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ABSTRACT

This thesis presents the design and implementation of a model predictive control based
trajectory optimization method for Nap-of-the-Earth (NOE) flight. A NOE trajectory
reference is generated over a subspace of the terrain. It is then inserted into the cost
function and the resulting trajectory tracking error term is weighted for more precise
longitudinal tracking than lateral tracking through the introduction of the TF/TA ratio.
The TF/TA ratio, control effort penalties and MPC prediction horizon are tuned for this
application via simulation and eigenvalue analysis for stability and performance. Steps
are taken to reduce complexity in the optimization problem including perturbational
linearization in the prediction model generation and the use of control basis functions
which are analyzed for their trade-off between approximation of the optimal cost/solution
and reduction of the optimization complexity. Obstacle avoidance including preclusion of
ground collision is accomplished through the establishment of hard state constraints.
These state constraints create a ‘safe envelope’ within which the optimal trajectory can be
found. Results over a variety of sample terrains are provided to investigate the sensitivity
of tracking performance to nominal velocities. The mission objective of low altitude and
high speed was met satisfactorily without terrain or obstacle collision, however, methods
to preclude or deal with infeasibility must be investigated as terrain severity (measured
by commanded flight path angle) is increased past 30 degrees or speed is increased to and
past 30 knots.
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Chapter 1
INTRODUCTION

Unmanned aerial vehicles (UAVs) have played an important role throughout history
dating back to the flying bombs of WWI and WWII. Today their role has expanded from
the early payload delivery missions to include remote sensing, providing valuable
geographic, meteorological and ecological data for scientists and military alike [1].
Recent examples of deployment include reconnaissance and battle damage assessment
which enhances battlefield awareness of commanders by delivering a combination of
camera and sensor data without risking pilots’ lives [2]. Current research in the area of
UAYV design and control is focused on exploiting the lack of human casualty inherent in
UAYV deployment to operate in environments that would otherwise be too dangerous for
human piloted vehicles.

One such application is the use of UAV’s for operation within high threat, hostile
military environments. A hostile operational environment is defined by the Department of
Defense as “an operational environment in which hostile forces have control as well as
the intent and capability to effectively oppose or react to the operations a unit intends to
conduct,” [3]. It is inherently obvious that in these environments, as threat exposure
increases, so does the probability of vehicle attrition. Because of this, a primary research
objective for unmanned aerial vehicles is enhancement of vehicle survivability. Reducing
threat line of sight reduces the probability of detection, enhancing vehicle survivability.

To effectively lessen threat line of sight, suitable guidance and control algorithms can
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take advantage of terrain masking through Nap-of-the-Earth (NOE) flight while
simultaneously flying as fast as possible to enhance vehicle survivability if detected.
NOE flight or terrain following flight is defined as “flight close to the Earth's surface
during which airspeed, height, and/or altitude are adapted to the contours and cover of the
ground in order to avoid enemy detection and fire,” [3]. In seeking cover of the ground to
evade detection, cluttered and dangerous terrain coupled with the high-speed NOE flight
objective translate to a highly constrained control problem. It is assumed that at such low
altitudes, the vehicle will be operating with an incomplete obstacle map. Even the highest
resolution map may not be able to warn of unexpected obstacles such as buildings, trees
and wires or threats such as snipers. This type of information can only be obtained
through real-time sensor sweeps during flight. This motivates the need for an efficient
algorithm for introducing new obstacle knowledge obtained from the sensors into the
trajectory optimization real-time to allow dynamic path replanning. In addition, due to the
vehicle’s proximity to many constantly changing constraints, we require agile

maneuvering to move quickly between different ranges of its flight envelope.

1.1 LITERATURE REVIEW

The terrain following guidance and control problem has been an area of research
interest for the past 20 years, however due to both technological and political reasons,
this interest has been especially amplified in the past 5 years. This section surveys some
of the previous work that has been done in the field of trajectory generation and obstacle
avoidance as applied to the problem of terrain following/nap-of-the-earth flight.

Low-altitude, terrain following flight requires a high degree of continuous situational
awareness equating to high workload for pilots. The reduction of pilot workload under
these conditions through the automation of terrain following flight and obstacle
avoidance was the premise for several investigations into nap-of-the-earth flight at NASA
Ames Research Center [4 — 6]. The terrain following problem was treated successfully in
these applications using heuristics-based flight-path planning. Obstacle avoidance was
accomplished through reference trajectory modification by placing a temporary waypoint
to divert the current nominal trajectory around the obstacle. This research emphasized

that at the low altitudes required by NOE flight, explicit consideration of vehicle
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capability is essential in the autopilot design to assure safe flight in such close proximity
to the ground regardless of the level of autonomy being explored.

Another body of literature focuses on the fully autonomous trajectory generation and
tracking realm. To obtain the high accuracy tracking performance crucial to survival at
the low altitudes defining NOE flight, optimal control is a prime candidate for trajectory
generation. Another important attribute of optimization based control is that vehicle
capability limits can be input directly into the problem by adding the vehicle dynamic
constraints. However the high computational burden presented by optimal control is a
known drawback to using this control strategy. To reduce computational burden on the
optimizer and incorporate the “look ahead” that a human pilot is able to provide,
predictive control was first proposed as a solution to the terrain following control
problem in 1989 by Hess and Jung [7]. They applied generalized predictive control
(GPC), which generates control outputs by minimizing a quadratic cost function
consisting of a weighted sum of errors between desired and predicted system output and
predicted controls within a finite horizon. The cost function was weighted to track a
simulated elevation reference comprised of a sum of sines while simultaneously tracking
a longitudinal velocity reference and rejecting unknown turbulence injections. This
algorithm, integrated with an online estimator of the internal model’s parameters,
accomplished the desired tracking with maximum errors totaling 10% of the maximum
errors seen with the “classical” multi-loop design presented in their work.

The success of Hess and Jung has motivated many subsequent applications of various
forms of predictive control reaching beyond the terrain tracking problem to issues of
trajectory optimization and obstacle avoidance [8 - 12]. Li et. al. applied an optimal
preview control scheme to the terrain tracking of a cruise missile [8]. The method
presented considered tracking error, the current command signal and an additional
augmented error system. This augmented error allowed future command signals to be
included in the optimization through a linear quadratic index, allowing the problem to
then be solved as an optimal regulator problem. This implementation effectively drove
the cruise missile to track complicated terrain accurately. However, it presented a distinct

tradeotf between system performance and controller complexity.
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In [9], a GPC algorithm was proposed with an innovation to the standard prediction
model implementation. In standard GPC algorithms, these parameters must be calculated
from the discrete model, linearized at every time-step, or a nonlinear optimization must
be computed. Alternatively, a neural network model was proposed as a predictor to
calculate the GPC parameters.

A different application of neural networks to predictive control of trajectory tracking
was proposed in [10]. The method presented, dubbed model predictive neural control
(MPNC), is a combination of a neural network feedback controller and a state-dependent
Riccati equation (SDRE) controller. For this method, the initial stabilizing control is
provided by the SDRE controller, incorporating robustness improvement over traditional
linearization based Linear Quadratic (LQ) controllers. The SDRE control is then
augmented by the neural network (NN) controller, optimized within a receding horizon
model predictive control framework. Initially the SDRE controller dominates, providing
stable tracking and good conditions for the NN training. Then gradually, as training of the
NN progresses, it takes over more of the control authority, yielding superior performance
over traditional SDRE and LQ control.

Non-linear model predictive control (NMPC) was applied by Kim et al. to combine
the trajectory generation and tracking problems [11]. A quadratic cost function is defined
with an output trajectory tracking error term and a control term. Additionally, a term can
also be introduced to bound the state variables that do not directly appear in the output.
The resulting cost is minimized subject to input constraints, guaranteeing physically
realizable trajectories, and solving both the trajectory generation and tracking problems in
a single step.

In a 2-D urban terrain guidance and control problem, Singh and Fuller utilized NMPC
with hard output state constraints defined in the earth-frame to accomplish obstacle
avoidance [12]. The use of control basis function inputs incorporated into perturbational
linearization of the plant is also proposed, preserving the plant’s non-linear characteristics
while providing a model simplification which significantly cuts down on computational

complexity.
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1.2 PROBLEM STATEMENT

In traditional autonomous NOE flight, with or without obstacle avoidance, velocity is
typically sacrificed to attain fine altitude tracking. This research will propose a control
method which will strive to attain the altitude tracking performance of previous research
while maintaining the high speeds necessary for survival in case of vehicle detection.

It is evident from the literature review that Model Predictive Control (MPC) is a
prime candidate algorithm for this terrain following guidance and control problem. MPC
is one of the few methods available for multi-variable systems that can incorporate hard
constraints on controls and states [11]. Its finite horizon especially lends MPC to
changing environments and objective functions. This research seeks to take advantage of
this capability for obstacle avoidance by imposing hard constraints on desired output
states. This idea is extended from the lateral obstacle avoidance presented in [12] to
include ground collision avoidance for NOE flight. This research also seeks to combine
the trajectory generation and tracking problems using MPC in a fashion that lends itself
to real-time implementation and dynamic replanning based on sensor updates.

The proposed algorithm begins with a coarsely sampled terrain database for initial
NOE reference trajectory generation. A cost function is then defined which introduces a
Terrain Following/Terrain Avoidance (TF/TA) parameter similar to that suggested in [8]
allowing the user to adjust to what degree the terrain is tracked at the expense of the
lateral tracking performance. This cost function is minimized by Model Predictive
Control (MPC), a finite horizon, optimal control scheme, subject to dynamic vehicle
constraints, control input constraints, and output constraints which fold in detailed terrain
and obstacle information provided real-time by a Light Detection and Ranging (LIDAR)
sensor. Thus, the new refined optimal trajectory inherently includes both terrain
following and obstacle avoidance of terrain features such as trees to go around or wires to
climb over at whatever nominal speed is input. In order to reduce the computational
complexity of the optimization, control basis function inputs incorporated into
perturbational linearization of the plant are utilized. This research will extend beyond the
basic algorithm design and tuning to simulated vehicle application with an LQR gain-
scheduled inner loop stability augmentation system/attitude controller. A generic

algorithm is proposed to deal with unexpected terrain features as they apply to the NOE
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path (obstacles requiring a go-over response) along with two methods for incorporating
the lateral obstacle information (obstacles requiring a go-around response) into the
optimization constraints. In addition, sensitivity analysis of terrain tracking to various
terrain cross sections is explored with respect to a range of nominal velocities varying
from 10 knots to 60 knots. Two samples of these results are plotted below in Figure 1-1

and Figure 1-2.

Figure 1-1: Sample results over a docile terrain section with maximum climb angle of 8 degrees

plotted with its maximum attainable nominal velocity of 40 knots.

= —_ e -
Figure 1-2: Sample results over a mountainous terrain section with maximum climb angle of 60
degrees plotted with its maximum attainable nominal velocity of 15 knots.
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1.3 THESIS ORGANIZATION

Following the introduction, this thesis is organized as follows:

Chapter 2 Vehicle and Terrain Models: This chapter introduces and discusses the
frames for and terrain over which the reference trajectory will be set. The non-linear plant
model used in this research is also introduced in this chapter.

Chapter 3 Nap of the Earth Flight: This chapter describes the process used to generate
and update the reference trajectory traversing the terrain from the specified. initial
waypoint to the final waypoint. It also explains the form of the cost function selected for
this research and how the mission objectives are included into the optimization by way of
the reference trajectory and cost function parameters.

Chapter 4 The Tracking Problem: This chapter introduces a build up of the model
predictive control (MPC) algorithm from its infinite horizon roots in Linear Quadratic
Tracking, the restriction to a finite horizon in the traditional MPC implementation, and
finally introduction of an alternative implementation which drastically decreases
algorithm complexity and run-time.

Chapter 5 MPC Parameter Tuning for Terrain Following and Terrain Following
Results: This chapter treats the problem of following the terrain at 6 meters above ground
level (AGL), enforcing ground collision avoidance through the application of a lower
bound on altitude which is set at a safe distance above the ground. Parameter sensitivities
for cost function penalties and prediction horizon length are investigated with respect to
stability and tracking performance. With MPC parameters set, the algorithm sensitivities
to terrain severity at varying nominal velocities are explored through application to
several terrain cross sections.

Chapter 6 Constraint Based Obstacle Avoidance: This chapter describes the heuristics
used to set the constraints for longitudinal (go-over) obstacle avoidance response and
lateral (go-around) obstacle response, in addition to the terrain following altitude
constraints described in Chapter 5. The heuristic descriptions are followed by the results
obtained from each obstacle avoidance method.

Chapter 7 Conclusions and Recommendations: This chapter summarizes the
conclusions reached in the course of this research and includes recommendations for

future work related to these topics.
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Chapter 2
VEHICLE AND TERRAIN MODELS

Before the Model Predictive Control (MPC) algorithm can be fully developed, there
are two key pieces which must be introduced. The reference trajectory, folding the
mission objectives into the cost function, defined discretely in time, and the prediction
model describing the system dynamics. Both will be used together to enforce attainment
of mission objectives through precise tracking of current and future references. This
chapter will set up the frames for and discuss the terrain over which the reference
trajectory (to be introduced in Chapter 3) will be set. The MPC internal model of the
plant will be introduced as well as the high fidelity helicopter model to which the

proposed guidance and control algorithm will be applied.

2.1 FRAME OF REFERENCE

There are two frames of reference that must be introduced before the vehicle and
terrain models can be presented. Firstly, in order to describe trajectories (reference and
actual) in an intuitive manner relative to the terrain, an inertial coordinate frame must be
introduced. Figure 2-1 illustrates the earth frame (N E D reference frame) as defined for

this research.
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Latitude, Longitude,

North\/ East

b

v
NED,

Figure 2-1: Earth Frame definition showing traditional N E D coordinates contrasted with the earth
frame Xe, Ye and Ze defined for this research. North and East are also indicated for reference.

The earth frame is an inertial reference frame, with axes X, Y and Z, in which the
origin is arbitrarily placed at the vehicle’s initial position on the earth’s surface at sea-
level (see Section 2.3 for assumptions about earth curvature). The X-axis is aligned with
lines of longitude, the Y-axis is aligned with lines of latitude and the Z-axis is orthogonal
to those two, with positive Z indicating meters below sea-level. N E D refers to the
defined positive directions in this frame, north, east and down, however it should be
noted that for this research, the traditional NEDx axis was assigned to the earth frame
Y-axis and the traditional NEDy axis was conversely assigned to the earth frame X-axis.
This is due to the arbitrarily set earth frame coordinates on the terrain and appropriate
angle modifications were made to account for the fact that the earth frame is not defined
as a purely right handed frame.

In order to present the standard helicopter equations of motion, the vehicle body-fixed
frame must be introduced. Figure 2-2, 2-3 and 2-4 illustrate this coordinate frame from
the front, side and top of the vehicle, respectively [13, 14]. Body attitude is described in

terms of Euler angles; ¢, describing rotation around the I-axis (radians), 0, describing
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rotation around the J axis, and y, describing rotation about the J-axis. These angles are

utilized in the coordinate transformation between the body and earth frames.

k Z k Z

K

Y :
[orizontal
J
\ M
v
Figure 2-2: Body-fixed Frame; front view. Figure 2-3: Body-fixed Frame; side view.

Figure 2-4: Body-fixed Frame; top view.

As can be clearly seen in the figures, the lateral plane axes, I and J, point through the
nose of the vehicle and perpendicularly out the right side of the vehicle, respectively. The
K-axis, orthogonal to I and J, points straight out the bottom of the vehicle. The vehicle
states will be defined in terms of this frame, propagated with the calculated controls at
each iteration and then transformed to the earth frame. The transformed state is utilized in
the control optimization to minimize the error between the trajectory referenée and actual

output trajectory, both defined in the earth frame.
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2.2 VEHICLE MODEL

To accomplish true low-altitude NOE flight, an agile maneuvering vehicle is
required. Currently, NOE flight is a common mode of operation for manned helicopters
which can provide such maneuvering. This research secks to automate this capability,
therefore a helicopter was selected as the test vehicle for this algorithm. There are two
levels of the vehicle model required for this research, an internal predictive model for the

controller and a high fidelity plant model for the control trajectory to be applied to in

simulation.

2.2.1 Prediction Model

As mentioned in the chapter introduction, the prediction model is an internal
representation of the vehicle dynamics with which MPC can predict and minimize future
tracking errors. The base for the prediction model used in this research consists simply of
generic equations of motion for a helicopter with the following state vector:

Vv

(1 X =

w
@
1]
v
L X e _|
where:

2) V =| v |, the vehicle velocities defined in the body frame,

(3) @ =| q |, the vehicle angular velocities defined in the body frame,

¢, 6 and y are the Euler angles defined previously in Section 2.1, and

x
“) X,=|y| the earth frame positions, as defined in Section 2.1, calculated by

¢] rotating and integrating the body frame velocities accordingly (for
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more information on the implementation of the prediction model see Section 4.3). This
generic helicopter has four control inputs: the main rotor thrust, Tmgr, roll cyclic
command setting the roll angle of the main rotor plane, 6, pitch cyclic command setting
the pitch angle of the main rotor plane, 6p, and the tail rotor thrust, Trr. The sign
conventions for these controls are defined in Figure 2-5 and Figure 2-6. The two force
inputs, Tyr and Tyg are translated using the cyclic rotor plane angle commands into the
components with respect to the body frame axes so they can be input into the equations of

motion. The resulting forces are:

Tyr €0s(8)sin(b,)

) Fitain = —Tyg sin(6y)
T, cos(8;)cos(8,)
and
0
(6) Frg = | Ty
0

The control constraints that were placed on the vehicle (and converted to constraints on
the scaling factors, o, as described in Section 4.3.2.1) are the following:

0G < Main Rotor Thrust 346G

IA

-20° £ Pitch Angle of Main Rotor Plane < 20°
-20° < Roll Angle of Main Rotor Plane < 20°
oG < Tail Rotor Thrust < G

27
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Figure 2-5: Side view of helicopter defining the positive direction for 8, and defining model constants
Ryain and Rrap, with respect to the control inputs Tyg and Tog.
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Figure 2-6: Front view of helicopter defining the positive direction for 6z and Tyg.
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The equations of motion used in the prediction model are as follows:

7) V =-0xV +Ry(G)-ky|V|,V +(Fyy + Fr)
(8) w=J"(-woxJo)+T
9) ¢=p+qsingtan@+ rcosgtan 6
(10) 6 =qgcosd—rsing
an . _ gsing+rcos¢
cos
(12) X,=R(V)

where:
k, = generic drag term approximating +C,pS, (C,= drag coefficient,
p = air density, S = vehicle reference area), multiplied by velocity

squared in (7) yielding the force of drag on the vehicle

R = rotation matrix from body frame to inertial frame

R, = rotation matrix from inertial frame to body frame

J = vehicle moment of inertia matrix
G = force of gravity specified in the inertial frame

T = sum of the torques generated in the body frame by Fuain and Frap

For the MPC loop simulations the calculated controls were applied to these equations
of motion limiting the model variation between internal and truth model to errors from
the perturbational linearization contained in the controller solution. Future work
involving the application of these algorithms to a high fidelity truth model and

investigation of MPC robustness to variation in the plant is described in Section 7.2.

2.3 TERRAIN MODEL

Almost all current and proposed low-altitude flight systems integrate onboard
obstacle sensing with a terrain/obstacle database. A terrain/obstacle database that is often
used for such applications is Digital Terrain Elevation Data (DTED) which is maintained
by The National Imagery and Mapping Agency (recently restructured to form the

National Geospatial-Intelligence Agency). Much of the low-altitude flight systems to date

29



use DTED Level 1 (100 m spacing) or Level 2 (30 m spacing), however new
technologies such as the Shuttle Radar Topography Mission (SRTM) which flew in
February 2002 [15] and the Geographic Synthetic Aperture Radar (GeoSAR) System, a
new, dual-frequency airborne radar mapping system designed to map the earth beneath
foliage and other vegetation, released in June, 2001 [16], have increased the availability
of database with resolution to Level 5 (1 m spacing). Figure 2-7 shows the increase in
feature accuracy that is obtained with increasing levels of DTED data as shown for the

example urban region of Baltimore, Maryland.

Level |l Level Il Level IV

Figure 2-7: DTED Level 1 through 5 Representation of Baltimore, MD [17].

The terrain model used in this research begins with Digital Terrain Elevation Data
(DTED) Level O of area around Mt. Adams in Washington State. Not shown in
Figure 2-7, DTED Level 0 has 1 km spacing and is the only DTED data available without
security clearance. DTED Level 0 data was derived from Level 1 and various other
sources initially to provide the FAA with some planning data. This data is now available
for public release through the NGA geospatial engine [18]. Detailed information about
the elevation data formal for all levels of DTED can be found in the Military
Performance Specification MIL-D-89020A, [19]. Since higher resolution data is
attainable for actual implementation to low-altitude flight systems of the algorithm being

designed in this research, the 1 km resolution data was interpolated to 25 m resolution
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(approximately DTED Level 2) and that resulting terrain database was used in simulation
and algorithm development.

MPC requires a discrete reference trajectory with which to input the control
objectives. In our case, this trajectory must consist of the desired x, y and z location of
the vehicle for each point in time along the trajectory. To be able to construct such a
reference, a terrain map is needed from which the appropriate elevation can be extracted
for each (x,y) coordinate. Therefore, the DTED data given in terms of latitude and
longitude was reformatted to the earth frame using the Matlab script dted.m which
extracts the DTED data and formats it into a matrix of elevations referenced by latitudes
and longitudes. A custom script was then applied called mtadams4mpc.m which sets the
origin of the earth frame (as specified in Section 2.1) and sets up the x and y axes to the
correct distances in meters from the origin corresponding to the latitudes and longitudes
previously assigned. For all simulation, the curvature of the earth is assumed to have a
negligible affect upon our terrain model. The size of each pre-interpolation DTED array
element was assumed to be 1 km by 1 km and the x and y axes were set based on that

assumption.
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Chapter 3
NAP OF THE EARTH (NOE) FLIGHT

Nap of the Earth (NOE) flight or terrain following flight is defined by the Department
of Defense as “flight close to the Earth's surface during which airspeed, height, and/or
altitude are adapted to the contours and cover of the ground in order to avoid enemy
detection and fire,” [3]. This indicates altitudes of less than 10 meters above the ground.
In order to fully take advantage of ground cover, for this research the reference altitude of
6 meters above ground level (AGL) was selected. The following chapter describes the
process used to generate and update the reference trajectory traversing the terrain from
the specified initial waypoint to the final waypoint. It also explains the form of the cost
function selected for this research and how the mission objectives are included into the

cost function by way of the reference trajectory and cost function parameters.

3.1 STRAIGHT LINE REFERENCE TRAJECTORY GENERATION

To establish the reference trajectory from which the actual trajectory will be
subtracted in the cost function, we follow what is typical to most terrain following
systems and start with an initial waypoint and a final waypoint, using a straight line path
between the two as our first guess at a nominal 2D trajectory. The z-dimension is
extracted from elevation data corresponding to each (x,y) reference coordinate and the
terrain following reference path is set at the desired distance, 6 meters, above the ground

level along our 2D path. The complete reference trajectory is synthesized by sampling the
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resulting 3D reference path at the control rate (20 Hz) assuming the nominal velocity
selected for the simulation (varying from 10-30 knots). This reference trajectory
generation function is rerun at every MPC recalculation therefore, rather than having a
predetermined invariant reference path from which the new trajectory is resampled, a
new reference trajectory is redrawn using the new position after the Ny controls have
been applied as the new initial waypoint. This is particularly useful in the replanning
sense when applied to obstacle avoidance scenarios. Figure 3-1 below demonstrates this
over three MPC loop iterations (t = 0, t = Hy and t = 2Hy), showing the initial reference

trajectory and the actual trajectory at each time.

—— = Initial Ref. (¢t = 0)
= = Actual (t=H,)
---—+ = Ref(t=Hy)
=P = Actual (t=2H,)
=ssep = Ref (t = 2Hy)

Y Obstacle

Figure 3-1: Diagram illustrating the reference trajectory update functionality
with an obstacle for three iterations of the MPC loop.

As you can see, at t = 0, the straight line reference takes the vehicle through an
obstacle, therefore with appropriately defined constraints, the resultant position at t = Hy
when MPC is recalculated (after Ny controls have been applied), the new position is
actually at point ‘a’. From here, the straight line reference is redrawn to the final
waypoint, but again, the reference leads through the obstacle. After appropriately defined
constraints are applied and the next Ny controls have been calculated and applied, the
new resultant position at t = 2Hy is at point ‘b’. Finally, from this new initial position, an

uninhibited straight line reference can be drawn to the endpoint and tracked. However,
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even if there are no obstacles causing the actual trajectory to deviate from the reference
trajectory due to the placement of constraints, performance degradation due to
disturbance such as position drift due to wind will also be accounted for with each
reference regeneration. The benefit of this in application is shown in the figures below
which compare an actual obstacle avoidance scenario with and without the reference

update feature.

o - = Actual B QC;‘ual
I || e
L [] = Obstacle 10 ~Austagle
- _ = = Rel Update
E - * g = |
e - ]
o 160 X (Ill)lbo 20 10 40 x!‘()m)ix 8 30
Figure 3-2: Obstacle avoidance with no reference Figure 3-3: Obstacle avoidance with reference
update. update.

Figure 3-2, shows the vehicle response without path replanning. As you can see, the
vehicle is drawn back to the initial reference trajectory possibly wasting time and energy.
In contrast, with the path replanning incorporated into the reference trajectory generation,
Figure 3-3 shows the vehicle is able to pass the obstacle then continue straight on to the
final waypoint. (The final waypoint in Figures 3-2 and 3-3 is placed several kilometers in
the future, hence the redrawn post-obstacle reference trajectory looks parallel to the

original reference trajectory.)

3.2 SPLINE SEARCH REFERENCE TRAJECTORY GENERATION

It is well known that in a high threat environment where nap-of-the-earth flight is
desirable, a straight line path from the initial waypoint to the final waypoint is not always
the best solution, even at 6 meters above ground. For example, if the initial waypoint and
the final waypoint lie on either side of a mountain, it would be far less desirable to fly
straight over the mountain than to use the mountain as a shield and fly around the bottom

of the mountain. With this in mind, a spline reference trajectory search algorithm was
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designed and implemented in this research as an addition to the MPC outer loop guidance
and control. The spline search reference trajectory generator starts with the straight line
reference and tests all of the points along the horizon for the max deviation in altitude. It
then extends splines of varying radii to the right and to the left of this original reference,
testing for max deviation as well. The path which results in the least overall altitude
deviation (spline or straight line) is chosen as the best reference trajectory and then
sampled appropriately for the desired horizon length according to the procedure defined
in the previous section. Figure 3-4 below shows one iteration of this trajectory test. A
straight line reference is plotted on the sample terrain from initial to final waypoints

along with potential spline references.

Figure 3-4: Sample terrain with straight line and spline potential trajectory options plotted and
selected trajectory in bold.

The selected reference trajectory appears in bold. As you can see, using the criteria of
least overall altitude deviation, the spline closest to the X-axis is selected as the reference
trajectory because it involves flying around the deep ravine and skirting along the edge of

the mountain in the closest corner of the plot, rather than flying down and through the
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ravine. This spline reference test can be applied at each MPC loop recalculation, thus
updating the trajectory in a manner similarly to that described in the reference re-draw
feature in Section 3.1.

Perceptibly, the spline reference trajectory search algorithm could be easily modified
to incorporate a number of different optimal criteria in addition to or instead of maximum

altitude deviation but such investigation and discussion exceeds the scope of this thesis.

3.3 ATTITUDE ASSERTION THROUGH W-REFERENCE

As currently defined, the trajectory to be tracked over time ¢,, where i is each time-

step along the prediction horizon length, includes solely position references:

Xrrr,

X rer, = | YReF,

ZREF,
In addition, to assert vehicle attitude as it follows the reference trajectory, a ‘W-trajectory
must also be included in the reference. The state ¥ is defined as the yaw angle (rotation
about the z-axis) between the vehicle’s body axis forward velocity component, u, and the
earth frame axis x. For this research, the W-reference points the vehicle in the direction of
the desired path. To accomplish this, given the established (x,y,z) references over a given

horizon length, the following recursion is followed to set the ‘W-reference:

(13) Ve = atan2 {(.VREF,_H — Yrer )’(XREFM ~ XRer, )}

where atan2 is a 4-quadrant arctangent solver available in most math function libraries.

In general, with this stipulation in the cost function, one can specify a certain side-slip
to point the vehicle at a target as it flies past. Thus the W-reference yields an opportunity
to take a longer look at the target as you are passing it and potentially (depending on
actual vehicle dynamic limits) even as you are retreating to a protected region. The same
recursion listed above can be used to generate the reference only the target location

should be inserted as follows:

(14) Wi, = atan2 {(V TARGET ~ YREF, ), (xTARGET — XRer, )}
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3.4 CoST FUNCTION DEFINITION TO SUPPORT NOE FLIGHT

The performance objectives of low altitude and high speed are imposed on the
optimization problem through the definition of the cost function. These objectives are
inserted into the problem through the low altitude, high speed reference trajectory. The
cost function must be constructed to promote the conformity of vehicle performance to
this trajectory with minimum error. To accomplish this, a quadratic form cost is set up:

T T

X = Xrer, Q)(, 0 0 Xi — Xger, TMR, RTMR, 0 0 0

0
(15) J - kip Yi = Yrer, 0 o 0 ((; Vi = Yeer, N 91;,. 0 RHR, 0 0

imk | <i T XRer, 0 0 in 2 T Lpey, HP, 0 0 Repi 0
lPi - WREF, 0 0 0 Qy/, \Pi - l//REF, TTR, 0 0 0 Trei
T
(16) = (x~Xper) Qixi~Xger) + u; Ru;
17 =eTQ,~e +u,-TR,~u,~

This will penalize the tracking error (e), defined to be the output state minus the reference

trajectory state (x—xger) at each time ¢, along the prediction horizon length, while

simultaneously penalizing high control input (z).

In addition to mission objective imposition on the problem through the reference
trajectory inclusion in the cost function, the objectives are also enforced through the
selection of the penalty matrices, Q; and R;. In the state weighting matrix, Q;, introduce a
Terrain Following/Terrain Avoidance (TF/TA) parameter similar to that suggested in
[20]. This allows the user to adjust to what degree the reference trajectory is tracked
longitudinally at the expense of the lateral tracking performance. The TF/TA ratio, T, is
implemented in Q; through the assignment of Qx; and Qy; to 1 and the assignment of Qy;
to T. Setting a high value for T here will allow little deviation from the set altitude about
ground while tolerating a meandering xy-track. A smaller value will emphasize lateral
tracking while not attending as highly to maintaining the precise distance above ground,
(a safety margin will be enforced by constraints in either case).

The ¥ and cyclic control input penalties, Qw;, Q¢r; and Qep; are not as easily
comparable to the other penalties Qx;, Qy; and Qz, and Rrvr; and Rrrg;, because of the
difference in units between them. A combination of two commonly used rules-of-thumb
for cost function weight selection in optimal control will be employed to normalize the

cost function penalties for initial testing. The order of magnitude rule normalizes the
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magnitude of cost contribution between the two units in question (meters and radians) in
the setting of the cost penalties. The percentage of range rule normalizes the penalties so
that the cost contribution for a deviation is associated with the percentage of range
spanned by that deviation, rather than by the magnitude of the number itself.

With respect to the terrain following mission objectives, tracking a heading reference
is no more important than the lateral tracking therefore to account for or normalize the
magnitude difference in the cost contribution from radians relative to the cost
contribution from meters, Qw; was set to one order of magnitude higher than Qx; and Qy;.
Naturally, if the W-reference is being used to impose an attitude trajectory in support of
reconnaissance operations, Qi should be set at a higher value to reflect its importance to
the overall mission objective, keeping in mind the order of magnitude normalization to x,
y and z penalties.

The same order of magnitude normalization idea holds for the control penalty matrix,
R;. Of the four control inputs, two can be reasonably compared to meters and two must be
compared to radians. Tyr and Tygr are both measured in m/s> and their associated
penalties, Rrayr and Ryrgi, can therefore be reasonably compared to the position tracking
states. Control input being less important to penalize than the tracking error in the
enforcement of our mission objectives, if Qzi =1 = 10, and Qx; = Qvi = 1, Ryyr; and Rypg;
should be set to 0.1. Normalizing between the order of magnitude difference between
meters and radians, Rgr; and Rgp; should be set an order of magnitude higher, 1, to more
accurately penalize their control effort with respect to the rest of the problem. However,
unlike the states which are essentially unconstrained other than for obstacle and terrain
avoidance, the control inputs are constrained, therefore their penalties should also reflect
the relative magnitude of an input with respect to their range. For main rotor thrust, the
constraint is set as a maximum load factor of 3.5 Gs. This results in an acceleration range
of 34.3 m/s® as compared to the cyclic commands which have a range ~1.04 radians
(from -0.5 to +0.5 radians) = 60 degrees (from -30 to +30 degrees). Therefore a 0.1 unit
of cyclic command is actually 9.4% of the total range as opposed to one full unit of thrust
which is 2.9% of the total range. To try to balance this, for all tests leading up to

Section 5.2.2 where the weighting matrices will be determined through performance
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analysis, the cyclic gains will be reduced by an order of magnitude, yielding the final
initial control weighting matrix values: Rgr; = Ropi = Rrari = Ryrri = 0.1.

Many resources are available specifically targeting the selection of weights as tuning
parameters in optimization problems. See [21 - 23] for alternative suggestions or methods

of cost function penalty selection.
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Chapter 4
THE TRACKING PROBLEM

The terrain following control problem boils down to a straightforward reference
tracking problem once the constraints of unexpected threats or obstacles are removed.
Since terrain following flight is defined by its very low proximity to the ground, excellent
reference tracking is crucial to the vehicle’s survival. This leads us to optimal control as a
prime candidate method for this research. Optimal control is defined as the contro! which
minimizes a cost functional, within which the controller design requirements are defined
by appropriately weighting the required states and controls. This framework will enable
the precision altitude tracking necessary at such close proximities to the ground with the

freedom to penalize poor lateral tracking and control effort.

4.1 LINEAR QUADRATIC REGULATOR (LQR) TRACKING

This section introduces linear quadratic tracking, the readily computed solution to the
generic optimal tracking problem, as a potential solution to the terrain following problem.
An example of its implementation to a generic terrain following problem such as that
which this research is attempting to solve is also included and analyzed for real-time

application.
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4.1.1 Algorithm Description

As described in Section 3.4, mission objectives are folded into the optimization
largely through the construction of a cost functional to penalize the error between the
actual and reference trajectories and to penalize high control effort. Described in the

continuous time domain for this LQR tracking formulation [22, 24], (15) becomes:

a8y T = [lfr0) = xaer OF Q) = e O} + ()" Rut) s
0

subject to the linearized state equation:

(19)  x(t) = Ax(t) + Bu(t)

Two common methods available for derivation of a closed form solution to the linear
quadratic tracking problem are dynamic programming and calculus of variations. For
complete derivations of both methods see [22] and [24]. This thesis will approach the
solution from a dynamic programming standpoint. The optimal cost-to-go function is

defined, without a penalty on the terminal state, as:

Tr,

@) J7(x(r),1) = min ﬂ{x(z) — X OF O1(0) = gy (0} () Ru(t) i

t
Applying Bellman’s principle of optimality [22], the optimal cost can be written as the
optimal cost to the next time step plus the minimum cost-to-go from the next step to the

end, yielding the continuous time recurrence equation:

t+dt

@2} J*(x(t),t)zmg?li 'fJ(x(t),t)dt+J*(x(t+dt),t+dt)

which can be approximated as the following:

Q) = m(gl[ x(t) = Xy (0)) Qfx(t) = xppp ()} + uT(t)Ru(t)]rlt +J " (x(t + dt),t +dt).

The approximation sign indicates that the result is correct to the first order in dt. As dt>0,

the result is an equality. Applying a first order approximation to the optimal cost to go,

J"(x(t +dt),t +dt) in the second half of the equation yields:

@ = (1)~ xaer O Qo) (O Rl +.7” (s01) [ b
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One way this equation can be solved is to guess a solution form and see if it can be made
to satisfy the differential equation and the boundary conditions [22]. For the convex cost

function of this research, the optimal cost form is asserted to be a quadratic in the state:
Q4 J(x(@),0) = xT(OPEX() +2q" ()x() + r (1)
where P(t) is an n X n matrix, ¢(z) is an n X 1 vector and r(t) is a scalar. This is an

appropriate guess because a convex cost function minimized subject to convex

constraints yields a convex solution space [25], such as the space described by the
quadratic in (24). Taking the derivative of (24), J (x(t),t)and J " (x(1),t)can be inserted
into (23), yielding:

= minlfe(e) = xage (O QL) — xogr () u” (JRuo b+ x(2) PUe)le) +24() o)+
rle)+ [ (PO + X7 (VPR o (PL)E) + 240000 + a7 ()i(0)+ (0 i

Substituting in the linearized state equation constraint for x(z) yields:

= minfLee) i () QLle) = 5 (4 a7 (ORule i+ 5(0)” POe) 2410 x(1)+

(26) r(t)+ [{Ax(t) + Bu(r)Y P(e)x(t)+ x" (e)P(e Ax(e) + Bu(t)}+ x7 (2)P(e)x(t) +

24(t)x(2)+ g7 (t {Ax(e) + Bulr)}+ f(t)]dt

Finally, combining (22), (24), and (26), and subtracting x’ (t)P(t)x(t) +2q" (£)x(t)+ r(t)

(25)

from both sides yields:
27 0= min {x(0) = % (OF Ofx(0) = X (O} + 1" (ORu(t) +{Ax(t) + Bu(t)} P(r)x(1) +
= mi .
v T ()P Ax(r) + Bu(t)}+ x" (NP () x(2) + 2¢(0)x(t) + 2g7 (){Ax(t) + Bu(r) }+ (1)
To find the optimal control, u(r), the derivative of the guantity within the brackets is

taken with respect to u# and set equal to zero:

d
8y Lle]=0
o [o]

(29) =2Ru(t)+2B" P(t)x(t)+ 2B (1)

Therefore, solving for u yields the optimal control:

30)  u(t)=—R'B[Pt)x(t) +q@1)].

The optimality conditions for P(f) and ¢(z) can be found by inserting u(t) from (30) back
into (26):
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IO, = {x() = X OF QIO = x40, O+ 1 R BT [P)x(0) + g0 ]} RE R BT[P(0)x () + 9(0)]}+
x(0)" P()x(e) + 2q(0)" x(t) + r(1) H{Ax() + B R7BT[P(6)x(t) + 0] P)x(r) +

" (OP@{Ax@) + B RTBT[P()x() + g0 [+ " () P()x(1) +

24()x(0) + 2q7 (O{Ax(0) + B R7BT[P(t)x(0) + (o) [+ #(1 e

Subtracting J (x(t),r) = x” (t)P(£)x(t)+ 2q" (£)x(t) + r(¢) from both sides of the equation

€2))

and expanding and collecting like terms, the equality in (31) becomes:
5 0 {x"‘(Q—PBR-‘BTP+ ATP+P+PAr+ }
(¢"(-4BR™B"P+24)+ 2§~ 2xT,. Q)+ F + 2L, Ox,,,

The equality in (32) yields the optimality conditions for P(¢), g() and r(r). For { } to
equal O for all values of x, the following equations must hold:
(33)  —P()=A"P@t)+P(t)A+Q - P(t)BR"'B" P
G4 ~4(0=|A" ~2PBR BT |g(t) - Qe ()
Equation (33) is the Ricatti equation which can be solved for P(f) and (34) is the
associated co-state equation which can be solved for g(f), with their respective initial
conditions as specified in (35).

P(T,)=0

q(T;)=0

As seen in (34), the complete reference trajectory for the time period T; to Tr, Xpgr (1),

(35)

must be available a priori. If the system is stabilizable, the steady state value of P can be
found by solving the algebraic Ricatti equation, setting P =0:

36) 0=A"P(t)+P(t)A+Q—-P(t)BR'B'P

The algebraic Ricatti equation can be solved explicitly for P by forming the system
Hamiltonian, H, as follows [23]. Firstly, define A = Px and A= Px+Px. Plugging these

equalities and equation (30) into (36), yields the differential equations (37) from which

the Hamiltonian matrix of this system, H, can be formed:

i _ _ _ AT
37 A=-0x()-A" A

X=Ax—-BR'B"A
Equivalently:
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Assuming the eigenvalues of H are distinct, H can be diagonalized as demonstrated:

prdiest
(39 . =
2,(1) 0 Az

See [26] for a method to find the steady-state optimal control when the eigenvalues of H

(38)

are not distinct.

Defining the similarity transform which diagonalizes H as:
x(t X, X, |z

w0 { <>}= n Xofz®
A1) Y, Y, |z,

X X,
where the columns { “} and { ]‘} are the eigenvectors of H corresponding to the

21 22
eigenvalues of the Hamiltonian system, -A and A, respectively. Since the Hamiltonian
system eigenvalues are the closed loop system eigenvalues and we have already asserted
that the system is stabilizable, x and A are assumed to be in the stable space of H. Since x
and A are assumed to lie in the stable subspace, they can be represented as a linear

combination of the stable eigenvectors of H:

o [k
A Y,
This matrix equation can be split into two equations separating x and A; x= X, z, and
A=Y, z,, then solving the x-equation for z, yields:
42 oz, =X, 'x
Exploiting the linear relation between A and Y, z; can be inserted as defined in (42),
which can be plugged back into the original definition of A:
“3)  A=Px=Y,z, =Y, X,
and solved explicitly for P:

4y P=Y, X
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Given the steady state value of P, the established reference, x,,, (f), can be input to

complete (34) enabling it to be integrated backwards in time from t = Tg to O to calculate

the costate, g(7). See [22] and [23] for a complete derivation.

4.1.2 Example: Mt. Adams

Calculation of discrete values of P and q followed by simulation through discrete
integration of the system equation with u inserted as defined in (30), has been carried out
for a sampled 2D trajectory over the terrain specified in Section 2.3. A very simplified
helicopter model, with longitudinal states velocity, pitch angle and vehicle altitude, as
linearized about the nominal velocity and pitch angle, to obtain the A and B matrices
necessary for this implementation. Figure 4-1 below shows the 2D altitude reference

tracking results along with the corresponding error values.
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Figure 4-1: Altitude tracking data and corresponding error data from LQR tracking implementation
on sample terrain around Mt. Adams in Washington State.
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With this very simplified case there is hardly any tracking error. It is, however,
important to note that although this controller can provide the very best performance to
all of the specified requirements, it may be simultaneously suboptimal with respect to
other unspecified design parameters or distinct test conditions. The results appear
noteworthy in this application partially due to the fact that the plant to which the resulting
LQR gains were applied was the linear model from which the gains were created. If the
non-linear model or actual flight vehicle dynamics deviate significantly from the nominal
states, the margins inherent to LQR may not be enough to guarantee the quality of
performance.

Though Linear Quadratic Tracking produces a fine answer in theory, there are many
issues presented in actual implementation which cause this method to be impractical for
our application. Firstly, LQR tracking requires a single linearization of the plant model
about its nominal states for the entire trajectory that is to be flown. This is obviously not
going to be valid for all flight regimes, particularly for the mission objective requiring
agile maneuvering between extremes of the vehicle flight envelope. Secondly, as noted in
the problem definition, LQR tracking requires the complete reference trajectory to be
input a priori for optimization of the LQR gains. Not only does this preclude the possibly
of mission or trajectory replanning throughout the flight, it also assumes perfect accuracy
of the reference. Especially at the very low altitudes above ground required by NOE
flight, even the highest resolution map may not be able to warn of unexpected obstacles
such as buildings, vegetation, and rocks or other geographic formations. This type of
information can only be obtained through real-time sensor sweeps during flight. Finally,
LQR yields no method for inputting state or control constraints to the problem. Thus, the
resulting control trajectories of LQR are not necessarily realizable and may lead to

control saturation, significantly affecting performance.

4.2 MODEL PREDICTIVE CONTROL (MPC)

These problems posed by LQR are resolved by alternatively using Model Predictive
Control (MPC). MPC is a repeating, finite horizon optimal control scheme which uses an
internal model of the plant dynamics (prediction model) to predict and feed forward

future errors, thus minimizing both the current error and the predicted future error for the
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finite horizon length [21]. As noted in Section 1.2 the problem of terrain following
guidance and control is highly constrained for a variety of reasons. The internal model
can use the vehicle’s predicted future positions to control the vehicle very close to the
constraints, taking fuller advantage of the feasible flight envelope without constraint
violation. In addition, through its recursive nature, MPC allows for the real-time
incorporation of updated terrain and obstacle information, re-linearization of the plant
around the current flight condition as well as dynamic path re-planning. The following

section will present a systematic build up of basic model predictive control theory.

4.2.1 Unconstrained Solution

MPC, constrained or unconstrained, is set up much like the LQR tracking problem. It
produces a set of control inputs to optimize the system states utilizing a quadratic form
cost functional identical to standard linear quadratic tracking. However, specific to MPC
(and finite horizon control in general), the cost is summed over the finite horizon interval
length rather than over an infinite horizon. The time spanned by the number of time-steps
ahead of the present, (Np), whose penalty terms are included in the cost minimization is
called the prediction horizon, (Hp = Np-Ts, where T is the sample rate of the control

loop). Therefore, in this formulation, the following cost:
i+Np-1

(45) J, = kz ()’k+1 Tl )TQk (yk+1 _rk+1)+”kTRkuk ’

where Oy is assumed to be a positive semi-definite matrix of error penalties for each time-
step k and Ry is assumed to be a positive definite matrix of control penalties at each step
as well, is minimized to determine the optimal sequence of commands, ug, for the
prediction horizon length, Hp. The choice of this horizon length is very important as it is
well known that choosing an insufficient length Hp leads to instability. This must be
balanced with the negative performance affects of an excessively long Hp due to the
added computational effort required. Therefore, this subject will be dealt with in greater
detail in Chapter 5 detailing the implementation used in this research. Once the control
sequence has been determined, the first Ny controls, inputs u; through ui.ny, are applied,

and the calculation is repeated. The time spanning the number of controls applied before

each MPC recalculation defines the MPC rate.
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It is worth noting additionally that any performance objectives could be folded in
here, making MPC online optimization a very versatile and effective way to deal with
real-time reconfiguration and control needs. When the cost function described in (45) is
minimized subject to the constraints defining obstacle free subspace, the resulting
controls synthesize a trajectory with minimal deviation from the reference trajectory
while avoiding encountered obstacles and terrain features.

Taking advantage of the MPC update rate, a discrete-time, non-linear plant mode] that
is assumed and is linearized for each MPC update as follows:

46)  x(k+1)= Ax(k)+ Bu(k)

For the purposes of this research, full state feedback is also assumed, therefore:
#(k | k)= x(k)= y(k). See [21] for a detailed implementation of MPC using an observer.
Without disturbances or measurement noise, the state can be predicted at time k for time

k+1 to time k + N, by iterating the model in (46) yielding:

ik +1lk) A B O O k)
. 2 AB+B B of .
. x(k—:k2‘k) _ A: o : _ u(kﬁz-l‘k)
: : Nyl Np2 :
R+ N, [K)| A DAB Y AB - Blialk+N,k)
L i=0 i=0 |

where f(k+i|k) and d(k +i|k) are the predicted state estimates at time k+i of the state

x and control u, respectively, each estimated at time k. For ease of manipulation, define

each of the matrices in (47) as follows:

ik +1[k) A B . 2 g ikl
. ) AB+ A
M I N I O | vt=| A
‘ : Nyl Np2o :
&k + N k) AY DY AB Y AB - B alk + N, [k)
L =0 =0 ]

thus (47) can be rewritten as Z(k)=¥x{k)+OU(k). With these definitions of the
predicted states, X, we can now rewrite (45), the cost function to be minimized, as:

2 2
@8y J, =z -Tw)|, +|U k).

where Q is the matrix of the state weighting matrices associated with each time-step in

the horizon at time k:

49



0 0 Qk+Np
I" is the matrix of the control weighting matrices associated with each time-step in the

horizon at time k:

R, 0 - 0
0 R, O : q
=| . 0o - o |-an

0 - 0 R,

T(k) is defined as the vector of reference states spanning the prediction horizon at time k:

X ReF (k + ][k)
T(k)= : .
Xpgr (K + 1k +N,)

Then, defining an error vector, E(k), by the known quantities T(k), ¥and x(k):
49 E(k)=T(k)—Y¥x(k)
the cost becomes:
50 J, =[0U k) -Ew®)| +|u®);
which when expanded equals:
51 J, =EKk) QE(k)-2U (k)" ©"QE(k) +U (k) |0" QO+ T (k)
Since E(k), ©, Q and R are known, we are actually minimizing the quadratic form:
J, =const=U (k)" G+U (k)" HU (k)
where:
G =20"QE(k)
H=0"Q0+T
Taking advantage of this form, the minimum can be found analytically by taking the

gradient of J; and setting it equal to zero. This yields:

52)  Vyudi =-G+2HU (k)
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which can be solved for U*(k):
63 U'(k)= %H‘G

However, this alone is only enough to guarantee a stationary point. A necessary condition
for minima of a convex function is a positive definite matrix of second derivatives or
Hessian. To ensure U*(k) is actually the minimum, VJ; is differentiated again with

respect to U(k), yielding the Hessian for this additional test:
0%J, "
(54) ——H*-=2H=2(0"QO+TI)
oU (k)~
Since the weighting matrices Qx and Ry, which make up € and I" have been defined as
positive semi-definite and positive definite, respectively, the Hessian for this cost

function, (54), is positive definite and thus the U*(k) derived in (53) is indeed the optimal

control trajectory. See [21] for a complete derivation.

4.2.2 Constrained MPC

The cost function described in the above can also be minimized subject to linear
inequality constraints on the inputs. These constraints, on the control input and state, take
the following form, borrowing from the notation established in Section 4.2.1:

(55w, Sulk+ilk)<u,

i.min

56) x. . <ux(tk+i|k)<x

i.min f.max

The constraint equations listed in (55) and (56) both represent hard constraints on the
optimization, therefore can never be violated. This can present a problem in the
optimization when the constraints are set too tightly, leaving no feasible soluﬁon space.
Great care has been taken in this research to assure that state constraints are set in such a
way as to provide a non-empty convex feasible solution space. This will be discussed in
further detail in Chapter 6. For cases when a convex feasible solution space is not as
forthcoming, soft constraints which may be violated if required to maintain feasibility of
the optimization, may be added in the following form:

—s<x(k+ilk)<x, .+

X. .
(57) I, min
s=20
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where s is a slack variable that is introduced to the optimization carrying a significant
penalty in the cost function. This penalty causes s to equal zero enforcing this constraint,
except in cases where there is no other feasible solution outside of constraint violation.
As previously stated, however, only hard constraints will be applied in this research, thus
revising the problem statement to the following:

min J; = Z ('xk+l ~Fn )T o, (xk+l i )+ ukTRkuk

Hy

(58) subject to u, o Sutk+ilk)<u, .

£, min

X Sx(k+ilk)<x,

With the addition of constraints, MPC can no longer be solved analytically as in the
unconstrained case. This necessitates a numerical solver. For this research, the quadratic
program solver SQOPT, commercially available from Stanford Business Software, Inc.,
was selected. SQOPT is a set of Fortran subroutines, with a C-code wrapper, which use a
two-phase, active set-type method [27]. These methods are most efficient when many
constraints or bounds are active at the solution, therefore making them a good fit for the
highly constrained problem presented in this research. For a discussion of the
computational speed merits of SQOPT in relation to the Matlab quadratic program solver,
quadprog, see [28]. For an in-depth description of the SQOPT algorithm, see [15] and for
information on how to obtain SQOPT, see [29].

4.2.3 Example: Mt. Adams

A sample implementation of standard constrained MPC was carried out over a section
of Mt. Adams to compare to the tracking errors of LQR tracking. This implementation
also serves as a performance baseline not only in tracking but in computational run-time
for comparison to a simplified MPC formulation which will be described in the following
section.

Figure 4-2 shows the 3-dimensional plot of the sample terrain area surrounding
Mt. Adams in Washington State and the resultant trajectory (plotted in white) following

the reference at 6 meters above the terrain at a 10 knot nominal velocity. In this plot, it is
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Figure 4-2: 3-Dimensional plot of the sample terrain area plotted with the resultant trajectory (in
white) from standard MPC terrain following.

apparent that the 6 meter above ground reference is being obeyed even as the trajectory
crests the first hill and makes its way towards the final waypoint marked by the black ‘x’.
The significant tracking error values for each axis are organized in Table 4-1 followed by
the average optimizer computation time per iteration gathered using the Matlab scripts ric
and foc which start and stop a stop-watch timer and print the number of seconds required

for the operation conducted between the two.

Table 4-1: Maximum, Minimum and Average Error Values for Standard MPC Terrain Following

Minimum Maximum Average (abs)
X-Tracking Error -0.2892 m 2.1005 m 0.04 m
Y-Tracking Error -0.2471 m 2.4047 m 0.077 m
Z-Tracking Error -0.3426 m 0.6331 m 0.0817 m
Average Optimizer Computational Time: 3.438 seconds/MPC control iteration”

" Runs for run-time analysis were conducted with SQOPT, a quadratic programming optimizer coded in
Fortran with a C-wrapper and mexed for use in a Matlab Simulink simulation environment. The simulation
was conducted on a computer with an Intel Pentium 4 processor, a 2.2 GHz processing speed and 1.04 GB
of RAM.
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Figure 4-3: Tracking errors from standard MPC applied to terrain following over sample terrain.
The tracking errors, e = (x—xggr), are plotted versus time for each axis X, Y and Z, in
Figure 4-3. Though the error tracking values are very good for this MPC implementation,
MPC must calculate (Np)*(Number of Control Inputs) separate controls to span the entire
prediction horizon. For this research that amounts to 201*4 = 804 controls along a
10 second prediction horizon at the control rate of 20 Hz with four helicopter control
inputs. Such computational requirements lead to an optimizer computational time on the
order of several seconds on a PC’. This would make an MPC-based formulation
impractical in real-time implementation. This motivates the need for a formulation which
cuts down on computational complexity, allowing the optimizer to solve for the desired

trajectory at the specified real-time rate.

' Runs for run-time analysis were conducted with SQOPT, a quadratic programming optimizer coded in
Fortran with a C-wrapper and mexed for use in a Matlab Simulink simulation environment. The simulation
was conducted on a computer with an Intel Pentium 4 processor, a 2.2 GHz processing speed and 1.04 GB
of RAM.
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4.3 MPC FOR REAL-TIME IMPLEMENTATION

Even incorporating the computational speed advantage of SQOPT over Matlab’s
quadratic program solver quadprog, it is evident that for MPC to be applied real-time, a
less complex formulation which reduces the problem size must be proposed. The
following section proposes such a formulation. In this real-time formulation two
simplifications have been incorporated into the problem definition to alleviate the burden

on the optimizer.

4.3.1 Perturbational Linearization

First, the prediction model is generated for MPC by perturbational linearization of the
6-degree-of-freedom non-linear model (described in Section 2.2) about nominal output
and control trajectories. Perturbational linearization assumes that the input and output
states of a non-linear model can be expressed as a sum of a nominal trajectory and a
perturbation about that nominal. The nominal trajectory captures the key non-linearities
of the system in its operating regime and the perturbational component is assumed to
have a linear mapping between the input perturbation about the nominal controls and the
perturbational output about the nominal output. Therefore, the non-linearity of the system
response can be preserved while the linearity of the perturbational response can be
exploited in the control strategy. With an established nominal control trajectory, uy, and
nominal output state trajectory, yo, perturbational analysis can be used to linearize the
model around these trajectories as follows. Given a non-linear model, x=F| (x,u), the
nominal state and control trajectories are defined by:

(59) Xy = F(x,u0)

By perturbing the nominal trajectory, the perturbational linearization of the non-linear
model, x = F, (x,u), is obtained:

oF,
ox

oF
b i i
+8u

60) k=X, + 0 =F (x,.u,)+ S

Xg-Ug Xyt

6 y=yo+ & =Fy(xg.u,)+ &
Thus the perturbational state and outputs, dx and dy, are defined by the linearization of F,

and F, around the nonlinear trajectories (X, Ug) yielding:

55



(62) Ok = A(x,,u,)0 + B(xy,u,)0u

(63) O =Clxy,uy)0+ D(xy,u,)du

This linearization can then be exploited by charging the optimizer to solve a convex
quadratic optimization problem to find the optimal linearized perturbational control, .
From this, the control trajectory to be applied to the vehicle, u = ug + du, can be found
without requiring non-linear programming to find the optimal u.

In this implementation of perturbational linearization, the nominal control trajectory
(ug) is set as the trim controls for the initial iteration, and for every step thereafter it is
updated as the prediction output of the previous optimization cycle. The nominal output
trajectory (yp) is calculated using the nonlinear input/output relationship defined in the
helicopter model by integrating the helicopter equations of motion for each step in the
horizon length, with initial conditions of the current position and the nominal control

input.
4.3.2 Control Basis Functions

To further decrease complexity, a parameterization of the perturbational control input

trajectory along the prediction horizon is proposed using control basis functions:
Npases
©4)  ulk+ilk)=u,(k+i)+d=u,(k+i)+ > B, (e, (k)
n=1

where u(k+i | k) is the value of control input u predicted at time k for the time k+i, and
i is within the prediction horizon, Hp. The S, are predefined vector sequences of control
spanning the length of the prediction horizon to be optimally scaled and summed to
approximate the optimal control trajectory for the horizon at time #,. The basis functions,

[, are subject to the condition that the basis matrix:

| |
(65) B= ﬁ] ﬂ2 ﬂNms&‘S ’
| |

is full rank and invertible. Given these predefined sequences, B,, the complexity of the
optimization problem can be greatly reduced with comparable performance by charging

the optimizer to find optimal scale factors (o) for each basis function perturbational
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control trajectory along the length of the horizon (optimizer computes Npasps scale-
factors), as opposed to finding an optimal trajectory of perturbational controls for each
step along the horizon (optimizer computes Np controls). The following section will
describe the method of applying control basis functions in the MPC framework and will
formally discuss different families of candidate basis functions, the results attainable with

each family, and ultimately the basis functions selected for this research.

4.3.2.1 Control Basis Function Implementation

Taking advantage of this input parameterization, rather than explicitly calculating
A(xp, tg), B(xo, up), Clxo, up) and D(xy, up), an input-output mapping is constructed using
the linearity between input and output. Combining the basis functions, /3, into a matrix,

B, the vector du can be written as a linear combination of the basis functions as follows:

ol ]
ou,, «,
(66) :A I = lBi ﬁ? ﬁNm.\‘i,\ .
' | | .
5“&+H—I Npasis

Conveniently, based on the linearized model, the vector d can be described as the same
linear combination of a response matrix, S, made up of response vectors, s,, associated
with each basis function, f,. To derive this response matrix, we revisit the continuous
perturbational linear model from (63):

O = C(xy,uy)0k+ D(xy,u,)0u
Discretizing this model into the output space yields the following:
(67) Vi = G(xg,uy), + H(x,,u,)0u,
By substituting a single basis function (£,) for the control vectors spanning the prediction
horizon at a given time #;, U(k), a response vector also spanning the prediction horizon
associated with that particular basis function (s,) can be obtained through the following
recursion:

68) 5, =G(xg,ue)dx; +H(xy,u,)f

n.i
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where n indicates the associated basis function (column of B) and i indicates the
associated step along the prediction horizon. k indicates the current time-step indicating
the initial condition for the recursion. For the first time-step in the horizon associated
with time f;, dx; should be used and s,.; should be used as &; thereafter. In other words,
as described in [10], each control sequence, B,, is input to the linear system yielding a
corresponding output trajectory vector, s,, for the prediction horizon. The response
vectors associated with each basis function can then be combined to form a response
corresponding to the basis matrix, B:

(69) S=|s, s,

= o 3 NH.I.W..\'

Note that unlike the basis matrix (B) which must be calculated once a priori, the current
state, dx, is necessary in the generation of the response matrix, S, therefore must be
regenerated, updating the response for the current linear regime each time MPC is run.
Thus, based on the linear model, the output dy can be written as the same linear

combination of each basis function output, described by the output matrix, §:

N ]
o, x,
(70) _:HI =18 S o SNJHSE.\ :’
' | | '
(%)k +H -1 a""m.\r.\
@k = S a

The cost funcfion can then be described in terms of the nominal and perturbed states:
(71)  y=Sa+yp
(72) u=Ba+y
Thus, the problem can be redefined in its final form assuming full state feedback:
i+H-
(73)  minJ, =Y [(Sar 43y = xpen VO (S@+x0 2y, )+ (Bar+uy) RBa+u,)]
¥ k=i

subject to Ui g Sk +i| k) Su;

.min

x, o <x(k+ilk)<x .

i,min
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4.3.2.2 Candidate Basis Functions

As suggested in Section 4.3.2.1, computational simplification can be attained through
the use of control basis functions to create the input/output system map or prediction
model within MPC. Notice that no requirements are placed on the shape or magnitude of
the functions 3, other than the stipulation that the basis matrix, B, is full rank. With that
in mind, the following section will propose 6 families of orthogonal functions as potential
control basis functions. They will each be systematically applied to the terrain following
guidance and control problem using the implementation proposed in Section 4.3.2.1. The
results will be analyzed for tracking performance and computational simplification and a
final basis function will be selected for the duration of this thesis work. Note that all of
the basis functions proposed are normalized and span the prediction horizon, Np time-
steps long. For all basis function comparison simulations, a 10 second prediction horizon
(Hp =10), 20 Hz control rate (Np = 201) and 2 Hz MPC update rate are set.

The first three basis function families introduced are spaced out in time as the ramps
are in [10]. The box functions are the first and simplest basis functions introduced to this
study. They simply consist of a pulse signal lasting n; time-steps, where ny, the length of
each box, equals the number of time-steps in the prediction horizon divided by the

number of basis functions being applied. This forms the following basis matrix:

1 0 0 -~ 0 A

1 00 0 tiil

010 -0 tk+nl+l
(74) B=|0 1 O 0|, spanning the time horizon, | 7,

O O 1 O tk+2n,+l

00 0 - 1] R

Figure 4-4 shows a graphic illustration of 5 basis functions spanning the prediction

horizon.
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Figure 4-4: Box Basis functions formulated across the 10 second prediction horizon, (5 bases
applied).

The second family of basis functions introduced simply overlap the box functions.
The overlapping boxes are formed similarly to the traditional boxes, however every box

spans 2n; steps, leaving the last box to only span n; steps. This forms the following basis

matrix and is more clearly illustrated in Figure 4-5:

1 0 0 - 0] [
l. 1 0 0 Livmet
(75) B=|0 1 1 0 | spanning the time horizon, Fixedi
0 0 1 0 t!:+3.n,+l
0 0 0 -+ 1 | fonyr
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Figure 4-5: Overlapping Box Basis functions formulated across the 10 second prediction horizon, (5
bases applied).

The tent functions investigated in this research are defined to ramp up to a peak value
of 1 in the first n; time-steps. Then they ramp back down to zero in the next n; time-steps,
defining each tent to span 2n, steps total. As with the two box function families, the span
of each individual basis function depends on the number of basis functions applied. The

corresponding tent basis matrix B is defined in (76).

[ du 0 0 - 0] 7
2du 0 0 0 e
P du o -+ 0 tk+n,
(76) B=|p—-du 2du 0 0 | spanning the time horizon, | f,,, .,
0 P du 0 r)‘c+2M,
0 0 0 - p _tk+N,ﬁl_
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For example, a ramp duration of n;= 1 second (as applied in [10]) results from applying

10 basis functions. See Figure 4-6 for graphic illustration.

Time (sec) 8 1

Figure 4-6: Tent Basis functions formulated across the 10 second prediction horizon, (10 bases
applied).

Beyond the repeated functions spaced out in time, we will explore three families of
orthogonal polynomial functions, the first two of which are related under the broad
category of Gegenbauer polynomials [30]. Gegenbauer polynomials are defined by the
generating function:

an  (—2x+2)" = icf ", <1, o<y

n=0

1 N
where A > Yy The orthogonality property for these polynomials is given by:

n

| g3
a8 [a-x 20 (=0, mzn
-1

and the governing differential equation is:

79 (1=x?)5=(2A+ )y +n(n+24)y =0.
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The first basis function polynomial family investigated is the family of Chebyshev
polynomials. Chebyshev polynomials are the solution to Chebyshev’s Differential
Equation:

80) (1—x))¥—xp+n’y=0
where n is a real number. Defined using the Gegenbauer recursion relation, Chebyshev
polynomials are defined as:

A
(81) Bcneb., (x ) =], B(.‘heh[, (x ) = %L‘_{%Eﬂi(i)
This can alternatively be expressed by Rodrigues’ Formula as follows:
2 m d" (l—xz)”_!

(82) B, (X)=— B
cien, (%) 7 ()" 2n-1)(2n-3)...1 dx"

n=123...

Chebyshev Polynomials, B, , , form a complete orthogonal set on the interval

—1 < x <1 with respect to a weighting function, It can be shown that:

1
o

(83) M#N

.[ ‘/— Che b,\, wab,, (x )dx =0

By using this orthogonality, a piecewise continuous function f{x) in —1<x <1 can be
expressed in terms of Chebyshev polynomials, resulting in the orthogonal series

expansion known as a Fourier-Chebyshev Series expansion [30]:

f(x) where f(x) is continuous

89 D CyBgy,, (x)= ,
N=0 - i
J(x );f (x7) at discontinuities
where
J.\/— (X)chb x)dx Bl
(85) N .

f(x)BCM ( )a’x n=12,...

-

The first 10 Chebyshev polynomials are plotted in Figure 4-7.
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Figure 4-7: Chebyshev polynomials plotted along the prediction horizon from 0" order to 9" order.
The second polynomial family investigated is Legendre polynomials. Legendre
polynomials are the solution to Legendre’s Differential Equation:

®6) (1-x")y—2xy+n(n+1)y=0
1
where n is a real number. Defined using the Gegenbauer recursion relation, with A = 5

Legendre polynomials are defined as:

a2l 1) (2 — 26 )"
87 B = ’
(87) Legendy, (X) = 2n k'(fl _ k)[(n — 2k)l

n=0.12,...

This can alternatively be expressed by Rodrigues' Formula as follows:
1 # ~ n

88) B ()= Td—”(x -1, n=012,...

Legendre Polynomials, B, ., , form a complete orthogonal set on the interval

—1<x <1, thus:
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1
(89) IB Legend,, (’C)B Legendy, (X)dx =0 M =N
~1

By using this orthogonality, a piecewise continuous function f{x) in —1< x<1 can be
expressed in terms of Legendre polynomials, resulting in the orthogonal series expansion

known as a Fourier-Legendre Series expansion [30]:

f(x)  where f(x) is continuous

Z CN BLe‘germ'N (X) =
N=0 . "
Jx) .; ACS at discontinuities
where
2n+1 .
CN = [I f (X)B Legend (x)d.k k

2
The first 10 Legendre polynomials are plotted in Figure 4-8.
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Figure 4-8: Legendre polynomials plotted along the prediction horizon from 0" order to 9" order.
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The final family of basis functions being investigated is Laguerre polynomials.

Laguerre polynomials are defined by the generating function:

vy  (1- t)_le[A"’} =D Bl X, <l 0<x<eo,
n=0

and are the solutions to Laguerre’s Differential Equation:

(91) xy—(l—x)y+ny=0

where #n is a real number. Expressing the exponential term as a series, Biraguerre becomes:

@) B (x)—iM n=0,,2
Laguerre, por (k')Q!(n —k)!’ P et R

This can alternatively be expressed by Rodrigues' Formula as follows:

(93) BLagMerre” ('x) = _e— d (x"e_x )’ n= 0’1’2" ot

Laguerre Polynomials, B form a complete orthogonal set on the interval

Laguerre, *

0 < x < o=, with respect to the weighting function e, thus

=3

(94) J'e va Laguerre, (.Xf)B Laguerre,, (x)dx =0 m#n
0

By using this orthogonality, a piecewise continuous function f{x) can be expressed in
terms of Laguerre polynomials, resulting in the orthogonal series expansion known as a

Fourier-Laguerre Series expansion [30]:

. f(x) where f(x) is continuous
(95) Z CnB Laguerre, (x) =9 s

0 ICHRTACH!
2

at discontinuities

where:

(96) Cn = e_xf(X)B Legend, (x)dx :

The first 10 Legendre polynomials are plotted in Figure 4-9.

66



0.8 —
0.6 -
2%
0.4 5 ’% (’/} %
%M/// ,//
10

4

Time (sec)

Figure 4-9: Laguerre polynomials plotted along the prediction horizon from 0" order to 9" order.

4.3.2.3 Basis Function Comparison and Selection

In this study, the motivation is to take advantage of the series expansions from each
of the families of basis functions to approximate the optimal control of our system. The

approximating basis function must balance a satisfactory approximation of the optimal

cost J while adequately decreasing the complexity of the optimization problem. This
trade-off is especially apparent when considering the two families of basis functions
presented in this research. Polynomial functions may be exploited to further simplify the
problem depending on how well the functions themselves can approximate the control
input. If the function family happens to be a good fit generally for the optimal control
sequence to be generated, it may be able to approximate the control with fewer basis

functions than the repeating function families. However, the repeating function cost

approximations with n basis functions, J approaches the optimal cost using the

Apx, ?
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standard MPC formulation, J ", as n approaches the number of time-steps in the horizon,

Np, lim J,, = J . The polynomial functions carry no such guarantee.

n—->Np

To investigate this trade-off for all of the candidate basis function families, the cost
function was simplified to penalize only terrain tracking error with a commanded step in

altitude. The MPC loop was then run for one iteration to calculate the optimal

*

unconstrained control trajectory and the associated optimal cost, J, . This was carried

Apx,
out, incrementing the number of approximating basis functions spanning the prediction
horizon from | to 50, for each family of basis functions. The resultant optimal costs are

plotted in Figure 4-10.
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Figure 4-10: Optimal cost approximations varying with the number of applied basis functions plotted
for each basis function family along with the true optimal cost yielded by standard MPC
formulation.

As you can see in the figure, the basis functions which most nearly approach the true

optimal cost J " are the repeating functions; boxes, overlapped-boxes and the tents, all of
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which approach the optimal cost as the number of applied basis functions increases. In
contrast, the polynomial functions approach a cost limit as the order is increased that is
higher than the repeating functions. However, it is interesting to note that the rate at
which the polynomial functions approach the optimal cost limit is initially greater than
that of the repeated functions. Specifically, depending upon the computational runtime
difference between 5 and 15 basis functions and the tracking performance degradation as
the cost declines from optimal, the trade-off between computational complexity and
performance could lead to either the Laguerre polynomials or the repeating tents or
boxes. Figure 4-11 shows a close up of original plot honing in on the 5 to 15 basis
function range. (Note: The Chebyshev and Legendre polynomials were dropped out of
consideration after preliminary testing showed they did not lend themselves to this

application causing infeasibility during MPC initialization.)
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Figure 4-11: Close-up of Optimal Cost Approximation with Increasing Number of Basis Functions.
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To weigh the computational benefit of selecting 5 applied basis functions versus 15,
the runtimes® must be investigated. The optimizer computational time per iteration
information was gathered using the Matlab scripts tic and toc. These commands start and
stop a stop-watch timer, outputting the number of seconds required for the operations
conducted between the two. These times are plotted in Figure 4-12 with respect to the

number of bases applied.
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Figure 4-12: Runtime per iteration plotted versus the number of bases applied.
As you can see, the computational time required by the optimizer per iteration increases
linearly with number of basis functions applied.

The second half of the trade-off is the performance degradation as the cost less
accurately approximates the optimal. The comparison of the optimal trajectory and the

basis function approximations after a single MPC iteration is plotted in Figure 4-13.

* Runs for runtime analysis were conducted with SQOPT, a quadratic programming optimizer coded in
Fortran, converted to C and .mex-ed for use in a Matlab Simulink simulation environment. The simulation
was conducted on a computer with an Intel Pentium 4 processor, a 2.2 GHz processing speed and 1 GB of
RAM.
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Figure 4-13: Optimal trajectory plotted with the basis function approximations at k=1.

However, due to the repeating nature of MPC, the performance tradeoff can not be
measured simply by looking at the optimizer’s first guess at the controls over the entire
trajectory length. The resulting state trajectory found by applying the optimal controls for
the entire prediction horizon does not accurately demonstrate MPC performance in a
single iteration because once MPC is initialized; the first 0.5 second trajectory of controls
within the horizon has been iterated upon 20 times before it is actually applied. In attempt
to capture this iterative performance and increase the applicability of this exercise, the
step in altitude reference from Figure 4-13 was inserted into the cost described in (15)
with constant X, Y and ¥ references, and followed by MPC for 15 seconds. The resulting
responses are plotted in Figure 4-14 for each of the remaining prospective basis function
candidate combination; 10 boxes, 10 tents and 5 Laguerre polynomials, each spanning the

10 second prediction horizon.
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Figure 4-14: Step in altitude reference plotted with the responses of 10 Boxes, 10 Tents and 5
Laguerre polynomials applied in MPC with the 4-state error cost from (15) including constant X, Y

and ¥ references, over 15 seconds.

In contrast to Figure 4-13 which shows the Laguerre functions to be a poor
approximation of the optimal, it is clear from Figure 4-14 that the Laguerre polynomials
satisfactorily approximate the optimal control when applied in the repeating MPC
algorithm, while decreasing the computational complexity. Note that 15 seconds of
response is plotted exhibiting the initialization of the MPC algorithm within the first
10 seconds, and within the final 0.5 seconds of the response each 0.5 second trajectory of
control applied has seen 20 iterations of improvement before their respective application.
From this plot we can surmise that the tents and boxes each converge to the optimal
solution but with potentially large transient error. The Laguerre polynomials appear to

have the characteristic of lower transient errors as the algorithm is initializing but a

slightly higher average error upon initialization.
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4.3.3 Example: Mt. Adams with Basis Function Application

Given the results from the previous section, the next step is to apply these basis functions
to our problem of terrain following guidance and control. We start by reviving the cost
from (15) and inserting this into (73), the MPC cost formulation summed over the

prediction horizon using basis functions to approximate the optimal solution becomes:
o7

Z; iz
Xo, ~XRer, Xo, — Xrer, TMR‘ TMR¢
i+H -1 Y] -y y -y 0 9
Yo Y REF Yo YReF, R R
I, = Z Sa+| : O, Sa+| “ ||+ Ba+| * R|/Ba+| *
=i <o, T Zrer, 2o, ~ Trer, 9;1 o,
\Pok - '/,Ri:'ﬁ lPuA - WRE.'-" TTRA TTR‘
where:
e, 0 0 - 0o 0 0
& MEk
0 ‘ 0 0 0 R 0 0
0, = 2 and R, = %
o 0 ¢ 0 O 0 R, O
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Figure 4-15: Resultant trajectories plotted in 3D on the sample terrain for each of the candidate basis
functions: 10 Boxes, 10 Tents and 5 Laguerre polynomials,
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Figure 4-15 plots the response for each candidate basis function as applied to the sample
section of Mt. Adams terrain seen in the LQR tracking test. The tracking errors

corresponding to each candidate basis function are shown in Figure 4-16.
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Figure 4-16: Resultant tracking error plotted for each of the candidate basis functions: 10 Boxes, 10
Tents and 5 Laguerre polynomials.

Through investigation of both Figures 4-15 and 4-16, it is clear that all three basis
functions approximate the optimal control trajectory comparably, with respect to tracking
error magnitudes, in actual guidance and control application with the complex 4-state
terrain following cost. The optimizer computational runtimes for each candidate basis

function implementation are plotted in Figure 4-17.
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Figure 4-17: Optimizer computational runtimes plotted for each of the candidate basis functions
when applied to actual terrain, minimizing the 4-state terrain following cost function.

Figure 4-17 confirms that all three basis function implementations take considerably less
time per iteration than the average 3.4 seconds per iteration that regular MPC requires.
Since the tracking errors have already been shown to be comparable between the three
basis function candidates, the basis function selected for the duration of this thesis can be
chosen based on the reduction of computational complexity and runtime. Since the choice
of 5 Laguerre basis polynomials requires half as many functions to produce tracking
performance equivalent to that of 10 boxes or tents, cutting the required time for
optimization in half, they have been selected for the duration of this research.

Having severely cut down the computational complexity of the problem, the tracking
errors resulting from basis function implementation are quite comparable to the tracking
errors found in regular MPC implementation, especially when the average error values
are considered. This is demonstrated in Table 4-2 which compares the tracking error
values in X, Y and Z between the standard MPC formulation as in Section 4.2.3 and the

MPC implementation with Laguerre polynomial basis functions.
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Table 4-2: Maximum, Minimum and Average Error Values for Standard MPC Terrain Following
compared with those of MPC with Laguerre polynomial basis function implementation

Regular MPC MPC w/Laguerre basis functions
Min. (m) | Max. (m) | Avg(abs) | Min. (m) | Max. (m) | Avg (abs)
X-Tracking Error | -0.2892 2.1005 0.0420 -0.4758 2.1298 0.0848
Y-Tracking Error | -0.2471 2.4047 0.0778 -0.5061 2.4201 0.1354
Z-Tracking Error | -0.3426 0.6331 0.0817 -0.7841 1.2244 0.2481
Average Optimizer 3.438 sec 0.0812 sec

Computational Time

Though the maximum error values are higher with the basis function implementation, the

average error values are still very small for both the basis function and standard MPC

formulations. This proves basis function implementation to be an effective way of

reducing computational complexity and runtime without sacrificing performance.
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Chapter 5

MPC PARAMETER TUNING AND
RESULTS FOR TERRAIN FOLLOWING

This research seeks to take advantage of the obstacle avoidance inherent with the
application of hard state constraints and extend it to ground collision avoidance for NOE
flight. The following chapter will treat the problem of following the terrain at 6 meters
AGL, enforcing ground collision avoidance through the application of a lower bound on
altitude which is set at a safe distance above the ground. Parameter sensitivities for cost
function penalty and prediction horizon length will be investigated with respect to
stability and tracking performance. Once all parameters have been set, the algorithm
sensitivities to terrain severity at varying nominal velocities will also be explored through

application to several different terrain cross sections.

5.1 STATE CONSTRAINT GENERATION AND IMPLEMENTATION

The altitude constraint to be applied at each time-step along the reference trajectory is
found in a similar manner to the setting of the reference trajectory. For each (x.,y)
coordinate along the final sampled reference trajectory, the constraint is set at the actual
terrain elevation at that point. This establishes a state constraint defined in the earth frame
for each time step, i, along the prediction horizon:

98)  z,.. <zlk+ilk)

i.min
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Since the optimizer is being charged to find scale factors for each control basis function,
it 1s necessary to convert the output spatial constraints into constraints on the control
scale factors, a. To accomplish this, the equalities (71) and (72), derived in
Section 4.3.2.1, are used to form inequalities for the state and control constraints in terms
of o

(99) Vim SSQ+ y,

(100)  uy, <Ba+u,

These can be rearranged to yield the traditional linear constraint inequality:

S =
(101) [ }asiiyhm ijl
B ulim_uo

Finally with all constraints in terms of o, the cost function from (73) can now be solved

and the terrain following portion of the algorithm is complete.

3.2 VARIATION OF MPC PARAMETERS

Now that the terrain following problem has been transposed as a convex optimization
problem via perturbational linearization of the model and its dimension reduced by
introducing low order basis functions, it can be posed and solved in real-time. With the
application and algorithm established, MPC parameter sensitivities can be investigated
and the appropriate parameters selected for this application. There currently exists no
formal procedures for MPC parameter selection, thus successfully applying MPC can be
somewhat of an art form. For the terrain following application, parameter selection is an
especially challenging task because there are multiple states and control inputs for which
weighting matrices must be populated. With this in mind a balance must be found
between keeping the problem size to that which can be computed in real-time and how
much look ahead is required to allow the controller adequate anticipation of changes in

the terrain.

5.2.1 Variation of Prediction Horizon Length

MPC literature has indicated that choosing an insufficient look-ahead leads to

instability [21, 31], therefore the selection of the prediction horizon length, Hp, is crucial
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to the successful implementation of MPC. The anticipatory qualities of MPC are directly
related to the prediction horizon length. Therefore, if not chosen wisely, a stable
prediction horizon may still result in poor tracking performance as MPC is not obtaining
adequate knowledge of the system. Depending on the non-linearities present in the plant
model and the severity of the maneuvers required, as the prediction horizon length
increases past a given threshold the performance begins to degrade as the vehicle creeps
beyond the flight regime about which the prediction model was linearized. The
computational burden involved with an excessively long prediction horizon may also
contribute to poor performance. If after searching for an excessively long trajectory of
controls, the maximum allowable iterations may be reached, forcing the optimizer to
abort the optimization without returning a feasible solution. The prediction horizon
should be selected as one of the shortest horizon lengths which yield good tracking
performance while also maintaining system stability.

To establish the appropriate length of prediction horizon for this thesis, the
constrained MPC terrain following algorithm was tested against the worst case terrain for

prediction horizon lengths varying from 3 seconds to 18 seconds.
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Figure 5-1: Tracking performance plotted for prediction horizons varying from 4 to 8 seconds.
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From this test, it was determined that for this application, a 3 second prediction
horizon is not sufficient for stability. A 4 second horizon was found to be marginally
stable. Increasing the horizon length from 4 seconds to 8 seconds, the tracking
performance improved with each additional second and then leveled off at approximately

6 second prediction horizons. This is more noticeable in Figure 5-2, a close-up of

Figure 5-1.
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Figure 5-2: Close up of tracking performance plotted for prediction horizons varying from 4 to 8
seconds.

Figure 5-3 shows that a prediction horizon of 6 seconds sufficiently accommodates
our tracking problem. Prediction horizon lengths around 8 seconds are sufficient to
prevent instability and yield good tracking performance. We selected a conservative
prediction horizon length of 10 seconds for the duration of this research in attempt to
accommodate a wider range of terrain beyond that which was tested here. A 10 second
horizon was selected to enable obstacle avoidance as well, because the 10 second look-

ahead accommodates the obstacle sensor range at typical NOE flight speeds.
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Figure 5-3: Maximum tracking errors in each of the earth frame axes
plotted for varying prediction horizon length.

5.2.2 Variation of Terrain Following/Terrain Avoidance (TF/TA) Ratio

The values of Qx, Qv, Oz and Qv have been predetermined as described in
Section 3.4. To implement the TF/TA ratio, T, we assigned Qx = Qy = a and Q7 = at.
Similarly, normalizing between meters and radians and the relative importance of
Y-tracking to the terrain following problem determined the W-weight, Oy = 101. Setting
a high value for t will allow little deviation from the set altitude above ground while
allowing the xy-track to meander. A smaller value will emphasize lateral tracking while
not attending as highly to maintaining the precise distance above ground (a safety margin
will be enforced by constraints in either case).

Before the analysis was conducted comparing different combinations of the control
matrices, Ry, performance tradeoffs were conducted to determine the appropriate TF/TA
ratio. In testing various TF/TA ratios to determine (O, the Ry weights for all controls were
defined as Ry = 0.1. These control penalty combinations will be tested and compared once
the appropriate TF/TA has been established. The TF/TA ratios tested are listed in Table

5-1, followed by their resultant tracking error performance plotted in Figure 5-4.
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Table 5-1: Weight variations conducted for determination of Q, values

TF/TA, t Qx/y Qw Rmrrrr Reye
1 1 10 0.1 0.1
10 1 10 0.1 0.1
100 1 10 0.1 0.1
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Figure 5-4: Tracking error performance plotted for the four references (X, Y, Z and ¥) towards the
determination of the TF/TA ratio.

It is clear from Figure 5-4 that the X and Y error values are acceptable for all TF/TA
ratios, therefore we are free to make the TF/TA selection based on the desired altitude
and heading (V) tracking. At a glance, it is obvious that the TF/TA ratio necessary to
obtain the altitude tracking accuracy imperative to terrain following flight must be greater
than 1, as this ratio leads to maximum altitude errors of 2 meters even at the nominal
speed of 10 knots (nominal speeds will be varied up to 30 knots later in this section). The
maximum altitude tracking error of TF/TA = 1 is halved by increasing the ratio to 10 or
100, as shown in Figure 5-4. The average Z-error highlighted in Table 5-2, is reduced
even further when the TF/TA ratio is increased, eliminating TF/TA = 1 from

consideration.
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Table 5-2: Average Error Values for TF/TA = 1, TF/TA = 10 and TF/TA = 100

TF/TA=1 | TF/ITA=10 | TF/TA =100
Avg (abs) | Avg (abs) Avg (abs)
X-Tracking Error (m) 0.0391 0.0790 0.0857
Y -Tracking Error (m) 0.1031 0.1494 0.1644
Z-Tracking Error (m) 0.7104 0.1611 0.1584
‘W-Tracking Error (m) 0.1358 0.1558 0.1962

Though there is a significant difference in altitude tracking performance between
TF/TA =1 and TF/TA = 10 or 100, there is no apparent tracking benefit associated with
applying TF/TA = 100 as opposed to TF/TA = 10. Therefore, since relatively equivalent
performance is attainable with both TF/TA ratios, we select the TF/TA ratio of 10 for the

duration of this research to keep the magnitude of the cost smaller.

5.2.3 Variation of Control Weighting Matrices

The investigation of the control weighting matrices was conducted by both linear
closed loop eigenvalue analysis of the perturbational component of key system states and
tracking performance analysis. The linear closed loop eigenvalue analysis was conducted
on the two key system states, altitude (&z) and yaw rate (), with respect to varying Ry.
In applying perturbational linearization, a linear input-output mapping is assumed
between the perturbational control and the perturbational state as follows:

' =K'&
Using (102), K can be backed out based on (71) and (72) and corresponding closed loop

(102)

eigenvalues can be obtained for stability analysis.

These closed loop eigenvalues were found for these inputs by using the Matlab script
linmod to obtain the linear state-space matrices A, B, C and D, linearizing the system
about the input nominal states. From the state space matrices, the input/output mapping
K", was applied to the system as illustrated in Figure 5-5, and eigenvalues of the [z, &]

subspace to the controls, [dTag, T71r].
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Figure 5-5: Block diagram showing loop closure with MPC gain

To obtain the MPC input/output mapping gains, K, with which to close the feedback
loop, firstly MPC was run for 15 seconds tracking a constant reference to initialize the
system. Then, to obtain K~ from (102), the equalities derived in (71) and (72) to equate u
and x in terms of ¢ were inserted as follows:
(103) Ba =K Sa’.
Then, using the pseudo-inverse of S¢, (103) can be solved for K
(104 K" =(Ba'Se' )"
To test out the sensitivities of the transfer functions STyr/&% and Srr/& to various

combinations of control weighting matrices R, the above procedure was conducted and

K’ calculated for the following weighting combinations listed in Table 5-3.

Table 5-3: Weight variation conducted for stability analysis of closed loop with MPC gain

Test Run Qz Qxry Qv Rrmr/rTr Reve
1 10 1 10 0.1 1
2 10 1 10 0.1 0.01
3 10 1 10 0.1 0.001
4 10 1 10 1 0.1
5 10 1 10 0.01 0.1
6 10 1 10 0.001 0.1

The resulting closed loop poles are plotted in Figure 5-6 for the transfer function 8Tyg/ %
and in Figure 5-7 for the transfer function dI'7x/&. For the transfer function éTyr/ %, the
controller moves the open loop pole at the origin to the left to obtain varying degrees of
faster response depending on the control weighting matrix combination. Note that pole

movement at the origin due to varying control weights is very small (on the order
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T T T T T T T T T
0.3F 4
0.2 -
0.1 e
E‘ /i
e
o)) oFrm= i =
(o]
E
0.1k 4
sl * Royprrr =01 Ry =1 |
=u. x RTMHHTR=0'1‘HCYC=O'O1
X RTMFlﬂ'I'R =01, RCYC =0.001
< Rrmprrr =1 Reye = 041
-03H «=x RTMR/TTR =0.01, RCYC =0.1 b
Rrvarra = 0001, Reye = 0.1
O Open-loop Poles
1 1 I | 1 1 1 | 1
-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Real

Figure 5-6: Closed loop eigenvalues plotted for the transfer function &Fyz/& with K~ calculated for
various control weight combinations. )

of 10™%). Given that these characteristics are consistent for all control weighting matrix
combinations, it can be surmised that there is very little system sensitivity to the control
weighting matrices, R, with respect to the primary longitudinal control input to state
transfer function, ol yr/&%.

The primary lateral control input to state transfer function investigated, Sl'7r/dr,
yielded more interesting sensitivity results to variations in the control weighting matrix.
These eigenvalues are plotted in Figure 5-7 on the following page. The movement of the
pole at the origin is the most interesting feature to note on this plot as some control
matrix combinations move the pole into the right half plane. This may indicate instability
of some control weighting matrix combinations and will be kept in mind as tracking

performance tests are evaluated.
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Figure 5-7: Closed loop eigenvalues plotted for the transfer function &I'7x/& with K~ calculated for
various control weight combinations.

While the eigenvalue sensitivity analysis yields a glimpse into the effects of the MPC
controller, the relatively small variations in pole placement with variation in control
weighting matrices, Rg, make it difficult to specify the best values. Because of this,
tracking performance with varying Ry is also included in this investigation to give
additional insight. The initial conditions of this test were set to excite both longitudinal
and lateral dynamics. A 1 meter step in altitude was required of the vehicle to provide a
picture of the longitudinal response speed and damping for each control weight
combination. An initial 90° turn was also initiated to obtain lateral damping performance
with each of the control weightings. The lateral damping is especially important to
investigate per the eigenvalue analysis to assure that movement of the pole at the origin
slightly into the right half plane for some control weight combinations is transient and
does not affect the steady state stability of the system. The tracking performance for each
of the weighting matrix combinations are plotted for each reference axis (X, Y, Z and V)

in Figure 5-8.
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Figure 5-8: Tracking performance plotted for various control weight combinations for each tracked
state, X, Y, Z and .
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As we suspected per the eigenvalue analysis which shows the pole at the origin being
moved into the right half plane by the MPC gain associated with the control weight
combination of Ryyr/rrr = 1, Reye = 0.1, the oscillation in the lateral response appears to
be growing, indicating instability and ruling out that weight combination. Longitudinally,
also consistent with the pole-zero maps, there is no such instability, however, a large
amplitude oscillation is produced by the combination Rrmr/rr = 0.1, Reye= 0.001. Since
this particular weighting matrix combination also includes the slowest longitudinal
damping response, it is removed from consideration as well.

Overall, the performance data indicates that the test combinations Rrmrrr = 0.1,
Rcyc = 0.1 and Rymer/rrr = 0.1, Reye =0.01 yield the best performance. Both of these
combinations exhibit fast damping of the X oscillation caused by the initial 90° turn to
traverse the Y-axis. The two weighting combinations also exhibit the best altitude
tracking with fast response and very little overshoot or oscillation. Finally, unlike many
of the gain combinations, they zero-in on the ¥ reference without overshoot. This is
especially the case for the second of the two specified combinations which had the fastest
response of all of the gain combinations. Therefore for the duration of tests, the optimal
weightings for the cost function describing terrain following guidance and control Qy and

Ry will be set as follows:

Oxi=Qvi=1, Q7 =10, Qw =10, R = Rgp; = 0.01 and Ryyr; = Rygi = 0.1.
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5.3 MPC RESULTS: VARIATION OF TERRAIN SEVERITY AND
NOMINAL VELOCITY

Given the established MPC parameters, sensitivity investigation can be conducted on
the nominal velocity and terrain steepness. To obtain comparison data for this part of the
study, varying terrain cross-sections were tested at nominal velocities ranging from 10 to
30 knots. These four terrain sections, shown in Figure 5-9, were selected to provide a
variety in levels of tracking difficulty. The relative difficulty of each section was
determined based on the changes in flight path angle required for tracking the terrain. All
simulation runs were conducted with the initial waypoint set to the appropriate
X-coordinate (selecting which cross section is being traversed) and Y = O (the top edge of
the map). Aiming to traverse the Y-axis at a constant X-position to obtain each desired
cross-section, the final waypoint was set to the lower edge of the map at the initial

X-coordinate and Y = -3600.

- Terrain Section 1
—— Terrain Section 2
—— Terrain Section 3
—— Terrain Section 4

Figure 5-9: 3-Dimensional plot of the sample terrain area with the four terrain section reference
trajectories plotted and labeled 1 to 4 from left to right.
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5.3.1 Terrain Section 1

The first terrain section selected for investigation is marked by relatively low
maximum flight path angle magnitudes (maximum magnitude of 40 degrees declining

right at the start and gradually decreasing for the duration of the traverse).

Reference — TS1
—— Vnom = 15 kt
Fd Vnom = 20 kt

Figure 5-10: Terrain Section 1 results for varying nominal velocities plotted with the initial reference
line connecting the initial and final waypoints.
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Figure 5-11: Terrain Section 1 plotted with simulation data at nominal velocities varying from 15 to
30 knots. Upper figure is a bird’s eye view of the performance. Lower figure is a cross-sectional view.
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Figure 5-12: Terrain Section 1 reference tracking errors in X, Y, Z and ¥ for nominal velocities
varying from 15 to 30 knots.
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5.3.1.1 Lateral Tracking Variation — Terrain Section 1

The performance data in Figure 5-11 shows a drift in the lateral tracking from the
initial reference of a straight line down the Y-Axis at X = 5512, to where the run was
stopped at X=5545. Though the lateral reference is redrawn each time as the line
connecting the final waypoint and the current position, the lateral error contribution in the
cost, per its assigned weight, is not enough to drive a significant change in lateral
direction, leading to the lateral offset as the final waypoint placed at (5512, -3600) is
approached. It is clear that at about halfway through the run (Y= -1500) the controller
begins to direct the helicopter back towards the final waypoint. A 3D plot of the resultant
trajectory for each feasible nominal velocity is shown in Figure 5-10, which illustrates the
small magnitude of the drift with respect to the total distance traveled.

The “Y-reference was tracked with an average error of less than +/- 0.1 radians
(~5 degrees). The maximum error magnitude was 0.5 radians (~30 degrees) occurring
while the controller was initializing. Given the greater emphasis on longitudinal tracking
in this research, the lateral offset and maximum heading error are well within acceptable

limits.
5.3.1.2 Longitudinal Tracking Variation — Terrain Section 1

The altitude tracking error plotted in Figure 5-12 shows clearly that longitudinal (Z)
reference tracking is very accurate even at the nominal velocity of 20 knots, with an
average tracking error of approximately 1 meter with a maximum error of less than 3
meters even at 20 knots. Both are well within the applied limit, indicated in Figure 5-12
on the Z-tracking error plot by the dotted line. For this terrain section, the higher altitude
tracking errors occurred within the first 10 seconds of the run, as the algorithm was
initializing. At the nominal velocities of 25 and 30 knots the optimizations aborted due to
infeasibility when the helicopter encountered the initial trajectory requiring ~25 degrees
negative slope. We hypothesize that at higher flight path angles, the limits of helicopter
maneuverability at high speeds are approached increasing the probability of infeasibility

in the optimization. However, the nominal velocities of 25 and 30 knots were likely not
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attainable for this terrain section due to the lack of algorithm initialization before

encountering the slope, rather than the steepness of the slope itself.

5.3.2 Terrain Section 2

The second terrain section to be investigated was selected for its tame first half to
promote algorithm initialization followed by ramping up of required flight path angles for
the second half of the run. Unlike Terrain Section 1, Terrain Section 2 starts out with a
much more gentle ~10 degree downward slope but then instead of getting shallower as
the terrain progresses, there are two small hills encountered on either side of a valley
creating a sequence of gradually increasing reference flight path angle magnitudes. The
sequence of flight path angles starts with an initial flight path angle of -10 degrees,
followed by +20 degrees as the first hill is encountered. Then as the hill is passed, the
reference flight path angle of -25 degrees is commanded into the valley followed by +30
degrees ascending out of the valley at the end of the run. This combination of terrain
features was selected in the hopes of initializing the algorithm well before the more
severe flight path angles are encountered, enabling the maximum feasible flight path
angle associated with the remaining feasible nominal velocities of 10, 15 and 20 knots to

be found.

Reference — TS2
| — Vnom = 10 kt
| — Vnom = 15 kt
| —— Vnom = 20 kt

reference line connecting the initial and final waypoints.
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Figure 5-14: Terrain section 2 reference tracking errors in X, Y, Z and ¥ for nominal velocities
varying from 10 to 30 knots.
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Figure 5-15: Terrain section 2 plotted with simulation data at nominal velocities varying from 10 to
30 knots. Upper figure is a bird’s eye view of the performance. Lower figure is a cross-sectional view.

5.3.2.1 Lateral Tracking Variation — Terrain Section 2

The lateral tracking trends for Terrain Section 2 are very similar to that of Terrain
Section 1. The same lateral drift appears in the first half of the run, showing the same
variation with nominal velocity (lower nominal velocities of 10 and 15 knots yielding
smaller lateral offsets from the nominal reference connecting the initial and final
waypoints.) As with Terrain Section 1, at around Y = -1500 the controller begins to curb
the drift, however this point happens to coincide with the first slope increase in Terrain
Section 2. This appears to have a negative effect only on the 20 kt nominal velocity as a

further lateral drift is instigated at this point. Notably different from the Terrain Section 1
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data, though the controller appears to arrest the drift midway through the Terrain
Section 2 runs, there is no definitive sign of the helicopter moving back toward the final
waypoint. This may be due to the fact that the most severe flight path angles required in
these runs occur between Y = -1500 and Y = -2500 preventing the controller from
removing the lateral drift due to the higher demands for terrain tracking response.

The heading tracking error also reflects the redirection of control effort to track
altitude as the terrain gradually becomes more difficult. The maximum heading tracking
errors (algorithm initialization transients excluded) occur for all three feasible speeds
during the second half of the run when the required flight path angles begin to ramp up. It
is expected that lateral tracking (including heading) will suffer as more is required from
longitudinal tracking due to the lower penalty on lateral tracking as compared to
longitudinal tracking in the cost function definition. Figure 5-13, a 3D plot of the
resultant trajectory for each nominal velocity illustrates the relative magnitude of the

lateral drift with respect to the total distance traveled.

5.3.2.2 Longitudinal Tracking Variation — Terrain Section 2

The increase in altitude tracking error with increased nominal velocity becomes more
pronounced as the terrain of the traversed cross section becomes more severe. It was
hypothesized in Section 5.3.1.2 that at the higher flight path angles the limits of the
helicopter maneuverability at high speeds are approached. This is further supported by
the tracking error data as the required flight path angles increase through Terrain
Section 2. The maximum altitude tracking errors for this terrain section are -3 meters for
Vnom = 10 kt, 10 meters above and -5 meters below the reference for Vnom = 15 kt and
-5 meters for Vnom = 20 kt. The maximum error magnitude for nominal velocity of 15 kt
is mentioned above and below the reference because even though the error above the
reference is greater in magnitude, it still has no effect on the feasibility of the
optimization. The error magnitude below the reference still lies well within the 6 meter
limit imposed by the ground (indicated on the Z-tracking error plot in Figure 5-14 by the
dotted line). It is also worth noting that the optimization aborts at Y = -2500 for the 20
knot nominal velocity, just as the reference trajectory is demanding the highest angle of

attack for this terrain section, which is 30 degrees. The published helicopter limits show
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that helicopter maneuverability crests at a certain operational speed then rapidly decays
due to quicker vehicle control saturation associated with increase in speed. This
combination of speed and flight path angle appears to have broached the vehicle’s
dynamic limits, leading to the observed infeasibility of the optimization in this

simulation.

5.3.3 Terrain Section 3

The third terrain section was selected because it is slightly more difficult than Terrain
Section 2, introducing a 30 degree upslope a quarter of the way through the run. The
objective for testing this terrain section is to confirm the maximum acceptable reference
flight path angle for the 20 knot nominal velocity at 30 degrees and hopefully move

towards finding a similar limit for the nominal velocities 10 and 15 knots.

Figure 5-16: Terrain section 3 results for varying nominal velocities plotted with the initial nominal
reference line connecting the initial and final waypoints.
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Figure 5-17: Terrain section 3 reference tracking errors in X, Y, Z and ¥ for nominal velocities
varying from 10 to 30 knots.
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Figure 5-18: Terrain section 3 plotted with simulation data at nominal velocities varying from 10 to
30 knots. Upper figure is a bird’s eye view of the performance. Lower figure is a cross-sectional view.

5.3.3.1 Lateral Tracking Variation — Terrain Section 3

The same lateral drift characteristics seen in Terrain Sections 1 and 2 are apparent in
Terrain Section 3, only as observed in the investigation of the Terrain Section 2 data, the
lateral drift is worsened by the extreme terrain features. This is apparent in Figure 5-18
which shows that the control effort used to either redirect the helicopter towards the final
waypoint, or at least arrest the lateral drift, is being diverted by the controller to aid in
longitudinal tracking until the helicopter has passed the most difficult sections. This is a
positive result even though the outcome is a higher magnitude of lateral drift because it
shows that the applied TF/TA ratio is doing its job, sacrificing lateral tracking to aid in

longitudinal tracking when the terrain becomes more difficult.
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5.3.3.2 Longitudinal Tracking Variation — Terrain Section 3

As with Terrain Sections 1 and 2, nominal velocities of 25 and 30 knots aborted their
optimizations due to infeasibility as they met the more severe flight path angle
requirements. Also consistent with Terrain Section 2, the 20 kt nominal velocity run
became infeasible when the 30 degree maximum flight path angle was encountered.
Though the maximum flight path angle reference for feasibility of nominal velocities
above 20 kts has not yet been clearly defined through these simulations, it appears that
~30 degrees is the maximum flight path angle for a 20 kt nominal velocity. Again, none
of the feasible runs violated the altitude constraint (set 6 meters below the reference
trajectory to preclude terrain collision, indicated on the Z-tracking error plot in Figure

5-17 by the dotted line) at any point in the simulation.

5.3.4 Terrain Section 4

The fourth and final terrain section was selected due to its extreme (increasing

steadily in magnitude to ~60°) flight path angle requirements.

Reference - TS4
~— Vnom = 10 kt
~— Vnom = 15 kt

Figure 5-19: Terrain section 4 results for varying nominal velocities plotted with the initial
reference line connecting the initial and final waypoints.
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Figure 5-20: Terrain section 4 reference tracking errors in X, Y, Z and ¥ for nominal velocities
varying from 10 to 30 knots.
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Figure 5-21: Terrain section 4 plotted with simulation data at nominal velocities varying from 10 to
30 knots. Upper figure is a bird’s eye view of the performance. Lower figure is a cross-section view.

5.3.4.1 Lateral and Longitudinal Tracking Variation — Terrain Section 4

The tracking for all four states is basically the same for this terrain section as that of
the previous, less severe, terrain cross sections. The major difference to note is where the
infeasibility occurs as the nominal velocity is varied. Consistent with all previously tested
terrain sections, the 25 and 30 knot runs were again unable to initialize due to the extreme
initial flight path angle and the optimizations were aborted in the first 10 seconds of each
run. Also consistent with its previous performance, the 20 knot nominal velocity run also
aborted shortly thereafter, unable to initialize with the 40 degree decline. Both 10 and 15

knot nominal velocity runs were able to successfully initialize and track the extreme
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terrain slopes, including the ~60 degree decline between Y = -800 and 1000. A limit was
discovered, however, when they reached the upslope of ~42 degrees. Since the vehicle
cannot respond fast enough to meet the 40 degree slope with a nominal velocity of 10 or
15 knots, it falls short, violating the constraints resulting ground collision, thus
optimizations in both runs were forced to abort due to infeasibility. Suggestions for how
this algorithm can be made more robust to handle all types of terrain features are included

in Section 7.2.

5.3.5 Final Notes on Terrain Severity vs. Velocity Sensitivity

Having determined the angle of attack limits for 10, 15 and 20 knots on challenging
terrain sections, an additional, less severe, terrain section was tested to obtain an upper
limit on nominal velocity for this vehicle given the current horizon length. The first
significant feature of this terrain section is its initial 2500 meter long 4 degree decline,
conducive to algorithm initialization at most nominal velocities. This initialization is
followed by the maximum slope of the terrain section, an 8 degree incline, for the next
1500 meters. Finally, the remaining 2000 meters are split between a 6 degree down-slope

and a 7 degree incline.

Reference — TS5
—— Vnom = 10 kt '
—— Vnom = 15 kt

—— Vnom = 20 kt
—— Vnom=25 kt

Vnom = 30 kt
~— Vnom=36kt
~— Vnom=40kt

Figure 5-22: Terrain section 5 results for varying nominal velocities plotted with the initial reference
line connecting the initial and final waypoints.
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Figure 5-23: Terrain section 5 reference tracking errors in X, Y, Z and ¥ for nominal velocities
varying from 15 to 55 knots.
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Figure 5-24: Terrain section 5 plotted with simulation data at nominal velocities varying from 15 to
55 knots. Upper figure is a bird’s eye view of the performance. Lower figure is a cross-section view.

5.3.5.1 Lateral and Longitudinal Tracking Variation — Terrain Section 5

As hoped, this terrain section was realizable by all tested nominal velocities from
10 to 40 knots with tracking errors comparable to those seen for the 10 to 20 knot
nominal velocities previously tested, and error magnitudes increasing slightly with
nominal velocity as expected. This flat terrain section would be more characteristic of the
type of terrain encountered in nap-of-the-earth flight missions flown “under canopy,” or
below the canopy of the trees in a forest, causing obstacle encounters to be very frequent
as opposed to the sporadically placed obstacles dealt with in this research. It is worth
mentioning the result over this terrain, however, because it underlines the conclusion that
this velocity and terrain severity sensitivity study leads to: terrain severity, namely the
maximum changes in flight path angle required by the reference trajectory over a given

terrain, are the limiting factors on the maximum speeds attainable in terrain following
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flight. A summary of the flight path angle limits defined for this helicopter model with
the MPC parameters as defined in Section 5.2 is listed in Table 5-4.

Table 5-4: Summary of Nominal Velocity sensitivity
to commanded angle of attack

Nominal Velocity Flight Rath Angle
Limit
10 kts ~ 40°
15 kts ~ 40°
20 kts ~ 30°
45 kts ~ §8°

5.3.5.2 Tracking Sensitivity to Velocity and Terrain with Alternative Bases

As a precursor to this thesis, an abbreviated version of this analysis was performed
and documented comparing the terrain sections 2 and 4 with the identical MPC algorithm
implemented alternatively with 10 tent basis functions in [32]. The error values shown in
[32] with the 10 tent basis function implementation concur with what the preliminary
analysis exhibited in Section 4.3.2.3, yielding comparable error values between the 10
tent basis function implementation and the 5 Laguerre polynomial implementation. The
sensitivity of tracking performance to nominal velocity and terrain severity (measured by
commanded flight path angle) also exhibited similar results; however the initial and final
waypoints were swapped between the two analyses. Therefore though the error data can
be reasonably compared between the two sources, the commanded angle of attack limits
are not a one-to-one comparison. Section 7.2 contains some dectailed suggestions as to

how this can be expanded upon in future research.
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Chapter 6

CONSTRAINT BASED OBSTACLE
AVOIDANCE

Recent obstacle avoidance strategies make use of two main ideas; reference trajectory
modification to produce or enhance obstacle avoidance response {4, 5, 10], and definition
of ‘safe envelope’ (either by hard or soft constraints) within which the new trajectory is
to be planned [6, 10, 20]. The method applied in this research utilizes the ‘safe envelope’
idea; to handle obstacles, a constraint free, convex feasible space is defined that excludes
the obstacle and terrain spaces and constrains the optimizer to produce the sequence of
controls (Np-interval long) that produce spatial trajectories within this feasible solution
space. This assures obstacle and terrain collision avoidance.

In addition to the terrain itself, this chapter deals with two types of obstacles; trees,
towers or poles which require the helicopter to fly around them, and utility wires which
require overflight, (for this study, flight under wires is not considered a feasible solution).
The interpolated terrain was populated randomly with the two different types of
obstacles; lateral obstacles (trees, poles, etc.), modeled as cylinders which require ‘go-
around’ obstacle avoidance response, and longitudinal obstacles (utility wires, etc.),
modeled as walls which require ‘go-over’ obstacle avoidance response. Figure 6-1 shows
the obstacle-populated terrain utilized in this chapter. For this study, it is assumed that
sensor information is preprocessed to provide MPC with obstacle location and size

information (including the discernment between lateral or longitudinal required obstacle
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responses) within a 150 meter radius of our vehicle. The following sections describe the
heuristics used to set the constraints for longitudinal (go-over) obstacle avoidance
response and lateral (go-around) obstacle response, followed by the results obtained for
each method. In both cases, constraints defined in the earth frame were created to form
the obstacle free subspaces within which the optimizer will search for the optimal
trajectories. The constraints were defined in this way because given the assumption of
obstacle location knowledge in the earth frame from a higher level obstacle detection
algorithm, it was very straightforward to directly apply them to the earth-frame position
states (x,y,z) without having to transform to the body frame. See Section 7.2 for a
discussion of recommendations for future work related to the actual sensor configuration
and obstacle detection algorithms as they relate to the setting of constraints to enforce

obstacle avoidance.
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Figure 6-1: Obstacle populated sample terrain used for all obstacle avoidance work.
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6.1 LONGITUDINAL OBSTACLE AVOIDANCE

6.1.1 Constraint Generation

When obstacles requiring a longitudinal response are detected within the prediction
horizon radius (Ty*Vnom meters), the convex feasible set is defined to constrain the
optimizer to search for a path in an obstacle free subspace by setting a lower bound on
the altitude for the trajectory portion in the vicinity of the obstacle. That lower bound,
which is set to the minimum allowable altitude above the ground when no obstacles are
detected, is increased to the minimum allowable altitude above the obstacle when the
obstacle is encountered. This is illustrated for a prediction horizon length in Figure 6-2.
For this application, a hard upper limit for altitude is never set although a maximum

altitude limit could easily be imposed.

Minimum Sate Distance
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Figure 6-2: Lower bound altitude constraint on Z at each point along the prediction horizon,
demonstrating the minimum safe distance above the ground and the change in constraint due to an
obstacle requiring longitudinal response.
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The Z-constraint cannot be implemented without a modification to the reference
trajectory due to the discontinuous jump in the constraint upon encountering an obstacle.
This is because even though the look-ahead provided by MPC begins to anticipate the
change in constraints as the helicopter draws closer to the obstacle, the anticipation is not
fast enough to command the helicopter above the new obstacle-updated altitude
constraint before the new constraint is enforced. Therefore, strictly changing the
constraint to account for the obstacle without trajectory modification causes the problem
to become infeasible when the longitudinal obstacle is encountered even at low nominal
velocities.

The reference trajectory modification that was implemented to remedy this
infeasibility problem involved updating the reference trajectory upon obstacle detection
to reflect the presence of the obstacle well before the obstacle-updated altitude constraint

is enforced. This is illustrated in Figure 6-3.

-o- Reterence Trajectory
-o- Altitude Lower Limit

Figure 6-3: Lower bound altitude constraint on Z at each point along the prediction horizon, and
altitude reference trajectory for the same horizon reflecting modification due to the presence of an
obstacle requiring longitudinal response.
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As the figure illustrates, when the helicopter enters the vicinity of the obstacle there is
the same discontinuous jump in the reference trajectory as in the constraint. This ensures
that the helicopter altitude will be higher than the obstacle height constraint by the time it
reaches the time-step when the altitude constraint is increased from ground to obstacle
height. However, since the reference trajectory is only a soft constraint in the cost
function, its violation does not result in infeasibility. This allows lag and overshoot in the
initial response to be tolerated within the distance on either side of the obstacle at which
the trajectory is changed to the obstacle height. This distance must be set to enable the
vehicle to obtain the specified altitude rise before reaching the obstacle. The distance
required is governed by the vehicle’s nominal velocity and the required altitude gain from
the current reference altitude to the obstacle height, however for all nominal velocities
tested in the following results this distance was set to 25 meters in order to accommodate

the maximum nominal velocity tested.

6.1.2 Results

Figure 6-4 shows longitudinal obstacle avoidance with varying nominal velocities.

1134 I | I ‘ | | | | l30 kt [
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Figure 6-4: Close-up of longitudinal obstacle avoidance with varying speeds.
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This constraint imposition with associated reference trajectory modification proved to
be an effective method of longitudinal obstacle avoidance at all tested speeds. The safety
margin was maintained above and around the obstacle and the reference was recaptured
once the longitudinal obstacle was passed. MPCs anticipation of the upcoming jump in
reference is clear. The higher nominal velocities start to climb over the obstacle earlier
than the lower nominal velocities because they predict that they will not be able to handle
the discontinuous jump in altitude reference (as previously stated, the reference
modification is identical for all nominal velocities tested). In addition, there is a
degredation of precise obstacle avoidance response as the nominal speed increases. The
overshoot up to the new obstacle height reference increases as the speed increases.
Furthermore, the step down in the reference once the obstacle is passed is cut more as
speed increases. For nominal speeds above 30 knots, a greater reference lead distance on

each side of the obstacle is necessary for safe obstacle avoidance.

6.2 LATERAL OBSTACLE AVOIDANCE: STRAIGHT LINE
CONSTRAINTS

6.2.1 Constraint Generation

The convex feasible set for lateral obstacle avoidance is defined by setting an upper
and/or lower bound determined from the location of the closest obstacles in range for the
prediction horizon as defined in the earth frame. Figure 6-5 shows the feasible ranges for
a variety of obstacle placements over the distance covered in three prediction horizons
worth of time. If multiple obstacles are detected within the radius of the prediction
horizon for a given point, the closest upper obstacle is set as the upper limit for that
particular point and the closest lower obstacle is set as the lower limit. As Figure 6-5
shows, at t =tl, two obstacles are detected within the prediction horizon, therefore an
upper bound is set on y at the lower edge of the upper obstacle and a lower bound is set
on y at the upper edge of the lower obstacle. As with the longitudinal obstacles, since a
different constraint is associated with each time-step along the prediction horizon, the
upper or lower bounds can be removed once the vehicle has passed the obstacle, leaving

the remainder of the horizon laterally unconstrained if there are no other obstacles within
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that horizon. This is exhibited at t =t2 in Figure 6-5 after one complete prediction
horizon has passed. There are no obstacles detected, therefore no lateral constraints are
set until the next obstacle is detected. For example, at t = t3, the square obstacle is

detected hence a lower bound on Y-position in the earth frame must be set as illustrated.

Y
y Low(t3)

yup(tl)

Yeow(tl)

Figure 6-5: Lateral Constraint application method for obstacle avoidance where yjow(t) and yyp(t)
are the lower and upper bounds set on the helicopter earth frame position coordinate, y, in the MPC
loop at time t.

6.2.2 Results

The helicopter successfully avoided all obstacles without violation of the set safety
margins at the nominal velocities tested. The reference trajectory was redrawn
successfully in the lateral obstacle case so that the new straight line path between the
endpoint and the current position became the updated reference track. Figure 6-6 shows a

bird’s eye view of the lateral obstacle avoidance and reference regeneration.
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Figure 6-6: Y Position vs. X Position Close-up of Lateral Obstacle Avoidance and Reference
Regeneration with varying speeds.

Notice that no reference trajectory modification is required for this lateral obstacle
avoidance. This is because the algorithm’s choice between setting an upper or lower
bound depends purely on whether the vehicle is currently above or below the obstacle in
question with respect to the axis to be constrained. Since the upper bounds are guaranteed
by their creation to be set above the vehicle’s current position, rather than the position at
which the obstacle is directly encountered, and the lower bounds are similarly guaranteed
to be below, the potential for infeasibility as seen in the longitudinal obstacle avoidance

is eradicated.

6.3 LATERAL (GO-AROUND) OBSTACLE AVOIDANCE:
INTERMEDIATE WAYPOINT DRIVEN CONSTRAINTS

A second method to define the convex feasible set for lateral obstacle avoidance
involves the implementation of intermediate waypoint driven constraints as suggested in
[10]. With this method, an intermediate waypoint is placed on one side or the other of the
obstacle, orthogonally to the path of the vehicle, at a safe radius from the obstacle. The

new constraint is defined by the line connecting the vehicle’s current position and the
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intermediate waypoint, appropriately excluding the side of the line on which the obstacle
resides. Thus instead of setting a constant constraint on X or Y over the horizon, the less
traversed axis is constrained as a function of the more highly traversed axis according to
the aforementioned constraint line. Additionally, to aid the obstacle avoidance maneuver,
a lateral reference trajectory modification is made. This modification directs the vehicle
around the obstacle and ensures the optimization problem is feasible at the initial horizon
steps when the obstacle has first been detected. The vehicle is directed around the
obstacle by way of a second intermediate waypoint placed orthogonal to the vehicle’s
present path at double the defined safe radius from the obstacle. The lateral reference
trajectory is diverted to this waypoint until the vehicle has safely passed the obstacle.
Then, as with the method suggested in Section 6.2, the obstacle constraint is removed and
the reference is redrawn to continue on to the final waypoint laterally unconstrained. The
waypoint driven constraint and reference trajectory path modification are illustrated in
Figure 6-7, along with the original reference trajectory path and the constraint that would

have been set with the method described in Section 6.2 for comparison.

Y

previous|

[7] = feasible region
until obstacle is |
passed

X

Figure 6-7: Lateral Constraint application method utilizing the placement of intermediate
waypoints for the constraint generation (Y.) and the reference trajectory modification (Yg).
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6.3.1 Results

This obstacle avoidance method successfully avoided all lateral obstacles tested. The
reference trajectory was successfully redrawn from the intermediate waypoint to the final
waypoint again once the obstacle was passed and the lateral constraints were lifted.
Figure 6-8 shows a bird’s eye view of the resultant trajectory utilizing this constraint

generation strategy for lateral obstacle avoidance.
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Figure 6-8: Earth frame Y-position vs. X-position close-up of lateral obstacle avoidance
and reference regeneration with intermediate waypoint based constraint definition.
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Chapter 7

CONCLUSIONS AND
RECOMMENDATIONS

The objective of this thesis was the design and implementation of a Model Predictive
Control based trajectory optimization method for Nap-of-the-Earth (NOE) flight
including obstacle avoidance, emphasizing the mission objective of low altitude, high
speed flight. This chapter provides a summary of conclusions reached throughout this

research followed by recommendations for future work related to these topics.

7.1 CONCLUSIONS

This research sought to take advantage of MPC’s repeating nature lending it to
changing environments and objective functions. The trajectory generation and tracking
problems were combined in a fashion facilitating real-time implementation and dynamic
replanning based on sensor updates. MPC’s construct, allowing the application of hard
state and control constraints to multivariable problems, was also exploited to enforce
obstacle and terrain collision avoidance by the imposition of hard constraints on desired
output states.

Steps taken to reduce complexity in the optimization problem, including
perturbational linearization in the prediction model generation and the use of control
basis functions, proved to be a very effective method for reducing the problem size and

optimizer computational time. Pre-implementation, candidate basis functions were
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analyzed and evaluated for their trade-off between accurate approximation of the optimal
cost/solution and reduction of the optimization complexity. Results showed an average
decrease in the optimizer computational time of ~93% with the repeating-tent basis
functions compared to the standard MPC formulation, and an average decrease of ~96%
with the Leguerre polynomial basis functions. The Leguerre polynomial basis functions
were selected and implemented for the duration of testing.

Combining the trajectory generation and tracking problems, the mission objectives of
low altitude, high speed terrain following flight were met through precise tracking of the
reference trajectory input into the cost function. The implementation of a terrain
following to terrain avoidance (TF/TA) ratio to adjust the degree to which the terrain is
tracked (longitudinally) at the expense of lateral tracking proved to be very effective.
With the ratio of 10 determined through simulation, the terrain cross-section variation
results showed that lateral tracking exhibited higher errors overall, specifically in the
sections when altitudes approached the hard constraints set to enforce terrain collision
avoidance. This shows that the choice of TF/TA ratio was successful in enforcing the
mission objectives by sacrificing lateral tracking for longitudinal tracking when
necessary.

Terrain and obstacle collision avoidance was accomplished through the establishment
of hard state constraints. These state constraints were set by heuristics fashioned to create
a ‘safe envelope’ in the earth frame bounding the subspace within which the optimizer is
searching for the optimal trajectory. Firstly, the longitudinal constraints were simply set
as the terrain elevation over which the helicopter is flying at any given time, with the
exception of the go-over obstacle avoidance response which is addressed in the following
paragraph. Results over a variety of sample terrain showed the altitude tracking errors
approach, but never exceed, the hard ground constraint. Therefore the application of hard
minimum altitude constraint has proven to be an effective method of preventing ground
collision. However, a known problem associated with application of hard state constraints
is the potential for an empty solution space, or infeasibility, leaving the optimizer without
a control to output. When the different terrain cross sections (selected for their varying
levels of difficulty, measured by commanded flight path angle) were tested at a range of

nominal velocities from 10 to 30 knots, this problem was encountered. Vehicle dynamic
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limits caused infeasibility such that as the terrain difficulty increased, the maximum
nominal velocity attainable decreased. The flight path angle limits obtained based on the
tests conducted in this research are displayed in Table 7-1. Future work regarding this
issue of infeasibility in the application of this algorithm to difficult terrain is detailed in

Section 7.2.

Table 7-1: Summary of Nominal Velocity sensitivity
to commanded angle of attack

Nominal Velocity Flight Pgth Angle
Limit
10 kts ~ 40°
15 kts ~ 40°
20 kts ~ 30°
45 kts ~ 8°

Longitudinal obstacle avoidance (a fly-over obstacle response) was accomplished
through hard state constraints differing from those set for terrain collision avoidance by
constraint placement at a safe distance above the obstacle instead of the ground. Since
this heuristic results in constraint discontinuity when such an obstacle is encountered, a
reference trajectory modification from ~6 meters above the terrain to a safe distance
above the obstacle is included well before the obstacle associated altitude constraint is
enforced. This allows obstacle avoidance at higher nominal velocities because even
though the trajectory tracking lags due to vehicle dynamic constraints, the hard
constraints within the obstacle’s vicinity are maintained.

Finally, two heuristics were presented in this thesis for the placement of constraints to
carry out lateral obstacle avoidance (a go-around obstacle response). The first involves
setting a constraint in the earth frame at a constant X or Y position while the helicopter is
in the obstacle’s vicinity, restricting the helicopter to one side of the obstacle until it is
safely past the obstacle and the constraint is removed. This method resulted in successful
obstacle avoidance at all velocities tested.

The second heuristic was designed by placing an intermediate waypoint at a safe
distance on either side of the obstacle, orthogonal to the vehicle’s trajectory. The
constraint is implemented on X as a function of Y, defined by the line connecting the
vehicle’s XY-position when the obstacle was first detected and the intermediate

waypoint. A reference modification is also made by directing the reference which
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originally passes through the obstacle’s space to a second intermediate waypoint placed
outside of the constraint waypoint. This method also produced successful obstacle
avoidance at all nominal velocities and configurations of initial and final waypoints

tested.

7.2 RECOMMENDATIONS

The NOE flight problem is very complex, entailing many issues. These issues can be
split into two main categories with respect to this thesis. The first group has been
explored through this course of this thesis research, a subset of which merit further
investigation. The second group was intentionally set aside by assumptions made in the
problem definition. The following section details future research possibilities on these
topics.

The first group of issues can be addressed to investigate and/or improve the
robustness of this algorithm. Firstly, to simplify the problem definition, full state
feedback was assumed throughout this research. Further research could include the
addition of an estimator and investigation of the effects of state estimation on the
robustness of the algorithm. A derivation of MPC with state estimation is available in
[21].

Secondly, there are a two ways in which the simulation used in this thesis can be
made to more closely represent actual implementation and conditions. As noted in
Section 2.2.1, the non-linear equations of motion used to generate the prediction model
were used as the ‘truth’ model in all of the simulations performed throughout this
research. Future research could investigate the robustness of MPC with the selected
tuning parameters by applying the algorithm to a more realistic plant model.
Additionally, no outside disturbances were applied to the simulations presented within
this thesis. One of the benefits of MPC application is the ability to input known or
estimated disturbances such as winds directly into the prediction model to improve
disturbance rejection. Such studies would be a logical next step in improving the overall
fidelity of the simulation.

Thirdly, as suggested in Section 2.3, in actual implementation of this algorithm, the

interpolation of the DTED data would be replaced by higher fidelity DTED data
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supplemented by real-time sensor updates. An accurate sensor model and a method of
real-time map update could be investigated in future work. Since this research also
assumes that sensor information is pre-processed to provide the obstacle position and size
information (including the discernment between lateral or longitudinal required obstacle
responses), an obstacle detection algorithm could be designed and included in this
investigation. Possible ideas for the collection and storage of this data for both static and
dynamic obstacles are available as applied to a sonar-based underwater mapping system
in [33]. Depending on actual sensor configurations and/or obstacle detection algorithms,
future work might also investigate the definition of obstacle avoidance constraints by
azimuth and elevation or by some other means in the body frame as opposed to their
definition in the earth frame.

Finally, in actual implementation, though MPC has been shown to operate very
effectively as an inner loop controller through this research, increased performance may
be possible through the addition of an inner loop stability augmentation system (SAS) to
track the state output by MPC. See [34] for a sample implementation of MPC both with
and without an inner loop SAS as applied to ascent load management of a reusable
launch vehicle.

Beyond the implementation concerns for future research investigation, an issue which
the terrain following flight poses to a potential optimal control algorithm is the sensitivity
of optimization feasibility and performance to nominal velocity and terrain severity. The
vehicle dynamic limits have been identified as contributing factors through this thesis
research, but a more rigorous investigation could be conducted into the mechanism which
causes the infeasibility when the nominal velocity and terrain difficulty are increased.
Such an investigation might include examination of optimization feasibility sensitivities
to terrain severity/nominal velocity with an increased prediction horizon and/or sensor
range. We hypothesize that an increased prediction horizon might yield the look-ahead
necessary to allow for higher attainable nominal velocities over difficult terrain.
Additionally, by using some guidance from a terrain analysis feature, the MPC cost
function may be appended with a terminal cost-to-go beyond its prediction horizon to

guarantee system stability. For this application, the new MPC cost would become:
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where J, (yi+N,,—l’ui+NP—1) is the terminal cost-to-go specified as a function of the state
and control at the final step in the horizon, y,, | and u,,, , respectively. Investigation

of methods for providing stability guarantees for a standard MPC implementation can be
found in [35 — 38].

The last potential area for improvement in this algorithm is in the area of path
planning. The spline path optimization and reference trajectory generator are essentially
playing the role of path planning in the algorithm presented herein. However, the spline
and reference trajectory generator could easily be integrated with a higher level path
planner to include more than just terrain information. For example, a path planner could
incorporate high level threat information into the reference trajectory that it provides, in
addition to the terrain data, directing the vehicle away from an enemy territory or an
unexpected enemy vehicle detected in the area. An example of a path planner that could
be integrated to feed a reference trajectory including both threat response and terrain
following to the algorithm presented within this thesis is described and motivated in [39].
Additionally, given MPC’s repeating nature, variable weighting matrices are possible.
Therefore another avenue for future work could be the discussed reference trajectory
input from a higher level path planner along with a corresponding TF/TA ratio to indicate
the level of lateral tracking importance with respect to ncarby threats, as compared to
altitude tracking. This could also be the avenue by which a W-reference could be
appropriately weighted to focus the vehicle on a target as the target is passed or to reduce
visibility by orienting exhaust away from an encountered threat. Overall, it should be
kept in mind that survivability and mission success is directly dependent upon how well
high level mission goals are reflected in the reference trajectory and cost function

definitions.
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