
Robust Multi-UAV Planning in Dynamic and

Uncertain Environments

by

Chung Tin
B.Eng. in Mechanical Engineering

The University of Hong Kong, 2002

Submitted to the Department of Mechanical Engineering

in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2004

@ Chung Tin, MMIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly

paper and electronic copies of this thesis document in whole or in part.

A uthor

Certified by

Associ

C ertified by

Assistani

Acr-pc te r

Deparment of Mechanical Engineering
August 10, 2004

..

Jonathan P. How

aite Professor of Aeronautics & Astronautics

Thesis Supervisor

...

Daniela Pucci de Farias
al Engineering

Thesis Reader

....
Ain A. Sonin

Chairman, Departmc. kcis %. auuate Students

MASSACHUSETTS INSTMJTE
OF TECHNOLOGY

MAY 0 5 2005 BARKER

LIBRARIES

p y

2

Robust Multi-UAV Planning in Dynamic and Uncertain

Environments

by

Chung Tin

Submitted to the Department of Mechanical Engineering
on August 10, 2004, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

Future unmanned aerial vehicles (UAVs) are expected to operate with higher level of
autonomy to execute very complex military and civilian applications. New methods
in planning and execution are required to coordinate these vehicles in real-time to
ensure maximal efficiency of the team activities. These algorithms must be fast to
enable rapid replanning in a dynamic environment. The planner must also be robust
to uncertainty in the situational awareness. This thesis investigates the impact of
information uncertainty and environmental changes to the task assignment and path
planning algorithms. Several new techniques are presented that both speed up and
embed robustness into previously published algorithms. The first is an incremental
algorithm that significantly reduces the time required to update the cost map used in
the task assignment when small changes occur in a complex environment. The second
introduces a new robust shortest path algorithm that accounts for uncertainty in the
arc costs. The algorithm is computational tractable and is shown to yield perfor-
mance and robustness that are comparable to more sophisticated algorithms that are
not suitable for real-time implementation. Experimental results are presented using
this technique on a rover testbed. This thesis also extends a UAV search algorithm to
include moving targets in the environment. This new algorithm coordinates a team
of UAVs to search an unknown environment while balancing the need to track mov-
ing targets. These three improvements have had a big impact because they modify
the Receding Horizon Mixed-Integer Linear Programming (RH-MILP) control hier-
archy to handle uncertainty and properly react to rapid changes in the environment.
Hence, these improvements enable the RH-MILP controller to be implemented in
more realistic scenarios.

Thesis Supervisor: Jonathan P. How
Title: Associate Professor of Aeronautics & Astronautics

3

4

Acknowledgments

I would like to thank my advisor, Professor Jonathan How, who guided me through

this work with a lot of insight. Also, the support of the members in the research

group is very much appreciated. In particular, Yoshiaki Kuwata and Luca Bertuccelli

have provided many inputs to my work.

I would also like to thank Croucher Foundation for financially supporting my

study in the past two years.

Last but not least, my deep thanks to my family and my friends for their support

and care.

6

Contents

1 Introduction 17

1.1 Receding Horizon Mixed-Integer Linear Programming (RH-MILP) . 17

1.1.1 Receding Horizon Trajectory Design (RH-Traj) 18

1.1.2 Receding Horizon Task Assignment (RHTA) 19

1.2 Planning in Uncertain and Dynamic Environments 20

1.3 Thesis Overview . 20

2 Incremental Update of Cost Map 23

2.1 M otivation . 24

2.2 Incremental Update of Visibility Graph 26

2.2.1 O bstacles . 27

2.2.2 Targets . 28

2.2.3 V ehicles . 29

2.3 Effect on Computation Time . 29

2.4 Conclusions . 30

3 Approximate Robust Shortest Path Algorithm 35

3.1 Overview of Robust Optimization . 36

3.1.1 Absolute Robust Criterion . 37

7

3.1.2 Robust Deviation Criterion

3.2 Robust Shortest Path Problem for RH-MILP . . .

3.3 The Performance Index, 1 + 0

3.3.1 Nonlinearity

3.4 Approximation with 6 +

3.5 ARSP as a Modification to Dijkstra's Algorithm .

3.6 Complexity of Robust Dijkstra's Algorithm

3.6.1 Robust Deviation Shortest Path (RDSP) .

3.6.2 Bertsimas-Sim Algorithm

3.6.3 Comparison with RDSP and Bertsimas-Sim

3.7 Exam ples .

3.8 Conclusions .

4 Search and Track Mission

4.1 Path Planning Algorithm

4.2 The Environment

4.2.1 Bayesian Update Rule

4.2.2 Uncertainty Map

4.3 Algorithm For Static Targets

4.3.1 Mission Objectives

4.3.2 Objective Function

4.3.3 Simulation Results

4.4 Moving Targets

4.4.1

4.4.2

Algorithm

Uncertainty Growth Associated with Target Movement

Objective Functions

8

37

38

40

43

46

49

51

52

53

55

. . . . 59

. . . . 66

71

72

72

73

75

75

76

78

79

83

83

86

4.4.3 Simulation Results . 87

4.5 Conclusions . 90

5 Testbed Implementation and Hardware Experiment 97

5.1 Hardware Testbed . 97

5.1.1 R overs . 99

5.1.2 Indoor Positioning System (IPS) 99

5.1.3 Graphical User Interface (GUI) 100

5.2 Experiment Result . 101

5.3 Conclusions . 102

6 Conclusions and Future Work 105

6.1 Conclusions . 105

6.2 Future Work . 106

9

10

List of Figures

1-1 System Architecture. .

1-2 Illustration of RH-Traj planning algorithm.

The replan mechanism of RH-MILP.

Computation load required for cost map.

Illustration of update of visibility graph with a pop-up obstacle. . . .

Example of dynamic scenario. .

Comparison of computation time for update of visibility graph.

Robust vs Nominal path planning.

Berry-Ess6en Inequality.............

Simple shortest path problem.

Nonlinearity of cost functions.

Plot of y = \/x and linear approximation. . .

Plot of E+ OU.

Cost distribution for scenario with 110 nodes

Cost distribution for scenario with 200 nodes

Mean planning time of 4 algorithms.....

2-1

2-2

2-3

2-4

2-5

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10 Planning Time Comparison for ARSP and Dijkstra's Algorithms.

11

18

19

24

26

27

33

34

36

44

45

46

47

48

. . . . 57

. . . . 58

59

60

.

(4 Algorithms).

(4 Algorithms). .

3-11 Random Graph Example. 63

3-12 Plot of e vs. or . 65

3-13 Cost Distribution of Random Graph example. 66

3-14 Cost distribution for scenario with 50 nodes (4 Algorithms). 67

3-15 Cost distribution for scenario with 80 nodes (4 Algorithms). 68

3-16 Cost distribution for scenario with 140 nodes (4 Algorithms). 69

3-17 Cost distribution for scenario with 170 nodes (4 Algorithms). 70

4-1 Tree of nodes for the path planning 73

4-2 Illustration of Bayesian update rule for b(x, y, k) = 1. 74

4-3 The uncertainty map. 76

4-4 Illustration of the regions for computing the cost functions. 77

4-5 Static scenario. 81

4-6 Initial probability map. 81

4-7 Average uncertainty for algorithm search and random search. 82

4-8 Number of targets found for algorithm search and random search. . 82

4-9 Predicted position of moving target. 85

4-10 Probability distribution for target movement. 86

4-11 Scenario. 89

4-12 Initial probability map. 89

4-13 Average uncertainty for algorithm search and random search. 91

4-14 Number of targets found for algorithm search and random search. . . 92

4-15 Number of static targets classified. 92

4-16 Tracking history of algorithm search. 93

4-17 Tracking history of the random search approach. 94

12

4-18 Average uncertainty for algorithm search and random search (4 moving

targets). 95

5-1 The setup of entire rover testbed (rovers and IPS). 98

5-2 4 of the 8 rovers. 98

5-3 Indoor Positioning system (IPS). 100

5-4 GUI. 101

5-5 Hardware experiment with different values of a 103

13

14

List of Tables

3.1 Summary of problem sizes. 55

3.2 Mean cost and SD for #nodes = 200. 56

3.3 Summary of results of robust shortest path problem. 65

15

16

Chapter 1

Introduction

The use of unmanned aerial vehicles (UAVs) is evolving quickly [1, 2]. Recent ad-

vances in computing, wireless communications, and vehicle technologies have made

it possible to deploy a multi-UAV system to operate autonomously to perform very

complex tasks in a cooperative manner [2, 3, 4, 5, 6]. It is expected that the use of

multi-UAV systems will further develop for both military and civilian applications.

This interest in future UAV applications requires new methods in planning and execu-

tion in order to perform optimal coordination of the vehicles in real-time. Moreover,

in reality, UAV missions usually involve a dynamic and uncertain environment, so

the control architecture must be sufficiently robust and flexible to handle uncertainty

and changes in the environment.

1.1 Receding Horizon Mixed-Integer Linear Pro-

gramming (RH-MILP)

In a multi-vehicle system, the coupling between the vehicles, targets and obstacles

creates a very complicated optimization problem [2, 9] in which the computation

time increases dramatically with problem size. A Receding Horizon Mixed-Integer

Linear Programming (RH-MILP) control hierarchy (Fig. 1-1) has been developed in

17

Inter-vehicle UAV

UAV Planner communications model

World Estimates I

Uncertainty Vehicle nominal speed Nominal speed
(A) States ehicle capability Minimum tum radius

Graph - based Task Trajectory Low level Actuator input
Path planning Assignment Assign- Designer Waypoints Controller

Approx. ments an s

Inertial
Vehicle states Vehicle states Vehicle states sensor
Obstacles Obstacles Obstacles data
Targets Targets ,' SnoI I Sensor

Predictor / Measurements Vehicle /
Comparator Simulation

Figure 1-1: System Architecture [13].

the Aerospace Controls Lab. (ACL) at MIT to handle these UAV problems in real-

time. MILP allows the inclusion of non-convex constraints and discrete decisions

in the optimization problem. The receding horizon control (RHC) method is used

to overcome the computational burden of MILP in the multi-vehicle optimization

problem. Previous work demonstrated the use of RH-MILP in trajectory design and

task allocation under various dynamic, kinematic, capability and timing constraints

in real-time [7, 13, 14, 16, 17].

1.1.1 Receding Horizon Trajectory Design (RH-Traj)

The use of MILP to design an entire trajectory with a planning horizon fixed at the

goal is very difficult to perform in real-time, since the complexity of the problem

grows rapidly with the length of the route and the number of obstacles to avoid

[13]. RHC overcomes this limitation by using a receding planning horizon in which

MILP is used to form a shorter plan that extends towards the goal (Fig. 1-2). A

heuristic is introduced to approximate the trajectory beyond the planning horizon

using straight line paths. Ref. [13] presented a trajectory design algorithm using RH-

MILP to guarantee a kinodynamically feasible and stable path to the goal in a highly

constrained environment, and demonstrated that the trajectory design is applicable

18

woPath conr~ddti.
dwciedied dymiwncs
PaMh acdated with

" at t oPath awsdated vwth

x(N)
......-...... X ,

X(O)

Execution
Horizon

Planning
Horizon

Figure 1-2: Illustration of RH-Traj planning algorithm [13].

in real-time.

1.1.2 Receding Horizon Task Assignment (RHTA)

The UAV task assignment problem is essentially a multiple-choice multi-dimension

knapsack problem [13]. However, adding vehicle capability and task timing constraints

significantly complicates the optimization problem. This complete task assignment

can be formulated in MILP [13, 15] by encoding the mission objectives and constraints

as a combination of binary and continuous variables. To overcome the computation

burden for the task assignment, the Receding Horizon Task Assignment (RHTA)

algorithm attempts to solve a suboptimal problem with smaller size [15]. Instead

of considering all of the possible permutations of the tasks, RHTA only looks at

permutations which contain no more than m tasks, where m < N and N is the total

number of tasks in the problem. Optimization is performed for only this subset of the

problem, and there is a cost-to-go added to the problem to ensure feasibility of the

remaining tasks. The algorithm then iterates forward until all of the tasks have been

assigned. The solution is now suboptimal, but reducing m significantly decreases the

computational load. Ref. [15] shows that m = 2 appears to offer the best trade-off

between performance and computation speed.

19

1.2 Planning in Uncertain and Dynamic Environ-

ments

In reality, UAVs operate in a dynamic and uncertain environment. As the mission

proceeds, new information will be obtained through the onboard sensors. For exam-

ple, there may be new targets discovered, or there is a new no-fly zone (or obstacle)

in the area. Hence, the optimizations for task assignment and trajectory design will

have to be repeated to incorporate the new information in order to maintain the

optimality (or even feasibility) of the decision. Since the replan is performed online,

the optimization process has to be fast such that the UAVs can properly react to

the changes. When the environment is very complex, the computational load for the

optimization is large. Hence, it is necessary to overcome this computation difficulty

in the re-planning process.

Of course, the environment is not only dynamic but also uncertain. Uncertainty

enters the problem as sensor errors and signal noise. The planner has to be robust

to these uncertainties to maintain feasibility and optimality. Moreover, the robust

planner has to be fast enough for real-time application. However, adding robustness

typically increases the complexity of the optimization problem [12]. Hence, an approx-

imation algorithm may be required to trade-off performance vs. computational load.

This thesis extends the previous work to develop an approximate robust optimization

tool for the RH-MILP problem.

1.3 Thesis Overview

This thesis presents several algorithms to handle uncertainty and changes in the UAV

environment that can be implemented in the RH-MILP hierarchy. Chapter 2 presents

an incremental algorithm to update the visibility graph in order to speed up the

cost map calculation during replanning. The cost map and the visibility graph are key

inputs to the RH-Traj and RHTA algorithms. Chapter 3 presents a robust shortest

20

path algorithm to account for uncertainty in the arcs of the cost map. The new

algorithm yields robustness and performance that are comparable to more sophis-

ticated algorithms that are not practical for real-time implementation. Chapter 4

discusses a multi-UAV search mission. This work extends [32, 33, 35] to include mov-

ing targets in the environment, which greatly complicates the problem. By adding

tracking as a task, we demonstrate that the algorithm can coordinate the UAVs to

search an environment and balance that against the need to track the known targets.

The problem is solved as a single optimization using the environment uncertainty

as the common cost. Finally, Chapter 5 discusses the rover testbed developed in

the Aerospace Controls Lab., MIT and the experimental results of implementing the

robust shortest path algorithm in Chapter 3 on the testbed.

21

22

Chapter 2

Incremental Update of Cost Map

In UAV mission, the preliminary planning will be based on some a priori information.

As the mission proceeds, new knowledge about the terrain may be obtained, which

can include finding new targets, finding new Surface-to-Air-Missile (SAM) sites and so

on. As a result, the task allocation may need to reschedule such that the vehicles visit

the targets with the maximum efficiency. Also, some vehicles may need to be assigned

to clear the SAM site to reduce the risk of the mission. In summary, the previous plan

may no longer be optimal or feasible given this new information. Hence, to maximize

performance, the task assignment and path planning would require re-optimization.

In the RH-MILP framework, the vehicle and environment states are continuously

tracked by the BRAIN. When new information is obtained by the vehicles, the BRAIN

sends a re-plan request to the Task Assignment (TA) to re-optimize the plan, and

sends the new assignments to the Path Planner to re-plan the trajectory, as illustrated

in Fig. 2-1. The optimization is done based on the cost map which describes the cost

to travel between the nodes of interest in the scenario. "Nodes" (or cost points) here

refer to the locations of targets, vehicles, and obstacle corners [13, 15].

The Receding Horizon Task Assignment (RHTA) [15], which is formulated as a

MILP problem, is a main element in the RH-MILP framework. It is a relative fast al-

gorithm for solving task assignment problems with timing and capability constraints.

23

lf changes in BRAIN
environment

Vehicle states,
Obstacles,

Updated Vehicle states, Targets
Cost Map Obstacles,

TA Planner Vehicle

Assignment Trajectory

Figure 2-1: The replan mechanism of RH-MILP.

This has been demonstrated in real-time experiment for dynamic environment [25, 13].

However, the computation time is still too long for more complex and more rapidly

changing environment. The first task assignment is allowed to take a long time to

compute since it is done off-line before the mission starts. However, replan is com-

puted online. Hence, in order to implement the algorithm in real time, the replan has

to be fast. It is observed that the re-computation of the cost map has taken a signif-

icant portion of the total computation time. Increasing the speed of this calculation

would bring significant improvement in the overall computation speed.

This chapter presents a simple, yet effective way for re-computing this cost map

with the new information. Section 2.2 addresses the essential observations for updat-

ing the cost map with various possible changes in the environment. These observations

motivate to speed up the algorithm. Section 2.3 gives an example of a fairly complex

multi-vehicle scenario to demonstrate the effectiveness of this approach.

2.1 Motivation

UAVs usually operate in dynamic environments in which information gets updated

over time, and the previous plan is often no longer optimal as new information is

obtained. The RH-MILP algorithm has demonstrated its capability to tackle these

dynamics and re-optimize the plan according to these changes [25, 13].

As the environment becomes more complex, the computation load for planning

24

grows. In addition, if the environment is highly dynamic, namely changes occur very

rapidly, the planner may not be fast enough to properly react to these changes. So, we

are concerned about speeding up the planning algorithm, especially during re-plan,

which has to be done online.

The cost map serves as the main input to the RHTA. The cost map describes the

connectivity and cost of travel among nodes. It is required that each time a re-plan

request is called, this cost map be recomputed. It is noticed that the computation

of this cost map has taken a large percentage of the total planning time. Fig. 2-2

compares the total planning time and the computation time for the cost map for the

example shown in Section 2.3. It can be seen that the computation of the cost map

takes up about 50% of the total planning time. This becomes a limiting factor for

real-time implementation.

Moreover, it has been observed that on a short-time scale, the changes in the

environment are often confined to a local region. Most of the information in the cost

map is still valid. Hence, it is not reasonable to re-compute the entire cost map every

time. This part can likely be spedup if we can identify these local regions under

changes and only update the cost map for them.

Expected changes in environment for the RH-MILP problem can be summarized

as follows,

1. Pop up new obstacles.

2. Removal of obstacles.

3. Pop up new targets.

4. Removal of targets.

5. Loss of vehicles.

6. Vehicle movement.

Each of these types of changes has a specific impact on the cost map. By identifying

these specific impacts, a lot of work can be saved for updating the cost map, hence,

speeding up the re-optimization of plan.

The following section discusses the impact of these dynamics on the cost map.

25

5 --

4.5 -

4 -

3,5 -

3 -

2.5 -

1.2 -

Total Computa n Time and Computation time for Cost Map

-a- CstMap
85

60

55

s0

45

35

30

25

C-'
1 2 3 4 5 8

plan number4

(a) Total computation time Vs.
Computation time for cost map

Ratio of Computation time for Cost Map to Total Computation Time

1 2 3 4 5 6

(b) Ratio of computation time for cost map
to total computation time.

Figure 2-2: Computation load required for cost map.

An incremental update of the cost map

re-computation time of the cost map.

is presented which effectively reduces the

2.2 Incremental Update of Visibility Graph

The computation of the cost map in RHTA consists of two main parts, namely the

generation of the visibility graph and running the Dijkstra's algorithm. The visibility

graph describes how the nodes are connected to each other and the cost of each of

these connected pairs. The Dijkstra's algorithm returns the path of minimum cost

between each pair of nodes in the scenario. The Dijkstra's algorithm is generally fast

for RHTA. However, there are still algorithms that can speed up the shortest path

algorithm in a dynamic environment [26, 27, 28]. This section focuses on speeding up

the generation the visibility graph in a dynamic environment as it is a much slower

algorithm than the Dijkstra's algorithm. (Generally 4 - 5 times slower)

As mentioned in Section 2.1, we attempt to develop an incremental method of

updating the visibility graph which would speed up the re-computation. To develop

this incremental method, we need to understand the specific impact of each type of

26

1

O.5

(a) Original visibility
graph.

rmain unaffected

got Ldxdat-

(b) Localized update of
visibility graph.

(c) Final visibility graph.

Figure 2-3: Illustration of update of visibility graph with a pop-up obstacle.

the possible dynamics in Section 2.1 on the visibility graph.

2.2.1 Obstacles

Pop up new obstacles

Consider the situation when a new obstacle is found in the middle of the mission as

illustrated in Fig. 2-3. The role of an obstacle is to constrain the area of movement

of the vehicles. A new obstacle reduces the visibility in the environment. Hence, in

the sense of visibility graph, the changes occur only on the pairs of nodes that are

connected before the pop-up of this new obstacle. Furthermore, the new obstacle

only affects the arcs which are "close" to it. This is illustrated in Fig. 2-3(b). To be

more precise, "close" refers to arcs that are cross the new obstacle. So, we have to

consider arcs (or nodes) that satisfy these two criteria only. Hence, the only work is

to check the visibility of each pair of these connected nodes. The problem size has

been reduced from O(N 2) (considering all pairs of nodes) to 0(n 2) (considering only

specific pairs of nodes), where N is the total number of nodes and n is the number of

nodes that may require update, and in a complex scenario, it is typically that n < N.

27

Removal of obstacles

Removing obstacles would happen, for example, when vehicle finds that the obstacle

is actually not present where it is expected, or when one of the vehicles has removed a

SAM site which is essentially a no-fly zone, hence an obstacle. The process of updating

the visibility graph for removal of obstacles is similar to that for pop-up of new

obstacle. Removing an obstacle enhances the visibility in the environment. Hence, the

impact is only placed on the nodes that are previously not connected. Furthermore,

the changes occur only around the removed obstacle, as illustrated in handling pop-up

obstacles. So, the work is to check if these nodes are now connected with the obstacle

removed. Similarly, we have reduced the problem size from O(N 2) -- 0(n 2).

2.2.2 Targets

The way to handle targets is much simpler than obstacles, since targets do not in-

terfere with the connectivity of other nodes. This also emphasizes the usefulness of

incremental update of visibility graph, as much less work is actually required than

computing it from scratch.

Pop up new targets

When new targets are found, the only work to update the visibility graph would be

to compute the visibility of the new targets to all other nodes. The computation is

only 0(mN) rather than O(N 2), where m is the number of new targets and N is the

total number of nodes, and in general, m < N.

Removal of targets

When targets are visited by the vehicles, or when targets are not present where they

are supposed to be, the targets are removed from the list of nodes in the visibil-

ity graph. No computation for the visibility graph is actually required. It is only

necessary to erase the data associated with the removed targets.

28

2.2.3 Vehicles

Vehicle states are effectively the same as targets in computing the visibility graph.

Hence, the way to update the visibility graph associated with vehicle states is just

the same as for targets.

Loss of vehicles

When vehicles are destroyed or lose communication, the planner considers it as dead

and subsequent planning would not consider them any more. The update of the

visibility graph for this is the same as for removal of targets.

Vehicle movement

As the mission proceeds, the vehicles move around in the environment. Hence, when

a re-assignment is called, the positions of the vehicles have been updated. However,

instead of dealing with the entire visibility graph, we have to consider only the visi-

bility graph between the vehicles and all other nodes. The visibility of the vehicles at

the new position with all other nodes is checked, and the arc lengths are re-computed

as well. The problem size is reduced from O(N 2) to O(mN), where m is the number

of vehicles and N is the total number of nodes, and in general, m < N.

2.3 Effect on Computation Time

This section presents a simulation example to demonstrate the impact on computation

time by using the incremental update of visibility graph. The scenario of the example

is shown in Fig. 2-4(a). This is a fairly complex and dynamic scenario with multiple

re-assignments. The example consists of 4 vehicles (0), 3 obstacles, and 17 targets

(o). The vehicles start from the bottom of the figure and travel upward at a nominal

speed of 0.25m/s. Targets 1-8, 10, 12, 13 are known at the beginning. The dynamics

of the scenario, indexed by the sequence of re-assignment:

1. Vehicle 2 died soon after the start of the mission.

2. Positions of Targets 8 and 10 were updated by Targets 9 and 11 respectively.

29

3. Targets 14 and 15 were found.

4. Target 16 was found.

5. Target 17 was found.

Fig. 2-4(b)-Fig. 2-4(m) show the trajectories of the vehicles when the request of

new task assignment is sent (figures on the left) and the results of each task assignment

(figures on the right). The entire trajectories are shown in Fig. 2-4(n).

The computation time for the scenario is shown in Fig. 2-5. The computation time

using the incremental update and update from scratch are both shown in the figures.

Note that the first plan is generated before the start of the mission, the incremental

update of visibility is not applied. So, only the second plan and onward are compared.

Fig. 2-5(b) shows the computation time to generate the cost map, which is the sum for

generating the visibility graph and running the Dijkstra's algorithm. It shows that it

took only about 0.15 seconds to compute the cost map using the incremental update

method for the visibility graph, while it took about 1.6 seconds to re-compute the cost

map from scratch. Hence, we have reduced the computation time for the cost map

by about 90%. Fig. 2-5(a) shows the total planning for each task assignment request.

It is shown in the figure that the incremental method has reduced the total planning

time from 3.3 seconds to 1.6 seconds approximately. Hence, we have obtained a

reduction of total planning time of about 50%.

2.4 Conclusions

An incremental method of updating the visibility graph is presented in this chap-

ter. Despite of its simplicity, it is efficient in reducing the computation time of

re-assignment using RHTA. A simulation example is shown to demonstrate the im-

provement on computation time using the incremental method. With the reduced

computation time, the RHTA will be able to handle more complex and dynamic en-

vironments. Hence, the overall RH-MILP algorithm will be able to react to a rapidly

changing, complex environment with an optimal planning.

30

25F-

30

0 I--tnck2
-dqb truck5

25. -W truok12
o 0

20 0

2D - 0

15-

..........
0 0

10-

0

5-

0 5 10 15 20 2
x (m]

(b) Initial assignment.

30

o truak2
0 . truck5

25. -W truck12
o 0

20 0

0
15

0 0

10
0

o Truck 2died

5-

C-

(mj

(d) 1st Re-assigninent.

I

V 5
V 10 1

r

15 20 25

(c) Initial assignment.

30

25

20

15

10

5

0 5 10 15 20 25

31 (e) 1st Re-assignment.

U19

bb

lbb

o waypoints
o initial point

0 5 10 15 20 25

(a) Scenario.
30

r

qn

I r

20

0 5 10 15 2 2
a [inm

(f) 2nd Re-assignment.

S -W- trucki

0 4 '"ue
0 Tw uoj

-- truck2 -

0 0

0

New target fotutd

0 0

.. . .- . .--

0 10 1 l 2 2

x [m]

(h) 3rd Re-assignment.

5

20

25

20

15

10

N
U Update target position

Update target Pttait 0.0-

0 1-trtoll
-#- truck2

-N- truck12

o - -
0

0 0

0.
0 5 10 15 20 25

(g) 2nd Re-assignment.

30-

25-

20

15

10.

0 5 10 15 20 25

(i) 3rd Re-assignment.

0 o 10
x [m)

0 -- truck2l
0 -.Y trucktsl

0 New tare fowikd

-00

00

2005 -

(j) 4th Re-assignment.

30

25

20

15

10

5

CI
0 5 10 15 20 25

(k) 4th Re-assignment.

32

I'

25

20

10-

5-

25

20

15j

10

5

2

2

L.

15

5

I1

I

20 2515

r

I5 20

30

25

20

15

10

5

25

(1) 5th Re-assignment.

251-

201

10

5

0

-W- trucki
-- truck2
-V6 truck5
-- truckl2

. . ..

........-

........-

5 10
x [M]

0 5 10 15 20 25

(M) 5th Re-assignment.

15 20 25

(n) Final trajectory.

Figure 2-4: Example of dynamic scenario.

33

-06 - tru-klo -$- truck2
0 -Y" truckS

0 -W- trmk12
25-

0 0

. New target foun
20 0 0

0

15

10--

5

0 10
X [m]

In

Total Time

-I+- Incremental
-e- Non-Incremental

2
1
3 4 5 6

(a) Total computation time.

Cost Map

-+-x Incremental
-e- Non-Incremental

4 5 6
plan number

(b) Computation time for cost map.

Figure 2-5: Comparison of computation time for update of visibility graph.

34

4.5 r

4

3.5 F

3

2.5 V
ai)

E
2

1.5

0.5-

1.8

1.6

1.4

1.2 I

E

0.8-

0.6 r

0.4 F
0.2

0 I I I I I I

I I
1

2 1

1

1

Chapter 3

Approximate Robust Shortest

Path Algorithm

In UAV trajectory planning problem, the objective is often to find a dynamically fea-

sible path which guides the UAV to the goal in the shortest time. Various algorithms

can be used to solve this shortest path problem. However, they usually ignore any

uncertainty in the problem.

Fig. 3-1 shows an example when uncertainty comes into the UAV path planning

problem. The boxes with solid lines are obstacles, and the box with a dashed line is a

region of high risk. If the uncertainty assoicated with this high risk region is ignored,

the vehicle will go through this high risk region as the distance of travel is minimum.

However, when the uncertainty is taken into account, the path planner may tell the

vehicle to take a detour instead. The choice clearly depends on the trade-off between

traveling time and risk, but this decision must be included in the algorithm.

This chapter presents a robust shortest path algorithm based on Dijkstra's al-

gorithm. Section 3.1 gives an introduction to robust optimization, and the notion

of robustness is discussed. Section 3.4 discusses a systematic approach to choose

the robust parameter a. Section 3.5 discusses the formulation of the Approximate

Robust Shortest Path algorithm (ARSP). ARSP is compared with two other robust

35

b

2 *

a0 0 5 10 Its

(a) Environment
Setup.

POORi n X-Y F- (ruk .&4)

0 0 0 1

0I,'

(b) Nominal decision:
Vehicle goes
through the
uncertain region.

0 0 0 10 1

(c) Robus decision
Vehicle--- avoid the...

uncertain.region.

Figure 3-1: Robust vs Nominal path planning.

algorithms, namely Bertsimas-Sim Algorithm [10] and the Robust Deviation Shortest

Path Algorithm [11]. Simulations with different problem size are used to verify the

performance of the ARSP.

3.1 Overview of Robust Optimization

Decision making in reality always consists of uncertainty. Uncertainty is not an

occasional, temporary occurrence in decision planning. A realistic and robust decision

cannot be made without understanding and bringing uncertainty into the planning

process [121.

One way to solve optimization problem with uncertainty is to use stochastic op-

timization. Stochastic optimization attempts to generate a solution that maximizes

(or minimizes) the expected value of the objective function. However, the stochastic

formulation recognizes only the central tendency (i.e. the first moment) of the data.

This could lead to a problem if two sets of data having the same expectations but

different spread (i.e. the second moment). The stochastic formulation sees the two

sets of data as being equivalent, but decision maker would probably prefer the one

with smaller variance.

36

The expected values forms only one of the potential realizable scenarios. Under

uncertainty, what is required is a decision that performs well over all the possible

scenarios. This is known as the Robust Decision making. Two formal definitions of

robustness approach are discussed in the following.

3.1.1 Absolute Robust Criterion

Absolute robust criterion is also known as the minimax criterion. The robust decision

is made to minimize (or maximize) the performance of the worst case scenario. Use

of this criterion results in a conservative solution which assumes the worst case likely

to happen. In mathematics, it is formulated as,

J* min max f(Y, Ds) (3.1)
yEyF sS

where Y is the set of decision variables and D is the set of input data. Ds denotes

the realization of D in scenario s. yF denotes the set of all feasible solutions. The

absolute robust criterion is applied when the primary concern is about not exceeding

a certain target level of performance

3.1.2 Robust Deviation Criterion

Robust deviation criterion is also known as the minimax regret criterion. "Regret" can

be defined as the difference between the resulting cost (or benefit) from the decision

made and the cost (or benefit) from the decision that would have been made if the

particular input data scenario had been known a prior. The minimax criterion is then

applied to minimize the maximum regret, which is formulated as

= min max (f(Y, Ds) - f (Y*, Ds)) (3.2)
yGyF CSS

where Y* is the optimal solution under scenario s.

The robust deviation criterion results in a less conservative decision, since it allows

37

benchmarking of the performance of the solution against the best possible outcome

under any realization of the data. It can serve as an indicator of how much can be

improved if the uncertainty can be removed.

The decision maker should choose between the two robust criteria according to

the problem statement. Each of the choice may robustisfy the solution to different

extent. The following section discusses the robust shortest path problem for RH-MILP

and the appropriate robust criterion is chosen for the UAV planning problem.

3.2 Robust Shortest Path Problem for RH-MILP

In the UAV path planning problem, we search for the shortest path connecting the

UAV current position to the goal. The Dijkstra's algorithm is used to solve the

shortest path problem in the RH-MILP formulation [13]. The Dijkstra's algorithm

finds the shortest path to all nodes from an origin node on a graph G = (P1, A), where

K is a finite set of nodes and A is a collection of arcs joining a pair of nodes which are

members of M. Each arc (i, i) in the set of arcs A is associated with a cost cij (> 0).

This algorithm involves the labeling of a set of fixed nodes 'P, of which the shortest

node distances Dj from the origin node to each node j E M has been found. Dijkstra's

algorithm is efficient and has a complexity of O(.A| 2) [23]. To take the advantage of

this simplicity, a robust shortest path algorithm, called Approximate Robust Shortest

Path (ARSP) Algorithm, is developed based on the Dijkstra's algorithm. This choice

simplifies the implementation of the robust algorithm in the RH-MILP framework of

the UAV planning algorithm.

When uncertainty is incorporated in the cost of the arcs, cij is no longer a specific

number, but cij E Cij where CEh is some uncertainty set. The shortest path problem is

to obtain the "best" solution across all possible realizations of data. The uncertainty

set can be modeled in various ways. One way is to model Cij as the lower bound

value, ci,ij, and the upper bound value, c 2,ij.

Given a window of arc cost cij = [clij, cUi] , either the absolute robust criterion

3

or the robust deviation criterion can be used to solved the shortest path problem. In

the UAV path planning problem, we are concerned about having the vehicle reach

the target within a certain time interval. It is often essential that the mission time

does not exceed a certain limit for the vehicles to coordinate their maneuvers. This

would favour the choice of the absolute robust criterion. In which case, the problem

can be formulated as,

min J cuij ij
i~j

subject to: x E X (3.3)

where X is the constraint set. This formulation generates an extremely conservative

solution, since it is unlikely that each arc will indeed achieve its worst case cost.

Furthermore, it is unlikely that all the arcs will attain the worst case cost simulta-

neously. So, to be more optimistic, the cost of the arcs are allowed to attain some

values somewhat less than cu,ij. The formulation then becomes,

min J = E 3c,ix ij
i,:

subject to: x E X (3.4)

where 0 < 3 < 1. However, Ocu,ij captures only a single "side" of the uncertainty set,

namely the proximity of the upper bound. It ignores the "shape" of the uncertainty

set. For example, consider two arcs with the same cu,ij but different ci,ij. Eq. 3.4 takes

the two arcs equivalently. However, in reality, the decision maker would probably

prefer the one with higher cl,ij since it has a smaller uncertainty set.

Instead of considering only the upper bound value, the uncertainty is approximated

using the first and the second moments, i.e. mean and variance, of the data set in

the ARSP. The mean captures the central tendency of the uncertainty while variance

captures the spread of the uncertainty. The data set is hence transformed from

[ciu, c,ij] into [cij, a'], where Eij and o-ij are the mean and standard deviation of the

cost of arc (i, j) respectively. The new representation of the data set implies some

39

distribution of the data. If we have some a priori knowledge about the uncertainty,

for example, from collected sample data, some distribution functions can be fit into

this data set. If we simply have the upper and lower bound values, it would be natural

to use some standard distribution functions to model the data set, for example, the

uniform distribution, or the normal distribution. Hence, the robust shortest path

problem becomes to minimize the cost function, f(, .2).

The following section discusses the formulation of the cost function. Since statis-

tics is introduced into the robust shortest path problem, the cost function takes up

the well-defined properties of the standard normal distribution. However, the prelim-

inary cost function is nonlinear and non-convex. An approximation method is used

to overcome the difficulty arising from the nonlinearity and non-convexity.

3.3 The Performance Index, + O-

When statistics comes into the problem, we attempt to quantify the quality of the

robust solution by the quantity E + Ou, where # is some constant to be picked. This

performance index serves as an estimate to the cost of the are, such that it guarantees

a certain probability (P(c < 5 + #3-)) that the actual cost falls below this value.

The probability depends on the type of distribution. For example, with 3 = 1, the

corresponding probability for uniform distribution is about 78% and that for normal

distribution is about 84% [19]. However, as we are adding up a number of random

variables in the solution path, we can get around this variation in probability by

applying the Central Limit Theorem. Hence, this performance index is independent

of the type of distribution.

The Central Limit Theorem [21]

Let X1, X 2, ... be a sequence of independent distributed random variables with mean

40

Ai, P 2 ,... and variance o, , Define

n

EXi - Pi)

Zn =
n

(Zc2)

Then, the CDF of Z, converges to the standard normal CDF when n -> oo,

lim P(Zn 5 z) = (D(z) Vz

where 4(z) is the standard normal cumulative distribution function (CDF).

The Central Limit Theorem requires only (i) independence and (ii) finite mean

and variance for the distribution of Xi.

For a large n, it is fair to assume normal distribution. In general, when n > 30,

the normal approximation is satisfactory regardless of the shape of the population

[20]. For the case of uniform distribution, n = 12 is a reasonable point to assume

normality [19].

However, problems arise when n is small. The approximation of normality may

give a significant error depends on the type of distribution. Fortunately, this error

can be estimated using the Berry-Essien Theorem [18].

The Berry-Esseen Theorem [18]

Assume E(Xj) = 0 and E(|X I') < oc. Then,

JPn(Z

where

cL,
-Dz (1+ IzI)3

Pn(z) = P(Zn z)
n

E(|X |3)
and Ln = n 2)3/2

'i=/

(3.5)

41

where c is some positive constant not less than (2r) 0 (~ 0.4) [18], and <D(z) is the

standard normal CDF.

The Berry-Ess en Theorem provides an upper bound for the error between the

cumulative distribution of the sum of random variables and the standard normal CDF.

Fig. 3-2 shows the predicted upper bound errors with the Berry-Ess6en Theorem and

the errors from simulation using a uniform distribution with zero mean and finite

variance. The value of c is taken as 0.4 and the value of z is taken to be 1. Fig. 3-

2(a) shows the results when all Xi have identical distribution, and Fig. 3-2(b) shows

results with randomly generated variance over the range [0, 2] for each Xi.

From the figures, it can be seen that the Berry-Ess6en Theorem provides a rea-

sonably tight bound on the error for the Central Limit Theorem. The predicted error

deviates from the simulated error by less than 3%, which is sufficiently small to pre-

dict the errors in the simulations. The bound is particularly useful for cases when

n is small such that the assumption of normality is not appropriate. Since <D(z) can

easily be found from the look-up table. The Berry-Esseen Theorem provides a simple

way to estimate Pa(z).

Note that the result is not restricted to distributions with zero mean nor to uniform

distribution. For distribution with finite mean, the Berry-Ess6en Theorem can be

applied through the transformation,

Yi = Xi - pi

such that Y is a random variable with zero mean and variance a'. Moreover, by

choosing different values for the constant c, the theorem can be applied for different

distribution models of the uncertainty.

To apply the Berry-Esseen Theorem into the robust shortest path problem, con-

sider Cij, the arc cost, as the random variable. The cumulative distribution of the

42

sum of Cij, P(f), can be estimated as

C - _
Pn() = P < 0) = Q(C < i+ 0a) ~ <D(O)

where C is the sum of the random variables Cij over i, j, and 5 and a are the mean

and standard deviation of C respectively. P is the cumulative distribution function

for the "standardized" random variable C-6 and Q is the cumulative distribution

function for C.

Q(C < Z + 3a) represents the confidence level for the cost to fall below the

value (e + 0a). Hence, the value of 3 can be adjusted to satisfy the confidence level

required by the mission, even at low value of n. For a given value of 0, decision maker

is guaranteed with the same probability that the actual path cost will fall below the

value Z + Oa. Hence, to find the robust shortest path, the objective becomes to

minimize this performance index.

3.3.1 Nonlinearity

Using the performance index in the previous section, the robust shortest path problem

is to find the path that minimizes the quantity e + po, which can be written as

min J = ixij +#, 13 Z ij
i~j iji

subject to: X E X (3.6)

However, this cost function is nonlinear and non-convex, which makes the problem

very difficult to solve. Moreover, the nonlinearity of the square root creates a problem

for the ARSP algorithm which is built on the Dijkstra's algorithm.

To illustrate the difficulty with the nonlinearity in the cost, consider a simple

scenario shown in Fig. 3-3. There are 3 nodes in this simple scenario. There are two

paths connecting nodes 1 and 2, but only a single path between nodes 2 and 3. The

cost of the paths are presented as [Pi, ail, which are the mean and standard deviation

43

7------- -

Predicted Upper Bound
-e- Simulated Error

6 -

..........,

.. %
4

OR

3

2

...

0
0 2 4 6 8 10 12 14 16 is 20

n

(a) Identical Uniform distribution.

7

x Predicted Upper Bound
-e- Simulated Error

6

5 I *

4

3

2

....

01
0 2 4 6 6 10 12 14 16 18 20

n

(b) Uniform distribution with different variance.

Figure 3-2: Berry-Esseen Inequality.

44

of the cost. The problem is to find the robust shortest path between nodes 1 and 3.

The problem is solved with 3 = 1, and it is assumed that A2 + (-2 < Ill + 0i.

ARSP algorithm is started from node 1 and the cost function EZ Ej + 3 Ei Ui

is propagated towards node 3. At node 2 the algorithm picks path 2 as the robust

shortest path between nodes 1 and 2, based on the assumption above. Now consider

the values of Ai + A3 + i + (-3, i = 1, 2 for a fixed A3 but variable U3, which are

plotted in Fig. 3-3. The plot shows that for c-3 > 0.025,

23+ 1+ 7 2 +P3+ 2 2(7

which means that the best robust shortest path between nodes 1 and 3 is to take

paths 1 and 3. However, given A 2 + 0 2 < yi + or, ARSP will choose paths 2 and 3,

which is incorrect. This simple example illustrates a problem that can become quite

severe as more paths are added to the scenario.

Path 1:[p G)

2 Path 3: [pt3, CT3
1 2 3

Path 2: [pL2, a 2]

Figure 3-3: Simple shortest path problem.

45

2.28-

2.275 -

2.27 - 1

2.245

~2.25 -[12+ (Y2 (+ 3)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
03

Figure 3-4: Nonlinearity of cost functions.

3.4 Approximation with C + ao.2

In order to avoid the problem with the nonlinearity in the cost discussed in the

previous section, we approximate the cost function in Eq. 3.6 with the mean-variance

formulation [24]

min J = i jxisj+ a xi

subject to : x E X (3.7)

The square-root in the original cost can be approximated using a two-point lineariza-

tion, as shown in Fig. 3-5. This linearization is done for predicted values of TL and

aH, which are the expected lower and upper bound for o of the solution path respec-

tively. One way to estimate these values is to solve the nominal problem and the

following problem

min J = fxij
isj

subject to: x c X (3.8)

46

qZO24it x)

L
;2XI i) H

Figure 3-5: Plot of y = VI/ and linear approximation.

which essentially is to solve the robust problem with a very large value for a. The

nominal solution will give the value OH and Eq. 3.8 will give cYL-

Hence, by using the equation of the straight line in Fig. 3-5, the square root term

can be approximated as

i j

(1 UL2 21
/ (zij oxjij)+ K (3.9)

where K is the constant of the linearization. Substituting Eq. 3.9 into Eq. 3.6 gives,

~min E elijxij

min5
x ij i

+ j Xj
i\L

O H - L
or 2 2 or

H UL (ij
2Ujjxijj + OK

Since OK is a constant, it can be ignored in the minimization. Comparing the coeffi-

cient for Ljj oQxij in Eq. 3.7 and Eq. 3.10, suggests that an appropriate choice of oz

is

(3 H -OL
a=/ #2 2

H L
(3.11)

Fig. 3-6 shows the results of several simulations done to verify this approximation.

47

(3.10)

...

Y=qx

lo

()3 1 (84% cnfidance level), a = 2 4891
.25 -

-M-Nominal

3.2-

3.15 -

wcearho nm.

(a) 3 1, 84% confidence level.

(1.29 (90% 65,9 de5 e oel), a = .2113.453o

3A -

3.35 -

3.3 -

3.25 -

3.2

3.14

3.1

1 2 3 4 l7
acenario nm.

(b) =1.29, 90% confidence level.

S=1.65 (95% cofidence level), =4.2335

3.6 -

3.55-

3.5 -

3.45 -

3.4 -

3.3.-

3.3 -

3.25 -

3.15 -

3.15

.- 1 2 3 4 5 6 7

(c) =1.65, 95% confidence level.

Figure 3-6: Plot of + 13a.

48

The robust shortest path problem was solved for 8 random scenarios using three values

of 3 in the approximation discussed above. Then, the values of the performance index

(b + ,O-) are compared for the robust and nominal solutions. Fig. 3-6 shows that the

robust solutions always have a smaller performance index than the nominal solutions,

indicating that the approximation method is a valid method of robustifying the path

choice to the uncertainty in the data.

3.5 ARSP as a Modification to Dijkstra's Algo-

rithm

The previous section introduced a cost function that avoided the nonlinearity associ-

ated with the performance index E + 0a. The new version of the robust shortest path

problem is

min J = (ZBij + au)xij
i~j

subject to: x E X

where a is a positive constant. Note that the cost function is now linear in the

decision variables xij. The parameter a represents the relative weighting between the

mean cost Eij and the variance a?., so it can be used as a tuning knob to adjust the

robustness of the solution. For example, a decision maker who is completely risk-

averse might choose a large value of a, while one who that is not concerned with risk

might choose a lower value of a. Choosing a = 0 would be equivalent to solve the

nominal problem. Since this cost function is linear in the decision variable, xij, it can

also be used in the framework of the Dijkstra's algorithm.

Algorithm Overview

The Approximate Robust Shortest Path (ARSP) Algorithm is presented as follow as

a modification to the Dijkstra's algorithm. The index of the goal point is set to be 1.

49

1. Set current node i = 1, and initialize:

P = {}

0

e1j + Cea 2

V i =

Dj is the "cost" of the shortest path from the goal to node j. Mj and V/ are the

mean and variance of cost of shortest path from the goal to node j, assuming

independent arcs.

2. Set node i as the successor of each node j. A successor node is the next node

on the path towards the goal.

3. Find the next closest node from the set of unfixed nodes1 , and set it as a new

current node i,

i:= arg min Dj

4. Fix node i, and update the set P of fixed nodes,

P - P U{i}

5. If all nodes in M are also in the set P, i.e. all nodes are fixed, terminate.

6. For all the nodes that are unfixed and visible from the current node i, i.e., for

each {ili (P, J +caof # oo}

'Unfixed nodes are those whose shortest path to the goal has not been found.

50

j= 1

M = {1j
j=1

j=1

psi

0

2
(71j

Dj =

(a) Update the temporary labels,

Dj min(Dj, Dj + Eij + aU2y)

(b) If Dj is updated with D, + ijj + au?., set i as the successor of node j. If

D is updated, update Mj and V accordingly,

M, - M3 + E11

(c) Pick the next j and go to Step 6a.

7. Go to Step 3.

The algorithm produces a tree of nodes with the goal node as the root. Dj gives

the minimum cost from j to the goal. Note that by assuming independency of the

arcs, the calculation of MA and Vj is exact, so they give accurate estimates of the

mean cost and variance of the shortest path from the goal to node j.

3.6 Complexity of Robust Dijkstra's Algorithm

The advantage of ARSP is its simplicity. The Dijkstra's algorithm itself is known to

be an efficient algorithm for solving one-to-all-nodes shortest path problem, with a

complexity of O(.V|2) [23]. The ARSP essentially imposes no additional complexity

to Dijkstra's algorithm, with robustness taken into account. The only difference is

that ARSP propagates a different cost function. To demonstrate this strength of

ARSP, its performance is compared with two other robust optimization formulations,

the Robust Deviation Shortest Path (RDSP) formulation [11] and the robust integer

programming algorithm introduced by Bertsimas et al. [10].

51

3.6.1 Robust Deviation Shortest Path (RDSP)

The RDSP in Ref. [11] implements the robust deviation criterion. The robust de-

viation of a path p is defined as the difference between the cost of the path p and

the cost of the shortest path for a specific realization of arc cost. Hence, a path p

is defined as the robust deviation shortest path if it has the least maximum robust

deviation among all paths. It is in general an NP-hard problem [12]. However, given

the uncertainty set of the cost being interval data, the solution set can be confined

to a finite number of realizations because the robust deviation for a path p is only

maximized for a realization in which the cost of all arcs on p is set at the upper

bounds and the cost of all others arcs are set at the lower bounds [11]. The problem

is formulated as a mixed integer program as follows [11],

min E Cu,ijyij - Xn
(ij) EA

1 i= 1

subject to: Z y- Z Yji ={1 otn
1i: (i'~eA} J{:(U,i)EA}

0 otherwise

x3 < xi + ci,ij + (CUij - ci,ij)yij V(i, j) c A

yj - f{0, 1} V(i, j)E A

x1 = 0

Xi > 0 i =1,2,.. , n (3.12)

where xi is the minimum cost to go from the starting node (node 1) to node i in

scenario defined by yij. Hence, xn is the path with minimum cost to go from the

starting point to the goal (node n) in scenario defined by yij. arc(i, j) indicates an

arc going from node i to node j.

A preprocessing algorithm has been developed in reference [11] to reduce the so-

lution set in order to speed up the optimization process. The algorithm is generally

applicable to acyclic directed graphs. However, for the path planning problem we are

59

dealing with, the visibility graph is undirected and highly connected, the preprocess-

ing algorithm will be of little use, so it is not used here.

3.6.2 Bertsimas-Sim Algorithm

In [10], Bertsimas et al. proposed an approach to address data uncertainty for discrete

optimization and network flow problems which is computationally tractable and it

allows the decision maker to control the degree of conservatism of the solution. It is

similar to ARSP in the way that it applies the absolute robust criterion and has a

tuning knob to adjust the level of the robustness of the solutions. When only cost

coefficients are subject to uncertainty and the problem is a 0 - 1 discrete optimization

problem on n variables, they show that the robust problem can be solved by solving

n + 1 nominal problems.

In the formulation, they argue that nature will be restricted in its behavior in

such a way that only a subset of the costs will change in order to adversely affect the

solution. If the problem behaves in this way, it can be guaranteed that the robust

solution will be feasible deterministically. Moreover, even if more changes occur than

expected, the robust solution will be still feasible with very high probability. For the

shortest path problem, the deterministic problem is posed as

min 7 cij xij
(i{)EA

subject to : Xij - xi = - = n
{i:(iJ)C-A} fi:(i,i)C-A}

0 otherwise

Xij E f{0, 1} V(i, J) E A (3.13)

The robust counterpart is

subjec

Z*= min 3 ciij ij + max 1 dijxij
(ij)EA {s1scA,1s1=r} i)E

t to: xij - X -1 i
{j:(ij)EA} {j:(j,i)EA}

0 oth

1

n

erwise

Xij E {0, 1} V(i, j) E A (3.14)

where dij = cu,ij - cij and F is the number of ci. that are allowed to change. F

serves as a tuning knob to adjust the level of robustness of the solution. The robust

counterpart is NP-hard. However, by using the algorithm in [10], the robust problem

can be solved in polynomial time.

Without loss of generality, dij can be arranged in a descending order. They are

re-indexed as d, > d2 >_ - - ;> d, and we define d,+ 1 = 0. The algorithm is posed as

Bertsima-Sim Algorithm [10]

1. Form= 1,...,n+1,

G' = Fdm + min
xX (z xijXu +

\(i,)E A
{((dij - dm)xi)

{ (ij) Idij>dm.}

and let xm be the optimal solution to the above optimization problem.

2. Let m* = arg minm=1,...,n+1 Gm.

3. Z* = Gm* ; x* = xm*.

Using Dijkstra's algorithm, the shortest path problem can be solved in O(INi 2),

while Bertsimas-Sim Algorithm will solve it in O(JAJ|J| 2) 2 [10].

2IAJ actually refers to number of distinct di

54

Table 3.1: Summary of problem sizes. I.Ar is the number of nodes and E(IAI) is the
average number of arcs.

ArI 150 80 110 140 170 200
E(IA|) 262 466 625 746 1162 1609

3.6.3 Comparison with RDSP and Bertsimas-Sim Algorithm

ARSP is compared with the RDSP and Bertsimas-Sim algorithms to test the perfor-

mance. The two algorithms are written in ILOG CPLEX using Concert Technology

[22]. Scenarios of different size are randomly generated within a square from (0, 0) to

(1, 1). The "size" refers to the number of nodes in the scenario, and a "scenario" refers

to a particular randomly generated graph. For each problem size, 8 different scenarios

are created and 2,000 random realizations of arc cost are generated for each scenario

to compute the cost of the optimal path solved. The costs of the arcs are uniformly

distributed within the interval [c ,ij, yisci,jj]. A square region of high uncertainty is

located from (0.4, 0.5) to (0.8, 0.9). For any arcs crossing this region, the values for

7yi are uniformly distributed in [0, 10], and for the other arcs, in [0, 3]. Hence, some

of the arcs have much larger cost deviation than others. The problems are solved

on a Dell Pentium4 (2.40GHz and 1GB RAM). Comparisons are made among ARSP

(for a = 3), RDSP, Bertsimas-Sim Algorithm (for F = 8), as well as Dijkstra's with

nominal cost (a stochastic problem). The simulation results are summarized in Table

3.1. (Note: the values for a and F are chosen such that both algorithms indicate a

relatively high level of robustness for the solutions [10].)

The results of the simulations for 110 nodes and 200 nodes are shown in Fig. 3-7

and Fig. 3-8. (Results for other problem sizes are shown at the end of the chapter.)

The mean and the standard deviation of path cost are plotted for the 4 algorithms.

The percentage difference from the mean and standard deviation of path cost of the

nominal solution are plotted as well. In particular, the result for the case of 200 nodes

is tabulated in Table 3.2 to show some numerical values. The percentage is calculated

as Robusj-ominal x 100%.

55

Table 3.2: Mean cost and SD for #nodes = 200.

Nominal ARSP RDSP Bertsimas-Sim

3.53 0.12 3.55 0.41 0.086 -27.44 3.55 0.41 0.086 -27.44 3.67 3.84 0.097 -18.26
3.93 0.14 3.95 0.65 0.13 -8.47 3.96 0.74 0.14 -1.20 4.01 2.10 0.13 -5.34
4.10 0.14 4.12 0.50 0.12 -13.35 4.14 0.78 0.12 -14.11 4.17 1.52 0.14 0.37
3.80 0.10 3.80 0.10 0.10 -1.96 3.81 0.34 0.10 -2.14 3.88 2.35 0.10 -0.57
4.01 0.24 4.01 0 0.24 0 4.08 1.84 0.24 -2.45 4.22 5.27 0.23 -4.91
4.10 0.11 4.12 0.47 0.10 -11.41 4.14 0.92 0.093 -17.09 4.25 3.62 0.096 -13.80
4.39 0.17 4.40 0.18 0.16 -8.72 4.42 0.53 0.15 -9.72 4.66 6.09 0.17 -0.42
3.55 0.08 3.55 0 0.08 0 3.56 0.31 0.08 -0.55 3.65 2.68 0.079 -1.33

The results show that the robustness of the solution (reflected by a reduction in

the standard deviation) is typically associated with an increase in the mean. From

the figures and table, it can be seen that ARSP (average 8.92%)3 has reductions

in the standard deviation that are comparable to RDSP (average 9.34%) and the

Bertsimas-Sim Algorithm (average 5.5%). Moreover, ARSP (average 0.29%) has a

smaller increase in the mean value than RDSP (average 0.73%) and the Bertsimas-Sim

Algorithm (average 3.43%). The result clearly illustrate that the ARSP performance

is at least comparable to the RDSP and Bertsimas-Sim Algorithms.

So while the performance is comparable to the other algorithms, the primary

advantage of ARSP is its simplicity. Fig. 3-9 shows the average planning time for the 4

algorithms as a function of problem size. The figure indicates that while incorporating

robustness criterion into the formulation, the ARSP does not require any significant

increase in computation load over Dijkstra's algorithm. On the other hand, RDSP

and the Bertsimas-Sim Algorithm are about 10 times and 1000 times, respectively,

slower than ARSP for problem size of 50 nodes. Furthermore, their computation time

increases very rapidly with problem size, so that for a problem with 200 nodes, they

take about 100 times and 10,000 times, respectively, more time to solve than ARSP.

By curve fitting to the simulation results, the complexity of the Dijkstra's, ARSP,

RDPS and Bertsimas-Sim algorithms are estimated to be O(I/jN2), Q((Af/12), O(1 V5)

and O(IjI6), respectively.

3 (Note: the numbers in bracket refers to the numbers in Table 3.2).

56

Mean cost, #nodes =110
5'

4.5

0
3.5 -

0
1 2 3 4

scenario num

o Dijkstra's
x ARSP
K RDSP

Bertsimas-Sim
5 6 7 8
ber

SD, #nodes =110

o Dijkstra's
x ARSP
K RDSP
i Bertsimas-Sim

0

9
0

1 2 3 4 5
scenario number

6 7 8

(a) Mean and standard deviation of cost.

Mean Cost Percentage Difference, #nodes =110

xARSP
K RDSP
4 Bertsimas-Sim

x

x

2 3 4 5 6 7 8
scenario number

SD Percentage Difference, #nodes =110
x ARSP
K RDSP
$ Bertsimas-Sim

x 0

x

1 2 3 4 5
scenario number

6 7 8

(b) Mean and standard deviation of cost difference from nominal Dijkstra's.

Figure 3-7: Cost distribution for scenario with 110 nodes (4 Algorithms).

57

C3
c

E

3

8

0.4 -

0.3 -

0.2 -

0c>

0

0.1

5'

a

3

0
0

10

5

0

5

-10

-15

-20

i I I - - I - -

-25' 1 1 1 1 1 1 1 1

I

Mean cost, #nodes =200
o Dijkstra's
X ARSP

4s QRDSP
4 Bertsimas-Sim

1 2 3 4 5
scenario number

SD, #nodes =200
0.25 r"

0.2 F

6 7 8

0 Dijkstra's
X ARSP
Q RDSP
i Bertsimas-Sim

0

0
0

9

1 2 3 4 5
scenario number

0

0

6 7 8

(a) Mean and standard deviation of cost.

Mean Cost Percentage Difference, #nodes =200

x ARSP
*i QRDSP

Z Bertsimas-Sim

x

1 2 3 4 5
scenario number

6 7 8

SD Percentage Difference, #nodes =200

x

x ARSP
-25 RDSP
-30 Bertsimas-Sim

1 2 3 4 5 6 7 8
scenario number

(b) Mean and standard deviation of cost difference from nominal Dijkstra's.

Figure 3-8: Cost distribution for scenario with 200 nodes (4 Algorithms).

58

5'

4.5 F

E
E

4

3.5 F

6

Q)
CD

ctu
4

3

2

0

5-

0-

-5 -

-10-

-15-

-20 -

5)
02Cs

5)
0.

' ' ' " "

ClC 0.15|-

0.1

0.05 -

r *

10' -Mean
Planning time [sec]

)-Dijkstra's
-- ARSP

RDSP

102 - Bertsimas-Sim

10

.E

10

10 -
50 80 110 140 170 200

number of nodes

Figure 3-9: Mean planning time of 4 algorithms

Fig. 3-10(a) shows the planning time for the ARSP and Dijkstra's (on the nominal

problem) algorithms for a problem size of 300 nodes. And Fig. 3-10(b) shows the ratio

of planning time of ARSP to nominal Dijkstra's. The dotted line indicates the average

ratio. By adding the robustness criterion, ARSP is only about 2.1 times slower than

the nominal Dijkstra's at a problem size as large as 300 nodes. For, the UAV problem

we are dealing with, the problem size seldom reach this level. Hence, we can apply

the robust algorithm with a trivial increase in the computation time.

3.7 Examples

An example adopted from the Ref. [10] is presented here to show the validity of

the ARSP algorithm. A randomly generated undirected graph with 250 nodes is

constructed as shown in Fig. 3-11(a). The starting node is at the origin (0, 0) and

the destination node is at (1, 1). The mean cost, Zij indicates the average time of

travel on arc(i, j). All Zij are kept within the range 0.19+0.0285. Uncertainty can be

introduced into the problem as variations in speed of travel along the arcs as a result

59

Planning time (300 nodes)
..

0 .12 *
Nominal

-9- Robust
...................

0 .1 1 -
.....................

0 .1

0 .0 9

0 .0 8

....
0 .0 7 I

0 .0 6

0 .0 5

0 .0 4

0 .0 3

..I

0.02'
2 4 a 8 10 12 14 16 is 20

Trial no.

(a) Planning Time.

Planning time ratio (300 nodes)

3ww

2 .8

2 .6

2 .4 I I

2 .2

2 -
E

1 .8

1 .6

1 .4

1 .2 -

2 4 6 8 10 12 14 16 18 20
Trial no.

(b) Planning Time Ratio.

Figure 3-10: Planning Time Comparison for ARSP and Dijkstra's Algorithms.

60

-x- High Uncertain Arc
- x - Low Uncertain Arc

V - --

-. :4 -/-

A-

- , - -

- - -x

r1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.11

0C 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
(a) Scenario.

61

1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

us- ~

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) Nominal Solution.

a= 1.125

I

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(c) Robust Solution, a = 1.125.

62

--- --

I~IR

-- x ..-.----- x-

--

-~ *

1

Aft

a = 4.5
_~~~~~~~~~K~l~~~W~~~~ lift

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(d) Robust Solution, a = 4.5.

a = 5.625
-~- ~ I I

if)9

'ea

- 3i.Y,

- - -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(e) Robust Solution, a = 5.625.

Figure 3-11: Random Graph Example.

63

'C'..- jA -I

- -, -

- -A

Ixi

-. ..-

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1

of different terrain, hence, the time of travel is uncertain. The standard deviations

oj are divided into two categories. The arcs in dotted lines (light) are assigned with

the values a + au while the arcs in dashed lines (light) are assigned with the values

10(o + a), where a = 0.0089, and dA is a positive random number smaller than

0.05cr. Hence, the arcs in dashed line (light) are as much as 10 times more "uncertain"

than the dotted line (light). The problem is solved using different values of a in the

range of [0, 50]. The solutions are shown in Fig. 3-11(c)-Fig. 3-11(e). The nominal

solution is shown in Fig. 3-11(b). The nominal solution takes the path with minimum

average time of travel, without considering the embedded uncertainty along the path.

However, it can be seen that the robust solutions try to avoid some of the regions of

high uncertainty. When a is small, the robust path is similar to the nominal path,

except that the robust path takes a few detour to avoid the region of high uncertainty.

As a becomes larger, the robust path deviates more from the nominal path and tries

to avoid more high uncertainty regions, hence the nominal cost is increased as a result

of taking detour, but the variance in cost is reduced by avoiding more high uncertainty

regions.

We assume that the arc cost is subject to uniform distribution with mean c and

variance o?. 2000 realizations are generated. The mean and variance (or standard

deviation) in cost of the solutions are calculated. The results are shown in Fig. 3-12

and the cost distribution is shown in Fig. 3-13. The mean and standard deviation

in cost and the corresponding percentage difference from the nominal solution are

summarized in Table 3.3.

Fig. 3-12 shows the mean and variance of all the solutions over the range of a

considered. The figure shows that there are 4 distinct solutions (including the nominal

case) over this range of a, and it is clear that the variance is negatively correlated

to the mean cost. Fig. 3-13 shows the distribution of cost from the realizations. It

is shown that for a = 5.625, the standard deviation is reduced by 83.31% with only

4.74% increase in mean. Although the robust solution has a higher expected cost,

there is more guarantee for this value with the lower variance. Moreover, it is shown

64

in the histogram that the robust formulation has protected the solution against the

"worst-case" situation, i.e. the upper bound of cost.

Table 3.3: Summary of results of robust shortest path problem.

a % a- %01
0 2.9735 0 0.2297 0

1.125 2.9756 0.07 0.1905 17.06
4.5 3.0680 3.18 0.1009 56.06

5.625 3.1144 4.74 0.0383 83.31

0.06-

0 c x< 1.125

0.05-

0.04-

1.125 c < 4.5

0.03-

0.02-

4.5: (xa < 5.625

0.01 -

5.625 s < 50

0
2.96 2.98 3 3.02 3.04 __ 3.06 3.08 3.1 3.12 3.14

C

Figure 3-12: Plot of E vs. 0.

65

C.)

a)
0~a)

300-

250-

200-

150-

100-

50 b

0.

Distribution of cost

- Nominal
-x- a =1.125
-s- a=4.5
- a =5.625

2.4 2.6 2.8 3 3.2 3.4 3.6
Cost

Figure 3-13: Cost Distribution of Random Graph example.

3.8 Conclusions

This chapter has discussed the formulation of the ARSP algorithm to solve the short-

est path problem with uncertainty in arc cost. ARSP has been shown to be an efficient

and flexible tool to solve the problem. It is compared with the RDSP and Bertsimas-

Sim algorithm. Simulation results have shown that ARSP algorithm has comparable

performance with the other two robust algorithms , but with trivial computation cost

over the nominal problem. A systematic way to choose the robustness parameter a

is also discussed.

6G

2

Mean cost, #nodes =50

1 2 3
1 2 3 4 5

scenario number

SD, #nodes =50
0.3r

o Dijkstra's
x ARSP
0 RDSP
i Bertsimas-Sim

6 7 8

o Dijkstra's
x ARSP
0 RDSP

@ i* Bertsimas-Sim

0

0

0

1 2 3 4 5
scenario number

6 7 8

(a) Mean and standard deviation of cost.

Mean Cost Percentage Difference, #nodes =50

x ARSP
RDSP

c Bertsimas-Sim

0' i1 2 6 7 8
scenario number

SD Percentage Difference, #nodes =50
20 r

0 8 8x x 8

X ARSP
Q RDSP

Bertsimas-Sim

1 2 3 4 5
scenario number

6 7 8

(b) Mean and standard deviation of cost difference from nominal Dijkstra's.

Figure 3-14: Cost distribution for scenario with 50 nodes (4 Algorithms).

67

2.5 r

E

0a,

2.4

2.3

2.2

2.1

0.25 -

0.2 -

0.15 -

0.1

0.

85

6

4
a

2

0

(D

(D

LL

-20-

-40 -

-60 -

'3.

%Fl

Mean cost, #nodes =80

2.51F

11 2 3 4
1 2 3 4 5

scenario number

SD, #nodes =80

0 Dijkstra's
x ARSP
Q RDSP
" Bertsimas-Sim

0 *
6 7 8

o Dijkstra's
x ARSP
c RDSP
* Bertsimas-Sin

0

0

1 2 3 4
scenario number

0

9
a

6 7 8

(a) Mean and standard deviation of cost.

Mean Cost Percentage Difference, #nodes =80
X ARSP
I RDSP
* Bertsimas-Sim

1 2 3 4 5
scenario number

6 7 8

SD Percentage Difference, #nodes =80

x x

x ARSP
* 0 RDSP

* Bertsimas-Sim

1 2 3 4 5 6 7 8
scenario number

(b) Mean and standard deviation of cost difference from nominal Dijkstra's.

Figure 3-15: Cost distribution for scenario with 80 nodes (4 Algorithms).

68

4

3.5

3

0.2 -

0.1

8-

6 -

4 -

2 -
a.

0 0 x x

-2

10

0

1-10

-20

a- -30

-40

I-

I

I

0.5

0.4[

2j 0. 3 F

Mean cost, #nodes =140
5.2[

5

4.8

4.6

4.4

4.2

4

-22

a

0

L I

1 2 3 4 5
scenario number

SD, #nodes =140
0.35 r

0.3 -

0.25 -

0.2 -

0.15

0.1

0 Dijkstra's
X ARSP
0 RDSP

I r* Bertsimas-Sim
6 7 8

2:'

9

Q

1 2 3 4 5
scenario number

0 Dijkstra's
2:' x ARSP

0 RDSP
* Bertsimas-Sim

6 7 8

(a) Mean and standard deviation of cost.

Mean Cost Percentage Difference, #nodes =140

x ARSP
1: I RDSP

* Bertsimas-Sin

2:'
2:' 2:'

A A

2 4 5
scenario number

6 7 8

SD Percentage Difference, #nodes =140

x

2:'2:'
x

-25

"An I II IaIII - I
1 2 3 4 5

scenario number

x ARSP
0 RDSP
2 Bertsimas-Sim

6 7 8

(b) Mean and standard deviation of cost difference from nominal Dijkstra's.

Figure 3-16: Cost distribution for scenario with 140 nodes (4 Algorithms).

69

8

0
0,

7-

6-

5-

14-

3 -
a.

2-

1 -

5-

0-

-5 -

-10-

-15 -

-20 -

C

a.

Mean cost, #nodes =170

e
0

1 2 3 4 5
scenario number

SD, #nodes =170

0

6 7 8

o Dijkstra's
x ARSP
0 RDSP
* Bertsimas-Sim

0

0
x

1 2 3 4 5
scenario number

6 7 8

(a) Mean and standard deviation of cost.

Mean Cost Percentage Difference, #nodes =170

I~K

I~I x ARSP
I RDSP

SBertsimas-Sim

x

xx

1 2 3 4 5
scenario number

x

6 7 8

x ARSP
1 I RDSP

Bertsimas-Sim

x

x

1 2 3 4 5
scenario number

6 7 8

(b) Mean and standard deviation of cost difference from nominal Dijkstra's.

Figure 3-17: Cost distribution for scenario with 170 nodes (4 Algorithms).

70

5

4.8

4.6

4.4

4.2

4

3.8

c

o Dijkstra's
x ARSP
Q RDSP
I Bertsimas-Sim

6
0

0.2

0.18

0.16

' 0.14

0.12

0.1

0.08

(DS01

C

5

4

3

2

0

-1

5'

x x

Sr) Percentarto iffntso #nr4a 1 7nl

0-

D -5-
Is

(D-10-

C- -15-

-20 -

x

x
x

'

-Y&%

3.

I a I I I I I I

g

Chapter 4

Search and Track Mission

This chapter describes a decision algorithm for cooperative search among a team of

UAVs in the presence of unknown static and moving targets. The search mission

occurs in a number of military and civilian applications, for instance, search-and-

rescue in open sea, and search for previously spotted enemy targets. We consider

a team of UAVs, each of which is equipped with a sensor that provides information

about the environment that is used to reduce the uncertainty by confirming the

presence (and determining the location) of the targets. The UAVs must cooperate to

obtain an efficient search strategy. Furthermore, since many of the targets move, the

UAVs must to decide whether to keep tracking the target or to search new areas.

There has been extensive work developing algorithms for cooperative search mis-

sion [32, 33, 34, 35]. This chapter extends that work to handle missions involving

multiple moving targets. Section 4.1 describes the simplified path planning algorithm

used for this search-and-track algorithm. Section 4.3 presents a searching algorithm

in the presence of only static targets. The two sections adopted the work presented

in Refs. [32, 33]. Section 4.4 discusses the extensions of that algorithm to handle

moving targets.

71

4.1 Path Planning Algorithm

The search and track mission for the UAVs is essentially collapses to a path planning

problem. The UAV chooses the path to travel in order to optimize the gain of

information from the search or track. Similar to the RH-MILP problem [13], the

UAVs are assumed to move with constant speed and altitude. Moreover, the UAVs are

constrained with a certain maneuverability limit, which is captured by the minimum

turning radius (or maximum turning angle, 0max). The path planning is done in

discrete time in a receding horizon manner. At time k, the path planner designs the

path for steps k+ 1, k+2,.. .k+N ,, where Np is the planning horizon. By considering

the speed and the maximum turning angle of the UAV and assuming that the UAV

follows a straight line path in moving from time step k+q to k+q+ 1, the new position

of the UAV at each time step within the planning horizon can be easily identified. At

each time step, the UAV has m choices to move within the maximum turning angle

limit. Fig. 4-1 shows an example of the tree of waypoints for m = 3 and Np = 3. The

UAV executes Ne steps each time, which is called the execution horizon (Ne < Np),

and the planning algorithm repeats.

4.2 The Environment

The search area is discretized in space, as well as in time. At each planning step k,

the UAVs carry a map of the environment in memory, and it is assumed that each

UAV has the same map. This map describes the state of each cell, (x, y) at time k.

This work uses a probability map, P(x, y, k) which indicates the probability of targets

being present at the location (x, y) at time k, and P(x, y.k) E [0, 1]. As the UAV

moves across the cell, it obtains sensor readings and updates this probability map.

72

0

v At

Figure 4-1: Tree of nodes for the path planning

4.2.1 Bayesian Update Rule

The probability map is updated using a Bayesian update rule [35]

P(xy,k+1) y)(P(x, y, k)
P~xy, + 1 = ~x, , k(P(x, y, k) + (I - () (1 - P(x, y, k))

(1 b(xy, k)) (1)P(x, y, k)
((1 - P(x, y, k)) + (1 - ()P(x, y, k) (4.1)

where b(x, y, k) is a binary variable, with b(x, y, k) = 1 if the sensor reports a target

detection in the cell (x, y) at time k, and b(x, y, k) = 0 otherwise. (is the sensor

accuracy, which is defined as the probability of a correct sensor reading [35]

(= P(Alb(x, y, k) = 1) (4.2)

73

Bayesian Update of P(x,y,k)
1.1 r

I -

0.9-

0.8-

0,7

0 1 2 3 4 5
time step, k

Figure 4-2: Illustration of Bayesian update rule for b(x, y, k) 1.

where A is the event that the target is actually present at (x, y, k). Note that if

(> 0.5 (and hence the sensor gives useful information),

P(x, y, k + 1) > P(x, y, k) if b(x, y, k) = 1

and P(x, y, k + 1) < P(x, y, k) if b(x, y, k) = 0

Fig. 4-2 illustrates the Bayesian update rule with P(x, y, 0) = 0.5 and b(x, y, k) =1

for all k. It is shown that the rate of increase in P(x, y, k) reduces, which means

that searching an area that has already been searched does not produce as much

increase in information as searching an area that has never been searched before.

This emphasizes the importance of cooperation in the search since multiple UAVs

searching the same area is likely to produce less gain than having them to search

different areas.

74

4.2.2 Uncertainty Map

The location and number of targets are not known initially. The mission goal is to

collect information in the searching area and find as many targets as possible. The

amount of information obtained is quantified by measuring the uncertainty associated

with the environment. The uncertainty, U(x, y, k) E [0, 1] is calculated as,

U(x, y, k) = -4 (P2(x, y, k) - P(x, y, k)) (4.3)

Fig. 4-3 shows the plot for U(x, y, k). For U(x, y, k) = 1, we are completely uncertain

about whether a target is present at (x, y) at time k, which corresponds to P(x, y, k) =

0.5. For U(x, y, k) = 0, we are sufficiently confident to conclude whether a target is

present at (x, y) at time k (or not), which corresponds to P(x, y, k) = 1 (or 0).

Ref. [35] formulated the uncertainty as the Shannon entropy,

U(x, y, k) = -P(x, y, k) log 2 (P(x, y, k)) - (1 - P(x, y, k)) log 2 (1 - P(x, y, k)) (4.4)

Our formulation is inspired by Eq. 4.4. However, we modify the curve such that the

slope is less steep at either end. Hence, the same change in probability results in

a smaller change in uncertainty (Fig. 4-3). This is helpful particularly in problems

involving moving targets. The uncertainty does not grow too rapidly as a result of

untracked moving targets. The information remains useful for a longer time before the

probability map becomes flat (or the uncertainty becomes high everywhere). Hence,

the UAVs have more capability to re-acquire the moving targets after searching.

4.3 Algorithm For Static Targets

This section discusses the search problem with static targets only [34, 35]. The goal of

the mission is to reduce the uncertainty in the area and find all of the targets. Given

a priori information of the environment, the UAVs head to the region of interest

(probably with high likelihood of finding targets there) and reduce the uncertainty

75

Uncertainty Map

1 Our Formulation
- anonen

t
ropy

0.9 -

0.8 --

0.7 --

0.6-
%

0.2-

0.4-1

0 0.1 0.2 0.3 04 0.5 0.6 0. 0.8 0.9 1
P(x,y,k)

Figure 4-3: The uncertainty map.

on the way. This leads to a multi-objective optimization problem.

4.3.1 Mission Objectives

The UAV search mission consists a number of subgoals:

1. Follow the path of maximum reduction in uncertainty. - T his subgoal considers

the uncertainty reduction associated with the region swept by the sensor be-

tween time step k and k + 1. (See the rectangular regions (immediate gain) in

Fig. 4-4).

2. Follow the path that will guide the UAV to regions of maximum uncertainty in

the future. - This subgoal causes the UAV to choose a path that has poten-

tially more reduction in uncertainty in the next planning step, i.e. beyond the

planning horizon. (See the sector region (look ahead gain) in Fig. 4-4).

3. Follow the path of maximum probability of finding targets. - T his subgoal con-

siders the sum of P(x, y, k) of the cells associated with the region swept by the

sensor between time step k and k + 1. It guides the UAVs along a path of high

probability of target presence. (See the rectangular regions (immediate gain) in

Fig. 4-4).

76

look ahead gain
S(i, j)

immediate gain
R(i, j)

Figure 4-4: Illustration of the regions for computing the cost functions.

4. Follow the path that will guide the UAV to regions of highest probability of finding

targets in the future. - This subgoal causes the UAV to choose a path that has

higher potential of finding targets in the next planning step, i.e. beyond the

planning horizon. (See the sector region (look ahead gain) in Fig. 4-4).

5. Cooperation within the team. - This subgoal minimizes the overlap of the UAV

trajectories. As discussed in Section 4.2.1, the searching is more efficient if

the UAVs search different regions. Hence, by minimizing the overlap of the

trajectories, it maximizes the utilization of all the UAVs in the team.

Subgoals 2 and 4 serve as a heuristic to approximate the environment beyond the

planning horizon [32]. Hence, the planning is not just confined within the planning

horizon, but the UAV is still aware of the rest of the environment.

77

4.3.2 Objective Function

Each of the subgoals is associated with an individual objective function, Ji. The

overall cost function can be written as,

J = w 1 J1 +w 2 J2 +...+ wnJn

where Ji represents the cost function for the i-th subgoal, and wi is the corresponding

weight. The weights are normalized, i.e. 0 < wi 1, and Lji wi = 1. These wi's

represent the trade-offs between the subgoals, since they are sometimes competing.

The objective functions for the subgoals are formulated as follows:

For subgoal 1

Ji(i, j, k) = Z (U(x, y, k) - U(x, y, k + 1)) (4.5)
(xy)E Rij

J (i, j) is the reduction of uncertainty for UAV i to select node j at time k, and

Ri,, is the corresponding rectangular region associated with immediate gain as

shown in Fig. 4-4.

For subgoal 2

J2(i,j,k)= 3 U(x,y,k) (4.6)
(x,Y)Esi,a

J2 (i, j) is the potential reduction on the uncertainty within the sector region

Sij in Fig. 4-4.

For subgoal 3

J3(1, j, k) = (- (x, y)) P(x, y, k) (4.7)
(x,y)ERi,j

J3 (i,j) is the award for finding a target at (x, y, k). x(x, y) is a binary variable

that indicates whether a target is confirmed to be present at (x, y).

1 if P(x, y, k) ;> (4.8)
0 otherwise

78

where F is a pre-defined threshold value close to 1.

For subgoal 4

J4 (i, j, k) = (I - X(x, y))P(x, y, k) (4.9)
(x,y)cSu,

J4 (i, j) is the potential award of finding targets within the sector region Sij in

Fig. 4-4. This serves as a driving term to "pull" the UAVs to a region of high

likelihood of finding new targets.

For subgoal 5

J5(i, j, k) = Z f(di, 0j) (4.10)
j 10i

f(dj, 01j) is a non-decreasing function in dij and 01j, where d, and O0j are the

distance and angle between node j and UAV 1 respectively. Hence, by coopera-

tion, we attempt to increase the difference in position and heading angle of the

UAVs such that they would search different areas. As shown in Fig. 4-2, it is

more beneficial to have the UAVs search different area and to search areas that

have never been searched.

After normalization, the overall objective function is given by,

J(i, j, k) = w 1 J1 + w 2J2 + w 3 J3 + w 4J4 + w 5 J5 (4.11)

where Ji is the normalized objective function. Hence, the UAV selects a path that

maximizes J(i, j, k) as computed in Eq. 4.11 with given wi.

4.3.3 Simulation Results

This section presents a simulation showing the results of the above searching algo-

rithm. The scenario used for the simulation is shown in Fig. 4-5. The search region

is a 100 x 100 area, which is discretized into 1 x 1 cells. The search region is highly

uncertain initially, but there is some a priori information about the search area, as

shown by the probability map in Fig. 4-6. In particular, it is initially believed that

79

there is high probability of finding targets in some regions (the circular regions in

Fig. 4-5). There are 8 static targets placed in the search region and we consider a

search mission using 3 UAVs, which start at the bottom left corner in Fig. 4-5. The

results of the search algorithm are compared with a random search. In a random

search, the UAV randomly selects one of the m waypoints within the heading con-

straints at each time step with equal probability. The parameters for the simulations

are:

1. vAt=5

7r2. Omax =2

3. m= 3

4. N,= 3

5. Ne 1

6. (= 0.75

7. F = 0.85

8. w = [0.1 0.13 0.17 0.18 0.18]

The values of w 3 and w 4 are chosen to be relative high compared to w, and w 2 ,

which emphasizes finding all of the targets within the simulation time. The simula-

tions are run for 500 time steps. The outputs for one of the simulations are shown.

Fig. 4-7 shows the average uncertainty of the search region at each simulation step.

Fig. 4-8 shows the number of targets found over the entire simulation. Fig. 4-7

shows that the uncertainty level in the search region decreases as the searching mis-

sion proceeds. Hence, we are obtaining more and more information about the region.

Furthermore, the search algorithm results in a higher rate of decrease in uncertainty

than the random search. More specifically, the algorithm search has reduced the

uncertainty from 99.5% to only 7.5%, while the random search has reduced the un-

certainty to only 23%. The search algorithm was able to find all 8 targets in the

region, but the random search managed to find only 6 of them, as shown in Fig. 4-8.

Moreover, the search algorithm is able to find the targets at an earlier time, which is

beneficial because the value of finding the targets would probably decrease with time.

80

c
07

Q Targets
A Vehicles

08

02

03

0 10 20 30 40 50 60 70 80 90 100
x

100
80 80

60 60
40 40

20 20

y 0 0 x

Figure 4-6: Initial probability map.

81

100F I-

90

80 F

70

60 F

>, 501P

40 -

30 -

20-

10 -

0

0.7

0.65

0.6,

.2 0.55,
0.5,

0.45,

0.4,

0.35,

0.3,
100

I

- I - - - - - - - - - - - - - - - -I

Average Uncertainty

Algorithm Search
Random Search

-

-

--

-S

-S

0 50 100 150 200 250
Step number

300 350 400 450 500

Figure 4-7: Average uncertainty for algorithm search and random search.

Number of Targets Found

8

7

6

5

a
4

3

2

Algorithm Search
Random Search

- - - - - - ------ -

0 50 100 150 200 250
Step number

300 350 400 450 500

Figure 4-8: Number of targets found for algorithm search and random search.

S2

100

90

80

70

60

50

40

30

20

0-0
4 -
.C-Ca
(D

10

This section has discussed the algorithm for cooperative search mission. Similar

results can be also found in Refs. [32, 33]. The following section extends the work

to handle moving targets. As the targets are not static, if they are not under track,

we lose information about them and the uncertainty will increase. On the other

hand, there may be other high value targets in the region. So, the planner has to

compromise between the search and track action of the UAVs.

4.4 Moving Targets

In the UAV mission, targets, such as trucks and tanks can be moving around. When

the target leaves the field of view, the information about the target is lost. The

only way to maintain accurate information of the target is to keep tracking it as it

moves around, but this loses that resource for searching other regions to discover

new targets. This is a challenging problem in general, so we make a fundamental

assumption for the following discussion. In particular, we assume that the targets

will be moving in a reasonably predictable manner, for instance, moving in a straight

line with a bounded velocity range. This assumption is realistic for vehicles traveling

on a road, but less so for vehicles driving over difficult terrain. With this assumption,

this section describes the modeling of the uncertainty growth associated with the

expected movement of the target. Then, a new objective function associated with the

track action is appended to the objective function in Section 4.3.2.

4.4.1 Uncertainty Growth Associated with Target Movement

This section presents a model of the uncertainty growth as an untracked target moves

around. The growth of uncertainty happens around the expected position of the target

at each time step. As the uncertainty increases, it will eventually attract attention

from the UAV team. If the expected position of the target is consistent with the

actual position, then the UAV can re-acquire the target easily. However, this requires

that the target moves in a way that can be predicted. For example, if the UAV

83

finds a car on a road, we might expect the car to keep moving along the road for a

certain time span. Hence, given the velocity of the car, the position of the car can be

projected in time, and the UAV can come back later to track the car again.

By tracking the target at time k, we obtain a measure of the targets position (x, y),

velocity v, and heading 6. We assume that the sensor error is such that there is a

bounded variation in both velocity and heading measurements. Hence the knowledge

about the target during track is given by (x, y), [vi, v,] and [01, 6]. It is assumed that

the movement of the target is predictable, such that the motion at time k+T (T > 0)

is correlated with the motions for all time t < k + T while tracking. Hence, by using

a simple polynomial fitting technique, we can obtain a prediction in the velocity and

heading as a function of time. Moreover, as the target is being tracked for several

consecutive time steps, the expected variations in velocity and heading shrink. So,

the confidence in the prediction increases. As a summary, by tracking, we have,

TRACK v(k) = V(k) k +c(k) (4.12)
6(k) = 6(k) ± co(k)

where V(k) and 0(k) are the nominal predictions in velocity and heading respectively,

and ev(k) and eo(k) are the corresponding errors. Furthermore, the C,(k) and co(k)

are expected to decrease with time as the target is tracked.

Hence, given a measured position (X0 , yo) of the target at time k, we would expect

the target to be inside the shaded area in Fig. 4-9 at time k + 1 if we leave the target

untracked after time k. If Ev and co are small, the shaded area is sufficiently small

such that we would have a high probability of finding the target again in a short time.

We assign a 2-D probability distribution for this shaded area as shown in Fig. 4-10,

which transforms the velocity and heading estimations into the information state.

When Ev and Eo are small, the loss in information (or increase in uncertainty)

associated with the shaded area in Fig. 4-9 is small. Hence, it will be more beneficial

to have the UAV move to another region to search, instead of keeping track on the

target. This switches the track action into the search action. On the other hand,

81

VuA

\/

Figure 4-9: Predicted position of moving target.

while the target remains untracked, its position over time is estimated using (xo, yo),

f(k) and 6(k). However, e, and co will grow with time, so the shaded area increases

as well as the uncertainty associated with it. Hence, during not tracked (or search),

we have,

(z(k), '(k)) = f(xo, yo, I(k), 0(k))

SEARCH 4e(k) =g(Ev(k))

eo(k) = w(eo(k))

(4.13)

g(E,(k)) and w(Eo(k)) are linear functions in e, and Eo respectively. Hence E, and

co grow exponentially with k. As E, and EO grow with time, the uncertainty around

the target will eventually become so high that it attracts the attention of the UAVs,

according to the objective function given in Section 4.3.2. However, if the prediction

is bad, or the target remains not tracked for a long time, then the shaded area

becomes very large and the associated probability map becomes flat. Hence, the UAVs

essentially have no useful information about the target and have to start searching

for the target from scratch. Hence, the compromise between search and track is

important.

85

vIAt VAt vuAt 0 u

(a) vAt. (b) 0.

Figure 4-10: Probability distribution for target movement.

4.4.2 Objective Functions

The objective function in Section 4.3.2 is formulated as a multi-objective optimization

problem. Hence, we can easily add on a new objective function associated with

tracking to Eq. 4.11. For tracking, the objective function is formulated as,

J6 (i, j, k) = h(dj,) +5 (1 - bT(j, p)) (U(x, y, k) - U(x, y, k + 1)) (4.14)
PEST (i (x,y)ETij,p

where ST is the set of targets within the tracking range. h(djp) is a non-increasing

function in djp which is the distance between Waypoint j and Target p. Ti,, is the

shaded area for Target p shown in Fig. 4-9, and bT(j, p) is a binary variable indicating

whether the Waypoint j is within a tracking distance of Target p. bT(j, p) = 1 means

the UAV is expected to be able to keep tracking Target p if it travels to Waypoint j.

As the UAV keeps tracking the target (i.e., maintains a short distance to the

target), |Ti,jpl decreases, as well as U(x, y, k + 1). Hence, to maximize the objective

function, the best strategy would be for the UAV to keep the target under track until

it gains enough information to predict the behavior of the target in the future. At

that point it is sufficiently confident that it can leave the target to start searching

another region and be able to return later to find the target again. Now, the overall

86

objective function is,

J(i, j, k) = w 1 1 +w 2 J2 +w 3 J3 +w 4 J4 +w 5 5 +w 6J 6 (4.15)

where Ji are the normalized objective functions.

4.4.3 Simulation Results

A simulation is presented here to compare the search & track algorithm with the

random search & track. The scenario is shown in Fig. 4-11. The search region is

again a 100 x 100 area, discretized into 1 x 1 cells. 3 UAVs start from the bottom

left corner. The simulations are run for 1000 time steps. There are 6 static targets

and 3 moving targets in the region. The number and type of the targets are not

known to the UAVs. When a UAV finds a new target, after taking several steps

(number of steps is pre-defined prior to the simulation) of sensor data from tracking,

it will be able to classify the target as static or moving using the velocity estimates.

The moving targets move roughly in piece-wise linear paths. The nominal paths are

shown as dotted lines in Fig. 4-11. The targets move along its own path with bounded

random perturbations in (x, y). Prior to the start of the mission, a priori information

indicates that there is high probability of finding the target in the circular regions

(around Targets 7,8 and 9), as shown in Fig. 4-12. We assume that the targets are

moving with a certain speed from initial estimates. However, we do not have any

reliable information about its heading direction. Hence, the circular regions grow (as

well as the overall uncertainty) radially in all directions before Targets 7,8 and 9 are

found. The parameters for the simulations are given as below,

1. vAt=5

2. 0
max =

x 7.2

3. m= 3

4. N 3

5. Ne= 1

6. (= 0.75

87

7. F = 0.85

8. w = [0.12 0.15 0.13 0.17 0.23 0.2]

9. Number of tracking steps required to classify the type of the targets = 4

10. Tracking range = 10

11. vAt of moving targets ~ 1-3

The speed (or vAt) of the targets is lower than that of the UAVs so that they have

a capability to re-acquire the targets. The UAVs also are assumed to have a larger

maximum turning angle than in Section 4.3.3, so that they are more maneuverable,

which helps keep the targets within tracking range. There are special path planning

strategies for a UAV to track ground UAVs [36], but they are beyond the scope of

this thesis.

Fig. 4-13 shows the average uncertainty at each simulation step. In contrast to

Fig. 4-7 where the uncertainty keeps decreasing as the mission proceeds, the uncer-

tainty in Fig. 4-13 increases when the targets are left untracked. On the other hand,

when the UAVs re-acquire the target, there is a significant drop in uncertainty be-

cause the regions of suspicious presence of the targets are being "cleared up". If the

work of the UAVs is efficient, the uncertainty would converge to some steady-state

value. This reflects a good compromise between the search and the track action,

such that it maintains a certain level of knowledge for the environment. It can be

observed that the search & track algorithm is capable of converging the uncertainty

to a steady-state value of around 30%. However, there is no clear convergence of

uncertainty for the random search. The uncertainty oscillates with large amplitudes.

Moreover, the search & track algorithm is able to find all targets (Fig. 4-14), and

classify the static targets (Fig. 4-15) at an earlier stage of the mission.

Fig. 4-16 and Fig. 4-17 show the tracking history of the two algorithms. A "high"

signal indicates that the target is being tracked by any of the UAVs at that time

step. The uncertainty curve is also superimposed on the plot. It is shown that there

is a significant drop in uncertainty when any target gets tracked. The drop is more

significant when there is a large time gap between two consecutive track. The random

search in Fig. 4-17 shows this behavior. However, this is not desirable since there will

88

0 Static Targets
I Moving Targets
A Vehicles

05

06

[3-

02 - -

03

S 4-

90-

80-

70-

60-

50-

40-

30-

20-

10

0 10 20 30 40 50 60 70 80 90 100
x

800

40 60

20 40
20

V 0 0

Figure 4-12: Initial probability map.

89

100 1 - - - - - - - -

.. ..- - - - - - - .-

0

1..,

0.8s.

0.6

x
(0.4

0.2

0
100

- 26

be a large fluctuation in information. On the other hand, Fig. 4-16 shows that the

search & track algorithm has a more efficient tracking history and that the fluctuation

in information is small after step 300. Continuous tracking of the same target does not

produce much further decrease in uncertainty, however, it provides more information

for predicting the behavior of the targets. The search & track algorithm has made

use of this information and results in a more efficient tracking history.

Consider time steps 500-600 in Fig. 4-16, where the uncertainty has been kept

at a low level over a relatively long period of time. There is a high frequency of

tracked signal within this period. By looking at Fig. 4-14 it is clear that all targets

are found after around step 500. As a result, the overall uncertainty is quite low.

The high uncertainty only concentrates around the moving targets. Hence, the track

action dominates over the search action. This reflects the behavior in which, when

the UAVs believe they have searched over the entire region, the search action, or the

"finding target" action is no longer necessary. Hence, they restrict their motion to be

around the moving targets. The mission essentially becomes a "track-only" mission.

Fig. 4-18 shows the uncertainty plot with a similar scenario as before, but with

one additional moving target. Hence, the number of moving targets is larger than the

number of UAVs. It is shown that for the search & track algorithm, the uncertainty

still tends to converge to a steady state value. Since the number of moving targets is

now larger than the number of UAVs, the steady state value is larger (about 35%).

Moreover, the oscillation in uncertainty increases since more moving targets results in

more rapid growth of uncertainty. However, the search & track algorithm still shows

its strength over the random algorithm for maintaining the information at a fairly

constant level.

4.5 Conclusions

This chapter presents a multi-UAV search algorithm adopted from Refs. [32, 33, 34,

35]. The work is extended by incorporating the track action into the objective function

90

90.

80

70

Average Uncertainty

Algorithm Search
Random Search

all
161
I I
ItI

fill

F I

0 100 200 300 400 500
Step number

600 700 800 900 1000

Figure 4-13: Average uncertainty for algorithm search and random search.

in order to handle moving targets. The algorithm has shown higher efficiency over

the random algorithm given some predictable behavior of the targets. The simulation

result shows the behavior of the UAV for loitering around the moving targets when it

believes it is not likely to find new targets in the region (i.e. when the uncertainty is

low). Moreover, simulation results also show the success of the algorithm to handle

scenario when the number of moving targets is larger than the number of UAVs.

91

Ill i;
Ill Il

- I

I I,
I ,

L, ~':
III' gi

"I

tG)
0C

60

50

40

301-

Number of Targets Found

- Algorithm Search
- - Random Search

O
0 100 200 300 400 500

Step number

I I I I I

600 700 800 900 1000

Figure 4-14: Number of targets found for algorithm search and random search.
Number of Static Targets Classified

-- Algorithm Search
L Random Search

- - ------------

- -

100 200 300 400 500 600
Step number

700 800 900 1000

Figure 4-15: Number of static targets classified.

92

9

8

7

6

45

4

3

2

1

6

5

4

a)

43

2

1

0
0

, A

- --- -- -- --

'

Target 7

/t

1'1

V I

cml i I ml.. mmm * - mum in I *** ~
100 200 300 400 500 600

Step number

(a) Target 7.

Target 8

Kb
I/

100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500p n be 00Step number

(b) Target 8.

Target 9

H -

100

I' K

t/

A1

I~i& U I~&.M~~amImMk
200 300 400 S500 600

Step number
700

(c) Target 9.

Figure 4-16: Tracking history of algorithm search.

93

>w [P IN- P

0.8

0.6-

0.4-

0.2-

L-) I~V 'I

I -4

0.8

S0.6

0.4-

0.2 -

1

0.8

0.6

0.4

0.2

0
800 900 1000

I

t 700 goo Soo 1000

I - I +I .

700 800IU

/V

Target 7

cli u u-m m u m . .- un.
Step number

(a) Target 7.

Target 8

4 4.0

obiu .. ~m IiniI MiniI..
400 500 60 700

Step number

(b) Target 8.

Target 9

1/

100 200 300 400 500
300 900

100 200 300 400 500
Step number

(c) Target 9.

Figure 4-17: Tracking history of the random search approach.

94

-I1

0.8

0.6

0.4

0.2

I/~

I .1

0.8

0.6

0.4

I .

0.2 F

q/ Ait

/

1

0.8

0.6

0.4

0.2

/
j

0

l

| * I

1 100 200 300 IOU TLUo w0 1 LKA

I . 1 4

800 900 1000100 200 300

Boo 700 Boo 90 1000

Average Uncertainty
90-

-- Algorithm Search
Random Search

80

P

70-

Ii I gg

460-

,50-

5 0-1

40-

30-

201
0 100 200 300 400 500 600 700 800 900 1000

Step number

Figure 4-18: Average uncertainty for algorithm search and random search (4 moving

targets).

95

96

Chapter 5

Testbed Implementation and

Hardware Experiment

This chapter presents a rover testbed developed in the Aerospace Controls Lab. at

MIT. The testbed has been used to demonstrate real-time implementation of the

RH-MILP planning algorithm [25, 29]. Furthermore, a Graphic User Interface (GUI)

tool has been recently developed to facilitate the design of complex and highly dy-

namic scenario, which can be readily implemented in both simulation and hardware

experiment.

Section 5.1 introduces the rover testbed and the Indoor Positioning System (IPS),

as well as the GUI. Section 5.2 shows an experimental result for implementing the

ARSP algorithm on the rover testbed.

5.1 Hardware Testbed

This section introduces the hardware which consists of 8 rovers and an Indoor Posi-

tioning System. The rovers are constrained to move at constant speed with a mini-

mum turning radius. Hence, they can be used to simulate typical UAV characteristics

[13]. A precise Indoor Positioning System is used for localization of the rover. Fig. 5-1

97

shows the setup of the testbed with 2 rovers and 2 transmitters in the testing area.

Figure 5-1: The setup of entire rover testbed (rovers and IPS).

Figure 5-2: 4 of the 8 rovers.

98

5.1.1 Rovers

The rover testbed (Fig. 5-2) consists of a mixture of 8 Pioneer-2 and -3 power-steered

vehicles manufactured by ActivMedia Robotics. The rovers operate under the Ac-

tivMedia Robotics Operating Systems (AROS) software, supplemented by the Activ-

Media Robotics Interface for Applications (ARIA) software written in C++, which

interfaces with the robot controller and facilitate incorporating user-developed code

with the on board software [30]. An onboard Sony VAIO Pentium III (850MHz)

sits on the rover to generates low level control commands, which are converted into

PWM signals to drive the rover through serial communication. An IPS receiver is

also installed on the rover for localization purpose. A Kalman filter is implemented

to estimate the velocity and smooth the estimated position generated by the IPS.

5.1.2 Indoor Positioning System (IPS)

The IPS [31] is an ArcSecond 3D-i constellation metrology system which is comprised

of 4 transmitters (Fig. 5-3(a)) and 12 receivers (Fig. 5-3(b)). A minimum of 2 trans-

mitters are required to obtain position information, however, additional transmitters

can increase visibility and range. The transmitter generates two vertically fanned

infrared (IR) laser beam and a LED strobe. The fanned IR laser beam has an eleva-

tion angle of +300. Hence, any receivers coming too close to the transmitter cannot

receive the signal from the transmitter. The position information are in Cartesian

coordinate system (XYZ), with an uncertainty in measurement on the order of 0.4

mm (3o-). A PCE board connected to the receiver converts the IR beams and LED

strobe information into timing pulses. Since each transmitter has a unique rotation

speed, the period of the signals identify the transmitter. The position information are

then calculated by the Workbench software, using the horizontal and vertical angle

measurements. More detailed information is given in Ref. [29].

99

(a) The transmitter. (b) The receiver and PCE board

Figure 5-3: Indoor Positioning system (IPS).

5.1.3 Graphical User Interface (GUI)

A Graphical User Interface (GUI) software (Fig. 5-4) is developed under MATLAB

6.5. The GUI is a useful tool to facilitate the process of generating a large scale,

complex and highly dynamic scenario, both for simulation and hardware experiment.

Previously, the information of the scenario is written in MATLAB m-file. To

evaluate the setup of the scenario, we have to run the entire simulation every time

and make the changes by trial-and-error. This is a very time-consuming procedure

when the scenario is very complicated. Hence, a GUI that allows visualization of the

scenario and step-by-step systematic way of setup of the scenario is very important.

The current GUI has included all of the functionality required to set up a sce-

nario for the RH-MILP simulation and hardware-in-the-loop experiment. The user is

can define vehicles to be used and their capability, place targets and obstacles, add

timing constraints, and so on. Moreover, dynamic changes can be incorporated in

the middle of simulation through the GUI. For instance, the user can "kill" a vehicle,

100

~& 4~W4 ~ 2000

- a 00 00 55 2s00nn ja 0 030_u~ F0 45~ -4 j__ 3
2 o t A I 29D 12 3% anom .4 os|3

F { 1 2 1 1 '15 | 4 1 1= r 1500

0X F2W - 315law .20 A 03133
5 20 sT zo 15 120M-M3W

'0

500

VvI"' 1 ,

---- ------ --- -- --- -- --.. .. -.. -- -. -.. ... --- ----- --- - -- --..

-. .-..-.- -- -----

Jo450 100 50 e So ao 50 2072

14 130 -EVISIT 151,

Figure 5-4: GUI.

add new targets or obstacles, which would trigger re-assignment. Fig. 5-4 shows an

scenario with 8 vehicles, 26 targets, 5 obstacles and 4 SAMs, with timing constraints.

Moreover, a couple of "events" (or dynamic changes) are defined in the scenario using

the GUI as well. The GUI has greatly facilitated the procedure of setting up such a

complex scenario.

5.2 Experiment Result

This section presents the results of hardware experiment with the ARSP algorithm

(Chapter 3) implemented using the rover testbed described in the previous sections.

The scenario is shown in Fig. 5-5(a). The rover starts at the bottom left corner.

The highly constrained area consists of a number of obstacles and regions of different

level of uncertainty. The goal is located at the top of the figure. Loosely speaking,

the rover has three path options to reach the goal. The shortest path involves the

101

maximum risk since it goes through the region of high uncertainty (Fig. 5-5(b)). The

longest path involves the minimum risk since it passes through the region with low

uncertainty (Fig. 5-5(d)). The third path has a medium distance and uncertainty

compared with the other two choices (Fig. 5-5(c)).

By choosing different value for the parameter a, the path planner has a different

level of concern about the uncertainty in the path. In Fig. 5-5(b) - Fig. 5-5(d), a is

chosen to be 0, 0.1 and 0.5 respectively. The nominal solution (a = 0) just picks the

path of minimum distance (or minimum traveling time) and neglects any uncertainty

involved. As we would expect, as the value of a increases, the path planner puts more

concern on reducing the uncertainty in the path. Hence, for a = 0.5, the rover takes

the path of longest distance with minimum uncertainty.

This experiment demonstrates the successful implementation of the ARSP algo-

rithm into the RH-MILP framework and integration with the hardware testbed. The

behavior of the rover with different value of a is consistent with what we would expect.

5.3 Conclusions

This chapter describes the rover testbed system used in the Aerospace Controls Lab.,

MIT. Moreover, a GUI tool is also described which help to set up more complex and

more dynamic scenario for the purpose of testing with both simulation and hardware

experiment. An experiment result with the rover testbed demonstrated successful

implementation of the ARSP algorithm.

102

[waypoints
initial point

0

High Risk
2I

- ----- LowRisk 3

4 --- - -

[e edium Ri,

-4 -2 0 2 4 6 8 10 12

(a) The Scenario.

Position in X-Y Fam,, (16uck No.11)

- 0
-

Position in X-Y Frmme (tuck NO11)

-4 -2 0 2 4 6 6 10 12 -4 -2 0 2 4 6
X 1-] X [m]

(b) a = 0 (c) a= 0.1

Position in X-Y Fram (bruck No.1 1)

--. ...

--.

0 2 4
X [m)

(d) a =0.5

Figure 5-5: Hardware experiment with different values of a

103

14

12

10

8

6

4

2

0

-2

- I

- I

- 0

14

-A

14-

12-

10

a

6

-2-

- - - - - - - - I

<

14

12

10

-2

12

10

8

a

a 10 12 6 a 10 12

............
.............

...........

104

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis addresses the impact of environment dynamics and uncertainties on multi-

UAV planning problem. Several algorithms were developed to modify the RH-MILP

planning hierarchy to handle these changes and uncertainties. The thesis also demon-

strated simulation results and hardware implementation of these algorithms.

Chapter 2 discussed the impact of dynamic changes in the environment on the

computation time of RHTA. The re-computation of the cost map was identified as the

limiting factor of speeding up the algorithm. An incremental method of updating the

visibility graph during replan was presented. It successfully reduced the computation

time for replan by 50%, as shown in a specific simulation result.

Chapter 3 presented a robust shortest algorithm, ARSP, for handling arc uncer-

tainty. The algorithm is a modification of the Dijkstra's algorithm, so it is readily

implemented in the RH-MILP formulation. The key benefit of ARSP over other

robust algorithms [10, 11} is its low computational complexity. Moreover, a tuning

knob adds flexibility, enabling the designer to adjust the level of risk acceptance in

the planning.

Chapter 4 presented a planning algorithm which combines the search and track

105

actions of UAVs. The algorithm extends the work in Refs. [32, 33, 34, 35] by incor-

porating the track mission for moving targets. A team of UAVs search an unknown

region cooperatively and track the moving targets they have found. The algorithm

has successfully included different mission objectives. In the presence of moving tar-

gets, the algorithm is able to converge the uncertainty to a steady-state value, even

when there are more moving targets than UAVs.

Chapter 5 described the rover testbed developed in the Aerospace Controls Lab.,

MIT. Moreover, a GUI tool has been developed to facilitate creating complex and dy-

namic scenario for testing. An experiment result showed a successful implementation

of the ARSP algorithm.

6.2 Future Work

In reality, UAV mission is uncertain and dynamic. The work in this thesis presented

several algorithms to modify the RH-MILP planning hierarchy to handle uncertainty

and dynamics. There are further improvements possible for them.

For UAV problem, the ARSP primarily incorporates the uncertainty as a result

of variation in speed, hence traveling time. Other types of uncertainty can be ad-

dressed, for instance, the risk for flying over a SAM site. Here the risk addresses the

compromise between traveling time and probability of being destroyed by the SAM.

Furthermore, ambiguity in target and obstacle position leads to uncertainty in the

problem as well. The uncertainty in obstacle position further addresses a question in

robust constraints satisfaction.

The search & track algorithm serves as an information collecting stage for the UAV

planning. It is generally done by the reconnaissance vehicles. The information is then

sent to the strike vehicles for task assignment. Hence, further work will be required

to combine the planning of these two types of UAVs. Moreover, in the presence of

moving targets, the environment is rapidly changing. The incremental algorithm can

be included to reduce the computational load during replanning.

106

Bibliography

[1] "Unmanned Aerial Vehicles Roadmap", Office of the Secretary of Defense, Dec

2002.

[2] P. R. Chandler, M. Pachter, D. Swaroop, J. M. Fowler, J. K. Howlett, S. Ras-

mussen,C. Schumacher, K. Nygard, "Complexity in UAV Cooperative Control",

Proceedings of the American Control Conference, May 2002.

[3] D. Gillen, D. Jacques, "Cooperative Behavior Schemes for Improving the Effec-

tiveness of Autonomous Wide Area Search Munitions", Workshop on Cooperative

Control and Optimization, Dec, 2000.

[4] M. Pachter, P. Chandler, "Challengers of Autonomous Control", IEEE Control

Systems Magazine, April, 1998.

[5] D. Jacques, R. Leblanc, "Effectiveness Analysis for Wide Area Search Munition",

Proceedings of the AIAA Missile Science Conference, Nov 1998.

[6] D. Hristu, K. Morgansen, "Limited Communication Control", Systems & Control

Letters, 1999.

[7] J. Bellingham, Y. Kuwata, and J. How, "Stable Receding Horizon Trajectory

Control for Complex Environments", Proceedings of the AIAA Guidance, Navi-

gation, and Control Conference, August 2003.

[8] A. Richards, J. Bellingham, M. Tillerson, J. How, "Coordination and Control

of Multiple UAV's", Poceedings of the AIAA Guidance, Navigation and Control

Conference, Aug 2002.

107

[9] J. Bellingham, M. Tillerson, A. Richards, J. How, "Multi-Task Allocation and

Path Planning for Cooperating UAV's", Second Annual Conference on Cooper-

ative Control and Optimization, Nov 2001.

[10] D. Bertsimas, M. Sim, "Robust discrete optimization and network flows", Oper-

ations Research Letters, 2002.

[11] 0. E. Karasan, M. C. Pmar, H. Yaman, "The Robust Shortest Path Problem

with Interval Data", Operations Research Letters, 2003.

[12] P. Kouvelis, G. Yu, "Robust Discrete Optimization and Its Applications", Kluwer

Academic Publishers, 1996.

[131 Y. Kuwata, "Real-time Trajectory Design for Unmanned Aerial Vehicles using

Receding Horizon Control", Master's Thesis, Massachusetts Institute of Tech-

nology, June 2003.

[14] A. G. Richards, "Trajectory Optimization using Mixed-Integer Linear Program-

ming", Masters thesis, Massachusetts Institute of Technology, June 2002.

[15] M. Alighanbari, "Task Assignment Algorithms for Teams of UAVs in Dynamic

Environments" , Masters thesis, Massachusetts Institute of Technology, June

2004.

[16] A. Richards, T. Schouwenaars, J. How, and E. Feron, "Spacecraft Trajectory

Planning With Collision and Plume Avoidance Using Mixed-Integer Linear Pro-

gramming", Journal of Guidance, Control and Dynamics, vol. 25, pp. 755V764,

Aug 2002.

[17] A. Richards and J. P. How, "Aircraft Trajectory Planning With Collision Avoid-

ance Using Mixed Integer Linear Programming", Proceedings of the American

Control Conference, May 2002.

[18] V. V. Petrov, "Limits Theorems of Probability Theory: Independent Random

Variables", Oxford, 1995.

108

[19] R. J. Larsen, M. L. Marx, "An Introduction to Mathematical Statistics and Its

Applications", Prentice Hall, 1986.

[20] D. C. Montgomery, G. C. Runger, "Applied Statistics and Probability for Engi-

neers", John Wiley & Sons, Inc., 1999.

[21] D. P. Bertsekas, J. N. Tsitsiklis, "Introduction to Probability", Notes for Class

6.041/6.431, Massachusetts Institute of Technology, 2002.

[22] ILOG, ILOG CPLEX Users guide, 1999.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, "Introduction to Algo-

rithms", MIT Press, 2nd Ed., 2001.

[24] H. Markowitz. "Portfolio Selection", The Journal of Finance, (7) No. 1, pp.

77-91, 1952.

[25] E. King, M. Alighanbari, Y. Kuwata, and J. How, "Coordination and Control

Experiments on a Multi-vehicle Testbed", to appear at the IEEE American Con-

trol Conference, 2004.

[26] L. S. Buriol, M. G. C. Resende, M. Thorup, "Speeding Up Dynamic Shortest

Path Algorithms", AT&T Labs Research Technical Report TD-5RJ8B, 2003.

[27] S. Koenig and M. Likhachev, "Incremental A*, Advances in Neural Information

Processing Systems 14, 2001.

[28] S. Koenig, M. Likhachev and D. Furcy, "Lifelong Planning A*, Technical Report,

GIT-COGSCI-2002/2, College of Computing, Georgia Institute of Technology,

2001.

[29] L. F. Bertuccelli, "Robust Planning for Heterogeneous UAVs in Uncertain Envi-

ronments", Master's Thesis, Massachusetts Institute of Technology, 2004.

[30] ActivMedia Robotics, "Pioneer Operations Manual", January 2003.

http:/robots. activmedia. com

109

[31] ArcSecond, "Constellation 3D-i Error Budget and Specifications", June, 2002.

http://www. arcsecond. com

[32] M. M. Polycarpou, Y. Yang, K. M. Passino, "Cooperative Control of Distributed

Multi-Agent Systems", IEEE Control Systems Magazine, June, 2001.

[33] M. Flint, M. Polycarpou, E. Fernandez-Gaucherand, "Cooperative Path-

Planning for Autonomous Vehicles Using Dynamic Programming", IFA C, 2002.

[34] Y. Jin, A. A. Minai, M. M. Polycarpou, "Cooperative Real-time Search and Task

Allocation in UAV Teams", Proc. Conference on Decision and Control, 2003.

[35] Y. Yang, A. A. Minai, M. M. Polycarpou, "Decentralized Cooperative Search in

UAV's Using Opportunistic Learning", Proc. AIAA Guidance, Navigation and

Control Conference, 2002.

[36] J. Lee, R. Huang, A. Vaughn, X. Xiao, J. K. Hedrick, M. Zennaro, R. Sengupta,

"Strategies of Path-Planning for a UAV to Track a Ground Vehicle", AINS, 2003.

110

