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ABSTRACT

Autonomous mobility in rough terrain is becoming increasingly important for planetary
exploration rovers. Increased knowledge of local terrain properties is critical to ensure a
rover's safety, especially when driving on slopes or rough surfaces. This thesis presents
two methods for using on-board sensors to identify local terrain conditions.

The first method visually measures sinkage of a rover wheel into deformable terrain,
based on a single color or grayscale image from a camera with a view of the wheel-
terrain interface. Grayscale intensity is computed along the rim of the wheel, and the
wheel-terrain interface is identified as the location with maximum change in intensity.
The algorithm has been shown experimentally to give accurate results in identifying the
terrain characteristics under a wide range of conditions.

The second method classifies terrain based on vibrations induced in the rover structure by
rover-terrain interaction during driving. Vibrations are measured using an accelerometer
on the rover structure. The method uses a supervised learning approach to train a
classifier to recognize terrain based on representative vibration signals during an off-line
learning phase. Real-time terrain classification uses linear discriminant analysis in the
frequency domain to identify gross terrain classes such as sand, gravel, or clay. The
algorithm is experimentally validated on a laboratory testbed and on a rover in outdoor
conditions. Results demonstrate the robustness of the algorithm on both systems.

Thesis Supervisor: Steven Dubowsky

Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

Future planetary exploration missions will require rovers to act with increasing degrees of

autonomy. This is necessary for rovers to make the best use of their limited lifetimes,

since communication rates with Earth are low, and communication time lags make

remote operation infeasible for complex tasks.

Until recently, planetary rover control operations were largely open-loop. That is,

control operators were limited to commands such as "Drive the wheels forward 10 turns,"

which a rover would execute without feedback as to whether driving the wheels made the

rover move forward or just dig deeper into the soil. Images of the surroundings were then

sent back to Earth, and the rover waited idly until new instructions were received from

ground controllers.

On February 8 th, 2004, autonomous operation was enabled aboard the Mars

Exploration Rover Spirit, allowing it to autonomously plan a path to a distant target

destination (NASA/JPL, February 9, 2004). With this capability, rover "drivers" can tell

the rover, "Go to that spot." The rover then analyzes range data from its stereo cameras,

identifies possible obstacles, and plans a path to the target that avoids the obstacles. More
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importantly, it can stop, look around, and re-plan its path along the way, without needing

support from Earth.

This new capability relies on machine vision algorithms to identify geometric

obstacles, for example rocks or steep slopes, in order to avoid them. However geometric

obstacles are not the only threats to a rover's mobility. The terrain itself may be a hazard,

as a rover could become entrenched in loose sandy soil even with no rocks or slopes

present. When slopes are present, terrain conditions potentially play an even more

important role. Recent experiences of the Mars Exploration Rover mission have

illustrated this: significant wheel slip during an Opportunity rover traverse up a slope in

February delayed the study of a rocky outcrop for a full day (NASA/JPL, February 6,

2004). Plans to navigate Opportunity into Endurance Crater call for it to keep its wheels

on solid rock, rather than the fine drift material, to avoid becoming trapped (NASA/JPL,

June 8, 2004). Thus, to ensure rover safety and increase autonomy, there is a need for

algorithms for autonomous detection and identification of terrain conditions.

1.2 Purpose of this Thesis

The purpose of this thesis is to present two algorithms to provide planetary rovers with

important information about local terrain, specifically the depth of wheel sinkage and the

type of terrain the rover is traversing. This information is important to allow rovers to

safely and autonomously traverse potentially treacherous terrain.

The first algorithm measures rigid wheel sinkage into deformable terrain using a

single image containing a view of the wheel-terrain interface. The algorithm will be

presented, followed by experimental results from the Field and Space Robotics
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Laboratory (FSRL) Wheel-Terrain Interaction Testbed validating the algorithm's

measurement accuracy. Wheel sinkage can be used as a standalone estimator of mobility

in rough terrain. It can also be used as an input to estimate soil cohesion and internal

friction angle, or terrain traversability (lagnemma, 2001; Kang, 2003).

The second algorithm identifies the gross terrain class (e.g. "sand," "gravel,"

"clay") based on vibrations induced by rover-terrain interaction during a traverse. The

algorithm will be presented, followed by experimental results from the FSRL Wheel-

Terrain Interaction Testbed and the FSRL Technology Testbed Rover. These results will

demonstrate the algorithm's capacity to robustly and accurately identify real-world

terrain. This vibration-based terrain classification algorithm is intended to be used to

allow a rover to modify its behavior based on the type of terrain it is traversing. It can

also be used to identify submerged terrain features of scientific interest.

1.3 Background and Related Research

Research on rover-terrain interaction has been ongoing at the Field and Space Robotics

Laboratory for several years. This work has utilized Bekker's soil models (Bekker, 1956)

to allow for on-line identification of soil cohesion and internal friction angle during a

traverse (lagnemma, 2001). Other work in the laboratory has produced a reduced order

model to estimate the traversability of deformable terrain (Kang, 2003). Both of these

models rely on knowledge of wheel sinkage. The desire for a practical method for

estimating wheel sinkage led to the development of the visual wheel-sinkage

measurement algorithm.

Chapter 1. Introduction 
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Previous research into the characteristics of Mars soil has been accomplished

using various methods to estimate wheel sinkage. Soil experiments conducted using

Sojourner, the Pathfinder rover, required that the rover dig a trench with one wheel while

the others remained stationary (Moore et al, 1999). Suspension configuration sensors

were used to estimate the depth of the wheel relative to its initial position, but no absolute

measure of sinkage relative to the terrain surface was available.

In (Wilcox, 1994), a method was presented to estimate wheel sinkage and slip on-

line during a traverse. This approach used configuration sensors as well as a look-ahead

range sensor as inputs, and assumed that only the front wheels (of a six-wheeled rover)

compacted the soil. Due to this assumption it could not accommodate non-straight

driving paths in deformable terrain. In summary, to the author's knowledge there exists

no documented method for on-line measurement of wheel sinkage for an arbitrary path.

Much research has been performed in visual classification of terrain, an area

related to both of the algorithms presented in this thesis. Fundamental studies of visual

texture discrimination are presented in (Castano, Manduchi, & Fox, 2001), (Espinal,

Huntsberger, Jawerth, & Kubota, 1998), (Manduchi, 2000), and (Malik & Perona, 1990).

Most of the work has used Gabor filters to assign texture properties to a location, with

various models for terrain class texture distributions. A combined color, texture, and

range-based terrain classification algorithm is presented in (Bellutta, Manduchi, Matthies,

Owens, & Rankin, 2000), and another is presented in (Rasmussen, 2002). This research is

focused on higher-speed terrestrial vehicles, however, with the goal of keeping vehicles

on a semi-structured road surface. An overview of vision for robot navigation may be

found in (DeSouza & Kak, 2002).
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The development of vibration-based terrain classification was motivated by the

desire for an algorithm that could quickly identify a gross terrain class during a traverse.

It was hypothesized that an algorithm relying on the vibration induced in the rover

structure would be able to sense changes in terrain below a thin surface layer, for

example the thin dust coating found on Mars.

Research related to vibration recognition is limited in the mobile robotics field.

One robot with limited terrain identification capabilities is described in (Voyles, Larson,

Yesin, & Nelson, 2001). This is a two-legged robot which moves in a swimming motion,

and the signals used to identify the terrain are visual servoing errors. The presence of a

distinct gait led to the use of a Hidden Markov Model, which is inappropriate for wheeled

rovers.

Researchers at Carnegie Mellon have presented work on vibration-based

classification in (Wu, Siegel, & Khosla, 1999). Their work focused on identifying

passenger vehicles using a stationary microphone beside the road. The approach they

used to analyze the vibration signature is similar to the terrain classification algorithm

presented in Chapter 3.

Recently, independent research has been done at Florida State to classify terrain

based on the vertical acceleration data from an IMU on a mobile robot (Sadhukhan &

Moore, 2003; Sadhukhan, 2004). Their work is focused on classifying terrain for a high-

speed autonomous vehicle with pneumatic tires, for use in battlefield conditions. Their

vehicle speed is a factor of 10 higher than what might be expected for a planetary rover

(80 cm/s rather than 5-10 cm/s). Since vibration signal amplitudes for a given terrain

increase as the square of the vehicle speed, their work is based on classifying vibrations
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orders of magnitude larger than can be expected on a planetary rover. Frequency-domain

signal analysis is used in their work, similar to the approach presented in Chapter 3. Two

different algorithms are presented to perform the classification, one based on a

Probabilistic Neural Network (PNN) (Specht, 1988), and another based on a neural

network trained using error back-propagation (Rumelhart, Hinton, & Williams, 1986).

Their work concludes that the PNN method is superior. A comparison of their PNN

method to the linear discriminant analysis approach proposed in this thesis is presented in

Section 3.5.

Significant research in vibration-based classification has also been done for

speech recognition. Work in this field, for example (Lu, Jiang, & Zhang, 2001) and that

described in (Gerhard, 2000), is based on studying the time variation of features such as

the number of zero-crossings and the signal energy. Such emphasis on the time variation

is not possible for most signals other than speech.

1.4 Outline of this Thesis

This thesis has four chapters, plus appendices. This chapter, the introduction, summarizes

the motivation and purpose of the research and provides information on research related

to the work.

Chapter 2 describes an algorithm for visually measuring wheel sinkage into

deformable terrain. It explains the details of the algorithm and presents experimental

results to illustrate its effectiveness.

Chapter 3 describes a vibration-based terrain classification algorithm. It explains

the details of the classification algorithm and presents experimental results showing the
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effectiveness of the algorithm on two test platforms. It also compares this algorithm to

one developed independently by researchers at Florida State University.

Chapter 4 is the conclusion. It describes the contributions of this work and

presents potential avenues for continued research.

Background material, equipment descriptions, and detailed experimental results

are contained in the appendices. Appendix A describes the matrix formulation used in the

visual wheel sinkage measurement algorithm. It also describes the pinhole camera model

and how the parameters in the matrix-based model can be related to the CAHV model

(Yakimovsky & Cunningham, 1978).

Appendix B provides a foundation for understanding principal component

analysis, which is used in the vibration-based terrain classification algorithm. It also

presents a brief explanation of singular value decomposition as a useful method for

analyzing data.

Appendix C provides detailed information about the FSRL Wheel-Terrain

Interaction Testbed. This platform was used for validating both the visual wheel sinkage

measurement algorithm and the vibration-based terrain classification algorithm.

Appendix D describes the FSRL Technology Testbed Rover. This rover was used

for validating the vibration-based terrain classification algorithm.

Appendix E presents visual sinkage measurement results for a wide variety of

data sets.

Chapter]. Introduction 
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Chapter 2

Visual Measurement of Wheel Sinkage

2.1 Introduction

The first sensory method described in this thesis is visual measurement of mobile robot

wheel sinkage. This is intended to measure the depth a rigid wheel has sunk into

deformable terrain, based on an image containing a view of the wheel. This method can

also detect the case of a rigid wheel supported by rigid terrain or a rigid object such as a

rock.

Wheel sinkage is valuable information describing a robot's wheel-terrain

interaction state. For example, a rover traversing loose sand might experience substantial

wheel sinkage, leading to poor mobility due to increased motion resistance (see Figure

2.1). Conversely, a rover traversing firm clay might experience little wheel sinkage and

maintain high mobility. Previous research has shown that wheel sinkage is a key variable

in predicting terrain traversability (Iagnemma, Kang, Brooks, & Dubowsky, 2003; Kang,

2003). With knowledge of wheel sinkage, a mobile robot could modulate its wheel torque

to improve traction or revise its motion plan to avoid potentially hazardous terrain.

Chapter 2. Visual Measurement of Wheel Sinkage 19
Chapter 2. Visual Measurement of Wheel Sinkage 19



Figure 2.1. Example of rigid wheel sinkage in dry sand

Wheel sinkage is important to terrain identification and classification algorithms

(lagnemma et al, 2003; lagnemma, Shibly, & Dubowsky, 2002). These algorithms are

particularly useful in scientific studies of soil properties during planetary exploration

missions (Volpe, 2003).

The algorithm presented autonomously measures the wheel sinkage from a single

color or grayscale image containing a view of the wheel. This approach is intended for

use with underbelly-mounted cameras, such as those currently used for hazard detection

aboard the two MER rovers, Spirit and Opportunity. A sample image from an underbelly

hazard detection camera on Spirit is shown in Figure 2.2. Such an image would be an

appropriate input for this algorithm.

Chapter 2. Visual Measurement of Wheel Sinkage 20
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Figure 2.2. Sample MER Image (NASA/JPL, 2004)

The algorithm presented here is intended for vehicles with rigid wheels, such as

those found on recent generations of Mars rovers. It can also be applied to pneumatic

tires, if the tire inflation pressure is high compared to the terrain stiffness (Bekker, 1956).

Section 2.2 presents an overview of the algorithm, followed by a detailed

description in Section 2.3. Experimental results are presented in Section 2.4, showing the

performance of the algorithm using images captured using the FSRL Wheel-Terrain

Interaction Testbed. These tests show that the algorithm is accurate and robust to

variation in terrain and lighting conditions. Several potential modifications to the

algorithm to improve performance are presented in Sections 2.4.3 and 2.4.5.
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2.2 Algorithm Overview

The goal of the algorithm is to measure wheel sinkage in deformable terrain by analyzing

a single color or grayscale image containing the wheel-terrain interface. It is assumed that

a camera is mounted on the rover body, with a field of view containing the wheel-terrain

interface. Sinkage is defined as a pair of angles from the vertical ( vd,, ) termed the left

and right terrain interface angles, 9 L and 9 R (shown in Figure 2.3). This represents a

general description of wheel sinkage in uneven terrain. To determine these angles, only

an annular region along the wheel rim (between rri. and r,,h,,l) on the lower half-wheel

needs to be examined. This reduces computational requirements by eliminating much of

the scene.

w

L 0 rwheel

Rrim

Vdown

Figure 2.3. Rigid wheel sinking into deformable terrain with left (OL) and right (OR) terrain interface
angles shown

It is assumed that the location of the wheel center, w, relative to the camera is

known. This is a reasonable assumption since many mobile robots have rigid

suspensions. Robots with articulated suspensions (such as the MSL) are generally

instrumented with suspension configuration sensors. Note that visual methods for
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identifying the wheel center location could be implemented, however this would increase

computational complexity. The proposed approach can be applied to steerable wheels if

the steering angle is known.

It is also assumed that the wheel rim is visually distinguishable from the

surrounding terrain. This is usually true for rigid, metallic wheels or dark pneumatic tires

in natural terrains. Visual contrast can be enhanced by coloring the wheel rim a non soil-

like color such as blue. This pixel-level difference in appearance eliminates the need for

computationally-intensive texture analysis or stereo-based correlation. The algorithm

instead relies on a relatively simple analysis of color or grayscale intensity along the

wheel rim.

The algorithm consists of the following three steps: 1) wheel rim identification, 2)

pixel intensity computation, and 3) terrain interface identification. The following section

describes these steps.

2.3 Sinkage Measurement Algorithm

The algorithm employs a pinhole camera model, with the following coordinate frames

(see Figure 2.4):

* wheel frame: a non-rotating frame fixed at the wheel hub, with the x-y plane in the

plane of the wheel and the z-axis parallel to the wheel axle and pointing towards the

camera

" camera frame: a frame with its origin at the camera's focus point (the "pinhole" in

the camera model) and with its x and y axes aligned to the image axes

Chapter 2. Visual Measurement of Wheel Sinkage 23
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* translated wheel (TW) frame: a frame with its origin coincident with the origin of

the camera frame and with its axes aligned with those of the wheel frame

camera

Z
w

Xwheel

Figure 2.4. Illustration of camera and wheel frames

Matrices Tie, T and Twhe are defined as 4x 4 transformation matrices

that relate a position vector in one frame to a position vector in another. Here, a position

vector is represented as a 4x1 column vector. For example, an arbitrary point p is

represented by the position vector Pwheel = [Px,wheel Py,wheel Pz,wheel 1]T in the wheel

frame. The same point is represented in the camera frame by Pcamera. The transformation

matrix Tcwheel relates the two as

Pcamera = Pe reel whe (2.1)

See Appendix A for a detailed explanation of the matrix notation and projection using a

pinhole camera model.
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2.3.1 Wheel Rim Identification and Classification

The first step in the algorithm is to identify all points of interest in the image. Points of

interest are defined as points in the plane of the wheel rim which lie in lower half of the

annular region between the inner wheel rim diameter, r; , , and the outer wheel rim

diameter, rwheel (see Figure 2.3). For rimless wheels or tires, r,,h,,l corresponds to the

outer tire diameter, and rri is chosen to be slightly less than rwheel .

These circles in the plane of the wheel rim can be projected through the camera's

focus point as cones. The 4x4 matrices Ww (coinciding with the outer wheel rim) and

Rw (coinciding with the inner wheel rim) define these cones in the translated wheel

frame. (See Appendix A for details on how these matrices are computed.) Using this

notation p TW pT < 0 for any point p which will appear within the outer wheel rim

in the image. Note that conversion of the cones to the camera frame (and analogously to

the wheel frame) is accomplished as:

Wcamem = (TWeI I Wv TWanI . (2.2)

Points of interest in the annular area are divided into two regions, corresponding

to the left and right halves of the wheel (see Figure 2.5). This is done because terrain

entry generally occurs in one half of the wheel, and terrain exit occurs in the other. Thus

the algorithm will search for one terrain interface in each region. Left and right annular

regions are determined with respect to the vector vdow. The vector vdown is a unit vector

perpendicular to the pitch angle of the vehicle body (i.e. on flat terrain, Vd., is parallel

to the gravity vector).
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Left -Right-

Figure 2.5. Annulus sections and vao,,,

Each pixel in the image can be assigned as a member of one of three sets: 1)

points belonging to the lower left quadrant of the wheel annulus, Sleft ; 2) points

belonging to the lower right quadrant of the wheel annulus, S,gh, ; and 3) points that are

not in the region of interest on the wheel rim. Using T2'. defined in Appendix A, a

pixel with image coordinates (xpixe, yp) is mapped to a point p on the camera back

plane as:

F pixel

Pcamera = Ypxe. (2.3)

This point p on the camera back plane lies inside the annular region if it satisfies

the following inequality:

Pcamera T WcameraPcamera <0 < Pamera TRcmeraPcera. ( 2.4 )

If this inequality is satisfied, the point's location on the left or right side can be

found by first identifying its corresponding point on the wheel rim, q. This is done by
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projecting the point on the back plane through the focus point onto the plane of the wheel

rim, using the translated wheel reference frame:

(2.5)rTW camera
4wheel wheel projrr (T P am,

using proj(-) as defined in Appendix A.

The point lies in the right half of the annulus if (v do, x qwheel ) > 0, or in matrix

form:

Vdown

|0

1

0

0

0
1>0

0

1j

(2.6)

If (vdo wnx qwheel ) ; 0, the point is in the left half.

2.3.2 Pixel Intensity Computation

The average grayscale intensity is computed for every row of pixels in S,,ft and Srigh, (see

Figure 2.6). A row is a set of pixels aligned perpendicular to v don .We denote n rows as

subsets reft,k C Seft and rightk c Sfig,, where k e {1,.. .,n}. Note that n is a function of the

spatial resolution Ay and the wheel diameter. A pixel has membership in row k if the

following equation is satisfied:

L T
Vdown qwheel

Ay j (2.7)
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where Ay is an adjustable parameter corresponding to the smallest change in sinkage the

algorithm can detect. Note that decreasing Ay below the imaged pixel resolution of the

rim will not increase measurement accuracy.

rleft,k rright,k

Figure 2.6. Assignment of pixels to rows rief, and right,

For each row the summed intensity SI is computed as the sum of each individual

pixel's grayscale intensity I

SIef,,k = [I(p). (2.8)
PErlfT,k

SIrightk D(P) (2.9)
P rright,k

Two n xI arrays of summed row intensities are thus formed.

2.3.3 Terrain Interface Identification

A one-dimensional spatial filter is employed to smooth the intensity arrays and reduce the

effects of noise. Here the summed row intensities are weighted by the number of pixels in

a row (clefk and crigh, ), to minimize the influence of noise in low pixel-count rows.
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A Gaussian filter with variance m/2 is approximated by a binomial distribution

(2m)!

'" 2 2, (m+l)!(m-l)! (2.10)

where 1 e {-m,...,m}.

This filter is applied to the summed pixel intensities to produce a pair of filtered

intensity arrays FIgh, and F left-

m

FI W1 2.1 Siek+FI -"f k= (2.11)

ZWlmCleftk+l

m

SWlmCrightk+lFI - 1!=-m (.2

A representative plot of filtered intensity vs. angular position can be seen in

Figure 2.7. In this example a dark wheel is partially submerged in light terrain. The

terrain interface location is computed as the point of maximum change in intensity

between rows. This exploits the fact that the wheel rim is a different intensity from the

terrain.
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Figure 2.7. Sample plot of average pixel intensity vs. angular position

The row index with the maximum change in intensity is simply:

K left = arg max(FI,eftk - FIleftk). (2.13)
k

Kight = arg max(FIight,k- FIrig,,,k-) (2.14)
k

The interface angles * and 9* are then calculated from Kleft and Kight as

follows:

0* =Cos- (Kf,+0.5wr . (2.15)

0 * = cos-1 (K, ,+0.5) ( 2.16 )
wheel 

(

2.3.4 Detection of Rigid Terrain

The algorithm assumes the presence of a unique maximum change in intensity along the

wheel rim. In practice a unique maximum can nearly always be found at the wheel-terrain

interface. However, errors can occur when the wheel contacts a rigid patch of terrain or

rigid objects such as rocks. In those situations it is possible that none of the rim is
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occluded by terrain (see Figure 2.8). Sensor noise and lighting effects will then lead to

false maxima and thus erroneous sinkage values.

Figure 2.8. Wheel rigidly supported by rock

This problem is addressed by appending a small set of pixels to Sllft and Srih,,

forming rows with index n +1. These pixels are taken from an image region below the

center of the wheel rim, and are expected to be representative of the local terrain. If the

wheel is resting on a rigid terrain surface, the maximum change in intensity will occur

between rows n and n +1. This corresponds to a sinkage angle of zero. If the maximum

change in intensity occurs in the wheel rim region, the algorithm will operate normally

and return the appropriate sinkage angle.

2.4 Experimental Results

2.4.1 FSRL Wheel-Terrain Interaction Testbed

Experiments to validate the algorithm have been performed on the FSRL Wheel-Terrain

Interaction Testbed shown in Figure 2.9, and described in detail in Appendix C. The

testbed consists of a driven wheel mounted on an undriven vertical axis. Horizontal
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movement of the wheel is controlled, and the vertical load on the wheel can be changed.

A camera is mounted to the testbed so that it translates horizontally with the wheel, but

not vertically. This configuration emulates the motion of a camera attached to the body of

a rover, where a wheel may move within the field of view, but never leaves the frame.

The vertical position of the wheel relative to the camera is sensed with a potentiometer.

Feedback from this sensor is used to determine the transformations between the reference

frames, just as suspension configuration sensors would aboard a rover.

Vertical
Horizontal WG-Axis
Carriage

Em E Camera

Driven
Wheel

U,errain

90 cm

Figure 2.9. FSRL Wheel-Terrain Interaction Testbed with black wheel

Images from the testbed camera were collected under six different terrain and

lighting conditions to test the algorithm. Wheel slip and terrain unevenness conditions

were varied among these data sets, as were the color of the terrain and the presence or

absence of rocks. Lighting was varied from uniform, diffuse illumination to a point
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source which cast sharp shadows. Nineteen images were collected at two second intervals

for each set of conditions.

Figure 2.10 shows a representative image from each set of conditions. Image set 1

shows a wheel moving through flat bentonite clay under uniform lighting with a high slip

ratio. The bentonite clay is dry and granular with a light tan color. The high slip ratio

causes the wheel to dig itself into the clay, yielding a wide range of sinkages.

Set 2 shows a wheel moving with high slip ratio through flat JSC Mars-1 soil

simulant under uniform lighting (Allen et al, 1998). JSC Mars-1 soil simulant is a brown

mixture of weathered volcanic ash particles developed to simulate the color and

consistency of Martian soil. The dark color tests the algorithm's effectiveness in

situations with low contrast between the wheel and terrain.

Set 3 shows a wheel moving through flat bentonite clay under uniform lighting

with low slip and nearly constant sinkage. This simulates the conditions a rover might

experience when driving over homogeneous terrain.

Set 4 shows a wheel moving through uneven bentonite clay under uniform

lighting in the presence of rocks. Rocks occlude the wheel-terrain interface or appear as

additional potential interfaces. They may also support the wheel rigidly and thus cause

conditions with zero sinkage.

Set 5 shows a stationary, sunken wheel in uneven bentonite clay illuminated by a

moving point source. The moving light source simulates the effect of a rover moving

with respect to the sun or vice versa. For the first image in this set, the light source is far

to the right of the wheel. The light source is gradually moved from the right side to a

point above and behind the camera. It is then gradually moved down and to the left of the
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wheel, so that in the last image the light source is just above the surface of the terrain, far

to the left of the wheel.

Set 6 shows a wheel moving through uneven bentonite clay illuminated by a

stationary point source casting sharp shadows. This simulates the most difficult

conditions for the algorithm, which would occur when the sun is low in a clear sky.

zet 3: iientonte, iow stip, nat terrain Set 4: Bentonite with rocks, low slip, uneven terrain

Set 5: Bentonite, stationary wheel, moving point Set 6: Bentonite, low slip, stationary point light
source source

Figure 2.10. Sample wheel sinkage measurement images from image sets 1-6
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2.4.2 Passive Lighting Results

Representative results are shown in Figure 2.11 and Figure 2.12. (Full results are

included in Appendix E.) Figure 2.11 shows the actual and visually-measured sinkage as

a percentage of the wheel radius for image set 1. The x axis is the index of the image

being analyzed, corresponding to one of the 19 images collected in each image set. The y

axis shows the sinkage as a percentage of the wheel radius. The left and right plots show

the sinkage for the left and right sides of the wheel, respectively, for the same images. It

may be observed that the visually-measured sinkage matches the actual sinkage very

accurately.

Figure 2.12 shows similar results for image set 5. Since the wheel is stationary,

constant sinkage should result even though the image changes due to the moving light

source. The visually-measured sinkage is close to the actual sinkage for most of the

images. Sources of error are discussed later in this section.

Left Side Right Side

0 Actual 0 Actual80 X Measured 80 x Measured
CO Cn

O60- - 60
40 0 5666

0- i 10 10200 10 1 2

o a)

_mag Nubr mg Nme

cD20 9020 9

01 0
0 5 10 15 20 0 5 10 15 20

Image Number Image Number

Figure 2.11. Actual and visually-measured sinkages for image set 1
(Bentonite, high-slip, flat terrain, fully-lit)
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Figure 2.12. Actual and visually-measured sinkages for image set 5
(Bentonite, stationary wheel, moving light source)

15 20

Table 2.1 summarizes the results of sinkage angle measurement for all six image

sets. Error is computed as the difference between the visually-measured sinkage and the

actual sinkage, as a percentage of the wheel radius, for the left and right terrain interface

angles.

Left Side Angle Right Side Angle
RMS Error (%) RMS Error (%)

1 1.08 1.61
2 2.40 2.46
3 2.33 2.48
4 5.21 2.06
5 5.10 12.10
6 8.85 14.01

Table 2.1. Visual wheel sinkage measurement results

The algorithm detected wheel sinkage under a wide range of conditions with good

accuracy. Errors in set 4 were caused by rocks occluding the wheel-terrain interface.

While these small errors could be mitigated by a texture- or geometry-based rock
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detection algorithm, adding such an algorithm would increase the computational

requirements.

A more significant error source was uneven lighting. Sets 5 and 6 show

substantially higher RMS error than sets 1-4. Reflections off the wheel rim occasionally

caused misidentifications of the wheel-terrain interface. Other problems, such as those

observed in Figure 2.12, were the result of shadows falling on uneven terrain itself.

However, these errors tended to appear as easily-identifiable outliers (i.e. the errors

appeared as large anomalous changes in the visually-measured angle) that could be

mitigated by intelligent filtering.

2.4.3 Active Lighting Results

As described above, the algorithm performs poorly in situations with uneven lighting,

which might occur when the sun is low in the sky, casting sharp shadows on the wheel. A

method for addressing errors caused by uneven lighting is to employ active lighting. In

this approach, a light source aboard the rover is used to illuminate the wheel.

Figure 2.13 shows a sample image from a series in which a strobe was used to

illuminate the wheel-terrain interface (set 7). Here the wheel was driving through topsoil,

and the wheel rim was colored yellow to provide contrast. Representative results are

plotted in Figure 2.14. In shadowy conditions similar to sets 5 and 6, where the RMS

errors ranged from 5% to 14% of the wheel radius, tests using a strobe to illuminate the

wheel resulted in RMS errors less than 2% of the wheel radius.
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The tradeoff between the additional hardware requirements and the improved

measurement accuracy must be considered when choosing whether to implement this

algorithm with active lighting on a rover.

Figure 2.13. Sample image from set 7 (active lighting)
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Figure 2.14. Actual and visually-measured sinkages for image set 7 (active lighting)
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2.4.4 Computational Requirements

Computational requirements for this algorithm are minimal. A Matlab version of the

algorithm processed images at 3 Hz on a Pentium III 933MHz PC. An optimized

compiled implementation would be expected to run significantly faster. For image sets

and settings discussed here, approximately 90,000 floating point operations were required

per image. A standalone executable version of the code required 80 KB of memory for

the program, with an additional 60 KB of memory for execution. These low

computational requirements suggest that the algorithm is suitable for on-board

implementation on a planetary rover with limited computing power.

2.4.5 Color Images

Visual sinkage measurement using data from a color camera was also explored

experimentally. The wheel rim was colored blue, to aid differentiation between wheel and

terrain, and three sets of 19 images were collected. These image sets are shown in Figure

2.15. Set 8 shows a blue-rimmed wheel rolling through uneven bentonite with low slip.

This should be compared with the non-color image set 3. Set 9 shows a blue-rimmed

wheel moving with low slip through uneven terrain with a stationary point light source.

This is most similar to the non-color image set 6. Set 10 shows a blue-rimmed wheel

moving with low slip through uneven bentonite with rocks. Results from this image set

should be compared with non-color results from image set 4.

Techniques for exploiting color data included examining various distance metrics

in RGB space from the known wheel color to the terrain color. Results from one of the

color-based techniques are shown in Table 2.2.
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Set 8: Bentonite, low slip, uneven terrain, blue rim Set 9: Bentonite, low slip, uneven terrain, blue rim,
stationary point light source

Blue

Set 10: Bentonite with rocks, low slip, uneven
terrain, blue rim

Figure 2.15. Sample wheel sinkage measurement images from image sets 8-10 (blue rim)

Left Side Angle Right Side Angle
Image Set RMS Error (%) RMS Error (%)

8 3.30 2.61
9 26.3 29.45
10 3.60 2.51

Table 2.2. Visual wheel sinkage measurement results for color-based algorithm

As demonstrated by the results from image set 8, none of the color-based methods

have difficulty identifying the wheel-terrain interface in fully-lit conditions with uniform

terrain. Several of them appear to be more robust than the grayscale algorithm in

rejecting errors caused by intervening rocks. This is may be seen by comparing the color-

based results from image set 10 (3.6% and 2.5% RMS error) to the grayscale-based
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results from image set 4 (5.2% and 2.0% RMS error). However the color-based

techniques appear equally likely to return inaccurate results under low light conditions

with shadows. This is shown by the significantly higher RMS errors for image set 9 (26%

and 29%) as compared to those for the grayscale results for image set 6 (8.8% and 14%).

In general there appears to be little advantage to employing color-based visual

sinkage measurement over grayscale, when the nearly threefold increase in computation

time is considered.

2.5 Summary and Conclusions

A vision-based method for measuring the sinkage of a rover wheel in deformable terrain

has been presented. The method detects the location of the wheel-terrain interface by

finding the maximum change in intensity along the wheel rim. The method is

computationally efficient and uses a single color or grayscale vision sensor, making it

potentially suitable for systems with limited computational resources such as planetary

rovers. Experimental results have shown the method to be accurate and relatively robust

to lighting variations. It has also been shown that active lighting can be implemented to

further improve measurement accuracy.
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Chapter 3

Vibration-based Terrain Classification

3.1 Introduction

The second sensory method investigated in this thesis is vibration-based terrain

classification. This method is intended to identify gross terrain classes for local terrain

based on the vibrations induced in the rover structure during a traverse. For example, it

might identify the local terrain as being either "sand," "clay," or "gravel."

Vibration-based terrain classification uses an accelerometer attached to the rover

structure to sense vibrations caused by wheel-terrain interaction. Vibrations in the rover

structure are affected by the physical nature of the terrain. (For example, it is obvious that

driving a passenger car over a dirt road sounds different from driving over a loose sand or

gravel.) These vibration signals are recorded as the vehicle drives over the terrain, and the

algorithm returns the terrain class which induced the vibrations. As the vehicle drives, a

one-dimensional map of the terrain class along the driving path can be assembled on-line

in real time.

Terrain classification based on vibrations in the rover structure has several

advantages over the more traditional vision-based terrain classification addressed in

(Bellutta et al, 2000) and (Rasmussen, 2002). Its classification accuracy is independent of

the lighting conditions, a significant challenge to visual classification approaches. In
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addition, vibration-based terrain classification has potential to detect changes in terrain

buried beneath a shallow surface cover, for instance, the fine drift material on Mars or

sparse vegetation on Earth. This could be advantageous for improving the accuracy of

rover wheel-odometry position estimates as well as identifying locations of submerged

features for scientific study.

Research into vibration-based terrain classification was recently done at Florida

State University for application to high-speed autonomous vehicles on Earth (Sadhukhan

& Moore, 2003; Sadhukhan, 2004). Section 3.5 compares the FSU work to the algorithm

described below.

3.2 Algorithm Overview

The algorithm presented in this thesis takes a signal recognition approach to classifying

the terrain based on vibration signals. This is in contrast to an approach that uses a solid

mechanics or finite element model to analytically predict how the rover structure will

vibrate in response to interaction with terrain of a given type. The algorithm presented

here learns to recognize different terrain types based on example vibration data provided

during an a priori training phase. During training, the algorithm is provided with

vibration data sets labeled by terrain class. Once the algorithm has completed its training,

it stores the distilled results of the learning in on-board memory. Then it can quickly

classify vibration signals on-line as belonging to one terrain or another that it saw in

training. An overview schematic of the algorithm is shown in Figure 3.1.
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A Priori Training On-Line Classification

Vibration Data Vibration Data
a) 00

Waveform U) M Waveform
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Log Scaling Log Scaling

Principal Component __ Principal Component
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Class Distribution Probabilistic Distance
Analysis Measure

Class Assignment

Terrain Class

Figure 3.1. Overview flowchart for vibration-based terrain classification algorithm

In this approach, vibration signals are divided into short segments. These are then

converted from time-domain voltage signals into power spectral densities. Further

analysis is performed in the Fourier domain. Log scaling of the power spectral magnitude

is used to reduce the dominating effect of high-magnitude frequency components.

With the signals represented as a time series of Fourier spectra, training is a

matter of dividing a high-dimensional space (i.e. the Fourier coefficients) into regions

associated with an individual terrain class. To reduce the dimensionality of the

comparison, principal component analysis (discussed in Appendix B) is used. Here only

the first k components are retained. The value of k is set based on previous experiments

with the system. Note that principal components are computed during the training phase.

These same principal components are used during the classification phase.

Chapter 3. Vibration-based Terrain Classification 44



To define class boundaries in this principal component space, linear discriminant

analysis (Balakrishnama, 1998) is used as a pairwise classifier. In this approach, sub-

classifiers are created to classify terrain as being one of two possible terrains. Separate

sub-classifiers are used for each possible pair of terrains. For example, in the case of

sand, gravel, and clay, one classifier would distinguish gravel from sand, another would

distinguish gravel from clay, and a third would distinguish sand from clay. Linear

discriminant analysis considers both the distribution of samples within a single terrain

class and the separation between class means to compute an optimal vector along which

to compare samples. Classification of a test sample can be done by projecting its

principal component representation onto this vector. A number of simple classifiers are

available to address the resulting one-dimensional classification problem.

To accommodate classification of more than two terrains, a voting scheme is

used. Each pairwise classifier can cast a "vote" for one of the two terrains it

distinguishes, or remain "undecided." The winning terrain class is returned.

3.3 Terrain Classification Algorithm

The terrain classification algorithm may be broken into two separate phases, a priori

training and on-line classification. A priori training is computationally intensive and is

performed off-line. On-line classification is computationally efficient and is performed

during a rover traverse. These phases are described below.
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3.3.1 A Priori Training

In the a priori training phase, the algorithm learns to recognize vibration signatures from

various terrain types. These are chosen to correspond to terrains of interest that a robot

might encounter during field operations.

The first step in the a priori training is to collect vibration data from the terrains

to be classified. This data is in the form of a time series of the voltage output of the

accelerometer or contact microphone. Data should be collected for the terrain under a

range of conditions spanning those for which the classifier is expected to perform (for

example, under varying speeds, slip conditions, and loads).

This time series is broken into short segments. The duration of these segments

should be scaled to the physical scenario (e.g. wheel diameter, spatial variations). The

power spectral density (PSD) of each of these segments is then computed using Welch's

method (Welch, 1967), and a log-scaled version of this PSD is stored in a matrix. For

example, data for sand would be stored in a matrix Yand as:

Ysand,fmin,t=1 ... Ysand,fnin,t=n

Y,,,,= i -. :( 3.1 )

L Y sand ,finax,t=1 Y ' sand,fmax,t=n

In this representation, each column contains the log PSD components for a range of

frequencies for a given time segment. Each row contains the log PSD components for all

time segments corresponding to a given frequency. (Note that this matrix may be

visualized as a spectrogram like the one in Figure 3.2, simply by assigning a grayscale

intensity proportional to the value of each element. This plot is a convenient way to view

the time-varying nature of frequency components in a signal.)
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Figure 3.2. Sample spectrogram of terrain vibration data

A separate classifier is used to distinguish between each pair of terrains. For each

classifier, the following steps are performed to produce the discrimination vector and

terrain class statistics. For illustration, the pairwise classifier presented below is intended

to distinguish between gravel and sand.

Two matrices describing the training data in the pairwise classes are combined to

form a complete record of the training data: Y = [Yand Ygrave], Y e 9 "". The rows of

Y are then mean-adjusted to form the matrix Y:
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mean(yfmi)

mean( yma,)

Y = Y - y[1

I (3.2)

(3.3)... 1]

The mean of each row of the matrix Y is equal to zero. This matrix is used to analyze the

variation of data signals represented in the entire training data set.

Singular value decomposition is then used to separate Y into three matrices, Ua,

Sa' and Va:

Y " (U,S,Vf. (3.4)

Here, Ua is a unitary matrix with the principal components of Y as columns. Sa is a

diagonal matrix of singular values. Va is a unitary matrix with the principal components

of YT as columns. Further details regarding singular value decomposition and principal

component analysis can be found in Appendix B.

The matrix Ua is assumed to be composed of orthogonal signal and noise

subspaces. To represent the signal subspace, the first k columns of Ua (i.e. the first k

principal components of Y) are used, and are stored in the matrix Usignai. Similarly, the

upper-left k x k block of Sa represents the singular values associated with the signal

space, and will be referred to as Signal .Using too many principal components here can be

detrimental, especially with a limited amount of training data. This would train the

algorithm to recognize the noise in the training data to the detriment of its ability to

classify new data. In practice we have used k = 15, as it appears to give good signal
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representation without overfitting. In our experiments, the first 15 principal components

accounted for approximately 90% of the variance.

The two matrices Usignal and Ssignal can be considered to be a map from the full

frequency space (91') to the signal space ( 9qk). The signal space mappings of the

separate data sets Ysand and Ygravel are computed as:

Wsand =s.g Ul, TY ( 3.5)
WadSsignal - signal T sand(35

Wgravel =Ssignal 1Usignal
T Ygravel (3.6)

In this representation each column of Wsand and Wgravel corresponds to an

individual time segment. Each row of Wsand and Wgravel corresponds to a principal

component (i.e. a linear combination of frequency components). Taking each column as a

vector to a point in k-dimensional space, Wsand and Wgravel represent point clouds with

means Wsand and Wgravel respectively:

1

sand - Wsa (3.7)
n

Wgravel - gravel(3.8)
n

Figure 3.3 shows the point clouds plotted on the plane spanned by the second and third

principal components. (The coefficient of the first principal component is not plotted here

because it did not differ significantly between the two data sets.) Here it can be seen that

the point clouds from the two data sets lie in separate regions of the space.
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Figure 3.3. Gravel and sand training data plotted on the plane of the second and third principal
components

Writing the vectors Wa and W,,avei in terms of the principal components has

reduced the dimensionality of the space for comparing the two terrain types, but still

leaves a k-dimensional space in which to compare any new vibration signal with the

training data. Ideally, we would like to have a single scalar value associated with a signal,

which is fully able to capture the difference between the two terrains. Such a scalar value

is here referred to as the discrimination metric.

One candidate discrimination metric to classify an arbitrary vector w

(corresponding to a combination of principal components) would be the dot product of w

with the difference between the means of the training data sets, wsad -W .gae

d,,rposed(W) = (WSfl -W,,rave) -w ( 3.9 )

This would reduce the k-dimensional classification problem into a 1-dimensional

classification problem-classifying the projection of w onto the line between the means

Chptr .ibato-bae Terixlsiiain5
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of the training data sets. Figure 3.4 shows the line between the means and a histogram

illustrating the density of points projected on it. The 1-dimensional classification problem

can be reduced to dividing the projection of points from one class from the projection of

points from the other class.

30
0 Gravel Gravel

8 x Sand Sand
mean-mean

6
20

4 0

-

0
-5 0 5 -20 -10 0 10 20

Coeff of PC3 Projection on Mean-Mean Line
Figure 3.4. Projection of point clouds onto the line between the means

Projecting the points onto the line between the means rarely yields satisfactory

results, however, because the distributions of Wand and Wgrave may have very different

scales along different dimensions. This is the case in Figure 3.4. Here there is obviously a

line which separates the classes, but it is not perpendicular to the line between the means.

The solution is to scale the space so that the class distributions are more uniform across

all dimensions, making the situation appear as in Figure 3.5. Here, projecting onto the

line between the means successfully discriminates between the two classes.
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Figure 3.5. Projection onto the line between the means in a scaled space

To determine an appropriate scaling of the k-dimensional signal space, it is

important to examine the distribution of the points within a terrain class. This is

accomplished by performing a second singular value decomposition, this time on a

matrix W, formed by merging mean-adjusted matricesW and ,,avel:

rsand l sand - Wsand [

'W
4

gravei= vgrave --W gravel [i

W = [SsNand

--- 1] (3.10)

(3.11)

(3.12)

(3.13)

Wgravel]

Here we focus on VT. Each column of VJ is associated with a particular time segment;

each row corresponds to a combination of principal components (i.e. a linear combination

of frequency components, still within the signal space). More importantly, due to the

CO)

CO)

C5%

0

in

0.4-

0

0

-
0

SVD >U , ,Vb)
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unitary nature of VT, the norm of each row of VT is equal, meaning that the standard

deviations are equal for all of the dimensions. The scaling of the space which produced

VT is therefore appropriate for classifying data. Since V, can be written as

v = S- 1 U T W (3.14)

the transformation from the original signal space to this scaled signal space can be written

as Sb-JUbT

The discrimination metric d(w) is thus defined as a dot product in this scaled

signal space:

d(w) = (Sb-UbT (Wsand -Wgravel))-(Sb-Uw) (3.15)

for an arbitrary vector w in the signal space. Putting the discrimination metric in terms

of an arbitrary vector y in the frequency space (i.e. y is the log PSD of a data segment):

d(y) = (Sb-lUbT(Wsand - Wgrave)) - (Sb lUT(Sgnal1 UgnaTy)). ( 3.16)

Rewriting the dot product as a matrix multiplication yields

d(y) = (-Wsand -ISb- Ubsignal -1lU T y ( 3.17 )

of which all but the last multiplication may be precomputed without knowledge of the

vector to be classified. This precomputed row vector is labeled d, and is a compact

representation of the a priori training data for a pair of training classes:

d = (Wsand -Wgrave) T UbS-ISb-UbTsigna Ui. (3.18)

d will be referred to as the "discrimination vector." This is the linear combination of the

frequencies which best discriminates between the two terrain classes. Writing the

discrimination metric in terms of d gives
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d(y)=d y (3.19)

The last step in the a priori analysis is to compute the statistics of the

discrimination metrics for the training data. Row vectors of discrimination metrics are

computed as:

d(Ysand)= d Ysand (3.20)

d(Ygrave)= d Ygravel ( 3.21 )

The means and standard deviations of these metrics are computed as dsand Iand dgravel

and o'gravel *

The discrimination vector and the terrain class statistics are stored for use in the

on-line classification phase of the algorithm.

3.3.2 On-Line Classification

During a rover traverse, short segments of vibration sensor data are collected, of

the same duration as those used in the a priori training. For each segment the power

spectral density is computed, and the magnitude is log-scaled.

Using this log PSD, each pairwise classifier computes the discrimination metric

corresponding to the vibration to be classified. It then computes the Mahalanobis distance

(Mahalanobis, 1936) from this test metric to the terrain class means, md sand(y) and

mdgrave (Y):
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md,,d y)= d(y) - -sand (3.22)
Usand

mdgravel (y) = Id(y) - d .grave (3.23)
agravel

If the difference between the Mahalanobis distances is less than one (i.e.

mdsafd(y) - mdgrave1 (y) <1 ), the pairwise classifier labels the vibration as being

"undecided." Otherwise, the pairwise classifier labels the vibration as the terrain with the

smaller Mahalanobis distance.

A voting scheme merges the results of the various pairwise classifiers. In this

approach, each pairwise classifier may return the label of one of the terrains it

distinguishes, or it may return "undecided." If a pairwise classifier returns positive vote

for a terrain class, the alternative terrain class gets a negative vote. If the pairwise

classifier is undecided, both classes receive an undecided vote.

For a terrain to be positively identified, it must 1) receive more positive votes than

any other terrain class, 2) receive only positive and undecided votes, and 3) receive more

positive votes than undecided votes. These rules were chosen to provide a conservative

estimate that would not become drastically more or less conservative with an increased

number of classes. This is based on the belief that returning "unknown" is preferable to

returning the wrong terrain class. Figure 3.6 shows an example of the voting algorithm

positively identifying gravel. Figure 3.7 shows an example of the voting algorithm unable

to positively identify a terrain.
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. . Gravel/ Gravel/ Sand/
Pairwise Sand Clay Clay

Classifiers
(Gravel) (Gravel) (Unknown)

Vote Tally Gravel 2 0 0 2 Most'+'votes
Sand 0 1 1 0 More '+' than '?'
Clay 0 1 1 0 No'-'

Result Gravel!

Figure 3.6. Schematic of voting positively identifying gravel

Gravel/ Gravel/ Sand/
Pairwise Sand Clay Clay

Classifiers
(Unknown) (Gravel) (Unknown)

Vote Tally Gravel 1 1 0 Rl Mo
Sand 0 2 0 0 Mo
Clay 0 1 1 2 No

Result Unknown

Figure 3.7. Schematic of voting resulting in unknown terrain

3.4 Experimental Results

The algorithm presented above was developed based on data collected on the Field and

Space Robotics Laboratory (FSRL) Wheel-Terrain Interaction Testbed (Appendix C). It

was later validated using the FSRL Technology Testbed Rover, TORTOISE (Appendix

D). Detailed information about the experiments and results are presented in the following

sections.

st '+' votes
re '+' than '?
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3.4.1 FSRL Wheel-Terrain Interaction Testbed

The FSRL Wheel-Terrain Interaction Testbed, shown in Figure 3.8, consists of a driven

wheel mounted on an undriven vertical axis. The wheel-axis assembly is mounted on a

driven carriage, so the wheel forward velocity and angular velocity can be controlled

independently. These testbed experiments were conducted using a wheel from the FIDO

rover supplied by the Jet Propulsion Laboratory (Schenker et al, 2001). For these

experiments, three terrains were used: landscaping gravel, JSC Mars-1 Soil Simulant

(Allen et al, 1998), and washed beach sand. Landscaping gravel is a mixture of small

rounded pebbles ranging in size from 0.5 cm to 2 cm. JSC Mars-1 Soil Simulant is a

glassy volcanic ash, developed by JSC to represent the Martian soil as observed by

Viking Lander 1. It contains fine particles as well as solid clumps of particles ranging up

to 4 cm. Washed beach sand is a homogeneous fine-grained sand.

Figure 3.8. FSRL Wheel-Terrain Interaction Testbed with FIDO wheel
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In these experiments, wheel forward velocity was set as a constant value for each

trial. The speed ranged from 0.5 cm/s to 5 cm/s, values chosen to be similar to planned

rover missions. The wheel slip ratio, defined as one minus the ratio of the wheel forward

velocity to the wheel angular velocity, was varied from 0 to 0.5. The vertical load on the

terrain was varied as well, from 30 N to 50 N (including the weight of the wheel). Data

sets were collected in two ways: first, as the wheel traversed a single terrain over the

entire length of the testbed, and second, as the wheel traversed one terrain for the first

half of the testbed and a different terrain for the second half. Vibration signals were

sensed using a contact microphone mounted to the frame of the wheel (see Figure 3.9).

These signals were collected using a desktop computer with a sound card. Sixteen-bit

samples were collected at a frequency of 44.1 kHz.

Figure 3.9. Vibration sensor mounted on the FIDO wheel
in the FSRL Wheel-Terrain Interaction Testbed
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A single data set consisted of vibration data recorded over a full traverse of the

wheel across the 90-cm-long testbed, at a specified load, forward velocity, and angular

velocity. After each traverse, the wheel was returned to its original position at one end of

the testbed, and the terrain was restored to its initial flat and uncompressed state.

Once all data was collected, the algorithm was tuned using the leave-one-out

approach (Jaakolla & Haussler, 1999). Tuning consisted of selecting appropriate values

for 1) the range and spacing of frequency components for spectral representation, 2) the

number of principal components used to represent the signal space, and 3) the

discrimination thresholds for the pairwise classifiers. Additionally, linear and square-root

scaling of the power spectral density were compared to log scaling. A single combination

of tuned parameters will remain constant for all pairwise classifiers.

Once the parameters were tuned, the classification accuracy was estimated. First,

the vibration data was randomly divided into training data and test data sets. For each of

the three terrains, ten data sets were randomly chosen as test data. This represents

approximately 25% of the total data. The remaining data sets were chosen for training.

A three-terrain classifier was trained using the training data sets. Here, a 1-second

segment length was used. After the classifier was trained, it was used to classify the test

data sets. Classification results are presented in Table 3.1. Values shown are counts of 1-

second-long vibration segments. The same results are plotted in Figure 3.10.

Classification Result
Gravel Mars-i Sand Unknown Total

Gravel 302 2 0 8 312
Actual Mars-1 5 208 3 61 277
Terrain Sand 0 51 139 86 276

Table 3.1. Classification results for FSRL Wheel-Terrain Interaction Testbed vibration data
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Classification Results Classification Results Classification Results
for Gravel for Mars-1 for Sand

Gravel: 97% Gravel: 1.8% Gravel: 0%
Mars-1: 0.64% Mars-1: 75% Mars-1: 18%
Sand: 0% Sand: 1.1% Sand: 50%
Unknown: 2.6% Unknown: 22% = Unknown: 31%

Figure 3.10. Classification results for FSRL Wheel-Terrain Interaction Testbed vibration data

These results show the algorithm's ability to distinguish between multiple terrain

types. When attempting to identify gravel-induced vibrations, the algorithm misclassified

less than 1% of the test data as Mars-1 or sand. Similarly, when classifying Mars-1 and

sand vibration data, less than 1% was misclassified as gravel. This clearly demonstrates

the ability of the algorithm to identify terrains which induce obviously distinct vibrations.

The more challenging distinction was between Mars-1 and sand. These two

terrains are alike in the fact that they contain small particles which may damp out

vibrations in the wheel. Despite this similarity, less than 2% of the Mars-1 vibration data

was misidentified as being sand. The difficulty of this distinction reveals itself in the

number of sand data sets being misidentified as Mars-1. Nevertheless, these

misclassifications comprise less than 20% of the sand vibration data, while most of the

data is correctly classified.

Considering the inverse problem-having confidence that the actual terrain

matches the classification result-the algorithm performs quite well. Given equal prior

likelihoods of the above three terrains, the algorithm is more than 98% confident that
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terrain identified as gravel is actually gravel. Similarly, the algorithm is more than 97%

confident that terrain identified as sand is truly sand. The confidence for Mars-1 is almost

80%.

It should be noted that these results are based solely on 1-second samples of

vibration data, and incorporate no memory of prior classifications. An intelligent

algorithm on a rover might incorporate an estimate of the likelihood of a transition from

one terrain to another to improve overall classification results. Another way to improve

terrain classification accuracy would be to combine the vibration-based classification

with visual classification.

3.4.2 FSRL Technology Testbed Rover

In addition to being tuned and tested on the FSRL Wheel-Terrain Interaction Testbed, the

algorithm was also verified using data collected on the FSRL Technology Testbed Rover

to study the vibration response of a multi-wheeled rover in outdoor terrain. For these

experiments, three terrains were used: gravel, concrete, and grassy soil. The gravel used

was the same as was used in the FSRL Wheel-Terrain Interaction Testbed data. The

concrete was smooth and flat, and could be expected to induce vibration signals similar to

solid rock. The grassy soil was a thick cover of grass over packed topsoil. Figure 3.11

shows the rover during a traverse across all three terrains. For scale, the rover is 80 cm

long.
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Figure 3.11. FSRL Technology Testbed Rover completing three-terrain traverse

Vibration signals were sensed using a contact microphone mounted to the front

right leg of the rover, near the joint with the wheel axle, as seen in Figure 3.12. These

signals were collected using a laptop with a sound card. Sixteen-bit samples were

collected at a frequency of 44.1 kHz.

Figure 3.12. Vibration sensor mounted on FSRL Technology Testbed Rover
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A single data set consisted of vibration data from a 60-second traverse of the

rover across the terrain at a constant velocity. Velocity was varied from 1 cm/sec to 7

cm/sec. Data from both forward and reverse driving directions were collected. Six

training data sets were collected from each terrain. Once the training data sets were

collected, multi-terrain data sets were collected with the rover driving from gravel to

concrete to grassy soil in a single traverse, in forward and reverse. The six training data

sets from each terrain were used to train a three-terrain classifier. Due to the increased

spacing between the grousers on the rover wheels relative to the wheel on the testbed, the

segment length was increased to 3 seconds.

Table 3.2 shows the results for the classification of two test data sets for each

terrain. The values are counts of the 3-second-long vibration segments. The same results

are plotted in Figure 3.13.

Classification Result
Gravel Concrete Grass Unknown Total

Gravel 37 0 0 2 39
Traln Concrete 10 27 0 18 55

Grass 0 0 62 2 64

Table 3.2. Classification results for FSRL Technology Testbed Rover vibration data
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Classification Results Classification Results Classification Results
for Gravel for Concrete for Grass

Gravel: 95% Gravel: 18% Gravel: 0%
Concrete: 0% Concrete: 49% Concrete: 0%
Grass: 0% ME Grass: 0% Grass: 97%
Unknown: 5.1% = Unknown: 33% = Unknown: 3.1%

Figure 3.13. Classification results for FSRL Technology Testbed Rover vibration data

These results show the classification accuracy of the algorithm using vibration

data collected on the FSRL Technology Testbed Rover. As with the data from the wheel-

terrain testbed, the algorithm demonstrates excellent capability in distinguishing terrains

which induce qualitatively different vibrations. Here, none of the data collected on grassy

soil was misidentified as coming from gravel or concrete, and vice versa.

The most similar terrain types in these data sets were gravel and concrete. Both

are hard surfaces unlikely to damp vibrations. It is no surprise that distinguishing between

the two terrain types would be challenging. In the results presented above, however, none

of the gravel vibration data sets were misclassified as concrete. That a larger number of

the concrete data sets were misidentified as gravel-about 18%-illustrates the difficulty.

If the data is viewed as a measure of confidence in the classification result

accurately representing the actual terrain, the algorithm continues to perform well. Given

equal prior probabilities of each terrain type, there is an 84% confidence level that terrain

labeled as gravel is truly gravel. At least in the test data, no classification of vibration

data as concrete or grass was wrong, so the estimated confidence level is 100%.
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Figure 3.14 and Figure 3.16 show the classification results for distinct single

traverses of all three terrain types. These plots may be viewed as strip charts, plotting the

result of the terrain classifier against the time the classifier made the identification. In

Figure 3.14, it may be clearly observed that the rover is traveling from an area of gravel,

to an area of concrete, and then onto an area of grassy soil. This path is illustrated in

Figure 3.15. Figure 3.16 shows similar results for the opposite direction. In regions where

the classifier returns no terrain class, the rover may not be entirely on one terrain or

another. Even when the right front wheel is entirely on one terrain, vibrations from the

other wheels may be transmitted through the rover structure and be picked up by the

sensor. Thus, regions of ambiguity are to be expected between regions of consistent

terrain. These results clearly show the effectiveness of the algorithm in classifying

multiple terrains during a single traverse.

Grass - 'X X X X X -

Concrete - XXXXXXXX

Gravel - X X X X X X X -

Unclassified -

0 10 20 30 40 50 60 70 80 90
Time (sec)

Figure 3.14. Classification results for FSRL Technology Testbed Rover
traverse of gravel, concrete, and grassy soil at 4cm/s
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Figure 3.15. Path taken by rover in traverse of gravel, concrete, and grassy soil

Grass - X X X X

Concrete k

Gravel-

Unclassified I-

I ,
0 10

x x x x

20 30
Time (sec)

40 50 60

Figure 3.16. Classification results for FSRL Technology Testbed Rover
traverse of gravel, concrete, and grassy soil at 6cm/s
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3.5 Comparison to FSU Terrain Classification Algorithm

Researchers at Florida State University (FSU) recently presented an algorithm to classify

terrain based on vehicle vibrations (Sadhukhan & Moore, 2003; Sadhukhan, 2004). Their

work focuses on terrain classification for a high-speed vehicle with pneumatic tires for

use on unmanned ground vehicles for the military. They use a frequency-domain signal

analysis approach to classify terrain, similar to the algorithm presented in the preceding

sections. The two algorithms will be compared below. For convenience, the approach

presented as the PNN classifier in (Sadhukhan & Moore, 2003) and (Sadhukhan, 2004)

will be referred to as the FSU approach. The approach detailed in Section 3.3 will be

referred to as the MIT approach.

A brief summary of the FSU approach is as follows: vibration signals are gathered

with a rover driving over various types of terrain, using the vertical acceleration data

from an IMU on the rover as the signal. These vibration signals are segmented and then

processed with a Fast Fourier Transform (FFT) to get frequency-domain vibration

signatures. As with the MIT algorithm, the FSU algorithm compares new vibration

signatures to those observed during a training phase. Their algorithm uses a Probabilistic

Neural Network (PNN) approach (Specht, 1988) to estimate the posterior probability of a

vibration belonging to a class. A Bayesian classifier is used to assign classes based on the

prior and posterior probabilities.

Table 3.3 summarizes some of the differences between the FSU and MIT

algorithms. Because the FSU algorithm was designed to use the vertical acceleration data

from an IMU, the sampling frequency for the vibrations is only 100 Hz, compared to the

44.1 kHz used by the MIT algorithm. This higher sampling rate allows the segment
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length of the MIT algorithm to be much shorter, allowing for much quicker classification

of the terrain. When the difference in vehicle speeds is taken into account, the MIT

algorithm is able to assign terrain classes to terrain patches as short as 0.5 cm, enough to

allow wheel-terrain contact length to be the limiting factor. In contrast, the FSU

algorithm assigns classes to terrain patches 2 m or longer.

FSU Algorithm MIT Algorithm
Sampling Fregency 100 Hz 44.1 kHz

Segment Length 10 sec 1 sec / 3 sec
Vehicle Speed 20-80 cm/sec 0.5-7 cm/sec

Frequency FFT Log-scaled Welch PSD
Representation
Classification Probabilistic Neural Network Linear Discriminant Analysis

Table 3.3. Summary of differences between the Florida State University (FSU) and MIT classification
algorithms

Another effect of the difference in sampling rate and vehicle speed is the

characteristic length of the highest observable frequency. For the FSU algorithm,

undulations in the ground with a period of less than 0.4 cm will be aliased or filtered out.

For the MIT algorithm this period is more than 10000 times smaller, enough that the

limiting factor will be the sensitivity of the vibration sensor. This difference in scales is

appropriate due to the difference in purposes. The MIT algorithm is designed for a

planetary rover with rigid wheels and grousers, where high-frequency vibrations are

likely to be transmitted from the wheel-terrain interface to the vibration sensor. The FSU

algorithm, designed for an unmanned ground vehicle with pneumatic tires, is unlikely to

have high frequency vibrations get from the wheel-terrain interface to the IMU.

Additionally, an IMU positioned near the center of the vehicle body is unlikely to be able

to distinguish between vibration signals coming from each of the four wheels. For this

reason, changes in terrain are meaningless on a scale shorter than a single vehicle length.
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The difference in vehicle speeds also affects the magnitudes of the vibration

signals being sensed. The amplitude of the acceleration increases as the square of the

vehicle speed, so the vibration signals classified by the MIT algorithm are expected to be

at least an order of magnitude smaller than those classified by the FSU algorithm.

Internally, the algorithms are similar in the fact that they assign terrain classes

based on a frequency-domain representation of the signal, but that is the end of the

similarity. The FSU algorithm uses a single FFT to represent the signal, and does the

classification based only on frequencies in the 10-20 Hz range. The MIT algorithm uses a

Welch estimate of the power spectral density, effectively averaging the squared

magnitudes from 20 or more FFTs to reduce the effect of sensor noise. Additionally, the

vibration signature is the logarithm-scaled PSD, because vibration magnitudes change so

drastically in the range from 0 to 12 kHz.

The classification approaches also differ substantially. The FSU algorithm uses a

probabilistic neural network to estimate posterior probabilities for a vibration to belong to

a class. To accomplish this without spending significant amounts of time training, all of

the training data is stored in FFT form. The posterior probability is estimated on-line as

the sum of weighted Gaussian distributions centered at each training sample.

Because classification involves comparing each new vibration with every

vibration in the training data set, the on-line computational requirements and storage

become prohibitive when the training data set becomes large. For this reason, the FSU

algorithm was trained using only two vibration segments per terrain per speed, for a total

of 8 vibration signatures per terrain or 80 seconds worth of data per terrain. In contrast,

the MIT algorithm was trained using significantly more training data: 300 seconds worth
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of data per terrain for the FSRL Technology Testbed Rover experiments, or 100 vibration

signatures. The MIT algorithm requires a significant amount of time to process the

training data. After processing, however, the MIT algorithm only requires space for one

vibration signature for each pair of terrains. On-line computation is reduced to

performing a dot product with each of these vibration signatures.

The FSU algorithm was tested using a mobile robot on the same scale as the

FSRL Technology Testbed Rover, about 90 cm long. The rover was driven over a 3-

terrain testbed, with 10-meter-long sections of sand, packed dirt, and gravel. Between

twenty and forty 10-second vibration segments were collected for each terrain and speed.

These vibrations were used to estimate the classification accuracy of the algorithm.

The classification accuracy of the MIT algorithm compared very favorably with

that of the FSU algorithm. The FSU algorithm performed very well at high speeds, as can

be seen in Figure 3.17. Here the classification error rate is plotted against the vehicle

speed. The performance of the FSU algorithm deteriorated significantly as speeds

decreased, going from 5% error at 80 cm/sec to 25% error at 20 cm/sec. In contrast, the

MIT algorithm demonstrated an error rate of 7% and 6% on the FSRL Wheel Terrain

Testbed and the FSRL Technology Testbed Rover, at speeds of less than 10 cm/sec.
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Figure 3.17. Classification error rates for FSU and MIT algorithms

Since the FSU algorithm lacks the capability to return "unknown" in response to

vibrations which have similarities to multiple terrain classes, it may not be a fair

comparison to exclude "unknown" results from the error rate. Figure 3.18 shows the

classification error results with the MIT algorithm forced to return a class for the

"unknown" situations. Even with this handicap, the MIT algorithm exceeds the

performance the FSU algorithm achieves at 20 cm/sec and 40 cm/sec.
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Figure 3.18. Classification error rates for FSU and MIT algorithms,
forcing classification as one of known terrain classes

3.6 Summary and Conclusions

An algorithm capable of classifying terrain based on the vibrations in the rover structure

induced by wheel-terrain interaction has been presented. This algorithm uses linear

discriminant analysis to distinguish between each pair of terrain classes, and uses a voting

algorithm to arbitrate between pairwise classifiers. The terrain class is returned if the

algorithm can uniquely identify one; otherwise, an "unknown" result is returned.

Experimental results have been presented which show the classification accuracy

using vibration data from two different testing setups. Results from the FSRL Wheel-

Terrain Interaction Testbed showed the effectiveness of the algorithm in a closely-

controlled laboratory environment. Results from the FSRL Technology Testbed Rover

demonstrated the algorithm's capabilities in a more natural uncontrolled environment, on

a more realistic rover. Classification of three distinct terrain types was demonstrated on

each platform. Additionally, results from a multi-terrain data set from the FSRL
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Technology Testbed Rover illustrated the use of this algorithm in identifying multiple

terrain classes during a rover traverse.

This data clearly shows the potential for vibration-based classification of terrain

as an addition to current vision-based terrain classification approaches. Using only a low-

cost vibration sensor and a sound card that comes standard on most computers, vibration-

based terrain classification presents an inexpensive way to gain information about the

local terrain. The presented algorithm is an effective method for extracting terrain class

information from the vibration data. It may be used as a component of a meta-classifier,

combining data from multiple sensors along with a memory of past classification results,

or a similar approach may be used to define terrain class probabilities in a Bayesian

classifier. However it is used, vibration-based terrain classification shows great promise

in improving rover understanding of local terrain.
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Chapter 4

Conclusions and Suggestions for Future Work

4.1 Contributions of this Thesis

This thesis has presented two algorithms designed to analyze the interaction of a

planetary rover with its terrain to thereby derive knowledge about the local terrain

characteristics.

The first algorithm is an efficient method to measure sinkage of a rigid wheel in

deformable terrain, using a single image containing the wheel-terrain interface. This

algorithm has the potential to improve rover safety by detecting the possibility of a wheel

becoming so submerged that the rover is trapped. Information from this algorithm can

also be employed as an input to other algorithms, to assess the soil's traversability or

physical properties.

The second algorithm identifies gross terrain classes based on the vibrations

induced as the rover traverses the terrain. By providing a rapid classification of the local

terrain, this algorithm has the potential to improve rover wheel-odometry position

estimates by identifying terrain which is likely to induce high slip. It can also provide

information to a path-planning algorithm to improve prediction of how terrain might

affect slope traversability. Additionally, the ability of this algorithm to detect subsurface
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changes in the terrain may lead to the identification of scientifically interesting sites,

which otherwise the rover would miss altogether.

Together, these algorithms work to improve a rover's understanding of the local

terrain. The information gained will allow rovers to operate in more treacherous

conditions while avoiding threats to their safety and mobility which could jeopardize the

success of a mission. The improved confidence in the ability of a rover to maintain safety

in challenging conditions could allow mission controllers to send rovers to more

scientifically interesting sites such as ridges or ravines. Improved rover positioning

accuracy will enable scientists on Earth to collect data in less time, leading to increased

data return for the same duration mission.

4.2 Suggestions for Future Work

Future work related to the vibration-based terrain classification algorithm could include

studying approaches to modeling terrain class distributions in the frequency domain to

further improve classification accuracy. A rigorous Bayesian approach providing class-

conditional likelihoods would be very useful in combining vibration data with that of

other sensors. For implementation on a rover, an intelligent terrain class estimator should

be created which considers not only the most recent vibration data but also previous

classification results, basing its current state estimate on the likelihood of a transition

from one terrain to another.

Another promising avenue for future work would be to combine vision-based

terrain perception algorithms with the methods presented in this thesis. Prediction of

terrain characteristics within the field of view of the rover would be based on
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characteristics of terrain the rover has driven over in the past. This could produce a

hazard map for use in path-planning algorithms. It would also give scientists another way

to view the terrain surrounding a rover, allowing them to recognize and study

scientifically-relevant sites.
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Appendix A

Matrix-Based Optics Using Pinhole Camera Model

The pinhole camera model is an idealized camera model in which all rays of light are

assumed to travel in straight lines and pass through the focus point on their way from an

object to the sensor on the camera (Forsyth & Ponce, 2003). Figure A.1 shows an

illustration of such a system.

--- --- -Focus-
Point-

Objects Image
Plane

Figure A.1. Projection of objects onto an image plane with a pinhole camera model

The pinhole camera model is one of the simplest models of a camera. It has the

advantage of having a small number of parameters necessary to fully define the model,

while still modeling the effect of perspective.

Appendix A. Matrix-Based Optics Using Pinhole Camera Model 83



Matrix Notation

The matrix-based notation in this thesis is taken from the homogeneous representation of

points, vectors, and transformations in (Murray, Li, & Sastry, 1994). In this notation, a

fourth element is added to each point and vector, so that any affine transformation can be

represented by a single matrix multiplication.

Points

A point p located at (ps, p,, p,) is represented as

PX

p y=" A.1)

1

Thus, every point has a fourth element equal to 1.

Vectors

Vectors, the difference between two points, have a fourth element equal to 0. Thus, a

vector v , normally written as (vi, v,, vi), is represented as

vX

V =L'1. ( A.2)

Transformations

An affine transformation using this notation is a 4x 4 matrix, with the last row equal to

[0 0 0 1]. For instance, translating a point p dx units along the x axis, d, units
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along the y axis, and d units along the z axis would be accomplished by pre-multiplying

p by this matrix:

Si
0

0

0

0 0 d1

1 0 d

0 1 d

0 0 1

( A.3 )

A rotation by 450 around the y axis would be accomplished by pre-multiplying p by this

matrix:

cos(45*) 0 sin(450 ) 0

0 1 0 0

sin(450 ) 0 cos(450 ) 01
0 0 0 1

( A.4 )

This notation makes it very easy to convert representations of points from one

reference frame to another. Consider two reference frames: "camera" and "wheel." The

origin of the "wheel" reference frame can be written as a point in the camera frame:

Pcm... (Here the subscript "camera" means that the point is represented in terms of the

camera frame.) Similarly, the unit vectors along the x, y, and z axes of the wheel frame

can be written as vectors in the camera frame: ^cam ' cme , and i - The

transformation from the wheel frame to the camera frame can be written as

T wheelcamera kcamera ( A.5 )Y camera Z camera P camera].

Using this transformation, a point q, represented in the wheel reference frame by qwheel

can be written in terms of the camera reference frame as
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camera = a (A.6)

Projections of Points

In the pinhole camera model, each ray of light passes from an object through the focus

point and onto the plane of the sensor, typically a CCD. This is not an affine

transformation, so it cannot be accomplished through a simple matrix multiplication.

However affine transformations can be used to write a point in terms of a reference frame

in which calculating the projection is easy.

If we define the camera frame such that its origin is at the focus point, and its z-

axis is perpendicular to the plane of the sensor, F , as shown in Figure A.2, the projection

of any point becomes the simple matter of scaling it by its z-component. In other words,

for

P,

P camera = ( A.7)

the projection of Pcamera onto the plane F as qcamera is given by

rf~
)p,

qcamera = projF (Pcamera A.8
Pf )

1

where f, is the z value defining the location of F .
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q,=

Object Focus Image
Point Plane

Figure A.2. Projection of a point onto the image plane, with coordinates

Projection of points is also useful for the inverse problem of identifying which

point in space corresponds to a given pixel, if it is known which plane in space that point

lies on. The procedure for this projection is the same; a frame is defined with its origin as

the focus point and its z axis perpendicular to the plane. After a pixel has been written in

terms of that reference frame, the projection is done as in Equation (A.8), using the z-

coordinate of the plane as

Projections of Circles

In order to determine whether the projection of a point lies within a circle in space (for

instance, to find out whether a pixel corresponds to a point within the rim of a wheel), it

is advantageous to define a circle in terms of its projection through a pinhole onto a

plane. A straightforward method to accomplish this is to define a cone with its vertex at

the focus point, and a circular base coincident with the desired circle, as illustrated in

Figure A.3.
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Object Focus ImagePoint Plane

Figure A.3. Projection of a circle using a cone with vertex at the focus point

To review some basic equations, a circle is defined in two dimensions as the set of

all points (x, y) such that x 2 + y2 - r 2 =0. In matrix notation, this becomes

1 0 0 x

[x y 1 0 1 0 y = 0.

-0 0 -r2_ L1

(A.9)

Adding a third dimension gives the equation of a right cone, with its vertex at (0,0,0) and

radius r at z =1:

[x Y z 0
0

-0

0 0 0 x

1 0 0 y=010.
0 -r2 0 z

0 0 0 1

(A.10)

Thus, a 4 x 4 symmetric matrix C can be said to define a cone, such that pTC p = 0 for

any point p on the cone. Scaling r and switching reference frames yields a general

definition for a right cone, however this still requires the focus point (i.e. the vertex of the

cone) to lie along the axis of the circle.
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To extend this definition to encompass a general cone, it is necessary to allow for

a shear transformation. Consider a 4 x 4 matrix S defined as

1 0 c, 0

S 0 1 c 0

0 0 c 0

L0 0 0 1

( A.11 )

This transformation scales and shears the z axis such that (0,0,1) becomes (ct,c,,cz),

while keeping the origin the same and leaving the x and y axes unchanged. The inverse of

S does the reverse.

Combining the above, consider a reference frame with origin at the camera's

focus point and its z axis normal to the plane of the circle. Call this frame "TW." If a

point pW defined in this frame lies on the cone C sheared by S, the following equation

must be satisfied:

(S~1p TW)T C(SP )= 0 . ( A.12 )

Alternately, a matrix C, can be defined in the TW frame,

CTW = (SI1)TC S-1, ( A.13 )

such that the defining equation is

PTW Cnp, =0 . ( A.14 )

This is the equation defining a cone with a vertex at (0,0,0) , and a circular cross-section

or radius r in the x-y plane centered around the point (c.,,cy,),z). This equation can be

used to identify whether any point in the TW frame lies on, within, or outside the cone.
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Scaling to Pixel Coordinates

The above projections relate the position in space of an object being viewed with the

position in space of the sensor element recording the image. Since CCDs are regularly

spaced arrays of pixels, a matrix multiplication can be used to relate discrete pixel (x, y)

coordinates to spatial coordinates (p,, p,, p). This is most easily done in the camera

frame:

P[ scaleX 0 fX --
x

Ppcamera = 0 scaleY fy Y A.15
PZ 0 0 fi

1 0 0 1 -

Here, the camera x and y axes are assumed to be aligned with the horizontal and vertical

axes, respectively, of the sensor array. In the transformation matrix in Equation (A.15),

(f, fy, f,) is the position of the pixel (0,0) in the camera reference frame. The

magnitude of scaleX is the distance between the centers of adjacent pixels in the

horizontal direction; the magnitude of scaleY is the distance between the centers of

adjacent pixels in the vertical direction. Due to the mirroring effect of projection through

a point, scaleX is typically negative. The image is mirrored across the horizontal axis as

well, however convention calls for the pixel y value to increase from top to bottom, so

scaleY is typically positive. This 4x3 transformation matrix will be referred to as

pixe'

camera'

Conversely, a point on the plane of the sensor array (i.e. p, = f,) can be related

to its (x, y) pixel coordinates with the following transform:
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x

y

I_

1

scaleX

0

0

0 0 -
scaleX

1 f_
scaleY scaleY

0 0 1

Px

py

P]
(A.16)

This 3 x 4 transformation matrix will be referred to as Tp xe

Combining the above, the pixel coordinates (x, y) of a point q (represented by

q wheel in the wheel frame) are given as:

x

1

= Tpcaime prj e wheel .pixe poF camera wheel ( A.17 )

The defining equation of the ellipse formed by projecting a circle through a point

onto the sensor plane is:

[ 1Tixe ) T)(Tcamera Y TC 7 T eraTpi'mLX Y i~.cameraJ TWTW cmr

x

y = 0,

I

( A.18 )

assuming a transformation matrix T">era that converts a point in the camera reference

frame to a point in the TW frame.

Relationship Between CAHV Parameters and Matrix Parameters

Another common pinhole-based model is referred to as the CAHV model (Yakimovsky

& Cunningham, 1978), named for the four vectors parameterizing the model. The CAHV

model uses 3xl vector notation, preferring to use dot products rather than matrix

multiplication. The four vectors are defined as follows:

0 C is the position of the camera's focus point
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* A is a unit vector in the direction normal to the sensor plane

" H is the sum of a vector in the direction of the sensor + x direction and a vector in

the same direction as A

* V is the sum of a vector in the direction of the sensor + y direction and a vector in

the same direction as A

In this model, the pixel (x, y) coordinates of a point P in space can be found using the

following equations:

(P-C) -H
x = ( A.19 )

(P-C)-A

(P-C)-V
y= .PC* ( A.20 )(P -C) -A

Further information about the CAHV model, and its nonlinear extensions, CAHVOR and

CAHVORE, can be found in (Maimone, 2002). Note that these nonlinear extensions to

the CAHV model are used aboard JPL's planetary rovers.

Because the CAHV model uses the same geometric foundation of projection

through a point onto a plane as the matrix-based model presented above, the CAHV

parameters can be directly related to the parameters in the matrix-based model.

Specifically, since the reference frame for the CAHV model may not be identical any of

to those defined for the matrix-based model, it is useful to be able to convert between the

coordinate systems.

The first step in relating the two systems is to define conversions of positions of

points in space from the CAHV reference frame into the camera reference frame. (Note

that the camera reference frame is defined above as having its origin at the camera focus
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point and axes aligned with the sensor axes.) For this conversion, we first write basis

vectors of the camera frame in terms of the CAHV reference frame. These vectors are

" camera " camera -cmr
XcAMV , YcHV , and Zcainev, with the superscript indicating that they form the basis of the

camera frame, and the subscript indicating that they are written in terms of the CAHV

frame. By definition, Z"'ra = -A , as the camera axis is the negative z axis. To find

XCAHV and yCAHV , the component parallel to ZcaCme is removed, and the resulting vectors

are normalized:

c H -(H -A)A
Scv H -(H -A)A

"camera
YcAv SV-(V -A)A

V-(V.A)Al

( A.21 )

( A.22 )

Using these values, a transformation matrix from the camera frame into the CAHV frame

may be written as:

T camera

L 0

"camera "camera ci
0 0 1

( A.23 )

In this form a point in the camera frame (represented by the 4x1 vector Pcamer ) may be

written as a 4x 1 vector in the CAHV reference frame PcAV :

( A.24 )PcMAv = T"ZVPcamera.

Projection into pixel coordinates may be done using Equations (A.19) and (A.20). Note

that conversion of a point in the CAHV reference frame to the camera reference frame

may be done using Tcv = (T V )
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The reverse problem, identifying the point in space where the sensor pixel is

located, is not fully defined in the CAHV model. Therefore, an arbitrary value is chosen

for f, , the distance from the camera focus point to the sensor plane. Without going into

the derivation, the transformation may be written thus:

H T ~ 0 0 -
x

fVT 0 01C
PCz + y . (A.25)

A 0- 01

0 0 1 _0 0 _ 

The above presentation details a method which uses the CAHV reference frame as

the frame in which projections are performed. An alternative method is to use the CAHV

model for calibration, and then to extract the camera and lens parameters for use with the

matrix-based model. These parameters, used in Equations (A.15) and (A.16) may be

found as follows:

scaleX = H (A.26)

V camera

CAHV

scaleY = ( A.27 )

f, = -scaleX (H -A) (A.28)

f, = -scaleY (V -A). (A.29)

Tpam and Tix may therefore be written without regard for the CAHV frame. By

using Tc , any point in the CAHV reference frame may be written in terms of the

camera frame. Thus, if it is desired, all operations may be done without using the CAHV

frame.
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Appendix B

Principal Component Analysis and
Singular Value Decomposition

Principal component analysis is a method for reducing the dimensionality of high-

dimensional data (Jolliffe, 1986). Singular value decomposition is a mathematical tool for

studying the dimensionality of a matrix, and it is used as part of a principal component

analysis (Golub & Van Loan, 1996). This appendix will describe the concept of principal

component analysis, give the basics of how it is implemented, and then give some

mathematical details about singular value decomposition.

Principal Component Analysis

Principal component analysis is a method for analyzing high-dimensional data by

reducing its dimensionality. Since in general there is no way to reduce the number of

dimensions describing a set of data without losing information, the goal of principal

component analysis is to reduce the number of dimensions while maintaining as much of

the original information as possible. Here an example is presented that illustrates this

fundamental use of principal component analysis.

Suppose an experiment returns two values, x and y, for each trial. A sample plot

of the x and y values for 400 trials is shown in Figure B. 1.
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Figure B.1. Point cloud of (x, y) values

Now suppose that only one value can be stored for each of the trials. The

dimensionality of the data must be reduced from two to one, so instead of being

represented by a point anywhere on a plane, each trial must be represented by a point on a

line. Choosing to store only the x value would mean denying that any useful information

is stored in y, and vice versa. The obvious choice is to store a combination of x and y,

equivalent to projecting the points on the line shown in Figure B.2.

3

2.5

2-

1.5-

0.5- *

-0.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
x

Figure B.2. Point cloud of (x, y) data with first principal component
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Thus, knowing the slope and y-offset of the line and the single value for each

trial, the x and y values for each of the trials can be estimated as in Figure B.3. This is the

projection onto a line that loses the least information. The direction of the line (i.e. the

vector with which the dot product is taken in the projection) is the first principal

component of the data. In this case, the principal component is (0.86, 0.50), or 300 above

the horizontal.

3-

2.5 .l

2

1.5

1

0.5 .

0

-0.51

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
x

Figure B.3. Point cloud of (x, y) data projected onto the first principal component

There are a number of reasons why a person might want to reduce a large number

of dimensions to just one. If it were known a priori that the system had only one internal

property that was changing between trials, then the true values of x and y might lie on a

line as in Figure B.3, with some measurement noise causing the data to look like Figure

B. 1. In this case, projecting the data onto the line might be done to reduce the noise.

Another use of principal component analysis doesn't become apparent until three

or more values are recorded for each trial: the ability to visualize data. Suppose there is

an experiment which returns three values for each trial, x, y, and z, and that there are three
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different settings for the experiment: A, B, and C. The simulated results must be shown in

three plots, one for each pair of axes: x-y, x-z, and y-z (Figure B.4).
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Figure B.4. Point cloud of grouped (x, y, z) data

In this case, the first two principal components may be used to describe the data.

Thus, the data is projected from a space onto a plane. This plane can be viewed in terms

of the original axes with little noticeable change (Figure B.5), or from a point normal to

the plane, using the principal components as the new axes (Figure B.6). It is apparent that

viewing the data in terms of the principal components can be very useful in providing

insight into trends within the data.
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As the number of dimensions increases still further, it becomes impossible to even

attempt to present the initial data as a scatter plot. As an example, consider a system in

which a single trial consists of repeatedly sampling a value 100 times. Figure B.7

overlays 16 trials, plotted as time histories. Each point in time can be thought of as a

dimension. Already it is difficult to understand what is changing between data sets.

8

6-

4-

2

- 0 . . . . 1

Time (sec)

Figure B.7. Time histories of signals from 16 trials

However, plotting coefficients of the first two principal components of the data

against each other shows that it is anything but random (Figure B.8). Instead, it is clear

that two internal variables (one for each of the first two principal components) take on

four values each.
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Figure B.8. Signals from 16 trials plotted as coefficients of the first and second principal components

For these higher-dimensional data sets, the principal component vectors

themselves may also provide information about the system. Figure B.9 plots the first two

principal components of this data set. It may be observed that the data in Figure B.7 can

be written as linear combinations of two sinusoids, the principal components, with noise

superimposed.
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Figure B.9. First two principal components plotted as time histories

With these examples, it may be seen that principal component analysis has several

benefits. As seen in the first three figures, it can be used for reducing the dimensionality

of a data set, either for noise reduction or to summarize the data in terms of fewer

independent variables. It can be used as a visualization tool, as seen in the second three

figures, to choose an appropriate plane on which to view data. Or, as in the last three

figures, it can be used as an analysis tool, to gain insight into the variables underlying a

system and to see how they affect measured signals.

Implementing Principal Component Analysis

The utility of principal component analysis has been demonstrated, however the question

remains open as to what these principal components are in a mathematical sense and how

they can be implemented. This section will address those issues.

For principal components to be able to summarize the data while retaining as

much of the original information as possible, they must be combinations of values which
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tend to vary together in the original data set. The traditional method for observing these

tendencies in data is the covariance matrix.

The covariance matrix is a generalization of the variance to accommodate vectors

of data. For a data set X of n trials, each resulting in m values, the individual trials may

be written as

1i,j

x K j1,...n (B.1)

In this form, the mean p. can be computed:

I X(B.2)p, = E[x] = -Ix .
n j=1

Here, the original data set can be stored as X, and a zero-mean version may be stored as

X= --- xn] (B.3)

= [(x1 -pUX) ... (X, -px)]. ( B.4)

Using these, the covariance matrix can be written as

ni=1  nCov(X) = E[(x - px)(x - px) ]= -1 (xj -pu)(xj -,p.)T =X X .( B.5 )
n j., n

Thus, the covariance matrix Cov(X) is a mxm symmetric matrix indicating how likely

each of the m values is to vary with each of the others.

The principal components of X are the eigenvectors of Cov(X), the directions

along which the values vary together. They are sorted in order of decreasing eigenvalue,

such that the first principal component will be the eigenvector of Cov(X) with the largest
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eigenvalue, thus accounting for the largest fraction of the variation of X . It is convention

that each principal component is scaled to have unit magnitude.

These principal components may be written in matrix form as the m x m matrix

U:

U = [PC, PC,]. (B.6)

This matrix is unitary ( UT is the inverse of U ), so the principal component

representation of the data set X can be found as UTX.

Using Singular Value Decomposition

In the above presentation, the covariance matrix of X is computed and its eigenvectors

are found as the principal components of the data set. In practice, this is a

computationally intensive operation. Singular value decomposition is a method for

finding the principal components without explicitly computing the covariance matrix.

The computational method resulting in the singular value decomposition will not be

addressed here. Rather, the practical details of using singular value decomposition will be

presented.

Singular value decomposition is a method for dividing an mx n matrix A into

component matrices U, Y, and V, such that

A=U E V T . (B.7)

Here, U is a mx m unitary matrix, E is a mx n diagonal matrix whose elements

decrease from upper-left to lower-right, and V is a n x n unitary matrix.
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It can be easily shown that the columns of U are the eigenvectors of A AT, with

the diagonal elements of E ET as the corresponding eigenvalues. Similarly, the columns

of V are the eigenvectors of ATA , with the diagonal elements of ETE as the

corresponding eigenvalues. Thus, the principal component matrix U of a data set X can

be found by the singular value decomposition of the zero-mean data set X.

Additionally, the matrices E and V from the singular value decomposition of X

can be useful in principal component analysis. Their product, E VT, is a m x n matrix

giving the principal component coefficients for the zero-mean data set. Each column

corresponds to one of the n trials. The rows correspond to the principal components. So

the first element of the ith column will be the coefficient of the first principal component

for (xi -u).

Finally, the matrix V may be useful on its own. The first m rows of VT form a

representation of the data set X in terms of scaled versions of the principal components,

U E . The variance of each row of VT is equal, so this may be an appropriate way to

compare distributions which vary much more in one direction than in another.
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Appendix C

FSRL Wheel-Terrain Interaction Testbed

The FSRL Wheel-Terrain Interaction Testbed (Figure C. 1) is one of the experimental

platforms available in the Field and Space Robotics Laboratory. It was designed for the

purpose of studying the behavior of a rigid wheel driving in deformable terrain, and has

been used in the past to characterize terrain properties based on the wheel-terrain

interaction (Kang, 2003).

Potentiometer
Vertical Carriage

Horizonta 4* Axis Motor
Carria e

Camera

Wheel
Motor

Driven 15 cm

CTerrainl Whee

90 cm

30 cm

Figure C.1. FSRL Wheel-Terrain Interaction Testbed, with dimensions
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The testbed consists of a driven wheel mounted on an undriven vertical axis. The

wheel-axis assembly is mounted on a frame such that the wheel's forward velocity may

be controlled independent of its angular velocity. The testbed can be fitted with a number

of different wheel assemblies, containing both a motor and a wheel. Two in particular

were used in the experiments described in this thesis: a black plastic wheel assembly, and

a wheel assembly from the JPL FIDO rover (Schenker et al, 2001).

The black plastic wheel assembly, shown in Figure C.2 consists of a wheel, a

motor, and a torque sensor. The wheel is 4.8 cm wide and 20 cm in diameter. Sand is

bonded to the outside of the wheel to improve traction. The motor applying the torque to

the wheel is a 14.5-watt DC brush-type motor. It is mounted with a 246:1 transmission,

and has a tachometer to measure angular velocity. The maximum linear velocity of the

outside of the wheel is 15 cm/sec. Between the motor and the wheel, there is a rotating

torque sensor with working range of 7 N-m. A six-axis force/torque sensor is mounted

between this wheel assembly and the frame, such that all of the forces and torques

applied by the wheel on the terrain may be sensed. Table C.1 provides detailed

information about this wheel assembly including model numbers.
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Figure C.2. Black wheel on FSRL Wheel-Terrain Interaction Testbed

Black Plastic Wheel Assembly
Diameter 20 cm

Width 4.8 cm
Motor 14.5-watt DC brush-type Faulhaber 3557K006C

Transmission 246:1 Faulhaber 38/2
Sensors Tachometer

Torque Sensor Cooper LXT 962
Force-Torque Sensor JR3 UFS-3515A100

Table C.1. Specifications for black plastic wheel assembly

The wheel assembly from the JPL FIDO rover, shown in Figure C.3, is on loan

from the Jet Propulsion Laboratory. It consists of an aluminum wheel 20.3 cm in

diameter and 12.7 cm in width, with serrated grousers protruding 0.47 cm from the wheel

surface. This wheel is driven by a small Maxon DC motor, with a 1621:1 transmission

ratio. Its position is measured with a 16-count-per-turn encoder. The maximum linear
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velocity of the outside of the FIDO wheel is 5 cm/sec. The steering angle of the wheel is

also controllable, but this was not used in the experiments. Table C.2 summarizes this

information.

Figure C.3. FIDO Wheel on FSRL Wheel-Terrain Interaction Testbed

FIDO Wheel Assembly
Diameter 20.3 cm

Width 12.7 cm
Motor DC motor Maxon

Transmission 1621:1 Maxon
Sensor Encoder 16 count/turn

Table C.2. Specifications for FIDO wheel assembly

These wheel assemblies are mounted to the carriage, which allows them to move

freely in the vertical direction while constraining their forward and lateral movement.

The vertical position of the wheel is measured using a linear potentiometer mounted on

the carriage. The horizontal position of the carriage is controlled with an 8.5-watt brush-
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type DC motor, with an overall 1936:5 transmission ratio mounted to a 5 cm-diameter

pulley. The pulley position is sensed with a 2048-PPR encoder. The maximum carriage

forward velocity is 5 cm/sec. This information is summarized in Table C.3.

Carriage
Motor 8.5-watt DC brush-type Escap 23DT

Transmission 1936:5 overall
Pulley diameter 5 cm

Sensor Encoder 2048 PPR

Table C.3. FSRL Wheel-Terrain Interaction Testbed carriage drive specifications

The testbed also supports a camera mounted to the carriage to capture images of

the wheel as it drives. The camera is a color CCD camera with a varifocal 3.5mm-8.Omm

lens. It is mounted such that it moves horizontally with the wheel, but not vertically. This

positioning allows the wheel to move within the field of view, but not so far as to leave

the field of view. Camera and lens model numbers are presented in Table C.4.

Sensors
Camera 1/3" Color CCD Genwac GW-202B

Lens Varifocal 3.5mm-8.Omm Edmund Optics NT55-255

Table C.4. FSRL Wheel-Terrain Interaction Testbed camera specifications

All signals from the testbed are sent to an AMD K6-2 500MHz desktop computer

running Windows 2000. Video signals are sent to a frame grabber. All other signals are

sent to an 8-axis 12-bit I/O board. I/O board model numbers are presented in Table C.5.

Figure C.4 shows a schematic of the communications between the testbed and the

computer. The data sampling and control software was written specifically for this

testbed.

1/0 Boards
Analog/Digital I/O ServoToGo STGII-8

Frame Grabber Data Translation DT3120

Table C.5. FSRL Wheel-Terrain Interaction Testbed 1/0 boards
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Figure C.4. Communications schematic for FSRL Wheel-Terrain Interaction Testbed

Control signals from the computer to the testbed are output as voltage signals

using the same 8-axis I/O board. These voltage signals go to a custom power amplifier

card. The power amplifier card sends a high-power voltage signal (15 V, 3A max) to the

wheel motor, and a high-power PWM signal (25V, 3A max) to the carriage motor.
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The wheel rests in a bin of terrain 90 cm long by 30 cm wide by 15 cm deep. A

large number of terrains have been used, including washed beach sand, dry bentonite,

JSC Mars-I soil simulant, gravel, moist clay, and topsoil.
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Appendix D

FSRL Technology Testbed Rover

The FSRL Technology Testbed Rover (a.k.a. TORTOISE, for all-Terrain Outdoor Rover

Testbed fOr Integrated Sensing Experiments, see Figure D. 1) is one of the test platforms

available in the Field and Space Robotics Laboratory. It was specifically designed to

study terrain interaction and sensing issues affecting planetary rovers.

Figure D.1. FSRL Technology Testbed Rover
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TORTOISE is a four-wheeled rover with an actively reconfigurable suspension. It

is 80 cm long in its longest configuration, is 50 cm wide at its widest point, and has a

mass of 12.2 kg. The angles between the two legs on each side can be controlled

independently. The two shoulders are connected to the main body with a differential so

that one can rotate while the other remains stationary. The main body maintains an angle

midway between the two sides. For example, if the right pair of legs rotates 200 with

respect to the left pair, the main body will rotate 10'. The direction of the rover is

controlled using skid steering. Rover dimensions are summarized in Table D. 1.

Dimensions
Length 80 cm max
Width 50 cm
Mass 12.2 kg

Wheel Diameter 20 cm
Wheel Width 5.1 cm

Grouser Length 1.0 cm

Table D.1. FSRL Technology Testbed Rover dimensions

The four wheels are made of rigid aluminum tubing. Each wheel is 20 cm in

diameter and 5.1 cm wide, with 20 stainless steel grousers extending 1.0 cm from the

surface of the wheel. The wheels are powered by 12-watt DC brush-type motors with

246:1 planetary gearboxes. The shoulder joints are powered by 10.5-watt DC brush-type

motors, with 134:1 planetary gearboxes and a 20:1 worm/worm-gear pair. The motion of

all six motors is sensed using magnetic encoders. Motor and transmission details are

presented in Table D.2.
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Motors and Transmissions
Wheel Motor 12-watt DC brush-type Faulhaber 2342SO12CR

Wheel Transmission 246:1 Faulhaber 30/1 246:1
Shoulder Motor 10.5-watt DC brush-type Faulhaber 2842SO12C

Shoulder Transmission 268:1 overall Faulhaber 38/1 134:1
20:1 worm/worm gear

Table D.2. FSRL Technology Testbed Rover motors and transmissions

The front right wheel of the rover (on the left in Figure D. 1) is equipped with

several sensors to study the terrain it is traversing. A 5.6 N-rn torque sensor measures the

torque the motor is applying to the wheel (see Figure D.2). A contact microphone is

mounted to the leg of the rover near the front right wheel (see Figure D.3) for vibration

sensing. Additionally, a color CCD camera with a 3.5mm-8.0mm varifocal lens is

mounted to the rover body where it can maintain a view of the inside of the front right

wheel.

Figure D.2. Torque sensor mounted on TORTOISE
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Figure D.3. Vibration sensor mounted on TORTOISE

The rover is also outfitted with sensors to fully estimate its configuration. A two-

axis tilt sensor measures the pitch and roll of the rover body. The angles of the two

shoulder joints are measured with potentiometers, as is the angle between the right

shoulder and the body. Model numbers for all sensors are shown in Table D.3.

Sensors
Motor Rotation Magnetic encoders Faulhaber HEM2342S16

Torque 5.6 N-m Torque sensor Futek T5160
Vibration Contact microphone Signal Flex SF-20

Vision 1/3" CCD camera Genwac GW-202B
3.5mm-8.Omm Lens Edmund Optics NT55-255

Configuration 2-axis Tilt sensor Crossbow CXTA02
Potentiometers Vishay/Spectrol 65700103

Table D.3. FSRL Technology Testbed Rover sensors

All control and data sampling is done off-board. Motor power is sent to the rover

via a tether and sensory signals are returned the same way. Motor control is done using

an off-board PC104 computer. Sampling of wheel torque and rover configuration is done

by the same PC104 system. Image capture from the CCD camera and vibration signal

recording is done off-board on a tethered laptop computer. See Figure D.4 for a

schematic of the rover communications.
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Figure D.4. Rover communications schematic

The PC104 system is a Diamond Systems Prometheus LC, a ZFx86 processor

equivalent to a 486-100MHz. Analog signals, including signals from the tilt sensor, the

torque sensor, and the potentiometers, are sensed using an analog input card. Encoder

signals are received by a quadrature decoder card. Control signals for the motors are sent

as voltage outputs from an analog output card. These voltage signals are then translated
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into current signals by a custom power amplifier board, based on the National

Semiconductor LMD18245 full-bridge motor driver. The current signals are sent to the

motors via the tether.

The PC104 system is running Linux with an RTLinux microkernel, for real-time

control and data sampling. The control and sampling software was developed specifically

for this rover. User interaction with the PC104 system is done via a serial console

connection to the laptop computer.

The laptop computer, a PC running Windows XP, interacts with the PC104

system, the CCD camera, and the vibration sensor. It connects to the PC 104 system using

a null modem serial cable. It connects to the CCD camera with a USB video capture box.

The connection to the vibration sensor is via a standard audio cable which plugs into the

laptop's microphone port. Model information for the input/output boards is shown in

Table D.4.

1/0 Boards
PC 104 Analog Input, Digital I/O Diamond MM-AT

PC 104 Quadrature Decoder Microcomputer Systems MSI-P400
PC 104 Analog Output Ruby MM-4XT

USB Video Capture ProVideo PV321CE

Table D.4. FSRL Technology Testbed Rover I/O boards

The entire system is run using battery power, so it can be taken to remote

locations where electrical outlets are unavailable. Conveniently accessible locations

include terrains such as gravel, concrete, grass, sand, and a mixture of sand, silt and clay.
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Appendix E

Visual Wheel Sinkage Measurement Plots

Appendix . Visual Wheel Sinkage Measurement Plots 119



Image Set 1:
Bentonite, high slip, flat terrain

Figure E.1. Representative image from image set 1
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Figure E.2. Actual and visually-measured wheel sinkage, image set 1

Left Side Angle Right Side Angle
RMS Error (%) RMS Error (%)

1.08 1.61

Table E.1. Visual sinkage measurement RMS error, image set 1

Appendix E. Visual Wheel Sinkage Measurement Plots

0

01
0)

CD
(IO

60 -

40

20-

0 -
0

120



Image Set 2:
JSC Mars-], high slip, flat terrain

Figure E.3. Representative image from image set 2
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Figure E.4. Actual and visually-measured wheel sinkage, image set 2

Left Side Angle Right Side Angle
RMS Error (%) RMS Error (%)

2.40 2.46

Table E.2. Visual sinkage measurement RMS error, image set 2
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Image Set 3:
Bentonite, low slip, flat terrain

Figure E.5. Representative image from image set 3
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Figure E.6. Actual and visually-measured wheel sinkage, image set 3

Left Side Angle Right Side Angle
RMS Error (%) RMS Error (%)

2.33 2.48

Table E.3. Visual sinkage measurement RMS error, image set 3
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Image Set 4:
Bentonite with rocks, low slip, uneven terrain

Figure E.7. Representative image from image set 4
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Figure E.8. Actual and visually-measured wheel sinkage, image set 4

Left Side Angle Right Side Angle
RMS Error (%) RMS Error (%)

5.21 2.06

Table E.4. Visual sinkage measurement RMS error, image set 4
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Image Set 5:
Bentonite, stationary wheel, uneven terrain, moving point light source

Figure E.9. Representative image from image set 5
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Figure E.10. Actual and visually-measured wheel sinkage, image set 5

Left Side Angle Right Side Angle
RMS Error (%) RMS Error (%)

5.10 12.10

Table E.5. Visual sinkage measurement RMS error, image set 5
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Image Set 6:
Bentonite, low slip, uneven terrain, stationary point light source

Figure E.11. Representative image from image set 6
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Figure E.12. Actual and visually-measured wheel sinkage, image set 6

Left Side Angle Right Side Angle
RMS Error (%) RMS Error (%)

8.85 14.01

Table E.6. Visual sinkage measurement RMS error, image set 6
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Image Set 7:
Topsoil, low slip, flat terrain, active lighting

Figure E.13. Representative image from image set 7
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Figure E.14. Actual and visually-measured wheel sinkage, image set 7

Left Side Angle Right Side Angle
RMS Error (%) RMS Error (%)

0.86 1.96

Table E.7. Visual sinkage measurement RMS error, image set 7
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Image Set 8:
Color-based algorithm, bentonite, low slip, uneven terrain, blue rim

Figure E.15. Representative image from image set 8
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Figure E.16. Actual and visually-measured wheel sinkage, image set 8

Left Side Angle Right Side Angle
RMS Error (%) RMS Error (%)

3.30 2.61

Table E.8. Visual sinkage measurement RMS error, image set 8
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Image Set 9:
Color-based algorithm, bentonite, low slip, uneven terrain, blue rim,

stationary point light source

Figure E.17. Representative image from image set 9
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Figure E.18. Actual and visually-measured wheel sinkage, image set 9

Left Side Angle Right Side Angle
RMS Error (%) RMS Error (%)

26.3 29.45

Table E.9. Visual sinkage measurement RMS error, image set 9
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Image Set 10:
Color-based algorithm, bentonite with rocks, low slip, uneven terrain,

blue rim

Figure E.19. Representative image from image set 10
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Figure E.20. Actual and visually-measured wheel sinkage, image set 10

Left Side Angle Right Side Angle
RMS Error (%) RMS Error (%)

3.60 2.51

Table E.10. Visual sinkage measurement RMS error, image set 10
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