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Abstract— Information integration has been widely addressed
over the last several decades. However, it is far from solved due to
the complexity of resolving schema and data heterogeneities. In
this paper, we propose out attempt to alleviate such difficulty by
realizing keyword search functionality for integrating informa-
tion from heterogeneous databases. Our solution does not require
predefined global schema or any mappings between databases.
Rather, it relies on an operator called keyword join to take a set
of lists of partial answers from different data sources as input,
and output a list of results that are joined by the tuples from
input lists based on predefined similarity measures as integrated
results. Our system allows source databases remain autonomous
and the system to be dynamic and extensible. We have tested our
system with real dataset and benchmark, which shows that our
proposed method is practical and effective.

Index Terms— keyword join, keyword query, data integration,
database

I. INTRODUCTION

Keyword search is traditionally considered as the standard
technique to locate information in unstructured text files. In
recent years, it has become a de facto practice for Internet
users to issue queries based on keywords whenever they need
to find useful information on the Web. This is exemplified by
popular Web search engines such as Google and Yahoo.

Similarly, we see an increasing interest in providing key-
word search mechanisms over structured databases [17], [18],
[2], [10], [3]. This is partly due to the increasing popularity
of keyword search as a search interface, and partly due to
the need to shield users from using formal database query
languages such as SQL or having to know the exact schemas
to access data. However, most of keyword search mechanisms
proposed so far are designed for centralized databases. To
our knowledge, there is yet no reported work that supports
keyword search in a distributed database system.

On the other hand, information integration has become a
desired service for collecting and combining relevant infor-
mation from multiple sources, due to the growing amount of
digital information. In this paper, we present our solutions
for facilitating keyword search in order to retrieve integrated
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textual information from heterogeneous databases. An obvious
method to achieve such a goal is to add keyword search
functionality over existing data integration systems [23], [11],
[22], [9]. However, the traditional data integration approach
requires systematic logical mappings to be built in prior, and
it needs laborious manual work for schema matching. There-
fore, it greatly constrains the applicability of data integration
approach for large and dynamic data sources. Our approach is
alternative to the traditional data integration approach, and we
aim to apply our solutions in automatic, scalable and dynamic
distributed database systems, such as P2P-based database
systems.

The key idea of our approach is to join local answers
generated by individual databases into a global answer with
more complete information. Consider an illustrative example
of two databases, DB1 and DB2, shown in Figure 1. Suppose
an user issues a keyword query “Titanic, 1997, DVD”. We
can obtain the following local answers: from DB1, we have
one partial answer tuple t11 = (Titanic, 1997, Love
Story, 6.9/10) that contains the keywords “Titanic”
and “1997”; and from DB2, we have two partial answer
tuples t21 = (Titanic, Paramount Studio, DVD,
$22.49) and t22 = (Titanic(A&E Document),
Image Entertainment, DVD, $33.91) both
containing the keywords “Titanic” and “DVD”. Now,
we can join the two sets of local answers based on certain
similarity criteria. For example, t11 and t21 can be combined
based on their common column “Titanic” to get the final
integrated answer (Titanic, 1997, Love Story,
6.9/10, Titanic, Paramount Studio, DVD,
$22.49). This combined tuple aggregates the data from the
two databases can hopefully render some useful information
to the user. Similarly, t11 and t22 can be combined. Thus, we
can return two complete answers to the keyword query for
the user to select.

We introduce the notion of keyword join for joining lists
of local answer tuples to generate global answers based on
similarities between columns, which are measured based on
standard IR methods and heuristic-based string matching tech-
niques. Consequently, our proposed solution does not require
global level schema mappings or any mediated schema. Thus
it is suitable for dynamic environment where both the data
sources and the whole system keep changing.

As we can see, another different feature of our system
from traditional data integration systems is that the results



Fig. 1. An example.

returned by our system is a ranked list of potentially relevant
answers, resulting from the fuzziness of keyword queries and
the heuristic nature of keyword join. We believe this is an
acceptable user interface since it is already widely adopted
today.

We make the following contributions in this paper:
• We design an alternative data integration framework

based on keyword search that can alleviate the difficulty
of existing data integration systems.

• We define and implement a novel keyword join opera-
tor for integrating heterogeneous tuples from different
databases and return top-K answers.

• We make extensive experiments of evaluate the feasibility
and performance of our proposed solution.

The rest of the paper is structured as follows. Section II
presents the general framework of our integration system.
Section III describes our implementation of keyword join,
which includes decision of similarity measure and a top-K
processing algorithm. In Section IV, we evaluate the perfor-
mance of our system with various datasets. Section V describes
related work to our proposed solution, and finally Section VI
concludes the paper and discusses our future work.

II. FRAMEWORK

Generally, our proposed system consists of 3 components:
the database selector, the keyword search engine for local
database, and the local answer integrator. The database selector
selects a subset of relevant databases given a keyword query.
The keyword search engine for local database receives a
keyword query and generates a list of joined tuples that
have partial or complete query keywords. The local answer
integrator, which is the focus of this paper, handles all the
local answer lists from the relevant databases, selects suitable
combinations of local answer lists, and joins them with key-
word join operator to generate a ranked list of global answers
— integrated tuples — to return to users. We will describe
these 3 components sequentially in the following subsections.

A. Keyword query model & database selection
A keyword query is a list of keywords combinations, and

a keyword combination consists of one or more keywords.

For example, “programming language, compiler” is a two-
keyword-combination query, and it contains 3 keywords:
“programming”, “language”, and “compiler”. Introducing the
concept of keyword combination into our keyword query
model is due to the need to guarantee the proximity between
some of the keywords when aggregating local answers from
different databases — keywords of a keywords combination
must be present together in at least one database in any final
integrated result.

The source databases are assumed to be text-rich. The terms
in the databases, including both the tables and the metadata,
are indexed with an inverted index, i.e., each term is mapped
to the database that contains it. The inverted index is used to
select a subset of relevant databases for a keyword query.

B. Local keyword query processing
We apply the keyword search engine described in [17] for

generating local answers at each selected database.
A keyword index is necessary for performing keyword

search over a database [17]. It is an inverted index that
associates each appearance of keywords in the relations with a
list of its occurrences. Most commercial DBMSs support such
an index. In our implementation, we use MySQL, which has
fulltext indexing and search functionality adequate for keyword
search, as the DBMS for each database.

When a database receives a keyword query Q, it first
creates a set of tuple sets using its local keyword index. Each
tuple set RQ is a relation extracted from one relation R of
the database, containing tuples having keywords of Q, i.e.,
RQ = {t|t ∈ R∧Score(t,Q) > 0}, where Score(t,Q) is the
measure of the relevance of tuple t in relation R with respect
to Q, which is computed with the local index according to
standard IR definition [17]. Next, with these tuple sets, the
system generates a set of Candidate Networks (CNs), which
are join expressions based on foreign key relationship between
relations, capable of creating potential answers. By evaluating
these generated CNs, the database can finally produce its local
answers — trees of joining tuples from various relations. Each
tuple tree T is associated with a score indicating its degree of
relevance to the query, which is calculated as

Score(T,Q) =

∑

t∈T Score(t,Q)

size(T )
, (1)

where size(T ) is the number of tuples in T .
Recall the example of Figure 1, the scores of the par-

tial answers given by DB1 and DB2 are: score(t11) =
2.31; score(t21) = 0.86, score(t22) = 0.78.

Any two tuple trees are said to be heterogeneous if they have
different schemas. The tuple trees generated from different
CNs are heterogeneous, so are the tuple trees generated by
different databases.

The number of answers generated by each database is
limited by a system parameter kl, which could be adjusted
to the degree of relevance of the databases to the query.

C. Integration of local answers
The final results for a keyword query are a ranked list of

integrated local answers based on some similarity measure,



which will be described in Section III-A.

DEFINITION 1 A local answer to a keyword query is a tuple
generated by an individual database that contains at least one
keyword combination in the query.

Local answers with complete keyword combinations in the
query are called local complete answers; otherwise, they are
called local partial answers.

DEFINITION 2 A global answer to a keyword query is a joined
network of local answers from different databases, and it has
all the keywords in the query.

The operation to combine local answers into global answers
is called keyword join. It is a similarity-based join operator,
and it also considers the appearance keyword combinations in
tuples.

DEFINITION 3 Given a keyword query Q, a set of lists of
local answers (L1, L2, · · · , Lp), together with a threshold
OT , the keyword join L1./kL2./k · · · ./kLp returns all set of
integrated tuples (t1, t2, · · · , tp) such that (1) t1 ∈ L1, t2 ∈ L2,
· · ·, tp ∈ Lp, (2) (t1, t2, · · · , tp) has all the keywords in the
query, and (3) t1, t2, · · · , tp are connected into a network of
joined tuples such that for each adjacent pair of tuple ti and
tj , overlap(ti, tj) ≥ OT .

Note that the input of keyword join is a set of lists
instead of tables. This is because the input tuples are het-
erogeneous: they are generated from different CNs, or from
different databases. Consequently, the joinablility between
two heterogeneous tuples are determined by their information
overlapping — overlap(ti, tj), which is determined by the
existence of similar or matching columns between two tuples.
In addition, different from ordinary join operation, keyword
join is non-associative.

THEOREM 1 Keyword join is not associative, i.e.,

(L1./kL2)./kL3 6= L1./k(L2./kL3).

Proof: Suppose t1 ∈ L1, t2 ∈ L2 and t3 ∈ L3, and
integrated tuple t2 − t1 − t3 ∈ (L1./kL2)./kL3. Accord-
ing to Definition 3, t2 − t1 − t3 cannot be generated by
L1./k(L2./kL3). Thus keyword join is not associative.

Each global answer T = (t1, t2, · · · , tn) is associated with
a score to measure its relevance to the query. It is defined as

score(T ) =

∑

t∈T score(t)

size(T )
,

where size(T ) is the number of local answers T aggregates.
This is based on the intuition that a global answer integrated
from local answers with higher scores would be more relevant
to the query; meanwhile, since our integration is based on
heuristic measure, global answer with more sources would
incur more “noise”, and then less relevant.

The global answers generated by keyword join operator
fall into 3 cases: (1) the global answers are joined by local
complete answers only; (2) the global answers are joined

by local partial answers only; and (3) the global answers
are joined by both local partial answers and local complete
answers.

III. IMPLEMENTATION OF KEYWORD JOIN

Having understand the definition of keyword join, we now
discuss its implementation details in this section. Subsection
III-A describes the similarity measure to determine the portion
of overlapping of two tuples. Then in subsection III-B, we
present a top-K processing algorithm for evaluating keyword
join efficiently.

A. Similarity measure

Suppose we have two tuples t1 and t2, and they have
l1 and l2 columns respectively: t1 = (c1

1, c
1
2, · · · , c

1
l1

), and
t2 = (c2

1, c
2
2, · · · , c

2
l2

). The purpose of the similarity measure
is to determine the eligibility of combining t1 and t2 to render
meaningful information, by assigning an overlap score for the
pair, denoted as overlap(t1, t2).

The general idea is pair-wise comparing the columns
between t1 and t2. The similarity score between columns
contributes to the overlap score between the two tuples. In
particular, there are three specific steps, which are described
sequentially in the following.

1) Selection of significant columns: It is obvious that it
would be neither computationally efficient nor semantically
appropriate to compare every pair of columns between t1 and
t2. In the example of Figure 1, we should not compare the
column value “6.9/10” in DB1 with the column value “$22.48”
in DB2. Therefore, we introduce the concept of significant
column, and only every pair of significant columns from t1
and t2 are compared.

In order to identify significant columns from a tuple effec-
tively, we introduce the concept of the distinctness of column
values with an attribute A in a table T . Suppose the total
number of column values with attribute A in T is S(T,A),
and the total distinct number of column values with attribute
A is V (T,A). The distinctness of the values of A, denoted as
D(A), in T is

D(T,A) =
V (T,A)

S(T,A)
.

Distinctness D(T,A) measures the importance of column
values of attribute A in a table instance T . Obviously, the
distinctness of primary key of a table is always 1. Ob-
serve the tuples of the Movie table in DB1 in Figure 1,
D(Movie,movieName) = 1, and D(Movie,Rating) =
0.5. It means that the column values of movieName is more
important than that of Rating for identifying tuples in the table.

DEFINITION 4 Given a distinctness threshold DT , a column c

in a tuple t and table T is a significant column if (1) D(c, T ) >

DT , and (2) c comprises textual content.

Intuitively, a significant column is sufficient to identify the
tuple from the table parameterized by DT (with respect to
the distinctness threshold), and it is self-describing. Refer to



the example in Figure 1, column values such as “1997” and
“6.9/10” are not significant columns since they are numerical
values — their semantic meaning can only be understood
together with the table schema. The column value “DVD”
is textual and its meaning can be inferred (although there
could be ambiguities, it is an unavoidable problem in text
processing), but it should not considered as significant column
too, as it is not a distinctive column value in the table.

In implementation, the distinctness value of each column,
and a boolean value indicating whether a column is full-text
indexed or not are tagged in the local answer generated by each
database. Therefore, it is easy to identify the significance of a
column when performing keyword join.

Our definition of significant column described above is for
automatically detecting significant columns from a tuple. It
is no doubt that a system administrator or an advanced user
can decide significant columns more effectively. However,
it is usually neither feasible nor efficient to involve human
invention in a large scale and dynamic system.

In our experiments, we will show the comparison of the
results when the choice of significant columns varies.

2) Pair-wise textual column comparison: Given a pair of
significant columns c1 and c2, we need to assign a score to
indicate their similarity. There are many ways to evaluate the
similarity between textual fields in literature [13], [7], [5].
What we apply in our solution is the TF.IDF method which
is effectively used in the WHIRL system [5].

Each column ci with attribute A from table T has a set
of terms ci = ti1, t

i
2, · · · , t

i
ni

(after removing stop words). We
measure the TF (term frequency) and IDF (inverse document
frequency) values for each term. The calculation of TF and
IDF values is similar to what defined in text document retrieval
[]. TF of a term tij is the number of its occurrences in ci. IDF
of tij measures the fraction of the total number of tuples in
T to the total number of tuples in T that contains it in their
attribute A. The weight of a term is determined by its TF and
IDF value: w = TF · IDF . The similarity score between two
columns ci and cj is

sim(ci, cj) =

∑

t∈C(ci,cj) wi
t · w

j
t

√

∑

t∈ci w2
t ·

∑

t∈cj w2
t

,

where C(ci, cj) is the set of common tokens between ci

and cj .
In our proposed system, the weight of the terms in a tuple is

provided locally by each source database along with its local
answers.

3) Developing overlap score: The score for measuring
the overlap portion between two tuples is derived from the
individual scores of the significant column pairs between them.
Considering that the most matching column pairs should be the
linkage between the tuples, we set their overlap score as the
maximal similarity score among all their significant column
pairs, i.e.,

overlap(t1, t2) = max
1<i≤l1,1<j≤l2

sim(c1
i , c

2
j ),

where c1
i , c

2
j are significant columns from t1, t2 respectively.

Thus, by setting an appropriate overlap threshold, we can

determine if two tuples are joinable by examining their overlap
score.

B. Top-K processing for keyword join

We address the problem of how to generate top K results
efficiently when performing keyword join to a set of partial
answer lists in this section. Note that when we perform
keyword join operation on multiple input lists, it is difficult to
use traditional query evaluation plans, such as left deep tree,
right deep tree, etc., since keyword join is not associative.
We can only join a lists of partial answers by examining
every combination of tuples extracted from the input lists
respectively. Figure 2 shows the algorithm to integrate a
combination of tuples t1, t2, · · · , tp given query Q and overlap
threshold OT .

join(Q, OT , t1, t2, · · · , tp)
// checking the keywords in the combination of tuples

1. if the union of the sets of keywords of t1, t2, · · · , tp is a
subset of Q

2. return null
3. Create two empty lists Lconnected , and LunCompared

// checking the “connectivity” of t1, t2, · · · , tp

4. Put t1 into Lconnected , put all the others into LunCompared

5. while LunCompared is not empty
6. if there are two tuple trees t and t′ from LunCompared

and Lconnected respectively, such that
overlap(t, t′) ≥ OT

7. Remove t from LunCompared

8. Put t into Lconnected

9. Put t into adj(t′) // adjacent list of t′

10. else
11. return null
12. Combine the tuples in Lconnected into an integrated

tuple T
13. return T

Fig. 2. Join a combination of tuples.

To perform top-K processing for keyword join efficiently,
we employ the ripple join [14], which is a family of join
algorithms for online processing of multi-table integration
queries. In the simplest version of the two-table ripple join,
one tuple is retrieved from each table at each step, and the
new tuples are joined with all the previously-seen tuples and
with each other. This process is essentially a spanning in
the Cartesian product space of input tables, where each table
corresponds to a dimension, and getting valid join results.

In our context, the input tables are lists of ordered tuples,
and the combination score of the joined result is calculated
based on the monotonic Equation II-C. Therefore, in the
spanning space during joining a set of tuple lists, the score of
the combination of tuples at each point is less than that of the
combinations of tuples previously seen along each dimension.
The small arrows in Figure 3 indicate the decreasing sequence
of the scores of the combinations of tuples. This property
enables us to prune the spanning space for generating top K

join results efficiently.
The pruning process works as follows. In each step, when

we retrieve one tuple from each input list, we join each
new tuple with previously-seen tuples in all other lists, in
descending order of their relevance scores. In other words,
the examination of the combinations of tuples is towards
the decreasing direction along each dimension. For example,



Fig. 3. An example of pruning spanning space.

in Figure 3, which is at step 3 of ripple join between two
input lists, the next sequence of combinations of tuples for
examination would be < e, f, g, h, i >. Therefore, before we
examine the validity of each combination of tuples at a point,
we first calculate its combination score. At the same time, a list
Lans is used to store the top K join results we currently have.
We then compare the combination score with the K-th largest
score in Lans, and if the former is smaller, we can prune it
and all the rest points along that dimension. For example, as
in Figure 3, suppose we are going to examine the validity of
point g. We first calculate its combination score, if the score
is smaller than the current K-th largest score in Lans, we can
safely prune the remaining points along that dimension, i.e.,
points < h, i >, since their scores must be smaller than that
of point g.

In addition, if in a step all the points along all dimensions
are pruned — meaning that the points in the rest of the space
that have not been spanned all have smaller scores than the
current K-th largest score — the algorithm could be stopped.
For instance, in Figure 3, if the scores of points e and g are
both smaller than the current K-th largest score, all the points
in this step are pruned, and consequently we can stop the
algorithm and return the current top K results.

keywordJoin(K, Q, OT , L1, L2, · · · , Lp)
1. Set p pointers pt1, pt2, · · · , ptp, pointing to the top unscanned

tuples of L1, L2, · · · , Lp, respectively
2. Set Slow as the K-th lowest score of the joined results

obtained so far
3. while there is unscanned tuple in L1, L2, · · · , Lp

4. Set boolean variable allPruned← true
5. for i← 1 to p
6. Get next tuple Li[pti] from Li

7. if score(L1[1], · · · , Li[pti], · · · , Lp[1]) ≤ Slow

// all points along i dimension are pruned
8. go to 5
9. allPruned← false
10. Set variables id1, · · · , idi−1, idi+1, · · · , idp to 1
11. for k ← 1 to p and k 6= i
12. for idj ← 1 to ptj − 1 and j ← 1 to p and j 6= i, k
13. for idk ← 1 to ptk − 1
14. if score((L1[id1], · · · , Lk[idk], · · · ,

Li[pti], · · · , Lp[idp])) ≤ Slow

// rest points are pruned
15. go to 12
16. IT = join(Q, OT , L1[id1], · · · ,

Lk[idk], · · · , Li[pti], · · · , Lp[idp])
17. if IT 6= null
18. Put IT into Lans

19. Update Slow

20. Increase pti

21. if allPruned = true
22. return Lans

23. return Lans

Fig. 4. Keyword join algorithm.

The above pruning process can be easily extended to the

Data Set # databases # tables # tuples
movies-actors 2 2 18452

amalgam 4 56 107612
thalia 28 64 2402

TABLE I
DATA SETS STATISTICS.

keyword join on multiple input lists. Figure 4 shows the
keyword join algorithm to produce top K integrated tuples
from a set of lists L1, L2, · · · , Lp.

IV. EXPERIMENTAL RESULTS

A. Datasets and queries

We use 3 datasets in different domains to test the quality
of the returned results of our keyword join operator. The first
dataset is movies-actors dataset containing two databases —
movies and actors. It is downloaded from Niagara project page
[1]. The second dataset is amalgam data integration test suite
obtained from [24]. It includes 4 databases in computer science
bibliography domain, which are developed by 4 separate
students. The third dataset is thalia data integration benchmark
[16]. It consists course catalog information from computer
science departments around the world. The data sources are
originally stored in XML format, we converted 28 sources
from the testbed into relational format with Shrex [8]. Table I
summarizes the statistics of the 3 datasets.

Among the 3 datasets, only thalia testbed provide 12 bench-
mark queries. We have to generate queries by ourselves for
the other two. For the movies-actors dataset, we generate 100
queries which are actor names and director names that have
worked for the same movie. Some sample queries are: “Bruce
Willis, Renny Harlin”, “Keanu Reeves, Francis Coppola”, etc..
For the amalgam test suite, we find out 139 authors that
co-exist in more than one databases, and use their names
as keyword queries. The relevance data for the queries are
generated by evaluating SQL queries to a temporary database
that have tables from different databases in dataset.

In the following sections, we first valuate the effect of
different system parameters to the quality of results generated
by keyword join movies-actors and amalgam dataset. The pa-
rameters that we vary in the experiment are: overlap threshold
(Ot), distinctness threshold (Dt), number of retrieved local
answers per database (Ln), and number of retrieved global
answers (Gn). Then we demonstrate the integration capability
of our solution with the 12 benchmark queries of thalia testbed.

B. Evaluation of system parameters

1) Effects of the overlap threshold: Figure 5 shows the
variance of precision and recall when the overlap threshold
increases. The results are similar as what we expected. When
the overlap threshold is higher, the precision of the results
becomes better because more irrelevant results are filtered.
Observe that the recall keeps unchanged when overlap thresh-
old varies in a large range for both datasets. This shows that
correct answers are returned together with irrelevant answers



when overlap threshold gets lower. For the amalgam dataset,
when overlap threshold exceeds 0.7, recall begins to drop. This
is because that some good results are also filtered due to high
threshold. Movies-actors dataset does not have this phenomena
because the correctness of the results are generally based on
exact match of movie titles — correct results must have high
overlap score — so good results can only be filtered when
threshold is extremely high. Note that when overlap threshold
equals 0, amalgam dataset also shows relative high precision
and recall. We find out two reasons. First, the columns that
match the keywords are the same as the column that needs
to be compared for two tuples, so most joined results have
very high overlap score, and have high relevance to the query.
Second, the returned results of keyword join for this dataset
is very few for most of the queries, that is, good results are
also returned when threshold is low.
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Fig. 5. Effect of the overlap threshold (Dt = 0.5, Gn = 10, Ln = 250).

2) Effects of the distinctness threshold: Figure 6 presents
the precision and recall when the distinctness threshold
changes, which affect the selection of significant columns.
According to the figures, the precision and recall is slightly
lower when distinctness threshold is very small. This shows
that more columns are identified as significant columns when
distinctness threshold is low, and comparisons between more
column pairs leads to more noise in the result. Also note that
when distinctness threshold is too high, the precision and recall
drop a lot. It is because most “real” significant columns are
missed and relevant results cannot be generated. Note that for
the movies-actors dataset, precision and recall becomes zero
when distinctness threshold exceeds 0.7, which shows that no
“real” significant columns is selected at all.
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Fig. 6. Effect of the distinctness threshold (Ot = 0.9, Gn = 10, Ln = 250).

3) Effects of the number of local answers: Figure 7 illus-
trates the changes of precision and recall when the number
of local answers retrieved from each database increases. For
both datasets, recall first becomes larger when the number of
local answers increases, and finally reaches a stable value. This
is reasonable because initially when number of local answers
gets larger, additional relevant partial answers are included,
and the recall increases. When the number of local answers
is so large that no more relevant partial answers is added, the
recall will keep the same. On the other hand, observe that
precision increases slowly or even decreases slightly when
the number of local answers increases until a stable value
is reached. We think the reason is that more irrelevant local
answers are put into input lists when number of local answer
increases (remember that local answers are ranked and only
top answers are retrieved), which will affect the keyword join
results.

4) Effects of the number of global answers: Figure 8 shows
the changes of precision and recall when the required number
of global answers varies. Observe that recall increases when
the number of global answers increases. Obviously the reason
is that more good results are collected when the number of
global answers gets larger. When the required number of
global answers becomes too large, and there is no more actual
global answers can be really generated, the recall will keep
the same. Actually, when we examine the generated results in
this experiment, we find that for most queries, the maximum
number of available global answers is few, usually below 10.
Precision does not show much variance when the number of
required global answers increases. We think this is due to the
reason stated above too, otherwise, precision should decreases
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Fig. 7. Effect of the number of local answers per database (Dt = 0.5, Gn =
10, Ot = 0.9).

when the number of global answers increases.

C. Integration capability

Thalia dataset is associated with 12 benchmark queries1

that represent different structural and semantic heterogeneities
cases [16]. The original benchmark queries are in XML
format. We transformed them into keyword queries by simply
extracting the the phrases in the query that refers to objects in
the dataset. For example, for the query: List the title and time
for computer network courses.

FOR $b in doc(’cmu.xml’)/cmu/Course
WHERE $b/CourseTitle =’%Computer Networks%’
RETURN <Course>

<Title>$b/Title</Title>

<Day>$b/Day</Day>

<Time>$b/Time</Time>

</Course>

We transform it into keyword query: “computer networks”.
Our experimental results with the benchmark is as follows.
• Query 1 (renaming columns): the query can be success-

fully answered by returning the correct result in top global
answers.

• Query 2 (24 hour clock): this needs conversion between
different time representations. Our system cannot support
it currently.

• Query 3 (union data types): the query can be successfully
answered by returning the correct result in top global
answers.

1The queries can be browsed at http://www.cise.ufl.edu/research/dbintegrate/
packages/queries.xml
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• Query 4 (meaning of credits): needs conversion between
different representation of course units. It is difficult to
realize it with our system.

• Query 5 (language translation): needs translation between
different languages. It is difficult to realize it in our
current system.

• Query 6 (nulls): the query can be successfully answered
by returning the correct result in top global answers.

• Query 7 (virtual attributes): it involves semantic transla-
tion. Our system cannot support it.

• Query 8 (semantic incompatibility): same as Query 7.
• Query 9 (attribute in different places): our system cannot

support it directly. But if provided with the information
that “room” information is stored in the column with
“time” attribute, i.e., put “time” in the query keywords,
our system can easily answer the query.

• Query 10 (sets): same as Query 9.
• Query 11 (name does not define semantics): Our system

can answer it by returning correct answers in the top
integrated results.

• Query 12 (run on columns): Our system can answer it by
returning correct answers in the top integrated results.

To conclude, our system could deal with 5 queries easily,
and another 2 queries with small amount of metadata, which
we think should not be a problem. Compared with the experi-
mental results of the other two integration systems, Cohera and
IWIZ, reported in [16], our system can solve less queries than
them (both of them could do 9 queries with varying amounts
of user-defined code.). However, our system does not require
any costume code, and it is much easier to exploit.



V. RELATED WORK

In this section, we shall present related work in keyword
search and data integration systems.

A. Keyword search in centralized databases

Keyword search over centralized databases has been re-
cently studied by several works. The most representative ones
include the DISCOVER project [17], [18], the DBXplorer
project [2], the BANKS project [10], and the ObjectRank
work [3]. Given a set of query keywords, the query processing
in DISCOVER finds the corresponding tuple sets, which are
essentially relations that contain one or more keywords. It
then exploits the schema of the database and generates Candi-
date Networks (CNs) that are join expressions for producing
potential answers. DBXplorer [2] shares a similar design as
DISCOVER. The BANKS system [10] models a relational
database as a graph in which tuples are the nodes and the
edges represent foreign-key relationships. Query answering
essentially involves finding the subgraph that connects nodes
matching the keywords, using heuristics during the search.
ObjectRank [3] adopts a different approach: It extends the
PageRank techniques for ranking web pages to rank the rele-
vance of objects in databases, where the database is modeled
as a labeled graph.

B. Data integration systems

Most of the data integration systems developed so far, such
as TSIMMIS [9], Information Manifold [22], COIN [12], etc,
require designing a global schema and the necessary mappings
between the global schema and the source schemas. These
steps are usually labor-intensive, needing manual intervention,
and can only be performed offline.

Recently, there are some P2P data management systems pro-
posed that do not require a centralized global schema [4], [15],
[26]. They typically define mappings in the system to associate
information between different peers. Queries could be posed
to any peer, and the peer evaluates the query by exploiting
the mappings in the system. These P2P systems differ from
one another in terms of the concrete formalism used to define
mappings between the peer schemas. [4] introduces the Local
Relational Model (LRM) as a data model specifically designed
for P2P data integration systems. In LRM, the interaction
between peer databases is defined with coordination rules and
translation rules. [15], [26] propose a peer data management
system (PDMS) to manage structured data in a decentral-
ized manner. It describes a formalism, named PPL (Peer-
Programming Language), for defining mappings between peer
schemas. [26] provides the query reformulation algorithm that
reformulates a query Q over a peer schema to a query Q′ over
the actual data sources in the peers.

C. Integration based on textual similarity

WHIRL [5], [6] is a logic for database integration, which
incorporates reasoning about the similarity of pairs of names
from different sources, as well as representations of the
structured data like conventional DBMS. The similarity is

WHIRL is measured based on the standard TF.IDF method
from information retrieval literature. Answers to a WHIRL
query is a set of “best” tuples that have highest similarities.
Text Join [13], based on the same semantics as WHIRL [5],
devises techniques for performing text joins efficiently in a
unmodified RDBMS. Although our proposed keyword join is
also based on statistical measures of similarity between texts,
our integration approach greatly differs from WHIRL in that
we do not need any predefined and fixed schema mappings
between data sources. In addition, WHIRL considers joining
tuples from two input tables with fixed schemas, while our
keyword join operates on multiple input lists of heterogeneous
tuples.

D. Database sharing without integration

There are also some works that provide database sharing
in P2P networks without relying on pre-defined schema map-
pings, such as PeerDB [25], PIER [19], and the mapping table
approach [21], [20]. PIER [19] describes a query processing
method that is intended to be scalable over the Internet. But the
database schemas in PIER are assumed to be unique over all
the peers. PeerDB [25] and the mapping table approach [20]
share similar concept in that they both achieve data sharing
between different peers by translating queries of one peer to
the queries of another. The difference is that PeerDB uses
IR technique to translate the query, while [21], [20] utilizes
mapping tables [21]. However, neither of these works provides
information integration capability such as join operations
among peer databases. In contrast, the keyword join system
proposed in this paper aims at achieving both information
sharing and information integration among the network of
databases shared by the peers.

VI. CONCLUSION

We have presented a framework for realizing key-
word search for integrating information from heterogeneous
databases. Our proposed system avoids complex data integra-
tion, making it suitable for dynamic and ad-hoc environments
and cost effective in terms of implementation. We have also
proposed an efficient algorithm for generating top K global
answers with our proposed keyword join operator.
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