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Abstract— Free probability provides tools and techniques  More generally, if we are given the probability densities
for studying the spectra of large Hermitian random ,, and ., for independentandom variablesqg and b,
matrices. These stochastic eigen-analysis techniques leav respectively we can compute the moments:of b and

been invaluable in providing insight into the structure of e e
sample covariance matrices. We briefly outline how these ab from the moments o4 andb. Specifically, our ability

techniques can be used to analytically predict the spectrum t0 do so is based on the fact that:
of large sample covariance matrices. We discuss how these - - T 1T T
eigen-analysis tools can be used to develop eigen-inferenc (a™b™ ... ™) = p(a b ) (2

methodologies. . .
g since ¢ and b commute and are independent. In par-

ticular, the distribution fora + b, whena and b are
independent, is simply the convolution of the measures
e @ndpy. A more familiar way of restating this result

I. INTRODUCTION is that the Fourier transform of the probability measure
off the sum of two independent random variables is

The search for structure characterizes the nature % . o
. . . ) . . the product of the Fourier transforms of the individual
research in science and engineering. Mathematicians

look for structure in difficult problems — discovering orprobab|l|ty measures.
even imposing a structure on the problem allows them to
analyze a previously intractable problem. Engineers lodk Free probability

to use this structure to gain insights into their algorithms \ye adopt a similar viewpoint on free probability using
and hopefully exploit the structure to improve the desigifrge random matrices as an example of “free” random
This article describes how the operator algebraic inve(ariaples. Throughout this paper, 1ty be an N x

tion of free probability provides us with fresh insightsy symmetric (or Hermitian) random matrix with real
into sample covariance matrices. We briefly mention &lgenvalues. The probability measure on the set of its

application of these techniques to an eigen-infereng?genvames\l’/\27”")\N (counted with multiplicities)
problem (rank estimation) that dramatically outperformg given by:

solutions found in the literature.

Index Terms—Free probability, random matrices,
stochastic eigen-inference, rank estimation, principal am-
ponents analysis.

1 N

Il. FREEPROBABILITY AND RANDOM MATRICES Bav =N ;(SAT" 3)
A. Classical probability We are interested in the limiting spectral measupeas

We begin with a viewpoint on the familiar “classical”’ N — oo which, when compactly supported, is uniquely
probability. Suppose we are given a random variable characterized by the moments computed as in (1). We
whose probability distribution is a compactly supportegefer toA as an element of the “algebra” with probability
probability measure of, which we denote by.,. The measurg:, and momentsp(A™).
moments of the random variabig denoted byp(a"), Suppose we are now given two random matrides
are given by: and By with limiting probability measuresis and

n n up, we would like to compute the limiting probability

p(a") = /Rt dpia(t). (1) measures forAy + By and AyBy in terms of the



moments ofu4 and . It turns out that the appropri- where the denotes the imaginary part of a complex
ate structure, analogous to independence for “classicalimber.
random variables, that we need to imposeAr and Step 2 Compute they-transforms;4(z) and ¢ (z).
B to be able to compute these measures is “freenesiven the Cauchy transforr(z), the ¢-transform is
It is worth noting, that sinceA and B do not com- given by:
mute we are operating in the realm of non-commutative G(1/z)
algebra. Since all possible products Af and B are v(z) = P 1 (7)

allowed we have the “free” product, i.e., all words irbtep 3 Compute the S-transformsia(z) and Sg(2).

A andB are allowed. (We recall that this is preciselyr, . relationship between thg-transform and the S-
the definition of the free product in algebra.) The theor%ansform of a random variable is given by:

of free probability allows us to compute the moments
of these products. The connection with random matrices S(z) = 1+z ¢<71>(z) (8)
comes in because a pair of random matrides and z

By are asymptotically free, i.e., in the limit 6f — oo\ here,(~1)(2) denotes the inverse under composition.

so long as at least one @y or By has what amounts Step 4 The S-transform for the random variabdB is
to eigenvectors that are uniformly distributed with Haaéiven by:

measure. This result is stated more precisely in [6]. _

As was the case with independence for “classical” Sap(z) = 54(2)95(2)- ©)
random variables, “freeness” is the structure needeflep 5 Computey 4(z) from the relationship in (8).
to be able to compute mixed moments of the forBtep & Compute the Cauchy transfor@iz(z) from
p(A™MB™ ... A"B™*). We note that the restriction the relationship in (7).

that A and B do not commute so that in general, Step 7 Compute the probability measupe 5 using the
Q(AMB™ . ATRB) £ Atk Bty Stieltjes inversion theorem in (6).

4
is embedded into the definition of “freeness” when iy Free Additive Convolution
was invented by Voiculescu [6] in the context of his WhenA 4B totically f the (limit
studies on operator algebras. Though the condition for enb [ng'|$n N are ?sympdo Ica ytr_ee, ]?ﬂ(]m;' -
establishing “freeness” between a pair of random matrlpg) pr(])3 apt y_meazur?h ofr ran gg.l.ma r|ce3(|) i € form
ces, as described in [6], is quite technical and appe + By IS given by thelree additive convolutiom

abstract, it naturally arises many practical scenarios probability Measuresa and B anq IS written as
detailed in Section Il ta+p = pa B pp. A similar algorithm in terms of the

so-called R-transform exists for computipg 5 from
o ) ua andpp. See [6] for more details.

C. Free Multiplicative Convolution What we want to emphasize about the algorithms
When Ay and By are asymptotically free, the described in Sections (1I-C) and (11-D) is simply that the
(limiting) probability measure for random matrices otonvolution operators on the non-commutative algebra
the form AyBy (by which we really mean the self- of Jarge random matrices exists and can be computed.
adjoint matrix formed asAy’ByAy’) is given by Symbolic computational tools are now available to per-
the free multiplicative convolutioffg] of the probability form these non-trivial computations efficiently. See [2],
measuregia andup and is written agiap = pa®up.  [3] for more details. These tools enable us to analyze
The algorithm for computing.4 5 is given below. the structure of sample covariance matrices and design

algorithms that take advantage of this structure.

Step 1 Compute the Cauchy transform& s (z) and
G p(z) for the probability measures, and up respec-

tively. For a probability measurg on R, the Cauchy  Ill. STOCHASTICEIGEN-ANALYSIS OF SAMPLE
transform is defined as: COVARIANCE MATRICES
1 Lety be a 1 observation vector modeled as:
G(z) = [ —duto (5) y be an x
) y=Ax+w, (10)

This is an analytic function in the upper complex half-
plane. We can recover the probability measure fromhereA is an x L matrix,x is a L x 1 “signal” vector
the Cauchy transform by the Stieltjes inversion theoreand w is an x 1 “noise vector”. This model appears

which says that: frequently in many signal processing applications [5]. If
1. ' x andw are modeled as independent Gaussian vectors
du(t) = T 21_{% SG(t +ie), (6)  with independent elements having zero mean and unit
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Fig. 1. The limiting spectral measure of a SCM (solid line)ost true measure is given in (16) fBr= 0.4 and p = 2 compared with1000
Monte-Carlo simulations fon = 100, N = 1000.
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Fig. 2. The limiting spectral measure of a SCM whose true Ganae matrix has measure (16) with= 0.4 and p = 2, for different values
of c. Note that as: — 0, the blurring of the eigenvalues reduces.



variance (identity covariance), thenis a multivariate values are of magnitudg’p. Thus, as given by (11), the
Gaussian with zero mean and covariance: limiting spectral measure dR is simply:

R =Elyy"?] = AA" +1 (11) pr=pd(x—p—1)+ (1 —p)d(z —1). (16)

In most practical signal processing applications, thieigure Il compares the limiting spectral measure com-
true covariance matrix is unknown. Instead, it is estputed as in (14) with Monte-Carlo simulations. Figure

mated fromN independent observations (“snapshots”)! plots the limiting spectral measure as a function of
V1,¥2,..., YN as: c. Note that as: — 0, we recover the measure in (16).

The “blurring” in the eigenvalues of the SCM is because

N
5 1 1 of insufficient sample support. When> 1 then we are
R=— yH =Y, YZ 12 L o :
N ; Yi¥i N " (12) operating in a “snapshot deficient” scenario and the SCM
. is singular.
whereY,, = [y1,y2,...,yn] is referred to as the “data

matrix” andR. is the sample covariance matrix (SCM)
When n is fixed and N — oo, it is well-known
the sample covariance matrix converges to the trueThough the free probability results are exact when
covariance matrix. However, when bathN — oo with 7 — oo the predictions are very accurate for~ 10
TL/N — ¢ > 0, this is no |Onger true. Such a scenari@S well. If the example in (16) was a rank estimation
is very relevant in practice where stationarity constsain@lgorithm where the objective is to estimateand p
limit the amount of data/{) that can be used to form then Figure Il intuitively conveys why classical rank
the SCM. Free probability is an invaluable tool in suclgstimation algorithms such as [7] do not work as well as
situations when attempting to understand the structure®fPected when there is insufficient data. Our perspective
the resumng Samp|e covariance matrices. is that since free multiplicative convolution pr8diCtS the
We note first that the SCM can be rewritten as: spectrum of the SCM that accurately we can use free
R multiplicative deconvolutionto infer the parameters of
R =R"?W(c)R'?. (13) the underlying covariance matrix model from a realiza-

Here R is the true covariance matrix. The matrixiOn Of the SCM! We are able to do this rather simply

W(c) = (1/N)GGH is the Wishart matrix formed from °Y “‘moment matching”. The first three moments of
ann x N Gaussian random matrix with independenfhe SCM can be analytically parameterized in terms of

identically distributed zero mean, unit variance element@f un]k\lfﬂow-n parametes p and the known parameter
Once againg is defined as the limi/N — ¢ > 0as ¢~ n/N as:

n’]SV—M:f] Wishart matrix thus f dh i t ¢(R):1+pp )
ince the Wishart matrix thus formed has eigenvectors o, 5 2 2
that are uniformly distributed with Haar measure, the @(33) =pp et 12+ 2p;2)c+ 2p§ +20p p (18)
matricesR andW (c) are asymptotically free! Hence the ¢(R”) =1+3c+c” +3p"p+3p°cp” +3pp
limiting probability measurg:, can be obtained using +9ppc+6p2pPc+3cp’p+3ppc®  (19)
free multiplicative convolutioms: 1302022 4 33 + pp

pp = pr X pw (14) Given ann x N observation matrixY,,, we can com-

H ; HRk)
wherepu g is the limiting probability measure on the true[l)Ute estimates of the first three moments/d&”™) =

Lir(L *\k — i =
covariance matrixR and uyw is the Martenko-Pastur WUl YaY5)Y f_or ko= 1’2’3_' Since we knowe =
density [1] given by: n/N, we can estimate, p by simply solving the non-

linear system of equations:
—b_ (b, —
C

2mac [(l’lg';” (5.9) = arg min, o[> @(RF) - G(RY)|* (20)

whereby = (1++/c)? andI},_ ) equalsl whenb_ <
x < by and0 otherwise.

‘A. New rank estimation algorithm

M = max (
k=1
As n, N — oo we expect the algorithm to perform
well. It also performs well for finite:. Figure 3 compares
the rank estimation performance of the new algorithm
IV. AN EIGEN-INFERENCEAPPLICATION with the classical MDL/AIC based algorithm. The plots
Let AAF in (10) havenp of its eigenvalues of were generated over 2000 trials of an= 200 system
magnitudep andn(1—p) of its eigenvalues of magnitudewith p = 1, andp = 0.5 and different values olN. This
0 wherep < 1. This corresponds t@& being ann x L implies that the true rank of the systemsig = 100.
matrix with L < n with p = L/n so thatL of its singular The bias of the rank estimation algorithm to be the
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Fig. 3. (Relative) Bias in estimating rank of true covariamoatrix: New algorithm vs. classical algorithm & 200).
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Fig. 4. Mean squared error in estimatipgNew algorithm vs. classical algorithm (= 200).



ratio of the estimated rank to the true rank. Herice
dB corresponds to zero rank estimation error and so on.
As Figure 3 indicates, the new algorithm dramatically
outperforms the classical algorithm and remains, on the
average, within 1 dimension (i.e< 0.2 dB) of the true
rank even when in the snapshot deficient scenario, i.e.,
N < n ! Additionally, the new rank estimation algorithm
can be used to estimateandp. Figure 4 compares the
mean-squared estimation error fofor the new and the
MDL/AIC algorithm respectively. Though the MDL/AIC
estimation error is fairly small, the new algorithm,
once again, performs significantly better, especially when
n ~ N. See [4] for a generalization of this algorithm
including a rigorous theoretical analysis of its estimatio
properties.

V. SUMMARY

Free probability, which has deep connections to the
studies of operator algebras, is an invaluable tool for
describing the spectral of large sample covariance ma-
trices. See [5] for applications to performance analysis.
As the algebraic structure captured by free probability
gets increasingly familiar, additional applications that
exploit this structure to design improved algorithms (as
in Section IV-A) are bound to emerge. This is yet
another instance of how the search for structure in signal
processing leads to new analytic insights, applications
and directions for future research.
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