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Abstract— Free probability provides tools and techniques
for studying the spectra of large Hermitian random
matrices. These stochastic eigen-analysis techniques have
been invaluable in providing insight into the structure of
sample covariance matrices. We briefly outline how these
techniques can be used to analytically predict the spectrum
of large sample covariance matrices. We discuss how these
eigen-analysis tools can be used to develop eigen-inference
methodologies.

Index Terms— Free probability, random matrices,
stochastic eigen-inference, rank estimation, principal com-
ponents analysis.

I. I NTRODUCTION

The search for structure characterizes the nature of
research in science and engineering. Mathematicians
look for structure in difficult problems – discovering or
even imposing a structure on the problem allows them to
analyze a previously intractable problem. Engineers look
to use this structure to gain insights into their algorithms
and hopefully exploit the structure to improve the design.
This article describes how the operator algebraic inven-
tion of free probability provides us with fresh insights
into sample covariance matrices. We briefly mention an
application of these techniques to an eigen-inference
problem (rank estimation) that dramatically outperforms
solutions found in the literature.

II. FREE PROBABILITY AND RANDOM MATRICES

A. Classical probability

We begin with a viewpoint on the familiar “classical”
probability. Suppose we are given a random variablea
whose probability distribution is a compactly supported
probability measure onR, which we denote byµa. The
moments of the random variablea, denoted byϕ(an),
are given by:

ϕ(an) =

∫

R

tndµa(t). (1)

More generally, if we are given the probability densities
µa and µb for independentrandom variables,a and b,
respectively we can compute the moments ofa+ b and
ab from the moments ofa andb. Specifically, our ability
to do so is based on the fact that:

ϕ(an1bm1 . . . ankbmk) = ϕ(an1+...nkbm1+...+mk) (2)

since a and b commute and are independent. In par-
ticular, the distribution fora + b, when a and b are
independent, is simply the convolution of the measures
µa andµb. A more familiar way of restating this result
is that the Fourier transform of the probability measure
of the sum of two independent random variables is
the product of the Fourier transforms of the individual
probability measures.

B. Free probability

We adopt a similar viewpoint on free probability using
large random matrices as an example of “free” random
variables. Throughout this paper, letAN be anN ×
N symmetric (or Hermitian) random matrix with real
eigenvalues. The probability measure on the set of its
eigenvaluesλ1, λ2, . . . , λN (counted with multiplicities)
is given by:

µAN
=

1

N

N
∑

i=1

δλi
. (3)

We are interested in the limiting spectral measureµA as
N → ∞ which, when compactly supported, is uniquely
characterized by the moments computed as in (1). We
refer toA as an element of the “algebra” with probability
measureµA and momentsϕ(An).

Suppose we are now given two random matricesAN

and BN with limiting probability measuresµA and
µB, we would like to compute the limiting probability
measures forAN + BN and ANBN in terms of the



moments ofµA andµB . It turns out that the appropri-
ate structure, analogous to independence for “classical”
random variables, that we need to impose onAN and
BN to be able to compute these measures is “freeness”.

It is worth noting, that sinceA and B do not com-
mute we are operating in the realm of non-commutative
algebra. Since all possible products ofA and B are
allowed we have the “free” product, i.e., all words in
A and B are allowed. (We recall that this is precisely
the definition of the free product in algebra.) The theory
of free probability allows us to compute the moments
of these products. The connection with random matrices
comes in because a pair of random matricesAN and
BN are asymptotically free, i.e., in the limit ofN → ∞
so long as at least one ofAN or BN has what amounts
to eigenvectors that are uniformly distributed with Haar
measure. This result is stated more precisely in [6].

As was the case with independence for “classical”
random variables, “freeness” is the structure needed
to be able to compute mixed moments of the form
ϕ(An1Bm1 . . .AnkBmk). We note that the restriction
thatA andB do not commute so that in general,

ϕ(An1Bm1 . . .AnkBmk) 6= ϕ(An1+...nkBm1+...+mk).
(4)

is embedded into the definition of “freeness” when it
was invented by Voiculescu [6] in the context of his
studies on operator algebras. Though the condition for
establishing “freeness” between a pair of random matri-
ces, as described in [6], is quite technical and appears
abstract, it naturally arises many practical scenarios as
detailed in Section III.

C. Free Multiplicative Convolution

When AN and BN are asymptotically free, the
(limiting) probability measure for random matrices of
the form ANBN (by which we really mean the self-
adjoint matrix formed asA1/2

N BNA
1/2
N ) is given by

the free multiplicative convolution[6] of the probability
measuresµA andµB and is written asµAB = µA ⊠µB.
The algorithm for computingµAB is given below.

Step 1: Compute the Cauchy transforms,GA(z) and
GB(z) for the probability measuresµA andµB respec-
tively. For a probability measureµ on R, the Cauchy
transform is defined as:

G(z) =

∫

R

1

z − t
dµ(t). (5)

This is an analytic function in the upper complex half-
plane. We can recover the probability measure from
the Cauchy transform by the Stieltjes inversion theorem
which says that:

dµ(t) = − 1

π
lim
ǫ→0

ℑG(t+ iǫ), (6)

where theℑ denotes the imaginary part of a complex
number.
Step 2: Compute theψ-transforms,ψA(z) andψB(z).
Given the Cauchy transformG(z), the ψ-transform is
given by:

ψ(z) =
G(1/z)

z
− 1 (7)

Step 3: Compute the S-transforms,SA(z) and SB(z).
The relationship between theψ-transform and the S-
transform of a random variable is given by:

S(z) =
1 + z

z
ψ〈−1〉(z) (8)

whereψ〈−1〉(z) denotes the inverse under composition.
Step 4: The S-transform for the random variableAB is
given by:

SAB(z) = SA(z)SB(z). (9)

Step 5: ComputeψAB(z) from the relationship in (8).
Step 6: Compute the Cauchy transform,GAB(z) from
the relationship in (7).
Step 7: Compute the probability measureµAB using the
Stieltjes inversion theorem in (6).

D. Free Additive Convolution

WhenAN andBN are asymptotically free, the (limit-
ing) probability measure for random matrices of the form
AN + BN is given by thefree additive convolutionof
the probability measuresµA andµB and is written as
µA+B = µA ⊞ µB. A similar algorithm in terms of the
so-called R-transform exists for computingµA+B from
µA andµB. See [6] for more details.

What we want to emphasize about the algorithms
described in Sections (II-C) and (II-D) is simply that the
convolution operators on the non-commutative algebra
of large random matrices exists and can be computed.
Symbolic computational tools are now available to per-
form these non-trivial computations efficiently. See [2],
[3] for more details. These tools enable us to analyze
the structure of sample covariance matrices and design
algorithms that take advantage of this structure.

III. STOCHASTIC EIGEN-ANALYSIS OF SAMPLE

COVARIANCE MATRICES

Let y be an× 1 observation vector modeled as:

y = Ax + w, (10)

whereA is an×L matrix,x is aL× 1 “signal” vector
and w is a n × 1 “noise vector”. This model appears
frequently in many signal processing applications [5]. If
x andw are modeled as independent Gaussian vectors
with independent elements having zero mean and unit
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Fig. 1. The limiting spectral measure of a SCM (solid line) whose true measure is given in (16) forP = 0.4 andρ = 2 compared with1000
Monte-Carlo simulations forn = 100, N = 1000.
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Fig. 2. The limiting spectral measure of a SCM whose true covariance matrix has measure (16) withP = 0.4 andρ = 2, for different values
of c. Note that asc→ 0, the blurring of the eigenvalues reduces.



variance (identity covariance), theny is a multivariate
Gaussian with zero mean and covariance:

R = E[yyH ] = AAH + I. (11)

In most practical signal processing applications, the
true covariance matrix is unknown. Instead, it is esti-
mated fromN independent observations (“snapshots”)
y1,y2, . . . ,yN as:

R̂ =
1

N

N
∑

i=1

yiy
H
i =

1

N
YnYH

n , (12)

whereYn = [y1,y2, . . . ,yN ] is referred to as the “data
matrix” andR̂ is the sample covariance matrix (SCM).

When n is fixed andN → ∞, it is well-known
the sample covariance matrix converges to the true
covariance matrix. However, when bothn,N → ∞ with
n/N → c > 0, this is no longer true. Such a scenario
is very relevant in practice where stationarity constraints
limit the amount of data (N ) that can be used to form
the SCM. Free probability is an invaluable tool in such
situations when attempting to understand the structure of
the resulting sample covariance matrices.

We note first that the SCM can be rewritten as:

R̂ = R1/2W(c)R1/2. (13)

Here R is the true covariance matrix. The matrix
W(c) = (1/N)GGH is the Wishart matrix formed from
an n × N Gaussian random matrix with independent,
identically distributed zero mean, unit variance elements.
Once again,c is defined as the limitn/N → c > 0 as
n,N → ∞.

Since the Wishart matrix thus formed has eigenvectors
that are uniformly distributed with Haar measure, the
matricesR andW(c) are asymptotically free! Hence the
limiting probability measureµR̂ can be obtained using
free multiplicative convolutionas:

µR̂ = µR ⊠ µW (14)

whereµR is the limiting probability measure on the true
covariance matrixR and µW is the Marčenko-Pastur
density [1] given by:

µW = max

(

0, 1−1

c

)

δ(x)+

√

(x − b−)(b+ − x)

2πxc
I[ b

−
,b+]

(15)
whereb± = (1±√

c)2 andI[ b
−

,b+] equals1 whenb− ≤
x ≤ b+ and0 otherwise.

IV. A N EIGEN-INFERENCEAPPLICATION

Let AAH in (10) have np of its eigenvalues of
magnitudeρ andn(1−p) of its eigenvalues of magnitude
0 wherep < 1. This corresponds toA being ann× L
matrix withL < n with p = L/n so thatL of its singular

values are of magnitude
√
ρ. Thus, as given by (11), the

limiting spectral measure ofR is simply:

µR = p δ(x− ρ− 1) + (1 − p) δ(x− 1). (16)

Figure III compares the limiting spectral measure com-
puted as in (14) with Monte-Carlo simulations. Figure
III plots the limiting spectral measure as a function of
c. Note that asc → 0, we recover the measure in (16).
The “blurring” in the eigenvalues of the SCM is because
of insufficient sample support. Whenc > 1 then we are
operating in a “snapshot deficient” scenario and the SCM
is singular.

A. New rank estimation algorithm

Though the free probability results are exact when
n → ∞ the predictions are very accurate forn ≈ 10
as well. If the example in (16) was a rank estimation
algorithm where the objective is to estimatep and ρ
then Figure III intuitively conveys why classical rank
estimation algorithms such as [7] do not work as well as
expected when there is insufficient data. Our perspective
is that since free multiplicative convolution predicts the
spectrum of the SCM that accurately we can use free
multiplicative deconvolutionto infer the parameters of
the underlying covariance matrix model from a realiza-
tion of the SCM! We are able to do this rather simply
by “moment matching”. The first three moments of
the SCM can be analytically parameterized in terms of
the unknown parametersp, ρ and the known parameter
c = n/N as:

ϕ(R̂) = 1 + pρ (17)

ϕ(R̂2) = pρ2 + c+ 1 + 2 pρ c+ 2 pρ+ cp2ρ2 (18)

ϕ(R̂3) = 1 + 3 c+ c2 + 3 ρ2p+ 3 ρ3cp2 + 3 pρ

+ 9 pρ c+ 6 p2ρ2c+ 3 cρ2p+ 3 pρ c2

+ 3 p2ρ2c2 + p3ρ3c2 + ρ3p

(19)

Given ann × N observation matrixYn, we can com-
pute estimates of the first three moments asϕ̂(R̂k) =
1
n tr[( 1

N YnY∗
n)k] for k = 1, 2, 3. Since we knowc =

n/N , we can estimateρ, p by simply solving the non-
linear system of equations:

(ρ̂, p̂) = arg min(ρ,p)>0‖
3

∑

k=1

ϕ(R̂k) − ϕ̂(R̂k)‖2 (20)

As n,N → ∞ we expect the algorithm to perform
well. It also performs well for finiten. Figure 3 compares
the rank estimation performance of the new algorithm
with the classical MDL/AIC based algorithm. The plots
were generated over 2000 trials of ann = 200 system
with ρ = 1, andp = 0.5 and different values ofN . This
implies that the true rank of the system isn p = 100.
The bias of the rank estimation algorithm to be the
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Fig. 3. (Relative) Bias in estimating rank of true covariance matrix: New algorithm vs. classical algorithm (n = 200).
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ratio of the estimated rank to the true rank. Hence0
dB corresponds to zero rank estimation error and so on.
As Figure 3 indicates, the new algorithm dramatically
outperforms the classical algorithm and remains, on the
average, within 1 dimension (i.e.< 0.2 dB) of the true
rank even when in the snapshot deficient scenario, i.e.,
N < n ! Additionally, the new rank estimation algorithm
can be used to estimateρ andp. Figure 4 compares the
mean-squared estimation error forρ for the new and the
MDL/AIC algorithm respectively. Though the MDL/AIC
estimation error is fairly small, the new algorithm,
once again, performs significantly better, especially when
n ≈ N . See [4] for a generalization of this algorithm
including a rigorous theoretical analysis of its estimation
properties.

V. SUMMARY

Free probability, which has deep connections to the
studies of operator algebras, is an invaluable tool for
describing the spectral of large sample covariance ma-
trices. See [5] for applications to performance analysis.
As the algebraic structure captured by free probability
gets increasingly familiar, additional applications that
exploit this structure to design improved algorithms (as
in Section IV-A) are bound to emerge. This is yet
another instance of how the search for structure in signal
processing leads to new analytic insights, applications
and directions for future research.
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