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Abstract

This thesis develops a mixed integer programming formulation to solve the proximity
operations scheduling problem for autonomous orbital rendezvous. The algorithm
of this thesis allows the operator to specify planned modes which encode the chase
satellite’s operations. The scheduler optimally places these modes in the midst of
the environmental conditions that fall out of the chase satellite’s orbit parameters.
The algorithm manages resources, i. e. battery state of charge, and observes temporal
constraints.

Experiments show that the scheduler responds to changes in a variety of situations.
It accommodates changes to the constraints in the modes. Relaxing or tightening the
restrictions on the resources illuminates the algorithm’s responsiveness to practical
resource demands. Changes to the definition of optimality via a cost function indicate
that the scheduler reacts to a diverse set of parameters.
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Chapter 1

Introduction

This thesis considers scheduling a low earth orbiting satellite’s proximity operations
in the context of orbital rendezvous. In particular, the thesis looks at proximity

operations related to an observation mission.

World space agencies have a significant desire to apply autonomous rendezvous
technology in their space programs; some agencies already have working systems, and
others could stand to upgrade their capabilities. Autonomous rendezvous software
would benefit a wide variety of systems. An inspection satellite for the International
Space Station or the Space Shuttle could provide a capability that NASA or its
counterparts currently do not have. On orbit maintenance or assembly is another
application of autonomous rendezvous technology. Future plans for human space
travel to Mars would require some autonomous rendezvous technology to assemble
the crafts. In general on orbit assembly is difficult and extremely expensive because
humans must do the work. Developing this technology eliminates an obstacle to
building more complex systems on orbit. The work of this thesis represents one of

the tools necessary to fly a completely autonomous rendezvous system.

First, this chapter presents the problem in general terms. Then, it offers an
explanation of some core semantics. Finally, it guides the reader through the essential

sections of the thesis.
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1.1 Overview

The scheduler’s primary function is to optimally schedule the high-level goals of the
proximity operations while satisfying the mission’s temporal demands and resource
needs. The user defines the mission as a set of planned requirements. The scheduler
uses a set of environmental conditions that encodes features, which are a function of
the chase satellite’s orbit and specific, mission controlled operations including com-
munication windows. It is the scheduler’s job to make sure the planned requirements
are consistent with the environmental conditions. This means the scheduler should
optimally schedule the planned requirements in the midst of the environmental events
while both considering and managing the temporal constraints and the resources. The
optimality of a resultant schedule will be a function of the plan’s execution time and
the resource values where the goal is to simultaneously minimize the execution time
and maximize the resource values. Chapter 3 will clarify any ambiguities regarding

the problem in this thesis.

1.2 Key Terms

Proximity operations will refer to the set of high-level goals that the chase satellite
should perform when it is within a specific range of its target, and when it has
acquired its target with the acquisition sensor. These proximity operations occur
during a specific range of the rendezvous process. The range is defined as the region
in space before the actual capture and when the chase craft has acquired the target
with a rendezvous sensor; reliable acquisition with the sensor can only occur when
the chase craft has established a line of sight with the target craft. In a typical
hierarchical planner (cf. Section 2.3.1), this range and acquisition data would arrive
at this scheduler as a parameter from a higher level in the autonomous system.

The two other significant terms are the chaser and target craft. These refer to the
chaser, which actively seeks out the target, which passively maintains its orbit. The

problem posed in this thesis assumes that the target is both passive and cooperative.
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Here passive means that the target does not actively communicate with the chaser to
facilitate rendezvous, and cooperative means that it does not intentionally avoid the

chaser.

1.3 Roadmap

This thesis presents the problem in a standard scientific format. Chapter 2 looks at
the significant body of literature with regard to this planning and scheduling problem.
This includes a look at past attempts to create systems for the autonomous rendezvous
and capture problem. It gives further insight into some of the theory behind planning
and scheduling.

This theory provides a foundation for the problem description of Chapter 3. The
problem described in Chapter 3 is well-suited to the appliéation of a linear program.
Unfortunately, the complete problem requires a higher degree of search capability to
solve the arrangement of the planned requirements among the environmental events.
Chapter 4 delineates a mixed integer programming formulation to the problem. Mixed
integer programming inherently encapsulates the necessary search capability that
affords a complete methodology for finding the optimal schedule.

The experimental section of Chapter 5 presents the results of several experiments.
The chapter defines a class of observation missions and shows the algorithms response
to changes in certain mission parameters. One of the changes looks at specific con-
straints placed on one of the planned requirements. Another type of experiment in
the chapter involves changes to the definition of optimality, and the thesis presents
the results of those cases. Finally, Chapter 6 offers some conclusions along with

suggestions for future research.
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Chapter 2

Review of Literature

This chapter explores the body of literature related to autonomous rendezvous and
planning and scheduling. First, this chapter looks at autonomous rendezvous and
capture with a special look at international approaches to the problem. The liter-
ature review turns more theoretical in its review of scheduling and then planning.
Section 2.3 discusses deliberative planners, planning architectures. It mentions a
method to evaluate plan quality, which is useful for replanning and for iteratively

repairing a plan.

2.1 Autonomous Rendezvous and Capture

Autonomous rendezvous is a technology that the United States space programs ex-
pect to develop more thoroughly. The Russians have a system which they developed
during the Soviet era [15]. Their system which performs capture in addition to ren-
dezvous relies on direct radio communication between the two satellites. Current,
U. S. rendezvous technology uses scripted autonomy where events are laid out on a
timeline and the mission unfolds predictably. The Japanese and Europeans are in the
process of developing such technology. The U. S. expects to use this knowledge in
the Mars Sample Return mission and in resupplying the International Space Station
(ISS). Current U. S. rendezvous technology depends on a costly per mission design.

The capability to rendezvous under autonomous control would increase the flexibility
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and reduce the cost of the current approach.

2.1.1 A Survey of Rendezvous and Capture

Michael Polites of NASA submits a history of Automated Rendezvous and Capture
[15]. In particular he discusses Soviet-cum-Russian rendezvous technology and a

history of the approach and the future tack of the United States.

The Russian Approach

Polites points out that current Russian and American rendezvous systems share simi-
lar hardware including a guidance computer, inertial rate and attitude sensors, radar,
and video cameras. The Russian system, while automatic, is not autonomous; it
does not decide how to perforin its rendezvous. A fully autonomous system would
intelligently choose how to perform its rendezvous given a specific goal, i. e. a target.

The Russian system, which is currently used by uncrewed Progress ships docking
with the ISS, depends heavily on two-way radio communication. The target satellite
transmits a beacon signal which the chaser can acquire from a range of 200 km. Upon
acquisition of this beacon, the chase vehicle acknowledges by activating a transponder.
This transponder serves as a reflector which the chase vehicle can illuminate to derive
range data. At 200 m the chase vehicle initiates a fly around and the docking port
radios on the target begin communicating to provide range and attitude information.
Finally, at 20 m the chaser’s inertial system is the sole source of navigation data, and
the chaser performs a high-impact docking.

Dated-technology comprises the Russian rendezvous and docking system. It lacks
many of the desiderata of current space engineers’ wish lists, but the system works—

with a substantial amount of robustness.

American Rendezvous and Capture: Present and Future

Perhaps, it is easier to begin with the future of American rendezvous technology

because the present is not as exciting. Polites indicates a definite need for automated
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rendezvous technoiogy. First, he mentions the ISS, for which the space shuttle docks
using per-flight rendezvous software; as previously mentioned, the Russians use their
automated system. The Mars Sample Return Mission and any crewed Mars missions
will require autonomous rendezvous technology, part of which this thesis may provide.

Previous American efforts form the building blocks of the space shuttle’s ren-
dezvous technology. This includes experiments in the Gemini era, and the lunar
excursion module link-up with the command module of Apollo. The Space Shuttle
Orbiter performs similarly. After some ground tracking and a launch into a precisely
designed orbit, Mission Control computes the on orbit burns to put the orbiter within
74 km of its target. From within this range the orbiter initiates voice communication
with the crew of the target vehicle. The rendezvous radar and laser ranging device
provide tracking, range, and range rate functionality. Additionally, a video camera
on the centerline of the docking port gives another set of information for the docking
phase of the approach. The crew and Mission Control can determine the degree of

manual versus automatic control to provide, but a human is always in the loop.

2.1.2 Japanese Experiment on Autonomous Rendezvous and

Capture

The National Space and Development Agency of Japan (NASDA) performed two ren-
dezvous experiments in 1997 and 1998 [10]. The first experiment tested the equipment
in the docking/approach phase which is in the 0-2 m range. The second experiment
featured a whole mission which begins with the chase satellite as far as 12 km from
the target satellite. It concluded with the chase satellite making a physical connection
with the target.

The rendezvous mission plan consisted of the three phases listed in Table 2.1. In
the Relative Approach Phase, it used the Global Position System (GPS) to maintain
relative navigation. The Final Approach Phase leveraged line of sight (LOS) control
with the aide of a Rendezvous Radar (RVR), which is a laser powered radar for

acquiring the target satellite. The Docking Approach Phase used a camera functioning
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Table 2.1: NASDA Rendezvous and Capture Mission Phases

Phase | Description |

1 Relative Approach Phase
2 Final Approach Phase
3 Docking Approach Phase

as a proximity sensor (PXS). In this phase the satellite flight computer commanded
motion with six degrees of freedom.

The mission configuration depended critically 6n two-way communication between
the chase and target crafts. Chapter 3 will delineate the advantages and disadvantages
of this approach. Briefly, the two-way communication gives a low-cost solution to the
rendezvous and capture problem, but the target satellite must be equipped with
communication hardware. A rendezvous system without this feature poses a greater
challenge in that the chase craft must have the capability to determine its target’s

relative position without the target’s help.

2.1.3 Preventing Plume Impingement and Avoiding Obsta-

cles

Another important technology to perform autonomous rendezvous is the capability
to avoid obstacles and engine exhaust plumes. Arthur Richards et al. describe a
technique in [17]. Their method uses mixed-integer linear programming (MILP) to
navigate the immediate region around a satellite. Logical constraints represent the
relative attitudes of the two craft, with a cost function that models fuel usage. The
goal is to find an optimal trajectory that satisfies the logical constraints and min-
imizes fuel use. The most relevant example application they cite is the use of a
microsatellite to inspect the International Space Station. This study has influenced
the work described in this thesis insofar as Richards applies MILP, also called MIP, to
the rendezvous problem [4]. While Richard’s work utilizes MIP to effect rendezvous,

this thesis considers the intricacies of scheduling rather than navigation.

24




2.2 Scheduling

Planning and scheduling often come as a pair because their functions are closely
linked. While this thesis focuses primarily on scheduling, it is important to recognize

and understand how scheduling fits into a plan [11].

2.2.1 Scheduling Within a Plan

Chien et al. posit a set of requirements which a planning and scheduling system should

fulfill [5]. The requirements are

e An expressive constraint modeling language to allow the user to define naturally

the application domain

e A constraint management system for representing and maintaining spacecraft

operability and resource constraints, as well as activity requirements

o A set of search strategies for plan generation and repair to satisfy hard con-

straints
e A language for representing plan preferences and optimizing these preferences
e A soft, real-time replanning capability

e A temporal reasoning system for expressing and maintaining temporal con-

straints

e A graphical interface for visualizing plans/schedules (for use in mixed-initiative

systems in which the problem solving process is interactive).

The primary difference between NASA’s ASPEN (Automated Scheduling and Plan-
ning ENvironment) and the scheduling algorithm in this thesis is the scope of its
relevance. While ASPEN is generalizable to a broad class of problems, its primary
thrust is for scheduling events in a densely populated timeline.

Briefly, their work includes an “early commitment, local, heuristic, iterative search
approach to planning, scheduling, and optimization.” In particular, the iterative

repair allows for incremental changes. If only a small constraint changes, then the plan
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can be repaired rather than recomputing it. One drawback is that the heuristic may
avoid searching some valid plans or search a plan multiple times. This issue becomes
less severe because the local aspect of the search allows for increased computational
and memory efficiency.

While the preceding list represents the requirements of a planning and schedul-
ing system, it does not explicitly state the algorithm. Chien defines planning and
scheduling as taking high-level goals and converting them to low-level activities. Fur-
ther, the system should satisfy any constraints and optimize the plan quality. There
are obvious reasons to satisfy constraints, but seeking optimality is more subtle. The
generated plan needs to be efficient and execute in a reasonable amount of time. Spe-
cific goals might have many feasible solutions, but if they overuse or abuse resources

they are less useful than an optimal plan.

2.2.2 Scheduling Satellite Observations

Birgit Sauer describes an integer programming method to scheduling satellite opera-
tions [19]. This approach is a source of significant inspiration for this thesis. Sauer’s
algorithm is not intended for in flight use, but rather by an operator of a satellite
or classes of satellites. Sauer’s thesis examines three cases: spin stabilized, 3-axis
stabilized, and constellations of 3-axis stabilized satellites.

The scheduler maximizes the mission’s science value across the time horizon. This
approach uses a linear programming model of the mission. The integer variables
describe the use of the instruments which generate the mission’s scientific value. The
linear programming model in conjunction with the instrument constraints form the
operational framework for the scheduler. Other important considerations result from

the aforementioned classes of satellites, but they are beyond the scope of this thesis.

2.2.3 Scheduling with LP and MIP

Section 2.1.3 describes using a MIP to compute proximity operations maneuvers under

the considerations of obstacle avoidance and plume impingement. The use of a MIP
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for rendezvous inspires the work in this thesis. To apply this tool, a planner and
scheduler must model specific variables not the least of which is time. This section

looks at the approach of Dechter et al.

Temporal Constraint Networks

Dechter, Meiri, and Pearl consider temporal constraint networks and present tech-
niques for representing time and satisfying constraints [7]. Their approach represents
time as a set of continuous variables: Xj,..., X,. Here, each variable represents a

point in time.

The next step in modeling the network is to specify the constraints. Constraints
are represented as sets of closed intervals. The closed property becomes important

when applying the formulation to a Linear Program (LP) or a MIP.

{117-'-7-[11}: {[al,bl],...,[an,bn]} (21)
For unary constraints T;, there is the disjunction
(a1 S X,‘ S bl) VooV (an S Xi S bn) (22)

To develop some intuition, consider these 7T; as the constraints, which bound the
event, X;'s execution time. The following disjunction suggests that the event, X,
a communication activity for example, must occur between mission time intervals

[12, 20], minutes or [59,67], minutes.

(12 < X; <20) V(59 < X; < 67). (2.3)

Then there is the binary constraint, 7;;, which defines the allowable distance

between X; — X;. It is written as

(a’lSXj_XiSbl)v"'v(ansxj_XiSbn)- (24)
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Equations 2.1 — 2.4 describe constraints on the network parameters, but they do
not describe the network’s structure. The simplest way to characterize the network
structure uses a state transition matrix. For a simple temporal network, a single
interval, I;, encodes either a unary or a binary constraint. Dechter et al. show that
the Floyd-Warshall algorithm (i. e., the All-pairs-shortest-paths algorithm) can solve
the simple temporal problem in polynomial time.

Chapter 3 will show how Equations 2.2 and 2.4 can be applied to represent tem-

poral constraints for a scheduling problem.

2.3 Planning

This section will consider several of the more common planning methods which are
currently in practice. These deliberative approaches to planning live on finite state
machines, and they typically create plans that satisfy the pre- and post- conditions
of each planned activity. Often, they account for temporal optimality and resource
management.

This section will examine several key elements of planning. First, it looks at an
approach that decomposes the planning process. Decomposition makes the problem
more tractable and provides a simpler replanning capability. This section will also
delineate several planning architectures and a scheme to manage resources. Another
feature of this section is the treatment of a method to evaluate plan quality and a

replanning notion known as iterative repair.

2.3.1 Hierarchical Planning

Mark Abramson et al. present a hierarchical approach to planning and scheduling [1].
They focus on a top down methodology to plan earth observations that maximize
science value. In particular, the Earth Phenomena Observing System (EPOS) models
a fleet or constellation of satellites to provide data about the Earth. The hierarchical
approach decomposes the problem into three distinct tiers. In descending order these

are the system, collaborative, and satellite tiers. Each tier focuses on a particular
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goal. The system tier wants to know which targets to observe and which satellite
platforms should perform the observations. The collaborative tier examines exactly
which satellite to pair with a target and at what time. The lowest tier manages
the individual fuel usage of a satellite, attitude control, and data management. One
significant advantage to the tiered approach is that a lower level can replan itself
without affecting its parents.

This decomposition makes for a smooth interface with various planning and schedul-
ing tools. They apply integer programming, network optimization, and astrodynam-
ics “to calculate optimized observation and sensor tasking plans.” Specifically, EPOS
uses astrodynamics to decide whether a satellite can observe a target at time, ¢,
whether the target will be in sunlight or darkness during observation, and to prop-
erly orient the sensor with respect to the target. This information is converted into
binary data which indicates whether a sensor can or cannot observe a target; they
call these data dynamic inputs. To perform the satellite-to-target assignment they use
two classes of integer decision variables, which maximize a function of the dynamic
inputs. These solutions pass to a lower tier of the hierarchy that computes specific
pointing commands for each active satellite. This tier bases its decisions on variables
which represent the sensor gimbal angle and the sensor’s ability to observe its target,

both of which depend on t.

2.3.2 Heuristic Planning

Tackling a mission in its entirety poses an intractable problem because of the amount
of uncertainty and the number of decisions. Dungan et al. describe a method which
uses a greedy search in conjunction with a heuristic to schedule fleets of satellites
with higher fidelity models [8]. In particular, they model data storage and manage
communications unlike many previous efforts.

To schedule the earth observation support activities, they implemented the Con-
straint Based Interval (CBI) planning framework from a proprietary planning system
called EUROPA. This system uses state variables which are timelines that repre-

sent data management activities. Even at this level of scheduling, they encountered

29



lengthy running times. In light of this, and the fact that the assignment of satellites
to targets has a very large search space, they implemented a “planning algorithm
that combines heuristics, stochastic search, and constraint propagation.” The algo-
rithm randomly selects an observation with the heuristic; it randomly selects a time
slot; and it propagates the constraints until it is impossible to propagate further or
until the plan is inconsistent. The algorithm refines this process a specific number of
times while checking for consistency. On the heuristic, Dungan et al. posit a form of
contention which depends on the sum of available data storage space and available

time slots.

2.3.3 Architecture for Temporal Reasoning

Deep Space One is a NASA space probe that tested several new technologies. Among
these was a planning and scheduling system called the New Millennium Remote Agent
(NMRA). The main premise in the agent is that the Planner/Scheduler operates the
deliberative layer and the executive (cf. Section 2.3.4) controls the reactive layer [11].
Because of this arrangement, the executive issues the low-level commands to the
spacecraft’s subsystems, and the planner performs the high-level computation. This
leaves the reactive layer with a simple, scripted ability to respond to a dynamic
environment. When the environment changes drastically, the planner/scheduler must
perform a replan. Muscettola et al. describe this ability and focus on addressing the

temporal constraints.

Their approach is based on the simple temporal networks that Dechter et al.
described {7]. Essentially, the planner incrementally adds events to a partial plan. The
algorithm propagates the events frequently and always propagates when adding an
equality constraint. Because of their system’s structure, there is no disparity between
actions and states. They describe, instead, parallel threads which model each state
variable. These threads are linked at time points which activate the affected threads.
The advantage here is that moving a time point only directly affects one state variable.

They apply an “incremental version of the Bellman-Ford algorithm [7].”
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2.3.4 Executive Architecture

While the goal of this thesis is to treat the scheduling problem within a planner, an
executive’s architecture offers valuable design principles. Pell et al. describe their
design for the New Millennium Remote Agent’s (NMRA) executive or sometimes
called EXEC [13, 14]. Typically, in autonomous systems, this component decom-
poses a plan into the activities which the various subsystems must execute. Their
hybrid design incorporates aspects of both a procedural and deductive system. Here
the procedural executive performs the higher-level functions that include managing
locks, synchronization, hierarchical task decomposition, and others. The deductive
executive serves in a more computation intensive capacity performing state inference

and optimal failure recovery.

The procedural component of their executive manages properties and locks asso-
ciated with a particular activity. Each activity runs in its own thread, and it can
issue a variety of signals which indicate a change in the status of the activity or one

of its properties.

The deductive executive “can be viewed as a discrete model-based controller that
attempts to keep the spacecraft state on a trajectory that achieves a set of high-level

input properties.”

This component views the spacecraft or the autonomous system
as a set of synchronous finite state machines. The deductive executive has a monitor
function which Pell et al. call mode identification (MI). MI infers the spacecraft’s

state using a conflict-directed best-first search algorithm.

In conjunction with the recovery function, MI becomes MIR. This component
is critical to the interface between the procedural and deductive executives. The

recovery feature provides functionality to the system in the event of a fault.

In general, Pell et al. use a very modular design in EXEC. Their goal is to create
an executive that software developers can think of from a high-level. In combination
with a modular design this high-level approach gives developers the option to port the
software between a variety of autonomous systems. As do Chien et al. in Section 2.2.1,

Pell et al. offer a set of capabilities which they strive to include in their system.
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These are flexible plan execution, configuration management, resource management,

an action-definition language, and system-level fault-protection support.

2.3.5 Evaluating Plan Quality

While searching for an optimal plan, the ability to evaluate the quality of a plan
is useful. Gregg Rabideau et al. offer preferences which serve as “quality metrics
for variables in complete plans [16].” The five types of variables which they use to

consider plan quality are

e local activity variable e resource/state change count
e activity/goal count e state duration

e resource/state variable

More specifically, the preference assigns a value to these variables in the range,
[0,1]. Based on this mapping improvement experts can increase the quality of the
plan. Usually, this requires considering how to change the variable and observing

whether it yields an increase or decrease in the observed value.

2.3.6 Iterative Repair

Iterative repair is a scheduling method that takes a complete plan and refines it
to improve the performance. The previously mentioned planning and scheduling
methods are of a deliberative nature. They differ from iterative repair in that they
take partial plans and incrementally improve them or lengthen them. Monte Zweben
et al. present a system, GERRY, that implements constraint-based iterative repair to
schedule space shuttle ground maintenance operations [20].

The constraint-based method assigns a penalty to any constraint violations where
the goal is to minimize the sum of the violations. This provides the ability to evaluate
a current schedule and compare it to its repaired counterpart keeping the better of
the two. GERRY examines both resource and state constraints which each have their

own heuristics for repairing the schedule.
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Table 2.2: Heuristics for repairing resource constraint violations

Fitness

Move the task whose resource requirement most closely
matches the amount of overallocation.

Temporal Dependents

Move the task with the fewest number of temporal de-
pendents.

Distance of Move

Move the task that does not need to be shifted signifi-
cantly from its current time.

Table 2.2 enumerates the heuristics for resolving resource constraint violations,

and the following list describes the heuristics for repairing state constraint viola-

Insert a new task that sets the state correctly from the start-time to the end-time

of the violated task.
Move the violated task forward to a time where the constraint is satisfied.

Move the violated task forward to a time where the state can be changed (by
a new task) without causing additional state violations. Then insert the new

task, thus changing the state for at least the duration of the violated task.
Move the violated task backward to a time where the constraint is satisfied.

Move the violated task backward to a time where the state can be changed
without causing additional state violations. Then insert the new task with an

effect that will change the state for the violated task.

Based on the computed penalties of the present schedule, these tools make it possible

to repair the schedule. Zweben et al. point out a disadvantage. Iterative repair is

not a complete search method, so there are cases where the algorithm will run to

the maximum allowable iterations without finding a solution; iterative repair can get

”

in local minima. The upside is that the algorithm can quickly accommodate

changes and work easily with preexisting schedules.
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Dealing with Dynamic Events

Historically, goal-based systems required teams of schedulers to create a mission plan.
This type of plan could be changed only during infrequent communication windows.
Onboard planners and schedulers provide autonomy to replan for certain events.
Rather then using probabilistic methods to treat an uncertain future, Chien et al.
approach the replan using iterative repair for dynamic events [6]. The idea is that if
an event arises that would increase the mission’s science value, then a replan would
accommodate that feature. Likewise, if something detrimental occurred, such as a
failure to acquire a guide star, then the planner could replan. Iterative repair is useful
because onboard planning consumes significant resources. The planner for the Deep
Space 1 mission requires four hours to generate a three day plan. The ability to replan
can nicely accommodat-'e incremental changes.

The iterative repair algorithm is straightforward, and it admits a hierarchical
approach to planning with the understanding that long horizon plans will contain less
detail than short horizon plans. Table 2.3 shows the iterative part of the algorithm.
The initialization requires that plan set, P, and goal set, G, are initialized to their

respective null conditions, and S must be set to the current state.

Table 2.3: Algorithm for iterative repair

Step Operation

1 | Update G to reflect new goals or goals that are no longer needed

Update S to the revised current state

Compute conflicts on (P, G, S)

Apply conflict resolution planning methods to P (within resource bounds)
Release relevant near-term activities in P to RTS [Executive] for execution
Goto Step 1

O O x| W D

2.3.7 Resource Management

Erann Gat and Barney Pell describe their treatment of abstract resource management

in the context of the NMRA [9]. The NMRA applies the three layer architecture en-

34




demic to many autonomous systems. This includes a deliberative and a reactive layer
tempered by the sequencer. The problem they consider involves managing resources
as discrete values while attempting to ensure that “parallel tasks do not interfere with
one another.” This problem is intractable because there are innumerable, unforeseen
situations which may make some parallel tasks incompatible.

Instead, Gat and Pell propose the property lock which is a “data structure that
signals a task’s intention to make a property take on a particular value.” When the
planner wants to plan a task, it will first subscribe the property. Depending on the
state of the world, the response will be one of three cases. If no other task owns it
then the subscribing task becomes the owner. Second, if another task is subscribing
to the lock and the outcome values are compatible, then they will share the lock, but
not be owners. Finally, if another task owns the lock then the intent to subscribe will
be denied.

This application of a property lock became part of the NMRA which flew on Deep

Space 1. It simplifies describing the configuration management routines.
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Chapter 3

Problem Description

The preceding chapter described several approaches to planning and scheduling, and
it reviewed some of the tools which will be necessary for the algorithm set forth in this
thesis. As described in Section 2.2.1, Chien et al. define planning and scheduling as
a decomposition process. A planner/scheduler takes high-level goals and turns them
into low-level activities while satisfying constraints and optimizing the plan. The list
on page 25 enumerates the requirements of the planning / scheduling system.

This thesis will examine planning and scheduling during satellite proximity op-
erations. These activities occur when the target is within a line-of-sight and when
the chase satellite has acquired the target. Radar and laser sensors are possible and
appropriate ways to acquire the target satellite. During these proximity operations,
scheduling the low-level activities becomes critical because of the demand on scarce
resources and the constraints imposed by the use of the resources and sensors.

This chapter will define the problem and provide the mathematical language to

perform the operations to create an optimized schedule.

3.1 Summary

This thesis assumes as given a discrete sequence of planned activities for the satellite to
perform. Each activity is defined by a set of modes and a set of constraints that remain

constant throughout the activity. The modes correspond to subsystem modes such as
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spacecraft attitude mode and various spacecraft payload modes. The constraints may
limit the environmental conditions under which the activity can occur. For example
an observation mode may be constrained to occur in either sunlight or during an
eclipse.

This thesis assumes the order in which to perform the activites is fixed, but the
specific transition times are not. Temporal bounds may be optionally placed on the
transitions times and activity durations. The scheduling problem in this study selects

the optimal transition times between the activities.

3.2 High-level Goals

The scheduling problem in this thesis requires that the plan_ner/ scheduler determine
the placement of desired events among environmental events. Planned events refer to
the high-level events that Chien et al. describe in Section 2.2.1. The following section
will examine the environmental conditions with which the scheduler must contend.
Subsequently, the planned requirements are discussed. Finally, this section explores

temporal considerations and resource management.

3.2.1 Environmental Conditions

The environmental conditions occur beyond the control of the spacecraft system.
They consist of day and night time intervals, communication windows, and other
factors which are necessary to consider when scheduling the satellite activities for
proximity operations. They have both direct and indirect effects on the chase craft’s
resource usage and significantly influence the schedule.

This thesis considers three types of environmental conditions: daylight and com-
munication over two distinct communication bands. This formulation treats commu-
nication windows as environmental conditions because they are dictated externally.
This formulation discretizes the events or points in time where the conditions change;
rather then making daylight be a continuous function of light intensity, the formu-

lation describes the lighting condition as either lightness or darkness. Similarly, two
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Figure 3-1: An example environmental timeline

states represent both bands of communication events—on or off. This provides sim-
plicity in evaluating the environmental conditions in the context of the planned events.
It is important to note that this formulation readily admits more complex descrip-
tions of environmental conditions, but for the sake of simplicity the examples here

are binary.

Viewing a timeline is the easiest way to understand the encoding of the environ-
mental conditions. Figure 3-1 encodes the environmental conditions into a timeline
of binary events. The horizontal axis labels time in seconds. The first row represents
the cycle of lighting as the satellite moves in its orbit. Note that in this simulation
the periods of daylight are longer than the periods of darkness. This is an artifact of
the satellite’s orbit. This particular orbit tends to expose the craft to a higher per-
centage of lightness than darkness. This facilitates observing the target in daylight

and maintaining the battery’s charge. The second row shows three communication
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events, and the third row indicates that no Band 2 communication events will occur.

The fourth row is a row of change points. This represents the collection of points
in time where an environmental condition changes. In the event where two events
change state simultaneously at 6000 s, only one change point is necessary to encode
the information. This is the benefit of using a standalone data structure to store the
discrete environmental values. This structure is called the matrix of environmental
conditions E € Z=*"N. Where ¢ is the number of environmental conditions considered
in the plan, and N is the total number of environmental events. Each column repre-
sents the discrete value of all € environmental parameters in a given interval of time.

The vector is specified as
&=y & ez Vie{1,...,N}. . (3.1)

In general, the value €;; denotes the environmental condition of the ith parameter
during the interval j. Note that € refers to an element of €. e refers to values of time

which Section 3.2.3 will clarify.

3.2.2 Planned Requirements

While this is an autonomous system, an operator must define the satellite’s mission.
This is the first bullet in Chien’s common elements of a planning and scheduling
system. For this thesis, the user specifies a set, P of planned events that occur in

monotonically increasing order.
P={p;eR®Vie[0,...,M]} (3.2)

These p; are the times which the scheduler must compute. Associated with these

times are the intervals which are written
Pk=[Pk—1,Pk] Vk € [171M] (33)

P, emphasizes the discrete nature of the intervals.
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Each interval constrains the plan into a specific set of constraints, denoted ;.
The 7; serve as a set of discrete values that define the chase satellite’s systems
configuration during an interval. Associated with each interval is a starting and
ending time, also known as planned events or planned times. Section 3.2.3 discusses
the temporal constraints on each planned event.

At each planned event the user designates the constraints or modes as a set of
discrete values in a vector, m € Z*. Here, Z is the set of integers and p is the number
of constraints considered in each planned interval. Concatenating all 7; yields the

matrix M of Equation 3.4 which this thesis calls the matrix of planned modes.
M=[ﬁi1 My - mM] (3.4)

Each m;; Vi€ [1,...,u] refers to the ith plan parameter of planned interval P;.
Table 3.1 enumerates the mode for each element, m;, of m;. The lighting re-
quirement refers to whether the event must occur in daylight, darkness, or either.
The communication events are binary: either the event occurs in a communication
window or it does not. The attitude mode is composed of several discrete values
which have a significant affect on other systems. These values include an option to
periodically observe the target craft to maintain relative position. Another option is
to point at the earth or the sun to perform communication activities or illuminate the
solar arrays. The sensor mode describes the state of the cameras, instrumentation,

acquisition sensor, etc.

Table 3.1: Description of planned event parameters

Parameter | Description
ms Lighting constraints
Mo Communication Band 1 constraints
ms Communication Band 2 constraints
My Attitude mode
ms Sensor mode

Unless stated otherwise, this thesis assumes the description in Table 3.1, y = 5,
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and M is the number of planned events in a plan. Figure 3-2 is an example of a
user-defined plan where M, the number of planned events is seven.

Examining Figure 3-2, note that the horizontal axis is marked with numbers from
zero to seven. As an example interval zero to one denoted as planned event one is
the user’s definition of the craft’s behavior during that event. Similarly, the interval
labeled one to two denotes the operators specification of the parameters for the second
planned event. Rows two and three capture two boring cases where the operator has
specified that neither types of communication events should occur during this plan;

this means the chase craft’s communication requirements are unconstrained.
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Figure 3-2: An example of the plan that a user would specify

3.2.3 Temporal Considerations

Thus far the thesis has shown how to represent environmental and planned parameters

in this formulation. Section 3.2.1 briefly examined the temporal considerations, but
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it neglected a rigorous approach. First, this section will define the major ideas for
the planned modes and environmental events. Then, it will study the interactions
between the two. Finally, it will consider an approach to allow for temporal constraint

descriptions using the two entities.

Intervals Defined

Section 3.2.1 indicates that each environmental event begins and ends at a specific
time. A specific event has its beginning time e; and its ending time e;4; where e; refers
to a particular time and €; refers to a vector of environmental parameters. Where

the complete set of environmental times is

E={eeR®Vie,...,N]} (3.5)

Must satisfy e;-; <e; Vie[l,...,N].

The formulation requires that |£| = N + 1*. Typically, e; = 0, but this formulation

allows for any value in R® such that ¢; <e;4; Vi€ |[0,...,N].

It is important to realize that each value, e; Vi € [0,..., N], describes both the
beginning time of an interval and the ending time of the previous interval. This is
not true for the initial and final intervals because ey and e; define the initial interval

and ey_; and ey describes the final interval.

Recall that within these intervals the orbiting craft will experience environmental
conditions codified in the €;. Moving across an e; boundary into another interval
with different €; places the craft under different environmental conditions. This idea

becomes critical in selecting a feasible-cum-optimal plan.

Figure 3-3 depicts the relationship between the interval labels, Ej, and their re-

lated time boundaries, e;.

*|€| means the cardinality of £

43



B B Ei1 En_y Ey, Intervals

- P

€o €1 €2 €, €i+1 EN—2EN-1 EN Time (s)

Figure 3-3: Pictorial definition of environmental events

As an example, the e; for the environmental conditions of Figure 3-1 are

& = {0,1200,2000, 2600, 4800, 6000, 6600, 9600,
10800, 14400, 15600, 16000, 16600, 18000} . (3.6)

The planned modes’ intervals are defined similarly. The key difference is that
these time boundaries are sought as solution values (i. e. they are unknown at the

outset). Consider the set of time boundaries

P={peR®Vic,..., M]} (3.7)

Subject to  (pi—1 < pi) A (po = €0) A (par < en) Vi € [1, M]

Here, two planned mode times can occur simultaneously. This is the case where
a mode requires no time to execute, as when p; = p;y;. Later, this section will
present additional constraints that a user may impose on the p;. The restriction
that p; < p;4, implies that the user must specify the planned modes in a sequential
order, and thus this order is already known. This formulation specifies that eq = po
because it is convenient to define the first planned interval to begin at the same time
as the first environmental interval; thus eliminating the need to solve for p,. The
other restriction, pys < ey comes from the fact that a desirable schedule is valid for
a given range of times, i.e. [eg,exn]. This is significant because this is the only range
in time with viable environmental data, and this information is essential to creating

a solution.
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Figure 3-4: Pictorial definition of planned modes

More formally, the set of environmental intervals is
If ={E;} Vie{Zn[1,N]}, (3.8)

where E; is the interval [e;_;,e;]. E; is the interval in which the conditions defined
by é; hold.

The planned intervals have the analogous set
P ={P} Vie{Zn[,M]}. (3.9)

The interval P; has temporal bounds p;_; and p;. In this interval the planned modes
m,; are valid.

As with the e;, each p; represents both the end time for the interval P; and the
start time for the interval P,,;, with the same exceptions of the initial and final values,
po and pys, respectively.

Finally, Figure 3-4 gives insight into the planned mode timeline. The timeline is
similar to the one for the environmental events. The important points to note are the
definitions of the first and last times. A more interesting aspect arises in a subsequent

section which examines the interactions between these intervals when they overlap.

Temporal Constraints

One of Chien’s requirements for a planning and scheduling system, in the list of
Section 2.2.1, (p. 25), is the implementation of “a temporal reasoning system for

expressing and maintaining temporal constraints.” This section describes the math-
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ematics for encoding this temporal reasoning system. Previously, this thesis showed
how to define the planned modes in terms of time. The elements of the set, P, serve
as temporal boundaries for each of the m;. Imposing certain constraints on the p;
effectively characterizes the temporal realities of the mission. The three types of

temporal constraints are

1. External sources of start time and duration constraints (see following list)
2. Joint interval ordering

3. Interval compatibility

First, this thesis examines reasons to provide this functionality for a planning and
scheduling system. Table 3.3 presents several approaches to encoding constraints.

The rationale for providing temporal constraint functionality is

1. A certain planned mode needs to last ezactly long enough to coincide with a

communication window.

2. Guidance, navigation, and control require that a mode last at least a certain

amount of time; or require that it last less than a certain amount of time.

3. The user determines that an activity should last less than, more than, or exactly

a certain amount of time.
4. Equipment in a specific mode needs to be used for a certain amount of time.
5. Extra time is needed to renew a resource.

In this list, there are some commonalities among the reasons for describing the tem-
poral constraints. These commonalities can be boiled down to ezactly, greater than,
and less than. An operator might see these as in Table 3.2.

When specifying a mission, the operator may think of its duration in terms of the
User Language of Table 3.2. The planner must take the high-level user speciﬁcafion
and turn them into values that can be related with the indicated relational operators.
The inequalities of Table 3.3 implement this operation. This thesis assumes that the
high-level translation of the user language into the more primitive relational operator

specification has already been performed for a given mission.
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Table 3.2: User language in terms of relational operators

| Relational Operator ] User Language

minimum end time / duration
greater than

> at least

more than

no less than

mazimum end time / duration
< less than

at most

no more than

exact end time / duration
equal to

exactly

both more than and less than

Table 3.3: Methods for encoding temporal constraints, t € [ep, en]

Minimum end time pizt & —p<—t (3.10)
Maximum end time pi <t (3.11)
Exact end time pi=t & (3.10)A(3.11) (3.12)
Minimum duration p; —p;o3 >t < pioy—pi < —t (3.13)
Maximum duration p; —p;_; <t (3.14)
Exact duration pi—pi-1=t & (3.13)A(3.14) (3.15)

Table 3.3 presents the inequalities which are used to encode the user language
of Table 3.2. For completeness, it is allowable to use conjunctions of minimum and
maximum end times or conjunctions of minimum and maximum durations. When
specifying these temporal constraints the user must exercise care so as not to create
an infeasible situation. Of course it is entirely possible that a set of constraints makes

the schedule infeasible, and the solver must indicate such a situation.

The value t refers to a constant in [eg, en] for Equations 3.10-3.12. Equations 3.13-3.15,
must have t € [0,ex — ep]. The reader should notice that this constant could land
within any F; complicating the problem. This is not always the case, but it is an

eventuality which must be considered.
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The two inequalities of 3.10 and 3.13 also reveal another form to express the same
relationship using <. This becomes important when describing solution techniques
in Section 3.3.2.

The second point in the first list of Section 3.2.3 (p. 46) refers to the joint interval
ordering. This regards the arrangement between the p; and the e;. This ordering
represents a difficult problem Because a particular arrangement directly affects several
significant factors. Section 3.2.4 reveals that the ordering affects how the resource
values evolve over time. Once the ordering is specified, the problem still remains as
to how best to position the p;, as in sliding beads on a wire. Because of the difficulty
of this problem, Chapter 4 presents a more comprehensive approach to solving this
problem.

The final item in the first list of Section 3.2.3 (p. 46) regards interval compatibility.
The process of computing the ordering requires that overlapping intervals satisfy
certain requirements. For instance a planned interval might have the requirement
that it occur in daylight, so it must only be paired with an environmental interval of
the same nature. This implies the existence of a binary function

1 m; compatible with €

v(i,j) = (3.16)

0 otherwise
Viel,...,M], je[l,...,N].

The binary function compares the planned constraints encoded in 73; with the en-
vironmental conditions encoded in €. If v (7, j) evaluates to a false condition the
respective overlapping intervals F; and E; are constrained so that they do not overlap

in the final solution.

3.2.4 Resource Management

In a planning and scheduling system Chien mentions, in his second point, that a
robust system should address resource constraints. This section presents the tools to

treat linearly the resource usage for various types of resources. Table 3.4 characterizes
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several resources which a typical satellite might need to maintain. This list is not
exhaustive, but it highlights three major classes of resources. The science is listed
as a finite resource; Sauer describes a scheduling algorithm that maximizes science
in a mission [19]. Sauer indicates that there is a finite amount of science that an
earth observing satellite might be able to acquire as it orbits because the earth’s

state changes and the satellite will rarely repeat the same track.

Table 3.4: Types of resources and their management objectives

Type Resource Objective

maximize science gain
minimize loss of science
Semi-finite | Fuel mini_m i,Z © usage

maximize storage
minimize temperature gain
maximize temperature loss
minimize data loss
maximize data retention
minimize battery use
maximize battery charge

Finite Science [1, 19]

Temperature

Renewable | Memory

Battery charge

Renewable resources are the most general of types because they include both a
finite and infinite dimension. That is, the chase craft can exhaust them completely,
or renew them without end. In particular, this thesis will take the approach of
maximizing battery state of charge (SOC) or rather minimizing battery loss. The final
resource type, semi-finite, is a special case of a renewable resource. In theory, fuel
or some other commodity might be replenished, but this would occur over significant
lengths of time which would exceed the temporal order of magnitude for proximity
operations. For this reason, this thesis assumes that semi-finite resources fall outside

of its scope.

Mathematical Formulation

The following formulation is a linear representation for modeling various resources.

Some will argue that temperature, or battery charge do not behave linearly which
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is true, but assuming short times, a linear function can approximate their behavior.
Beginning with the simple function, f which is linear in time elapsed, At yields the
equation

f (At) = aAt (3.17)

Here, a, represents the rate of increase or decrease of the resource over the duration,

At.

Any resource, r will have upper and lower bounds so

e = min{ry_; + aAt,ub} (3.18)
re > b (3.19)

Vk € [1,...,M+ N —1]

This equation does not give the complete picture because it neglects that the resource
values 7y are defined at each p; Vi € [1,..., M] and e; Vj € [0,..., N — 1]. This thesis

assumes the value ro € [Ib, ub] is given as an input.

Next, defining

a=a(m;,é) =a;; (3.20)

which is the resource rate. The arguments of o represent the parameters m; of P; and
€; of Ej, which are needed to determine how the spacecraft uses its resource during
the intersection of P; and E;. A skeptic might say that both vectors are not necessary
in the cases of the intervals [p;—1, p;] or [ej_1, €;], but there is always an active planned
and environmental interval with valid parameters. There is one exception to this rule.
In the interval defined as [pas, en], the timeline has entered a joint interval where the
P; and their associated 7; are no longer defined. This explains why it is unnecessary
to compute the last r¢ and that [R| = M + N — 1. Note also that it is only necessary
to compute those «; ; for which v (i, j) = 1, because if v (¢, j) = 0, then P; and E; are
not allowed to overlap.

The two statements of Equations 3.18 and 3.19 model the linear evolution of the

resources with saturation. Equation 3.19 is a policy statement that allows this thesis

50




to assert a minimum value for the resource. The saturation value, ub, comes from a
natural modeling constraint; for a battery this would represent full capacity. Without
saturation, Equations 3.18 and 3.19 could be equalities. With saturation allowed, it

is sufficient to provide Equations 3.18 and 3.19 in conjunction with

r < ub. (3.21)

In the context of a linear program the resource values will be pushed to one of the

limits as needed. This occurs in Figure 3-5. The figure shows two cases of evolution

Saturation w/o Saturation
R Tk
e
S ub
0
u Tl\ .
r
c
e M
\Y%
? Tk-1
u b
€
- “ee N
Time

Figure 3-5: Resource evolution with and without saturation

where the left interval begins at r4_; to reach saturation at which point it continues
to maintain that value such that r, = ub. The right part of the figure shows the

resource value decreasing, but it remains in the interval, [Ib, ub].

The problem with At is that it does not readily fit into the formulation based on
p; and e;. The following are the intervals which we will use to compute At and their

associated resource limit equations. The resource limits are valid on the later bound,
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i.e. the right-handed bound.

€0, = -« +r0 <ro—ay e
Ii] _ [ 0 Pl] 1,11 1 0 1,1€0 (3'22)

leo,er]pt = 7§ < =10~ 1160+ arpe

4
[pi—l,Pi]Ejt = T‘f - 'I"f_l + o pi-1 — 4P <0
i = | [pi1,e5] = 5 =71 +ouipio1 < e (3.23)
lej-1,pi] = 77 —75) —aip < —aijei
| lej-neilpt = 5 i S —ougein + auge;

Vkel2,....M+N-1], je[l,...,N-1], i€l,...,M]

For Equations 3.22 and 3.23, several key points must be clarified. The f (At) itself
expands linearly into the 7§ and r%. These are the resource values at the end of the
intervals, Z/, that end at environmental time, e;, and planned time, p;, respectively.

In Equation 3.23, there are four possible combinations of joint intervals. In par-
ticular these combinations influence the proper parameters to select for the o; ;. For
example, the interval, [e;_1,p;], requires the use of the a;;. It takes the current en-
vironmental conditions and the current planned mode parameters. In this interval,
that corresponds to the parameters €; and 7i;. However, there is the case which must
consider the intervals that are bounded by purely environmental or planned events:
[pi-1,pi] or [pj—1,p;]. In these intervals, it becomes necessary to examine the previous

unrepresented event to determine the correct parameters to use.

Formally,

R = {ro,r¢,r? € R| b < ro,75,77 < ub} (3.24)
Viel[l,...,M], je[i,...,N—-1].

Each value of r is bounded from above and below. These bounds typically come from
both a policy and a modeling requirement. In the examples in this thesis for SOC

the bound from below is a policy constraint that prohibits the battery from dropping

tP; added to emphasize the presence of a planned interval.
1E; added to emphasize the presence of an environmental interval.
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below a specific level. The upper bound is a constraint that models the battery’s
saturation level. Another key point regards the initial state of the resource, ry. This
value typically fits into the specified bounds, but the user may be willing to relax the

policy constraint for certain eventualities.

3.3 Problem Statement

The preceding sections have shown the mathematical framework necessary to fully
describe the problem. The remainder of this chapter will use these tools to present
a formal, comprehensive view of the problem and define what it means to have a

solution.

In the list of Section 2.2.1 (p. 25), Chien enumerates the requirements for a plan-
ning and scheduling system. With special emphasis on constraint and resource man-
agement this chapter describes a system that optimally schedules planned events in
the midst of environmental events. This scheduling occurs in the context of prox-
imity operations which are considered to be intermediate range with respect to a
rendezvous. The thesis assumes that this schedule is useful as part of a larger plan
for autonomous rendezvous. Here a larger plan refers to a plan which accounts for

both the long range and capture phases of rendezvous.

3.3.1 Problem

The first thing to consider is that the scheduler must exert control over the events’
execution times, p;. These values have a direct effect on how the chase satellite
consumes its resources, r{ and rf , our other control variables. In operations research

parlance, these are called decision variables. This thesis may refer to these as

S e 1T
xTr = [pl P2 PMm ri’r;...rﬁ/] fr‘li T;"”TN—I] . (3'25)
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The goal here is to minimize the execution time and maximize the resources. This is

N-1 M

i ;) — ¢ — - .26
(i |O0) = 2 5=k (3.0
j=1 k=1
The function C(p;) allows for several types of cost functions. The first one tries to
minimize the amount of time it takes to execute all of the planned events. This is

written as
M

C)=) p (3.27)

i=1
If the primary concern is to minimize the start to finish time of the whole schedule

then the function should be
C (pi) = pm- (3.28)

Using a special definition of pps = ey then the previous equation becomes

c (Pi) = PM-1- (3.29)

This allows the scheduler to minimize the execution time of the planned events with

the final time in a fixed position.

Next, encoding all of the constraints is complicated by the placement of the p;
within the e;. This placement problem is challenging enough to require additional
mathematical formulation so at this point the thesis assumes that the placement has
been solved. The following is an example of a placement with three planned modes
and seven environmental events. The placement was earlier referred to as the joint

intervals.
eo=pp<er<e<es<pi<es<es<eg<p<p3<ler (3.30)

This example has several features which are significant. The first two elements are
always the same; that is eg = po. The thesis asserts the definition ey = py to achieve

a consistent format in the ordering. The thesis also refers to this same statement
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(Equation 3.30) omitting the inequality symbols with the implication that they still

exist.

Another powerful way to represent this ordering is to omit the inequality symbols,

assign the values

pi=1 e =0 VpeP,e€k, (3.31)

and write it as a sequence. The example of Equation 3.30 becomes
(01) 000100011 (0).

Here, the parentheses denote fixed placement of the binary values. This thesis defines
the relationship of ey = py as ey < po, but only for this interval ordering. Similarly,

it makes the last event environmental because of the requirement, pys < ey.

At this point it becomes clear how to write the constraints. The goal is to fit them

into a linear optimization framework as in
AZ <b. (3.32)

Here, Z represents the decision variables of Equation 3.25. The following is the

matrix-vector pair

e _ N
v | 0 by
A=|W , b= | bw (3.33)
0| v By
|z | bz |

The first pair, U, EU, encodes the constraints of the definition of set P in Equa-
tion 3.7. The second pair, V, Ev, represents the additional commanded constraints
whose rationale was described in the second list of Section 3.2.3 (p. 46). The third
pair, W, bw contains the joint interval constraints. These first three pairs are linear
in the p;. The pair Y, by is linear in the r? and the r¢ and they encode the resource

policy and saturation constraints. The final pair is linear in the p;, 7§, and . It
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is represented in the pair, Z, 5z, which helps define the temporal evolution of the

resource.

3.3.2 Solutions

Now that the problem is defined, what defines an optimal solution? Continuing to
assume the optimal joint intervals, the optimal solution which is the optimal schedule
will be the one which minimizes Equation 3.26 subject to Equation 3.33. This optimal
schedule will still observe all of the constraints. The p; will be specified as if they are
beads on a timeline (Pack-Kaelbling) with range [eg,en]. Their interval constraints
will be satisfied, as will the other temporal constraints which might creep up as

described in the second list of Section 3.2.3 (p. 46).

56



Chapter 4

A Mixed Integer Programming
Approach

The critical assumption of Section 3.3.1 is that the relative ordering of p; and e;
is given. The arrangement of these times and their respective intervals governs the
evolution of the resources and suggests that the planned modes agree with the environ-
mental conditions that overlap. Within these instances of planned and environmental
overlap the algorithm must still select how to optimally move the p; within its respec-
tive joint interval to make an optimal plan accounting for both the resources limits

and execution time.

In the spirit of operations research, this chapter extends the linear formulation of
Chapter 3 into a MIP formulation that considers not only the joint interval prob-
lem, but also the issue of complete temporal optimality. The software package
XPRESS-MP will be used in conjunction with Matlab to generate examples and

results.

Section 4.1 introduces some binary decision variables which are critical to selecting
the optimal ordering of the p; among the e;. Section 4.2 amends the linear formulation
to capitalize on the new binary decision variables. Section 4.3 shows how to combine
all of the modified constraints and apply the solver. Chapter 5 will then discuss some

examples and their solutions.
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4.1 Solving the Joint Interval Problem

The joint interval problem refers to the arrangement of p; among the e;, or rather
how do the P; overlap with the E;. A binary decision variable, by, ,, can characterize
this overlap. This variable can be integrated into the other constraint equations
mentioned in Section 3.2. The solver can discretely select the interval arrangement,
which activates a particular set of bn,, and based on these values it judges the

optimality of the execution time and resource limits.

4.1.1 Defining the Interval Variable

The interval variable, by, , is defined as

bnn=1 & P, overlaps E,
& P,NE,#0

A (pm—l S en) A (en—l S pm) . (41)

This translates into four different styles of overlapping intervals depicted pictorially

in Figure 4-1. Each of these overlap cases satisfies the conjunction of Equation 4.1.

Spans Contains Hangs Left Hangs Right
Pm-1 Pm  Pm-1 Pm Pm-1 Pm Pm-1  Pm
*e—— o *—e ———o *——eo
| | | | l I
[ ] I 1 I 1
En-1 €n €n—1 €n €n-1 €n €n-1 €n

Figure 4-1: Four types of interval overlap

Section 4.1.3 will more thoroughly examine the mathematical representation of these

four overlap cases and describe how the by, ,, can identify each of the instances.
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4.1.2 Defining the Interval Space

Collecting all of the by, , together forms the interval space
B = [by) € {0,1} Vmell,...,M+1], nel[l,...,N]. (4.2)

In a solution, the path will be specified as a series of ones from the top left position,
b1,1 to the bottom row, bar41,,. The number of ones in the search space should be at
least M + 1 and no more than M + N. All other entries in B are zero. In a valid,
feasible path, the ones are adjacent and only traverse down and to the right. Figure 4-
2 is an example of a possible path in the interval space based on the inequality of
Equation 3.30. The solid blocks indicate that b,, , = 1 and the unfilled blocks, that

bmn = 0. The easiest way to extract the timeline from the interval space is to observe

e0 el e2 e3 ed e5 eb e7
p0
p1
p2
p3
p4
Po J4! D2 D3
o [ ] [ 2N}
—t—t+—+—+—+—+—+—+ Time
€9 [4] €2 €3 €4 (13 €g €7

Figure 4-2: An example path in interval space with its associated timeline

the transitions of the shaded blocks. By the definition of Section 3.3.1, the reader
knows that each order begins with a 0 1 which indicates that eq = po; this ordering

always ends with a 0. Otherwise, to extract the body of the ordering follow the path.
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At each transition, i.e. a move right or down, record a move to the right as a 0 and

a move down as a 1.

It is useful to note that the interval space of Figure 4-2 refers to a value p; which
is non-existent in its path description in Equation 3.30 and on the timeline of the
same figure. This additional planned event is necessary to capture the placement of

the final planned event, in this case ps.

These equations are the structural equations of the matrix B. They capture the
idea that a path must originate in the upper left corner and move only down and
right to the bottom row. The first equation indicates that the both the first planned

and first environmental intervals must always overlap.

bl,l =1. .' (43)

The next equation indicates that along any diagonal running from the northeast

to the southwest there is at most one instance of overlap.

> bmn<1 Vge[l,...,.M+N-1 (4.4)
{m,n: n+m=q+2}

Explicitly, expanding Equation 4.4 for the overlap space of Figure 4-2 gives

g=1 = bo+b,<1

g=2 = bis+ba+b;; <1
g=3 = biatbyztbza+by <1
gq=4 = bis+bys+b3z+bo<1
gq=5 = big+bys+bsa+b3<1
g=6 = bir+byg+bss+ba<1
gq=7 = by7+bge+bss<1
g=8 = by3r+bie<1

g=9 = b7<1
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The following two inequalities assert the property of forward propagation. That
is the path moves down and to the right, but obviously can only makes one move at

a time.

bmn —bmiin —bmmss < 0 Vme[l,...,M],ne[l,...,.N—1 (45)
<

buN —bmiry < 0 Vme([L,..., M] (4.6)

Equation 4.5 suggests that from by, , the path moves to the right b,, 41 and down
bm+1,n- Other constraints such as the diagonal property of Equation 4.4 prevent the
path from traversing both to the right and down from the same b,,. Figure 4-3

indicates this erroneous situation.

Equation 4.6 prevents the path from trying to move down when there is not a sub-
sequent row. In this case the path may only move right. This implies moving across
environmental intervals as the overlap path has already reached the last planned

event.

e3 ed e5

p1

p3

Figure 4-3: Forward propagation without applying other constraints

The next four equations encode the backward propagation constraints. These take

a particular by, , and enforce the idea that it should have come from above, b1,
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or from the left (not politically speaking), by n—1.

Bn — bmetn —bmnt < 0 VmeE[2,...,M],ne2,...,N|  (47)
bt —bm-11 < 0 Vme[2,...,M] (4.8)
bip—bina < 0 Vne[2...,N| (4.9)

brsin —bun < 0 Vne(l,...,N] (4.10)

The last pair of structural inequalities implies that upon arriving at the final
planned event, the path terminates. This revokes any reason to move right; moving
right is unnecessary because the implication of an environmental condition is that it

occurs regardless if a planned mode overlaps.

Z busin <1 (4.11)
nell,...,N]
> burrn =1 (4.12)
ngll,...,N]

Note that these inequalities are opposite which in fact is another way to say equals.

This is useful for some MIP solvers.

There is redundancy included in the equations. Most MIP solvers are capable of

rejecting redundant constraints, so eliminating these cases is not a concern.

4.1.3 Using the Interval Variable to Determine the Previous

Event

Figure 4-1 presents the four specific ways in which planned and environmental inter-
vals can overlap, but without any method to determine which case actually exists.
This section will delineate the IP equations and relate them to true and false states.
This will be useful in isolating the four cases to treat the resource limits which are

dependent on this kﬁowledge.

62




Contains

This type of overlap features a planned interval entirely contained within an environ-

mental interval. In the joint interval form, this is
€n—-1 S Pm—1 S Pm S €n. (413)

In the interval space if the algorithm considers the b, , then this overlap type refers
to the overlaps above, by,_1, and below, byy1,. This type of overlap is present for

the by, and results in the following statements

(true) S 2-— bm+1,n - bm—l,n =0 (414)

(false) & 2 —bumirn — bmotn > 1 (4.15)

Vme€ [2,...,M],ne[l,...,N]
Hangs Left

Denoting this type of overlap as
Pm-1 S €n S Pm S €n+1. (416)

In the interval space this situation refers to a bmn41, its left neighbor, by », and its
bottom neighbor, by41,+1. The following statements will be useful in writing the

other constraint equations.

(true) & 3- bm,n - bm,n+1 —Om+in+1 = 0 (4.17)
(false) &S 3 - bm," - bm,'n+1 - bm+1,n+1 >1 (418)

Vmell,...,M],nel,...,N—1]

There is a special instance for this overlap situation, m = 1. This means by; =1
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and of course by ; = 1. Thus, the equations become

(true) & 1- b2,1 =0 (419)
(false) & 1—byy >1. (4.20)

Hangs Right

A third instance of overlap is the case of Hangs Right. In the joint interval language
this is denoted as

€n—1 S Pm S €n S Pm+1- (421)

The central overlap variable is bp,41,. This case refers to its upper neighbor, by, »
and its right neighbor by, 41,,4+1. Writing the other constraints will be easier with the -

following conditional statements

(true) &S 33— bm’" - bm+1,n ~ Om+4intl = 0 (4.22)
(f(llSE) & 33— bm,n — bm+1,n - bm+1,n+1 >1 (423)

Vmell,....M—-1],nel,...,N-1].

If these bounds appear short or to be off-by-one that is because this formulation is
not concerned with the extra planned event, pas1, or rather with what happens after

visiting py < en.

Spans

The remaining overlap type is the Spans case where a planned interval spans over a

whole environmental interval. This is

P < €n1 < €n < P (4.24)

Focusing on the central interval variable which for this case is by, ,, indicates its

left neighbor as by, -1, and its right neighbor as, by ni1. These yield the following
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statements

(true) & 2—bpp1—bypt1 =0 (4.25)
(false) S 2-— bm,n—l — bm,n+1 >1 (426)
Vnel2,...,N=1], me[l,...,M].

This overlap type has a special case when n = 1. That is

(true) & 1—-b1 =0 (4.27)

(false) & 1—by3>1. (4.28)

4.1.4 Integrating the Interval Variables

The preceding sections laid the groundwork for the MIP. I.Jsing the interval space of
Section 4.1.2 and the constraints from Section 3.3.1 the two entities are necessary to
solve both the joint interval problem and the temporal/resource limit problem. The
first task is to examine the temporal constraints and their relationship to the interval
variables. Then, the thesis will consider the interval variables along with the resource

limits.

4.1.5 Evaluating Interval Compatibility

The first list of Section 3.2.3 (p. 46) refers to the categories of temporal constraints.
This includes the joint interval problem which the formulation of this chapter can
fully solve. This list mentions interval compatibility which is briefly described in
Section 3.2.3 using a function, v (i, j). Because of the definition of the interval space,
the binary function must accommodate the new size, which adds the N extra values

of row M + 1. Redefining Equation 3.16 gives the function

1 m=M+1
v(m,n) =14 1 (P, compatible with E,) A (m < M) (4.29)

0 otherwise
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Vmell,...,M+1],ne(l,...,N].

It should be noted that the idea of compatible with refers to the overlapping intervals
as defined in Equation 4.1.

Using the function of Equation 4.29 each of the (M + 1) N instances of variable
overlapped should be evaluated. If any are determined to be prohibited instances

then the algorithm must explicitly declare
b = 0. (4.30)

This will result in a set of constraints with no solution. If at the beginning b;; =0
then there is a conflict with the constraint of Equation 4.3; this schedule would be
deemed infeasible. Likewise if all bpt1, = 0 Vn € [1,..., N], then this schedule
would be infeasible. In most cases, the user specifies the requirements properly, and

the solver readily finds a solution.

4.2 Adapting the Linear Model

To this point, this chapter has defined the interval variable, its related decision space,
and specified a formulation (Section 3.3.1) for solving the planning and scheduling
problem. The remaining step is to use the interval space to find the optimal solution at
the same time as choosing the relative ordering of the p; among the e;. The first task
is to examine the temporal constraints and their relationship to the interval variables.

Then, the interval variables along with the resource limits will be considered.

4.2.1 Temporal Constraints

Section 3.2.3 defined the p; such that they each successive p; is greater than or equal

to the previous value. The MIP must enforce these inequalities

Pm-1 < Pm VYme€ [2,...,M] (4.31)
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to maintain the formulation of Chapter 3.

To facilitate the placement of the planned events among the environmental events,
it is imperative to use the idea in Equation 4.1 and relate the p; to the e;. The

following inequalities manage this placement.

®
3
|
-
A

Pm+T(1=bpn) Vmel(l,...,M],nel2,...,N] (4.32)
en+T (1 =bnp) Ymel2,....M+1],nell,...,N —1] (4.33)

S
3
L
IA

where T > ey is a very large positive constant

These inequalities yield the joint intervals described in Section 3.2.3. In the case
where interval P, overlaps E,, then b,, = 1 leaving the statements p,,_; < e,
and e,_; < pp,, which is Equation 4.1. When b, , = 0, the value T" overpowers the
inequality, effectively relazing the constraint, so that it does not restrict the solver in

finding the solution.

Finally, the algorithm must observe the rules regarding the beginning and end of

the schedule. This requires the explicit statement,

Po = € (434)
Pm > € VYme(l,...,M] (4.35)
Pm < ey VYme,...,M] (4.36)

4.2.2 Resource Evolution

The next step in completing the formulation is to specify the resource evolution. This
necessitates the continuous real variables, r¥, and r¢ along with the initial resource
value 7y at time ey = po. First this section will discuss the resource consumption or
replenishment rate o, ,. Then it will consider modifications to the inequalities of the

resource evolution in Equations 3.22 and 3.23.

The function a,, , computes the rate of consumption or replenishment of a resource

in the given joint interval. It takes into account the parameters of the planned
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modes, i, and the environmental conditions, é,. The function, a,, , should evaluate
to a value that realistically describes increases and decreases in the resource values
within the allowed range of the upper and lower bounds, [Ib, ub} across the considered
temporal boundaries. The temporal bounds come from the solution and they are

directly linked to the times described by P,, and E,.

It is useful to note that the final additive term of the following equations is a
function of the overlap variables. They are written in a way which corresponds to
the truth values of the four types of overlap specified in Section 4.1.3. In these final
additive terms, the coefficient L serves a purpose similar to T". The value, L, relaxes
the constraint when the quantity it multiplies evaluates to a nonzero value. Like T,

L should be a large positive value.

Equation 3.22 contains the special cases for the general formulation. Even with
the new interval space, there are still some special cases. The first of these occurs
when the first joint interval is [ep, p;], and so it ends with resource value 5. These
are

1"11’ <7ro+ a3 (p1 - 60) + L (]. - b2,1) . (437)

Similarly, if the first interval ends with an environmental event then,
ri<ro+aii(er —e) + L(1—bi2). (4.38)

This means that the first interval was [eg, 1], and it ends with resource value r$.

The following two equations represent a unique case because they combine el-
ements of Equations 3.22 and 3.23. The first one is written for a static planned
event, p; and a dynamic environmental event, e, such that we have the interval

len,p1] Vn €[l,...,N — 1] which leaves the resource value r}.
1.117 S ’I'; + Qa1n+1 (pl - en) + L (2 - bl,n+1 - b2,'n+1) Vn € [11 s 1N - 1] (439)

The second of the two hybrid equations represents the resource value at r§ within the
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interval [ppn,e1] VYmel[l,...,M —1].

7‘(1: < Tfn + Omt11 (61 - pm) +L (3 - bmvl - bm+1s1 - bm+172) (4'40)

Vme[l,...M —1]

The next four inequalities model the resource limits for the general cases of re-
source evolution seen in Equation 3.23. This inequality treats the contains relation-

ship where the interval is written [Pm-1,Pm], and it represents the resource value,

Tﬁ, < T'fn_l + mn (pm - pm—l) +L (2 - bm+1,n - bm—l,n) (4-41)
Vme[2,...,M],nell,...,N|

For the Hangs Left interval, (e,, pm| there is the inequality for the resource value 72,.

7\?:" S ,’.Tel + am,n-H (pm - en) + L (3 - b'm,n - bm,n+1 - bm+1,n+1) (442)
Vme2,...,M],nell,....N—1]

The final two inequalities respectively represent the Spans case of interval [e,_1, €,

and the Hangs Right case of interval [p, e,]. They model the resource value at 7.

Ty < To_ 1+ omn(en —e€n-1)+L(2— bmn-1— bnnt1) (4.43)
Vnel2,...,N—-1], mell,...,M]

7': < Tfn + Optin (en - pm) +L (3 - bm,n - bm+1,n - m+1,n+1) (4-44)

Vnel2,...,.N-1,me[l,...,M —1]
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4.3 Combining the Amended Formulation

The preceding sections have modified the original formulation of Chapter 3. The
remaining step is to make a complete statement about the method to achieve a
practical solution. Table 4.1 enumerates the six steps required to implement the

MIP. Only the fifth step requires the use of a solver package.

Table 4.1: Implementing a MIP

Specify planned modes, M, and environmental conditions, E
Check for interval compatibility

Compute resource rates

Collect interval, temporal, and resource constraints

Evaluate MIP with a solver package

Review solution

O O W

Specifying the planned modes and environmental conditions is straightforward.
Using their data, the algorithm evaluates the interval compatibility with the function
v(m,n). If a given overlap case evaluates to 1 then perform Step 3 which is to
compute the associated resource rate, o (m,n). Only compute the resource rate for
valid overlapping intervals since the solver cannot place two intervals that are invalid.
Finally, collect all of the constraints in one place. First, there is the vector of decision
variables.

Tmip = [bl,l big---binb21bo2-bon- by N fT]T (4.45)

Note that the new vector expands the overlap variables along with the previous vector
of decision variables, Z, from Equation 3.25.

As in Section 3.3.1, here the associated constraints are specified. The matrix B
encodes the structural definition of the overlap matrix. The matrix is defined to in-
clude individual constraints which restrict overlap due to a conflict; specifically this
requires encoding b, , = 0 for those restricted overlap cases. To include the tem-

poral constraints, it is necessary to encode Equations 4.31-4.36 along with the other
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commanded temporal constraints from the second list of Section 3.2.3 on page 46.
Modifying V to include these results in V. For the MIP formulation, the matrix of
joint interval constraints, W is unnecessary. Instead, B, will aid the solver in select-
ing the correct overlap conditions, i. e. joint intervals. The MIP formulation keeps
the resource policy and saturation constraints of Y but modifies Z such that it is
linear in terms of by, n, Pm, 75, and r2,. This leaves the constraint matrix and vector

as

os)
<)
=
=
Q-t
ml

>
I
<l
Il

(4.46)

[o=]
(o=
!
I S“l <°"‘1

N
N

- = L -

Finally, applying the constraints of Equation 4.46 in a solver package using the
cost function of Equation 3.26 yields the optimal schedules. The following chapter
will examine several cases resulting from the method of Table 4.1.

For a thorough application of the algorithm in Table 4.1, see Appendix B in

conjunction with the example of Section 5.2.2.
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Chapter 5

Results

In Chapter 4, the thesis defined a comprehensive approach to solving the proximity
operations scheduling problem. This chapter will focus on reviewing results and
experiments.

In particular, this chapter will examine several test cases which offer a realistic
representation of an observation mission’s proximity operations. Experiments rooted
in these test cases will reveal some of the algorithm’s features and highlight its capa-
bility and extendibility. Here extendibility refers to the solution method’s robustness
to modifications, which will increase the fidelity of the output.

Section 5.1 delineates the language and basic elements of the missions to be dis-
cussed. Then, Section 5.2 gives some examples to accustom the reader to the general
mission format for the remaining experiments. The first one presents a very basic
mission with only three planned modes. The second example schedules a mission
with more realistic activities.

Sections 5.3-5.6 all consider the constrained and unconstrained cases of the mis-
sion’s main observation goal. An example of a constrained case would be to constrain
the observation to occur in daylight or darkness. The unconstrained case does not
care whether it occurs in daylight, darkness, or both. Section 5.5 examines a minor
modification to the formulation that affects resource management, and ultimately the
solution. This requires the addition of a continuous decision variable, some additional

constraints based on this variable, and its inclusion in the cost function. Finally, Sec-
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tion 5.6 explores a modification to the cost function that seeks to reduce the execution

time of specific planned modes.

5.1 General Mission Framework

The remainder of this chapter will explore several example plans and their respective
MIP solutions. Figure 5-1 delineates the planned modes for a basic mission. Each
block represents a mode and directly corresponds to a m; of which there are M = 7.
Usually the first and last modes are station keeping modes because they serve as start .
and goal states and act as a sort of buffer between other events. They provide the
opportunity for the scheduler to delay or hurry the subsequent and previous activities.
Furthermore, in a hierarchical planner, the start and goal modes function as handles

for the planner to grab and use in its algorithm [1, 8, 11].

SK | Station Keeping
T Transitional Maneuver
Obs | Observation

e o
SK | T | SK|Obs| SK | T

N S e S

p0 p1 p2 p3 p4 p5 p6 p7

Figure 5-1: A basic proximity operations observation mission

In general the chase satellite may perform the station keeping activity along the
radial, 7, or velocity, 7, vectors of the target craft. It is worth noting that in terms of
fuel consumption, station keeping on the radial vector is expensive. More generally,
station keeping anywhere but on the velocity vector is costly*. Section 5.6 offers an
approach to minimize this fuel cost.

Additionally, station keeping is an excellent mode to perform communication con-

tacts for uploading and downloading data. During these modes, the satellite operators

*Mathematically, any combination of 7, ¥, or 7 X ¥ (cross-track)
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can transmit navigation updates or commands giving the final authorization to pro-
ceed with the rendezvous. There are two communication bands. Band 1 represents
a low data rate system whereas Band 2 allows transfers of large amounts of data.
This thesis assumes that Band 2 conveys information rich material such as video and
images.

In keeping with its multipurpose role, station keeping may also serve as a mode to
update the relative position error between the chaser and target using the acquisition
sensor. More often, it will be a mode to regenerate and/or dissipate resources.

The last point of station keeping addresses a subtle issue, and one which must be
explained carefully. Recall the validating function of Equation 3.16; this determines
whether an environmental and planned interval are compatible based on the €; and
m;. For example, consider the application of the validating function to the planned
modes and environmental conditions resulting in the following valid, shaded overlaps

of Figure 5-2. Here, the planned interval, P,, was constrained to occur in daylight,

el el e2 e3 ed e5 eb e7

pO

p1

p2

p3

p4

Figure 5-2: An example of overlap space depicting v (7, j) with no solution

and the planned mode, Ps, should occur during a communication window. Now,
unless the daylight occurs just before the beginning of the communication window,
then there is no valid path and therefore no solution. The space does not allow a

solution because some of the intervals are incompatible. In Figure 5-2 intervals P,
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and F4 are unshaded and, therefore, incompatible. Inserting an extra unconstrained
station keeping mode between the two offending planned modes, intervals P, and P,
remedies this conflict.

The observation mode in Figure 5-1 gives the chase craft the opportunity to ob-
serve the target using its camera to make images and video. In certain circumstances,
it might transmit video to the earth using Band 2. During this time the chaser might
use passive motion to move around the target, or it may use fuel to physical fly around
the target. Typically, the observation mode is temporally constrained to occur with
finite duration as a result of a communication window duration, astrodynamics con-
straints, or both.

Finally, the transition mode uses the thruster to transit between station keepings.
The guidance computer on the chase satellite gives the scheduler temporal constraints

governing the transition maneuver. These are integrated into the solution.

5.2 Test Cases

Beyond the basic mission framework, this chapter begins the exploration of the algo-
rithm’s capabilities. Two examples follow. The first is an extremely simple case. The

second one will conform to the more rigorous example laid out in the framework.

5.2.1 Example 1

This is a case of a changing from oné station keeping mode to another station keeping
mode via a transition maneuver. This operation will be important in Section 5.6.
There the thesis examines station keeping on the 7 versus the .

Figure 5-3 captures the three modes which the user specifies. In this example,
guidance commands. the transition maneuver to last 225 sec which the algorithm
must accommodate. All three modes are unconstrained with respect to lighting or
communication requirements. The first and third modes use the cycle pointing mode,
which periodically observes the target for position updates, and the spacecraft spends

the remainder of its time orienting the solar arrays toward the sun. The second mode
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Pointing Band 2 Band 1 Lighting

S & P Mode

explicitly stated here.

target in each of the modes.

3 21
min —-0.1 E r? —0.1 E re
peEP, reR P2 m n
m=1 n=1
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Figure 5-3: Example 1: User-specified planned modes

uses the thrust attitude mode which orients the chase satellite’s thruster to perform

the maneuver. The last row shows that the spacecraft uses its radar for tracking the

The current plan must contend with the environmental conditions depicted in
Figure 5-4. The reader should note that there are several Band 1 communication

windows, which the user decided not to use in the mission plan.

The following solution applies the MIP algorithm to the problem with the following
formulation. It uses the decision variables of Equation 4.45 subject to the constraints

of Equation 4.46, and it uses the cost functions specified in Equations 3.26 and 3.29,




Band 1
—
/3

L

|

S

|

[

I
R =y

i 1 - — 1 i i
L T T T T T
o~
-
o
1 1 1 A 1 1 ]
3 L T T T L L T
=
‘©
o
S F ENE Kk Wk * * * R k¥ * % * ¥ LI 2
c
[}
£
&) 1 1 i 1 L I 1
0 05 1 15 2 25 3 35
Time (sec)  10*

Figure 5-4: Example 1: Environmental conditions

This cost function indicates the intent to minimize the time when the second to
last event occurs and to maximize resource values. The negative coeflicients on the
resource values ensure that they are maximized, where the resource here is the state

of charge (SOC) of the chase satellite’s battery.

Applying the algorithm to the problem yields the optimal path shown in Figure 5-
5. Note that in Figure 5-5 the algorithm schedules pgy, p;, and p; within the first
environmental interval, E;, = [ep, €] = [0, 1200].

Finally, Figure 5-6 presents the complete solution timeline. The first planned
mode labeled 1 in the last row is barely distinguishable since it has zero duration.
Likewise the transition maneuver only lasts for a handful of minutes so its label, 2, is
difficult to see. In this solution, pg = p; = 0 sec. This behavior is expected because
the initial state of charge is 0.75 where full capacity is 1.0. The solver realizes that it

can immediately schedule the transition maneuver without consuming enough charge
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Planned Event Number

Environmental Event Number

Figure 5-5: Example 1: Optimal path

to violate the lower bound of 0.6.

There are several important features in Figure 5-6. First, the reader should know
that the dotted lines represent environmental conditions and the solid lines are the
planned activities. In cases where the planned modes directly coincide with the
environmental conditions, they will appear as solid lines.

Next, the operator never desired to use any of the communication windows, so they
remain unscheduled. Notice that the corresponding resource rate is diminished during
these windows. Regardless of the user’s desire to use a Band 1 communication window
the satellite must activate its communication equipment as a fail-safe measure. Also,
consider that during periods of sunlight the resource rate tends to be positive unless
the other environmental conditions conspire with the sensor and payload mode to
consume more power than the power source can generate. Over the course of the

mission, notice the upward trend in the charge as it approaches saturation.
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Figure 5-6: Example 1: Optimal schedule
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5.2.2 Example 2

The second example encapsulates a more representative observation mission than the

example of Section 5.2.1. This mission uses ten modes pictured in Figure 5-7. The

SK SK SK Obs SK SK
T | SK . SK T
Start | Band 1 Acquire | Band 2 Band 1 Goal
T T T T L T T L T
[«
£ DontCare
£
K=
-
B | I 1 1 1 1 L 1 'l
hequire d1 T T T T T T T
z [ ]
K4 NotRequired
— ) L . 1 A A 1 1
L L ] - T T T T
o | Required ]
2 i
8 NotRequired
1 i 1 1 1 1 I S .
TAREeNNa T T T T T T T
2 Sun
£ Thrust l
< i Sensor 1
1 1 1 1 1 1 ] 1 1
© T T T T T Video T T T ]
g [
=
a Radar
o3 rNone
2] 1 ' 1 1 1 1 e 1 1
0 1 2 3 4 5 6 7 8 9 10
Planned Event Number

Figure 5-7: Example 2: User-specified planned modes

station keeping mode labeled with acquire simply denotes that the chase satellite
will use the opportunity to acquire the target. Typically, acquisition occurs before
proximity operations begins, but the aim here is to expose the algorithm’s scope of
capabilities. The user constrains this mode to endure at least ten minutes and execute
for no more than forty-five minutes.

In this mission, the lighting requirements are all unconstrained as indicated in

Figure 5-7. There is a requirement to use Band 1 in modes P, and P3. Mode Ps com-
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municates using Band 2. The pointing requirements in this mission use the antenna
and sensor modes. The antenna attitude mode orients the spacecraft’s antenna to
ensure good signal transmission and reception, and the sensor attitude mode points
the spacecraft’s sensor at the target to acquire it. In the sensor and payload require-
ments of the last row, the chase satellite uses its radar to detect the target, and it
uses equipment to make a video. For more background information on this mission
see Appendix B.

The environmental conditions presented in Figure 5-8 are the same as those of the

example in Section 5.2.1 except for the presence of the Band 2 condition.
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Figure 5-8: Example 2: Environmental conditions

Finally, applying the same algorithm of Section 5.2.1 under the cost function of
Equation 5.2 gives the optimal path and schedule of Figure 5-9.

10 22
min pg—O.IZTfn —O.lzrf, (5.2)
m=1 n=1

peEP, reER
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The optimal schedule indicates several significant trends. First, the row labeled
Rate indicates that the observation mode between events five and six ranks as the
greatest power consumer. Second, when presented with the choice of the three Band 1
communication conditions, the solver correctly selects two windows and admits the
Band 2 condition between them. Furthermore, the algorithm selected the second
Band 1 communication window versus the first one. The hypothesis here is that
the solver favors placing power hungry events during periods of darkness so as to
fully leverage the battery’s regenerative capabilities during the times of sunlight.

Appendix B offers greater depth concerning the details of this example.
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Figure 5-9: Example 2: Optimal path and schedule
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5.3 Constraining the Main Mission Objective

The example of Section 5.2.2 provides a realistic view of how the algorithm might
schedule a real mission. Unfortunately, this realistic mission does not shed light on
the full potential of the algorithm. In particular, the communication windows tend
to force the algorithm into a very small set of discrete decisions in the overlap space.
The examples in this section serve as a baseline for subsequent experiments, omit
communication windows in both the environmental conditions and as user specified
requirements. Instead, the observation mode will fulfill one of the three possibilities:
don'’t care, daylight, or darkness. All of the lighting requirements in the other modes
will be unconstrained. The user will specify all of the plans to be of the format in

Figure 5-1.

5.3.1 Unconstrained Observation Mode

The following example represents the wholly unconstrained case as depicted in Fig-
ure 5-10. There are some temporal exceptions. The first transition maneuver must
last seventeen minutes, and the last one should take three and a half minutes. Lastly,

the observation mode has between twenty and sixty-seven minutes to execute.
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Figure 5-10: Example 3: User-specified planned modes
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Figure 5-11 indicates the environmental conditions this mission will face. The re-
mainder of this chapter will refer to these conditions as they will be applied through-

out.
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Figure 5-11: Example 3: Environmental conditions

Applying the algorithm as defined in Section 5.2.1 with the cost function of Equa-
tion 5.3 gives the solution path and schedule of Figure 5-12.

7 14

pEITI’I,i'rI'IER ps — 0.1 Z rh —0.1 Zrﬁ (6.3)
m=1 n=1

The solution schedule fulfills the expectation that it would schedule the activities

as quickly as possible. The first station keeping mode has no duration. The transition

maneuver follows with its finite duration. Next the observation mode is scheduled.

The important point here is that just after the observation activity, the battery’s

state of charge approaches the minimum allowed value of 0.6. The solver intentionally
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allowed the resource to evolve in this manner because over the course of the mission,

it can maximize the overall charge. This is an artifact of the cost function.
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Figure 5-12: Example 3: Optimal path and schedule
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5.3.2 Lighting Constrained Observation Mode

This mission is identical to the mission of Section 5.3.1 except that the observation
mode is constrained to occur in daylight. Figure 5-13 indicates that difference. The

environmental conditions in Figure 5-11 apply here. Again, applying the algorithm

L T T T T T
=]
£
£ L J
2
-
1 1 1 1 1
A T T T T T
b
5
[
1 1 1 1 1 1
T T T T T T
N
o
§
o
1 1 1 1 L
L T T T T T
g ]
£
| '
L 1 1 1 1 1 1 ]
[ L T L T 1 T T ]
3
= | ]
o
L]
(] 1 1 1 1 1 1
0 1 2 3 4 5 6 7
Planned Event Number

Figure 5-13: Example 4: User-specified planned modes

of Section 5.2.1 with the cost function of Equation 5.3 gives the solution path and
schedule in Figure 5-14.

This solution is similar to the solution for the mission in Section 5.3.1. This is co-
incidental because the finite duration of the transition maneuver forces this maneuver
to end just before the satellite enters the next period of daylight. At this point, the
scheduler places the observation mode (p3 to ps) without using much of its preceding
station keeping mode (p, to p3). As in the example of Section 5.3.1, the resource

value drops to its minimum allowable value, and this occurs by design.
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Figure 5-14: Example 4: -Optimal path and schedule
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5.3.3 Darkness Constrained Observation Mode

At the risk of being redundant, the following mission is identical to the previous
one with the exception that the observation mode is constrained to execute in dark-
ness. Figure 5-15 captures these planned modes. For the respective environmental

conditions see Figure 5-11.
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Figure 5-15: Example 5: User-specified planned modes

Finally, applying the algorithm of Section 5.2.1 with the cost function of Equa-
tion 5.3 gives the solution path and schedule in Figure 5-16.

Predictably, the algorithm chooses the second period of darkness. It does not have
the option of selecting the first one because the transition maneuver’s duration is long
enough to exclude the observation mode from the first period of darkness. Because of
the “delay” in scheduling the observation mode, the state of charge exhibits a gentler

rise throughout the course of the mission.
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Figure 5-16: Example 5: Optimal Path and schedule
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5.4 Changing the Minimum Allowable Resource
Value

The examples of Section 5.3 appear to schedule the planned activities as expected.
This section is an experiment to gauge the algorithm’s performance for different
minimum allowable resource values. Minimum state of charge (SOC) is another way
to refer to this value. The following experiments in Sections 5.4.1-5.4.3 consider
minimum allowable SOC values in the set, {0.1,...,0.9}. The values 0.0 and 1.0 are
not included because in reality they are unreasonable.

The hypothesis is that as the level increases, the scheduler will postpone the power

hungry modes until the satellite accumulates enough charge to complete the mission.

5.4.1 Unconstrained Observation Mode

The experiment here uses the same parameters as the unconstrained example of Sec-
tion 5.3.1. This includes the planned modes of Figure 5-10 in addition to the envi-
ronmental conditions of Figure 5-11. Figure 5-17 shows the observation event’s end
time, py, (see Figure 5-1) versus the discrete values in the set of minimum allowable
state of charge variables. For the minimum SOC of 0.8 and 0.9, there was no solution,
i. e. they are infeasible.

The observation mode end time and the minimum allowed SOC create a discrete
space as in Figure 5-17. For example the observation event must last at least twenty
minutes. With this knowledge, the scheduler can then evaluate based on the environ-
mental interval, the SOC rate during that period. If the rate violates the minimum
allowable value then the solver discards that case. Here a case refers to a partial
path through the overlap space. Changing cases modifies the ordering of planned and
environmental events within this overlap space.

For the given planned modes, environmental conditions, and minimum SOC 0.1
through 0.6, inclusive, the solver finds the same solution path and schedule in Figure 5-

12. For minimum SOC, 0.7, the solution path and schedule are in Figure 5-18.
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Figure 5-17: Experiment 1: Observation End Time vs. Minimum Allowable Value

The result for the experiment with a minimum SOC of 0.7 shows that the solver
correctly delayed the observation event to a later time while allowing the battery
more time to charge. As mentioned previously, the solver placed the event during

darkness since it cannot charge its solar array driven battery during this time.
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Figure 5-18: Experiment 1: Optimal Path and Schedule for min SOC = 0.7
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5.4.2 Lighting Constrained Observation Mode

Performing the same experiment with the observation mode constrained to occur in
daylight yields a similar result. The only difference between Figure 5-17 and 5-19 is
that the observation end time is much later for the sun constrained case. This occurs
because with a minimum SOC of 0.7, the satellite must wait through nearly two
full periods of sunlight before enough charge accumulates to perform the observation
activity. Contrast this with the unconstrained case which can perform the maneuver

during the more advantageous nighttime period.
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Figure 5-19: Experiment 2: Observation End Time vs. Minimum Allowable Value

Figure 5-20 gives the solution path and schedule for the 0.7 case where the solu-

tions for the other minimum allowed SOC values (0.1-0.6) are the same as Figure 5-14.
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Figure 5-20: Experiment 2: Optimal Path and Schedule for min SOC = 0.7
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5.4.3 Darkness Constrained Observation Mode

Constraining the observation mode to occur in darkness with the various values of
minimum SOC produced no change. The results are the same for minimum values of
SOC 0.1 through 0.7 with the remaining two, 0.8 and 0.9 being infeasible. To revisit
the solution path and schedule, see Figure 5-16. This lack of difference among the
solutions for the various minimum SOC values is a result of the advantage to placing

the observation event in darkness; that is the chase satellite can replenish its battery.

5.5 Resource Weighting Schemes

Up to this point, the thesis maximizes the sum of every resource value at all of
the planned and environmental events. This section focuses on two methods for
improving the treatment of the resource values. Section 5.5.1 explores a modification
to the formulation which gives extra control over the resource values; this change
allows the user to maximize the lowest resource value. Section 5.5.2 incorporates this
change, but it modifies the cost function so that the magnitude of the p,, does not
dominate the cost. This modification allows the user to exert greater control over the

resource values while at the same time controlling the solution time.

5.5.1 Naively Bounding the Resource Values

The formulation up to now maximizes the sum of all of the resources values. This
section examines whether it is reasonable to maximize the lowest resource value.
The addition of one new continuous decision variable, 3, to the decision variables in

Equation 4.45, can perform this function. It is necessary to add the constraints

IA
ﬁm

B
g

Vnell,...,N—1] (5.4)

IA
ﬁ’e

Vmell,..., M| (5.5)
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to the constraints in Equation 4.46. Finally, the modified cost function builds on
Equations 3.26 and 3.29.

M N-1
N R Ap;rf’n — A ; re (5.6)
Here, ), and ). represent small positive constants which provide the maximization
effect for the resource values. Otherwise they run the risk of being neither maximized
nor minimized. All of the examples to this point use values of 0.1.

The experiments include the unconstrained, lighting constrained and darkness
constrained observation modes evaluated for a range of minimum allowed SOC. The
experiments of this section are the same as those of Section 5.4, and they yield the
same results. This fulfills the expectations because the new decision variable, (3,
bounds the lowest resource value. As the minimum allowed resource value increases
to approach 3, the solver must respond by moving events to accommodate the stricter

demand on the resource.

5.5.2 Modifying the Cost Function

All of the previous cost functions in this thesis are a naive attempt to minimize
the plan’s execution time and maximize the resource value. This section presents a
new cost function, which gives the user more control over the lowest resource value
and the plan execution time. The additional benefit of the new cost function allows
the user to define the emphasis between the execution time and minimum resource
value. The user has the opportunity to further evaluate the relationship between
these parameters defined as Ag and A,,,_,. These are the controls for the minimum
resource bound and plan execution time, respectively.

The new cost function is

M N-1
’\PM 1
min — = A - TP — )\ ,re . 5.7
pEP, rER, B CN—-eOpM ' ﬂﬂ p,,,Z:] " 6; " ( )

Note the fractional coefficient of the pp;_; term. This normalizes the planned event
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time. In the examples of this thesis this value is on the order of tens of thousands
of seconds, and it tends to dominate the smaller resource values, r¢ and r?,, and
beta value, 3. The following experiments capture the same planned modes and en-
vironmental conditions. Instead, these consider changing the value, )\, and eval-
uating its impact on the observation maneuver’s end time. For these experiments,

Ae = Ap = 0.0001. Equation 5.8 captures the

Mo =1— s VAg€{0.0,01,...,0.9,1.0} (5.8)

relationship between Ag and A, _,. Each of the following three sections presents a

figure of the observation activity’s end time versus the value of Ag.

Unconstrained Observation Mode

This experiment uses the planned modes and environmental conditions of Figures 5-
10 and 5-11. As (’s input cost, Ag increases, several discrete jumps occur. The first
occurs between 0.5 and 0.6, and the second between 0.9 and 1.0. The understand-
ing here is that as the emphasis on the minimum resource bound, 3, increases, the
scheduler increases the amount of time before it executes the observation maneuver.
Rather than belabor the point with the figures of optimal paths and schedules, the
reader may refer to these in Appendix A. In Figure 5-21 the observation end time
and the whole schedule for the first range of values from 0.0 to 0.5 is the same as the
solution in Figure 5-12. The paths and schedules for the other two cases, 0.6 to 0.9
and 1.0 appear in Figure A-1 and A-2 of Appendix A.
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Figure 5-21: Experiment 4: Observation End Time vs. Ag
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Lighting Constrained Observation Mode

The following experiment increments the values of A\s through the previously defined
values. Recall that as ),,,_, decreases, \g increases and vice versa. This helps explore
the relationship between the two values. In Figure 5-22 there are four distinct solution
schedules. The implication is that constraining the observation maneuver to occur in
daylight presents the algorithm with a range of options. As emphasis on Ag increases,
the algorithm delays the activity to allow for more sunlight exposure to charge the
satellite’s battery. As in the unconstrained case, the first values of Ag yield the same

solutions as in the example of Section 5.3.2 and the experiment in Section 5.5.1.
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Figure 5-22: Experiment 5: Observation End Time vs. A\
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Darkness Constrained Observation Mode

The final experiment of this section constrains the observation mode to occur during
darkness. Figure 5-23 shows how the change in Ag and )\,,, , affect the solution
time. Over the range, the solver favors only one solution except for in the last value,
Ag = 1.0. One explanation for this lies in the fact that placing the observation activity
during nighttime is the optimal decision to make. Furthermore, the solution for the
Ag values in the majority of the cases is the same as the solution of Figure 5-16 in
the example of Section 5.3.3, and the same as the experiment in Section 5.5.1. For

the solution where Ag = 1.0 see Figure A-6.
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Figure 5-23: Experiment 6: Observation End Time vs. Ag
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5.6 Weighting Planned Events

Certain modes use additional time dependent resources which will remain unmodeled.
In this section, the unmodeled resource is fuel. The assumption is that the chase
craft consumes fuel proportional to the amount of time it spends within a specific
fuel consuming mode. Thus, the goal is to minimize this resource consumption by
minimizing the mode’s execution time, and this is achieved by penalizing the execution
time of the fuel consuming modes.

In the current missions, the station keeping modes just before and just after the
observation maneuver take place along the radial vector, 7, of the target satellite.
This consumes fuel directly proportional to the length of the mode. The goal of this
section will be to show that the algorithm can reduce the amount of execution time
for these modes with a modification to the cost function.

Consider the following terms for addition to the cost function of Equation 5.7.
These terms add a penalty to the duration of the station keeping modes in question.
Controlling the values Ask,; and Agk s lets the user assign the desired importance to

each of the modes.

AsKk,1 Ask2
SR (p — p) + ——22 (ps — pa) - 5.9
CN—eo( p2)+eN~eo (ps — pa) (5.9)
This thesis sets
Ask1 = Ask2 = Ask, (5.10)

and for each trial assigns a values from the set {0.0,0.1,...,0.9,1.0} to Agk.
The experiments are the same ones as in the previous sections; they examine the
unconstrained case, and the daytime and nighttime constrained observation maneu-

vers. The other parameters of the cost function are A3 = 0.9 and A,,, , = 0.1.

5.6.1 Unconstrained Observation Mode

Of the three cases, the algorithm has the most freedom to move the observation ma-

neuver in the unconstrained case. Along with this freedom comes the responsibility to
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properly adjust the durations of the adjacent station keeping modes. The hypothesis
is that as the penalty on the durations increases, the net duration between the two
modes will decrease. Figure 5-24 shows each mode’s duration independently. For any
of the eleven trials except the first, the net duration is less than all of the previous
values. In the end, both of the modes have zero execution time.

One interesting feature of this experiment occurs when Mgk increases from 0.1 to
0.2. The algorithm is able to improve the overall cost by increasing the duration of
the second station keeping mode while significantly decreasing the duration of the
first station keeping mode.

Solution paths and schedule for each of the cases appear in Appendix A.
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5.6.2 Lighting Constrained Observation Mode

With the environmental conditions of these sections, constraining the observation
maneuver to occur during sunlight gives the algorithm an intermediate number of
options compared to the unconstrained case and the darkness constrained case. Unlike
the unconstrained case, the lighting constrained case executes each trial with zero
duration in the second station keeping mode. The first station keeping mode decreases
as the input cost increases. Figure 5-25 presents these results. The solutions are in

Appendix A.
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5.6.3 Darkness Constrained Observation Mode

Constraining the observation maneuver to occur in darkness gives the solver fewer
possible options. In reality there are three distinct solutions in this experiment and
in the sunlight constrained experiment. As with the sunlight case, the second station
keeping mode has zero duration in all eleven trials and the first one decreases as its
input cost increases. Figure 5-26 gives the results. Appendix A shows the unique

solution paths and schedules.
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Chapter 6

Conclusions

This thesis develops a mixed integer programming formulation to treat the orbital ren-
dezvous proximity operations scheduling problem. The user specifies planned modes,
which describe the chase satellite’s staté during the mission. This state considers the
desired lighting constraints, communication operations, pointing mode, and sensor
and payload mode. This list is not exhaustive, but in conjunction with the envi-
ronmental conditions, the planned modes determine the resource rate. The environ-
mental conditions describe the world surrounding the chase satellite; these conditions
are predetermined based on the orbit, and on the availability of the communication
channels.

The algorithm discretely selects the optimal relative ordering of the planned modes
and environmental intervals, and it simultaneously computes the optimal, continuous
values of the planned times. A user specified cost function governs the optimality of

the solution.

6.1 Summary

The analysis in this thesis considers a general observation mission that focuses on
an observation mode. This observation mission begins and ends with the same set
of modes—a pair of station keeping modes joined by a transition maneuver (see

Figure 5-1). The thesis analyzes this mission as the user specifies the observation
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mode to occur without constraint, in daylight, and in darkness.

The analysis of this algorithm comes from two perspectives. The first examines the
solver’s response to changes in the minimum allowed resource value. An associated
experiment modifies the MIP formulation with an additional decision variable that
bounds the minimum resource value. The other experiments posit more utilitarian

cost functions, which specify the user’s optimality preferences for a particular mission.

6.2 Capabilities

The experiments suggest that the algorithm adeptly solves practical cases. If an over-
lapping planned mode and environmental condition consume more resources through-
out their duration than are available, it will naturally be an infeasible mission. The
analysis here suggests that the solver recognizes the cases where overlapping planned
modes and environmental conditions are infeasible. It examines all other cases to
find a solution before declaring infeasibility. Similarly, the scheduling algorithm is
complete as long as the underlying MIP solver is complete.

The MIP approach provides a certain amount of flexibility and robustness. The
experimental results (Chapter 5) offer a modification to the MIP formulation, which
requires very few changes to fully implement. Similarly, the MIP design admits other
modifications both large and small. It allows for more resources, and it considers other
modes and conditions with ease. This solution method gives the user the option
to define the criteria that determines whether a planned mode and environmental
condition can overlap. This determination can be made under a nearly limitless
degree of considerations.

The cost function captures the user’s concept of how to treat the resources and
execution time. The final cost of a schedule provides a valuable tool for scoring sets of
schedules where the lower cost schedule is more desirable. This scoring feature lends
itself to integration within a hierarchical planner, which would poll this algorithm.
Based on the scores of the resultant schedules, it would generate the optimal plan.

Finally, this algorithm can be uséd as a verification tool. There is still a fair
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amount of reluctance among the customers of the aerospace community to allow a
spacecraft the autonomy that this thesis suggests. To allay these concerns, this solu-
tion method would be a powerful tool to evaluate the quality of schedules generated
by other techniques. Alternative algorithms for this scheduling problem might bypass
the built-in search capabilities of the commercial MIP solvers in favor of proprietary

methods. This algorithm can verify solutions generated with the proprietary methods.

6.3 Limitations

This solution approach leaves room for refinement, especially to increase the fidelity
of the formulation. The algorithm by design treats deterministic problems. This for-
mulation makes it more difficult to consider cases where the environmental conditions
may change unpredictably. Consider the difficulties associat'ed with a communication
window that is subject to an uncertain delay. This would require the algorithm to
use a set of heuristics or techniques of probability to formulate the optimal solution
schedule.

Associated with this problem is the solver’s ability to issue a replan. Using the
methods developed here, if only one or two requirements change, it is necessary to
recompute the complete solution. There are more effective ways to use the complete
output of the mixed integer program to simplify replanning.

This thesis neglects other problems such as dependent events. For example, the
transition maneuvers ignore simple requirements such as pressurizing a fuel line before
a thruster fires. This type of activity needs to occur outside of the bounds of the
transition maneuver yet it is a direct result of the transition.

Finally, the approach of this thesis treats the planned modes and environmental
conditions as discrete events. While this may suffice for communication windows,
modeling sunlight as a discrete value might adversely affect some computations. Fur-
thermore pointing modes in reality are continuous values as they represent attitude.
Modeling attitude as a discrete value means the scheduler sacrifices some fidelity. This

might be a problem if the user wanted to optimally choose the satellite’s attitude for
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a specific requirement.

6.4 Future Work

Many of the algorithm’s limitations suggest the future areas of research. The author
understands that no space faring craft has ever flown software that performs mixed
integer programming in support of an autonomous guidance, navigation, and control
package. This idea makes customers cringe because of the large size of the non-flight
validated mixed interger programming software. One way to ease them into accep-
tance is to remove the aspects of the problem that require a MIP solver. This requires
solving the joint interval problem with a different technique. A greedy search of the
overlap space applying a pure linear program could yield the same solutions. This
approach should be more acceptable because it will require less work to flight validate
linear programming software and the accompanying search algorithm as opposed to

commercial mixed integer programming software.

6.4.1 Greedy Search

Looking at the joint interval problem without the robustness of the MIP requires
careful thought. A major question is how to incorporate the cost function into the
search. Clearly, the goals are to minimize solution time and maximize the resource
values. Unfortunately, the cost function for a complete mission does not mean the
same thing for the abbreviated mission represented in a partial path of the overlap
space. Integrating a cost function for a linear program over the partial space of
overlaps, as the greedy search progressed, would be a challenge. Furthermore, consider
the difficult situation in which a planned event might be torn between the temporal
desire to execute quickly, versus the resource’s desire to endure longer to recharge the
battery. This push and pull might occur across a discrete change in the environmental

conditions which would complicate the situation.
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6.4.2 Generating the Cost Function

Currently, the cost function is selected on a per mission basis. A fully autonomous
system needs a cost function that will leave the satellite in a usable state at the
end of the mission, but also one that will achieve its goals. Defining optimality
for a mission can be complicated because it depends on several features including
the types of modes involved, the user-defined order of the modes, etc. One of the
experiments (Section 5.6) considers penalties for some of the costlier station keeping
modes. There may be a case where the satellite would gain a benefit from extending
a mode’s execution time. In this thesis, the observation mode of the experiments
is constrained to execute for a specific duration. Instead, providing some kind of
benefit related to the observational value of the mode might be a more powerful way
to design the cost function. This is merely one example of the myriad considerations

that might be significant in generating the cost function.
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Appendix A

Additional Figures

This appendix contains additional figures of the results from the experiments de-

scribed in Chapter 5.
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Figure A-13: Experiment 8: Optimal Path and Schedule for Agx =04, ..
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Figure A-14: Experiment 9: Optimal Path and Schedule for Agx = 0.0
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Figure A-15: Experiment 9: Optimal Path and Schedule for Agx = 0.1
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Figure A-16: Experiment 9: Optimal Path and Schedule for Agx = 0.2,...
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Appendix B

Example 2 in Depth

This section thoroughly examines application of the algorithm in Table 4.1 to the

example of Section 5.2.2. The algorithm is reprinted here for convenience.

Table B.1: Implementing a MIP

Specify planned modes, M, and environmental conditions, E
Check for interval compatibility

Compute resource rates

Collect interval, temporal, and resource constraints
Evaluate MIP with a solver package

Review solution

AN S e

Step 1 requires specifying M and E.

2 2 2 2 2 2 2 2 2 2
0 1 0 0 0 0 0 1 0 O
M=|0 0 0 0 0 1 0 O 0 O (B.1)

44 45 43 44 42 43 44 45 43 44
21 21 21 21 22 24 21 21 21 21
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E=|/00100100000011000000°0°0]| (B2
0000000001 000O0O0O0O0O0O0OO0GO0DO

These numbers should not be alarming because they are merely codes that denote

a particular activity for a planned mode or environmental condition.

For example, examining the planned requirements (M) of nig, the first element,
2, indicates a don’t care description for the lighting requirement. The 0 means that
the user does not intend to use Band 1 for communication, but the 1 means that
Band 2 is used. The 43 refers to the attitude mode that aims the thruster, and the
24 indicates a specialized sensor mode. For a visual description of M see Figure 5-7.

The environmental conditions are binary in E, but this is not a necessity. Here,
a 1 in the first row indicates sunlight, whereas a 0 means darkness. The second
row describes the Band 1 condition and the third, the Band 2 condition. Figure 5-8
describes these conditions.

Step 2 requires evaluating the interval compatibility. Applying the function of
Equation 4.29 gives the space of valid overlapping intervals in Figure B-1. The shaded
spaces represent overlapping intervals which are compatible. The optimal path can
potentially pass through this point. The unshaded spaces indicate interval overlaps
through which the path cannot pass.

Step 8 says to compute the resource rates. The values are stored in a matrix,
R = {a;;} for ease of reference. Since there are a large number of values, R is

presented in three matrices, Ry, Rz, Rs.
R= {am-} = 10—3 [Rl Rg Rg] (B3)

R is in the units of normalized change in charge per second. The function of Equa-
tion 3.20 takes the column vectors of M and E to compute the values in R. For

example the first row and second column of R; indicate that the overlapping case
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Figure B-1: Space of Valid Overlapping Intervals

of the planned mode described by 71; and the environmental conditions of &, eval-
uates as «(1,2) = 1072 x 0.2778. In this instance of overlap, the resource value
should increase because its resource rate is positive. Where the planned mode and

environmental condition are not allowed to overlap, the resource rate is shown as 0.
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R,

R»

—0.3704  0.2778

0 0
—0.3704 —0.3704
-0.3704  0.2778
—0.6620 —0.6620

= 0 0
—0.3704  0.2778
0 0

0.0278

—0.0370
0.0278
—0.0662

0.0278
—0.0370

0.0278
| 0.0278

—0.3704 —0.3704
—0.3704  0.2778
—0.3704  0.2778

0.0000 0.2778

—0.6481

—0.6481 —0.3704
0.0000 0.2778
—0.9398 —0.6620

0

0.0000 0.2778

—0.6481

—0.6481 —0.3704
0.0000 0.2778
0.0000 0.2778

—0.0370 —0.0370 —0.0370

—0.0370 —0.0370 -0.0370
—0.0370 -0.0370 —0.0370
—0.0662 —0.0662 —0.0662

0 -0.1190 0
—-0.0370 —0.0370 —0.0370

—0.0370 —0.0370 —0.0370
—0.0370 —0.0370 —0.0370
-0.0370 —0.0370 -0.0370
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03704 —0.6481 —0.3704 |
0 0 —0.6481 0
_0.3704 —0.6481 —0.3704
_0.3704 —0.6481 —0.3704
—0.6620 —0.9398 —0.6620
0 0 0 0
—0.3704 —0.6481 —0.3704
0 0 —0.6481 0
—0.3704 —0.6481 —0.3704
_0.3704 —0.6481 —0.3704
~0.3704 —0.6481 —0.3704 |
00278 0.0000 —0.0648 —0.0370
0 —0.0648 —0.0648 0
—0.0370 —0.0648 —0.0648 —0.0370
0.0278  0.0000 —0.0648 —0.0370
—0.0662 —0.0940 —0.0940 —0.0662
0 0 0 0
00278  0.0000 —0.0648 —0.0370
0 —0.0648 —0.0648 0
—0.0370 —0.0648 —0.0648 —0.0370
00278  0.0000 —0.0648 —0.0370
00278  0.0000 —0.0648 —0.0370




0.2778 —-0.3704 0.2778 —-0.3704 0.2778 -0.3704 0.2778

0 0 0 0 0 0 0
—0.3704 -0.3704 -0.3704 -0.3704 —0.3704 —0.3704 —0.3704
0.2778 —-0.3704 0.2778 —0.3704 0.2778 —-0.3704 0.2778
—0.6620 —-0.6620 —0.6620 —0.6620 —0.6620 —0.6620 —0.6620

R; = 0 0 0 0 0 0 0
0.2778 —-0.3704 0.2778 —0.3704 0.2778 —0.3704 0.2778
0 0 - 0 0 0 0 0

—0.3704 -0.3704 —-0.3704 —0.3704 -0.3704 —0.3704 —0.3704
0.2778 -0.3704 0.2778 —-0.3704 0.2778 -—-0.3704 0.2778
0.2778 -0.3704 0.2778 —0.3704 0.2778 —-0.3704 0.2778

Step 4 says to collect the interval, temporal, and resource constraints. The number
of constraints (just over one thousand) is intractable to print in this document. The
following is a partial list of the constraints found in V. The following are duration
constraints that are input to the scheduler which correspond to the second list of

Section 3.2.3 (p. 46). (Absent from this description of V are the constraints that
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encode Equations 4.31-4.36.)
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The constraints in Y, the policy and saturation constraints for the resource, may

be written as

-1 - - —minVal x 1 -
Y = M+N-1 By = 1 M+N-1 . (B.5)

Tvin—a 1min—1

Applying this data to the MIP solver results in a solution. This is Step 5.

In Step 6 the solver responds with solution data. This includes the values of the
by,» which make the solution path. Additionally, the solution has the planned times,

Pm, and the resource values 7%, and r;. The planned times are

p= [6000 6599 7019 10401 11001 11900 16000 16599 17019 37800]
(B.6)
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After arranging the resource values (SOC) in temporal order, the values are

[ 0.7500 0.7000 0.7181 0.7181 0.7959 0.7737 0.7737 0.7349---
0.7348 0.7292 0.7193 0.8132 0.7868 0.7735 0.7734 0.6665---
0.6665 0.6573 0.7642 0.7642 0.7512 0.7253 0.7253 0.7098- .-

0.6901 0.8026 0.7526 0.8651 0.8151 0.9276 0.8776 0.9901]
(B.7)

Here, the first value is the initial resource value, 7yq.

The rest of the solution including the path and schedule are in Figure 5-9.
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