

Abstract—Humans often learn to manipulate objects by

observing other people. In much the same way, robots can
use imitation learning to pick up useful skills. A system is
detailed here for using imitation learning to teach a robot to
grasp objects using both hand and whole-body grasps, which
use the arms and torso as well as hands. Demonstration grasp
trajectories are created by teleoperating a simulated robot to
pick up simulated objects. When presented with a new
object, the system compares it against the objects in a stored
database to pick a demonstrated grasp used on a similar
object. Both objects are modeled as a combination of
primitives—boxes, cylinders, and spheres—and by
considering the new object to be a transformed version of the
demonstration object, contact points are mapped from one
object to the other. The best kinematically feasible grasp
candidate is chosen with the aid of a grasp quality metric. To
test the success of the chosen grasp, a full, collision-free grasp
trajectory is found and an attempt is made to execute in the
simulation. The implemented system successfully picks up 92
out of 100 randomly generated test objects in simulation.

Index Terms—imitation learning, grasping, example-based
grasping, whole-body grasping

I. INTRODUCTION

NE of the basic issues in making useful humanoid
robots is enabling them to grasp and manipulate

objects. In addition to well-understood fingertip grasps,
humans often use what are termed "whole-body grasps"—
grasps that can use non-fingertip surfaces such as an entire
finger, palm, arm, or even torso. Examples of such grasps
include wrapping a hand around the handle of a hammer,
lifting a vase with two hands (as in the left side of Fig. 1),
sandwiching a tennis racket under one arm, or slinging a
club over a shoulder (as in the right side of Fig. 1).

Fig. 1. Whole-Body Grasps

Using non-fingertip surfaces often makes grasps more
powerful or stable. However, analyzing and synthesizing
whole-body grasps is difficult because of the large number
of point contacts required to approximate them, because

Manuscript received November 10, 2005. This work was supported in

part by an NSF Graduate Research Fellowship.

there is the possibility of multiple steps in the grasp
sequence, and because the kinematics of the robot puts a
large number of constraints on the relative locations of
non-fingertip contacts.

We are interested in finding a way to allow robots to
perform complex grasp sequences with a potentially large
number of contacts, as well as multiple steps in the grasp
sequence. For instance, tucking a racket under an arm
requires a grasp sequence with several steps: first the
handle is grasped with a one-hand grasp, then the racket
must be accurately placed beneath the arm, then the arm
must sandwich the racket stably, and finally the hand must
be removed. Figuring out how to accomplish this grasp
sequence requires finding “grasps” (which we will also call
“keyframes”) with several different combinations of body
parts—just the hand, the hand and the arm, and just the
arm—and continuity must be maintained between
keyframes, so that the hand grasps the handle in the same
place in the first two combinations and the arm sandwiches
the head in the same place in the latter two. The same
issues arise in other complex grasp sequences such as
regrasping operations, and while we are currently working
on whole-body grasps, we would like our method to be
applicable to both types of manipulation tasks.

Synthesizing grasps by constructing or globally
optimizing individual contact locations requires time
exponential in the number of contacts [21] since any
contact can be placed anywhere on the object surface.
Even when contacts can be found, the kinematics of the
robot are typically not taken into account, and the resulting
contact locations are often kinematically infeasible.

Humans can usually pick objects up simply by finding
good pre-grasp locations and then wrapping hands around
the object. Behavior-based, heuristic methods of grasping,
such as [23] typically define hard-coded rules of grasping
objects that identify possible pre-grasp locations for the
hand to close around. These methods work well for simple
situations, but it is difficult to generalize these heuristics to
more complex, new tasks.

Instead of constructing new grasps from scratch or
requiring that rules be hard-coded to deal with every
situation, our method can create a database of successful
grasp strategies through human demonstration. As long
there is a grasp sequence in the database that can be
applied to a new object, the task becomes one of picking
the correct grasp sequence and then adapting it to the new
object.

The goal of our project, therefore, is to enable a
simulated robot to learn whole-body grasps through
imitation: a human demonstrates picking up several
simulated objects, and the robot chooses appropriate

Imitation Learning of Whole-Body Grasps
Kaijen Hsiao and Tomás Lozano-Perez

Computer Science and Artificial Intelligence Lab, MIT

O

demonstrated grasp sequences and performs them on new
objects with different geometries/positions than the
training objects.

Fig. 2. Demonstrating Grasp

II. APPROACH
Our approach can be construed as a mix of behavior-based
and individual contact methods. We use low-level
controllers to grasp at good general locations on the object,
as behavior-based methods often do, but we find those
locations by adapting and examining sets of individual
contacts.

Our general approach is as follows:
•A human demonstrates a database of grasp sequences by

teleoperating the simulated robot, as shown in Fig. .
Each demonstration is recorded as a sequence of
keyframes in which contacts with the object are added
or removed, and in which hand grasps with many
contacts are represented by a reduced set of
representative contacts.

•Given a new object, an appropriate demonstration grasp
sequence is chosen from the database.

•The objects are modeled as combinations of basic
primitives such as boxes, cylinders, and spheres for
ease of grasp adaptation.

•Keyframes from the demonstration sequence are adapted
to the new object. This is done by assuming that the
new object is a transformed version of the
demonstration object and by moving contacts
appropriately, as in Fig. 3.

•Adapted grasp sequences are filtered for kinematic
feasibility, and a grasp quality measure is used to pick
the best one.

•A non-colliding trajectory to carry out the grasp sequence
is found.

•The new grasp sequence is carried out, using low-level
controllers to wrap hands stably around the object.

Fig. 3. Transformation From Box to Hammer

Although our approach offers no guarantees that it will
find a good grasp (for instance, if no appropriate grasp is
contained in the database then no adaptation of an existing
grasp will be successful), it is possible to adapt the grasp in
time polynomial in the number of grasp contacts; the
adaptation process takes into account the kinematics of the
robot; and our overall approach is potentially useful for
other manipulation tasks such as regrasping.

III. RELATED WORK
Aspects of our approach relate to diverse previous works in
both grasping and imitation learning.

A. Grasping
In the realm of grasping, most of the approaches deal

with finding or analyzing sets of contacts at precise
locations on the surface of an object. The goal is to find a
set of contacts that guarantee force-closure, and perhaps
additionally that make up a high quality grasp according to
some quality measure [17, 8, 15, 29, 22].

However, all of these approaches ignore the
kinematics of the robot, assuming that the robot can not
only reach any set of contacts on the surface of the object,
but that arbitrary forces can be exerted at those contact
points. One of the main ideas behind our approach is that
the actual set of contacts that can be made by a hand is
severely limited by the geometry of the hand, and thus
finding sets of independent contacts that cannot be reached
is wasteful. A few approaches take kinematics into
account, such as [3, 4, 20, 25, 27].

 Since we are dealing with enveloping, two-hand, and
more complex whole-body grasps in addition to fingertip
grasps, we need to handle issues that are less important for
a fingertip grasp planner. A two-hand grasp can have as
many as 32 contacts, and all of them are defective
(meaning that there are not enough degrees of freedom to
create arbitrary forces at each contact). Rather than trying
to construct or search for good grasps from scratch, we can
use previous experience to figure out how to grasp a new
object that may be similar to one we have seen before.
There are several approaches that deal with learning to
grasp from experience, such as [5] and [11]; in the work
that most closely relates to ours, [21] shows how to adapt a
demonstrated grasp to a new object by finding a family of
grasps that are guaranteed to have a quality value that is
some percentage of the original grasp. This method is
excellent for many situations and can deal well with more
arbitrary-shaped objects than our method can. However, it
is somewhat limited in that it only finds grasps within a
particular family of grasps that are guaranteed to have a

quality value that is at least a fraction of the original
quality. This does not include many potentially desirable
grasps, and requires searching the entire surface of the
object in every possible degree of rotation, which can be
difficult for 3-D objects.

On the other side of the field of robotic grasping are
the heuristic approaches. In behavior-based or heuristic
grasping, grasp taxonomies are used to grasp objects by
classifying objects into categories that should be grasped
by each canonical grasp, and then pre-shaping the hand
into the appropriate grasp shape and using low-level
controllers to execute the grasp. Works related to this sort
of approach include [9, 6, 23, 12, 16].

In general, in order to extend any of the heuristic
methods to dealing with under-arm, over-shoulder, or other
grasps, one would have to hand-code heuristics for each
new grasp type. While this is possible, it precludes
extension to more complex, yet-unseen manipulation tasks.

Areas of grasping that are beyond the scope of this
paper include dextrous manipulation (how to move the
object within the hand, once it is already grasped) and
second-order effects such as grasp stability (characterizing
the stability of a grasp with respect to perturbations). We
also ignore the effects of dynamics, assuming that the
robot's movements are slow enough that such effects are
minimal. For a more complete survey of the field of
grasping, see [2].

B. Imitation Learning
In the field of imitation learning, there are works that

deal with learning the dynamics of tasks such as dance
movements [10], air hockey [1], and balancing a pole [24].
Of closer relevance are works dealing with the imitation
learning of pick-and-place operations, such as [14, 28, 7,
17].

IV. MODELING OBJECTS WITH PRIMITIVES
To make adapting grasps between objects easier, we
require that models be provided for all objects that consist
only of shape primitives such as spheres, boxes, and
cylinders. Examples of such primitive models are shown
in Fig. 4.

Modeling objects with primitives allows us to simplify
the problem drastically by providing a sensible method of
'chunking' each object; also, the symmetries inherent in the
primitives provides a reduced number of rotational
alignments between objects.

This primitive modeling is only used for transforming
contacts from one object to the other. Although our
current implementation only works with the primitive
models, prior to and after transforming contacts, more
complex models can be used. Contact points on the
complex model would merely be transferred to the nearest
points on the simplified model, and vice versa. Differences
between the actual geometries and their primitive models
can be treated essentially as errors. This means that objects
that are poorly modeled by a small number of such
primitives may be grasped incorrectly by our system. As

you can see in Fig. 4, however, for the purposes of
grasping, even fairly complex objects can be reasonably
modeled with primitives.

Fig. 4. Real objects and their primitive models

While it is possible to implement a system that
automatically finds these primitive models, such is beyond
the scope of this project; the primitive models that we use
are generated by hand. In our implementation, we use only
objects consisting of a maximum of three primitives
(sphere, cylinder, and box) in a line, with axes of symmetry
aligned, as explained earlier in the definition of primitive
models. If you look at the objects in Fig. 4, you may note
that all the primitive models are of this description. With a
moderate increase in the complexity of the grasp adaptation
process, it would be possible to use more complicated
primitive models, with other types of primitives such as
handles or cones, more primitives, or differently arranged
primitives.

V. DEMONSTRATING GRASPS
The grasps in the template grasp database are created by
having a human teleoperate the simulated robot to pick up
simulated objects. Our implementation uses the Nest of
Birds(TM), a set of four magnetic sensors that determine the
position and orientation of both wrists and elbows.
Additionally, switches held in each hand allow the user to
choose one of three pre-grasp configurations (C-shaped
hand, L-shaped hand, or flat palm) and tell each hand when
to wrap around the object and when to let go.

Data is recorded at the start and end of the simulation,
as well as every time contact between the object and a new

body part is made or lost. Each of these recorded points,
along with the information recorded, is called a keyframe;
a demonstrated grasp trajectory is thus a sequence of
keyframes. For instance, our demonstration of tucking a
sign under one arm has seven keyframes: start position,
hand grasping handle, sign touching torso, sign touching
upper arm, sign touching lower arm, hand being removed,
and end of simulation. Six of the seven keyframes (all but
the hand being removed, since it is nearly identical to the
one before it) are shown in Fig. 5. The parameters
recorded for each keyframe are: global object position, arm
joint angles, and locations of contact points on both the
object and the body/table.

Fig. 5. Keyframes in Under-Arm Grasp Demonstration

Sliding of contacts is highly discouraged, since
controllers that can successfully execute contact sliding are
difficult to create and the resulting adapted grasps are
likely to be ruined; however, it is difficult to eliminate all
sliding while demonstrating complex grasps such as under-
arm grasps. A picture of a user demonstrating a grasp
using the Nest of Birds(TM) is shown in Fig. 2.

The simulated world you see in Fig. 2, which is the
same world used to execute adapted grasps of new objects,
is created using Open Dynamics Engine (ODE), an open-
source physics simulator that provides a fair approximation
of real-world physics and collision detection [26].

VI. REPRESENTATIVE CONTACTS
To further simplify choosing good pre-grasp locations,
instead of transforming all contacts made in the
demonstration grasp, we reduce the potentially large
number of contacts made by one hand to a small set of
representative contacts. The geometry of the hand imposes
severe constraints on the relative locations of the hand
contacts. Finding 16 separate locations for points on a
single hand is terribly wasteful, since for a given hand
position, the range of possible contacts is severely limited.
For our current implementation, we track only the position
of the middle knuckle on the palm relative to the object, so
that the transformed contact only gives the general pre-
grasp location on the new object. This works well enough
in most cases. However, without tracking the positions of
the fingertips, it is possible (albeit rare) to generate a grasp
in which the fingertips miss the object entirely, particularly
for objects with very small components. In our newest

implementation, we plan to track up to three points for
each hand grasp made: the contact points closest to the tip
of the middle finger, the tip of the thumb, and the middle
knuckle on the palm. An example of the three
representative contacts chosen is shown in Fig. . This is
akin to simplifications made using the idea of virtual
fingers: the concept of virtual fingers says that a number of
fingers (or other body parts) often work in concert to exert
a force, and thus can be viewed as a single "virtual finger".
In our case, all four fingers are regarded as a single virtual
finger, with the thumb providing the second and the palm
(when in contact) providing a third. For instance, the
power grasp in Fig. 6 can be represented adequately by an
inward force exerted at each of the three representative
contacts.

Fig. 6. Representative Contacts

To find a good hand pre-grasp location using a set of
representative hand contacts after grasp adaptation, we can
set the fingers in the desired pre-grasp configuration and
then use a quick optimization over the arm joint angles to
figure out where to place the hand such that the contacts
can be made. Assuming that the contacts are in a sensible
location for grasping on the object (which we will check
using a grasp quality measure on estimates of the resulting
contact locations), the low-level grasp controllers will take
care of wrapping around the object to create a stable force-
closure grasp.

VII. PICKING A TEMPLATE OBJECT
When presented with a new object, a template grasp must
be chosen from the database of demonstrated grasps. This
is done by choosing the grasp that was used on the most
similar object, as determined using a nearest-neighbor
classification system. The parameters we used to compare
objects were object dimensions, object mass, inertia in
each of three directions, and the automatically-assigned z-
axis of the object, which is based on the alignment of
primitives in the object. While this does not take into
account fine features that may be useful for selecting an
appropriate grasp, bulk object characteristics appeared to
be both more important and sufficient for applying the
template grasps we chose. While two objects with a
similar, hand-sized protrusion could both be grasped by
wrapping a hand around the protrusion, if one of the two

objects is large and heavy, a human would be more likely
to grasp it with a two-hand grasp that provides greater
support.

The nearest neighbor classification system can be used
to rank the template grasps, and more than one of the best
grasps can be examined for suitability, particularly if the
size of the database is large.

VIII. ADAPTING CONTACTS
Because each object is made up only of a small

number of known primitives, we can imagine morphing
one object into the other through a small set of geometric
transformations such as expanding/shrinking primitives,
morphing one primitive to another, adding/removing
primitives, or splitting/combining primitives. Now
imagine grasping the demonstration object and then
morphing the object within the grasp according to these
transformations. If the two objects are reasonably similar,
it is likely that the grasp will still succeed. This is the
intuition behind our method of contact transformation,
which essentially equates 'chunks' of one object consisting
of subsets of that object's primitives with 'chunks' of
another object, and grabs both 'chunks' in the same manner.

This is particularly useful for grasp sequences or other
manipulation tasks that have multiple steps, such as
picking up a racket and sandwiching it under an arm, or
object regrasping operations, since each grasp in the
sequence is connected to the grasp before and after. If you
grasp the racket initially by the handle, that hand grasp
should remain the same while the arm starts to sandwich
the head of the racket. By equating part of the new object
with the handle of the template racket, and grasping that
part in the same manner as the handle throughout the entire
grasp sequence, grasp continuity is automatically assured.
This is not true of grasp generation from scratch, or even of
grasp adaptation that searches for good contacts separately
for each grasp in a sequence. In such a situation, one
would have to make continuity a separate requirement. If
the first keyframe has g possible grasps, and each of those
grasps is consistent with approximately g possible grasps
for the next keyframe, finding good grasps for the first two
keyframes requires searching on the order of g2 possible
combinations. If there are k keyframes in the entire
sequence, this quickly blows up into searching through a
tree whose size is on the order of gk grasps.

As shown in Fig. 7, there are many sequences of
transformations that will morph one object into another—
in this case, a box into a hammer. In the first
transformation, the box shrinks into the head of the
hammer, and a cylindrical handle is added on. In the
second, the box shrinks to the size of the handle, morphs
into a cylinder, and has a box head tacked on. In the third,
the box splits into two primitives, one of which becomes
the head of the hammer, and the other of which shrinks to
the size of the handle and then morphs into a cylinder.
While there are more roundabout ways of morphing from
the box to the hammer with this particular relative

orientation, those are the shortest routes, and the only ones
of interest to us.

Fig. 7. Transformation sequences from box to hammer

A. Mapping Contacts Through a Transformation
For each sequence of transformations, we need a method of
transforming the contacts from an object to its transformed
equivalent. In doing so, we would like the contacts to
roughly maintain their relative positions, while staying on
the appropriate chunks of the new object.

One simple method that might come to mind is to
move the contacts as if they were on the surface of a
sponge, so that a contact on the corner of a box remains on
the corner while the box stretches or shrinks, and squashes
to the closest point on a sphere as if the box’s corners were
squashed inward. Thus, contacts grow or shrink with the
boundary of the object, maintaining their relative position
with respect to edges and corners. We will call this
method of mapping contacts “dimensionally normalized
coordinates”, because it preserves the relative positions of
the contacts regardless of the dimensions of the old and
new chunks. An example of this sort of contact
transformation is shown in Fig. 8; the corner contact on the
square maps to the “corner” of the circle, or to the corner
of the stretched-out square.

This method of mapping contacts is used in our
current implementation. It has the advantage that relative
contact positions are maintained fairly well, and the new
object chunks are grasped in a similar manner as the
demonstration object chunks. This works well in many
cases, particularly when the objects have a high coefficient
of friction. However, this type of contact mapping
sometimes yields poor transformed grasps, particularly
when mapping from boxes to spheres. If the square in Fig.
8 were grasped by the top and bottom faces near the top
right corner and the bottom right corner, the mapped

Template Object New Object

Transform-
ation 1

Transform-
ation 2

Transform-
ation 3

contacts on the circle would land at the equivalent
“corners” of the circle, which would only stably grasp the
circle if the coefficient of friction were extremely high.
Thus, for our next iteration, we will map contacts through a
transformation in a method that tries to preserve the quality
of the grasp in addition to just the relative positions of the
contacts. We will call this mapping “quality-preserving
contact transformations.” Before we can explain the new
mapping, however, we must explain the concept of grasp
quality.

Fig. 8. Quality-Preserving Contact Transformations (dark arrows) vs.
Dimensionally Normalized Coordinates (light arrows)

B. Grasp Quality Measure
To judge whether a set of mapped contacts would result in
a good grasp, we need a quality measure that will give a
numerical value of goodness for a set of grasp contacts.
There are many different grasp quality measures that can
be used to evaluate grasps based on their contact points,
such as those found in [29] and [15]. One of the simplest
and most commonly used is the L1 quality metric found in
[8], which we will explain briefly and use here. The
purpose of this quality measure is to determine how well a
grasp, defined as a set of contact points on an object, is
able to resist arbitrary disturbance wrenches. These can
include the force of gravity when the object is at an
arbitrary orientation, or external contact forces hitting the
object. More specifically, this particular quality metric is a
measure of the magnitude of the largest disturbance
wrench that can be resisted, when that wrench is exerted in
the worst direction possible for breaking the grasp and the
total of the normal forces exerted at all the contacts sums to
1. This quality value is found by taking the convex hull of
all the wrenches possible at all grasp contacts, and finding
the radius of the largest sphere centered at the origin that
fits within that convex hull. The quality value is that
radius. For details about why this is, see [8].

C. Quality-Preserving Contact Transformations
Given this quality measure, an important question to ask
when adapting a grasp from one object to another is: what
happens to the quality value when contact wrenches move
in the wrench space? If you look at the 2-D example in
Fig. 9, if you start with a convex hull with quality q, all the
points on the convex hull must be at least a distance q
away from the origin. If you move vertices of the convex
hull, points on the face of the convex hull formed by those
vertices (in this case, the line between two vertices) move
by an amount that can be found by interpolating the
distance moved by the boundary vertices. Thus, assuming
the vertices of the convex hull remain the same, no point
on the surface of the convex hull can move any more than
the maximum amount moved by any one wrench. Since all
points on the convex hull start out at least a distance q, and
since the distance can drop no more than max(d1…dn),

where d1…dn are the distances moved by the vertices of the
convex hull, all the points on the convex hull must then be
at least a distance q – max(d1…dn). If wrenches previously
on the inside of the convex hull move to become one of the
vertices on the surface of the convex hull, that can only
increase the distance of surface points from the origin,
since the convex hull with such points contains the entire
volume of the convex hull without them. If wrenches
previously on the outside of the convex hull move to the
inside of the new convex hull, that only means that some
points move a smaller amount than otherwise expected.
Thus, our new quailty q' ≥ q – max(d1…dn).

Fig. 9. 2-D Diagram of Shrinking Quality

Thus, when figuring out how to move contacts from
one object to its transformed equivalent, our goal will be to
move the wrenches exerted at that contact as little as
possible, maintaining kinematic feasibility whenever
possible. We will call the resulting contact transformations
'Quality-Preserving Contact Transformations.' As an
example, when mapping the corner contact on the square
shown in Fig. 8 to the circle, the torques exerted from any
point on the circle are the same. However, the directions
of the forces exerted at different contact points vary. Thus,
rather than mapping to the “corner” of the circle, which
would change the directions of the forces considerably, we
map to the top of the circle, which results in keeping the
force directions the same. When mapping from the square
on the left to the stretched-out rectangle on the right, rather
than mapping to the corner as before, we map to the
location on the face that keeps both forces and torques the
same as before.

To transform contacts through a sequence of
transformations, each quality-preserving contact
transformation is performed in turn. As a shorter way to
think about how contacts should be transformed, we can
consider the perspective that a sequence of transformations
is equivalent to matching "chunks" of an object to
"chunks" of the new object, with each chunk in the old
object morphing into the equivalent chunk in the new
object. For each matching chunk-pair, we can expand all
the primitives of the original object to just fit inside the
closest bounding box/cylinder/sphere that fits around both
chunks, combine them into one primitive, then split that
bounding primitive into appropriate parts that shrink into
the primitives in the new object. Thus, merely considering
all the different ways of matching chunks between objects
covers all the relevant sequences of transformations.

d1

d2

q

q'

q - q' ≤ max(d1, d2)

D. Choosing the Best Grasp Candidate
The process of finding all the possible transformations

between template and new object and adapting the contacts
using the quality-preserving contact transformations results
in a large number of possible adapted grasp sequences,
which we will refer to as grasp candidates. To pick the
best one, there are two factors to consider: kinematic
feasibility and grasp quality. To decide either, however,
we must first do a quick optimization over the arm angles
for each grasp candidate to find the approximate hand/arm
locations that will best make the desired adapted contacts
for each keyframe. Once that is done, we can quickly
eliminate any grasp candidates that have either major
collisions or awkward arm angles. Next, grasp candidates
that are too similar to each other can be eliminated, so that
for small objects, we do not consider a large number of
nearly identical grasps.

After paring down the grasp candidates in this manner,
we need to find a way to assign each remaining grasp
candidate a numerical quality value. Our current
implementation uses a quality value consisting of a
weighted combination of an empirically chosen set of
features whose weights are learned from a training set.
These features include geometric overlap of the template
and new objects when overlaid, the distances that the
contact points move when mapped, awkwardness of the
arm positions, and level of collisions found between body
parts and the object. While this method works fairly well
at picking good grasps, it is somewhat slow and does not
directly reflect the ability of a new grasp candidate to hold
the object stably.

Instead, we can use one of the quality measures
discussed earlier, such as the one from [8]. To do this, the
approximate kinematically feasible contact locations that
can be made for each grasp candidate must be estimated.
This is done by closing the fingers (without actual physics
involved, just checking collisions for various points from
fully open to fully curled) until they hit the surface of the
object. Using those estimated contact locations, we can
check the expected quality of the grasp by finding the
convex hull of the possible wrenches at all the contact
points. The best grasp is then the remaining grasp
candidate with the highest grasp quality value.

IX. KEYFRAMING
In order to test our proposed grasps, we must actually carry
out the proposed grasp sequences in simulation. This
process involves adding a few approach and depart
keyframes to those adapted from the demonstration,
adjusting the keyframes so that they are entirely non-
colliding, finding non-colliding paths between those
keyframes, and finally carrying out the proposed grasp
trajectory to test for success.

For each keyframe, a collision-free arrangement of
both arms and object must be found. This is done by
optimizing over the arm angles, penalizing for collisions
and encouraging positions that accurately make the desired
estimated contacts that were used to calculate grasp

quality. For keyframes in which the robot has control of
the object, the object is assumed to move with the body
parts in contact with the object; hand contacts are given
precedence over arm contacts, which are more likely to
need to shift. At this stage, it is possible to test the ability
of the robot to statically support the object in the desired
keyframe position. If any keyframe in the grasp sequence
cannot adequately support the object without dropping it,
the grasp is declared unsuccessful.

X. FINDING TRAJECTORIES
Once a sequence of keyframes is found, we must still find
collision-free trajectories to traverse the keyframes. To do
this, we use a probabilistic roadmap, as described in [13].
Briefly, the idea is to connect the keyframes with a series
of sub-goal positions, each of which is connected to the
next by a direct, collision-free path. Each sub-goal
position is a node in the graph representing the
probabilistic roadmap, and a direct, collision-free path
between two nodes is recorded as an edge in the graph. To
populate the graph, sets of joint angles (nodes) are selected
at random, and the ability of that node to connect to its
closest neighbors through a direct, collision-free path is
tested. If a path is found, an edge is created between the
two nodes. When two keyframes are in the same
connected component, there is a collision-free path from
one to the other.

XI. EXECUTING TRAJECTORIES
Once a proposed collision-free grasp trajectory is found, it
must be executed in simulation to test whether the grasp is
successful. The simulation is only an attempt to
approximate the real world, so while the resulting
trajectory can be executed with the same controllers and
sensors in the real world, a successful grasp in simulation
still has only some (hopefully reasonably high) probability
of working in real life.

There are three main types of controllers that are
needed when executing a planned trajectory. The first
perform position control of the arms, to move them along
the trajectory. The second add torque components to the
arm joints (on top of the position control torques) that
attempt to apply appropriate forces at contact points
between arm surfaces and the object. To apply forces at
contact points between the object and fixed body parts
such as the torso, the joint torques are calculated by
assuming that the object moves with the arm/hand parts in
contact with the object. This is a loose approximation, and
often results in imprecise but sufficient force generation.

The third type of controller wraps fingers around an
object when a hand is in the appropriate position for
grasping. The finger and thumb joints are made to bend
along a preset trajectory that creates a natural closing
motion. When a joint hits the object, all proximal joints on
that digit are frozen in place while distal joints continue to
curl. When the tip of the digit has hit the object, the finger
freezes its shape except at the base of the digit, which is

proportional-controlled to maintain a given level of force
on the object.

Our current implementation uses a constant level of
force for all grasps. This turns out to be problematic, since
for instance, in a two-hand grasp, the fingers should only
wrap loosely around the object while the palms exert most
of the necessary force to hold up the object. On the other
hand, for fingertip grasps of medium-weight objects, the
fingers must exert a fair amount of force to maintain their
grasp. If the larger amount of force is used for both grasps,
the fingers tend to push too hard against the object in the
two-hand grasp, potentially disrupting the grasp. Thus, for
our next iteration, we plan to use different levels of force
for different pre-grasp configurations. More generally,
finger force is a parameter that could be either learned or
specified by the user for each demonstration.

The other major issue encountered by this simplistic
system of controllers is that of sliding. As mentioned
earlier, sliding in the demonstration is discouraged but
difficult to eliminate in certain complex grasps. Thus,
since the controllers have no special accommodation for
sliding along surfaces, grasps that require sliding are
usually broken. For example, if you look carefully at the
keyframes for the under-arm grasp in Fig. 5, you may note
that the object shifts position considerably while being
sandwiched by the arm. This is an artifact of the under-
arm grasp demonstration, which contained a considerable
amount of sliding. This resulted in the failure of all
adapted under-arm grasps, since attempts to slide the object
resulted in dropping it. Fortunately, there is little sliding
needed in standard one-hand, two-hand, or over-shoulder
grasps, and thus this was not an issue for those grasps.

XII. RESULTS
The seven template grasps supplied in our database include
two precision grasps, two palm grasps, one two-hand
grasp, an over-shoulder grasp, and an under-arm grasp, as
shown in Fig. 10.

Fig. 10. Template Grasps

By adapting these seven template grasps, our current
implemented system can already pick up 92 out of 100
randomly generated objects. Examples of successfully
executed grasps of a few objects are shown in Fig. 11.

Fig. 11. Successful Grasp Examples

The problems that we discussed earlier with current
implementations of various modules in our algorithm were
responsible for a fair number of the grasps that failed. A
few failed grasps are shown in Fig. 12.

Fig. 12. Failed Grasps

As mentioned earlier, none of the under-arm grasps
succeeded due to sliding in the demonstration. Two of the
failed objects in Fig. 12 (bottom left and bottom middle)
were attempts at performing an under-arm grasp. The top
left and top middle objects failed only because of an
inappropriate level of finger force being applied by the
low-level grasp controllers; these would have succeeded

Precision
Grasps From
Top and Side

Palm
Grasps From
Top and Side

2-Hand Grasp Under-Arm
Grasp

Over-Shoulder
Grasp

with the force modifications discussed. The top right grasp
failed because the hand was not actually large enough to fit
around the object; this would have been detected by the
convex hull grasp quality metric. The grasp of the log in
the bottom right failed because the log was too heavy to be
picked up in the same manner as the over-shoulder grasp.
Had we used the convex hull grasp quality metric, we
could have used the quality of the grasp along with the
weight of the log to determine the infeasibility of the grasp
before trying to execute it. While the under-arm grasps
would not be fixed by implementing the rest of the
techniques detailed in this paper, we believe that most of
the other failures could have been avoided.

XIII. FUTURE WORK
In addition to implementing the components discussed that
have not yet been finished, there are several other
components that we plan to add. The first is to add in the
object model and position errors; to this point, we have
tested only on primitive models with exact position
information. In the future, we intend to use more complex
models, and to add in varying levels of error in both object
model and position. Using data gained from testing with
varying levels of error, we would like to learn the
uncertainty in the quality of the resulting grasp based on
features that are associated with instability and other grasp
difficulties. We also plan to create a module that will
automatically determine an appropriate primitive model
given a more complex model, and add new primitives and
a larger number of primitives to our primitive models.
Finally, we plan to extend the ability of our system to
perform manipulation tasks other than grasping, such as
opening doors, stacking dishes, or screwing in screws.

REFERENCES
[1] Bentivegna, Darrin C. and Christopher G. Atkeson, "Learning How

to Behave from Observing Others," Workshop on motor control in
humans and robots (SAB 2002), Edinburgh University, August 10-
11, 2002.

[2] Bicchi, Antonio. "Hands for Dexterous Manipulation and Robust
Grasping: A Difficult Road Toward Simplicity," IEEE Transactions
on Robotics and Automation, Vol. 16, No. 6, 2000.

[3] Bicchi, Antonio. "On the Problem of Decomposing Grasp and
Manipulation Forces in Multiple Whole-Limb Manipulation,"
Journal of Robotics and Autonomous Systems, 1994.

[4] Borst, Ch., M. Fischer, and G. Hirzinger, "A Fast and Robust Grasp
Planner for Arbitrary 3D Objects," ICRA, 1999.

[5] Coelho, J., J.H. Piater, and R.A. Grupen, "Developing haptic and
visual perceptual categories for reaching and grasping with a
humanoid robot," in First IEEE-RAS International Conference on
Humanoid Robots, September 2000.

[6] Cutkosky, M.R. and R.D. Howe, "Human Grasp Choice and Robotic
Grasp Analysis," in Dexterous Robot Hands. Springer-Verlag, 1990.

[7] Ehrenmann, M., Zoellner, R.D., Rogalla, O., Dillmann, R.
"Programming Service Tasks in Household Environments by Human
Demonstration," IEEE Intl. Workshop on Robot and Human
Interactive Communication, 2002.

[8] Ferrari, Carlo, and John Canny. "Planning Optimal Grasps," ICRA,
1992.

[9] Iberall, T., and MacKenzie, C.L., "Opposition Space and Human
Prehension," Dextrous Robot Hands, Springer-Verlag, 1990, p.32-
54.

[10] Jenkins, O. C., Matari'c, M. J. & Weber, S., "Primitive-Based
Movement Classification for Humanoid Imitation," in `Proceedings,
First IEEE-RAS International Conference on Humanoid Robotics',
Cambridge, MA, MIT, 2000.

[11] Kamon, Ishay, Tamar Flash, and Shimon Edelman, "Learning to
grasp using visual information," ICRA, 1996.

[12] Kang S.B. and K. Ikeuchi, "Toward automatic robot instruction for
perception - recognizing a grasp from observation," IEEE
Transactions on Robotics and Automation, vol. 9, pp. 432-443, Aug.
1993.

[13] Kavraki, Lydia E., P. Svestka, J. Latombe, and M. Overmars.
"Probabilistic Roadmaps for Path Planning in High-Dimensional
Configuration Spaces," In IEEE Trans. on Robotics and Automation,
12(4), 566-580, 1996.

[14] Kuniyoshi, Y., M. Inaba, and H. Inoue, "Learning by watching:
Extracting reusable task knowledge from visual observation of
human performance," IEEE Transactions on Robotics and
Automation, vol. 10, no. 6, pp. 799-822, December 1994.

[15] Li, Z., and Sastry, S., "Task-Oriented Optimal Grasping by
Multifingered Robot Hands," IEEE Journal of Robotics and
Automation, Vol. 4, 1988.

[16] Miller, A., S. Knoop, H. Christensen, and P. Allen, "Automatic
Grasp Planning Using Shape Primitives," ICRA, 2003.

[17] Nguyen, Van-Duc. "Constructing Force-Closure Grasps," The
International Journal of Robotics Research, Vol. 7, No. 3, June
1988.

[18] Ogata, H. and T. Takahashi, "Robotic assembly operation teaching
in a virtual environment," IEEE Transactions on Robotics and
Automation, vol. 10, no. 3, pp. 391-399, June 1994.

[19] Platt, R., A. Fagg, and R. Grupen. "Extending Fingertip Grasping to
Whole Body Grasping," ICRA, 2003.

[20] Platt, R., A. Fagg, and R. Grupen. "Nullspace Composition of
Control Laws for Grasping," IEEE/RSJ Intl. Conference on
Intelligent Robots and Systems, 2002.

[21] Pollard, Nancy. "Synthesizing Grasps from Generalized
Prototypes," ICRA, 1996.

[22] Ponce et al. "On computing four-finger equilibrium and force-
closure grasps of polyhedral objects," International Journal of
Robotics Research, Vol. 16, 1997.

[23] Rijpkema, H., Girard, M., "Computer Animation of Knowledge-
Based Human Grasping," ACM SIGGRAPH, pp 339-348, 1991.

[24] Schaal, S., "Learning from demonstration," In M. Mozer, M. Jordan,
and T. Petsche, editors, Advances in Neural Information Processing
Systems 9, pages 1040-1046. MIT Press, Cambridge, 1997.

[25] Simeon, Theirry, Laumond, J.P., Cortez, J, Sahbani, A.
“Manipulation Planning with Probabilistic Roadmaps,” Int’l Journal
of Robotics Research, Vol. 23, No. 7-8, 729-746, 2004.

[26] Smith, R. Open Dynamics Engine, www.ode.org, 2005.
[27] Strandberg, Morten, “Robot Path Planning: An Object-Oriented

Approach,” Ph.D. diss., Royal Institute of Technology, Stockholm,
Sweden, 2004.

[28] Tung, C. and A. Kak. "Automatic Learning of Assembly Tasks using
a Dataglove System," IROS, 1995.

[29] Zhu, X., H. Ding, and H. Li. "A Quantitative Measure For Multi-
Fingered Grasps," IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, 2001.

