
 
 

  
Abstract—Humans often learn to manipulate objects by 

observing other people.  In much the same way, robots can 
use imitation learning to pick up useful skills.  A system is 
detailed here for using imitation learning to teach a robot to 
grasp objects using both hand and whole-body grasps, which 
use the arms and torso as well as hands.  Demonstration grasp 
trajectories are created by teleoperating a simulated robot to 
pick up simulated objects.  When presented with a new 
object, the system compares it against the objects in a stored 
database to pick a demonstrated grasp used on a similar 
object.  Both objects are modeled as a combination of 
primitives—boxes, cylinders, and spheres—and by 
considering the new object to be a transformed version of the 
demonstration object, contact points are mapped from one 
object to the other.  The best kinematically feasible grasp 
candidate is chosen with the aid of a grasp quality metric.   To 
test the success of the chosen grasp, a full, collision-free grasp 
trajectory is found and an attempt is made to execute in the 
simulation.  The implemented system successfully picks up 92 
out of 100 randomly generated test objects in simulation. 
 

Index Terms—imitation learning, grasping, example-based 
grasping, whole-body grasping  

I. INTRODUCTION 

NE of the basic issues in making useful humanoid 
robots is enabling them to grasp and manipulate 

objects.  In addition to well-understood fingertip grasps, 
humans often use what are termed "whole-body grasps"—
grasps that can use non-fingertip surfaces such as an entire 
finger, palm, arm, or even torso.  Examples of such grasps 
include wrapping a hand around the handle of a hammer, 
lifting a vase with two hands (as in the left side of Fig. 1), 
sandwiching a tennis racket under one arm, or slinging a 
club over a shoulder (as in the right side of Fig. 1).   
 
 
 
 
 
 
 
 
 
Fig. 1.  Whole-Body Grasps 
 

Using non-fingertip surfaces often makes grasps more 
powerful or stable.  However, analyzing and synthesizing 
whole-body grasps is difficult because of the large number 
of point contacts required to approximate them, because 
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there is the possibility of multiple steps in the grasp 
sequence, and because the kinematics of the robot puts a 
large number of constraints on the relative locations of 
non-fingertip contacts.    

We are interested in finding a way to allow robots to 
perform complex grasp sequences with a potentially large 
number of contacts, as well as multiple steps in the grasp 
sequence.  For instance, tucking a racket under an arm 
requires a grasp sequence with several steps: first the 
handle is grasped with a one-hand grasp, then the racket 
must be accurately placed beneath the arm, then the arm 
must sandwich the racket stably, and finally the hand must 
be removed.  Figuring out how to accomplish this grasp 
sequence requires finding “grasps” (which we will also call 
“keyframes”) with several different combinations of body 
parts—just the hand, the hand and the arm, and just the 
arm—and continuity must be maintained between 
keyframes, so that the hand grasps the handle in the same 
place in the first two combinations and the arm sandwiches 
the head in the same place in the latter two.  The same 
issues arise in other complex grasp sequences such as 
regrasping operations, and while we are currently working 
on whole-body grasps, we would like our method to be 
applicable to both types of manipulation tasks.    

Synthesizing grasps by constructing or globally 
optimizing individual contact locations requires time 
exponential in the number of contacts [21] since any 
contact can be placed anywhere on the object surface.  
Even when contacts can be found, the kinematics of the 
robot are typically not taken into account, and the resulting 
contact locations are often kinematically infeasible.   

Humans can usually pick objects up simply by finding 
good pre-grasp locations and then wrapping hands around 
the object.  Behavior-based, heuristic methods of grasping, 
such as [23] typically define hard-coded rules of grasping 
objects that identify possible pre-grasp locations for the 
hand to close around.  These methods work well for simple 
situations, but it is difficult to generalize these heuristics to 
more complex, new tasks. 

Instead of constructing new grasps from scratch or 
requiring that rules be hard-coded to deal with every 
situation, our method can create a database of successful 
grasp strategies through human demonstration.  As long 
there is a grasp sequence in the database that can be 
applied to a new object, the task becomes one of picking 
the correct grasp sequence and then adapting it to the new 
object.    

The goal of our project, therefore, is to enable a 
simulated robot to learn whole-body grasps through 
imitation: a human demonstrates picking up several 
simulated objects, and the robot chooses appropriate 
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demonstrated grasp sequences and performs them on new 
objects with different geometries/positions than the 
training objects.    

 
Fig.  2.  Demonstrating Grasp  

II. APPROACH 
Our approach can be construed as a mix of behavior-based 
and individual contact methods.  We use low-level 
controllers to grasp at good general locations on the object, 
as behavior-based methods often do, but we find those 
locations by adapting and examining sets of individual 
contacts.   
 
Our general approach is as follows: 
•A human demonstrates a database of grasp sequences by 

teleoperating the simulated robot, as shown in Fig.  .  
Each demonstration is recorded as a sequence of 
keyframes in which contacts with the object are added 
or removed, and in which hand grasps with many 
contacts are represented by a reduced set of 
representative contacts. 

•Given a new object, an appropriate demonstration grasp 
sequence is chosen from the database.  

•The objects are modeled as combinations of basic 
primitives such as boxes, cylinders, and spheres for 
ease of grasp adaptation. 

•Keyframes from the demonstration sequence are adapted 
to the new object.  This is done by assuming that the 
new object is a transformed version of the 
demonstration object and by moving contacts 
appropriately, as in Fig. 3. 

•Adapted grasp sequences are filtered for kinematic 
feasibility, and a grasp quality measure is used to pick 
the best one.  

•A non-colliding trajectory to carry out the grasp sequence 
is found. 

•The new grasp sequence is carried out, using low-level 
controllers to wrap hands stably around the object. 
  
 
 

 

 
 
 
 
 
 
 
Fig. 3.  Transformation From Box to Hammer 
 
Although our approach offers no guarantees that it will 
find a good grasp (for instance, if no appropriate grasp is 
contained in the database then no adaptation of an existing 
grasp will be successful), it is possible to adapt the grasp in 
time polynomial in the number of grasp contacts; the 
adaptation process takes into account the kinematics of the 
robot; and our overall approach is potentially useful for 
other manipulation tasks such as regrasping.   

III. RELATED WORK 
Aspects of our approach relate to diverse previous works in 
both grasping and imitation learning. 

A. Grasping 
In the realm of grasping, most of the approaches deal 

with finding or analyzing sets of contacts at precise 
locations on the surface of an object.  The goal is to find a 
set of contacts that guarantee force-closure, and perhaps 
additionally that make up a high quality grasp according to 
some quality measure [17, 8, 15, 29, 22]. 

However, all of these approaches ignore the 
kinematics of the robot, assuming that the robot can not 
only reach any set of contacts on the surface of the object, 
but that arbitrary forces can be exerted at those contact 
points.  One of the main ideas behind our approach is that 
the actual set of contacts that can be made by a hand is 
severely limited by the geometry of the hand, and thus 
finding sets of independent contacts that cannot be reached 
is wasteful.  A few approaches take kinematics into 
account, such as [3, 4, 20, 25, 27]. 

 Since we are dealing with enveloping, two-hand, and 
more complex whole-body grasps in addition to fingertip 
grasps, we need to handle issues that are less important for 
a fingertip grasp planner.  A two-hand grasp can have as 
many as 32 contacts, and all of them are defective 
(meaning that there are not enough degrees of freedom to 
create arbitrary forces at each contact).  Rather than trying 
to construct or search for good grasps from scratch, we can 
use previous experience to figure out how to grasp a new 
object that may be similar to one we have seen before.  
There are several approaches that deal with learning to 
grasp from experience, such as [5] and [11]; in the work 
that most closely relates to ours, [21] shows how to adapt a 
demonstrated grasp to a new object by finding a family of 
grasps that are guaranteed to have a quality value that is 
some percentage of the original grasp.  This method is 
excellent for many situations and can deal well with more 
arbitrary-shaped objects than our method can.  However, it 
is somewhat limited in that it only finds grasps within a 
particular family of grasps that are guaranteed to have a 



 
 

quality value that is at least a fraction of the original 
quality.  This does not include many potentially desirable 
grasps, and requires searching the entire surface of the 
object in every possible degree of rotation, which can be 
difficult for 3-D objects.   

On the other side of the field of robotic grasping are 
the heuristic approaches.  In behavior-based or heuristic 
grasping, grasp taxonomies are used to grasp objects by 
classifying objects into categories that should be grasped 
by each canonical grasp, and then pre-shaping the hand 
into the appropriate grasp shape and using low-level 
controllers to execute the grasp.  Works related to this sort 
of approach include [9, 6, 23, 12, 16]. 

In general, in order to extend any of the heuristic 
methods to dealing with under-arm, over-shoulder, or other 
grasps, one would have to hand-code heuristics for each 
new grasp type.  While this is possible, it precludes 
extension to more complex, yet-unseen manipulation tasks.  

Areas of grasping that are beyond the scope of this 
paper include dextrous manipulation (how to move the 
object within the hand, once it is already grasped) and 
second-order effects such as grasp stability (characterizing 
the stability of a grasp with respect to perturbations).  We 
also ignore the effects of dynamics, assuming that the 
robot's movements are slow enough that such effects are 
minimal. For a more complete survey of the field of 
grasping, see [2]. 

B. Imitation Learning 
In the field of imitation learning, there are works that 

deal with learning the dynamics of tasks such as dance 
movements [10], air hockey [1], and balancing a pole [24]. 
Of closer relevance are works dealing with the imitation 
learning of pick-and-place operations, such as [14, 28, 7, 
17].  

IV. MODELING OBJECTS WITH PRIMITIVES  
To make adapting grasps between objects easier, we 
require that models be provided for all objects that consist 
only of shape primitives such as spheres, boxes, and 
cylinders.  Examples of such primitive models are shown 
in Fig. 4.   

Modeling objects with primitives allows us to simplify 
the problem drastically by providing a sensible method of 
'chunking' each object; also, the symmetries inherent in the 
primitives provides a reduced number of rotational 
alignments between objects.   

This primitive modeling is only used for transforming 
contacts from one object to the other.  Although our 
current implementation only works with the primitive 
models, prior to and after transforming contacts, more 
complex models can be used.  Contact points on the 
complex model would merely be transferred to the nearest 
points on the simplified model, and vice versa.  Differences 
between the actual geometries and their primitive models 
can be treated essentially as errors.  This means that objects 
that are poorly modeled by a small number of such 
primitives may be grasped incorrectly by our system.  As 

you can see in Fig. 4, however, for the purposes of 
grasping, even fairly complex objects can be reasonably 
modeled with primitives.   

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Real objects and their primitive models 
 

While it is possible to implement a system that 
automatically finds these primitive models, such is beyond 
the scope of this project; the primitive models that we use 
are generated by hand.  In our implementation, we use only 
objects consisting of a maximum of three primitives 
(sphere, cylinder, and box) in a line, with axes of symmetry 
aligned, as explained earlier in the definition of primitive 
models.  If you look at the objects in Fig. 4, you may note 
that all the primitive models are of this description.  With a 
moderate increase in the complexity of the grasp adaptation 
process, it would be possible to use more complicated 
primitive models, with other types of primitives such as 
handles or cones, more primitives, or differently arranged 
primitives. 

V. DEMONSTRATING GRASPS  
The grasps in the template grasp database are created by 
having a human teleoperate the simulated robot to pick up 
simulated objects.  Our implementation uses the Nest of 
Birds(TM), a set of four magnetic sensors that determine the 
position and orientation of both wrists and elbows.  
Additionally, switches held in each hand allow the user to 
choose one of three pre-grasp configurations (C-shaped 
hand, L-shaped hand, or flat palm) and tell each hand when 
to wrap around the object and when to let go.   

Data is recorded at the start and end of the simulation, 
as well as every time contact between the object and a new 



 
 

body part is made or lost.  Each of these recorded points, 
along with the information recorded, is called a keyframe; 
a demonstrated grasp trajectory is thus a sequence of 
keyframes.   For instance, our demonstration of tucking a 
sign under one arm has seven keyframes: start position, 
hand grasping handle, sign touching torso, sign touching 
upper arm, sign touching lower arm, hand being removed, 
and end of simulation.  Six of the seven keyframes (all but 
the hand being removed, since it is nearly identical to the 
one before it) are shown in Fig. 5.  The parameters 
recorded for each keyframe are: global object position, arm 
joint angles, and locations of contact points on both the 
object and the body/table.  
 
 
 

 
 
 
 
 
 
 

 
 
 
Fig. 5.  Keyframes in Under-Arm Grasp Demonstration 
 

Sliding of contacts is highly discouraged, since 
controllers that can successfully execute contact sliding are 
difficult to create and the resulting adapted grasps are 
likely to be ruined; however, it is difficult to eliminate all 
sliding while demonstrating complex grasps such as under-
arm grasps.  A picture of a user demonstrating a grasp 
using the Nest of Birds(TM) is shown in Fig. 2. 

The simulated world you see in Fig. 2, which is the 
same world used to execute adapted grasps of new objects, 
is created using Open Dynamics Engine (ODE), an open-
source physics simulator that provides a fair approximation 
of real-world physics and collision detection [26].     

VI. REPRESENTATIVE CONTACTS  
To further simplify choosing good pre-grasp locations, 
instead of transforming all contacts made in the 
demonstration grasp, we reduce the potentially large 
number of contacts made by one hand to a small set of 
representative contacts.  The geometry of the hand imposes 
severe constraints on the relative locations of the hand 
contacts.  Finding 16 separate locations for points on a 
single hand is terribly wasteful, since for a given hand 
position, the range of possible contacts is severely limited.   
For our current implementation, we track only the position 
of the middle knuckle on the palm relative to the object, so 
that the transformed contact only gives the general pre-
grasp location on the new object.  This works well enough 
in most cases.  However, without tracking the positions of 
the fingertips, it is possible (albeit rare) to generate a grasp 
in which the fingertips miss the object entirely, particularly 
for objects with very small components.  In our newest 

implementation, we plan to track up to three points for 
each hand grasp made: the contact points closest to the tip 
of the middle finger, the tip of the thumb, and the middle 
knuckle on the palm.  An example of the three 
representative contacts chosen is shown in Fig. .  This is 
akin to simplifications made using the idea of virtual 
fingers: the concept of virtual fingers says that a number of 
fingers (or other body parts) often work in concert to exert 
a force, and thus can be viewed as a single "virtual finger".  
In our case, all four fingers are regarded as a single virtual 
finger, with the thumb providing the second and the palm 
(when in contact) providing a third.  For instance, the 
power grasp in Fig. 6 can be represented adequately by an 
inward force exerted at each of the three representative 
contacts. 

 
 
 

 
 
 

 
 

 
 
 
 
 
 
 
Fig. 6.   Representative Contacts 
 

To find a good hand pre-grasp location using a set of 
representative hand contacts after grasp adaptation, we can 
set the fingers in the desired pre-grasp configuration and 
then use a quick optimization over the arm joint angles to 
figure out where to place the hand such that the contacts 
can be made.  Assuming that the contacts are in a sensible 
location for grasping on the object (which we will check 
using a grasp quality measure on estimates of the resulting 
contact locations), the low-level grasp controllers will take 
care of wrapping around the object to create a stable force-
closure grasp. 

VII. PICKING A TEMPLATE OBJECT 
When presented with a new object, a template grasp must 
be chosen from the database of demonstrated grasps.  This 
is done by choosing the grasp that was used on the most 
similar object, as determined using a nearest-neighbor 
classification system.  The parameters we used to compare 
objects were object dimensions, object mass, inertia in 
each of three directions, and the automatically-assigned z-
axis of the object, which is based on the alignment of 
primitives in the object.  While this does not take into 
account fine features that may be useful for selecting an 
appropriate grasp, bulk object characteristics appeared to 
be both more important and sufficient for applying the 
template grasps we chose.  While two objects with a 
similar, hand-sized protrusion could both be grasped by 
wrapping a hand around the protrusion, if one of the two 



 
 

objects is large and heavy, a human would be more likely 
to grasp it with a two-hand grasp that provides greater 
support.   

The nearest neighbor classification system can be used 
to rank the template grasps, and more than one of the best 
grasps can be examined for suitability, particularly if the 
size of the database is large. 

VIII. ADAPTING CONTACTS  
Because each object is made up only of a small 

number of known primitives, we can imagine morphing 
one object into the other through a small set of geometric 
transformations such as expanding/shrinking primitives, 
morphing one primitive to another, adding/removing 
primitives, or splitting/combining primitives.  Now 
imagine grasping the demonstration object and then 
morphing the object within the grasp according to these 
transformations.  If the two objects are reasonably similar, 
it is likely that the grasp will still succeed.  This is the 
intuition behind our method of contact transformation, 
which essentially equates 'chunks' of one object consisting 
of subsets of that object's primitives with 'chunks' of 
another object, and grabs both 'chunks' in the same manner.   

This is particularly useful for grasp sequences or other 
manipulation tasks that have multiple steps, such as 
picking up a racket and sandwiching it under an arm, or 
object regrasping operations, since each grasp in the 
sequence is connected to the grasp before and after.  If you 
grasp the racket initially by the handle, that hand grasp 
should remain the same while the arm starts to sandwich 
the head of the racket.  By equating part of the new object 
with the handle of the template racket, and grasping that 
part in the same manner as the handle throughout the entire 
grasp sequence, grasp continuity is automatically assured.  
This is not true of grasp generation from scratch, or even of 
grasp adaptation that searches for good contacts separately 
for each grasp in a sequence.  In such a situation, one 
would have to make continuity a separate requirement.  If 
the first keyframe has g possible grasps, and each of those 
grasps is consistent with approximately g possible grasps 
for the next keyframe, finding good grasps for the first two 
keyframes requires searching on the order of g2 possible 
combinations.  If there are k keyframes in the entire 
sequence, this quickly blows up into searching through a 
tree whose size is on the order of gk grasps.      

As shown in Fig. 7, there are many sequences of 
transformations that will morph one object into another—
in this case, a box into a hammer.  In the first 
transformation, the box shrinks into the head of the 
hammer, and a cylindrical handle is added on.  In the 
second, the box shrinks to the size of the handle, morphs 
into a cylinder, and has a box head tacked on.  In the third, 
the box splits into two primitives, one of which becomes 
the head of the hammer, and the other of which shrinks to 
the size of the handle and then morphs into a cylinder.  
While there are more roundabout ways of morphing from 
the box to the hammer with this particular relative 

orientation, those are the shortest routes, and the only ones 
of interest to us.    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. 7.  Transformation sequences from box to hammer 

A. Mapping Contacts Through a Transformation  
For each sequence of transformations, we need a method of 
transforming the contacts from an object to its transformed 
equivalent.  In doing so, we would like the contacts to 
roughly maintain their relative positions, while staying on 
the appropriate chunks of the new object.   

One simple method that might come to mind is to 
move the contacts as if they were on the surface of a 
sponge, so that a contact on the corner of a box remains on 
the corner while the box stretches or shrinks, and squashes 
to the closest point on a sphere as if the box’s corners were 
squashed inward.  Thus, contacts grow or shrink with the 
boundary of the object, maintaining their relative position 
with respect to edges and corners.  We will call this 
method of mapping contacts “dimensionally normalized 
coordinates”, because it preserves the relative positions of 
the contacts regardless of the dimensions of the old and 
new chunks.  An example of this sort of contact 
transformation is shown in Fig. 8; the corner contact on the 
square maps to the “corner” of the circle, or to the corner 
of the stretched-out square.   

This method of mapping contacts is used in our 
current implementation.  It has the advantage that relative 
contact positions are maintained fairly well, and the new 
object chunks are grasped in a similar manner as the 
demonstration object chunks.  This works well in many 
cases, particularly when the objects have a high coefficient 
of friction.  However, this type of contact mapping 
sometimes yields poor transformed grasps, particularly 
when mapping from boxes to spheres.  If the square in Fig. 
8 were grasped by the top and bottom faces near the top 
right corner and the bottom right corner, the mapped 
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Transform-
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contacts on the circle would land at the equivalent 
“corners” of the circle, which would only stably grasp the 
circle if the coefficient of friction were extremely high.  
Thus, for our next iteration, we will map contacts through a 
transformation in a method that tries to preserve the quality 
of the grasp in addition to just the relative positions of the 
contacts.  We will call this mapping “quality-preserving 
contact transformations.”  Before we can explain the new 
mapping, however, we must explain the concept of grasp 
quality. 
 
 
 
 
 
 
Fig. 8.  Quality-Preserving Contact Transformations (dark arrows) vs. 
Dimensionally Normalized Coordinates (light arrows) 

B. Grasp Quality Measure  
To judge whether a set of mapped contacts would result in 
a good grasp, we need a quality measure that will give a 
numerical value of goodness for a set of grasp contacts. 
There are many different grasp quality measures that can 
be used to evaluate grasps based on their contact points, 
such as those found in [29] and [15].  One of the simplest 
and most commonly used is the L1 quality metric found in 
[8], which we will explain briefly and use here.  The 
purpose of this quality measure is to determine how well a 
grasp, defined as a set of contact points on an object, is 
able to resist arbitrary disturbance wrenches.  These can 
include the force of gravity when the object is at an 
arbitrary orientation, or external contact forces hitting the 
object.  More specifically, this particular quality metric is a 
measure of the magnitude of the largest disturbance 
wrench that can be resisted, when that wrench is exerted in 
the worst direction possible for breaking the grasp and the 
total of the normal forces exerted at all the contacts sums to 
1.   This quality value is found by taking the convex hull of 
all the wrenches possible at all grasp contacts, and finding 
the radius of the largest sphere centered at the origin that 
fits within that convex hull.  The quality value is that 
radius.  For details about why this is, see [8]. 

C. Quality-Preserving Contact Transformations  
Given this quality measure, an important question to ask 
when adapting a grasp from one object to another is: what 
happens to the quality value when contact wrenches move 
in the wrench space?  If you look at the 2-D example in 
Fig. 9, if you start with a convex hull with quality q, all the 
points on the convex hull must be at least a distance q 
away from the origin.  If you move vertices of the convex 
hull, points on the face of the convex hull formed by those 
vertices (in this case, the line between two vertices) move 
by an amount that can be found by interpolating the 
distance moved by the boundary vertices.  Thus, assuming 
the vertices of the convex hull remain the same, no point 
on the surface of the convex hull can move any more than 
the maximum amount moved by any one wrench.  Since all 
points on the convex hull start out at least a distance q, and 
since the distance can drop no more than max(d1…dn), 

where d1…dn are the distances moved by the vertices of the 
convex hull, all the points on the convex hull must then be 
at least a distance q – max(d1…dn).  If wrenches previously 
on the inside of the convex hull move to become one of the 
vertices on the surface of the convex hull, that can only 
increase the distance of surface points from the origin, 
since the convex hull with such points contains the entire 
volume of the convex hull without them.  If wrenches 
previously on the outside of the convex hull move to the 
inside of the new convex hull, that only means that some 
points move a smaller amount than otherwise expected.   
Thus, our new quailty q' ≥ q – max(d1…dn).   
 
 
 
 
 
 
 
 
 
Fig. 9.  2-D Diagram of Shrinking Quality 
 

Thus, when figuring out how to move contacts from 
one object to its transformed equivalent, our goal will be to 
move the wrenches exerted at that contact as little as 
possible, maintaining kinematic feasibility whenever 
possible.  We will call the resulting contact transformations 
'Quality-Preserving Contact Transformations.'   As an 
example, when mapping the corner contact on the square 
shown in Fig. 8 to the circle, the torques exerted from any 
point on the circle are the same.  However, the directions 
of the forces exerted at different contact points vary.  Thus, 
rather than mapping to the “corner” of the circle, which 
would change the directions of the forces considerably, we 
map to the top of the circle, which results in keeping the 
force directions the same.  When mapping from the square 
on the left to the stretched-out rectangle on the right, rather 
than mapping to the corner as before, we map to the 
location on the face that keeps both forces and torques the 
same as before. 

To transform contacts through a sequence of 
transformations, each quality-preserving contact 
transformation is performed in turn.  As a shorter way to 
think about how contacts should be transformed, we can 
consider the perspective that a sequence of transformations 
is equivalent to matching "chunks" of an object to 
"chunks" of the new object, with each chunk in the old 
object morphing into the equivalent chunk in the new 
object.  For each matching chunk-pair, we can expand all 
the primitives of the original object to just fit inside the 
closest bounding box/cylinder/sphere that fits around both 
chunks, combine them into one primitive, then split that 
bounding primitive into appropriate parts that shrink into 
the primitives in the new object.  Thus, merely considering 
all the different ways of matching chunks between objects 
covers all the relevant sequences of transformations.    

d1 

d2 

q 

q' 

q - q' ≤ max(d1, d2) 



 
 

D. Choosing the Best Grasp Candidate  
The process of finding all the possible transformations 

between template and new object and adapting the contacts 
using the quality-preserving contact transformations results 
in a large number of possible adapted grasp sequences, 
which we will refer to as grasp candidates.  To pick the 
best one, there are two factors to consider: kinematic 
feasibility and grasp quality.  To decide either, however, 
we must first do a quick optimization over the arm angles 
for each grasp candidate to find the approximate hand/arm 
locations that will best make the desired adapted contacts 
for each keyframe.  Once that is done, we can quickly 
eliminate any grasp candidates that have either major 
collisions or awkward arm angles.  Next, grasp candidates 
that are too similar to each other can be eliminated, so that 
for small objects, we do not consider a large number of 
nearly identical grasps.   

After paring down the grasp candidates in this manner, 
we need to find a way to assign each remaining grasp 
candidate a numerical quality value.   Our current 
implementation uses a quality value consisting of a 
weighted combination of an empirically chosen set of 
features whose weights are learned from a training set.  
These features include geometric overlap of the template 
and new objects when overlaid, the distances that the 
contact points move when mapped, awkwardness of the 
arm positions, and level of collisions found between body 
parts and the object.  While this method works fairly well 
at picking good grasps, it is somewhat slow and does not 
directly reflect the ability of a new grasp candidate to hold 
the object stably.    

Instead, we can use one of the quality measures 
discussed earlier, such as the one from [8].  To do this, the 
approximate kinematically feasible contact locations that 
can be made for each grasp candidate must be estimated.  
This is done by closing the fingers (without actual physics 
involved, just checking collisions for various points from 
fully open to fully curled) until they hit the surface of the 
object.  Using those estimated contact locations, we can 
check the expected quality of the grasp by finding the 
convex hull of the possible wrenches at all the contact 
points.  The best grasp is then the remaining grasp 
candidate with the highest grasp quality value. 

IX. KEYFRAMING 
In order to test our proposed grasps, we must actually carry 
out the proposed grasp sequences in simulation.  This 
process involves adding a few approach and depart 
keyframes to those adapted from the demonstration, 
adjusting the keyframes so that they are entirely non-
colliding, finding non-colliding paths between those 
keyframes, and finally carrying out the proposed grasp 
trajectory to test for success.   

For each keyframe, a collision-free arrangement of 
both arms and object must be found.  This is done by 
optimizing over the arm angles, penalizing for collisions 
and encouraging positions that accurately make the desired 
estimated contacts that were used to calculate grasp 

quality.  For keyframes in which the robot has control of 
the object, the object is assumed to move with the body 
parts in contact with the object; hand contacts are given 
precedence over arm contacts, which are more likely to 
need to shift.  At this stage, it is possible to test the ability 
of the robot to statically support the object in the desired 
keyframe position.  If any keyframe in the grasp sequence 
cannot adequately support the object without dropping it, 
the grasp is declared unsuccessful. 

X. FINDING TRAJECTORIES 
Once a sequence of keyframes is found, we must still find 
collision-free trajectories to traverse the keyframes.  To do 
this, we use a probabilistic roadmap, as described in [13].  
Briefly, the idea is to connect the keyframes with a series 
of sub-goal positions, each of which is connected to the 
next by a direct, collision-free path.  Each sub-goal 
position is a node in the graph representing the 
probabilistic roadmap, and a direct, collision-free path 
between two nodes is recorded as an edge in the graph.  To 
populate the graph, sets of joint angles (nodes) are selected 
at random, and the ability of that node to connect to its 
closest neighbors through a direct, collision-free path is 
tested.  If a path is found, an edge is created between the 
two nodes.  When two keyframes are in the same 
connected component, there is a collision-free path from 
one to the other.   

XI. EXECUTING TRAJECTORIES 
Once a proposed collision-free grasp trajectory is found, it 
must be executed in simulation to test whether the grasp is 
successful.  The simulation is only an attempt to 
approximate the real world, so while the resulting 
trajectory can be executed with the same controllers and 
sensors in the real world, a successful grasp in simulation 
still has only some (hopefully reasonably high) probability 
of working in real life.   

There are three main types of controllers that are 
needed when executing a planned trajectory.  The first 
perform position control of the arms, to move them along 
the trajectory.  The second add torque components to the 
arm joints (on top of the position control torques) that 
attempt to apply appropriate forces at contact points 
between arm surfaces and the object.  To apply forces at 
contact points between the object and fixed body parts 
such as the torso, the joint torques are calculated by 
assuming that the object moves with the arm/hand parts in 
contact with the object.  This is a loose approximation, and 
often results in imprecise but sufficient force generation.  

The third type of controller wraps fingers around an 
object when a hand is in the appropriate position for 
grasping.  The finger and thumb joints are made to bend 
along a preset trajectory that creates a natural closing 
motion.  When a joint hits the object, all proximal joints on 
that digit are frozen in place while distal joints continue to 
curl.  When the tip of the digit has hit the object, the finger 
freezes its shape except at the base of the digit, which is 



 
 

proportional-controlled to maintain a given level of force 
on the object.    

Our current implementation uses a constant level of 
force for all grasps.  This turns out to be problematic, since 
for instance, in a two-hand grasp, the fingers should only 
wrap loosely around the object while the palms exert most 
of the necessary force to hold up the object.  On the other 
hand, for fingertip grasps of medium-weight objects, the 
fingers must exert a fair amount of force to maintain their 
grasp.  If the larger amount of force is used for both grasps, 
the fingers tend to push too hard against the object in the 
two-hand grasp, potentially disrupting the grasp.  Thus, for 
our next iteration, we plan to use different levels of force 
for different pre-grasp configurations.  More generally, 
finger force is a parameter that could be either learned or 
specified by the user for each demonstration.   

The other major issue encountered by this simplistic 
system of controllers is that of sliding.  As mentioned 
earlier, sliding in the demonstration is discouraged but 
difficult to eliminate in certain complex grasps.  Thus, 
since the controllers have no special accommodation for 
sliding along surfaces, grasps that require sliding are 
usually broken.  For example, if you look carefully at the 
keyframes for the under-arm grasp in Fig. 5, you may note 
that the object shifts position considerably while being 
sandwiched by the arm.  This is an artifact of the under-
arm grasp demonstration, which contained a considerable 
amount of sliding.  This resulted in the failure of all 
adapted under-arm grasps, since attempts to slide the object 
resulted in dropping it.  Fortunately, there is little sliding 
needed in standard one-hand, two-hand, or over-shoulder 
grasps, and thus this was not an issue for those grasps.      

XII. RESULTS 
The seven template grasps supplied in our database include 
two precision grasps, two palm grasps, one two-hand 
grasp, an over-shoulder grasp, and an under-arm grasp, as 
shown in Fig. 10. 

Fig. 10.  Template Grasps 

By adapting these seven template grasps, our current 
implemented system can already pick up 92 out of 100 
randomly generated objects.  Examples of successfully 
executed grasps of a few objects are shown in Fig. 11. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11.  Successful Grasp Examples 
 
The problems that we discussed earlier with current 
implementations of various modules in our algorithm were 
responsible for a fair number of the grasps that failed.  A 
few failed grasps are shown in Fig. 12. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12.  Failed Grasps 
 

As mentioned earlier, none of the under-arm grasps 
succeeded due to sliding in the demonstration.  Two of the 
failed objects in Fig. 12 (bottom left and bottom middle) 
were attempts at performing an under-arm grasp.  The top 
left and top middle objects failed only because of an 
inappropriate level of finger force being applied by the 
low-level grasp controllers; these would have succeeded 
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with the force modifications discussed.  The top right grasp 
failed because the hand was not actually large enough to fit 
around the object; this would have been detected by the 
convex hull grasp quality metric.  The grasp of the log in 
the bottom right failed because the log was too heavy to be 
picked up in the same manner as the over-shoulder grasp.  
Had we used the convex hull grasp quality metric, we 
could have used the quality of the grasp along with the 
weight of the log to determine the infeasibility of the grasp 
before trying to execute it.  While the under-arm grasps 
would not be fixed by implementing the rest of the 
techniques detailed in this paper, we believe that most of 
the other failures could have been avoided. 

XIII. FUTURE WORK 
In addition to implementing the components discussed that 
have not yet been finished, there are several other 
components that we plan to add.  The first is to add in the 
object model and position errors; to this point, we have 
tested only on primitive models with exact position 
information.  In the future, we intend to use more complex 
models, and to add in varying levels of error in both object 
model and position.  Using data gained from testing with 
varying levels of error, we would like to learn the 
uncertainty in the quality of the resulting grasp based on 
features that are associated with instability and other grasp 
difficulties.  We also plan to create a module that will 
automatically determine an appropriate primitive model 
given a more complex model, and add new primitives and 
a larger number of primitives to our primitive models.  
Finally, we plan to extend the ability of our system to 
perform manipulation tasks other than grasping, such as 
opening doors, stacking dishes, or screwing in screws. 
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