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Abstract

JCilk extends the Java language to provide call-return semantics
for multithreading, much as Cilk does for C. Java’s built-in thread
model does not support the passing of exceptions or return values
from one thread back to the “parent” thread that created it. JCilk
imports Cilk’s fork-join primitives spawn and sync into Java to
provide procedure-call semantics for concurrent subcomputations.
This paper shows how JCilk integrates exception handling with
multithreading by defining semantics consistent with the existing
semantics of Java’s try and catch constructs, but which handle
concurrency in spawned methods.

JCilk’s strategy of integrating multithreading with Java’s excep-
tion semantics yields some surprising semantic synergies. In partic-
ular, JCilk extends Java’s exception semantics to allow exceptions
to be passed from a spawned method to its parent in a natural way
that obviates the need for Cilk’s inlet and abort constructs.
This extension is “faithful” in that it obeys Java’s ordinary serial
semantics when executed on a single processor. When executed
in parallel, however, an exception thrown by a JCilk computation
signals its sibling computations to abort, which yields a clean se-
mantics in which only a single exception from the enclosing try
block is handled. The decision to implicitly abort side computa-
tions opens a Pandora’s box of subsidiary linguistic problems to
be resolved, however. For instance, aborting might cause a com-
putation to be interrupted asynchronously, causing havoc in pro-
grammer understanding of code behavior. To minimize the com-
plexity of reasoning about aborts, JCilk signals them “semisyn-
chronously” so that abort signals do not interrupt ordinary serial
code. In addition, JCilk propagates an abort signal throughout a
subcomputation naturally with a built-in CilkAbort exception,
thereby allowing programmers to handle clean-up by simply catch-
ing the CilkAbort exception.

The semantics of JCilk allow programs with speculative compu-
tations to be programmed easily. Speculation is essential for par-
allelizing programs such as branch-and-bound or heuristic search.
We show how JCilk’s linguistic mechanisms can be used to pro-
gram a solution to the “queens” problem and an implemention of a
parallel alpha-beta search.
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1 Introduction

JCilk is a Java-based multithreaded language for parallel program-
ming that extends the semantics of Java [13] by introducing “Cilk-
like” [10, 37] linguistic constructs for parallel control. JCilk sup-
plies Java with the ability for procedures to be executed in parallel
and return results, much as Cilk provides call-return semantics for
multithreading in a C language [20] context. These facilities are
not available in Java’s threading model [13, Ch. 11] or in the Posix
pthread specification [18] for C threading libraries. When embed-
ding new linguistic primitives into an existing language, however,
one must ensure that the new constructs interact nicely with ex-
isting constructs. Java’s exception mechanism turns out to be the
language feature most directly impacted by the new Cilk-like prim-
itives, but surprisingly, the interaction is synergistic, not antagonis-
tic.

The philosophy behind our JCilk extension to Java follows that
of the Cilk extension to C: the multithreaded language should be
a true semantic parallel extension of the base language. JCilk ex-
tends serial Java by adding new keywords that allow the program
to execute in parallel. (JCilk currently omits entirely Java’s mul-
tithreaded support as provided by the Thread class, but we hope
eventually to integrate the JCilk extensions with Java threads.) If
the JCilk keywords for parallel control are elided from a JCilk pro-
gram, however, a syntactically correct Java program results, which
we call the serial elision of the JCilk program. JCilk is a faithful
extension of Java, because the serial elision of a JCilk program is
a correct (but not necessarily the sole) interpretation of the JCilk
program’s parallel semantics.

To be specific, JCilk introduces three new keywords — cilk,
spawn, and sync — which are the same keywords used to extend
C into Cilk, and they have essentially the same meaning in JCilk as
they do in Cilk. The keyword cilk is used as a method modifier
to declare the method to be a cilk method, which is analogous
to a regular Java method except that it can be spawned to execute
in parallel. When a parent method spawns a child method, which
is accomplished by preceding the method call with the spawn
keyword, the parent can continue to execute in parallel with its
spawned child. The sync keyword acts as a local barrier. JCilk
ensures that program control cannot go beyond a sync statement
until all previously spawned children have terminated. In general,
until a cilk method executes a sync statement, it cannot safely
use results returned by previously spawned children.

To illustrate how we have introduced these Cilk primitives into
Java, consider the simple JCilk program shown in Figure 1. The
method f1 spawns the method A to run in parallel in line 2, calls
the method B normally (serially) in line 3, spawns C in parallel
in line 4, calls method D normally in line 5, and then itself waits
at the sync in line 6 until all the subcomputations A and C have
completed. When they both complete, f1 computes the sum of
their returned values as its returned value in line 7.



1 cilk int f1() {
2 int w = spawn A();
3 int x = B();
4 int y = spawn C();
5 int z = D();
6 sync;
7 return w + x + y + z;
8 }

Figure 1: A simple JCilk program.

The original Cilk language provided these simple semantics for
spawn and sync but with no semantics for exceptions, because
spawned functions in Cilk can only return, just as C functions can
only return. Java, however, allows a method to signal an exception
rather than return normally, and JCilk’s semantics must cope with
this eventuality. How should the code in Figure 1 behave when one
or more of the spawned or called methods signals an exception?

In ordinary Java, an exception causes a nonlocal transfer of con-
trol to nearest dynamically enclosing catch clause that handles
the exception. The Java Language Specification [13, pp. 219–220]
states,

“During the process of throwing an exception, the
Java virtual machine abruptly completes, one by one,
any expressions, statements, method and constructor
invocations, initializers, and field initialization expres-
sions that have begun but not completed execution in
the current thread. This process continues until a han-
dler is found that indicates that it handles that particular
exception by naming the class of the exception or a su-
perclass of the class of the exception.”

In JCilk, we have striven to preserve these semantics while extend-
ing them to cope gracefully with the parallelism provided by the
Cilk primitives. Specifically, JCilk extends the notion of “abruptly
completes” to encompass the implicit aborting of any spawned side
computations along the path from the point where the exception is
thrown to the point where it is caught. Thus, for example, in Fig-
ure 1, if A and/or C is still executing when D throws an exception,
then they are aborted.

A little thought reveals that the decision to implicitly abort side
computations opens a Pandora’s box of subsidiary linguistic prob-
lems to be resolved. Aborting might cause a computation to be
interrupted asynchronously [13, Sec. 11.3.2], causing havoc in
programmer understanding of code behavior. What exactly gets
aborted when an exception is thrown? Can the abort itself be caught
so that a spawned method can clean up?

We believe that JCilk provides good solutions to these subsidiary
problems. JCilk provides for “semisynchronous” aborts to sim-
plify the reasoning about program behavior when an abort occurs.
The semantics of JCilk make it easy to understand the behavior
of parallel code when exceptions occur, while faithfully extending
Java semantics. JCilk provides for aborts themselves to be caught
by defining a new subclass of Throwable, called CilkAbort,
thereby allowing programmers to clean up an aborted subcomputa-
tion.

As a testament to how well JCilk integrates Java’s exception
mechanism with Cilk’s spawn and sync constructs, program-
ming speculative applications in JCilk is even more straightforward
than in Cilk. Speculation is essential for parallelizing programs
such as branch-and-bound or heuristic search [7, 9, 22]. The Cilk
language provides the keywords inlet and abort, which al-
low speculative computation to be managed. JCilk’s integration of
Cilk’s parallel control with spawn and sync and Java’s exception-
handling semantics make Cilk’s inlet and abort keywords un-

necessary for programming speculative applications such as the so-
called “queens” problem and a parallel alpha-beta search. As we
shall see, however, the inlet and abort mechanisms still exist con-
ceptually within the JCilk language.

In this paper, we describe JCilk semantics and how Cilk-like
multithreading is integrated with Java’s existing exception seman-
tics. (For descriptions of the implementation of JCilk’s compiler
and runtime system, see [8,25].) Section 2 describes the basic con-
cepts underlying JCilk, and Section 3 explains JCilk’s exception
semantics more precisely. Section 4 shows how JCilk’s linguistic
constructs can be used to program a search for a solution to the
queens problem. Section 5 presents a parallel alpha-beta search ap-
plication coded in JCilk, which demonstrates the use of JCilk’s lin-
guistics constructs in more depth. Section 6 presents related work,
and Section 7 provides some concluding remarks.

2 Basic JCilk concepts

This section describes the basic concepts underlying the JCilk lan-
guage beyond the simple cilk, spawn, and sync keywords de-
scribed in Section 1. We present the language’s syntax, its as-
sumption of “implicit atomicity,” and its built-in exception class
CilkAbort. Section 3 will elaborate on how JCilk uses these
concepts in its linguistic design.

Syntax

JCilk inherits its basic mechanisms for parallelism from Cilk. As
mentioned in Section 1, JCilk includes three new keywords: cilk,
spawn, and sync. The keyword cilk is used as a method modi-
fier, and spawn and sync cannot be used in a Java method unless
the method is a cilkmethod. In order to make parallelism plain to
programmers, JCilk enforces the constraint that spawn and sync
can only be used inside a method declared to be cilk. A cilk
method can call a Java method, but a Java method cannot spawn
(or call) a cilk method. Similarly, a cilk method can only
be spawned but cannot be called. In addition to being a method
modifier, the cilk keyword can be used as a modifier of a try
statement, and JCilk enforces the constraint that spawn and sync
keywords can only be used within a cilk try block, but not
within any catch or finally clauses of the cilk try state-
ment. Placing spawn or sync keywords within an ordinary try
block is illegal in JCilk. The reason try blocks containing spawn
and sync must be declared cilk is that when an exception oc-
curs, these try statements may contain multiple threads of control
during exception handling. Although a JCilk compiler could detect
and automatically insert a cilk keyword before a try statement
containing spawn or sync, we feel the programmer should be
explicitly aware of the inherent parallelism. We disallow spawn
and sync within catch or finally clauses for implementation
simplicity, but we might consider revisiting this decision if a need
arises.

Loci of control

When a cilk method is spawned, a locus of control is created for
the method instance, which is more-or-less equivalent to its pro-
gram counter. When the method returns, its locus of control is de-
stroyed. For example, in the simple JCilk program from Figure 1,
the spawning of A and C in lines 2 and 4 creates new loci of control
that can execute A and C independently from their parent f1.

A cilk method contains only one primary locus of control.
When it calls an ordinary Java (non-cilk) method, we view the
Java method as executing using the cilk method’s primary locus
of control. In Figure 1, for example, the methods B and D in lines
3 and 5 execute using f1’s primary locus of control.



1 cilk int f2() {
2 int x, y = 0;
3 x = spawn A();
4 y += spawn B();
5 y += spawn C();
6 y += D();
7 sync;
8 return x + y;
9 }

Figure 2: Implicit atomicity allows programmers to reason about multiple
JCilk threads operating within the same method.

JCilk allows secondary loci of control to be created as well. In
particular, when a cilk method is spawned, its return value is
incorporated into the parent method by a secondary locus of con-
trol. Incorporating a return value may be more involved than for a
simple assignment, as is shown in Figure 1 for variables w and y.
Figure 2 illustrates a program in which the returned values from
spawned methods B and C and called method D augment the vari-
able y, rather than just assigning to it, as the return value from A
does to the variable x. Although a child’s locus of control normally
stays within the child, for circumstances such as those in lines 4
and 5, the child’s locus of control operates for a time in its par-
ent f2 to perform the update. JCilk encapsulates these secondary
loci of control using a mechanism from the original Cilk language,
called an inlet, which is a small piece of code that operates within
the parent on behalf of the child. Although Cilk’s inlet keyword
does not find its way into the JCilk language, as we shall see in
Section 3, the concept of an inlet is used extensively when handling
exceptions in JCilk.

Implicit atomicity

Since reasoning about race conditions between an inlet and the par-
ent, or between inlets, could be problematic, JCilk supports the idea
of implicit atomicity. To understand this concept, we first define a
JCilk thread1 to be a maximal sequence of instructions executed
by the same locus of control that includes no parallel control. From
a syntactic point of view, a JCilk thread contains no spawn, sync,
or exit from a cilk block (cilk method or cilk try).

For example, when the method f1 in Figure 1 runs, four threads
are executed by f1’s primary locus of control:

1. from the beginning of f1 to the point in line 2 where the A
computation is actually spawned,

2. from the point in line 2 where the A computation is actually
spawned to the point in line 4 where the C computation is
actually spawned,

3. from the point in line 4 where the C computation is actually
spawned to the sync in line 6,

4. from the sync in line 6 to the point where f1 returns.
In addition, two threads corresponding to the assignments of w and
y in lines 2 and 4 are executed by secondary loci of control.

In Figure 2, similar threads can be determined, but in addition,
when a spawned method such as B in line 4 returns, an inlet runs
the updating of y as a separate thread from the others. JCilk’s sup-
port for implicit atomicity guarantees that all JCilk threads execut-
ing in the same method instance execute atomically with respect to
each other, that is, the instructions of the threads do not interleave.
Said more operationally, JCilk’s scheduler performs all its actions
at thread boundaries, and it executes only one of a method’s threads
at a time. In the case of f2, the updates of y in lines 4, 5, and 6

1Although JCilk is implemented using Java threads, JCilk threads and
Java threads are different concepts. Generally, when we say “thread,” we
mean a JCilk thread. If we mean a Java thread, we shall say so explicitly.

all execute atomically. The updates caused by the returns of B and
C are executed by JCilk’s built-in inlets, and the update caused by
D’s return is executed by f2’s primary locus of control.

Implicit atomicity places no constraints on the interactions be-
tween two JCilk threads in different method instances, however. It
is the responsibility of the programmer to handle those interactions
using synchronized methods, locks, nonblocking synchronization
(which can be subtle to implement in Java due to its memory model
— see, for example, [12,24,27,34]), and other such techniques. We
do not attempt here to address these synchronization issues, which
appear to be orthogonal to the control issues discussed in this paper.

The CilkAbort exception

Because of the havoc that can be caused by aborting computations
asynchronously, JCilk leverages the notion of implicit atomicity
by ensuring that aborts occur semisynchronously; that is, when a
method is aborted, all its loci of control reside at thread boundaries.
JCilk provides a built-in exception2 class CilkAbort, which in-
herits directly from Throwable, as do the built-in Java exception
classes Exception and Error. When JCilk determines that a
method must be aborted, it causes a CilkAbort to be thrown in
the method. The programmer can choose to catch a CilkAbort
if clean-up is desired. The catching and handling of a CilkAbort
exception is not required, however, and the CilkAbort exception
is implemented as an unchecked exception.

Semisynchronous aborts ease the programmer’s task of under-
standing what happens when the computation is aborted, limiting
the reasoning to those points where parallel control must be un-
derstood anyway. For example, in Figure 1 if C throws an ex-
ception when D is executing, then the thread running D will re-
turn from D and run to the sync in line 6 of f2 before possibly
being aborted. Since aborts are by their nature nondeterministic,
JCilk cannot guarantee that when an exception is thrown, a compu-
tation always immediately aborts when its primary locus of control
reaches the next thread boundary. What it promises is only that
when an abort occurs, the primary locus of control resides at some
thread boundary, and likewise for secondary loci of control.

3 The JCilk language features

This section discusses the semantics of JCilk exceptions. We begin
with a simple example of the use of cilk try that illustrates two
important notions. The first is the concept that a primary locus
of control can leave a cilk try statement before the statement
completes. The second is the idea of a “catchlet,” which is an inlet
that executes the body of the catch clause of a cilk try. We
then give a complete semantics for cilk try. We conclude with
a description of how the CilkAbort exception can be handled by
user code.

The cilk try statement

Figure 3, which shows an example of the use of cilk try, demon-
strates how this linguistic construct interacts with the spawning of
subcomputations. The parent method f3 spawns the child cilk
method A in line 4, but its primary locus of control continues within
the parent, proceeding to spawn another child B in line 9. As be-
fore, the primary locus of control continues in f3 until it hits the
sync in line 13, at which point f3 is suspended until the two chil-
dren complete.

Observe that f3’s primary locus of control can continue on be-
yond the scope of the cilk try statements even though A and
B may yet throw exceptions. If the primary locus of control were

2In keeping with the usage in [13], when we refer to an exception, we
mean any instance of the class Throwable or its subclasses.



1 cilk int f3() {
2 int x, y;
3 cilk try {
4 x = spawn A();
5 } catch(Exception e) {
6 x = 0;
7 }
8 cilk try {
9 y = spawn B();
10 } catch(Exception e) {
11 y = 0;
12 }
13 sync;
14 return x + y;
15 }

Figure 3: Handling exceptions with cilk try when aborting is unneces-
sary.

held up at the end of the cilk try block, writing a catch clause
would preclude parallelism.

In the code from the figure, if one of the children throws an
exception, it is caught by the corresponding catch clause. The
catch clause may be executed long after the primary locus of con-
trol has left the cilk try block, however. As with the example of
an inlet updating a local variable in Figure 2, if method A signals
an exception, A’s locus of control must operate on f3 to execute
the catch clause in lines 5–7. This functionality is provided by a
catchlet, which is an inlet that runs on the parent (in this case f3)
of the method (in this case A) that threw the exception. As with
ordinary inlets, JCilk guarantees that the catchlet runs atomically
with respect to other loci of control running on f3.

Similar to a catchlet, a finallet runs atomically with respect
to other loci of control if the cilk try statement contains a
finally clause.

Aborting side computations

We are almost ready to tackle the full semantics of cilk try,
which includes the aborting of side computations when an excep-
tion is thrown, but we require one key concept in the Java language
specification [13, Sec. 11.3]:

“A statement or expression is dynamically enclosed
by a catch clause if it appears within the try block
of the try statement of which the catch clause is a
part, or if the caller of the statement or expression is
dynamically enclosed by the catch clause.”

In Java code, when an exception is thrown, control is transferred
from the code that caused the exception to the nearest dynamically
enclosing catch clause handles the exception.

JCilk faithfully extends these semantics, using the notion of “dy-
namically enclosing” to determine, in a manner consistent with
Java’s notion of “abrupt completion,” which method instances
should be aborted. (See the quotation in Section 1.) Specifically,
when an exception is thrown, JCilk delivers a CilkAbort ex-
ception semisynchronously to the side computations of the excep-
tion. The side computations include any method that is also dy-
namically enclosed by the catch clause that handles the excep-
tion. The side computations also include the primary locus of con-
trol of the method containing that cilk try statement if that lo-
cus of control still resides in the cilk try statement. JCilk thus
throws a CilkAbort exception at the point of the primary locus
of control in that case. Moreover, the catch clause handling the
CilkAbort thrown a to-be-aborted cilk block is not executed

1 cilk int f4() {
2 int x, y, z;
3 cilk try {
4 x = spawn A();
5 y = spawn B();
6 } catch(Exception e) {
7 x = y = 0;
8 handle(e);
9 }
10 z = spawn C();
11 sync;
12 return x + y + z;
13 }

Figure 4: Handling exceptions with cilk try when aborting might be
necessary.

until all its children have completed, allowing the side computation
to be “unwound” in a structured way from the leaves up.

Figure 4 shows a cilk try statement. If method A throws an
exception that is caught by the catch clause beginning in line 6,
the side computation that is signaled to be aborted includes B and
any of its descendants, if B has been spawned but hasn’t returned.
The side computation also includes the primary locus of control for
f4, unless it has already exited the cilk try statement. It does
not include C, which is not dynamically enclosed by the catch
clause.

JCilk makes no guarantees that the CilkAbort is handled
quickly after it signals an exception’s side computation to abort.
It simply offers a best-effort attempt to do so. Linguistically, if the
side computations are executed speculatively, and the overall cor-
rectness of a programmer’s code then does not depend on whether
the “aborted” methods complete normally or abruptly.

The semantics of cilk try

After an exception is thrown, when and how is it handled? The
exception-handling mechanism decomposes exception handling
into six actions:

1. Select an exception to be handled by the nearest dynamically
enclosing catch clause that handles the exception.

2. Signal the side computations to be aborted.
3. Wait until all dynamically enclosed spawned methods com-

plete, either normally or abruptly by dint of Action 2.
4. Wait until the primary locus of control for the method exits

the cilk try block, either normally or by dint of Action 2.
5. Run the catchlet associated with the selected exception.
6. If the cilk try contains a finally clause, run the associ-

ated finallet.
The exception-handling mechanism executes these actions as

follows. If one or more exceptions are thrown, Action 1 selects
one of them. Mirroring Java’s cascading abrupt completion, all dy-
namically enclosed cilk try statements between the point where
the exception is thrown and where it is caught also select the same
exception, even though their catch clauses do not handle it. Ac-
tion 2 is then initiated to signal the side computation to abort. The
mechanism now waits in Actions 3 and 4 until the side computa-
tions terminate. At this point Action 5 safely executes the catch
clause, which is followed by Action 6 to execute the finally
clause, if it exists.

We made the decision in JCilk that if multiple concurrent excep-
tions are thrown to the same cilk block, only one is selected to be
handled. In particular, if one of these exceptions is a CilkAbort
exception, the CilkAbort exception is selected to be handled.



1 cilk int f5() {
2 for(int i=0; i<10; i++) {
3 int a = 0;
4 cilk try {
5 a = spawn A(i);
6 } finally {
7 System.out.println("In iteration "
8 + i + " A returns " + a);
9 }
10 }
11 sync;
12 }

Figure 5: A loop containing a cilk try illustrating a race condition be-
tween the update of i in line 2 and the read of i in line 8.

The rationale is that the other exceptions come from side compu-
tations, which will be aborted anyway. This decision is consistent
with ordinary Java semantics, and it fits in well with the idea of
implicit aborting.

The decision to allow the primary locus of control possibly to
exit a cilk try block with a finally clause before the finallet
is run reflects the notion that finally is generally used to clean
up [13, Ch. 11], not to establish a precondition for subsequent exe-
cution. Moreover, JCilk does provide a mechanism to ensure that a
finally clause is executed before the code following the cilk
try statement: simply place a sync statement immediately after
the finally clause.

Secondary loci of control within loops

When a primary locus of control exits a cilk try block in a
loop before its catch clause or finally clause is run and pro-
ceeds to another iteration of a loop, a secondary locus of control
eventually executes the catch or finally clause. As in the Cilk
language, this situation requires the programmer to reason carefully
about the code.

In particular, it is possible to write code with a race condition,
such as the one illustrated in Figure 5. The programmer is at-
tempting to spawn A(0), A(1), . . ., A(9) in parallel and print
out the values returned for each iteration with the iteration num-
ber i. Unfortunately, the primary locus of control may change the
value of i before a given child completes, and thus the secondary
locus of control created when the child returns will use the wrong
value when it executes the print statement in line 8 in the finally
clause.

This situation is called a data race (or, a general race, as defined
by Netzer and Miller in [30]), which occurs when two threads op-
erating in parallel both access a variable and one modifies it. In this
case, f5’s primary locus of control increments the value of i in
line 2 in parallel with the secondary locus of control executing the
finally block which reads i in line 8. Whereas JCilk’s support
for implicit atomicity guarantees that the finally block executes
atomically with respect to f5’s primary locus of control, it does not
guarantee that data races do not occur. In this case, the data race
makes the code incorrect.

The race condition in the code from Figure 5 can be fixed by
declaring a new loop local variable icopy, as shown in Figure 6.
The only differences between code in Figure 5 and Figure 6 are the
additional declaration of a loop variable, icopy in line 4 and the
reading of i replaced with the reading of icopy in line 9. Every
time f6 iterates its loop, a new copy of variable icopy is created
and initialized with the current value of i. When the finally
clause executes on behalf of an iteration i, the finally clause
reads and prints the corresponding value of icopy as determined
by a lexical-scope rule [4, Sec. 7.4]. The JCilk compiler and

1 cilk int f6() {
2 for(int i=0; i<10; i++) {
3 int a = 0;
4 int icopy = i;
5 cilk try {
6 a = spawn A(icopy);
7 } finally {
8 System.out.println("In iteration "
9 + icopy + " A returns " + a);
10 }
11 }
12 sync;
13 }

Figure 6: JCilk’s lexical-scope rule can be exploited to fix the race condi-
tion from Figure 5.

1 cilk void f7() {
2 cilk try {
3 spawn A()
4 } catch(CilkAbort e) {
5 cleanupA();
6 }
7 cilk try {
8 spawn B()
9 } catch(CilkAbort e) {
10 cleanupB();
11 }
12 cilk try {
13 spawn C()
14 } catch(CilkAbort e) {
15 cleanupC();
16 }
17 sync;
18 }

Figure 7: Catching CilkAbort.

runtime system provide an efficient implementation of the lexical-
scope rule which avoids creating many extraneous versions of loop
variables.

Handling aborts

In the original Cilk language, when a side computation is aborted,
it essentially just halted and vanished without giving the program-
mer any opportunity to clean up partially completed work. JCilk
exploits Java’s exception semantics to provide a natural way for
programmers to handle CilkAbort exceptions.

When JCilk’s exception mechanism signals a method in a side
computation to abort, it causes a CilkAbort to be thrown
semisynchronously within the method. The programmer can catch
the CilkAbort exception and restore any modified data struc-
tures to a consistent state. As when any exception is thrown, perti-
nent finally blocks, if any, are also executed.

The code in Figure 7 shows how CilkAbort exceptions can be
caught. If any of A, B, or C throws an exception that is not handled
within f7 while the others are still executing, then those others are
aborted. Any spawned methods that abort have their corresponding
cleanup method called.

4 The queens problem

To demonstrate some of the JCilk extensions to Java, this section
illustrates how the so-called “queens” puzzle can be programmed.
The goal of the puzzle is to find a configuration of n queens on an



1 public class Queens {
2 private int n;

...
3 private cilk void q(int[] cfg, int row)

throws Result {
4 if(row == n) {
5 throw new Result(cfg);
6 }

7 for(int col = 0; col < n; col++) {
8 int[] ncfg = new int[n];
9 System.arraycopy(cfg, 0, ncfg, 0, n);
10 ncfg[row] = col;

11 if(safe(row, col, ncfg)) {
12 spawn q(ncfg, row+1);
13 }
14 }
15 sync;
16 }

17 public static cilk void
main(String argv[]) {

...
18 int n = Integer.parseInt(argv[0]);
19 int[] cfg = new int[n];
20 int[] ans = null;

21 cilk try {
22 spawn (new Queens(n)).q(cfg, 0);
23 } catch(Result e) {
24 ans = (int[]) e.getValue();
25 }
26 sync;

27 if(ans != null) {
28 System.out.print("Solution: ");
29 for(int i = 0; i < n; i++) {
30 System.out.print(ans[i] + " ");
31 }
32 System.out.print("\n");
33 } else {
34 System.out.println("No solutions.");
35 }
36 }
37 }

Figure 8: The queens problem coded in JCilk. The program searches in
parallel for a single solution to the problem of placing n queens on an n-
by-n chessboard so that none attacks another. The search quits when any of
its parallel branches finds a safe placement. The method safe determines
whether it is possible to place a new queen on the board in a particular
square. The Result exception (which extends class Exception) is used
to notify the main method when a result is found.

n-by-n chessboard such that no queen attacks another, that is, no
two queens occupy the same row, column, or diagonal. Figure 8
shows how a solution to the queens puzzle can be implemented in
JCilk. The program would be an ordinary Java program if the three
keywords cilk, spawn, and sync were elided, but the JCilk se-
mantics make this a highly parallel program.

The program uses a speculative parallel search. It spawns many
branches in the hopes of finding a “safe” configuration of the n

queens, and when one branch discovers such a configuration, the
others are aborted. JCilk’s exception mechanism makes this strat-
egy easy to implement.

The queens program works as follows. When the program starts,
the main method constructs a new instance of the class Queens

with user input n and spawns its q method to search for a safe
configuration. Method q takes in two arguments: cfg, which is
the current configuration of queens on the board, and row, which
is the current row to be searched. It loops through all columns
in the current row to find safe positions to place a queen in the
current row. The ordinary Java method safe, whose definition
we omit for brevity, determines whether placing a queen in row
row and column col conflicts with other queens already placed
on the board. If there is no conflict, another q method is spawned
to perform the subsearch with the new queen placed in the position
(row, col).

The newly spawned subsearch can run in parallel with all other
subsearches spawned so far. The parallel search continues until it
finds a configuration in which every row contains a queen. At this
point cfg contains a legal placement of all n queens. The success-
ful q method throws the user-defined exception Result (whose
definition we also omit for brevity) to signal that it has found a so-
lution. The Result exception is used to communicate between
the q and main methods.

The program exploits JCilk’s implicit abort semantics to avoid
extraneous computation. When one legal placement is found, some
outstanding q methods might still be executing; those subsearches
are now redundant and should be aborted. The implicit abort mech-
anism does exactly what we desire when a side computation throws
an exception: it automatically aborts all sibling computations and
their children dynamically enclosed by the catching clause. In this
example, since the Result exception propagates all the way up to
the main method, all outstanding q methods will be aborted auto-
matically. To ensure that all side computations have terminated and
the catch clause has been executed, the main method executes a
sync statement before it prints out the solution.

5 Parallel alpha-beta search

This section explores the coding of a parallel alpha-beta search in
JCilk, which highlights JCilk’s semantics in more depth. Like the
queens algorithm, our alpha-beta code exploits JCilk’s exception-
handling mechanism to abort speculative computations that are
found to be unnecessary. In addition, this JCilk program provides
an example that exploits the implicit lexical-scope rule to ensure
correct execution.

Alpha-beta search [21,41] is often used when programming two-
player games such as chess or checkers. It is basically a “mini-
max” [36] search algorithm applied with “alpha-beta pruning” [36],
a technique for pruning out irrelevant parts of the game tree so that
more ply of depth can be searched within a given time bound. Since
the search algorithm is described in virtually every introduction to
adversarial search (see, for example, [36, Ch. 6] and [41, Ch. 6]),
we assume the basic familiarity with the search strategy in the pa-
per. The basic idea of the algorithm is that, if White can make
a move in a position so good that Black will not make the move
leading to that position, then there is no point in searching White’s
other moves from that position. Therefore, those additional moves
can be pruned. This situation is referred as a beta cutoff .

The basic alpha-beta search algorithm is inherently serial, be-
cause the information from searching one child of a node in the
game tree is used to prune subsequent children. It is difficult to
use information gained from searching one child to prune another
if one wishes to search all children in parallel.

One key observation helps to parallelize alpha-beta search: in an
optimal game tree, either all children of a node are searched (the
node is maximal), or only one child needs to be searched to gener-
ate a cutoff (the node is singular). This observation suggests a par-
allel search strategy called young brothers wait [9]: if the first child
searched fails to generate a cutoff, speculate that the node is maxi-
mal, and thus searching the rest of the children in parallel wastes no



work. To implement this strategy, the parallel alpha-beta algorithm
first searches what it considers to be the best child. If the score re-
turned by the best child generates a cutoff, the rest of the children
are pruned, and the search returns immediately. Otherwise, the al-
gorithm speculates that the node is maximal, and spawns searches
of all the remaining children in parallel. If one of the children re-
turns a score that generates a beta cutoff, however, the other chil-
dren are aborted, since their work has been rendered unnecessary.

Figure 9 shows a JCilk implementation of this parallel search al-
gorithm using the negamax strategy [21], where scores are always
viewed from the perspective of the side to move in the game tree.
In this strategy, when subsequent moves are searched, the alpha
and beta roles are reversed and the scores returned are negated.
The search method is called with the current board configura-
tion, the depth to search, and the alpha and beta values that
bound the search of the current node. When invoked, the code first
checks for the base case by calling the method isDone in line 4,
which basically returns true if this node is at the leaf of the game
tree (meaning the depth is reached), the board configuration is a
draw, or one side has lost. (The definition for isDone is omitted
for simplicity.) If isDone returns true, the algorithm evaluates
and returns the score of the current board configuration. Otherwise,
it generates a list successors of legal moves that can be made
from the current board configuration. This successors list con-
tains the moves in best-first order as determined by more-ordering
heuristics.

The search begins with the first move stored in the
successors list, which ostensibly corresponds to the best child.
When this child returns with a score, alpha is updated, and the
condition for a beta cutoff is checked. If the score generates a
beta cutoff (meaning this node is singular), the score for this node
(which is stored in beta in this case) is returned. If the score does
not generate a beta cutoff, the algorithm then proceeds to spawn
the rest of the children in parallel, with the remaining moves stored
in the successors list. As each of these children returns, the
alpha value is again updated and the condition for a beta cutoff is
checked. If any of these children happens to generate a beta cutoff,
a user-defined exception Result (whose definition is omitted) is
thrown, causing all children spawned in parallel by this node to be
aborted. The Result object contains a single field to store the
score of the node so that the score can be communicated back to its
parent.

The search method is first invoked by the rootSearch
method, which initiates the searches from the root node. The defi-
nition of the rootSearch method is omitted because it is similar
to the definition of the search method. The only differences are
that no checks for beta cutoffs are performed, because no beta cut-
off can occur at the root of the game tree, and the value for beta
is initialized to the maximum value that can be represented with an
int type. One could merge rootSearch and search into a
single method with a flag indicating whether the current node is the
root node, but we chose to separate them into distinct methods for
simplicity.

The code for the search method shown in Figure 9 capitalizes
on three JCilk language features:

• implicit abort semantics,
• the lexical-scope rule,
• implicit atomicity.

We now examine how searchmakes use of each of these features.
First, the search method exploits JCilk’s implicit abort seman-

tics to abort extraneous computations spawned in line 30. This part
of the code is similar to line 12 in the queens code from Figure 8.

Second, the code exploits JCilk’s support for the lexical-scope
rule. Specifically, the finally clause (lines 33–41) is contained
within a loop, and it refers to the loop local variable score2.

1 private cilk int search(Board board,
int depth,
int alpha,
int beta)

2 throws Result {
3 int score1;

4 if(isDone(board, depth)) {
5 return eval(board);
6 }
7 List successors = board.legalMoves();
8 List move = (List) successors.pop_front();
9 Board nextBoard = (Board) board.copy();
10 nextBoard.move(move);
11 cilk try {
12 score1 = spawn search(nextBoard,

depth+1,
-beta,
-alpha);

13 } catch(Result e) {
14 score1 = e.getValue();
15 }
16 sync;
17 score1 = -score1;
18 if(score1 > alpha) {
19 alpha = score1;
20 if(score1 >= beta) {
21 return beta;
22 }
23 }

24 while(mayPlay (successors)) {
25 int score2 = -Integer.MAX_VALUE;
26 move = (List) successors.pop_front();
27 nextBoard = (Board) board.copy();
28 nextBoard.move(move);
29 cilk try {
30 score2 = spawn search(nextBoard,

depth+1,
-beta,
-alpha);

31 } catch(Result e) {
32 score2 = e.getValue();
33 } finally {
34 score2 = -score2;
35 if(score2 > alpha) {
36 alpha = score2;
37 if(score2 >= beta) {
38 throw new Result(beta);
39 }
40 }
41 }
42 }
43 sync;

44 return alpha;
45 }

Figure 9: The core of a parallel alpha-beta search.

Since score2 is declared within the loop (in line 25), the lexical-
scope rule applies. When each finally clause refers to score2,
it resolves to the version corresponding to the iteration to which the
finally belongs lexically. This “correct” resolution of score2
is crucial to the correctness of the alpha-beta code.

Third, the code exploits JCilk’s guarantee of implicit atomicity.
In particular, in the same finally clause (lines 33–41), an as-
signment to the local variable alpha is made in line 36. Even
though alpha is written simultaneously by multiple secondary
loci of control (executing finally clauses from different itera-
tions), no data races exist. JCilk’s guarantee of implicit atomic-
ity allows all the instantiations of the finally clause to execute
atomically with respect to one another. Since the order of their
execution does not matter, the code is correct.

This parallel alpha-beta search demonstrates the expressiveness
of JCilk’s language features and their semantics. Without the sup-



port of any one of these three features, the parallel alpha-beta
search could not be programmed so easily. Compared to a par-
allel alpha-beta search coded in Cilk [7], this implementation is
arguably cleaner and simpler.

6 Related work

This section discusses related work. We attempt to place JCilk and
its exception-handling semantics into the context of parallel pro-
gramming languages. A key difference between JCilk and other
work on concurrent exception handling is that JCilk provides a
faithful extension of the semantics of a serial exception mechanism,
that is, the serial elision of the JCilk program is a Java program that
implements the JCilk program’s semantics.

Most parallel languages do not provide an exception-handling
mechanism. For example, none of the parallel functional languages
VAL [1], SISAL [11], Id [31], parallel Haskell [3, 32], MultiL-
isp [15], and NESL [5] and none of the parallel imperative lan-
guages Fortran 90 [2], High Performance Fortran [35] [29], Declar-
ative Ada [39, 40], C* [16], Dataparallel C [17], Split-C [6], and
Cilk [37] contain exception-handling mechanisms. The reason for
this omission is simple: these languages were derived from serial
languages that lacked such linguistics.3

Some parallel languages do provide exception support because
they are built upon languages that support exception handling
under serial semantics. These languages include Mentat [14],
which is based on C++; OpenMP [33], which provides a set of
compiler directives and library functions compatible with C++;
and Java Fork/Join Framework [23], which supports divide-and-
conquer programming in Java. Although these languages inherit
an exception-handling mechanism, their designs do not address
exception-handling in a concurrent context.

Tazuneki and Yoshida [38] and Issarny [19] have investigated
the semantics of concurrent exception-handling, taking different
approaches from our work. In particular, these researchers pur-
sue new linguistic mechanisms for concurrent exceptions, rather
than extending them faithfully from a serial base language as does
JCilk. The treatment of multiple exceptions thrown simultaneously
is another point of divergence.

Tazuneki and Yoshida’s exception-handling framework is intro-
duced in the context of DOOCE, a distributed object-oriented com-
puting environment. They focus on handling multiple exceptions
which are propagated from concurrently active objects. DOOCE
adapts Java’s syntax for exception handling, extending it syntacti-
cally and semantically to handle multiple exceptions. Unlike JCilk,
however, DOOCE allows a program to handle multiple excep-
tions by listing several exception classes as parameters to a single
catch clause with the semantics that the catch clause executes
only when all those exceptions are thrown. DOOCE’s semantics in-
clude a new resumption model as an alternative to the termination
model of Java: when exceptions occur and are handled by a catch
clause, the catch clause can indicate that the program should re-
sume execution at the beginning of the try statement instead of
after the catch block.

The cooperation model proposed by Issarny provides a way to
handle exceptions in a language that supports communication be-
tween threads. If a thread terminates due to an exception, all later
threads synchronously throw the same exception when they later
attempt to communicate with the terminated thread. Unlike JCilk’s
model, the cooperation model accepts all of the simultaneous ex-
ceptions that occur when multiple threads involved in communi-
cation have terminated. Those exceptions are passed to a handler

3In the case of Declarative Ada, the researchers extended a subset of
Ada that does not include Ada’s exception package.

which resolves them into a single concerted exception representing
all of the failures.

The recent version of the Java Language, known as Tiger or Java
1.5 during development and now called Java 5.0 [28], provides call-
return semantics for threads similar on the surface to JCilk. In par-
ticular, Java 1.5 provides a protocol that is similar to that of JCilk.
Although Java 5.0 (like everything else in Java) uses an object-
based semantics for multithreading, rather than JCilk’s choice of
a linguistic semantics, it does move in the direction of providing
more linguistic support for multithreading. In particular, Java 5.0
introduces the Executor interface, which provides a mechanism
to decouple the scheduling from execution. It also introduces the
Callable interface, which, like the earlier Runnable interface,
encapsulates a method which can be run at a later time (and po-
tentially on a different thread). Unlike Runnable, Callable
allows its encapsulated method to return a value or throw an ex-
ception. When a Callable is submitted to an Executor, it
returns a Future object. The get method of that object waits for
the Callable to complete, and then it returns the value that the
Callable’s method returned. If that method throws an exception,
then Future.get throws an ExecutionException contain-
ing the original exception as its cause. (The Future object also
provides a nonblocking isDone method to see if the Callable
is already done.)

One notable difference between JCilk and Java 1.5 is that JCilk’s
parallel semantics for exceptions faithfully extend Java’s serial se-
mantics. Although Java 1.5’s exception mechanism is not a seam-
less and faithful extension of its serial semantics, as a practical mat-
ter, it represents a positive step in the direction of making parallel
computations linguistically callable.

7 Conclusions

CLU [26] was the first language to cleanly define the semantics for
an exception-handling mechanism, but only in a serial context. Al-
though much effort has been spent on developing tools, software,
and languages to aid in the writing of multithreaded programs,
comparatively little research explores how exception mechanisms
should be extended to a concurrent context. The JCilk language ex-
plores how concurrency can be made semantically consistent with
the exception mechanisms of modern serial computing. Our re-
search leaves us optimistic that the sometimes-arcane world of par-
allel computing and the day-to-day world of commodity computing
may eventually be united.
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