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Abstract

A fundamental understanding of the information carrying capacity of optical channels re-
quires the signal and physical channel to be modeled quantum mechanically. This thesis
considers the problems of distributing multi-party quantum entanglement to distant users in
a quantum communication system and determining the ability of quantum optical channels
to reliably transmit information.

A recent proposal for a quantum communication architecture that realizes long-distance,
high-fidelity qubit teleportation is reviewed. Previous work on this communication architec-
ture is extended in two primary ways. First, models are developed for assessing the effects of
amplitude, phase, and frequency errors in the entanglement source of polarization-entangled
photons, as well as fiber loss and imperfect polarization restoration, on the throughput and
fidelity of the system. Second, an error model is derived for an extension of this commu-
nication architecture that allows for the production and storage of three-party entangled
Greenberger-Horne-Zeilinger states. A performance analysis of the quantum communication
architectuire in qubit teleportation and quantum secret sharing communication protocols is
presented.

Recent work on determining the channel capacity of optical channels is extended in sev-
eral ways. Classical capacity is derived for a class of Gaussian Bosonic channels representing
the quantum version of classical colored Gaussian-noise channels. The proof is strongly mo-
tivated by the standard technique of whitening Gaussian noise used in classical information
theory. Minimum output entropy problems related to these channel capacity derivations
are also studied. These single-user Bosonic capacity results are extended to a multi-user
scenario by deriving capacity regions for single-mode and wideband coherent-state multiple
access channels. An even larger capacity region is obtained when the transmitters use non-
classical Gaussian states, and an outer bound on the ultimate capacity region is presented
as well.

Thesis Supervisor: Jeffrey H. Shapiro
Title: Julius A. Stratton Professor of Electrical Engineering -
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Chapter 1

Introduction

Optical communication systems play a key role in handling today's increasing demand

for high-capacity networks. It is clear that using light to transmit information presents

important fundamental and practical problems, and it is thus highly desirable to understand

the ability of optical channels to reliably transmit information. At a fundamental level, all

physical communication channels are subject to the laws of quantum mechanics. But while

quantum effects are negligible for radio-frequency systems, quantum noise can be a dominant

factor at optical frequencies. For this reason, an accurate fundamental treatment of optical

communication systems requires the signal and physical channel to be modeled quantum

mechanically.

Researchers have long been interested in quantum limits on the capacity of optical

channels [1],[21,[3]. These capacity results have been made rigorous through the use of the

Holevo-Schumacher-Westmoreland theorem [4],[5], a quantum generalization of Shannon's

channel capacity theorem [6] that establishes the maximum rates of classical information

that can be transmitted reliably over quantum channels. Recently, the classical capacity

of the Bosonic pure-loss channel was shown to be achievable by coherent-state codes [7]

and that entangling codewords over channel uses is not required for achieving capacity.

Additional study of the pure-loss channel capacity with specific transmitter and receiver

structures as well as applications of these results to the free-space optical channel were

considered in [8].

The laws of quantum mechanics not only place limitations on communication, they also

offer resources for enhancing our ability to communicate. In particular, quantum mechanics
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predicts that strong correlations known as entanglement can exist between separate quan-

tum systems. Quantum entanglement is important in the study of local-hidden variable

theories of physics. For purposes of communication, entanglement serves as a basic re-

source for communication protocols such as teleportation [9] and superdense coding [10].

The distribution of entanglement to distant users in a quantum communication system is

difficult to achieve in practice. A feasible method for creating entanglement in a practical

communication system must be able to overcome transmission losses and permit users to

store their entanglement long enough to carry out communication protocols. An initial

teleportation experiment using singlet states was reported in [11] and [12]. A theoretical

problem of interest is to quantify the increase in capacity that can be achieved when the

transmitters and receivers of a quantum communication channel possess shared entangle-

ment. For single-user quantum channels, the classical information capacity of superdense

coding was obtained in [13] and [14].

In this thesis, we assume the reader has some background in quantum information

theory and quantum optics. The following two sections offer brief reviews of these topics

and references for those readers who desire a more thorough introduction. We end this

chapter with an outline of the work in this thesis.

1.1 Quantum Information

The basic concepts in quantum information theory that will be required for the remainder

of this thesis will be reviewed in this section. For additional details on quantum information

the reader should consult [15].

1.1.1 Quantum States and Density Operators

The state of a quantum mechanical system is the totality of information that can be known

about that system. It is represented mathematically as a unit-length vector, also known as

a ket, |V)), in a complex Hilbert space H. Associated with each ket [|0) is its dual vector,

or bra, denoted by (01. Given a fixed complete basis {10)} of R, we can think of ['0)

as a column vector of complex numbers and (01 as the row vector equal to the Hermitian

conjugate of 1,0).

A quantum bit (qubit), viz., the state of any two-level quantum system, is the basic
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unit of quantum information. A qubit lives in a two-dimensional Hilbert space R 2 and can

be written as

1 I) = CO) + 11), (1.1)

where {10), 11)} is an orthonormal basis and a, 1 are complex numbers that satisfy 0a12 +

112 = 1. In contrast to classical bits, which can assume only one of two values, 0 or 1,

qubits can exist in a superposition of the states 10) and 11). More generally, the state of n

qubits is a quantum state in the Hilbert space R2o", which has dimension 2". For example,

the state of three qubits A, B, and C, is the following superposition of eight basis states:

14)ABc = E Qkmnlk)A 0 Im)B 0 In)c, (1.2)
k,m,n=O,1

where the akmn satisfy the normalization condition Ek,m,n Iakmn12 1.

Classical uncertainty about the state of a physical system is incorporated into our de-

scription through the use of density operators. If it is known that the state of the system

is IVbm) with probability pm, then the density operator for the system is defined as

= IpmOm)(I@m - (1.3)

From this definition, it can be easily verified that p is a positive definite operator with unit

trace. It follows that the eigenvalues {An} of A form a probability distribution. In the

special case in which the state is known with certainty, the density operator consists of a

single term and is a projection operator 0 = [0)(01.

When we deal with composite systems, the density operators of the component systems

are referred to as the reduced density operators. Let fiAB be the density operator for the

composite system consisting of quantum systems A and B. Then, the reduced density

operator for A is given by

PA = trB(AB), (1.4)

where trB is the partial trace over system B. The partial trace operator is defined on tensor

products by

trB(|ai)(a 2 0 Ibi)(b 21) = lai)(a21((b2 |bi)), (1.5)

for any vectors jai), 1a2) of system A and 1bi), Jb2 ) of system B. The definition is extended
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to general mixed states PAB by requiring the partial trace operator to be linear.

1.1.2 Measurements

Quantum measurements are commonly discussed in terms of observables, the dynamical

variables of a quantum system. An observable of a quantum system is represented by

a Hermitian operator A. The outcome of measuring the observable A is always one of

the eigenvalues a, of A, and given the state 0 of the quantum system, the probability of

obtaining measurement outcome an is

p(an) = (an|jlan). (1.6)

The state immediately after the measurement is Ian), the eigenket corresponding to an. The

system is said to collapse into the post-measurement state Ian).

The measurement of an observable as described above is not the most general measure-

ment procedure one can make on a quantum system. A more general procedure involves

performing a measurement on the system of interest together with an auxiliary system pre-

pared in some initial state. This general measurement can be described by the positive

operator valued measure (POVM) formalism. A POVM measurement is defined by a set of

positive semidefinite operators {Em} that satisfy the condition Em Em = . If the system

is in state A, then outcome m of the POVM measurement is obtained with probability

p(m) = tr(AEm). (1.7)

A POVM, without additional information, does not determine a post-measurement state.

However, if the post-measurement state is not needed for a particular problem, then the

POVM formalism provides a convenient way to study general measurement statistics on a

quantum system.

1.1.3 Information Quantities

Von Neumann entropy is a measure of mixedness of a quantum density operator, and is

defined as

S(O) = -tr(Alog A) = H({An}), (1.8)
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where {A} are the eigenvalues of j and H(-) is the Shannon entropy from classical infor-

mation theory. Von Neumann entropy is an important quantity in quantum information

theory, as it appears in fundamental theorems dealing with compression and coding over

noisy quantum channels. One basic property of von Neumann entropy is subadditivity. For

two quantum systems A and B, the entropy of the joint system satisfies

S(PAB) S(A) + S(3B), (1.9)

where /A and PB are the reduced density operators of PAB. Equality holds in this expression

if and only if PAB = PA 9 PB. This property is analogous to the corresponding property of

Shannon entropy for classical joint random variables.

Suppose that Alice sends classical messages to Bob by encoding her messages on the

states of a quantum mechanical system. To send message m, Alice prepares the signal state

m with a priori probability pm. Bob attempts to obtain information about the message m

by performing a suitable POVM on the signal ensemble {Pm, m} that gives a low probability

of error. In [16] Holevo derived an upper bound on the amount of information that Bob

can obtain from his received output M about Alice's input M. Accessible information I,

is the maximum mutual information I(M; k) over all possible decoding POVMs. Holevo

showed that the mutual information between input and output satisfies

I(M; M) 5 X(Pm, m) S Pm/m) ZPmS(Am). (1.10)

In particular, accessible information is upper bounded by the Holevo information: Ia 5 X.

In general, the Holevo bound cannot be attained for any decoding POVM, and in fact can

be a weak bound [17]. In Section 1.1.5, we discuss a result which says that the Holevo

bound can be approached through the use of block codes and entangled measurements.

1.1.4 Entanglement

Entanglement is a feature of quantum mechanics that has received much attention recently

as a physical resource which can be used to enhance the performance of communication and

computational protocols. Entanglement is a correlation between multiple physical systems

that is stronger than can be predicted by any local theory of physics. It is this "spooky"
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correlation that led to the Einstein-Podolsky-Rosen (EPR) paradox [18], which argues that

quantum mechanics is incomplete as a description of physical reality.

Quantum systems A1, ... , A,, are said to be entangled if their joint density operator

PA 1,. A cannot be written as a convex sum of product states:

Pii (1.11)

A state that is not entangled is called separable. A pure state is entangled if it cannot be

written as a tensor product of pure states. An example of a maximally entangled pure state

of two qubits, as measured by the von Neumann entropy of the reduced density operator,

is the singlet state

I'~)AB = -(-(01)AB - I10)AB)- (1.12)

It can be verified that the singlet state cannot be expressed a product kb)A 0 q.)B.

Teleportation and Superdense Coding Here, we consider two basic communication

protocols, teleportation [9] and superdense coding [10}, that demonstrate how entanglement

can be used as a resource for communication. In the teleportation protocol, shared entan-

glement acts as a quantum channel for the transmission of quantum information. Suppose

two parties, Alice and Bob, are spatially separated and that each possesses one qubit of a

singlet state (1.12). Alice wishes to send a message qubit bk)M = aO)M + 11)M to Bob.

The idea of the teleportation protocol is for Alice to make a measurement on the combined

system of her two qubits, send the two-bit result of the measurement to Bob over a classical

channel, then for Bob to perform a unitary operation on his qubit to recover the message

qubit. A detailed procedure for the teleportation protocol is as follows.

1. The initial state of the three qubits is 9)M 1' 0-)AB. Alice performs a measurement in

the Bell basis {kb+)MA = (I01)MA ± I10)MA)/-Vf, I0')MA = (00)MA ± I11)MA)/V2}

that yields two bits of classical information which will be needed at the receiver to

reproduce the message qubit.

2. Alice sends the two-bit outcome of her Bell-state measurement over a classical channel

to Bob.

3. Depending on which message Bob receives, he performs one of four unitary transfor-
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mation, known as the Pauli operators, on his qubit. The Pauli operators are defined

as

Z~ == 0 - (1.13)
0 1 i 0

Z=0 1 1 0
~=[ =[ 2] (1.14)

1 0 0 -1

When Bob receives one of the messages {4-, /+, q +}, he applies the corresponding

transformation from the set {f, Z, Z, Y}. Then, up to some overall phase, Bob will

possess the message qubit.

Alice's two qubits collapse into one of the four Bell states immediately after performing her

measurement. Thus, at the completion of this procedure, Bob will possess the only copy of

the message qubit in accordance with the no-cloning theorem [19].

The superdense coding protocol is in some sense the dual procedure of teleportation.

Instead of transmitting quantum information, a shared singlet state enables the transmis-

sion of classical information. Suppose Alice and Bob each possess one qubit of a singlet

state. Alice encodes a two-bit classical message by performing one of four unitary operators

{I, X, Y, Z} on her share of the singlet state, and sends this qubit to Bob over a quantum

channel. Depending on which message Alice has encoded, the joint state of qubits A and B

will be one of the four Bell states. Because the Bell states are orthogonal, Bob can perform

a measurement on the combined systems A and B to determine which measurement Alice

performed. In this way, Alice can transmit two classical bits to Bob over a qubit channel.

1.1.5 Quantum Channels

A closed quantum system in initial state 1'(to)) evolves in time according to the Schrodinger

equation

ih dt = II0(t)), (1.15)

where ft is the Hamiltonian of the system. Solving this differential equation shows that the

state of a closed system at time t > to is given by

10(t)) = (t, to)|@(0)), (1.16)
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where 0(t, to) = exp(-ifH(t - to)/h) is the unitary time-evolution operator. In terms of

density operators, unitary time evolution is expressed as p(t) = #(t,t o ),p(to)Ut(t, to). In

practice, the quantum systems we are interested in are not isolated, but rather are coupled to

their environment. The interaction of a system with its environment leads to non-unitary

time evolution. The general formalism described below has been developed for studying

non-unitary system dynamics.

Consider a quantum channel that takes as input a density operator from Hilbert space

Wi,4 and outputs a density operator in Hilbert space Rout, i.e., a quantum channel is a map

E : B(Ri-4) -+ B(out), where B(R) denotes the set of bounded operators in H. A quantum

channel satisfies the following axioms:

1. E is trace preserving: tr(E()) = 1, where p is any density operator in Wj,

2. E is a convex-linear map on the set of density operators: E(Ej pjpi) = Ej p2 £(ij), for

any probability distribution {pi}.

3. E is a completely positive map. This means that if Iq is the identity operator on some

auxiliary system Q, then

A > 0 => (E _ IQ)(Z) : 0, (1.17)

for A an operator on the composite space Hin 0 Q.

These axioms are physically reasonable properties for a quantum channel to satisfy. A

quantum channel is often referred to as a TPCP (trace-preserving, completely-positive)

map. It can be shown that every TPCP map £ has an operator-sum representation

E(f)= ZAkiA, (1.18)
k

where {Ak}, called the Kraus operators, satisfy the trace-preserving condition k A)Ak = I.

The classical capacity C is the number of bits that can be reliably transmitted over

a quantum channel E. The HSW (Holevo-Schumacher-Westmoreland) theorem [20],[4],[5]

says that the capacity of a quantum channel E, normalized to the number of channel uses,

is given by

C = lim = sup (1.19)
M-0oo M M

14



where the M-shot capacity is defined in terms of the product channel EOM as

Cm = max X(pi,E*M(pi)). (1.20)
Pi, Ai

In classical information theory, Shannon's coding theorem says that capacity is calculated

by maximizing the mutual information between the input and output of a communication

channel. The HSW theorem extends Shannon's result and shows that in the quantum case,

classical capacity is obtained by maximizing the Holevo information of a quantum channel.

The normalization in (1.19) is necessary because it is unknown whether Holevo information

is super-additive, i.e., whether entangling over inputs can increase capacity.

1.2 Quantum Optics

Some basic knowledge of quantum optics is assumed in this thesis, and for background

we refer to [21] and [22]. In this section, we provide a brief review of quantum optics,

emphasizing the concepts that will be useful in this thesis.

1.2.1 Field Quantization

A single mode of monochromatic light is expressed classically as

E(t) = 1(Ee-'w' + E*eat) = X1 cos wt + X 2 sin wt, (1.21)
2

where the quadrature components X1 and X 2 are the real and imaginary parts of the

complex field amplitude E = X 1 + iX2 . In the quantum theory of radiation, a single-

mode field is described by the annihilation operator & and its Hermitian conjugate creation

operator &t, which obey the Boson commutation relation [&, &,] = 1. The eigenkets {fn):

n = 0,1, 2,.. .} of the number operator h = &t& form a complete orthonormal basis, and

the nth-excited state can be expressed in terms of the vacuum state as In) = (tt)n0)/Vrn.

Coherent states of light are those generated by lasers operating well above threshold

and represent the closest equivalent to classical light with a definite complex amplitude.

Mathematically, coherent states {Ia) : a E C} can be defined as the eigenkets of the

annihilation operator d, or alternatively, as displacements of the vacuum state in phase
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space: 1a) = D(a)0), where D(a) = exp(aat - a*a). From the number-state expansion,

00 n

Ia) = e-n/2 In), (1.22)

we see that coherent states give Poisson statistics in photon counting measurements. In

phase space, a coherent state is circularly symmetric and the fluctuations of the quadrature

operators, ai = (a+at)/2 and a2 = (&-&f)/ 2 i, have the minimum product in the uncertainty

relation: (Aa2)(Aa2) = 1/16.

1.2.2 Gaussian States

For any density operator p, define the mean tr(pa) and variance matrix

V1 V12 (a2) (A 1Aa 2 + A&2Aai)/2 . (1.23)

V12 V2 (Aa1 A&2 + A&2 Aa 1)/2 ( 2ad)

A Gaussian state has a symmetrically-ordered characteristic function of the form ,(()O

tr(b(()) = exp((C, (*)), where 0((, (*) is quadratic in (c, (*). Equivalently, Gaussian

states can be defined as those density operators of the form pi oc exp(f(a, at)), where

f(&, at) is quadratic in (a, at). Like classical Gaussian probability distributions, quantum

Gaussian states are characterized by their mean and variance matrix. In what follows,

assume zero-mean Gaussian states.

Squeezed states are an important class of Gaussian states. A zero-mean squeezed state

is obtained by squeezing the vacuum state, 0, z) = S(z)0), where the unitary squeeze

operator $(z) is defined as

$(z) = exp [r(e-ia2 - e i9t2)], (1.24)

and z = reiO. It is convenient to introduce the parametrization ji = cosh r and v = eO sinh r.

The degree of attenuation and amplification is determined by r = Izi and 0 determines the

phase of the squeezing. The squeezed state 10, z) has variance matrix

V=1 |L _-V12 -2 Im( pv) (.5
4 = - (1.25)

-2Im( pw) |W +v 2.J

16



An important property of squeezed states with phase 0 = 0 is the fact that they have the

minimum uncertainty product (A&I)(A&2 ) = 1/16, with

(Aet)= -e2r (1.26)1 4

(Ada) = e2r. (1.27)

Fluctuations in one quadrature can be reduced below the standard quantum limit at the

expense of increasing fluctuations in the other quadrature.

Another important example of a Gaussian state is the thermal state

p(N) = N1 ( N ) , (1.28)

with mean photon number N. We can show that every Gaussian state is unitarily equivalent

to a thermal state [23]. Applying the squeeze operator to a Gaussian state 3 oc exp(f(&, at))

with variance matrix V gives the state

S(z), f (z) oc S(z) exp(f(&, et))St(z) = exp(f(ptt + v&t, pet + v*&)). (1.29)

By choosing the squeeze parameters as

_ Vi + V 2  1 1/2- y1V11/2 2 (1.30)

arg(v) = tan-i 2 1.31)

A = (jvj2 + 1)1/2, (1.32)

the quadratic exponent f(M& + vdt, pat + v*&) is diagonalized to the form (1.28) with mean

photon number hT - 21V11/ 2 - 1/2. Thus, the Gaussian state 0 is unitarily equivalent to

the thermal state /T(iiT). Since unitary transformations leave eigenvalues invariant, this

result shows that the entropy of a single-mode Gaussian state is given by

S(W) = n(ot) = t 2vVa/2 . (1.33)

We also note that the variance matrix of can be expressed in terms of the squeeze param-
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eters as

V= =V112 |( p+ V12 2Im(pv). (1.34)

2Im(pv) Ip - VI2

1.3 Thesis Outline

Entanglement is a feature of quantum mechanics that has recently been recognized as

an important resource for quantum communications. In Chapter 2, we study a quantum

communication architecture [24], which is being developed for high-fidelity, long-distance

transmission and storage of polarization-entangled photons by a team of researchers from

the Massachusetts Institute of Technology (MIT) and Northwestern University (NU). An

initial experimental demonstration of teleportation using singlet states was performed by

Bouwmeester et al. [11],[12], but only one of the Bell states was measured, the demonstra-

tion was a table-top experiment, and it did not include a quantum memory. The MIT/NU

proposal for a singlet-based quantum communication system remedies all of these limita-

tions. An initial assessment of the system's throughput versus fidelity performance was

presented in [24]. We will extend and generalize previous work on this architecture by

considering the effects of system errors that limit its performance in qubit teleportation.

We also study an extension of the MIT/NU architecture that allows for the distribution of

three-party entangled Greenberger-Horne-Zeilinger states and consider its performance in

the quantum secret sharing protocol.

In Chapter 3, we study the problem of superdense coding over quantum multiple access

channels (MACs) in finite-dimensional spaces. Superdense coding is a communication pro-

tocol which uses entanglement to enhance classical information transmission over quantum

channels. We will extend previous analyses of the superdense coding protocol by deriving

the capacity region of the superdense coding MAC. The transmitters in the superdense

coding MAC are restricted to unitary encodings. We also consider the capacity of the

entanglement-assisted MAC in which transmitters encode input messages with general lo-

cal operations.

We are interested in understanding the limitations the laws of quantum mechanics place

on our ability to communicate over optical channels. We extend recent work [7],[25] on

the capacity of quantum optical communication channels. In Chapter 4, we derive the

classical capacity C for Gaussian Bosonic channels that represent the quantum version of
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classical colored Gaussian-noise channels. In classical information theory, whitening filters

are used to reduce colored Gaussian-noise channels to standard additive white Gaussian

noise channels. In the quantum problem, non-commuting operators require us to modify

this classical whitening approach. Putting this together with a conjecture for the capacity of

the thermal-noise channel gives us the desired capacity result. We will also solve minimum

output entropy problems that are related to the thermal-noise capacity conjecture.

In Chapter 5, we generalize these capacity results to an optical MAC in which multiple

transmitters send classical information over a quantum optical channel to a common re-

ceiver. The capacity for quantum optical MACs with coherent-state inputs is derived. We

generalize a single-user Gaussian code to achieve higher rates on the optical MAC, and we

derive bounds for the ultimate capacity region.

Summary and directions for future work are discussed in Chapter 6.
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Chapter 2

MIT/NU Communication

Architecture

A team of researchers from the Massachusetts Institute of Technology (MIT) and Northwest-

ern University (NU) has proposed a quantum communication architecture [24] that permits

long-distance high-fidelity teleportation using the Bennett et al. singlet-state protocol [9]

described in Section 1.1.4. This architecture uses a novel ultrabright source of polarization-

entangled photon pairs [26] and trapped-atom quantum memories [27] in which all four Bell

states can be measured. By means of quantum-state frequency conversion and time-division

multiplexed polarization restoration, it is able to employ standard telecommunication fiber

for long-distance transmission of the polarization-entangled photons.

In this chapter we carry out a performance analysis of the MIT/NU communication ar-

chitecture. In previous work [28], a Werner state error model was derived for the joint state

of the quantum memories, and the use of error mitigation techniques was considered for im-

proving the performance of the communication architecture. The present work [29],[30],[31]

extends on this analysis in two primary ways. First, an error model for the long-distance

teleportation system is developed to assess the effects of errors in the entanglement source

as well as fiber loss and imperfect transmission of the entangled photon pairs. This analysis

follows the approach taken in [28] to derive single-photon error models from the joint state

of the loaded memory cavities. We present the throughput and fidelity assessments that

follow from these error models. Second, an error model is derived for an extension of the

MIT/NU architecture that allows for the production and storage of GHZ states. The GHZ-
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Figure 2-1: Schematic of long-distance quantum communication system. P = ultrabright narrow-
band source of polarization-entangled photon pairs; L = L km of standard telecommunications fiber;
M = trapped-atom quantum memory.

state system error model is used to study the performance of the quantum secret sharing

protocol [32] as well as the use of quantum error correction and entanglement purification

protocols to improve the performance of the GHZ system.

2.1 Long-Distance Qubit Teleportation System

A schematic diagram of the MIT/NU communication architecture is shown in Fig. 2-1.

The P block is an ultrabright narrowband source of polarization-entangled photon pairs.

It combines the signal and idler output beams from two type-II phase matched optical

parametric amplifiers. Each M block is a quantum memory consisting of a single ultracold
87Rb atom confined by a C0 2-laser trap in a single-ended optical cavity. A 795 nm pho-

ton in an arbitrary polarization can be absorbed by the atom, transferring the quantum

information to long-lived storage levels in the atom. Upon successful loading of the singlet

state, 1V-)TR = (101)TR - 110)TR)/Vf2, the memories can serve as transmitter and receiver

stations for qubit teleportation.

2.1.1 Ultrabright Source of Polarization-Entangled Photons

Polarization-entangled photons are transmitted from the source over L km of standard op-

tical fiber to be loaded into trapped-atom quantum memories. The Fig. 2-1 system requires

a source of entangled photons at the 795 nm line of its rubidium atom quantum memories.

Furthermore, only those pairs within a narrow frequency band (-10 MHz) of the 795nm

line will successfully load the memory, so the Fig. 2-1 system places a premium on source

brightness. Spontaneous parametric downconversion is the standard approach for gener-

ating polarization-entangled photons. It is so broadband (-10" Hz), however, that its

pair-generation rate in the narrow bandwidth needed for coupling into the rubidium atom

is extremely low: -15 pairs/sec in a 30 MHz bandwidth. The P block in Fig. 2-1 represents

an ultrabright narrowband source [26], which is capable of producing 1.5 x 106 pairs/sec
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Figure 2-2: Essential components of the singlet-state quantum communication system from Fig. 1.
(a) Simplified energy-level diagram of the trapped rubidium atom quantum memory. The A-to-
B transition occurs when a photon is absorbed. The B-to-D transition is coherently driven to
enable storage in the long-lived D levels. The A-to-C cycling transition is used for nondestructive
verification of a loading event. (b) Ultrabright narrowband source of polarization-entangled photon
pairs. The polarizations , and y are denoted by arrows and bullets, respectively; PBS=polarizing
beam splitter.

1570 nm PUMP 1(2)
1608 nm INPUT 0

Figure 2-3: Schematic diagram of quantum-state frequency conversion: a strong pump beam at
1570 nm converts a qubit photon received at 1608 nm (in the low-loss fiber transmission window) to
a qubit photon at the 795 nm wavelength of the 87Rb quantum memory via a single-pass interaction
in a second-order (X(2

)) nonlinear crystal.

in a 30 MHz bandwidth by combining the signal and idler output beams from two dou-

bly resonant type-II phase matched optical parametric amplifiers (OPAs), as sketched in

Fig. 2-2(b).

Quasi-phase-matching in periodically-poled nonlinear materials makes it possible to

choose the OPA wavelength, for our polarization-entanglement source, to suit the applica-

tion at hand. In particular, by using periodically-poled potassium titanyl phosphate (PP-

KTP), a quasi-phase-matched type-II nonlinear material, we can produce ~106 pairs/sec

at the 795nm wavelength of the rubidium memory for direct memory-loading (i.e., local-

storage) applications. For long-distance transmission to remotely located memories, we

can use a different PPKTP crystal and pump wavelength to generate 106 pairs/sec in the

1.55 pm wavelength low-loss fiber transmission window. After fiber propagation we shift

the entanglement to the 795nm wavelength needed for the rubidium-atom memory via

quantum-state frequency conversion [33],[34], shown in Fig. 2-3.

Reference [26] reported a lumped-element analysis for a continuous-wave, doubly-resonant.
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dual-OPA system with amplitude-matched, anti-phased, nondepleting pumps and no excess

losses. That analysis was used in [24] to demonstrate that such an arrangement produces

the high-brightness, narrowband singlet states needed for qubit teleportation. More re-

cently, a broadband traveling-wave treatment of a type-II phase matched, doubly-resonant,

dual OPA system has been shown to reproduce the lumped element results when the former

is limited to a few cavity linewidths about a double resonance [35]. Because the trapped-

atom quantum memory in the MIT/NU architecture will only respond to that portion of

the dual-OPA's output that lies within a narrow spectral region about the 795 nm atomic

line, we shall employ the lumped-element source theory in what follows. Because we are

interested in the effects that pump amplitude, phase, and frequency errors will have on the

throughput and fidelity of the teleportation system, we need to generalize somewhat the

dual-OPA source model from [24],[261.

Following [36], we have that the equations of motion governing the intracavity annihila-

tion operators, { ak, (t) : k = S, I, j = 1, 2 }, of the signal and idler modes for the jth OPA

are,

( + r s, (t) = (- 1)-'Gjrt (t) + V2is I(t) + V2(F -y) Av,(t), (2.1)

+ F) a, (t) = (-1)j-GFre (t) + v ~iA(t) + 2(F - -y)Av (t), (2.2)

where {AI(t)e-Wkt, Av (t)e~Wkt} are the positive-frequency, photon-units input field and

OPA-cavity loss operators for the signal and idler fields, all of which are taken to be in their

vacuum states. In these equations we have assumed that the two OPAs are phase matched

at a double resonance which occurs for signal frequency ws and idler frequency wI. We

have also assumed that all four OPA modes see identical cavities, with common linewidth

F and output-coupling rate y ; F. To capture the effects of pump amplitude, phase,

and frequency errors, we allow each OPA to have a different, complex-valued normalized

pump strength Gj, where |G 2 equals the pump power divided by the threshold power for

oscillation, and we allow the center frequencies ws and wj to be detuned from frequency

degeneracy by Aw and -Aw, respectively. The (-1)3~1 factors in these equations imply

that arg(G1 ) = arg(G 2 ) corresponds to the anti-phased pumping required for generating

the polarization-entangled singlet state which is needed in the Bennett et al. teleportation

protocol.
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The OPAs' output fields are given by

A PA(t) = --yas (t) - Ajt), (2.3)

APA P A ItN (2.4)

and it is the statistics of these output fields that characterize the quality of the dual-OPA

as an entanglement source for use in teleportation.

Equations (2.1)-(2.4) are easily solved, in the frequency domain, yielding a pair of two-

mode Bogoliubov transformations relating the input and output field operators for each

OPA. These in turn imply that the OPAs produce signal and idler beams in zero-mean,

entangled, Gaussian states which are completely characterized by the following normally-

ordered and phase-sensitive correlation functions,

KA.(r) = (AOPAt t r)AOPA(t))
2P ~ (T)HiI ___________

IGj' e1-IG|)rr - e-(1+|Gyj)rr] (2.5)
2 1 - jGjj 1 + jGjj

and

K A(r)= (OPA OPA

Gjy e-(1-|Gj|)rr+ e-(+IGjl)rlT 1
I+ . 262 L 1-G| 1+jGj(

2.1.2 Quantum-State Transmission over Fiber

Successful singlet transmission requires that polarization not be degraded by the propa-

gation process. Yet, propagation through standard telecommunication fiber produces ran-

dom, slowly-varying (-msec time scale) polarization variations, so a means for polarization

restoration is required. The approach taken for polarization restoration in the MIT/NU

architecture, shown schematically in Fig. 2-4, relies on time-division multiplexing (TDM).

Time slices from the signal beams from the two OPAs are sent down one fiber in the same

linear polarization but in nonoverlapping time slots, accompanied by a strong out-of-band

pulse. By tracking and restoring the linear polarization of the strong pulse, we can restore

the linear polarization of the signal-beam time slices at the far end of the fiber. After this
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Figure 2-4: Transmission of time-division multiplexed signal beams from OPAs 1 and 2 through
an optical fiber. Ap = pilot pulse, WDM MUX = wavelength-division multiplexer, WDM DEMUX
= wavelength-division demultiplexer, HWP = half-wave plate.

linear-polarization restoration, we then reassemble a time-epoch of the full vector signal

beam by delaying the first time slot and combining it on a polarizing beam splitter with the

second time slot after the latter has had its linear polarization rotated by 900. A similar

procedure is performed to reassemble idler time-slices after they have propagated down the

other fiber. This approach, which is inspired by the Bergman et al. two-pulse fiber-squeezing

experiment [37], common-modes out the vast majority of the phase fluctuations and the po-

larization birefringence incurred in the fiber, permitting standard telecommunication fiber

to be used in lieu of the lossier and much more expensive polarization-maintaining fiber.

2.1.3 Trapped-Atom Quantum Memory

Each M block in Fig. 2-1 is a quantum memory in which a single ultra-cold 87Rb atom

(-6 MHz linewidth) is confined by a far-off-resonance laser trap in an ultra-high-vacuum

chamber with cryogenic walls within a high-finesse (-15 MHz linewidth) single-ended op-

tical cavity. This memory can absorb a 795 nm photon, in an arbitrary polarization state,

transferring the qubit from the photon to the degenerate B levels of Fig. 2-2(a) and thence

to long-lived storage levels, by coherently driving the B-to-D transitions. (We are using

abstract symbols here for the hyperfine levels of rubidium; see [271 for the actual atomic

levels involved as well as a complete description of the memory and its operation.) With

a liquid helium cryostat, so that the background pressure is less than 10-14 Torr, the ex-

pected lifetime of the trapped rubidium atom will be more than an hour. Fluctuations in
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Figure 2-5: Signal and idler beams from the dual-OPA polarization entanglement source are trans-

mitted down optical fibers for loading into remote quantum memories.

the residual magnetic field, however, will probably limit the atom's decoherence time to a

few minutes.

By using optically off-resonant Raman (OOR) transitions, the Bell states of two atoms in

a single vacuum-chamber trap can be converted to superposition states of one of the atoms.

All four Bell measurements can then be made, sequentially, by detecting the presence (or

absence) of fluorescence as an appropriate sequence of OOR laser pulses is applied to the

latter atom [27]. The Bell-measurement results in one memory can be sent to a distant

memory, where at most two additional OOR pulses are needed to complete the Bennett et

al. state transformation. The qubit stored in a trapped rubidium atom can be converted

back into a photon by reversing the Raman excitation process that occurs during memory

loading.

2.2 Fiber Transmission Error Model

In this section we develop a model for propagation loss and imperfect polarization restora-

tion in TDM transmission of polarization-entangled photons through a pair of optical fibers,

see Fig. 2-5.
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2.2.1 Propagation Loss

As suggested by Fig. 2-1, we will take the dual-OPA source to be equidistant from the two

quantum memories, and thus we may assume that the signal and idler beams encounter the

same transmission factor, 7L < 1, in propagation to their respective quantum memories. It

is then easy to show that the effects of this propagation loss can be lumped into the source

model itself, i.e., we can consider the fibers to be lossless by changing the dual-OPA's

normally-ordered and phase-sensitive correlation functions to be,

K 2 A (r) = ?7LG 31 e-(1-jGj| [e )PII e-(1+GjI)r |12

OPAj 2 1-GI 1 + G '2.7)

W (P) (T) - 7 e- (1- jG j )r I e- ( +G I)PI r 1j(2.8)
K ( -Pj 2 [1 -Gj + 1+GjI , (2.8)

in lieu of the expressions from Eqs. (2.5) and (2.6).

2.2.2 Imperfect Polarization Restoration

The narrowband nature of the dual-OPA's signal and idler beams, which obviates any con-

cern about dispersive pulse spreading, combined with the short duration (~1 psec [24]) of

the TDM sequence compared to the msec time scale over which fiber fluctuations occur,

imply that we need only concern ourselves with simple, time-independent polarization trans-

formations for {Ap, S1, S2} on one fiber and {Ap, 1,, 12} on the other fiber. In particular,

suppose we use the x polarization as the input to the fibers and

Ak,(t) - (AOPA(t) Af (t)) (2.9)

to denote the vector field operators for the signal and idler time slots at the input to the

fiber, where the y-polarized operators are all in vacuum states. The corresponding vector

field operators at the output of the fiber will then be given by

A' (t) = Fk(Ok, cpk, 0'i, 7k) Ak (t), (2.10)
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where we have suppressed the L/c-sec propagation delay and Fk is the unitary polarization-

transformation matrix for fiber k (k = S, 1),

( eik cos(Ok/2) -ei(Pk+Wk) sin(Ok/2)
.Fk(Oks,, 'i,#) = I , (2.11)

ei(Vak+'') sin(Ok/2) e'(Vek+'k+') COS(Ok/2)

for Ok E [0,,7r] and (Pk, 'k, ,k E [0, 2,7r).

The pilot pulses in each fiber, which undergo these same polarization transformations,

are sufficiently strong that they behave classically, thus affording high signal-to-noise ratio

measurements of { k, W' : k = S, I} but no information about { , I : k = S, I}. Po-

larization restoration is then performed on {S1 , S2 } and {I1, 12} using the putative inverse

transformations,

(cOs(k /2) (2.12)
-sin(Ok/ 2 ) ei(Ak) cos(k/2)

where { 6k, ' : k = S, I} are estimated values derived from the pilot-pulse measurements.

If these measurements are perfect, then the vector signal and idler fields after polarization

restoration will be

A OUT
Ak3  T1(k )F OA ,Vk k (t)

= e2lpk (AOPA(t) eiPkA (t))T (2.13)

hence accomplishing perfect restoration of the signal and idler time slots, up to an unim-

portant pair of absolute phase factors.

Errors may occur in estimating the parameters of the fiber transformations, in realizing

inverse transformations based on these estimates, in extracting the x-polarized components

from the polarization-restored fiber outputs, and in reassembling the polarization-entangled

signal and idler fields. Collectively, these errors can all be subsumed into the following

input/output transformations for lossless, imperfect polarization-restored fiber propagation:

-OUT AUT (t) cos(Os/2)AOUT(t) - e'Ws sin(Os/2)Af (t)
As (t) = , (2.14)

AU T (t) cos(s/2)AOUT(t) - e'vs sin(s/2)Af(t)
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and

AOUT  AOUT (t) cos(OI/2)AOUT(t) - es'W sin(GI/2)Af 2 (t)
A0 (t) , 21 (2.15)

AOUT (t) cos(O1/2)AZUT(t) - e'WI sin(9I/2)A{(t)

where we have omitted some absolute phase factors that do not affect the cavity-loading

analysis, given below, and { Ok, Pk : k = S, I} are now polarization-restoration error

phases, rather than the fiber propagation phases appearing in Eq. (2.11). Because these

input/output relations are linear and phase insensitive, it follows, by combining the propa-

gation loss and imperfect polarization restoration models, that vector output fields-which

serve as inputs to the quantum memories-are in zero-mean, joint Gaussian states which

are completely characterized by the following correlation functions:

(K") (r) (ZOUTt(t ± r)An) T (t)) (r)IL S(A +rAOUT(t)))W
r/(n),UI + T) /OPA 2 r(Cos ( S/2) , (2.16)

K X (r) (Z A~~ + r)ZOUT(t))K A2T

Kn) (,r) (ZAOUTt (t + r)AOUT(t)) Kn A(,r)

II rAOUTt))= cos 2 (Oi/2) OP 2  , (2.17)

K () ( AOUTI(t + r)AOUT(t)) CKOP (r)

and

KP (r) (ZOUT (t + 7-)ZAOUT(t)) KP (r)

OP(T) (AUT (t ±) cos(Os/2) cos(OI/2) (OPA(). (2.18)
KsP 1(,r) (A9UT( + -)Z UT(t)) K A2)

As expected, because OPA1 produces entangled x-polarized signal and y-polarized idler

fields and OPA2 independently produces entangled y-polarized signal and x-polarized idler

fields, these correlation functions show that the joint state (density operator) of the vector

signal and idler fields arriving at the quantum memories factors according to,

si = k'4 0 3 s I. (2.19)

29



2.3 Cavity-Loading Analysis

To derive the joint state of the quantum memories, we neglect the atom-field coupling and

treat the simpler cold-cavity system, following the procedure introduced in [24]. Moreover

we will postpone accounting for dual-OPA pump detuning by assuming that wS = WI =

wp/2 = we = w, where wp is the pump frequency and w, is the memory cavity resonance,

and wa is the 87Rb atomic line.

Let ds(T) and d1 (Tc) be the internal annihilation operators of the quantum mem-

ory cavities after a Tc-second long loading interval. Assume the memory cavities have

input-coupling rate -y and cavity linewidth r, -y. Then the vector (x and y) internal

annihilation operators are related to the input fields by

dk(Tc) = ak(O)e-rcTc + Cerc(Tct) OUT (t) +V 2(1> -7clA(t) dt, (2.20)

for k = S, I, where the initial internal annihilation operators and memory-cavity loss oper-

ators {ak(O), A (t)} are in vacuum states. Once again we have a linear, phase-insensitive

transformation, which implies that {&s(Tc), &I(Tc)} are in a zero-mean joint Gaussian state.

The nonzero second moments of these memory-cavity modes can be found from Eqs. (2.16)-

(2.18) and (2.20) via standard techniques. When cTc > 1, as we shall assume, the results

of such moment calculations are:

(at (Tc)&s,(Tc)) = is, for l = x,y (2.21)

(l (TC)&al(Tc)) = tii, for I = x, y (2.22)

(&S.(TAI,,(Tc)) = hs.I, (2.23)

(&S,(Tc)&I.(TC)) = -fisyi, (2.24)
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with

fs. = cos2 (Os/2)(IIIj - jI'+J) (2.25)

fs, = cos2 (Os/2)(I2- - 1I2+I) (2.26)

T1 = cos 2 (91/2)(II2-1 - |12+1) (2.27)

f1, = cos2 (9I/2)(JI1i_ - IIi+I) (2.28)

fsi, = cos(Os/2) cos(OI/2)(Ip- + Ii+) (2.29)

hs, = cos(Os/2) cos(OI/2)(I2- + 12+) (2.30)

(2.31)

and

j=rTyc Gj (2.32)
irrc (11 i l)(1i T Gi I + rc/r)'

for j = 1, 2. In terms of these moments, we have that the joint anti-normally ordered

characteristic function for the {&s(Tc), tq(Tc)} modes is the Gaussian form,

XA(Cs., (s,, (I., (I,) = exp[ - (1 + fs.)|(sl 2 -(1 + s,)(s,1I 2  (2.33)

- (1 +1),2 -(1 + jjy) 12 (2.34)

+ 2 Re(A *s,,, (s.) - 2 Re(* 1 sCij]. (2.35)

2.4 Single-Photon Error Model

The cold-cavity loading analysis includes the possibility that more than one photon may

be loaded into either memory, yet this is clearly not possible for the actual trapped-atom

memory. As a result, the initial assessment of throughput versus fidelity, reported in [24],

treated the loading of a singlet state into the two memories as a success, and any other event

in which one or more photons were loaded into each memory as an error. Load intervals in

which one or both of the memories fail to absorb a photon were considered to be erasures,

because they could be detected, nondestructively, by means of the A-to-C cycling transition

shown in Fig. 2-2(a), see [24] and [27] for details. Erasures reduce teleportation throughput

in the Fig. 2-1 architecture, but not its fidelity. A better approximation to performance
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analysis for the Fig. 2-1 architecture was presented in [30] (see also [28]), where multiple-

atom arrays at each memory location were used to convert multi-photon error events from

[24] into erasures. Both the analysis in [24 and that in [30] assume amplitude matched,

anti-phased pumping in the dual-OPA source, viz., G1 = G2 = G, and perfect polarization

restoration, i.e., 0s = 0I = 0. Our task, in this section, is to generalize the single-photon

error model of [30] to include amplitude and phase errors in the dual-OPA's pumps as well

as imperfect polarization restoration. The results we obtain here will then enable us to

evaluate the impact these effects have on the teleportation throughput and fidelity.

Define the computational basis of the quantum memories to be I0)k = I10)k.k, and 11)k =

I01)k.k, for k = S, I, where I 10)s.s, denotes the memory state generated by absorption of

an x-polarized signal photon, etc. To compute the entries of the conditional density matrix

for the memories, given that each has absorbed a single photon, we first write the density

operators #s.j. and OS.I. in terms of their respective anti-normally ordered characteristic

functions via the operator-valued inverse Fourier transform relations,

t ' d~s d(r]J xi Y' ((s, () eCSaS _(Idl e as+a+ iQ , 2s (2.36)

and

s ] = X 4  ((s, (I) e -CsasCa Ie(asY+(*a-, s2 (2.37)

where, for the sake of brevity, we have suppressed the T, time argument of the cavity-mode

annihilation operators. The characteristic function associated with #s.j, can be expressed

as

XA x(C) = , (2.38)

where Di = (1 + s.) (1 + 5i1y) - IAs.I,'12 and ps . I, (C) is a classical probability density for

the zero-mean, complex-valued Gaussian random vector C = (Cs (I)T with second-moment

matrices

1 1 +,hj 0
( = l ) , (2.39)

= i 0 1 + AS.

(C(T )PS., -- 1 .SX' (2.40)
Y i(s.j , 0
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Similarly, we have

PS~ I ir 2Ps" I.,C
XA , (C) = , (2.41)

where D 2 = (1 + 1s)(1 + ) - Iiis1rj2 and ps,, (C) is a classical probability density for

the zero-mean, complex-valued Gaussian random vector ( = (Cs (I)T with second-moment

matrices

1 1h 0
((CI)1,,, = ± 7 (2.42)

0 1 + Is/

(CCT)PS'Y1 = D 0 / (2.43)
D -nsy1, 0

The conditional single-photon density matrix will be computed in the standard basis,

{I0O)sI, I01)sI, I10)sr, 11)si}. Define the quantities

Nsx = ftS.(1 + ft1,) - I is I12  (2.44)

NS, = js,(1+,AI.) - Iis,1 2  (2.45)

NI. = Ii(1 + hs,) - IiIsIx12  (2.46)

N, = ft,(1 + hS.) -IS, 12. (2.47)

Then the ten density matrix entries we need to compute are:

sI(O0siIO)sI = I (10#S 10)(01#s"I.101) (2.48)

(1 - I(sI 2)PY( 1 2 - (2.49)
D1D2

Ns. N1. (2.50)

D 1 D 2

= 0, (2.53)
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si(OOisil1O)si = (10|.i,00)(01|fsi. 11)

(-(S)PS,1,((*(1 - |(C1 2
))PSVIx

D1D2

=0,

si(ooi0sii1si = (1O|is.I, I01)(O1sI,|s2IA10)

_ -SCZI*)S~ ps (- (I)PS"'"
D1D2

=0,

si(OiisiIo1)s' = (11|fisi, 111)(Ooi#s,I 100)

((1 - I(sI2)(1 - 2))PS,1"
D1D2

NsN, + IftS.,| 2

D3D 2

si(01|# 3sill)si = (11|is,I, 00)(ofi, s I111)

(Cs(Is cI )PsVI1(

D1D2

DjD2

s(1OI#si|1)si = (1|sI|1(0#,,1)

_ (-(1 - | -| ""

D 1 D 2

=0,

si(10|#isi|10)si= (00|PsIy|00)(11|pisy 111)

_ ((1 - ( _( | C 12 )sl

NI.NS" ± IiisYI' 2

1D 2
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(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)



(2.72)

(2.73)

(2.74)

SI (100#sI|11)SI =(00 k', 10 1) (111|#s"I. 110)

_(IPS,1, (-(1 _ I(S1)(I)PS"'"
D1D 2

-0,

=(01|#S.I101)(100#s"I.110)

(1 _ ( - Is2)PSY

D 1D 2

The right-hand side of the first equality in all these density matrix evaluations has broken

the calculational basis into its constituent {S, Iy} and {Sy, I} photon-state components.

Equations (2.62) and (2.71) were obtained via the Gaussian moment-factoring theorem

The conditional single-photon density matrix resulting from the Gaussian state (2.33) in

the standard basis, for fixed values of the dual-OPA pump and fiber polarization-restoration

parameters, is the trace-normalized version of the preceding matrix elements:

ai

0
0

0

0

bi

C*

0

0

C

b2

0

0

S,
0

a2)

a, = NsNixD1D2/D'

a2 = NsNrD1D2/D'

bi = (NsNI, + |siI1 2 )D2/D'

b2 = (Ns"NI. + I |fi12 )D2/D'

C = -As.I A* I D1D 2 /D',

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

D' = (Ns, N. + Ns,,Ni,,)DiD 2 + (NS.NI, ± +isI 2 )Di + (NsNi. +I5si 2)D . (2.84)
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(2.75)

(2.76)

(2.77)
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The single-photon density matrix p depends on the normalized pump magnitudes,

{|G 1 1, |G 211, the differential-phase error between the pumps, A'O = arg(G 1 ) - arg(G2),

and the polarization-restoration error angles {Os, Oi}. Note that, in general, p is not a

Bell-diagonal state. We can apply a change of basis to show that the density matrix in the

Bell basis, {IV-)si, kV)+)si, |O-)sI, 10+)sI}, is 2 x 2 block diagonal, viz.,

P11 0
P = ,P (2.85)

0 P22/

where

1 bi + b2 - 2Re(c) bi - b2 + 2i Im(c) (2.86)

2 b - b2 - 2i Im(c) b, + b2 + 2Re(c)

and

1 ai+ a2 al - a2
P22 = 2 a 2a 2(2.87)

P2' al-a2 ai+a 2 /

It will be useful to know the eigendecomposition of the single-photon density matrix p

for the performance analysis in the next section. The eigenvalues of 0 are {ai, a2, A+, A-

with corresponding unit-length eigenkets {|00)si, 11)si, IA+)si, A~)sj}, where

A± = b + -b2 i V/(bi- b2 )2 + 41c 2  (2.88)

IA+)sI = u1j01)sI + u2110)sI (2.89)

A~)sI = v1i01)sI + v2110)sI. (2.90)

The eigenket coefficients u1, U2, v1, v2 are found by converting the following unnormalized

eigenkets to unit length:

bi - b2 ± V(b, - b2 )2 + 41c12 01) + liO)si. (2.91)
2c*

2.5 Performance Analysis

In this section, we will examine the effects of system errors on the average fidelity of the

Fig. 2-1 teleportation architecture. We shall also give some consideration to the achievable

throughput that can be obtained when each quantum memory is capable of loading a
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succession of singlet states by repeated application of the memory-loading protocol, cf.

[241,[30].

2.5.1 Teleportation Fidelity

Suppose the qubit that we wish to teleport is |#) = aO) + 01). If the received state that

results from sending this state via the Fig. 2-1 teleportation system is p', then the conditional

fidelity, given that 1#) was teleported, is (#Ip'|#). The average fidelity is obtained by taking

1#) to be uniformly distributed over the Bloch sphere and averaging the conditional fidelity

using this input distribution. We will calculate the average fidelity in the single-photon error

model developed in Section 2.4. To do so, we first calculate four pure-state average fidelities:

the average fidelities realized when the quantum memories are in one of the eigenkets of

the single-photon-error density matrix, {I00)si, 11)si, IA+)si, lA)s}. Multiplying each

eigenket's fidelity by its associated eigenvalue and summing the results then yields the

average fidelity for the single-photon-error density matrix, p.
Teleportation when the quantum memories are in either the I00)si or 11)si states is

equivalent to a channel that sends an input qubit 1#) = aJO) + ,31) into the mixed state

1I1
2 10)(01 +1aI 2 11)(11, and hence a conditional fidelity of 2Ia 21,312 . Averaging this expression

over the Bloch sphere yields fidelity F = 1/3.

Teleportation when the quantum memories are in the IA+)si = ul01)sI+u2110)sI state

takes the input qubit to the mixed state

a 1210)(01 + 1312 11)(11 - 2a3*Re(u*u2)|0)(11 - 2a*#3Re(u*u2)11)(01, (2.92)

and hence a conditional fidelity 1 - 21a| 2 IfiI2 [l + 2Re(4ui 2 )]. Averaging this expression

over the Bloch sphere yields fidelity F = 2[1 - Re(utu2)I/3. Similarly, teleportation when

the quantum memories are in the IA-)si = v, 101)si + v2110)sI state has average fidelity

F = 2[1 - Re(vrv 2 )]/3.

Performing the required eigenvalue weighting and summation on the preceding pure-

state fidelities we obtain the average fidelity for the single-photon-error model's density

matrix:

F = 2 - al - a2 - 2[A+Re(u*u2) + A-Re(v*v 2 )] (2.93)
3

This is the average teleportation fidelity, with the input qubit alO) + fill) uniformly dis-
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tributed over the Bloch sphere, for fixed values of the error parameters.

To develop insight into how teleportation performance is degraded by errors in the

dual-OPA's pump amplitudes and phases as well as by imperfect polarization restoration,

we shall examine these effects one at a time.

2.5.2 Imperfect Polarization Restoration

Here we assume the dual-OPA's pumps have equal magnitudes, 1G11 = IG21 =| GI, and are

anti-phased, AO = 0. In this case, the single-photon-error density matrix is diagonal in the

Bell basis, and given by

= diag(P, (1- P,)/3 (1- P.)/3 (1- P,)/3), (2.94)

where

PS = NSNI + 2 2  (2.95)
4NsNi + 2ii 2

NS = S(1 + fI') - fi2  (2.96)

N, = ft(l + hs) - i 2  (2.97)

AS = cos2 (0s/2)(I. - 1+) (2.98)

ft = cos2(0/2)(I- - 1+) (2.99)

R = cos(9s/2) cos(9/2)(I_ + 1+) (2.100)

I+ = 7rL) LGT . (2.101)
Fre (1± Gj)(1 G+ c/F)(

The density matrix is a Werner state, so teleporting a qubit with this state is equivalent to

transmitting the qubit over a depolarizing channel with fidelity P. The average teleporta-

tion fidelity with this error model is F = (2P, + 1)/3.

In Fig. 2-6(a), the teleportation fidelity is plotted versus polarization-restoration error

parameters OS, O1 E [0,,7r). The calculations assume a source-to-memory path length L = 25

km and the operating conditions listed in the caption. The fidelity of the teleportation

system is insensitive to Os and 01. The maximum fidelity, F = 0.978, occurs at OS = 0, = 0

and the minimum fidelity, F = 0.974, occurs at Os = 01 = ir.

Although teleportation fidelity is insensitive to imperfect polarization restoration, these
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Figure 2-6: (a) Teleportation fidelity versus polarization-restoration error parameters Os, Oi e [0, 7r].
We assume OPAs operate at 1% of oscillation threshold, 0.2 dB/km fiber loss, 5dB excess loss in
each source-to-memory link, re/F = 0.5 memory-cavity linewidth to source-cavity linewidth ratio,
and source-to-memory path length L = 25 km. (b) Throughput of singlet states versus polarization-
restoration error parameters Os, 0E G [0, 7r].

errors imply a significant loss of singlet-state throughput. Figure 2-6(b) plots the through-

put of singlet states versus Os, 01 C [0, 7r], assuming that the teleportation system has an

array of trapped-atom memories at the end of each fiber and that these memories can be

loaded by running the protocol from [24] at a 500 kHz rate. We see from Fig. 2-6(b) that

maximum throughput at L = 25 km is approximately 184 singlets/sec and this occurs when

the polarization restoration is perfect, Os = 01 = 0. The throughput decreases to zero

when Os or 1 approaches ir rad. In essence, cos(Os/2) and cos(OI/2) act as asymmetric

loss factors on the signal and idler fiber channels, respectively. For small values of 0S and

01 it is possible to obtain a simple analytic expression for the success probability, P, by

Taylor-series expansion:

N'2 + 2N2 3No ii(5A - ii)
P, - 0 0 3 0( 0 0) (02 + ), (2.102)

4N2 + 2ii 8(2N2 +5 i)2 S

where No = iio(1 + ho) - ii with io = I_ - I+ and ho = I- + 1+. Thus, to lowest order,

the throughput of the Fig. 2-1 teleportation system degrades with the sum of the squares

of the polarization-restoration errors Os and O1.

2.5.3 OPA Pump-Phase Error

Here we assume IGmI = IG2 1 = G and Os = 01 = 0, and consider the impact of a pump-

phase error, i.e., of having AO = arg(G 1 ) - arg(G 2 ) # 0. In this case the single-photon-error
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density matrix in the Bell basis is

b - Re(c) iIm(c) 0 0

-i Im(c) b + Re(c) 0 0 , (2.103)
0 0 a 0

0 0 a)

where

N 2
a = 4N (2.104)

4N 2 + 2ii2

b = N 2 +ii 2  (2.105)
4N 2 + 2fj2

C = -4 2 + 2ii2  (2.106)

A = f(1+ f) - i 2  (2.107)

h = I- - 1+ (2.108)

A = I- + 1+ (2.109)

I = 'LYYC IGI (2.110)
rrc (1±|Gj)(1±t Gj+ rc/r)-

The density matrix is not Bell-diagonal. Its eigenkets are {|OO)Sg, 11)sI, IA+)si, tA~)s},
where

IA+)si = -(|01)sI -F e~"AI|10)sI). (2.111)

From Eq. (2.88), the eigenvalues associated with IA±)sI are Al = b t ci. From the

expressions above, we see that A- = a. Substituting the values u1 = vi = 1/V/2, -U2 =

v2 = e-iA?/ , and A+ = 1 - 3a into the Eq. (2.93) gives the average teleportation fidelity

F = 2 - 2a + (1 - 4a) cos AO. (2.112)
3

We have plotted the fidelity from Eq. (2.112) versus the pump-phase error AO in Fig. 2-7,

assuming L = 25 km source-to-memory path length and the same operating conditions as in

Fig. 2-6. Figure 2-7 shows that pump-phase errors have serious consequences: at AV) = 7r,

the dominant eigenket )A+)s. equals the triplet state, making the average fidelity close to

the triplet-state value, F = 1/3. For small values of the pump-phase error we can use a
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Figure 2-7: Teleportation fidelity with dual-OPA pump-phase error ALO E [0, 27r). At AO =r, the
dominant eigenket of 5 is the triplet state, so the teleportation fidelity is approximately 1/3. We
assume the same operating conditions as in Fig. 2-6.

Taylor-series expansion to show that

F 0 -(1 - 4a)A4' 2
F 6 - , (2.113)0- 6

where FO is the average fidelity for anti-phased pumps, i.e., when AO = 0.

2.5.4 OPA Pump-Amplitude Fluctuations

Now we will study the effects of OPA pump-amplitude fluctuations-IGiI and 1G21 will be

taken to be statistically independent Gaussian random variables with mean values 0.1 and

variances o2-when the pumps are anti-phased (AO = 0) and the polarization restoration

is perfect (Os = 0, = 0). In this case the single-photon-error density matrix, given {G 1 , G 2},

is

1(bi + b2 ) -c (b, - b2) 0 0

(bi - b2 ) 1(bi + b2 ) + c 0 0
p =2 (2.114)

0 0 a 0

0 0 0 a
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in the Bell basis, where, for j = 1, 2,

a = N1N 2 D1D 2 /D' (2.115)

bi = (NJ2 + f)D2/D' (2.116)

b2 = (N2 + fi2)D2/D' (2.117)

c = -- i1A2D1D 2 /D' (2.118)

N7 = y ( 1 + j5) - 5 (2.119)

Dj = (1 + i) 2 -il (2.120)

D' = 2N 1N2 D1D2 + (N2 + i)Di

+(N22 + i)D2 2(2.121)

ft = Ij- - I+ (2.122)

Ai = ii- + I3 + (2.123)

Ij+ = 7)L'c G. (2.124)
FLc (1±Gj)(1+Gj+rc/F)2

Figure 2-8 shows simulation results for the average teleportation fidelity in the presence

of these pump-amplitude fluctuations. The calculations assume an L = 25km source-

to-memory path length and same operating conditions as in Fig. 2-6. We see from this

figure that pump-amplitude fluctuations should not be problematic: for 1% pump-power

fluctuations with a mean pump power that is ~1% of oscillation threshold we have that

O2 ~ 10-4.

2.5.5 Detuning

At this juncture we turn to the effects of pump frequency errors. Suppose that the pumps

have equal amplitudes and are anti-phased with G, = G 2 = G > 0, and that the polariza-

tion restoration is perfect. So far we have assumed that the dual-OPA's signal and idler

frequencies are equal and equal to both the memory cavities' resonance frequency and the
8 7Rb atomic line, i.e., ws = WI = w, = w,. In this final assessment of teleportation system

errors we shall consider two possible cases of frequency detuning. In case 1 we shall assume

that the dual-OPA operates somewhat off frequency degeneracy, so that the signal and

idler frequencies are ws = wp/2 + Aw and wJ = wp/2 - Aw, with the frequency degeneracy

point satisfying, wp/2 = w, = wa, i.e., matched to the memory cavity and the 87Rb atomic
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Figure 2-8: Teleportation fidelity with OPA gain fluctuations. The gain parameters G1 and G2 are
taken to be statistically independent, identically distributed Gaussian random variables with means
0.1 and variances Ou. We assume the same operating conditions as in Fig. 2-6.

line. In case 2 the dual-OPA operates at frequency degeneracy, Ws = WI = wp/2, but this

frequency degeneracy point is detuned from the memory cavity and the atomic line, viz.,

wp/2 = wc - Aw = wa - Aw.

It is not hard to study the effects of these two cavity detuning cases within the construct

of our single-photon error model, because their resulting density matrices are both Werner

states of the form given in Eq. (2.94). In particular, their success probabilities are given by

a =[ii( 1 + ft) I fij 1212 + 21fij 2(215
- 4[f(1 + ft) -|22 + 2ij 2

where

I_ - I+ (2.126)

Al = I + 1+ (2.127)

A2 = I' + I', (2.128)

with

SG 2 
2 (2.129)

rc (1tG) itG+rc/r+ W/
+ G1 ± G + G rc/r

?7ULY~c G
= G (2.130)
* r(rc + iAw)(I1 G)(1 ±G +rc/r + iAw/r)
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Figure 2-9: (a) Teleportation fidelity versus normalized detuning, Aw/r. Case 1 assumes the signal
and idler center frequencies are detuned from wp/2. Case 2 assumes the atomic frequency is detuned
from wp/2. (b) Throughput of singlet states assuming cycling rate R = 500 kHZ. We assume the
same operating conditions as in Fig. 2-6.

The average teleportation fidelity, F = (2P1 + 1)/3 for j = 1, 2 is plotted versus normalized

detuning in Fig. 2-9(a). We see that fidelity actually improves slightly as the normalized

detuning is increased. However, this modest fidelity improvement is accompanied by a

dramatic loss of singlet-state throughput, as seen in Fig. 2-9(b), when the detuning exceeds

the OPA cavity's linewidth.
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Figure 2-10: Schematic of long-distance GHZ communication system. GHZ = source of
polarization-entangled photons from either Fig. 2-11(a) or (b); L = Lkm of standard telecom-
munications fiber; M = trapped-atom quantum memory.

2.6 GHZ-State Communication

There has been much interest in Greenberger-Horne-Zeilinger (GHZ) states [38] because

they can be used in a nonstatistical disproof of local hidden-variable theories of physics

and as resources for multiparty quantum communication protocols [32]. As discussed in

[24], the MIT/NU teleportation architecture has an extension that permits long-distance

transmission and storage of three-party GHZ states,

IVGHZ) = (1000) + ii))/Nv2. (2.131)

In this section, we present single-photon error models for two versions of the proposed GHZ

quantum communication system: one using dual degenerate parametric amplifiers (dual-

DPAs) for its entanglement source, and the other using a DPA plus a heralded source of

single photons. We will use these error models in the next section to develop performance

analyses for the GHZ-state communication system in the quantum secret sharing (QSS)

protocol.

2.6.1 GHZ-State Systems

Figure 2-10 is a schematic diagram for a long-distance quantum communication system

that allows for the transmission and storage of the GHZ states required for multiparty

quantum communication protocols such as QSS. This system uses an ultrabright source

of polarization-entangled photons produced from optical parametric amplifiers. We employ

quantum-state frequency conversion and time-division multiplexing polarization restoration
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[24] to transmit the entangled photons over standard telecommunications fiber to be loaded

into 87Rb trapped-atom quantum memories [27] for storage and processing. By using this

protocol to sequentially load an array of atomic memories at each location in Fig. 2-10, we

can build up a reservoir of GHZ states that are shared by these memories.

We consider two possible source arrangements for the GHZ block in Fig. 2-10. The first

is an ultrabright, narrowband variant of the source used by Bouwmeester et al. in an initial

experimental demonstration of GHZ-state generation [39]. That experiment was an anni-

hilative table-top measurement and had extremely low flux: 1 GHZ state every 150 sec. Our

version of the Bouwmeester et al. source-shown in Fig. 2-11(a)-replaces their parametric

downconverter with a pair of doubly-resonant, type-II phase matched DPAs. With this

source, the Fig. 2-10 arrangement permits a throughput comparable to what Bouwmeester

et al. produced in the laboratory to be realized at a source-to-memory radius of 10 km [24].

More important, though, is the fact that the memories in the Fig. 2-10 architecture allow

the GHZ state to be stored for use in applications of three party entanglement.

Recent work has shown that it may be possible to construct heralded single-photon

sources [40]. With such a source, we can design a GHZ system with a substantially higher

throughput than the configuration discussed above. In Fig. 2-11(b), the heralded source

places a single photon in the proper spatio-temporal mode for coupling to the trapped-atom

quantum memory during each loading cycle. With the heralded-plus-DPA GHZ source,

throughput rises by three orders of magnitude over the dual-DPA system, to about 15 GHZ

states/sec at a 10 km source-to-memory radius [24].

2.6.2 Single-Photon Error Models

In this section, we present the single-photon loading event models for the dual-DPA and

heralded-plus-DPA GHZ-state quantum communication systems [31]. In our analysis of the

GHZ systems, we ignore issues of phase and amplitude errors in the entanglement source

that were studied for the qubit teleportation system. Furthermore, except for fiber loss, we

assume perfect transmission of the entangled photon pairs.

Let A, B, and C represent a clockwise labeling of the memories in Fig. 2-10 starting
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Figure 2-11: Source arrangements for the GHZ-state communication architecture in Fig. 2-10. (a)
Dual-DPA GHZ system. The quantum memory in this figure represents a memory internal to the
source block in Fig. 2-10; its loading is used as a trigger signal [24]. (b) Heralded single-photon
source plus DPA system. PBS = polarizing beam splitter, A/2 = half-wave plate.

from the lower left. We define the computational basis for these quantum memories to be,

J0)A = 0I1)A.xA and I1)A = 110)A,,A (2.132)

I0)B = I01)BB, and 1)B = 110)B.B,, (2.133)

JO)c = 10)cc, and i1)c = 01)c.cy, (2.134)

in terms of the number-ket representations for the x- and y-polarized photons that loaded

these memories. With this computational basis, the GHZ state loaded by the Fig. 2-10

system is IVGHZ)ABC = (I000)ABc + I111)ABC)/ 1V-

It is not hard, using the basis,

{1000)ABC -111)ABC 001)ABC, j110)ABC, I010)ABc, I101)ABc, I011)ABC, 100)ABC }

(2.135)

to compute the matrix elements of the joint conditional density operator for memories A,

B, and C, given that an erasure has not occurred. The conditional density matrices for

both the dual-DPA GHZ system and the heralded-plus-DPA GHZ system turn out to be

diagonal in the Eq. (2.135) basis. (See [31] for a derivation of the diagonal elements.) For

the dual-DPA source we find that,

PABC = diag (PG 0 Pell Peld Peld Peld Pe2d Pe2d , (2.136)
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where

(N 2 + i 2 )2

Gd = 7N 4 + 12N 2 fi2 + j 4 , (2.137)

N2 (N 2 +2?i 2 )
Peld - 7N 4 + 12N 25i2 + 4 (2.138)

N 2(N 2 + fi2 )
Pe2d = 7N 4 + 12N 2i12 + 4, (2.139)

with N = (1 + i) - fi2 . For the heralded-plus-DPA source we get,

PABC = diag(PGh 0 Pelh Pelh Pe2h 0 Pe2h 0) (2.140)

where

77(N 2 + i2 )D
PGh q(3N 2 + i12 )D + 2(1 - r)N(N2 + 2j12 ), (2.141)

Pelh = 7(3N 2 + ii2 )D + 2(1 - 77)N(N 2 + 2i12 ), (2.142)

(1 -7)N(N2 + 2 2 )
Pe2h = 7 (3N 2 + ii2 )D + 2(1 - 7)N(N 2 + 2M2 ), (2.143)

with D = (1 + f1)2 -- i2. In calculating these matrix elements we have used the same

transmission loss factor, q = L77Ycy/Fc, for each source-to-memory path in Figs. 2-10 and

2-11.

2.7 Quantum Secret Sharing

Secret sharing refers to cryptographic protocols that allow Alice to share secret information

with Bob and Charlie in such a way that individually they have no means for learning

Alice's secret, but by working together can they gain access to Alice's secret information.

One classical implementation of secret sharing requires Alice to send Bob a random bit

string r and to send Charlie the modulo-2 sum, r D m, of the random bit string r and her

message m. If Bob and Charlie act together, they can recover Alice's message m simply

by adding their bit strings together. Of course, this protocol presumes that Bob cannot

monitor Alice's transmission to Charlie and, likewise, that Charlie cannot intercept Alice's
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Charlie

Bob

X+ x- y+ y-
x+ x+ x- y- y+

X- x- x+ y+ y-
y+ y- y+ X- X+
y- y+ y- x+ x-

Table 2.1: QSS for classical information distribution. Lookup table for determining Alice's mea-
surement outcome.

transmission to Bob.

Quantum secret sharing (QSS) protocols divide into two types, depending on whether

Alice's secret information is classical or quantum. We will look at how GHZ states can be

used to share classical and quantum secrets [32] and analyze the performance of our GHZ

systems in the single-photon error model.

2.7.1 QSS for Classical Secrets

Hillery et al. presented a QSS protocol in [32] that allows Alice to send classical secret

messages to Bob and Charlie by using GHZ states. The three parties first share N GHZ

states, i.e., their joint state is I/GHZ) C.' For each shared GHZ state,

1
VGHZ)ABC -(000)ABC + 111)ABC), (2-144)

Alice, Bob, and Charlie measure on their own memories randomly in either the 3 basis or

the y basis, where

1 1
-(10) t i)), Iy±) -(10) ± ill)). (2.145)

After making these measurements, Alice, Bob, and Charlie publicly announce their mea-

surement bases. Bob and Charlie individually have no information about Alice's measure-

ment outcomes, but in half of the cases-i.e., when Bob and Charlie used the same basis

and Alice used the 3 basis, or when Bob and Charlie used different bases and Alice used

the y basis--they can work together to determine Alice's results by using the lookup table

'Reference [32] does not present an architecture for establishing this shared entanglement over a long
distance; we described just such an architecture, however, in Section 2.6.1. See also [24],[31].
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Figure 2-12: QSS bit error probabilities for dual-DPA and heralded-plus-DPA GHZ systems in
the QSS protocol. These plots assume each DPA operates at 1% of its oscillation threshold, 5dB
excess loss in each source-to-memory path, 0.2dB/km loss in each fiber, and r,/F = 0.5 ratio of
memory-cavity linewidth to source-cavity linewidth.

in Table 2.1. For example, if they all measure in the x basis and Bob and Charlie both

obtain the result x-, then they know that Alice has the result x+.

Alice, Bob, and Charlie keep the measurement results from the cases in which they chose

appropriate bases and discard the others. By associating Alice's x+, y+ results with bit 0

and Alice's x-, y- results with bit 1, Alice now shares a joint key with Bob and Charlie

with which she can encode classical messages.

In our error model, Alice, Bob, and Charlie will sometimes carry out the QSS protocol

with an incorrect state from the ensemble of states in the basis (2.135). In an error event,

it is possible for Bob and Charlie to obtain incorrect results from the lookup table. Shared

key bits created with error states have error probability 1/2.

From the density matrices (2.136) and (2.140), we can compute the bit error probability

for the QSS protocol. With the dual-DPA GHZ system a bit error probability of

Pe = 2 Peld + Pe2d (2.146)

is introduced into Alice's information transmission. With the heralded GHZ system, we

have error probability

Pe = Pelh + Pe2h. (2.147)

The bit error probabilities (2.146) and (2.147) are plotted in Fig. 2-12. Possible methods for
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improving the performance of our GHZ systems include purifying the three-party entangled

state to reduce the number of error events or using classical error correction to transmit

Alice's message.

2.7.2 QSS for Quantum Secrets

We now consider the performance of our GHZ systems for transmission of quantum infor-

mation using the QSS protocol proposed in [32]. In this protocol, Alice, Bob, and Charlie

share a GHZ state |GHZ)ABC = (IOOO)ABC + 1111)ABC)/V 2, and Alice's secret is the qubit

1,)s = a10)s +,Q 1)s, which she wishes to send to Bob and Charlie in such a way that they

must cooperate to obtain this quantum information. The joint state of Alice, Bob, and

Charlie--including Alice's portion of the GHZ state and her quantum secret-at the start

of the QSS protocol is kO)S|VPGHZ)ABC-

Alice initiates the QSS protocol by making the Bell-state measurement, { Si+)SA, |)sA},

on her secret qubit and her portion of the GHZ state. Alice then labels as (m, n) the two

classical bits she derives from these measurements, using the following scheme: 0+ =

(0, 1), o- = (1, 1), 0+ = (0, 0), 0- = (1, 0). She sends m to Bob and m D n to Chalie, using

secure classical channels so that Bob cannot intercept m E n and Charlie cannot obtain m.

It follows that neither Bob nor Charlie has any information about Alice's secret-even after

receiving the classical information from Alice-because their marginal density operators at

this point in the protocol can be shown to be /B = IB/ 2 and ic = IC/2, respectively, where

I is the identity operator.

For Bob and Charlie to learn Alice's secret qubit 1b)s, they must cooperate. Because

the no-cloning theorem precludes making two copies of this state, either Bob or Charlie-

but not both of them-will possess a replica of IO)s at the end of the QSS protocol. Let us

arbitrarily assume that Bob and Charlie have agreed to let Charlie be the recipient of this

replica. Having made that agreement, Bob measures his portion of the GHZ state in the x

basis, {1 ± X)B =(O)B ± I1)B)/V2}, and he sends Charlie the result of this measurement

along with Alice's m bit. Together with Alice's m ® n-which he received earlier-Charlie

now has all the information he needs to turn his portion of the GHZ state into a replica of

Alice's secret via a local unitary operation.
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Shared State QSS Output Fidelity Dual-DPA Heralded

|4'GHZ)ABC As 1 PGd PGh

001)ABC 1012 10)SS(OI + III1J)SS(1 1/3 Peld Pelh

O110)ABC 1312 10)ss(OI + Ja1211)ss(1I 1/3 Peld Peih
010)ABC Q2 10)ss(I0 + 1112 1)ss(1l 2/3 Peld Pe2 ,
1101)ABC Iae2IO)ss(O + 1312 1)SS(11 2/3 Peld 0
I011)ABc # 1210)ss(0I + 1a2 11)ss(1I 1/3 Pe2d Pe2,
I10 0)ABC I31210)sS(oI + Ja12 11)SS(1 1 /3 Pe2d 0

Table 2.2: For each three-party state that might be shared by Alice, Bob, and Charlie, this table
lists the output state that will result from application of the QSS protocol-in which Alice, Bob,
and Charlie assume that they have shared the GHZ state IV)GHZ)ABc-the average fidelity that

is achieved with this output state when the quantum secret ja)js is uniformly distributed over the

Bloch sphere, and the occurrence probabilities [from Eqs. (2.136) and (2.140), for the dual-DPA and
heralded-plus-DPA sources, respectively] of these output states.

Uncoded Performance

Let F be the average fidelity of the preceding QSS protocol when Alice's secret, I'O)s, is

selected from a uniform distribution over the Bloch sphere. Using Table 2.2, we compute

the average QSS fidelity for the dual-DPA GHZ system to be,

F = PGd + 2Peld + 2Pe2d/3, (2.148)

and for the heralded-plus-DPA GHZ system,

F = PGh + 2Pelh /3 + Pe2h. (2.149)

Coded Performance

Quantum error correction can be used to improve the performance of the QSS protocol. We

will illustrate this improvement by considering use of the five-qubit error-correcting code:

[41]

|OL) = 00000) + 00110) + 101001) + 101111) + 110101) - 110011) + 111100) + 111010),

(2.150)

IlL) = -100101) - 100011) + 101100) - 101010) - 110000) + 110110) + 111001) + 111111).

(2.151)
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Table 2.2 lists the output states that result from application of the QSS protocol-in which

Alice, Bob, and Charlie assume that they have shared the GHZ state IiI'GHZ)ABc-when in

fact they have shared one of the states from the basis (2.135). From this table, we see that

applying the QSS protocol, when a particular basis state has been shared, is equivalent to

sending a qubit over one of the following three channels:

LA(P) = AP (2.152)

EA(P) = PO fio + P1A il (2.153)

SB) 2- 2 + PP 2, (2.154)

where Po = 10)(01, P1 = |1)(11, and P2 = 10)(11. Channel EA takes an input qubit a|0)+3Q1)

to the mixed state Ja1210)(01 + ,31211)(11, and channel 9B gives the output state |l| 210)(01 +

Ia1211) (11. Because the density matrix for the {A, B, C} quantum memories is diagonal in

the Eq. (2.135) basis, these three channel possibilities, {EI, EL, EB}, occur with probabilities

P1 = PG (2.155)

PA = 2Pel, (2.156)

PB = 2 Peld + 2Pe2d, (2.157)

for the dual-DPA system, and

P1 = PGh (2.158)

PA = Pe2h (2.159)

PB = 2Pelh + Pe2h, (2.160)

for the heralded-plus-DPA system.

The five-qubit coded QSS channel has the form

El0 -62 0 E3 0 £4 0 £5(5 enc), (2.161)

where enc is the encoded qubit state and E E {E, EA, EB}. Numerical evaluation of the

five-qubit error-correcting code was used to obtain the average fidelity for each of the 243
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Case (ni, nA, nB) F, # of channels

1 (5,0,0) 1 1
2 (4,1,0) 1 5
3 (4,0,1) 1 5

4 (3, 2,0) 5/6 10
5 (3, 1, 1) 2/3 20
6 (3,0,2) 1/3 10
7 (2,3,0) 7/10 10

8 (2,2,1) 47/90 30
9 (2,1,2) 19/45 30
10 (2,0,3) 7/15 10
11 (1,4,0) 37/60 5
12 (1,3, 1) 29/60 20
13 (1,2,2) 17/36 30
14 (1,1,3) 31/60 20
15 (1,0,4) 11/20 5
16 (0,5,0) 7/12 1
17 (0,4,1) 29/60 5
18 (0,3,2) 29/60 10
19 (0,2,3) 31/60 10
20 (0,1,4) 31/60 5
21 (0,0,5) 5/12 1

total 243

Table 2.3: Coded QSS channel results. The 243 coded QSS channels are divided into 21 cases
according to component distribution (n1 , nA, nB). For each case, we list the average fidelity F and
the number of coded QSS channels belonging to that case.

possible coded QSS channels. For each coded QSS channel, let nk be the number of E4

components, k = I, A, B. The 243 channels were divided into 21 different cases, according

to the distribution (ni, nA, nB). The results of the coded QSS channel simulations are

displayed in Table 2.3. The average fidelity of the coded QSS channel is then calculated,

using the multinomial distribution for (nI, nA, nB), as follows,

21 21

F = ZPr(case j)Fj = E 5 PA P PB F A
j=1 j=1

(2.162)

where F is the average fidelity of the five qubit code given that a coded QSS channel in

case j occurs and the j-dependence of (n1, nA, nB) is as given in Table 2.3.

Figure 2-13 shows the average QSS fidelity for the dual-DPA and heralded-plus-DPA

GHZ systems with and without coding. We see that the heralded-plus-DPA GHZ system
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Figure 2-13: Average fidelity in the QSS protocol. We compare the performance of the dual-DPA
and heralded-plus-DPA GHZ systems with and without coding. We assume the same operating
conditions as in Fig. 2-12.

has significantly better performance than the dual-DPA system in the QSS protocol in both

uncoded and coded operation. Coding improves the performance of the heralded-plus-DPA

system for all path lengths shown in this figure, but beyond about 16 km source-to-memory

path length coding reduces the fidelity of the dual-DPA system. The dual-DPA curves with

and without error correction cross because the five-qubit code degrades performance when

the incidence of multi-qubit errors is too high. Interestingly, the same thing does not occur

for the heralded-plus-DPA system, because the conditional density matrix (2.140) reaches

a limiting value for path length around L = 50 km.

Entanglement Purification

In this section an alternative approach for improving the performance of the GHZ system

is studied: the use of an entanglement purification protocol. Let Alice, Bob, and Charlie

possess a block of n mixed entangled three-party states. Through the use of local operations

and classical communications, they can produce a smaller number m < n of GHZ states with

arbitrarily small probability of error for large n. The yield of an entanglement purification

protocol is defined as Y = m/n in the limit n -+ o.

The entanglement purification scheme we shall consider is the multiparty hashing pro-
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tocol [42]. Define the cat basis as the set of orthonormal states

0iii2)ABC + (-)PI1 l2)ABC
1001i2)ABL = (2.163)

where p, ii, i2 = 0, 1. We call p the phase bit and il, i 2 the amplitude bits. Given an initial

mixed entangled state PABC, let H(p), H(ii), and H(i2) be the entropies of the phase and

amplitude bits with respect to the diagonal cat-basis matrix entries of PABC. From Table

2.4, we find that the entropies of the phase and amplitude bits for the dual-DPA GHZ

system are

H(p) = H(PGd + 2Peld + Pe2d) (2.164)

H(ii) = H(PGd + 2Peld) (2.165)

H(i 2 ) = H(PGd + 2Peld), (2.166)

and for the heralded-plus-DPA GHZ system,

H(p) = H(PGh + Peih + Pe2h) (2.167)

H(ii) = H(PGh + 2Peih) (2.168)

H(i2 ) = H(PGh + Pe2 h). (2.169)

Maneva and Smolin [42] have shown that the yield of the multiparty hashing protocol is

Y = 1 - H(p) - max{H(ii), H(i2 )}, (2.170)

if the right-hand side is a positive quantity, and it is zero otherwise.

Figure 2-14 compares the performance of the GHZ-state systems with and without

the use of the multiparty hashing protocol. Figure 2-14(a) shows normalized through-

put, YNsuccess, versus source-to-memory path length, where N = R Pr (/GHZ) is the

throughput of successful GHZ memory loadings/sec and yield Y = 1 when no entangle-

ment purification is employed. The throughput lost through the application of the hashing

protocol is modest for the heralded GHZ system and is more substantial for the dual-DPA

system. Assuming perfect measurements at the transmitter and perfect qubit logic at the

receiver in implementing the hashing protocol, the average QSS fidelity is unity in the limit
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Cat State P i i2 I Dual-DPA Heralded

|000)+ 1111) 0 0 0 PGd PGh
1000)-i111) 1 0 0 0 0
1001) + 110) 0 0 1 Peld Pelh
1001) - 110) 1 0 1 Peld Pelh
1010) + 1101) 0 1 0 Peld Pe2h/2
1010) - 1101) 1 1 0 Peld Pe2h/2

1011) +1100) 0 1 1 Pe2d Pe2h/2

l011) - 1100) 1 1 1 Pe2d Pe2 h/2

Table 2.4: The distribution for each bit of the unknown cat state is determined by the single-
photon density matrices (2.136) and (2.140). The distributions can be used to compute the entropies
H(p), H(ii), and H(i2 ).

of large block sizes, as shown in Fig. 2-14(b). The major drawback of utilizing entangle-

ment purification, as compared to the much simpler five-qubit error correction code, is the

enormous amounts of quantum memory that are needed at the transmitter and receiver to

realize the large block sizes that validate use of the asymptotic yield expression (2.170).

57



- Heralded
Heralded EPP

- - Dual-DPA
-- Dual-DPA EPP

0 5 10 15 20 2
Source-to-Memory Path Length L, (km)

(a)

5 10 15 20
5 10 15 20

Source-to-Memory Path Length L, (km)

(b)

Figure 2-14: Performance of dual-DPA and heralded GHZ systems with the multiparty hashing
protocol. (a) Throughput of GHZ states with and without the hashing protocol. (b) Average fidelity
for quantum secret sharing. With the hashing protocol, the fidelity of QSS approaches one as the
block size n -+ oo. We assume the same operating conditions as in Fig. 2-12. EPP = entanglement
purification protocol.
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Chapter 3

Quantum Multiple Access

Channels

In Section 1.1.4, we described the superdense coding communication protocol [101 for en-

hancing the transmission of classical information over a quantum channel through the use

of shared prior entanglement. For channels with a single transmitter and a single receiver,

the classical information capacity of superdense coding was obtained in [13} and [14]. In

Section 3.1, we generalize these results by deriving the capacity region of the superdense

coding multiple access channel (MAC). The MAC problem arises when multiple users wish

to send classical information to a common receiver. The transmissions from any one user

must contend with interference created by transmissions from all the other users, in addi-

tion to the usual sources of noise encountered on a single-user channel. The superdense

coding protocol restricts transmitters to unitary encodings. In Section 3.2, we remove this

restriction to study the capacity of quantum MACs with general encodings.

3.1 Superdense Coding MAC

In this section, we consider a multiple access superdense coding protocol for the transmission

of classical information over a quantum channel that uses shared tripartite entanglement.

To find the capacity region of the superdense coding MAC, we derive upper bounds on the

information transmission rates and present an encoding scheme that achieves these upper

bounds. A special case of this result was proved in [43] for pure bipartite entangled states.

In our derivation, we consider a superdense coding MAC with mixed tripartite states in
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spaces of dimension dA x dB x dc. We also state the generalization to the case with s > 2

senders.

3.1.1 Quantum MAC

A quantum MAC with two transmitters, Alice and Bob, is modeled by the map: (i, j) -f pj,
where the output states pij live in a Hilbert space 'X. The receiver performs a measurement

on the state pjj to learn the input messages i and j. Let pip3 be a product probability

distribution for the letter states jAj, and denote the average ensemble density matrices by

p = ( P pi, P^ = P, ^ = YpZ PYj (3.1)
j i

and the conditional von Neumann entropies by

HA= p S( f ) and HB= pA S(f ). (3.2)

In this chapter, we will only consider the one-shot classical capacity, i.e., the M = 1 case

described in Section 1.1.5. In this case, an (N 1 , N 2 , n)-code for the quantum MAC with

letter states pij consists of Ni i-sequences and N 2 j-sequences of length n. The codeword

corresponding to the message sequences (ii,... , in) and (ji,... ,in) is the product state

Piji ( ... - in.. The rate pair (R 1 , R 2 ) is said to be achievable if there exists a sequence

of ( 2 "Ri, 2 nR2 , n) codes for which the receiver Charlie can decode both Alice's and Bob's

messages with probability of error P -- 0 as n -+ oo. The capacity region is defined as the

closure of the set of all achievable rate pairs.

The capacity region for the transmission of classical information over a quantum MAC

was derived in [44]. It is given by the closure of the convex hull of all (R 1 , R 2) satisfying

R1 < HA - E pp S( eij) (3.3)

R2 < HB - E E pip3 S(ij) (3.4)
i j

R1 + R2 < S(O) - P pp3 S(ij), (3.5)

for some product distribution pfpB.
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3.1.2 Superdense Coding

In the superdense coding MAC communication protocol, Alice, Bob, and Charlie share

qudits in the initial state o that lives in the Hilbert space id, 0 dB 0 7 dc. Alice and Bob

encode independent classical messages by applying local unitary operators to their qudits

and sending their qudits over noiseless quantum channels to Charlie, who then decodes their

messages with a measurement on the combined system of the three qudits. We will find the

information rates that are achievable with this communication protocol.

Theorem 1 The capacity region of the superdense coding MA C is the set of rate pairs

(R 1 , R 2) that satisfy

R1 5 S(JBC) - S(3 +0 9 logdA (3-6)

R 2 : S(/AC) - S(O) +log dB (3.7)

R1 + R2 S(Oc) - S(Oo)+ log dA +log dB, (3.8)

where PBC = trA(pO), PAC = trB(PO), and /C = trAB(Oo) are the reduced densities of the

initial state 03o.

Proof Suppose Alice and Bob utilize local unitary operators {f} and {Uf}, respectively,

with product distribution pfpP to encode their messages. Then the ensemble density op-

erators defined in (3.1) are

=Z pE pf(U 0 IC),( (A B jC)t (3.9)

fB= ^p( 0 0 C) B B ^C)t (3.10)

Bt A N 0 m 0 aC (311)

By subadditivity of von Neumann entropy, we obtain the following upper bound on the
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conditional entropy HA:

HA = ZP 3 S(p) (3.12)

=(pjB [S(tr(f jB)$B ) + S(trBC( f) (3-13)

i

Similarly, HB :5 S(kAC) + log dB. An upper bound for S(k) is derived as

S(p) [ S(trAB ()) + S(trC(0)) (3.17)

= S ®CppftrAB(®) + S(trC(p)) (3.18)
i j

= S(C) + log dA + log dB, (3.19)

Thus, (3.6)-(3.8) are upper bounds on the transmission rates (R 1, R 2 ) for the superdense

coding MAC with tripartite entanglement.

To achieve these upper bounds, Alice and Bob encode their messages with equiprobable

ensembles of generalized Pauli operators [9]. In a d-dimensional Hilbert space, the Pauli

operators are defined as

#nm = exp 2rikn) |k)(k + ml, (3.20)
k=O

for n, m = 0,1,..., d - 1. Let {Uf}, i = 0,1,..., di -1, be the set of generalized Pauli

operators in '2 dk, with ok = 1 k, for k = A, B, C.

Expand the initial state in the Pauli operator basis,

dA-1 dB-1 d2-

o Z = AnU(®UO®Utn. (3.21)
1=0 m=0 n=0
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Then, the reduced densities can be written as

iBC = dA \omnUg 09 U, (3.22)
m n

PAC = dB AkOn , (3.23)
in

and

Oc = dAdB Z AOOn~U 7 , (3.24)
n

using the trace of the Pauli operators, tr(Uk) = dkcoi. If Alice and Bob transmit their inputs

with equal probability, i.e., pA = 1/d2 and = 1/d2, then the average ensemble density

operator is

3= p (U 0 (T 0 # A 0 Uj ® t (3.25)

=E E E2 B,& (& Q (&Cm %rB C t
A B jmn

(3.26)

d2 Z ZZAimnE(Z(Uj TU A) 0(9UE(UB6U t ) 0 6C(3.27)

jA B mn
dA ~ ~0dB 0(d2 00 U. (3.29)

- Aln ( Bj'nB t,

n= d2 d )(2B0
AB m n

jA jB

= -- - dAdB EAn (3.29)
d4 dB

=A -- f -B 
(3.30)

A 0dB BC

In line (3.28), we used the sum [13],[45]: j () = dkoi k, for k =A, B, C. We see

that the average density operator is disentangled and has entropy S(O) = S(,c) + log dA +
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log dB. The average conditional density operator is

0B = C (A B c )(t (3.31)pi i =jp(9U1®)B®I (TB ®jCi t

= (U IC) di 4 2 j (6rA 0 LTB ic)t (3.32)

A 1 i m n
1 E I A mn E ($ $$t) ® ($ $$jt) (3.33)

A m n

AOmn j j (n (3.34)

= (A B 9 ® C)BC(OjB ®iC t. (3.35)

Thus, S(,3B) is independent of j and the conditional entropy is HA = S(OBC) + log dA.

Similarly, HB = S(OAC) + log dB. This encoding scheme achieves upper bounds (3.6)-(3.8),

and therefore establishes the capacity of the superdense coding MAC as the set of all rate

pairs (R 1, R 2) that satisfy these inequalities. I

The capacity theorem in [44] applies for s > 2 senders, so we can generalize Theorem 1.

The proof is similar to the one given for s = 2 senders, so we just state the result. Let

the initial state p0 live in the Hilbert space HA, ( - - - 9 A,+ 1 , with dim lAi = dA1 , and

define Ojc as the reduced density of ^ in the space jE JCU{8+1} 7 A1 . For s > 2 senders,

the capacity of the superdense coding MAC is the set of all rates (Ri,... R,) that satisfy,

for all subsets J C {1 S}:

E Rz < S(OJi) - S(po) + E log d 1 . (3.36)
iEJ iEJ

3.1.3 GHZ-State MAC

Superdense coding uses shared entanglement to enhance the transmission of classical infor-

mation over a quantum MAC. With no shared entanglement, the transmission of a single

qubit can convey at most one bit of information, which implies that the optimal capacity

region of the quantum MAC with no shared entanglement is represented by the inner region

in Fig. 3-1. The capacity result stated in Theorem 1 allows us to quantify the improvement

in performance that can be derived from shared entanglement.

We will illustrate this capacity enhancement with the following two three-party qubit
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states: the GHZ state,

1
LVGHZ)ABC = -(I000)ABC + 111)ABC), (3-37)

and the W state,

1
I'OIW)ABC = U~)~ l)B lOAc.(3.38)

|@w)ABC -3 (|001)ABC + 1010) ABC + 1100)ABC)- (-3

GHZ states were previously discussed in Section 2.6. The W state is the tripartite entangled

state that is maximally robust against the loss of a qubit [461. From Theorem 1, the capacity

region for the GHZ-state MAC is the set of rate pairs (R 1, R 2 ) satisfying

R 1  2, R2  2, and R 1 + R 2 5 3, (3.39)

and the capacity region for the W-state MAC is given by

R1 5 H(1/3) + 1, R 2 5 H(1/3) + 1, and R1 + R2 5 H(1/3) + 2, (3.40)

where H(p) = -p log p - (1 - p) log(1 - p) is the binary entropy function. These capacity

regions are shown in Fig. 3-1.

The GHZ-state MAC gives the largest possible capacity region for a qubit quantum

MAC. We can describe an explicit coding scheme [47] for achieving this capacity region.

Let Alice encode two bits on her qubit with the set of Pauli operators {,, , Z}, and

let Bob encode one bit with the set {i, X}. The eight possible received states from this

encoding are orthogonal, which means that Charlie can perform a measurement that reveals

the messages sent by Alice and Bob. The rate of this code is (R1 , R2) = (2, 1). By symmetry,

the rate (1, 2) is also achievable. Thus, by time sharing between these two codes, the entire

outer region in Fig. 3-1 is achievable.

3.1.4 Alternative Superdense Coding Protocol

The superdense coding protocol is restricted to encodings with local unitary operators. A

step toward removing this restriction can be made by giving the senders, Alice and Bob,

the option of discarding their share of the entangled state ko and simply sending orthogonal
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Figure 3-1: Capacity region of the superdense coding MAC with W-state and GHZ-state entangle-
ment and the capacity of the quantum MAC with no shared entanglement.

qudits over their noiseless quantum channel. This alternative procedure has been considered

for single-user channels [13],[48]. Suppose Alice is sending classical information to Charlie

over a single-user quantum channel, and they share the entangled state AC. The capacity

of superdense coding [13] is given by

C = log dA + S(pC) - S(CAC), (3.41)

where kc = trA(kAC). If S(kc) - S(kAc) < 0, then superdense coding with the state AC is

detrimental because Alice is better off sending orthogonal qudits over the quantum channel

to achieve the rate log dA. In particular, it can be shown that any separable state is useless

for superdense coding [13]. The capacity of the single-user channel, allowing this alternative

encoding, can be expressed in terms of coherent information [49] as

C = log dA + IC(&5Ac), (3.42)

where coherent information is defined as Ic(kAc) = max{S(kc) - S(^Ac), 0}.

The alternative code can be applied to the quantum MAC. If S(IBC) - S(ko) < 0,

then Alice can increase her transmission rate to log dA by deciding not to encode with her

share of #o. This occurs, for example, when the initial state yo is separable A - BC, i.e.,

po = Ej pip0 ® PC. When Alice transmits at rate log dA and Bob uses superdense coding
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with the reduced state #BC, the rate of their joint code is

(RI, R 2 ) = (log dA, log dB + S(OC) - S(#BC)). (3.43)

Let us give an example in which Alice can increase her capacity with this alternative

code. Let o be the initial state of three qubits,

PO = 2A I 00)BC(OOI, (3.44)

with reduced densities

PAC = 2 IA 0 O)c(O|, (3.45)

PBC = 00)BC(OOI, (3.46)

k = I0)c(0|. (3.47)

Then, the capacity region of the superdense coding protocol is the set of rate pairs (RI, R2 )

that satisfy the inequalities (3.6)-(3.8):

R 1  0, R 2 :5 1, and R 1 + R2 < 1. (3.48)

In other words, the superdense coding capacity region is just the line segment from (0, 0) to

(0, 1). If Alice instead sends orthogonal qubits, IO)A and 11)A, while Bob uses superdense

coding, then the rate pair (1, 1) can be achieved. Figure 3-2 shows the capacity region for

the alternative superdense coding protocol. We see that by allowing an alternative encoding,

the capacity region of the superdense coding MAC can be strictly increased.

The GHZ systems studied in Chapter 2 generate three-party entangled states that can

be used as resources for superdense coding. We compute the quantities:

S(BC) - S(N3), S(AC) - S(fio), and S(fiAB) - S3O), (3.49)

where #o is the joint conditional density operator for either the dual-DPA or heralded-

plus-DPA GHZ system derived in the single-photon error model. If we had, for example,

S(OBc) - S(o) < 0, then from Alice's point of view, the entangled state O is useless for
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Figure 3-2: Superdense coding with initial state (3.44). Alice can increase her rate of transmission
because S(BC) - S(O) < 0. In this example, the superdense coding capacity region consists of the
line segment from (0,0) to (0,1). The rate pair (1,1) can be achieved if Alice sends orthogonal qubits
and Bob uses superdense coding.

superdense coding. In Fig. 3-3, the quantities in (3.49), which we can think of as coherent

informations, are computed for both the dual-DPA and heralded-plus-DPA GHZ systems.

The coherent informations reach a positive limiting value at a path length around L = 50

km. This means that the three-party entangled states produced by the MIT/NU commu-

nication architecture are useful at all path lengths, in the sense that they can enhance the

capacity region of noiseless quantum MACs through multiple-access superdense coding.

Figure 3-4 shows the capacity regions of the superdense coding MAC with the three-

party entangled states produced by the dual-DPA and heralded-plus-DPA GHZ systems.

We assume Alice and Bob are sending classical information to Charlie at a path length

of L = 25 km. We see that the capacity region for the heralded system is larger than

the capacity of the dual-DPA system. Superdense coding with the dual-DPA system can

benefit both Alice's and Bob's transmission rates, which was implied by the positive coherent

information computed in Fig. 3-3. However, for the dual-DPA system, there are some rate

pairs that cannot be achieved with superdense coding that could be attained if both Alice

and Bob discarded their share of the entangled state 00 and simply transmitted orthogonal

qubits. In general, if the quantity S(Pc) - S(Po) < 0, then the total transmission rate

R 1 + R 2 can be improved if neither Alice nor Bob superdense code.
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Figure 3-4: Capacity regions of superdense coding MAC with three-party entangled states produced
by the dual-DPA and heralded-plus-DPA GHZ systems. For comparison, the capacities that can be
achieved with no entanglement and with GHZ-state superdense coding are also shown.
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3.2 Entanglement-Assisted MAC

The alternative encoding discussed in the previous section is an example of an entanglement-

assisted MAC. For i = 0, 1,..., dA - 1, define the Kraus operators of Alice's channel E to

be Ek = i)(k|, so that
dA -1

) = Z E,k3 =)( (3.50)
k=O

Thus, the alternative encoding discussed above can be viewed as an example of a gen-

eral encoding with local operations. In this section, we study the capacity region of the

entanglement-assisted MAC with general local encodings.

3.2.1 Upper Bounds

Suppose Alice, Bob, and Charlie share the entangled state p0 in the Hilbert space 7
dA ®

1df ® Wdc. Alice and Bob encode independent classical messages by applying general

local operators to their qudits and sending their qudits over noiseless quantum channels to

Charlie, who then decodes the messages with a measurement on the combined system of

the three qudits.

Suppose Alice and Bob utilize the local operators {Ei} and {f}, respectively, with

product distribution pApP to encode their messages. Denote the received states as

(gA = ( E3 IC)(o). (3.51)

By subadditivity of von Neumann entropy, we can upper bound the right-hand side of (3.3)
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as

HA - 1P pS(Oj) (3.52)

< Bpf S trA P4ii) + S (trBC P Pij) - pS(ij ) (3.53)

log dA + ZpjS trA P -- ( pA4 pfS(ij) (3.54)

= log dA + (pj S((E (9 IC)(,(BC)) - Ep jp S(jij) (3.55)
j ii

= log dA + ( pP [S((E 0 9 IC)(OBC )) - S(iij )] (3.56)
ij

log dA + SUP [S((EB ( IC)(OBC)) - S((EA ®gEB ( IC)(f 0 ))] (3-57)
EA,EB

Similarly, the right-hand side of (3.4) can be upper bounded as

HB - E p pjBS(Oij) log dB + sup [S((EA ( IC)(3Ac)) - S((EA ®&E6B IC)(,3 ))]
2 3E A,CB

(3.58)

The right-hand side of (3.5) is upper bounded as

S(A) - E p'pjBS(pi) (3.59)
i i

S trcEZP.4PBi)j +S trAB 1 ZP'P.Bij - EPj jpAPS(Oij) (3.60)
\ i j / \ i j / i j

log dA + log dB + S(k3) - ( pfp S(O.i7) (3.61)
i j

log dA + log dB + sup [S( C) - S((EA &gB ®JC)(& I ))]. (3.62)
EA,e B

Summarizing, the rates for the entanglement-assisted quantum MAC are upper bounded as

R1 5 log dA + sup [S((EB 9 IC)(BC)) - S((&A g.B IC)p0)) (3.63)
EA,EB

R 2  log dB + sup [S((SA & IC)(3BC)) - S((E & EB IC)(p0 ))] (3.64)
RA,EB

R,1+ R2:5 log d A + log dB + SUP [S( C) - S((E A & E B c(& JC) - (3.65)
CA,ECB
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3.2.2 Pure-State Entanglement

In this section, we prove the achievability of the rate upper bounds when po is a pure state.

Let PAC, PBC, and fic be the reduced densities of 4o = 100)I'o(ko . We need two facts involving

the relative entropy of entanglement [50], defined as

ERE (&AB) = Tin S(&AB PAB), (3.66)
PAB

where the minimum is over all separable states PAB. First, let the state &AB have reduced

densities &A and &B. Then, the relative entropy of entanglement is lower bounded as

ERE(&AB) > maX {S(A) - S(&AB), S(&B) - S(OAB)} - (3-67)

The second fact we need is that the relative entropy of entanglement is equal to the von

Neumann reduced entropy for pure states [511, i.e., ERE(&AB) = S(&A) = S(&B), if GAB is

pure.

Using these facts, we have

sup [S((gB 9 IC)(fiBC)) _ S((EA ®B ® IC)(#o))] (3-68)
OA,OB

:5 sup EA BC g.A (& gB (& IC)() (3.69)
EA,EB

'R Egc(fio) (3.70)

= S(fiBC). (3.71)

Line (3.70) follows because entanglement measures cannot increase under local operations.

The inequalities (3.63)-(3.65) can now be upper bounded as

R1 5 log dA + S(BC) (3.72)

R 2  log dB + S(fiAC) (3.73)

R 1 + R2  log dA + log dB + S(tC). (3-74)

These rates can be achieved with superdense coding. Thus, for a pure-state entanglement-

assisted MAC, superdense coding is optimal.
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3.2.3 Separable-States

Let the shared state initial state have the separable form,

= Zp0ii)A (iI 0 Ii)(il 1 i)C(i|. (3.75)

We use the relative entropy of entanglement upper bound again.

sup [S((EB 9 IC)(BC)) - S((EA ®EB & IC) 0))] (3.76)
EA,EB

sup EAj-BC ((A &gB Cg)( ) (3-77)
-RE

E E -BC(m0 (3.78)

=0, (3.79)

since the entanglement of a separable state must be zero. Also,

sup [S(fiC) - S((A ® &EB & JC)(fio))] (3-80)
eA,EB

5 sup EEB-C((gA (gB & IC)(fi)) (3.81)
6A,EB

:5 EABs-C(&0) (3.82)

= 0. (3.83)

Thus, the rate upper bounds are

R1 5 log dA (3.84)

R 2  log dB (3.85)

R 1 + R2  log dA + log dB. (3-86)

These bounds can be achieved by sending orthogonal qudits over the quantum channel.

Thus, as should be expected, separable states are useless for enhancing the capacity region

of a quantum MAC.
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Chapter 4

Capacity of Gaussian Channels

We derive the classical capacity C for a class of Gaussian Bosonic channels, extending re-

cent work [7],[25] that has yielded the capacity of pure-loss Bosonic channels as well as

mathematical support for the capacity of the thermal-noise channel. After a review of

Bosonic channels and known results, we consider the Gaussian-noise channel in Section 4.2.

The Gaussian-noise channel represents the quantum version of a classical colored Gaussian-

noise channel, so our approach is strongly motivated by the standard technique of whitening

Gaussian noise used in classical information theory. Our derivations are based on a conjec-

ture for the capacity of the thermal-noise channel [25]. In Section 4.3, we solve minimum

output entropy problems that provide additional mathematical support for this conjecture.

4.1 Background: Bosonic Channels

In this section, we introduce the channel models that are studied in this chapter. We review

known capacity results for the noiseless and pure-loss channels and discuss recent work on

the thermal-noise channel capacity problem.

4.1.1 Channel Models

Consider the Gaussian Bosonic channel described by the Heisenberg evolution equation

= v + V/|1 -, rI i + C, (4.1)
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where . and 6 are the input and output annihilation operators, ft is the noise operator, is

classical Gaussian noise, and ? is a coupling coefficient. The noise operator is defined as

{ b fori7<1 (4.2)
n = (42

bt  for q > 1,

where 6 is an annihilation operator in a zero-mean Gaussian state. We assume the classical

noise C has a zero-mean, circularly symmetric Gaussian distribution. This channel model

represents a broad class of channels containing special cases that are important in quan-

tum optics. For example, if we set q < 1 and C = 0, then (4.1) is a lossy channel with

transmissivity 77. We will refer to the lossy channel with noise operator 6 in vacuum state

as a pure-loss channel. For q > 1 and C = 0, we have an amplifying channel with gain 77.

Two closely related Gaussian Bosonic channels that will be particularly important in this

chapter are the thermal-noise channel EN and the classical-noise channel Kr.

The thermal-noise channel gN is the TPCP map obtained from tracing away the noise17

mode in the evolution given by 6 = ie +1 -77b, where the noise mode b is in the thermal

state

saNT (N() = (4.3)
N+1 N+1

with mean photon number N. The thermal-noise channel describes an input mode coupled

to an environment in thermal equilibrium.

The classical-noise channel NA is defined by the evolution equation 6 = a + C, which

corresponds to setting 7 = 1 in (4.1). The TPCP map Kn is given by

An(o) = JPn(z)b(z)#bt(z)dz, (4.4)

where Ps(z) = exp(-|z 2 /n)/(7rn) is a circularly symmetric Gaussian distribution and

D(z) = exp(zet - z*a) is the displacement operator. The classical-noise channel is a unital

map, i.e., it leaves the identity operator unaffected. It is also straightforward to check that

coherent states are mapped to thermal states shifted in phase space, i.e.,

.An(|a)(aj) = b(a)3r(n)bt (a), (4.5)

where Tr(n) is a thermal state with mean photon number n.
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77 7

Figure 4-1: Representation of classical-noise channel Ma as a cascade of pure-loss and amplification
channels. The noise modes are in vacuum state and 7 = 1/(n + 1).

To help better understand the classical-noise channel, we provide two alternative de-

scriptions. First, ,na can be expressed as the limit of a thermal-noise channel. Through

the use of quantum characteristic functions, it is possible to show that the thermal-noise

channel Sn/(1-) approaches the classical-noise channel Afn as 7 -> 1. The second represen-

tation of Afn is shown in Fig. 4-1. The noise modes associated with the attenuation and

amplification processes are in vacuum state, and we set q = 1/(n + 1). The effects of loss

and amplification cancel out, but the input mode still experiences additive classical noise.

The thermal-noise and classical-noise channels are related through the decomposition

= (1-)N o 06, (4.6)

which says that the thermal-noise channel can be expressed as a pure-loss channel followed

by a classical-noise channel. This decomposition allows results derived for the classical-noise

channel to be directly applied to the thermal-noise channel. An extensive analysis of the

relationship between the maps EN and Xn is given in (25].

4.1.2 Noiseless Channel Capacity

States transmitted through a noiseless Bosonic channel are received undisturbed at the

receiver. The classical capacity of the noiseless Bosonic channel was found in [2] and [3],

where it was proved that a single-mode noiseless channel with average photon number

constraint ft has capacity

C = g(f) = (f+ 1)log(f+ 1) - f log(i), (4.7)

in nats per use. Figure 4-2 shows a comparison of channel capacity with the rates achievable

using input coherent states and conventional homodyne and heterodyne receivers [52]. The

following is a list of encodings that achieve capacity on the single-mode noiseless channel:
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Figure 4-2: Capacity of a single-mode noiseless channel C = g(f). For comparison, the communica-
tion rates with structured receivers are also plotted. Achievable rates with input coherent states and
homodyne and heterodyne receivers are Chom = (1/2) log(1 +4it) and Chet = 1og(1 +1), respectively.

1. Bose-Einstein distributed ensemble of number states with a photon-counting receiver; decoding

errors never occur for distinct codewords,

2. Gaussian-distributed ensemble of coherent states with optimal entangled measurement [71,

3. Gaussian-distributed ensemble of coherent states with heterodyne detection, in the limit of

large f,

4. Gaussian-distributed ensemble of squeezed states with homodyne detection, in the limit of

large ii; see Section 5.3 for a derivation.

For a noiseless wideband Bosonic channel with average power constraint P, the classical

capacity is

C = ,(4.8)

in nats per second. Random coding with number states and photon counting over inde-

pendent frequency modes is optimal for the wideband channel, and the capacity-achieving

power allocation requires transmitting with average photon number

1
ii(f) = 1(4.9)

exp(irhf /V6hP) - 1

at frequency f.
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4.1.3 Pure-Loss Channel Capacity

The results of the previous section were recently extended to the pure-loss channel £O in1

[7], where it was shown that the classical capacity of the single-mode pure-loss channel is

given by

C = 9(7f), (4.10)

and that capacity can be achieved with a coherent-state encoding. Neither entanglement

over successive channel uses nor nonclassical states, such as the number states, are required

to achieve capacity for the pure-loss channel. The wideband capacity result (4.8) has a

similar generalization. Although the optimal coherent-state encoding can be generated

by classical sources of light, the proof of (4.10) makes use of a measurement that we do

not know how to physically realize. See [8] for a study of communication rates achievable

over the pure-loss channel using number-state and coherent-state encodings with structured

receivers.

4.1.4 Thermal-Noise Channel Capacity

We review some recent work on the open problem of evaluating the capacity of the thermal-

noise channel £N. Although a rigorous proof has yet to be found, we conjecture that the

Holevo information of the thermal-noise channel is additive and that capacity is achievable

with a coherent-state encoding. A lower bound on the capacity of the thermal-noise channel

[53] is given by the single-use Holevo information with a Gaussian-distributed coherent-state

code:

/ /E -N aJ2/e _Iai2/S

EC S _ a)(al da) ) ( S (E(a)(al)) da (4.11)

= 9(i! + (1 - q)N) - g((1 - q)N). (4.12)

Next, we derive an upper bound for the thermal-noise channel capacity [54]. Let p = E pip3

denote the average state of an input ensemble {pi, fi3} subject to the mean photon number
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Figure 4-3: Gaussian-noise channel £. The input mode and output modes are e and e, respectively.
The noise mode b is in a zero-mean Gaussian state Ab with variance matrix Vb.

constraint i. Then, the normalized M-shot capacity is upper bounded as

=ma - S ((E4)OM(p)) _ E ((gN)(p)) (4.13)
M i M [ i I

S ((6N)@ M (p)) S ((.FN)O M

< max - min (4.14)
pi, A M p M

S ((EN)OM( )=g(qfi + (1 - q)N) - min . (4.15)
p M

In (4.14), we separately maximized and minimized the two terms of the Holevo information.

In (4.15), we used subadditivity of von Neumann entropy and upper bounded the first term

by the capacity of a lossless channel with average input photon number ?7i1 + (1 - 7)N [55].

At this point, it is apparent that if the second term of (4.15) equals g((1 - )N), then

the upper and lower bounds coincide and thus equal the classical capacity C. This line of

reasoning leads to the following minimum output entropy conjecture [25]:

S ((EN) O()
min m = g((1 - 7 )N). (4.16)

See [25] for numerous partial results obtained in the attempt to prove this conjecture. See

also [8] for work on the strong (majorization) version of the conjecture. In Section 4.3, we

solve related minimum output entropy problems that support conjecture (4.16).

4.2 Gaussian-Noise Channel

In this section, we assume the validity of conjecture (4.16) to derive the capacity of the

Gaussian-noise channel. The Gaussian-noise channel model is shown in Fig. 4-3. Input

mode & undergoes the Heisenberg evolution 6 = 177 + V/-1--7b, where the noise mode b is
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in the zero-mean Gaussian state Pb with variance matrix

Vb = 11 ;) (4.17)

\ 12 Y2 )

see Section 1.2.2 for background on Gaussian states, including the definition of a variance

matrix. The Gaussian-noise channel is the TPCP map £ obtained from tracing away the

noise mode in this evolution. Assuming that conjecture (4.16) is true, i.e., the thermal-noise

channel E7, with V = (2N + 1)1/4, has capacity C = g(9i + (1 - r)N) - g((1 - 71)N), we

will prove the following capacity result.

Theorem 2 The classical capacity of the Gaussian-noise channel £ is given by

C = 9(?ft + (1- q)ib) - g (1 -,q) 2Vb1/ 2 - , (4.18)

for input mean photon numbers n > fthresh, where

1 _/ 1
fthresh = - ((V/ V 2 + 4v'22' 2 1 +V 2 - -, (4.19)

772

V' = V1' V1'2 =W + (1 - 77)V, (4.20)
V1'2 V2'I

V1 V1 2 p |+ V12 2 Im(pv)
V= (4.21)

(V12 V2 4 21m(pv) 11_1_V12

and the parameters 1 and v are chosen such that the squeeze operator S(z) whitens the

Gaussian state Pb (see Section 1.2.2).

For sufficiently large input mean photon number ft, (4.18) gives the classical capacity of

the Gaussian-noise channel. In Section 4.2.4, we study the capacity of the Gaussian-noise

channel for ft less than threshold ftthresh.

To help motivate our proof of this result, we review the standard approach [561 for

computing the capacity of a classical colored Gaussian-noise channel. In Fig. 4-4, the

complex-valued column-vector input x has average power constraint tr(C,,) <; P, where

CX = (xxt). The variance matrix of the noise vector is a positive semidefinite, Hermitian
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Z

Figure 4-4: Classical colored Gaussian-noise channel. The complex-valued input vector x has
variance matrix Cxx = (xxt) with average power constraint tr(Cxx) <; P. The complex-valued
Gaussian noise vector z has variance matrix Czz = (zzt).

matrix, so it can be diagonalized by a unitary matrix U as

CZ, = UAU (4.22)

A = diag (Ai- Am). (4.23)

The receiver whitens the additive Gaussian noise z by passing the received vector y through

the filter Ut. The resulting output is then equivalent to a channel consisting of a set of

independent additive white Gaussian-noise channels with variances equal to the eigenvalues

Ak, k = 1, . . . , m. The optimal power allocation to each component of this channel is given

by the water-filling solution.

The classical proof does not directly apply in the quantum case due to non-commuting

operators, so we will present the quantum version of whitening additive colored Gaussian

noise to derive the capacity of the Gaussian-noise channel E. A capacity upper bound is

derived by converting the Gaussian-noise channel to an equivalent thermal-noise channel,

which in the quantum case plays the role of an additive white Gaussian-noise channel. For

input powers above a given threshold, we obtain the capacity of the Gaussian-noise channel

by presenting a code that achieves the capacity upper bound.

4.2.1 Capacity Upper Bound

We begin the derivation of the capacity upper bound by separately maximizing and mini-

mizing the two terms of the Holevo information. Let fb = Vf + Vb - 1/2 denote the mean

photon number of the Gaussian noise state pb. Then, from the derivation given in lines

(4.13)-(4.15), which is still valid because Pb is zero-mean, we have

CM < g(r?7i + (1 - rj)ftb) - min S(Em )) (4.24)
M m M
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Figure 4-5: Equivalent thermal-noise channel Ef7 from e' to 6'. The input mode ' is in state p',
and the noise operator b' is in a thermal state with mean photon number h = 2|VbI| 2 

- 1/2. The
original Gaussian-noise channel takes input & to output 6.

We compute the minimum output entropy of the Gaussian-noise channel by converting

it into the equivalent thermal-noise channel shown in Fig. 4-5. This process whitens the

variance matrix Vb of the Gaussian noise state. Let E(O) be the original Gaussian-noise

channel from input & to output 6, and let EfI(p') be the internal thermal-noise channel

from ' to e'. The unitary squeeze operator $(z) is described in Section 1.2.2. Its complex

z-parameter is chosen such that noise operator b' is in a thermal state with mean photon

number T = 2|VbI1/ 2 - 1/2.

The minimum output entropy is achieved over pure input states 3= |/)(|, so we have

m (E*M( )) = S ((St (Z))*M(E T)OM(O/3) OM(Z)
min =S (I mn 7 (4.25)

M M

S(( EgftT)OMOY'
= mm M )(4.26)

S((Egfr) 1MOY)
= min ( M (4.27)

= g((1 - 77)fIT) (4.28)

= (1 -) 2|b1/2 - ). (4.29)

Lines (4.26) and (4.27) follow because S(z) is unitary, and the final result assumes the

validity of conjecture (4.16). Thus, putting this together with (4.24), the capacity of the
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Gaussian-noise channel is upper bounded as

< g(r7A + (1- r)4i) - g (1 - r) 2 Vb1/ 2 - . (4.30)

Under the assumption of conjecture (4.16), the minimum output entropy of the thermal-

noise channel is achieved by the vacuum state; hence, the corresponding state of the input

& in Fig. 4-5 is the squeezed vacuum state 14) = S' (z)10) = 10, -z). The variance matrix

1 (I + V2 2 Im(pv)
V = - (4.31)

4(2 Im( pv) |pU - V12)

of this squeezed state is proportional to the noise variance V; see Eq. (1.34). In this sense,

the optimal input state is the pure Gaussian state that most closely matches the noise state

4.2.2 Capacity Lower Bound

We obtain a lower bound for C from a squeezed-state encoding. To compute the rate of

this squeezed-state code, we apply a capacity result derived in [57].

Holevo-Sohma-Hirota capacity result

In the Holevo-Sohma-Hirota (HSH) channel model [57], complex-valued messages a are

encoded into the quantum states pi(a) = D(a),5(0)bt (a), where p(0) is zero-mean Gaussian

with variance matrix

V =( V1 .2  (4.32)
(V12 V2)

The received state p(a) is simply the initial state p5(O) shifted in phase space. Let the

variance matrix of the input distribution P(a) be

V? =1 . (4.33)

V, V12 V2'
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In [57), it was shown that under the input constraint

(|a2) = J P(a)a|2da = N, (4.34)

the optimal input distribution P(a) is Gaussian, and the capacity of this channel is given

by one of two different expressions depending on the input constraint N.

" If N > ((V - V2)2 + 4V) 1/2, then the capacity of the Holevo-Sohma-Hirota channel

is

CHSH(V, N) =g V + + N - - g(2|Vj1/2 -1. (4.35)

* If N < ((V - V) 2 + 4V 2 )1/2 , then

2 1/2

CHH V N g2 V +%V2+ N2 2 N1
CHsH(VN)g 22(( 2 ( (V+ 2) 2)

-g 2 IV11/2 -- . (4.36)

Our main interest is in the above-threshold result (4.35). For further discussion of the HSH

capacity result, see Section 5.2.1.

Squeezed-state code

Define a Gaussian-distributed squeezed-state code over the Gaussian-noise channel E. Let

PA(O) = 10, --z)A(0, -z be the zero-mean squeezed state with variance matrix V given by

(4.31). The transmitted codewords

PA(a) = b(a)A(O)b (a), (4.37)

are shifted versions of the initial state &A(0), and the input distribution P(a) is zero-mean

Gaussian with variance matrix V. With this encoding, the channel output states can be

written as

E(pA(a)) = b(,a)E(fA(0))bt(Vrqa), (4.38)
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where E(OA (0)) is a zero-mean Gaussian state with variance V+(1-,q)V. If the transmitter

is required to satisfy the mean photon number constraint

tr at P(a)OA()dQ) = V + V + V + V2 - =-, (4.39)
2

then we can directly apply the Holevo-Sohma-Hirota capacity result to compute the rate of

this code. Let

V'= V + (1 - q)V, (4.40)

N' = -V - %2 + (4.41)

In the above-threshold regime, Z > fthresh, where

1 2 1
theh-1 ((V' - V) 2 +4v2)' ±/+V, + V2 - 1, (4.42)'nthresh = - V-2 + 412

772

the capacity of the squeezed state code is

C = CHSH(V', N') (4.43)

= gVl + V2' + N' - -9 g21V'12 _ 4 44

= g ((Vi + V2) + (1 - +)(Vi' + V2) + 77 -ft - + -

g 21V'1/ 2 - (4.45)

=g ( +(1-77) (V1 +V- - g (21V'I1/2- (4.46)

= g (i+ (1 - 77)iib) - g ((1 - 77) (2Ivb|/2 ))447)

The last line follows from the fact that the squeezed state jo, -z) achieves the minimum

output entropy (4.29). This code achieves the upper bound (4.30), thus the capacity of the

Gaussian-noise channel is

C = g(7ft + (1- q)fb) - g (1 -) (21 Vb11/ 2 - , (4.48)

for all ft > ftthresh- This concludes the proof of Theorem 2.
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For the thermal-noise channel EN, we can check that flthresh = 0 and that the capacity-

achieving input distribution P(a) is circularly symmetric Gaussian. Thus, this result is

consistent with our thermal-noise capacity conjecture. Let us now consider the more inter-

esting special case of pure-state Gaussian noise &b =|0, z)(0, z|. In this case, we have

V/ V =1 Ip - v12 -2 Im(pv) (.9V'= V = Vb = Iig , ) (4.49)
-2 Im(Ipv) It,+ V12

N' = q(ii - |V| 2) (4.50)

and

_ ,yq~~ 1I 1
fthresh - -V 2  ±4 2 +V 2 - (4.51)

77 2

_1 ((It, _ V.12 _It, + V12\ 2 +±MIV212 V2(-2
= m v2 +|v|j2 (4.52)

77 4 1/
iI +|Iv2 (4.53)
77

Thus, squeezed-noise channels have capacity

C = g(rii + (1 - 77)IV12), (4.54)

for ft > ithresh = IMI/I?+ 12. Note that this capacity is higher than the pure-loss capacity

g(7ft) for the same transmissivity. Thus, phase-sensitive pure-state Gaussian noise enhances,

rather than degrades channel capacity. The optimal input distribution P(a) is zero-mean

Gaussian with variance matrix

_ Re(pv) Im(pV)

V, = 2 Im(Pv) - IV12 7Repv) .(4.55)

When the input photon number constraint is above-threshold, the transmitter has sufficient

energy to use the capacity-achieving squeezed-state code with its corresponding pure-state

output ensemble. See Section 4.2.4 for squeezed-noise capacity in the below-threshold case.
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N +1

177 6.ja + li1j7

Figure 4-6: Multimode Gaussian-noise channel A. The noise operator b = (b1, ... , bm)T is in the
zero-mean Gaussian state Pb-

4.2.3 Multimode Gaussian-Noise Channel

We take a similar approach to study the capacity of the multimode Gaussian-noise channel,

shown in Fig. 4-6. Denote the signal modes as & = (&i,..., &m)'T, the noise modes as b =

(bi, . . . , bm)T, and the output modes as 6= (-1, ... ,5m)T. If we assume equal transmission

factors, the multimode channel can be expressed as a = r-& + /F7 b. The noise operator

b is in a zero-mean Gaussian state Pb with mean photon number j1b,k = tr(t bkpb) in the

kth mode, k = 1,...,m.

The capacity of the multimode Gaussian-noise channel A is the maximum Holevo infor-

mation over input ensembles {pi, pi5 } that satisfy the input energy constraint

tr E hkettg < E, (4.56)
(k=1 kP

where p= pi is the average input state. Let {qi, &i}, with average state = E qia, be

the capacity-achieving ensemble for the product channel A0M. We then have the capacity
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upper bound

CM _ 1S (AOM() qS(A"()) (4.57)
M M I ~%Jk2)

< S(AOM () m n S(AOM ()) (4.58)
K mm ~gM

Al M

< Z Z S(Ak(d)) min M (4.59)
k=1 I=1

1 m M S(AOM())
- M E g(71l'ki + (1 - 7)ilk) - min (4.60)

k=1 1=1 M

m -m S(A®M(3))
< max E (k + ( ,) M . (4.61)

In line (4.59), we used subadditivity of entropy to upper bound the first term and wrote

AkI(&) to denote the reduced output state of the kth mode and lth channel use. In line

(4.60), i is the input mean photon number of the kth mode and lth channel use. The

optimal power allocation in the last line is given by the water-filling solution,

n _ =7)flbk (4.62)
71(e, Wk /71) 'q'

where (x)+ = max(x, 0), and the parameter A is chosen to satisfy the energy constraint

k=1 lwkiik = E.

The second term in (4.61) is the minimum output entropy of the multimode Gaussian-

noise channel. We compute this term by converting the channel into an equivalent thermal-

noise channel, shown in Fig. 4-7. The unitary transformation & takes the noise state pb

into a product of thermal states [573:

Ub i= T(Nl) 0 ... ( /T (Nm). (4.63)

For any Gaussian state /b, there is a unitary operator & with this property; see Appendix A.

Let A(/) be the multimode Gaussian-noise channel from input & to output i, and let A'(p')

be the internal thermal-noise channel from e' to E', as shown in Fig. 4-7. The minimum
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a ' . ~ J
a - c '6-*U

Figure 4-7: Equivalent thermal-noise channel for the multimode Gaussian-noise channel. The noise
operator b' is in the product thermal state fiT(N1) ( ... 0 P T(Nm).

output entropy is achieved over pure input states p = 4')(01, so we have

S (A®M(,) _ (s )Mg)Mp)O
m S M -= min M (4.64)

M M

= S((A')mM (n)) (4.65)
k M

= S((A')mM (n')) (4.66)
fi' MM

= g((1 - 'r)Nk). (4.67)
k=1

In (4.67), we assumed that the minimum output entropy of m independent thermal-noise

channels is achieved with the input vacuum state 0 = 10)(01.

Putting these results together, we have the following upper bound for the capacity of

the multimode Gaussian-noise channel:

m

C 5 E[9(r7k + (1 - 7/)ib,k) - g((1 - 'r)Nk)], (4.68)
k=1

where the power allocation {N} is given by (4.62). We can show that in some cases, we

can find an encoding that achieves the capacity upper bound (4.68).

Parallel thermal-noise channels

Suppose we have a multimode channel consisting of a set of m independent single-mode

thermal-noise channels ENk , k = 1, ... , m. The capacity upper bound (4.68) for this multi-
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mode thermal-noise channel is
m

C < C(ik, N), (4.69)
k=1

where C(fz, N) = g(O +(1 -rq)N) -g((1 - q)N) is the capacity of the single-mode thermal-

noise channel. By coding independently over each mode with the optimal power allocation,

this upper bound can be achieved . Thus, the right-hand side of (4.69) is the capacity of

the multimode thermal-noise channel under our minimum output entropy conjecture.

Gauge-invariant Gaussian-noise channel

A multimode gauge-invariant Gaussian state [57] is defined to be a state of the form

Jrm NI exp( atN~la)a)(ai da, (4.70)

where la) are the coherent states in 'HOm. For the case m = 1, 0 is a thermal state. Let the

noise state Ob of the multimode Gaussian-noise channel in Fig. 4-6 be the gauge-invariant

Gaussian state with P-representation

1
Pb(/) = mN exp(-I3tN 1 l0). (4.71)

States that possess a P-representation in the form of a probability distribution are classical

mixtures of coherent states and hence are considered "classical states". The classical na-

ture of the noise in a gauge-invariant Gaussian-noise channel allows us to use the simpler

whitening procedure from classical information theory.

The variance matrix Nb is a positive semidefinite, Hermitian matrix, so it can be di-

agonalized as Nb = UAU, where UUt = I and A = diag[AI ... Am] with Ak > 0,

k = 1,..., m. We convert the gauge-invariant Gaussian-noise channel into an equivalent

thermal-noise channel by applying the unitary transformation Ut to the channel output:

e' = Ute (4.72)

=r Ut + V1 -- 6) (4.73)

= d '+ - qb (4.74)

The P-representation of the noise state changes by the same unitary transformation, 0' =
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U , so the transformed noise mode 6 is in the tensor product of thermal states, bT(A\) &

-- -OPT(Am). Applying the result of the previous section, the capacity of the gauge-invariant

Gaussian-noise channel is
m

C = C(ia, Ak), (4.75)
k=1

where {4} is the optimal power allocation (4.62).

4.2.4 Below-Threshold Capacity

We derived the capacity of the single-mode Gaussian-noise channel E for mean photon

numbers ft above a certain threshold Athresh. In this section, we consider the problem of

transmitting classical information over the Gaussian-noise channel in the below-threshold

regime.

To study this problem, we will consider the Gaussian-noise channel with its noise op-

erator f in a squeezed vacuum state 10, z). For input mean photon numbers A > =thresh

IpVI/j + 1v12, the capacity of this channel is

Cupperbd = g(7ft + (1 - 7)|V12). (4.76)

Below threshold, Cupperbd is only an upper bound on capacity. Figure 4-8 shows capac-

ity upper bound Cupperbd for a squeezed-noise channel with squeeze parameters (p, v) =

(v 'I, V/To) and the rates of various encodings explained below.

In Fig. 4-8, Csq is the rate of the squeezed-state code, described on page 84, that achieves

above-threshold capacity for the squeezed-noise channel. The input squeezed states la, z)

in this encoding have the same squeeze parameter z as the noise state Pb, thus making the

corresponding channel outputs E(Ia, z) (a, zi) pure squeezed states. For input mean photon

numbers ii < 10, the transmitter cannot use this encoding for the simple reason that it

lacks the power to produce these squeezed states. For 10 < ft < i 1thresh, the transmitter can

squeeze hard enough to generate this encoding, but cannot use it to achieve upper bound

Cupperbd. In this low-power regime, the transmitter makes a rough trade-off, represented by

the two terms of Holevo information, between purifying the channel output and modulating

the input to convey information. For ft > f1thresh, where threshold Athresh ; 114.88 in our

example, the squeezed-state code achieves capacity.

Intuitively, one might believe that putting the noise operator b in vacuum state would
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Figure 4-8: Squeezed-noise channel. The transmissivity is 77 = 0.1, and the noise operator is in the
pure squeezed state 10, z) with (y, v) = (Vi/, i5) The threshold is fthresh ~ 114-88. Cupperbd =
g(qft + (1- ) 2) is capacity upper bound (4.76) derived in Section 4.2.1. CG is the capacity achieved

by Gaussian codes. Cq is squeezed-state code capacity with squeeze parameters (pi, v) = (x/ii, Vi).

Ccoh is coherent-state capacity with optimal measurement. CJHS is coherent-state with homodyne
detection capacity (4.77). Cpureioss = g(f) is the capacity of the pure-loss channel E'.

result in the highest-capacity channel. As an easy way to demonstrate that this is in fact not

true, one can verify that a squeezed-state code with a homodyne receiver over the squeezed-

noise channel E achieves a rate higher than the capacity of the pure-loss channel E at low

input mean photon numbers. More specifically, if the transmitter encodes information in

the low-noise quadrature using coherent states Iai), ai E R, then the rate

1 4h
CJHS = -log +- (4.77)

2 + != (p - V)2

is achieved by using homodyne detection to measure the first quadrature of the channel

output. In our example, CJHS is greater than the capacity of the pure-loss channel E for

ft < 34.49. This effect is similar to the improvement in SNR achieved with squeezed states

in an optical waveguide tap [58]. Optimizing over all codes, Fig. 4-8 shows that the capacity

of the squeezed-noise channel £ is greater than the capacity of the pure-loss channel E , for

all ft.

In Fig. 4-8, we also plot the capacity Ccoh that is achievable with input coherent states
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optimized over receiver measurements. For ft > nthresh,

Ccoh = g(91+ (1- )V2) 9( [(, + (1- V)(y - v)2)(7 + (1- 7)(A + V)2)(1/2

(4.78)

and a more complicated expression can be given for 0 < ft < ithresh. Figure 4-8 shows that

CJHS ~ Ccoh, so, in our example, homodyne detection provides a near-optimal measurement

when the transmitter sends coherent states.

All of the codes we have considered so far are examples of Gaussian codes based on the

Holevo-Sohma-Hirota model. For each value of fi, the optimal Gaussian code is found by

searching over all possible input variances V. For the transmitter to have sufficient power to

transmit a given code, the inequality ii > V + V2 - 1/2 must be satisfied. If this condition

is satisfied, then the capacity of the Gaussian code is

C(ii,V) = i

g ('ii + (1 - 7r)fib) - g (21V'1 1 /2 
-

for 'h > Athresh(V)

g
(2 ((W~+N/) ~ ~2 1/2-)

(2 ( Vjg 2 y1_y 22

-g (21V'1 1/ 2

for ii < hthresh(V),

(4.79)

where

1 (VI 12 2)1/2 +1 _ V1
Athresh (V) = - (V - V2) 2 + 4V1i' + V1 + V2 -

V' = 77V + (1 - q)V.

We numerically computed

CG(ft) = max C(f, V),
V

(4.80)

(4.81)

(4.82)
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subject to the constraints

1
V + V2 - - < (4.83)

2

V1, V2 > 0 (4.84)

V1V2 - V1 2 -. (4.85)16*

The capacity CG achieved using Gaussian codes is shown in Fig. 4-8. This is the best

achievable rate we have for the below-threshold regime, but we have no reason to believe that

it is capacity-achieving or even that below-threshold capacity can be analytically derived.

4.3 Minimum Output Entropy

The results of the previous section were based on the conjectured capacity of the thermal-

noise channel EN. To prove this conjecture, it is sufficient to show that input coherent

states minimize the output von Neumann entropy of the thermal-noise channel. A main

reason for the difficulty in proving (4.16) is the intractability of the logarithm function in

the definition of von Neumann entropy S(y) = -tr(plog p). In this section, we outline an

approach to solving this problem involving R6nyi entropy [591 and discuss its connection

with the replica method. We also show that coherent states minimize an additional entropy

quantity known as Wehrl entropy. Although the results derived in this section do not prove

(4.16), they lend additional mathematical support to our conjecture, demonstrating that

coherent states produce the purest channel output as measured by all integer-order R6nyi

entropies (r > 2) as well as the channel output most localized in phase space as measured

by Wehrl entropy.

4.3.1 Renyi Entropy

The Renyi entropies are a family of entropy functions defined as

1
Sr(A) = - log tr('W), (4.86)

r - 1

where r > 0 is the order of the Renyi entropy. For fixed p, R6nyi entropy is continuous in

r, and L'H6pital's rule shows that von Neumann entropy is obtained in the limit r -- 1.
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The main motivation for considering R6nyi entropy is to avoid the logarithm function in the

definition of von Neumann entropy, replacing it with a function that is easier to analyze.

If we could show that output R6nyi entropy is minimized by input coherent states for all

r > 1, then our conjecture would follow by continuity. We consider a single use (M = 1) of

the classical-noise channel A, and what we want to show is that

min Sr(Kn()) =log[n + 1)r nJ (4.87)
pr - 1

holds for real r > 1. We have instead proved the weaker result that (4.87) is true for

integer orders r = 2,3,4,.... Note that the case r = 2 was solved in [60] in the context of

maximizing the fidelity of continuous-variable teleportation.

Theorem 3 The minimum output Rinyi entropy of the classical-noise channel ,na is achieved

by input coherent states, i.e.,

min Srfn(,W) = log[(n + 1y - nr(
min-1 'p)= (4.88)r - 1

for integer orders r = 2, 3,4,....

Proof Minimizing R6nyi entropy Sr(rnf(p)) is equivalent to maximizing the r-purity

tr((A4n(p))'), and by concavity of R6nyi entropy, we know that the minimum (4.88) is

achieved on pure input states i = IV)) (0/1 Thus, we write

tr((KnQ())r) = tr P(zi)b(zi)3Dt(zi) dzi ... J Pn(Zr)(Zr)pD(Zr) dzr (4.89)

= Pn(zi) ... P(zr) tr(b(zi)Pht(zi) -- -,D(zr)fit(zr)) dzi ... dzr (4.90)

= Pn(i) ... Pn(Zr) (V4bt(zi)b( 2)I/) - (PI-b t (zr)b(z1)I0) dzi ... dzr

(4.91)

= Pn(zi) .. Pn(zr) exp ( zi 2 + z Z2 - - - + 2zr Z z

Xa(2 - Zi) X (Zi - zr) dzi - --dzr. (4.92)

We let x W_(z) - (#b(z) 1,0) denote the symmetrically-ordered characteristic function of the

input state p. Express each of the characteristic functions in (4.92) in terms of the Wigner
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function W(a) through the Fourier transform relation

xp,(z) = W(a)eza*-z*ada. (4.93)

This gives us

tr((~n0())') = W(ai) ... W(ar) g(a) da,

where the inner Gaussian integral is

g(a) = 1 [exp -ztAz + ztBoL - atBtz) dz,
(lrn)rj (4.95)

and we have defined the vectors z = (zi,..., z,)T, a = (a1,..., a,)T, and the matrices

1

-

0

0

-1/2 0

1/n -1/2

1/2 1/n

0 0

0 0

0 0-

1 1 0

-1 1

0 0-

0 0

0

0

0

1/2

0

0

1/2 1/n -1/2

0 1/2 1/n

-0

-- 0

-0

*1 1

) -1

-1

0

0

0

1

A and B are both circulant matrices, so they can be diagonalized as

A = FIAAF

B = FtABF

AA = diag (Al1

AB = diag(AB3

96

(4.94)

1/n

1/2

0

0

-1/2

(4.96)

(4.97)

(4.98)

(4.99)

(4.100)

(4.101)



by the unitary Fourier matrix

F 1
F = --- {wo-']

1

1

1

1

1

w- 1

1

w- 2

where w = exp(21ri/r) is an r-th root of unity. The eigenvalues of A and B are

A = -iIm(wk-1), for k = 1, ... ,r,n

kf=1-wk1 for k= 1, . .. , r.

Rotating by the Fourier matrix F with the change of variables

0 = Fa

the Gaussian integral is

g_ 1

(7rn)r

Iexp (-ZIAz + zIBa

J exp (-Y'AAY + ytABf3 - IAtgy) dy

fJ xp (- 1Ayk 2 + yBAf8k - /k3AP*yk) dyk
k=1

1 r1
r 11 3 exp

k=1 k k

1 r I4B21)k32
rdet A exp AA ~

k=1 k

97

1

... w-(r-l)

w(r 1 )(rl)

(4.102)

and

(4.103)

(4.104)

(4.105)

(4.106)

- atBtz) dz (4.107)

(4.108)

(4.109)

(4.110)

(4.111)

W-(r-1) L,-2(r-1)



Thus, the output r-purity is

tr((fn ())r) W(Qi) ... W(ar) g(a) da (4.112)

ndetA W()#) exp ] d\ 3 (4.113)

1 A f| I2kI\nr det AA
k1 k= kuB

- det A (exp E k) W(,A (4.114)

As discussed in Appendix B, this means that the output r-purity can be expressed as the

expectation of a thermal operator O acting on an extended Hilbert space 'Or. On this

extended Hilbert space, the annihilation operators & = (&1,..., dr)T are in the product in-

put state p3r with Wigner function Wa(a) = W(ai) ... W(ar). The annihilation operators

6 = (b1 , ... ,br)T, which are related to d through a rotation by the Fourier matrix

6 = F&, (4.115)

are in the state with Wigner function Wb(1) = Wa(F t 3).

We upper bound the output r-purity by the maximum absolute value of the eigenvalues

of 6. From (B.18),

tr((NA(#)) 2/n 2,(41)n (GC) fl T2AA AB2 , (4.116)
k=1k k

which is achieved by the eigenvalue of G associated with the product vacuum state 10)*'

of the annihilation operators bk. But since the sets of annihilation operators & and 6 are

related through a unitary transformation, this means that the output r-purity is maximized

by the input vacuum state # = 10) (01. Thus, we have proved (4.88), which says that output

R6nyi entropy of the classical-noise channel .Ar is minimized by input coherent states for

integer orders r > 2. 1
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For completeness, we can evaluate the right-hand side of (4.116) to show that it does

give us the right-hand side of (4.87). From (4.103) and (4.104),

(A A- i Im(W k)
k=1 k=0

= - iIm(wk)
k=k

1+n
k=

1+ n r

n

+ 1-WkJ2

+ 1 - Re(Wk))

Thus, (4.116) reduces to

f 2/n

k=1 B 2k

Finally, using decomposition (4.6),

is lower bounded as

1 1 (4.121)
nr =1 (n+1)r nr

the output R6nyi entropy of the thermal-noise channel

min Sr(&n()) = min Sr ((A(1 -,)N o E,)

Smin Sr(Af(1-)N (P))

log[((1 - ,)N + 1)r - ((1 - 7)N)r
r - 1

(4.122)

(4.123)

(4.124)

Input coherent states achieve this lower bound, so (4.124) is the minimum output R6nyi

entropy of the thermal-noise channel for integer orders r > 2.

Recently, the same approach was used to extend the above proof to multiple channel

uses in [61], where it was shown that the minimum integer-order output R6nyi entropy of the

classical-noise channel is additive. In another related result, [62] shows that the minimum

output R6nyi entropy of a general class of Gaussian channels, including our classical-noise

channel as a special case, is additive for all r E (1, oo) when the inputs are restricted to be

Gaussian states.
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4.3.2 Replica Method

The replica method was developed in statistical mechanics for evaluating free energy den-

sities in situations for which an explicit calculation is not possible. The major obstacle in

the free energy calculation is the expectation of a logarithm, E[log Z], where Z is called the

partition function. Recently, replica-method analyses have started to appear in classical-

communication problems, e.g., [63], [64]. The typical such approach proceeds as follows.

1. Use the identity

logA = lim dA m  (4.125)
m--o dm

and assume that expectation and limit can be interchanged, so that

E[log Z] = E lim (4.126)
Im-+0 dmI

= lim 1 dE[Zm](4.127)
m-+O E[Zm] dm

= lim d log E[Zm]=m-m dm (4.128)m--+0 dm

2. Assume that free energy is self-averaging. Let K be a size parameter for the given

problem. Then, our assumption is that free energy converges to its expectation for

large K.

Y = lim -E[log Z] (4.129)
K~oo K

= lim lim dlogE[Zm ] (4.130)
K-oo m-+O dm

d 1
-lim lim - log E[ZM (4.131)

m-*O dm K-oo K

3. Evaluate (1/K) log E(Zm ] for integer values of m using the saddle-point method or

large deviation theory to asymptotically compute an integral.

4. Assume analytic continuity for the function limKno(1/K) log E[Z m]. Take derivative

and let m --+ 0.

Although the replica method lacks a rigorous mathematical justification, it is an accepted

procedure in the field of spin glasses, for which the method was originally developed [651.
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Furthermore, the replica method has been successfully applied to problems in communica-

tion and information processing; see references in [63].

In the replica method analysis, identity (4.125) is introduced to avoid taking the ex-

pectation of a logarithm. In our minimum output entropy analysis, we considered the

parameterized family of Renyi entropies for the same reason. If we shift the order param-

eter in the definition of R6nyi entropy by setting s = r - 1, then the fact that Shannon

entropy H(X) = -E[log p(X)] reduces to R6nyi entropy of order r = 1 can be expressed as

H(X) l log E[p(X)] (4.132)
s--+O S

whereas the replica method approach (4.128) gives us

H(X) = - lim dlogE[p(X)] (4.133)
'9+0 ds

An application of L'H6pital's rule to (4.132) demonstrates the equivalence of these two

expressions.

One way to get a connection with the replica method is to define the minimum entropy

functions

S,*(Ka()) = min Sr(n(4)) (4.134)
A

S*(A(p)) = min S(Af(r)). (4.135)

Then, an application of the replica method to our minimum output entropy problem can

be summarized as follows.

1. Assume it is valid to interchange minimization and limit, so that

S* = min lim Sr(An(1 )) (4.136)

= lim min Sr(Kn( )) (4.137)
r->1 p

= lim S,(rA*(,3)) (4.138)
r-4

2. Evaluate the function S* (rn(#)) at integer values r = 2, 3, 4, .
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3. Assume analytic continuity for the function S*(A,,()) and take the limit r --> 1.

In the typical replica method analysis, the evaluation of the function at integer values of m

requires a self-averaging assumption and an asymptotic calculation in the size parameter K.

In our analysis, the dimension of the noise Hilbert space serves as an infinite size parameter,

and we have rigorously derived the minimum output R6nyi entropies for integer values of

r > 2. This connection with the replica method provides us with additional support for our

minimum entropy conjecture (4.16).

4.3.3 Wehrl Entropy

The Wehrl entropy of a density operator 3 is the Shannon entropy of its Husimi Q-function,

SW()= - (alfila) log(ilpla)- (4.139)
J 7r

= Q(a) log(7rQ(a)) da, (4.140)

where Q(a) = (alpla)/7r is the Q-function. This entropy quantity is a measure of the

localization of a state in phase space. The statistics of ideal heterodyne detection, which

provides a physical realization of a two-quadrature field measurement, are characterized

by the probability density Q(a) [66]. The fact that the Q-function cannot be precisely

localized in phase space is due to the Heisenberg uncertainty principle, which prevents both

quadratures from simultaneously having zero variance. Wehrl conjectured [67] and Lieb

proved [68] that coherent states minimize Wehrl entropy, i.e.,

min Sw(fi) = 1. (4.141)
p

In this section, we prove the following result.

Theorem 4 The minimum output Wehrl entropy of the classical-noise channel fn is achieved

by input coherent states, i.e.,

min Sw(A()) = 1 + log(n + 1). (4.142)

Proof The addition of classical noise to the input mode multiplies the anti-normally ordered

characteristic function by the factor e-nlC2 . Taking inverse Fourier transforms, the Q-
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function at the output of the classical-noise channel is the convolution

Q'(a)= (Q * Pn)(a) = J Q(/)Pn(a - 3) d3. (4.143)

For an input coherent state a = Io)(aoI, the output Q-function is

, -lO 120 -a12 /n exp - +1~j

Qf(a) = * e = (4.144)
7r 7rn - r(n + 1)

so the output Wehrl entropy corresponding to an input coherent state is given by

Sw(fin (lao)(aol)) = h(Q'(a)) - log 7r (4.145)

= log(7re(1 + n)) - log 7r (4.146)

= 1+ log(1 + n), (4.147)

where h(f) - f f(x) log f(x) dx is the differential Shannon entropy. Thus, the output

Wehrl entropy produced by a coherent-state input is independent of the input mean ampli-

tude ao. We claim that this is the minimum output Wehrl entropy.

To lower bound the output Wehrl entropy, we apply the entropy power inequality [68],

[561. Let f and g be two-dimensional probability distributions. The entropy power inequal-

ity provides a lower bound on the entropy of a convolution, and the form of the inequality

we will use is [681

h(f * g) > Ah(f) + (1 - A)h(g) - AlogA - (1 - A) log(1 - A), (4.148)

valid for all 0 < A < 1. Applying the entropy power inequality to the classical-noise channel
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gives us the lower bound

Sw(Na()) = h(Q * Pn) - log 7r (4.149)

Ah(Q) + (1 - A)h(Pn) - A log A - (1 - A)log(1 - A) - logi7r (4.150)

> A(1 + log 7r) + (1 - A)log(7ren) - A log A - (1 - A) log(1 - A) - log 7r

(4.151)

=1 + (1 - A)logn - A logA - (1 - A)log(1 - A) (4.152)

S1+ log(n + 1), (4.153)

where we applied (4.141) in (4.151) and set A = 1/(1 + n) to obtain the final result. Thus,

input coherent states achieve the minimum output Wehrl entropy. I

These arguments also apply to the thermal-noise channel EN and show that output Wehrl

entropy is minimized by input coherent states:

min Sw(El(#)) = 1 + log[(1 - 7r)N + 1]. (4.154)
p
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Chapter 5

Capacity of the Optical MAC

In Chapter 3, we studied the capacity region of the quantum MAC with prior shared

entanglement. In this chapter, we continue our study of the quantum MAC by generalizing

our classical-capacity analysis for the single-user Bosonic channel to the optical MAC. In

contrast to the channels we studied in Chapter 3, the optical MAC is a continuous-variable,

noisy Bosonic channel without shared entanglement. In Section 5.1, we define our channel

model and derive the maximum rates for reliably transmitting classical information over

the optical MAC when the transmitters are restricted to classical states. In Section 5.2, we

generalize the Gaussian encodings from Chapter 4 to achieve higher rates over the optical

MAC. We derive an outer bound for the ultimate capacity region of the optical MAC in

Section 5.3 and show that the sum-rate upper bound is achievable with a coherent-state

encoding. We also show that the ultimate capacity region can be asymptotically achieved

in the limit of large input mean photon numbers.

5.1 Coherent-State MAC

We consider the optical MAC, shown in Fig. 5-1, in which two senders, Alice and Bob,

transmit classical information to a common receiver Charlie, and each sender has access to

one input port of a beam splitter with transmissivity 0 < 7 < 1. For a single mode of the

optical MAC, the output is given by 6 = /7& +V1 -77 b, where & and b are the annihilation

operators of Alice's and Bob's input modes, and 6 is the annihilation operator of the mode

that Charlie measures. In this section, we derive the capacity of the optical MAC when

Alice and Bob encode complex-valued input messages a and f as coherent states IC)A (9 10)B
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b

i F=fi + 1-1b

77

Figure 5-1: Optical multiple access channel. Transmitters Alice and Bob have access to input
modes & and b, respectively. Charlie receives the output mode 6 = \F?& + V/1 /-77b.

with independent input distributions pA(a) and pB(0). The corresponding received output

state is the coherent state IV/i-a + V1 -773)c, so we will refer to this system as the (single-

mode) coherent-state MAC. As in Chapter 3, we will only consider the one-shot (M=1)

classical capacity of the optical MAC.

5.1.1 Coherent-State MAC Capacity

We first consider the capacity region of the coherent-state MAC when Charlie uses homo-

dyne or heterodyne detection. With these receiver measurements, the coherent-state MAC

is equivalent to a corresponding classical additive Gaussian noise MAC. The capacity region

of the scalar Gaussian channel corresponding to homodyne reception is the set of rate pairs

(R1 , R 2) that satisfy [56]

1
R1 < 1 log(1 + 4lrtA) (5.1)

1
R 2 5 1 log(1 + 4(1 - r)hB) (5.2)

1
R, + R2 :5 1 log(1 + 4T7ftA + 4 (1 - 77)hB), (5.3)

and the capacity region of the vector Gaussian channel corresponding to heterodyne recep-

tion is given by

R1 5 log(1 + 77tA) (5.4)

R 2 5 log(1 + (1 - ri)fB) (5.5)

R1 + R 2 _ log(1 + rlftA + (1 - n))'B). (5.6)

It is possible to generalize these results to the m-user optical MAC. If the ith transmitter

sends coherent state Iai), for i = 1, ... , m, then the output of the m-user optical MAC is the
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coherent state |I E ai), where the transmissivity factors ri sum to one. The capacity

region with homodyne detection is the set of rates (Ri,. . . , Rm) that satisfy the inequalities

ERz 5 1log 1 + 4 E q/fte (5.7)
iES \ iES /

for all subsets S C {1, ... , m}, where fi is the input constraint for the ith user. The capacity

region with heterodyne detection is given by the inequalities

ZR, log 1 + E 7ii), (5.8)
iES \ iES

for all subsets S C {1,.. , m}.

We now derive the capacity of the coherent-state MAC with optimal receiver measure-

ments. If we assume that quantum MAC capacity result (3.3)-(3.5) is valid for continuous-

variable quantum systems, then the capacity region of the coherent-state MAC is the convex

closure of all rate pairs (RI, R 2) that satisfy

R, 5 PB(O)S(B) d (5.9)

R2 :5 PA(a)S( 4) da (5.10)

R1 + R2 5 S(p), (5.11)

for some product distribution PA(a)PB(3 ), where the conditional and average density op-

erators are defined as

= JP(a)Ia'+ ')(a'+ O'l da (5.12)

S=JPBa)' + ')(a'+ ,' d (5.13)

P = J PA( C)PB(0)Q' + 0')(a' +,3'1 da do (5.14)
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Figure 5-2: Coherent-state capacity of the optical MAC. The capacity region is given by inequalities
(5.17). The capacity regions with homodyne and heterodyne measurements are also shown. The
transmissivity is r1 = 1/2, and the average input photon numbers are IA = 10 and fIB = 8.

with a' = F/a and 0' = V1 - r;3. Then, circularly symmetric Gaussian distributions

1 ( a12

PA(a) = --- exp (5.15)
1rnA fIA

1 | 1,32\
PB( 3)= - exp _ . (5.16)

7rnB n

are the optimal input distributions, and evaluating the rate upper bounds gives the coherent-

state MAC capacity region:

R1  g(?PIA), R 2 5 g((1 - rq)fIB), and R1 + R 2 5 g(?7flA + (1 - 7)fLB). (5.17)

Figure 5-2 shows the capacity region of the coherent-state MAC optimized over receiver

measurements and with suboptimal homodyne and heterodyne receivers.

5.1.2 Wideband Capacity

The preceding single-mode results for the coherent-state MAC can be extended to the case of

wideband operation, in which Alice and Bob may employ photons of any frequency, subject

to constraints, PA and PB, on the average transmitted powers. For a frequency-multiplexed

scheme, in which the frequency domain is divided into bins of width b = 1/T, the channel

output for the ith mode is

6i = qf ai + V/1 -rq bi, (5.18)
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where di and bi are the input modes at frequency fi = i/T, i = 1,2,3,..., and 77 is

the frequency-independent transmissivity. We derive the capacity region for the wideband

coherent-state MAC, subject to power constraints

bhfiE[ai2 ] PA (5.19)

bhfiE[|3i| 2  PB, (5.20)

where Alice and Bob allocate mean photon numbers f1A(fi) = E[Iai 2] and AB(fi) = E[ I i121

at frequency fi, respectively.

We first derive the capacity region of the wideband coherent-state MAC with homodyne

detection. With homodyne receiver measurements, the wideband coherent-state MAC is

equivalent to a set of parallel classical MACs with independent zero-mean Gaussian noise.

We derive upper bounds on the individual rates R 1, R 2 and the sum rate R 1 + R 2 from

separate Lagrange multiplier calculations. For Alice's rate, we maximize

R = b log(1 + 4qE[a?1]), (5.21)
2

such that (5.19) is satisfied. In the limit b -+ 0, we obtain the wideband solution

R 1 = (5.22)

f'A=(f) = for f 5 2 P, (5.23)

where we let 'A(f) = lflA(f) and PA = 7PA. We see from (5.23), that Alice's optimal

mean photon number allocation, ftA(f), is given by water-filling, as is found in classical

information theory. Similarly, maximum wideband rates for R2 and R1 + R2 are given by

.7h =(5.24)
'rh

hl'1 (f) = 1 B for f :2 2PBI (5.25)
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and

R+PR2= (5.26)
rrh

1 PA 2h 4, for f 2 2 h , (5.27)

where h' (f) = (1 - )B(f), )(f) = f) + f'(f), and PB = (1 - r)PB. The rates

(5.22),(5.24), and (5.26) describe a pentagon region which serves as an outer bound for the

capacity of the wideband coherent-state MAC. Here, hB (f) is Bob's optimal average photon

number allocation, and the role of 'BW(f) will be elaborated below.

With average photon number allocations (iA(f), (BY(f) - (f))/(1 - 7)) for Alice

and Bob, the lower-right corner point

FL - (5.28)

of the outer bound can be achieved. Similarly, (("'AB(f) - 1'B(f))/m ,hB(f)) achieves the

upper-left corner. Thus, the entire region is achievable and hence is equal to the capacity

region. A similar derivation shows that the wideband coherent-state MAC with heterodyne

detection has the same capacity region.

We can generalize the result to the m-user wideband coherent-state MAC. Suppose the

kth user sends coherent states jaki). The channel output of the ith mode is the coher-

ent state I ZE /i7ak,i), where the transmissivities 77k sum to one, and the input power

constraint for the kth user is

bhfiE[ak,iI2I Pk, (5.29)

for k = 1,..., m. If the receiver uses homodyne or heterodyne detection, then the wideband

capacity region is defined by the inequalities

E Ri C E 7kPk 7  (5.30)
kES \kES/

where C(x) = V/x/1rh, for all S C {1, ... , m}.

In the derivations above, we assumed that structured receivers are used to perform mea-

surements at the channel output. We can follow the same approach to optimize the receiver

110



measurement over the wideband coherent-state MAC. Single-user wideband solutions are

applied to derive upper bounds on the individual rates R1 , R2 , and the sum rate R1 + R2 .

Then, we check that the resulting outer bound is achievable. This gives us the capacity

region

7rP'
R1  A (5.31)

-r3h

R 2  (5.32)3r,

Vfr(PA + PB)R, +(R2. (5.33)
3h

with the optimal power allocations

-A1) (5.34)
exp - 1f

1
Ih'B(f ) = (5.35)

exp - 1h

5'A1(f) 1(5.36)
exp P +P )

The optimal receiver gives a factor ir/v/5 improvement over the conventional receivers.

5.2 Gaussian MAC

Now let us return to the single-mode case and relax our assumption that the transmitters use

coherent-state encodings, i.e., we will allow them to use non-classical states in their quest

for the largest possible capacity region. As a step toward finding the ultimate capacity

region of the optical MAC, let us allow Alice and Bob to employ arbitrary Gaussian states,

instead of just coherent states.

5.2.1 Holevo-Sohma-Hirota MAC

We first derive the capacity region for a multiple access version of the Holevo-Sohma-Hirota

channel model described in Section 4.2.2. Let p3(O) be a zero-mean, Gaussian state with
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variance matrix

V1 V1 2
V = .V (5.37)

We define a multiple access channel model in which Alice and Bob send classical messages

a and 3, subject to input constraints

(la12) = fIaI2pA(a) da = NA, (5.38)

(1,312) = 1f312 PB(3) d0 = NB, (5.39)

and Charlie receives the state p(a, 3) = 5(a+3)()b t(a+), which is a shifted version of

the initial state (o). From the quantum MAC result (3.3)-(3.5), the capacity region of the

Holevo-Sohma-Hirota MAC is given by the convex hull of all rate pairs (R1 , R2 ) satisfying

R1 5 S(PA) - S((0)) (5.40)

R 2 5 S(PB) - S((O)) (5.41)

R1 + R 2 : S(5AB) - S( &(0)), (5.42)

for some product distribution pA(a)pB(/), where we defined the ensemble averages

PA JPA(a)b(a)p(O)Dt(a) da (5.43)

PB = PB(13)b P(O)(f() d3 (5.44)

PAB pA (a)B(3)P(a, ) da d3. (5.45)

To evaluate this capacity region, we first maximize each of the rate upper bounds for R 1,

R 2 , and R 1 + R 2 separately. We then show that the region described by these maximum

rates is achievable.

To maximize the right-hand side of (5.40), we follow the proof of the Holevo-Sohma-

Hirota result in [57]. A similar result holds for maximizing the right-hand side of (5.41).

For any input distribution pA(a) that satisfies constraint (5.38), let jA(a) be the zero-

mean Gaussian distribution with the same second moments as pA(a). Then, PA(a) satisfies
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constraint (5.38) and

PA = PA(a)b(a)P(0)Dt(a) da (5.46)

is a Gaussian state. If F(h, at) is any second-order polynomial in (h, at), then

trpAF(a, at) = pA(a) tr (b(a)#()bt(a)F(&, at)) da

= PA(a) tr (()F(a + a, at + a*)) da

= P(a) tr (fi(o)F(a + a, at + a*)) da

= trPAF(&, at),

(5.47)

(5.48)

(5.49)

(5.50)

where we used the fact that tr (()F(& + a, at + a*)) is a second-order polynomial in

(a, a*). Thus, PA and fiA have the same second moments, and it follows that S(pA) > S(PA),

i.e., we can restrict to Gaussian input distributions.

When the input distribution PA(a) is Gaussian, the rate upper bound for R1 can be

expressed as

S(PA) - S(P(0)) = g 21V + Va-/2 - g (21V11/2 (5.51)

where the variance matrix of PA(a) is

VC = . (5.52)
V1C2 Vi ')

Thus, the optimization problem we need to solve is

max f(Va) = IV + V|, (5.53)

subject to the positive semidefinite and input power constraints

Va 0, (5.54)

tr(V) =V Vi V2 = NA. (5.55)

This constraint region is the interior of a circle in the Via - V2 plane, which has the
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parameterization

Vi = rcoso+ NA (5.56)

V2 = r sin 0 (5.57)

V2 = -r cos 0 + ,A (5.58)

as r and 0 take values 0 < r < NA/2 and 0 < 0 < 21r, respectively. Now, write

f(Va) = IV+ Val (5.59)

S(V 1 + V1a)(V 2 + V2 ) - (V1 2 + V19)2  (5.60)

= Vi + rcosO + N) (V2 - rcos9 + NA) - (V12 + rsino)2 (5.61)

= Vi + V2 + NA (V 2 + r cos 0 - (V12 + r sin 0) 2 . (5.62)

In terms of the parameters r and 0, our maximization problem is

m f(Va) = Vl+ V2 + NA 2_ - V1 r cos 0 + (-V 1 2 - r sin )2. (5.63)

This maximization has two different solutions, depending on whether the point ((V2 -V1)/2

-V 12) lies in the circle centered at the origin with radius NA/2. If ((V2 - V1)/2, -V 12) lies in

the circle, then the minimum on the right-hand side of (5.63) is zero. If ((V2 - V1)/2, -V 12 )

lies outside the circle, then a simple geometric calculation gives the minimum on the right-

hand side of (5.63). We thus obtain the maximum individual rates

Rmaxi = max S(PA) - S(W(0)) (5.64)
Va

g (V + V2 + NA - - g (21VI1/ 2  1

for NA ((V 1 - V2 )2 +4V1/ 2

g 2 (V+V2+NA 2 2 V 2 _N 2 1/2 
1/2 

_

for NA < ((V - V2 )2 + 4V2) 1/2

(5.65)
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and

Rmax2 = max S(fiB) - S((O)) (5.66)
Ve

g (V1 + V2 +NB - - g (21v1 1 2 
-

for NB ((V1 -V 2)
2 + 4V2) 1 / 2

g( 2 [(v1+V2+NB) ( 2+V - 2 1/2-) -g(22v_1 /2
_

for NB <((V1 - V2) 2 + 4V,22)1/2.

(5.67)

To maximize the rate sum upper bound, we follow the same approach. It is again

sufficient to consider Gaussian input distributions PA(&) and PB(/3 ), so our maximization

problem is

max h(V, V) = V + Va + Vol, (5.68)

subject to the positive semidefinite and input power constraints

Va 0 (5.69)

V> 0 (5.70)

tr(Va) = V1" + V2 = NA (5.71)

tr(VO) =V +V2"= NB. (5.72)

This constraint region is the interior of two circles with the parameterizations

V? = rA cos OA + (5.73)
2

V12 = r sin 9A (5.74)

V2 = -rA cos OA + , (5.75)
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where 0 < rA 5 NA/2 and 0 OA < 27r, and

V = rB COS OB +NB (5.76)

V2 =rB sin OB (5.77)

V = -rB cOs OB + , (5.78)

where 0 < rB NB/2 and 0 < OB < 27r. This parameterization allows us to write h(V, VO)

as

h(Va, VO)

= IV + Va +Vol (5.79)

= (V1 + V + V)(M + V2" + V) - (V12 + V12 +12)2 (5.80)

= V1 +rACOs5A +rBcosOB + NA VNB V2 -rA CoS OA -rB Cos OB + NA + NB

- (V 12 + rA sin OA - rB sin OB)2 (5.81)

(V +NA+NB 2 A)_) 2

=2 B ~ 2 + rACOS OA +rB COSOB)

- (V12 + rA sin OA + rB sin OB)2 . (5.82)

Thus,

max h(V,V#)

(V1 2 + NA + NB 2

2

- min -21 rA COS OA r B cos OB 2 + (-V 1 2 - rA sin OA - rB sin OB)2
rA,rB,OAOB

(5.83)

The second term on the right in (5.83) is the minimum squared distance between the points

((V2 - V)/2, -V 12 ) and (rA cos OA +rB cos OB, rA sin OA +rB sin OB). If ((V2 - V1)/2, -V 1 2 )

lies in the circle centered at the origin with radius (NA + NB)/2, then the second term

vanishes. Otherwise, a simple calculation gives this minimum distance. We obtain the
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maximum sum rate

Rmax12 = max

g

= g

S(PAB) - S(W(0))

(V1 + V2 + NA + NB - - g (21 VI" 2 _

for NA + NB ((V1 - V2)2  4V) 1/ 2

2 (vl+v2+NA+N)2 _ ( 2( +V 2 _ NANB

-g (21V11/2 _

for NA + NB < ((V1 - V2 )2 + 4V,22)1/ 2.

We claim that the capacity region CHSH(V, NA, NB), with initial variance matrix V and

input constraints NA and NB, is the region defined by the inequalities

R 1 5 Rmaxi

R 2 5 Rmax2

R 12 Rmax12.

(5.86)

(5.87)

(5.88)

To verify this claim, we show that the corners of this region are achievable. The result

then follows by timesharing. Let the point ((V2 - V)/2, -V 12 ) have coordinates (rv, Gv)

and suppose that NB > NA. To show that the lower corner (Rmaxi, Rmax12 - Rmax2) is

achievable, we need to find points (rA, OA) and (rB, GB) that simultaneously minimize the

distance between (rv, Gv) and (rA, GA) and the distance between (rv, Ov) and (rA, OA) +

(rB, GB). Similarly, to show that the upper corner (Rma1a2 - Rmaxi, Rmax2) is achievable,

we need to minimize the distance between (rv, Gv) and (rB, GB) and the distance between

(rv, Ov) and (rA, OA) + (rB, GB). There are four cases to consider: see Fig. 5-3. For each

case, we list the coordinates (rA, GA) and (rB, GB) corresponding to the capacity-achieving

input distributions.

* Case I.

- lower corner: (rA, OA) = (rv, Gv) and (rB, GB) = (0, 0)

- upper corner: (rA, OA) = (0, 0) and (rB, GB) = (rv, Gv)
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IV
III

(V2- V)/2

Figure 5-3: Regions. Case I: rv < NA/2. Case II: NA/2 < rv : NB/2. Case III: NB/2 < rv S
(NA + NB)/2. Case IV: rv > (NA + NB)/2.

* Case II.

- lower corner: (rA, GA) =(NA/2, Gv) and (rB, 9B) = rv - NA/2, Dv)

- upper corner: (rA, OA) = (0,0) and (rB, DB) = (rv, DV)

* Case III.

- lower corner: (rA, OA) = (NA/2, Dv) and (rB, O) = (rv - NA/2, OV)

- upper corner: (rA, OA) = (rv - NB1/2, GV) and (rB, OB) = (NB1/2, V )

" Case IV.

- lower corner: (rA, OA) = (NA/2, Gv) and (rB, O) = (NB/2, OV)

- upper corner: (rA, OA) = (NA/2, Ov) and (rB, OB) (NB/2, Ov).

5.2.2 Gaussian MAC Capacity

We now apply the capacity result derived in the previous section to the optical MAC in

Fig. 5-1. Alice and Bob encode their classical messages a and 8 using input states of the

form

A(a) = b() A(0)b (a) (5.89)

fB(0) = f(8) B (0) b(0), (5.90)
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where jA(0) and OB() are zero-mean Gaussian states with variance matrices VA and VB,

respectively. This is a modulation code for which the coherent-state encoding is the special

case in which pA(0) and PB(0) are vacuum states. Charlie receives the output ensemble

{PA(a)PB (0), E 0A(a) ( PB(Of))}, (5.91)

where the channel output E(pA(a)WjB(f)) is the Gaussian state with mean vrja+vr-

and variance qVA + (1 - 7)VB. Define

V' = 7VA + (1 - 77)VB (5.92)

N' = (fA - Via - V2 +) (5.93)

NB= (1 - 77) f - V - V2 + ,(5.94)

where ftA and f1B are the input mean photon number constraints. The capacity of the

Gaussian MAC is the region CHSH(V', N', NB):

R1  Rmaxi (5.95)

R 2  Rmax2  (5.96)

R 12 5 Rmax12 , (5.97)

where the rate upper bounds are given by

9 ('/qfA + (1 - 77)(ViB + V2 - .)) - g (2jV'11/ 2

for N' > ((VI- V2')2 +4V') 1/2

Rmax1 (2 (V(+V'+N± 2 N)] 1) (5.98)

-g (21V' 1/ 2

for N', < ((V' - V') 2 ± 4V1) 1/2,
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g (r,(ViA + V2A - 1) + (1 - r1)fB) - g (21v'1/ 2 
-

for N' ((V1' - V2) 2 + 4V') 1/2

Rmax2
\2- 1/2 k

2J 2)

Rmax12 =

g(r lA + (1 - r)UB) - g (21VI1/2 -

for Ni+ N > ((V' -1V) 2 +V1) 1/ 2

g ~ 2 [ + 2+N +- N 2 2 2 1/2

-g (22v'I 2 _ )

for NA' + NB < ((V' - V2 + 4V1/)1/2

(5.100)

For input photon numbers hA and fLB sufficiently large, the capacity region of the Gaussian

MAC is the set of rate pairs that satisfy

R1 5 g (rOA + (1V- ) (vB B - -g (21V111/2 _ )

R 2  gr 1 +V - +(1 -- g (2V1/ - 2|V'

R1 + R2 !5 9(77flA + (1 - r7)ftB) - 9 2 I/1/2 -.

(5.101)

(5.102)

(5.103)

This achievable rate region reduces to the coherent-state formulas, Eqs. (5.17), when VA =

VB = 1/4. As shown in Fig. 5-4, it is possible to find VA and VB, for example,

B 32
(5.104)
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such that the Gaussian MAC region is larger than the coherent-state MAC region (5.17).

Numerical optimization can further enlarge the capacity region beyond that achieved by this

example, but we do not know how to determine the capacity region achieved by Gaussian

codes analytically. In the next section, we show that in the limit of large nA and iB,

transmitting Gaussian states is asymptotically optimal.

5.3 Capacity Outer Bound

Achieving the ultimate capacity region of the optical MAC may require the use of non-

Gaussian states, so the capacity of the Gaussian MAC is still only an inner bound. In this

section, we develop an outer bound on the ultimate capacity region of the optical MAC. Let

Alice and Bob use input states-averaged over their respective random-coding ensembles-

PA and PB that are subject to the average photon number constraints f1 and hB- Because

von Neumann entropy is invariant to mean fields, we know that the optimum PA and PB

will be zero-mean-field states. This, in turn implies that ( 10A) = 7/l + (1 - )1B, from

which it is easily shown that

R1 + R2 5 S(E(PA 0 PB)) < 9(ftA +(1 -7)tB). (5.105)

The sum-rate upper bound in (5.105) coincides with the coherent-state MAC result appear-

ing in (5.17). Hence, we have shown that the sum rate for the capacity region is achieved by

coherent-state encoding in conjunction with optimum (joint-measurement) reception. More

generally, the Gaussian-state encoding is a sum-rate-achieving code in the above-threshold

regime, i.e., (5.103) coincides with (5.105), whenever E(pA(O) 9 pB(0)) is pure. Moreover,

from (10) it can be shown that heterodyne reception is asymptotically optimum for the sum

rate in the limit ?77TA + (1 - 77)ftB -+ 00.

To upper bound the individual rates R1 and R2 , consider a super receiver that has access

to both output ports of the beam splitter representing the optical MAC. A super receiver

can apply the inverse unitary beam splitter transformation to undo the effects of the optical

MAC. Thus, the individual rate upper bounds reduce to single-user Holevo informations,

and we have the upper bounds R1 5 9(nA) and R2 5 g(IiB). Our optical MAC results are

illustrated in Fig. 5-4. Here we have plotted the sum rate for a single-mode quantum optical

MAC with q = 1/2, f1A = 10, and riB = 8, along with the capacity region for heterodyne
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4
- ultimate capacity outer bound

Gaussian encoding
--- coherent-state capacity

3 - coherent-state + heterodyne

2-

1 -

-0 1 2 3 4
R, (nats)

Figure 5-4: Optical MAC capacity region. Inner bounds and the outer bound given by R 1  g(1A),
R 2 5 g(hB), and R 1 + R 2 5 g(T)hA + (1 - ?)ftB) are shown for the ultimate capacity region of the
optical MAC. The Gaussian-state capacity region is evaluated with input variance matrices VA and
VB given by (5.104). The transmissivity is 7 = 1/2, and the average input photon numbers are

hA = 10 and fB = 8.

reception, the individual rate limits for coherent-state encoding, and the individual rate

limits for the Gaussian-state encoding from Eq. (5.104).

We have presented codes which achieve the sum-rate upper bound, but it is unknown

exactly how far we can reach into the corners of the outer bound region. One thing we

can demonstrate is that the individual rate upper bounds are asymptotically achievable in

the limit of large hA and iB. Let Alice transmit real-valued classical messages ai using

squeezed states Iai, r) excited in the first quadrature with squeezing parameter r. Let Bob

transmit the zero-mean squeezed state 10, R) with squeezing parameter R = sinh-1(VI),

i.e., Bob squeezes as hard as possible. A rate of

1 ( (±4( -Asinh2r)
R 1 = - log 1 + ±k.-le2r) (5.106)

2 e-2r + 7-7 e-2R

is achieved if Charlie uses homodyne detection to decode Alice's message. After substituting

the optimal squeezing parameter r = log(2IA + 1)/2 and several applications of L'H6pital's
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rule, we obtain the ratio

i rn r log (1 + 4e2 -(hA - sinh 2 r))
lim lim = lim _ (5.107)

flA-+of B -- oog gfA) A-OO -(+A)

-lim _log(l+2MA) (5.108)
fA+ 0 0  9(hA)

= 1. (5.109)

Thus, this squeezed-state code with homodyne reception is asymptotically optimal for large

input photon numbers iA and AB. For the special case rq = 1, Bob is irrelevant and the

above argument says that the squeezed-state/homodyne code is asymptotically optimal for

the single-user noiseless Bosonic channel.
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Chapter 6

Summary and Future Work

Our focus has been on deriving the classical capacity of quantum optical communication

channels. Capacity results for a general class of Gaussian-noise single-user optical channels

were developed and extended to an analysis of the optical MAC. We have also considered

the problem of distributing entanglement to distant users in a quantum communication

system and derived capacity results for entanglement-assisted MACs.

6.1 Summary of Results

A quantum communication architecture is being developed by a team of researchers at MIT

and Northwestern University for long-distance transmission and storage of polarization-

entangled photons. In Chapter 2, we derived a single-photon error model for the joint states

of the quantum memories of this communication system to assess the effects of source errors

and fiber transmission imperfections on teleportation performance. Our results show that

while the system's fidelity is not very sensitive to these errors, significant loss of singlet-state

throughput may be incurred in some cases. We also studied an extension of the MIT/NU

teleportation system that allows for the transmission and storage of GHZ states. The GHZ-

state system single-photon error model was derived for two different source configurations,

and performance analyses were presented for quantum secret sharing of either classical or

quantum information.

In Chapter 3, we studied the superdense coding protocol for transmitting classical in-

formation over a quantum MAC in a finite-dimensional space. Theorem 1 states that the

capacity region of the three-party superdense coding channel is defined by the set of rates
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satisfying the bounds in (3.6)-(3.8). The extension of this result to more than two senders

was given in (3.36). We discussed the potential for increasing transmission rates by allowing

a user to discard their share of the entanglement resource and sending log d bits instead.

We then considered general non-unitary encoding schemes and determined: (a) unitary su-

perdense coding is optimal for pure entangled states, and (b) separable states are useless

for enhancing communication over quantum MACs.

Recently, there has been much progress [7], [53] in determining the classical and quan-

tum communication capacities of Bosonic channels. It was discovered that, surprisingly,

single-use coherent-state encodings can achieve the capacity of pure-loss channels and (we

conjecture) thermal-noise channels. In Chapter 4, we derived the classical capacity of a class

of Gaussian Bosonic channels based on minimum output entropy conjecture (4.16). This

class of Gaussian channels represents the quantum version of classical colored Gaussian-

noise channels, and our method was motivated by the standard whitening approach used to

solve the classical case. We also made an attempt to justify minimum output entropy con-

jecture (4.16) by showing that coherent input states in fact minimize integer-order output

Renyi entropy, for r > 2, as well as output Wehrl entropy. It seems as if we can minimize

all entropy quantities except the one which rigorously proves our channel capacity results.

We studied the capacity of the optical MAC in Chapter 5. For classical light sources,

we have derived the capacity of the optical MAC and extended the result to the wideband

case through water-filling. We described a more general Gaussian code for enlarging the

coherent-state region and provided upper bounds for the sum rate and the individual rates

of the ultimate capacity region. Our inner bound achieves the sum-rate upper bound, and

we showed that the entire outer bound region is asymptotically achievable in the limit of

large input photon numbers iA and ftB.

6.2 Future Work

Future work on the MIT/NU communication architecture will involve developing improved

error models for quantum communication. For the GHZ-state communication system, the

OPA and polarization restoration error models presented in Sections 2.1.1 and 2.2 could be

developed and applied to the performance analysis of QSS. As mentioned in Section 2.1.1,

the lumped element approach taken in the present work is valid for OPAs operating within
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a few linewidths about a double resonance. Recent analysis [35] of the dual OPA system,

which uses a broadband traveling-wave treatment, could serve to confirm the results devel-

oped here as well as to gain additional insight into our communication architecture. It is

also desirable to develop new error correction techniques and new methods for overcoming

transmission loss.

As discussed in Chapter 3, we would like to derive the capacity for a quantum MAC in

which Alice and Bob utilize general local quantum operations to encode their messages. It

would be interesting to determine the entanglement-assisted channel capacity beyond the

special cases we have studied. A basic assumption in our model is that Alice and Bob are

able to transmit their particles over noiseless quantum channels. It would be of interest to

generalize capacity results for entanglement-assisted single-user channels [69] to the case of

noisy quantum MACs.

In Chapter 4, the capacity of the Gaussian-noise channel was derived for input mean

photon numbers exceeding a given threshold. Below this threshold, analytical results are

more difficult to obtain. We expect that new techniques need to be developed to better

understand the capacity of these channels in the below-threshold regime. We have already

discussed at length the open problem of providing a rigorous proof for minimum output

entropy conjecture (4.16). A general problem in quantum information theory is additivity

of classical information capacity, i.e., whether channel capacity requires coding over mul-

tiple channel uses. There is ongoing work on the additivity question for Gaussian Bosonic

channels [62] and many other quantum channels.

We studied the capacity of a multiple access quantum optical channel in Chapter 5.

The MAC is the simplest multi-user channel to analyze, so there are more communication

scenarios to be explored. In the classical theory, channels such as broadcast channels, two-

way channels, relay channels, and others have been studied. The corresponding study of

their quantum counterparts could be the source of future work.
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Appendix A

Multimode Gaussian States

We discuss the unitary transformation U for whitening multimode Gaussian states intro-

duced in Section 4.2.3. Let pi be a multimode Gaussian state on the Hilbert space WO',

and define the column vector of position and momentum operators

= (i, -. - . 1 , P -. , T (A. 1)

with commutation matrix

o-=([(4, j) = h .(A.2)

The variance matrix V = (Vi) of the density operator p is defined as the matrix with

elements

Vi= (A.3)

Real linear transformations of the operators j that preserve the commutation relations are

called canonical transformations. Every canonical transformation S satisfies

So-ST = o-, (A.4)

which is the defining relation of the group Sp(2m, R). For each canonical transformation

S that takes -> S , there is a corresponding unitary transformation U(S) that acts on

the Hilbert space of states: fi -> U(S)pU(S)t. By Williamson's theorem, there exists a
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canonical transformation S that diagonalizes the variance matrix V to the form:

C1

V' = SVST= cm (A.5)
Cl

Cm]

This says that a multimode Gaussian state is unitarily equivalent to a product of thermal

states. It is possible to compute the values of ck, k = 1,... , m, in this diagonal form. Note

that the diagonal elements of V' are not the eigenvalues of V, because V does not undergo

a similarity transformation. However, the matrix a-1 V evolves under S as

01-V 0 -lSVST (A.6)

= (oST)-lVST (A.7)

= (sT)-le-1VST, (A.8)
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where we used the relation a -IS = (0-ST)- 1 which follows from (A.4). This shows that

-1 V does undergo a similarity transformation, so its eigenvalues are the same as those of

1
h

/

cm

Cl

Cm)

I

-Cl

-Cm

Cl

Cm

(A.9)

(A.10)

The matrix (o'-V)2 has eigenvalues

{ ,2...h,}- (A.11)

where each eigenvalue appears with multiplicity two. Thus, the diagonal entries ck can be

found by computing the eigenvalues of the matrix (o--V)2 .
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Appendix B

Thermal Operator

Here, we derive an expression for the thermal operator G used in Section 4.3.1 and upper

bound the absolute value of its eigenvalues.

B.1 Ordered Expansions

One way to evaluate the expectation of an operator P is to average one of its associ-

ated functions over phase space [70]. In this thesis, we are interested specifically in the

symmetrically-ordered (or Weyl-ordered) associated function F(w) (a, a*). The relationship

between an operator and its symmetrically-ordered associated function can be seen by look-

ing at the symmetrically-ordered power series

00 00
F(a, at) = E Z fnm{atnam}sym (B.1)

n=O m=O

and 00 00
F(w)(a, a*) = fnm a*"a m , (B.2)

n=O m=O

where {Ptam}sym is the average of all ways of ordering the operators. For example,

{&2at}sym = 1 (&2-t + aata + ata2) (B.3)

{-2at2}sym = 1(a2t2 + ±atadt + &&t2& + ata2at + att + ± &t2a). (B.4)
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The symmetrically-ordered function of the density operator is called the Wigner func-

tion, W(a) p()(a,a*)/7r. Carrying out an evaluation of the expectation (F) with the

symmetrically-ordered associated function F(w) (a, a*) requires averaging with the Wigner

function W(a) as follows:

(F) = (Flw)(a, a*))w(c) JF(w)(a, a*)W(a)da. (B.5)

B.2 Thermal Operator

In Section 4.3.1, the output r-purity of the classical-noise channel was expressed in (4.114)

as an average over phase space weighted by a Wigner function. Our problem is to find the

operator G(b, b ) that has the symmetrically-ordered associated function

G()(P t) nr det A 23 .k (B.6)

It will suffice to show that the single-mode thermal operator

2A (2A -1 (B
F= 2 A +1 2A+1 (B.7)

has the symmetrically-ordered associated function F(M)(a, a*) = e-la 2/A. To show this, we

use the following closed form expression [70]:

F-w)(a, a*) = 2e2a12 J(--33 -2*+2*a (B.8)

4 21C12 2A - 1 _21a*+2fl*ad(3
2 A +1 e (2A +1 ) er(B9

-2A 1 2I 2 fexp( 1  2l2a* + 2*a (B.10)

e- (B.11)

Thus, we know that

e-lo2 2A (2A -1 . (B.12)
Iw(a) 2A +1 2A +1
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Extending this to the multimode case gives us our thermal operator

1 2AA 2A - AB 12 )k
G = k Ak ) tb

ndet A k12 A 2 2A +|JAB 2

r 2/n

k=1 2 +A +l 2
2A4 - Afl2 k

24 A lAB12)

The thermal operator G is diagonalized in the number-state basis {Imk) } of the annihilation

operators bk with eigenvalues of the form

2/n

ki 2A 4+ AB12
2AA - JAkBJ2 Mk( 2-A I 2

2AA+JAB12)

where the mk are non-negative integers. We will bound the expectation of G by the maxi-

mum absolute value of its eigenvalues. Since the A have positive real parts, see (4.103), it

follows that

r 2/n
(G) <max J~

M112AA+AB
Ic=1 k kF 2A + IAB12J (B.16)

(B.17)

(B.18)

Equality is achieved by the eigenvalue associated with the product vacuum state I0)0D of

the annihilation operators bk.
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r 2 /nIAI r 12AA I AkB2 IMk~
maxJ 2AA±IA

k1 k k k=1 kc k

fl' 2AA±+IAB-l2
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