAN 20%.

Condition Mean response time Std. Dev.
Unmodified 3.7594 s 0.8422
Texture-equalized 2.9160 s 0.6698
Blurred, σ = 0.25 4.0446 s 0.9519
Blurred, σ = 0.50 3.9288 s 1.0339
Blurred, σ = 1.00 3.4382 s 0.6171
Blurred, σ = 1.25 3.1234 s 0.6193

pothesis that de-emphasizing distractors by reducing texture
variation increases salience of target objects.

Two-way ANOVA tested the statistical significance of vari-
ables layout and condition. For layout, p ≤ 0.1985; as ex-
pected, this does not achieve the level of significance. For
condition, p ≤ 0.0487, indicating that it is a statistically
significant variable. A two-sample t-test comparing the data
collected in the unmodified and texture-equalized conditions
indicated that the null hypothesis can be rejected at the 5%
significance level; the difference in timings was not due to
chance.

The experiment shows that texture equalization of strength
ks = 2 produces a change in salience stronger than Gaussian
blurring with σ = 1.25. It may come as a surprise that a
Gaussian blur with σ < 0.5 increases response time. We
hypothesize that for highly-textured images, the elimination
of high frequencies removes the “camouflage” effect and en-
hances the influence of medium frequencies, object structures
(see Figure 4).

B. Fixation experiment

Experimental procedure. Using an eye tracker, we studied
how 4 subjects’ gaze paths and fixations changed as they
viewed a series of photographs before and after modification
with our technique. Two versions each of 24 photographs were
displayed in random order at a resolution of 1024×768 pixels.
Subjects were asked to study each for 5 seconds while their
eye movements were recorded with an ISCAN ETL 400 table-
mounted eye tracker.

Discussion. We analyzed the eye tracking data by visual
inspection of scan paths [20], [21] Figure 5 shows how
the salience of regions can be increased by equalizing the
surrounding texture. These emphasized regions attract and



hold subjects’ fixations. Although this study included fewer
subjects, the qualitative results are promising and support
our hypothesis that texture variation is a salient feature. An
extended study is future work.

VI. CONCLUSIONS

Inspired by bottom-up models of visual attention, our tex-
ture equalization technique reduces the salience of distract-
ing image regions by reducing variation in texture. We use
steerable pyramids to define a set of power maps capturing
local frequency content and provide a perceptually-meaningful
tool for image manipulation that complements other post-
processing methods such as Gaussian blur. Our technique is
effective for textured image regions, while blur works best
when small depth-of-field effects are already present and
medium-frequency content is not distracting.

Future work includes the application of such image-
manipulation methods to the study of bottom-up visual at-
tention. Our search experiment provides a first data point, but
more are needed. We plan more extensive experiments to study
the variables that contribute to a technique’s effectiveness. The
combination of first-order features (e.g. sharpness and bright-
ness) with our second-order features raises the challenging
task of appropriate calibration. Finally, image processing in
the texture feature space has potential applications in image
in-painting and restoration.
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Fig. 5. Change in scan paths after texture equalization. Red circles mark
fixation points; duration is indicated by the circle radius. See webpage for
full-resolution images.



Fig. 6. Gaussian blur de-emphasizes everything in the image except for the left tiger by introducing depth-of-field effects. Texture equalization
de-emphasizes without the conflicting depth cues introduced by blur.


