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ABSTRACT

The current Lincoln Laboratory (LL) MATLAB Feature-Aided-Tracker (FAT) software was
adjusted and appended to provide a robust ground-target radar tracking simulation tool. It
utilizes algorithms from the LL UAV Radar Moving Target Tracker (1991) and the LL FAT
Tracking Software (2002). One-dimensional High-Range-Resolution (HRR) radar signature
target profiles were used to assist in track-to-report data association through classification-aided
and signature-aided tracking (CAT and SAT) algorithms. Profiles were obtained from the
DARPA-sponsored Moving Target Feature Phenomenology (MTFP) program.

Performance Analysis of this simulation tool reinforced the hypothesis that target aspect angle
error estimation (state estimation) drives the performance of CAT, SAT, and Kinematic Tracking
(KT) algorithms. A decaying exponential relationship exists between the Kalman filter estimate
of target speed and expected aspect angle error. This relationship was exploited to optimize the
allocation of computational resources while enlarging the database aspect angle search in CAT to
improve performance. Vehicle classification accuracy is improved by 70% and data association
accuracy is improved by 12% in kinematically ambiguous situations such as when target
intersections occur. SAT was improved 3% using this knowledge.

Additionally, the target report HRR profile from each scan was used to generate an “On-The-
Fly” SAT HRR profile database. This algorithm tests the similarity between the current target
report HRR profile and the database HRR profiles. If there is sufficient resemblance, the report
HRR is added to the database; if not, the database is reset. This information can be employed to
provide up to a 9% performance improvement over the previous version of SAT in a best-case
scenario. In realistic situations, a 6% performance improvement is still attainable. If a large,
accurate database exists, near-perfect data association is achieved.

Overall, the above technique adjustments provide an improvement of 6.3% (13.6% in realistic,
GPS-generated scenarios) in data association accuracy over the initial FAT algorithm and a
corresponding 28.8% improvement over the results of the KT itself.

Thesis Supervisor: Derek Rowell
Title: Professor of Mechanical Engineering
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CHAPTER 1.
BACKGROUND/INTRODUCTION

Tracking, as it will be used below, can be defined as the estimation of the condition of a
moving target. It is correct to assume that ‘estimation of condition’ in this sense explains the
outcome of a number of statistical tests and decisions. Three specific types of ‘estimation’ apply
to the FAT algorithm discussed in this report:

1 State Estimation
2) Target Class/Identification Estimation
3) Radar Signature Estimation

The expected ‘condition’ of each target will depend upon this estimation, and a decision will
ultimately be made assigning all target reports to particular tracks, or histories.

The goal of any military target-tracking system is to use the accumulated target history to
estimate the future condition of a vehicle. This study will specifically focus on high value
ground vehicles. Today’s tracking systems are equipped with the capability to identify a target
as being under a specific track given sufficient evidence accrual. However, the ability to
simultaneously track and identify targets can be impeded by dense traffic, low target speeds,
unfavorable geometry, and noisy target detections. These situations lead to inevitable mistakes
made by simple kinematic tracking systems that depend solely on state (position and velocity)
estimation. It has recently been proven that the possibility exists to correct most of these
mistakes through incorporation of the capability to identify targets during kinematic tracking.
This presents the opportunity to ensure that evidence is amassed and associated with the correct
track history.

Currently, one-dimensional high-resolution target range profiles (HRR profiles) can be
used to aid and rectify this data association problem. Combined with a filtered kinematic
estimate, the expectation of target class and radar signature can be utilized to prevent future
“missasociations” (incorrect report-to-track history association). Figure 1 represents a situation
in which a target report is assigned to the wrong track using a kinematic tracker alone.

track track track track track track
history A history B history A history B history A histary B

/ /
fi

target 1 target 2 target 1 target 2 target 1 target 2

measured one possibility another possibility

Figure 1. Typical kinematic misassociation.
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This report will attempt to build upon past research and algorithm developments
involving Feature-Aided-Tracking at Lincoln Laboratory. Nguyen et al. [1] has completed
significant work to include FAT/Automatic-Target-Recognition (ATR) algorithm development
and signal processing used in the generation of 1-D HRR profiles. This FAT system is used as
an addition to a simple kinematic tracker developed by Keith Sisterson [2]. Additionally,
Nguyen has demonstrated that 2-D SAR and ISAR target imaging can also be exploited to vastly
improve ATR algorithms. The work below, however, will focus solely on FAT algorithm
performance evaluation and technique enhancement while solely utilizing the less-complex one-
dimensional HRR information. The form of signal processing used to develop the profiles is
kept constant in an attempt to better control and understand the trends and performance of the
algorithm itself.

1.1 High-Level-Description of LL. FAT Application
Figure 2 gives a general overview of the functional operations within the Lincoln Lab
Feature-Aided-Tracker Software.

, e Target ID
Detections o :
> Kinematic e Position, velocity,
Radar Tracker - p Aspect Angle
Data T g?ﬁ :CC’“’ J sTrack-Report
— b ugmente SSee L
Processing Track —P» Association
HRR profile ::
HRR Aspect Angle
—P»| Processing Track Priors SAT Score
HRR HRR Track/Report Signature
Classification (CAT) Comparison

(SAT)

FAT ™y

Figure 2. Overview of FAT

As shown above, there are three main components within this tracking system: the
Kinematic Tracker (KT), CAT, and SAT. KT uses HRR-augmented GMTI target detections
as its input. A single detection consists of the target range, azimuth, Doppler (range rate),
and HRR profile [simply referred to as HRR below] in addition to clutter Doppler and the
position and velocity of the radar platform. The HRR and associated track-report aspect
angle is sent to CAT where the target identification is hypothesized and an adjoining
confidence score is generated.” The HRR and aspect angle is also sent to SAT where
another confidence score is generated to represent the probability that the current report
HRR and the previous track history HRR originate from the same target. This information

’ Target aspect angle is the angle between the heading of the target and the line of sight from the radar to the target

12



from CAT and SAT is fused to provide a final “best estimate” of a track-report pairs and the
track history is thus updated.

1.2 Data Selection/Generation

1.2.1 HRR profiles

High Range Resolution target radar signatures form the foundation of current ground-
moving-target classification algorithms. There were few options in obtaining HRR profile data
to be used in this analysis. The continuing issues remain availability, releasability, usability, and
completeness of the data. Three options existed if real target radar data was to be obtained, two
of which are unclassified (MSTAR and MTFP). Usability refers to the ease in which fully signal
processed HRR target data can be uploaded and used by the MATLAB FAT application. Signal
processing software was developed by Nguyen [1] to transform stationary target SAR images
from the aforementioned data sets into Range profile data (HRR). Additional limitations include
the number of available targets and, more importantly, aspect angle coverage; 360 degrees of
data is desired.

1.2.1.1 MSTAR

The MSTAR HRR profiles used in this study were formed from SAR imagery provided
to Lincoln Laboratory by Wright Laboratories, Wright-Patterson Air Force Base, Dayton, OH.
This data was collected in 1995 and 1996 by the Sandia National Laboratory X-band (9.6 GHz)
HH-polarization SAR sensor in support of the DARPA-sponsored MSTAR program [1].

The data set received via Group 104 contained SAR images of 12 military vehicles
images in spotlight mode at 15 and 17 degree depression angles over 360 degrees of aspect
angle. Images of three variants each of the BMP2 armored personnel carrier, the M2 Bradley
fighting vehicle, and the T72 Russian tank. This data set also included images of the M109 self-
propelled howitzer, the BTR60 and BTR 70 armored personnel carriers, the HMMWYV
(Humvee), M1 tank, M110 gun, M113 transport vehicle, M35 transport truck, and the M548
transport vehicle. Figure 3 shows ground photographs for some of these vehicles.

i s e ] s : o FTT R

M548

M35 HMMWV
Figure 3. Photographs of vehicles used in study

1.2.1.2 MTFP (Moving Target Feature Phenomenology)

Veridian Engineering of Dayton, OH, provided the MTFP data used to form HRR Range
profiles. It was collected in 2000 by the Data Collection Sensor (DCS) X-band (9.6 GHz) HH
and VV-polarization sensor in support of the DARPA-sponsored MTFP program. This data
contains SAR images of nine military vehicles that have been imaged in spotlight HH and VV
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polarization mode at 17, 10, and 8 degree depression angles. Unfortunately, the data that was
received did not have 360-degree aspect angle coverage. Most targets had between 180 and 300
degrees of aspect angle coverage, presenting the FAT simulator with a difficult situation. Only
two targets had sufficient aspect angle coverage; thus limiting the number (2) of target classes
used. The MTFP data set also contained moving-target ISAR images available for use. The
familiar HRR generation software could only be used on the SAR images, however. The targets
used from this data set include the BTR80 transport vehicle, the M2 tank, the ZIL transport
truck, the Russian T72 tank, the TEL missile launcher, the ZSU tank, and the 2S1 mobile gun.

1.2.1.3 HRR Profile Generation

As mentioned above, the HRR target range profiles used in the CAT template database
were obtained by uploading the raw data files and performing signal/image processing operations
to create 1-D templates from the 2-D complex SAR (non-moving) images. This was done with
the aid of pre-existing MATLAB software developed by Duy Nguyen. Prior to signal processing
and HRR “extraction”, the raw complex image of the target must be cropped to a filtered 80 x 80
pixel image containing the entire target. Figure 4 below gives a visual example of this process.

50 100 150
Cross Range Cross Range Cross Range

Figure 4. Cropping and filtering of a raw MTFP SAR image of a T-72 Tank. The first image is a
243x243 image of the target; the second image is an 80x80 cropped image of the target; the third image is
the filtered cropped image

It was discovered when interacting with the MTFP data set that the software did not properly
perform this task. It would center the cropped image on the maximum intensity cell. For larger
targets, or in very noisy situations, this estimated center was far from the true center of the target.
This is shown below as the first image in Figure 5.

20

20
40 40
B0 60
80 80

20 40 60 8C
Figure 5. Cropped images of Scud Launcher to demonstrate improper extraction
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The code was then adjusted to estimate the center of the target using image thresholding through
a histogram and an averaging filter. An example of the improved result is shown above as the
second image in Figure 5 (both images are of the same target).

Much of the following is a summary of information presented in [1]. The template
generation software forms three 1-degree HRR templates by dividing each complex SAR image
into three contiguous non-overlapping subsets; each subset contains HRR profiles collected over
a continuous 1-degree aspect angle look. There were approximately 350 images used to
construct approximately 1000 distinct HRR profiles for each target over aspect angles between 0
and 360 degrees.

More specifically, an HRR profile is the phasor sum of the time returns from different
scatterers on the target located within a range resolution cell. Its profile represents the projection
of the apparent target scattering centers onto the range axis. Figure 6 gives a highly simplified
visual graphical example of this: Basically, the average intensity returns across each of the red
lines is processed to form a 1-D image with the same number of data points as there are
“horizontal red lines” below (54 data points with MTFP profiles).

Cross Range Range

Figure 6. 2-D SAR image and corresponding 1-D HRR profile (20 dB SNR, 1 m resolution)

1-D HRR profiles are not as distinctive as SAR or ISAR images, however, they still
provide valuable information about both moving and non-moving targets. In practice, a profile is
formed by illuminating a target with a high-resolution waveform, for a series of pulses known as
a CPI (coherent processing interval). By Fourier transforming the pulse stream, and correcting
for target range rate, the signature will be contained in a single Doppler bin for relatively short
pulse streams. A single CPI HRR is obtained by extracting information from the bin containing
the target. Multiple CPI’s can be use to average out speckle noise and provide a more accurate
HRR profile. The range resolution of the HRR depends on radar quality (bandwidth) while SNR
and the number of CPIs used depends on the MTI (Moving Target Indicator) radar dwell time.
As you increase the number of CPI’s used, there is a reduction in noise yet an increase in dwell
time thus straining radar resources. Specifically, a decreased revisit frequency (increased dwell
time) degrades the performance of the tracker.

In the past, super-resolution techniques (data-adaptive image formation methods) were
used by Nguyen et al. in [1] to improve the features of the HRR profiles given limited radar
resources. These methods include Beamspace High Definition Imaging (BHDI) among others
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and are more effective in reducing noise relative to the conventional weighted-FFT technique.
The HRR template protfiles in this study were formed using the baseline weighted FFT technique
to obtain 20 dB SNR, 1-meter range resolution profiles using 5 CPI’s. This simulates
performance using minimally effective HRR profiles thus providing results that can easily be
improved upon using super-resolution techniques. The method used was simple yet effective.

1.2.1.4 Pattern Matching

All HRR pattern-matching operations in FAT use a weighted Mean Squared Error (MSE)
metric. Comparing the input test profile against the template profiles at every pixel of interest
and computing the sum of the mean squared errors” leads to an effective measure of similarity:

HRRPixels 5
Z w (t, —h)
Weighted MSE = —= o

HRRPixels
Wy
k=1
t is the magnitude of the kth pixel in the track HRR profile,
h is the magnitude of the kth pixel in the report (measurement) HRR profile,
and wy1s the weight for the kth pixel calculated as

w, =1— pr. X pt,

where
1 1, <2n
r» -
Pl 0 otherwise
1 ., !
ptk = ge bl

with nas the clutter power level (mean noise power)

Due to sensor parameter differences, the range samples and the gain of the test and template
profiles might be misaligned. The ideal values for both range shift and power gain may be found
through brute force. The MSE metric forms a parabolic function of shift and gain, so the
optimum values are found by first shifting in range then in gain [1] (see Figure 7 and 8 below).

gain adjustment

iso-MSE contours

)

2. find optimal gain adjustment —e

/
il

shift amount

i

1. find optimal shift amount

Figure 7. two step method for finding minimum MSE score

" The log of the MSE score is used in all FAT calculations to ease computational analysis.
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Figure 8. Scaling and Shifting for HRR matching MSE operations

1.2.2 GPS data

Ground truth in the form of GPS data (position and velocity) for most test scenarios was
generated using Lincoln Laboratory’s ModSAF/VMAP military vehicle traffic simulator. This
software overlays a set of high-value targets on a series of pre-set roads and paths. VMAP is a
collection of map and road data taken from multiple cities and countries. ModSAF places high
value targets among background targets on these roads and simulates vehicle movements as
desired. The road and terrain model used in this study originates in the vicinity of San Diego,
CA. The data is returned to the user in the form of a text file that specifies time, target ID#,
longitude, latitude, longitudinal velocity (m/s) and latitudinal velocity (m/s). A MATLAB
function was developed to convert the information in this text file to a form expected by the
tracker. The following are ModSAF scenarios that represent difficult target tracking
environments:

1) Simple Linear Acceleration/Deceleration or Constant Velocity — State estimation is severely
degraded during extreme deceleration and near-stop situations
4000

3000 | e

-
.
o
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+ >

1000 | e

.
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Cartesian coordinate plane: x (meters) and y (meters)

2) Curve/Sharp Turn — This scenario includes target maneuvers that are extremely difficult to track
consisting of change-of-direction and arc-of-turn maneuvers. Acceleration and deceleration
through turns is accurately simulated simulated.
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200 i } 2 i
;- + _fd"a-
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0 500 1000 1500 2000 2500 3000
Cartesian coordinate plane: x (meters) and y (meters)
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3) X Non-Crossing - Targets (red and blue) approach in a crossing situation but do not actually
cross. Similar to Figure 1, this is recognized as the typical example in which the use of a
kinematic tracker alone will fail.

220 T T T T T T ——

(=]
o

+l 1 1 A 1 A I E— A 1
1m85 S0 95 100 105 110 115 120 125 130 135
Cartesian coordinate plane: x (meters) and y (meters)

1.3 Kinematic Tracking/LLLL UAV Tracker

The Kinematic Tracker component of FAT used in this study is a version of the Lincoln Lab
UAV tracker created in 1991 by Keith Sisterson [2]. It was designed to support a small,
lightweight radar payload flown on a UAV. Generally, it is a software module that runs in a
ground data processing system. It receives measurements/reports that include the location of
both the target and UAV. The tracker uses stored and filtered positions and velocities to either
associate incoming target reports with stored kinematic track histories or to initialize a new track
when no association is hypothesized. Much of the following is a summary of information
contained in [1], [2], and [3].

1.3.1 Measurement Data Processing

The tracker receives measurements (reports) that include the range, Doppler (range rate),
and azimuth angle of the target as well as the velocity and position of the radar in 3-dimensional
Cartesian coordinates (x, y, z). Azimuth angle is measured clockwise from North. This data is
received in discrete “bursts”, or scans. Typically, during each scan, a radar system will use
clutter Doppler, absolute target Doppler, and radar velocity to determine the target Doppler with
respect to the radar. The MTI (Moving Target Indicator) radar simulator used in this study
performs this function. The range, azimuth angle, grazing (or depression) angle, and position of
the radar are also used to determine target position in Cartesian coordinates. The coordinate
plane contains a 2-dimensional “flat” section of the earth, the origin of which is at a
parameterized latitude and longitude. The origin changes with the location of each scenario.
This tracker uses a square grid system based upon this plane in order to eliminate unnecessary
calculations; specifically, it only performs computations on reports when track histories are in
the same or adjacent grid squares.

The tracker performs all calculations within this 2-dimensional plane. Therefore, the
target “Doppler” used in the tracker is computed using the grazing angle to project the 3-D
Doppler (relative to the radar) velocity onto this 2-D horizontal plane. Finally, the target reports
reach the tracker and include the position of the target and the 2-D “Doppler” velocity.

18



z=[xyd]T

The Doppler speed from the first scan is used to initialize track velocity. Subsequently, the KT
uses the Doppler measurement in data association and track filtering to improve track accuracy
and filter performance. Incoming measurements are then analyzed relative to existing track
histories whose state vectors have the form (over-dot is used to indicate time derivative):

x:[x &y ﬁiT
1.3.2 Data Association

1.3.2.1 Track Initiation

The tracking process can be broken down into two phases: data association and track
filtering/updating. Track initiation must take place before this can occur. If measurements exist
that are not associated with a pre-existing track, a new track is initialized. There is very little
information at this point, but a velocity vector and covariance matrix can still be calculated. This
is done for all possible velocity values, taking Doppler aliasing/ambiguity into account. Doppler
ambiguity is defined as when the PRF (pulse repetition frequency) is less than the maximum
Doppler frequency that may be encountered thus the true Doppler frequency may equal the
indicated frequency plus or minus some integer multiple of the PRF [4]. Simply put, two targets
that differ in Doppler frequency by an integer multiple of the radar PRF will be seen as having
the same frequency. Subsequent scans are then used to affirm the validity of indicated Doppler
velocity™: The maximum speed forms a circle of possible velocity values for the track. The
Doppler value constrains the possible velocity to lie along a line that is a chord of the circle of
maximum speed and perpendicular to the line of sight between the UAV and the target. Because
of aliasing, there can be several chords and several possibilities. The velocity represented by the
Doppler velocity itself is chose as the initial track velocity. The resulting covariance matrix can
be found in [2].

1.3.2.2 Hypothesis Testing

A tracker must consider all possible track/report association pairs and maneuvers before a
data association decision is made. On each subsequent scan, association hypothesis testing will
determine what type of maneuver each specific target-report pair is likely to be undergoing. The
tracker tests successive statistical hypotheses to both determine the most likely track-report pairs
and choose the appropriate measurement filtering parameters for each maneuver. Pairing a track
and report means that the current report is considered to be the next part of the track. The details
of hypothesis testing depend upon a track’s status:

a) New - one measurement
b) Novice — 2-6 measurements; Doppler ambiguity not resolved
¢) Established — 2+ measurements; ambiguity resolved

PRF
* Doppler “velocity” and frequency are related by v = Xc
2x CenterFrequency
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New and Novice tracks use the velocity possibilities (velocity windows) to determine if
any new measurements should be associated with the track in question. There is a limit
computed on the distance between the measurement and extrapolated track position
corresponding to nine times the variances from all sources of error plus the distance the target
would move if it accelerated with the parameterized maximum permissible.” If the track-report
pair is determined to be kinematically possible, a ¥ >_like quantity is calculated and used in the
data association matrix to resolve conflicts.

Established tracks have at least two measurements and enough data to have initialized the
Kalman filter; its resulting matrices and equations and are subject to more complex hypothesis
testing. There are four movement models tested and used with this tracker. The maneuver
associated with a track is used mainly to increase or decrease the expectation of noise in the
Kalman filter. Before filtering is addressed, hypothesis testing must be understood:

1.3.2.2.1 Unmodeled Maneuver Hypothesis

A limit is computed on the distance between the measurement and extrapolated position
of the track using the past Kalman filter state. This limit is the same limit mentioned above. If
the difference is within this limit, a_y *like quantity is stored for possible use later on. If this
test fails, the association is deemed ‘impossible’ as processing continues with the next possible
track-report association. If it succeeds, the constant velocity hypothesis is tested next.

1.3.2.2.2 Constant Velocity Hypothesis

This is the most constrained hypothesis. However, most targets will result in
measurements that fit this hypothesis due to either large expected measurement error and/or slow
changes in speed and direction that are unrecognizable with smaller scan update times.

The plant noise matrix (Q), used in the Kalman filter (discussed below in Section 1.3.3),
is computed using the parameterized constant cvsq when this hypothesis is chosen. The y ?
score used in the data association matrix is computed for the difference between the
measurement and extrapolated track position. The track position has a covariance matrix of:

c’s 0,0,
R — t2 t
O-x, O'yt O y, 2)

The terms in this matrix are obtained from the extrapolated track covariance matrix, which
includes terms from the final covariance update in the track’s Kalman filter history, the
measurement covariance matrix, and the plant noise covariance matrix, Q. The variance of the
distance r between (Xn, ym) and (X,, y,) is (m and t denote measurement/report and track,
respectively):

2 _ ('xm —'xl )2 (O-J\t2 + O-xtz) + (ym - y[ )2 (O-yz + O.ylz) + 2('xm _x[ )(ym - yt )(O.x» +o—xtyl)

r 2
r

3)

* 9 times the variance is the same as 3 times the standard deviation, which by definition should include 99% of all
measurement errors
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An actual y *score is calculated using

” rro(d, —d)*
yr=ty 4 Gl o)
o o-(l +O—dl

r

where d is a Doppler value with corresponding track variance o’a computed along the radar line
of sight. (4) results in a y *value with 2 degrees of freedom. If the errors are normally
distributed, as assumed, tables can be used to select the parameterized confidence limit. If the
resulting y ?score is within this limit, the test succeeds and there are no more tests. If it fails,

subsequent tests follow:

1.3.2.2.3 Linear Accelerating Track Hypothesis

The target is allowed to be accelerating along the line of the track. A track/report
association passes this test if the acceleration computed from a least squares fit of the
measurement to the track is below the maximum permissible value and the y *-value (obtained
from the position differences (r) and Doppler expectation) is within the confidence limit. The
projected measurements and y * are calculated as:

X, =xp+&+% (5)
2
y,=y,+ w+ ?‘J& (6)
((&+;&)sina+(_&+ﬁ)cosa—d,ﬂ} 2
2 X r
r= +— (7N

2 2
O-d + O-dt O-r
where #* and °, are calculated as in Section 1.3.2.2.2. This 7 * value has one degree of freedom

and 1s tested against a parameterized limit. If the test succeeds there are no more tests. If it fails,
one more test follows:

1.3.2.2.4 Constant Speed Arc-of-Circle Track Hypothesis

The extrapolated arc-of-circle position is constructed from the track position and heading
at the last track update and the current measurement. A y ? value with one degree of freedom is
computed from the difference between the predicted and measured Doppler and the difference
between the predicted and measured track length:

» (x;sina+y,cosa—d,)’ N (vt —s)°

8)

2 2 2 2 2
o, +t0, 1'o, +0;

where target speed v = /& + & , s = distance along the arc of circle, 6°, is the variance of v,
and o’ is the variance of 5. If the resulting ¥ ? score is within a specified limit, the test succeeds
and the y 2 score aids in data association. If not, the maneuver is considered “Unmodeled” and
the initial unmodeled y % score is used. For unmodeled hypothesis, there is an additional value
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of 10 is added to the original ¥ % score to ensure that at an association undergoing an

‘unmodeled’ maneuver is never chosen over an association with a hypothesized modeled
maneuver.

1.3.2.3 Association Assignment
An assignment matrix is formed to aid in the association of target reports to track
histories. The matrix contains the aforementioned final y * scores for every possible track/report

pair. If one track/report association is found to be impossible, an exceptionally high score is
given to that cell in the matrix (specifically, ‘invalid’ y 2 = 1000). Below is an example of what

one of these association matrices would look like in a two-target, two-report case:

Measurement
1 2

5 _ 1| .687 2459
¥ ‘matrix="Track
213982 1.324

. . . . . 2
However, depending on the maneuver associated with each pair, certain } ~scores may be

associated with differing degrees of freedom. Therefore, they must be normalized to equivalent
values with two degrees of freedom using the y ° distribution curves shown below.

dof 1
dof 2
dof 3
dof 4
dof B
dof 20

]

0 5 10 15 20

12

Figure 9. Normalizing y ° scores to 2 degrees-of-freedom (dof)

An example is given to explain the conversion of a ¥ 2 score of 4.56 with 4 degrees-of-freedom
to an equivalent ¥ 2 score with 2 degrees-of-freedom (i.e. find ¥ 2 such that P(y 2,2) = P(4.56,
4)). This normalization procedure is used again within FAT. The ¥ 2 distribution P(y z,dof) 18
given by the incomplete gamma function:
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P ?[dof )= Q d—gf—% o

such that

1 X
Qa )= Oje-ff‘dr (@>0) (10

After the association matrix is correctly normalized, the extended Munkres algorithm is
used to determine optimal track/report association [5]. The smaller the y % score, the more likely

it is that the tested track/report pair is correct. The output of the Munkres algorithm is a set of
paired assignments (e.g. Track]1 to Report 2, Track 3 to Report 1, etc.). It is also noted if no
measurement is assigned to a particular track, or vice versa. Therefore, the maximum number of
possible pairs will be t + m”, while the minimum number of pairs will be max(#,m). Once the
optimal track/report pair assignments are made, the track histories are updated. If a track exists
without an associated measurement, the time and number of scans since the last association 1s
compared against a parameterized constant to determine if the track should be kept.

1.3.3 Kalman Filtering/State Estimation

The Kalman filter is a well-established technique used to provide state estimates when
measurements are under the influence of noise. Its advantages stem from its adaptability for use
with digital systems and processes involving gaussian noise. The target model used in this
tracker (straight line, constant velocity) assumes measurement noise to be normally distributed
with a mean of zero. An estimation of the target state and covariance matrix is all that is
required to define the probability density function (PDF) associated with the target positions in
state space [6]. As mentioned earlier, the tracker works with objects in a horizontal plane. A
two state system”" is used with a measurement having three components: x, y, and a 2-D
Doppler value computed using 3-dimensional geometry. When this kinematic tracker was
created, computational resources were tremendously limited. Specifically, requirements were
minimized because the need to invert a 3x3 matrix was eliminated by splitting the filter into two
separate sections (essentially two filters). The first section uses only position information while
the second performs analysis only on the Doppler measurement. The filter used is a constant-
velocity Kalman filter with maneuvers modeled as acceleration noise in the plant state
covariance matrix.

The Kalman filter is used only with Established tracks. New tracks, however, are used to
initialize the covariance matrices and store relevant initial information. The actual process of
computing the measurement covariance matrix is discussed in Section 2.2. If a track has Novice
status, the tracker checks to see whether the Doppler ambiguity can be resolved. The
measurement is saved, and once ambiguity is resolved, the Kalman filter is recursively run on all
previously saved target reports in addition to the current one. Kalman filtering will be performed
on all subsequent scans for an Established track. The following steps (1-10) describe this

* tis # of tracks and m is # of measurements
** recall that the target state in this case isx =[x x y y 1"

23



particular Kalman filter. The true current state is (k indicates current scan and k-1 indicates
previous scan):

Xy =@, X, +noise (11)
@ .1 1s the state transition matrix:
1 ¢+ 0 O
10 1.0 0
%=l0 0 1 4
0 0 0 1
x is the state vector:
X
X, X, ,Or xk+ :
y

1) The current target report can be represented by

z, = H,x, +noise (12)
z is the measurement vector (X, y are position, d is Doppler):
X
=Y
d
and H is the observation matrix (converts the measurement to position; a is azimuth angle):
1 0 0 O

H =0 0 1 0

0 sina 0 cosa

2) The initially extrapolated next state for the track is (- indicates extrapolation, ” indicates
estimation):

X =0 Xa (13
3) The error covariance matrix for the initially extrapolated next state is:

ﬁk - ¢k—lpk—l¢Tk‘1 +ka1 (14)

Q is the process noise covariance matrix. “¢” is time update rate, ¢ is a constant parameter that
changes with hypothesized maneuver (i.e. cvsq = 9.83 for constant velocity, arcsq and latsq =
7.82 for linear accelerating, arc-of-circle, and unmodeled hypothesis):

gt gt 0 0
3 2
2
% g 0 0
Qi =| 3 2
0 o 4 4
3 2
o o 9 o
2

P is a covariance matrix for the updated states generated by the Kalman filter:

24



Pl PZ P3 P4
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4) The Kalman gain stage 1 (only involving measurements x, y):
'K, =PH"«[H PH : +R]" (15)
For stage 1,
1 0 00
H, =
0 01 0

R is the measurement covariance matrix calculated using parameterized variances

Rl RZ
Reilg, &
2 3

'K is the Kalman gain matrix for stage 1
KI K2
3 4

. K, K
K,:

K, K,
K, K

7

8

5) The error covariance matrix is then updated:

A~ | _
Fo=lI- K.H]P, (16)
6) The extrapolated track covariance matrix is set to the updated track covariance matrix:
P, =b (a7
7) The Kalman gain stage 2 (only involving measurement d - Doppler):
*K,=PH"|HPH" "« +0°4]" (18)

For stage 2,
Hk=[0 sina 0 cosal

and o, is the Doppler variance

KQ
2 yr - . . 2 Klo
K is the Kalman gain matrix for Stage 2: “K, : K

11
KIZ
A 2 JE—
8) The final error covariance update is: Pk =[I~- Kk Hk ]* Pk (19)
9)The final state estimate update is:
X, =x, +K,[[I-BK, X]lz, —H,x,]] (20)

Hy is as originally constructed,
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B and X originate from Hj,
0O o0 0 o0

B=(0 0 0 0 |,and X =

0 sina 0 cosa

S o =
S = O
o o O

and K is the fused Kalman gain matrix,

K, = [l K, ‘K k ]
The above equations update the state of the track by “smoothing” the noise from each
measurement. Only x, &, y, &, and P are updated by the above equations. Tracks are later fully

updated with information retrieved during FAT.

1.4 Classification-Aided-Tracking (CAT)

Classification-Aided-Tracking is a method of using an ATR (automatic target recognition)
classifier to aid in data association by measuring class continuity from scan to scan. Consider
the following two-class example below where a Scud launcher (blue) and ZSU troop carrier (red)
are approaching an intersection. The detection positions from the next scan appear in black.
Under these circumstances, the targets will either continue along their respective roads, or
choose to follow another road. The kinematic tracker will always make an incorrect association
in situations where target A follows the expected path of target B and vice versa. Figure 10
shows that if the detections are augmented with HRR profiles, then a classifier may be used to
correctly determine which detections belong to which track (the track histories contain
knowledge of track target class). CAT is extremely valuable in these scenarios.

100 D?jectinn 1:

FSU track

Figure 10. Example of how CAT is Template ﬁ
used to mitigate a two-class X-non- database
crossing scenario. The previous a0 Detection 2 Best Match

track histories identify a ZSU
Carrier (Red) and Scud Launcher
(Blue). The HRR profiles from
detections | and 2 (Black) are used

0 20 40 60 0 20 40 60
[X-axis is pixel #, Y-axis is power (dB)]

CAT is used when a multi-class database of HRR profiles is available a priori. This

database typically contains non-moving-target HRR profiles. The moving-target profiles should
be noisy or “smeared” versions of the former. If a template database is available, each report
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(using its moving-target HRR profile) can be assigned a probability or likelihood that it is a
member of a specific target class. CAT is particularly helpful in situations where the high-value
target is of a known class that has template HRR profiles readily available. Depending upon
their radar signature characteristics, CAT may or may not help resolve data association conflict
when targets are of an unknown class. Another shortcoming of CAT is that, in contrast to KT or
SAT, an appreciably large amount of computational resources are required. It may also not be
helpful in all kinematic situations (Section 4.2.1.1).

1.4.1 Bayesian Classifier

A Bayesian classifier is used to generate the likelihood that a report is of a particular target
class. This likelihood is a function of both the ATR result and the previous track identification.
First, a vector of MSE scores is generated for each track/report pair under analysis. This vector
consists of the minimum MSE score from the comparison of the report HRR against a group of
template database HRR profiles from each target class in the database. The size of the MSE
vector is therefore 1 x [# of classes in database]. The aforementioned “group” of template
HRR’s is collected by taking all profiles from aspect angles within ten degrees of the estimated
(via Kalman filter) track/report association aspect angle.” This aspect angle “error window” of
ten degrees is included because there is an assumed error inherent in aspect angle estimation due
to the measurement noise that accompanies radar detections.

It is also assumed, and can be shown, that the collection of minimum MSE scores used to
populate each cell of the MSE vector resemble a normal distribution with mean MSE | and
variance o°. Using HRR profiles from the a priori database templates, the expected value of
each cell (mean and variance) in the MSE vector is generated for future use. Because the HRR
profiles and thus MSE scores are highly distinct across all aspect angles, statistics are generated
by aspect angle sector (0-30°, 30-60°, ...to 180°). There are no statistics generated above 180°
because of hemispherical symmetry; the HRR profile for a target at an aspect angle 180° from its
true aspect angle will mirror itself and therefore the MSE statistics will be similar. The FAT
software ensures that statistics from the appropriate sector are used for all target aspect angles
between 0-360°.

These statistics can be used to estimate the probability that a particular report HRR profile
either originates from a particular known target class or has the characteristics of an unknown
target class. A “classification” vector is formed where N is the number of target classes in the
database such that Peass = [p1, pas-.-.pn+1] Where pyg is the probability that the track is of type k

N+l
and py, is the probability that the track is of type “other” while Z p; =1. Type “other” is

i=1
assigned when a match in HRR is not found within the template database for the report HRR
profile in question. Expected MSE statistics for the “other” class are formed by comparing class
“1” HRR profiles against a set of profiles from multiple dissimilar target classes (class 2...N).
Ppar, a vector of PDF likelihood values used to calculate the posterior probabilities in Pejass, 1s
obtained using the MSE vector and pre-generated statistics in:

* this aspect angle is estimated using the velocity component of the Kalman filter output given the track-report pair
in question
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—1-Axk «Cov, 'eAx,”
e 2

\/(Zﬂ)" #classes x det(Cov,) @D

P =P, (MSEVec|Class,)=

where k= 1...N + 1, Ax; is the difference between the given MSE vector and mean MSE vector for class
k, Covy is the pre-generated statistical covariance matrix for MSE vectors observed from class &, and det
refers to the determinant.

Bayes’ decision rule for this specific set of events (such as a target being of a particular class)
leads to the calculation of the classification vector:

P(Class;)P,, (MSEVec | Class,)
= P(Class; | MSEVec) =+~ ! .

" P(Class,)P,,, (MSEVec | Class,)
k=1

P

class

where P(Class,) for k = 1..N + 1 (i = k at some point), are the track priors (Ppyiers; prior probability that
track is of class k). This is simply the classification vector of size 1 x [N +1] generated using the current

report HRR and the hypothesized associated track’s information from the previous scan. With a new or
N+1

novice track, the values in this vector are equal with Zpi =1.
i=l
The vector Pass = P(Class;JMSEVec) is a conditional probability reading “the probability
that the report is of target class i given the specified MSE vector” for i = class 1.. N, and other.
Additionally, we can use the above information to generate a Bayes’ likelihood value that a
given report is associated with one particular track:

P(track x < report y) = Ppiors (from track x) e Pyge (from report y) (23)

1.4.2 y? Adjustment
The posterior probability (Peass) aids in data association by contributing an additional xz

score to the association matrix. CAT adds a ’car score to the initially calculated kinematic X2
score. x*caris non a true x° score, but a x> -like quantity generated using the track/report
association probability calculated in (23). Specifically,

,%ZCATz -log [P(track x <« report y)] (24)

, leading to the following translation of P(track x ¢<— report y) into a ¥ cat score:
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Figure 11. Translation of an MSE score into a xzcm score

If the kinematic tracker makes an incorrect association, the difference between the incorrect
track-report association kinematic x2 and X2CAT must exceed the difference between the correct
association kinematic xz and XQCAT for CAT to be effective. When this x2CAT score is added to
the initial %, an additional degree of freedom exists, requiring further normalization of the final,
fused xz score (¥ fusea). This modification did not exist in the code that was used in this study
and was subsequently added.

1.5 Signature-Aided-Tracking (SAT)

Signature-Aided-Tracking also utilizes HRR pattern matching to aid data association.
Consider a two-target scenario where target A is closely following target B on a parallel track.
The next scan indicates that the two targets appear to have merged and are headed in the same
direction. This is a considered a kinematically ambiguous situation because either detection can
be associated with either track. To mitigate this problem, we compare the stored track HRR
profiles from the last scan (A and B) to the HRR profiles from the current detections (1 and 2) to
measure HRR continuity and subsequently determine the most likely set of track/report pairs:

100 —L1ack A Detetginn 1 100 —Track A Detecgiun 2
MSE = 7905 MSE =i1.0679
Track A 1 2 A forspfbppecsnes Lt 90 f----- ; ; frererer]
0 fre=nffe UL gl enceand x| I L, S R
Track B 70t~ ..n 70
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SAT requires no prior knowledge of target class and is thus extremely helpful in
situations where the target class/type is unknown. SAT provides an MSE value for every
possible track/report association and contributes a supplementary adjustment to the association
matrix. Additionally, it should be noted that HRR profiles for one target distinct across all aspect
angles. Recall that a 1-D HRR profile is a projection of the object in range towards the radar.
When a target turns, various features might not be observable. Consequently, when there a large
change in aspect angle exists from one scan to the next, SAT provides little assistance.

1.5.1 Statistics

As mentioned earlier, the kinematic tracker is used to generate an assignment matrix of x2
scores for every possible track/report association. SAT assumes that every report is augmented
with a moving-target HRR profile. After the Munkres algorithm assigns a report to a given
track, the track then stores both the estimated aspect angle and HRR profile from that report.
During the ensuing scan, the Kalman filter is again used to estimate the aspect angle for each
track/report pair. If the difference between the current report’s estimated aspect angle and the
track’s stored aspect angle is less than a desired threshold (typically ten degrees), then a
signature comparison is made. Otherwise, the signature information is ignored and only
kinematic information is used.

A weighted log-MSE score is calculated for each hypothesized pair. This MSE score is
then measured against the expected MSE scores for both matching” and mismatching targets.
Similar to CAT, this type of comparison is expected to yield a Normal distribution of MSE
scores. Statistics representing the Match and Mismatch means and variances (Wmaich, lmismatch,
O'Zma[ch, 02.,,i5,,,amh) are pre-generated using HRR profiles from the non-moving template database.
Again, the template profiles can be used because moving profiles should simply resemble noisy
versions of non-moving profiles. A set of HRR profiles from one target class is evaluated
against a set of profiles from the same (Match statistics) and differing (Mismatch statistics) target
classes within the specified aspect angle threshold. This comparison is repeated multiple times
for multiple target classes.

If an MSE score comes from comparing two profiles of the same class, it is expected to lie
near the center of the match PDF (blue); if not, it should lie near the center of the mismatch PDF
(red):
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Figure 13. Match/Mismatch PDF’s for SAT calculations
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The statistical likelihood (probability density value) of receiving a given log-MSE score
from a matching and mismatching target is then calculated using these curves:
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1.5.2 x* Adjustment
A xz—like quantity is computed using these values as a negative log-likelihood:

¥ sar = —log(MatchPDF | MismatchPDF') (27)

Figure 14 shows how, using the above PDF’s, an MSE score will be translated into a x2 score:

Figure 14. Translation of an MSE score into a szAT score

Similar to CAT, xzsAT is added to the initial kinematic XZ calculated for this track/report pair
and adds another degree of freedom to the sum, known as Xzfused. Normalization to two degrees
of freedom must again take place (Section 1.3.2.3.). Another modification is necessary if any of
these x2 -like scores force cells in the final fused association matrix to be less than zero. If this
occurs, the entire association matrix is simply offset so that the minimum cell value (* score) in
this matrix not less than zero. This normalization and offset was added to the software. If the
kinematic tracker makes an incorrect association, the difference between the incorrect
association’s kinematic x> and y’sat must exceed the difference between the correct association’s
kinematic x2 and XZSAT for SAT to be effective.

Similarly, if both CAT and SAT are used, Xzfuged = X2CAT + xzsAT + Xz’ two more degrees of
freedom are added to the initial kinematic x2 score. Therefore, as above, if the kinematic tracker
makes an incorrect association, the difference between the incorrect association’s kinematic ¥
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and (xzc AT + xzs A1) must exceed the difference between the correct association’s kinematic X2
and (X2C AT + Xzs at) for FAT to be effective.”

1.6 Aspect Angle Estimation

Recall that the aspect angle is the angle between a target’s heading and the line of sight
between the radar and the target. For all possible track/report associations, a target’s heading is
computed using the velocity vector output of the Kalman filter. The filter necessitates current
detection information in addition to a track’s Kalman filter. What requires emphasis here is not
the specific calculations leading to this estimation, but the extraordinary dependence of both
aspects of FAT (CAT and SAT) upon accurate aspect angle estimation.

During each scan, CAT uses a priori HRR information to analyze the probability that a
given report is associated with a particular track. Every possible track-report pair provides CAT
with an estimate of the current aspect angle of the target given the associated track history.
Profiles are then retrieved from all classes in the database from aspect angles within the
aforementioned ten-degree error “window”. The assumption is made that a “match” in HRR will
be found among the collection of profiles and the report will be classified correctly if the
hypothesized track-report association is true. Consider a correct track/report pair with an aspect
angle of 50°. When CAT compares this report HRR against a profile from the same target class
at 50°, a “match” will be found and the correct classification will occur. However, noisy
measurements lead to a radar report position approximately 10 meters from the true target
position and the Kalman filter consequently estimates the aspect angle at 61°. CAT will then
only analyze template profiles between 51° and 71° of aspect angle. Since the true profile
originates from a target at a 50° aspect angle, the “matching” profile will not be found. We
must then rely on a result where the minimum MSE score obtained in this manner is less than the
minimum MSE score obtained by comparing the report HRR against numerous profiles from all
other target classes. This will most likely not occur for more extreme cases of aspect angle
estimation error. Research will show for targets undergoing maneuvers (turning; not constant
velocity straight line), the aspect angle error is typically greater than ten degrees. If true, the
performance of the previously described version of CAT is severely degraded, leading to an
increased rate of incorrect associations.

SAT is similarly dependent upon accurate aspect angle estimation. At the end of each
scan, a report HRR profile is stored in the associated track’s history with the corresponding
estimated aspect angle. During the following scan, an estimate of the aspect angle is generated
for all possible track/report pairs. If the difference between this estimate and the track aspect
angle is less than ten degrees, SAT is allowed to proceed. If not, the signature information is
thrown aside and full dependence on the kinematic tracker exists. Consider a case where one
target is traveling in a straight line and the true aspect angle remains approximately 30° for the
duration of the scenario. Due to noisy radar detections, the current report position is 20 meters
from the track’s last stored position. If the stored estimated aspect angle is 26° and the new
estimated angle is 36.1°, SAT is not used in spite of a truly constant aspect angle. If the
generation of a database containing SAT moving-target HRR profiles were desired, the profiles
would be stored and extracted according to aspect angle. If the estimated aspect angle error is

* further work with SAT has been accomplished by Duy Nguycn using pattern matching techniques with SAR and
ISAR images in [1]. Due to ease of implementation and data limitations, this report focuses solely on the use of 1-D
HRR profiles with both SAT and CAT
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above a given threshold (assumed ten degree error), the profiles will be stored incorrectly and
computations will be performed on incorrectly extracted profiles.

It is hypothesized and will be proven that aspect angle error is the single most significant
inhibitor for this feature-aided-tracking system. It is an obvious but necessary statement that the
aforementioned error and the effects of this error are dependent upon the level of noise
associated with radar detections (which also depend on target range). Accurate tracking in the
face of noisy radar measurements will occur only if:

(1) Aspect Angle error is minimized, and
(2) Aspect Angle error is quantified and understood.
This report will seek to achieve the above.

1.7 Research Goals

This section will serve to explain the contents of the remainder of this report. The motivation
of this research is dual-faceted:

I) My first task is to assist Lincoln Lab in achieving a higher level of understanding concerning
the current Lincoln Laboratory Feature-Aided-Tracking code. A robust simulation tool should
be developed that is able to easily ingest and utilize a variety of target and radar information.
The code should be well documented, intuitive, and easily operated. Simulations occurring
within this code should be based upon know radar and tracking principles making for a realistic
operating environment. Basically, my goal was to create an inter-operable testbed for FAT,
possibly to be used within a greater testbed (Space-based radar program). Overall, the main task
was to modify pre-existing Lincoln Lab MATLAB FAT simulation software and create a
robust, accurate, and intuitive simulation tool.

IT) The second, more flexible set of goals has more of an academic motivation. It hinges upon
accurate and full comprehension of the FAT system and software. Mainly, this research strives
to analyze and enhance the performance of the existing FAT software in the three
aforementioned influential areas:

1) Kinematic Tracking
- Analyze the use of a constant velocity, two-state, “2-D” Kalman filter and
explore other options.
- Improve State and Aspect Angle estimation through possibilities such as
curve fitting
— Analyze and improve maneuver detection.
- Quantify expected aspect angle estimation error

2) SAT
- Analyze the performance of the current SAT algorithm
- Explore the use of an On-The-Fly SAT HRR Template Database
- Ideally utilize real or simulated moving-target HRR profiles

3) CAT

- Analyze the performance of the current CAT algorithm
- Explore the ramifications of increasing the aspect angle error “window’
- Ideally utilize real or simulated moving-target HRR profiles

]
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CHAPTER 2.
SOFTWARE ADJUSTMENTS/UTILIZATION

2.1 Initial Code Review — LL Integrated-Radar-Tracker (IRT) Application Code

The software received, analyzed, and adjusted throughout research is an appended version of
the original Lincoln Lab UAV tracker developed and tested in 1991 by Keith Sisterson [2]. This
code was verified through testing in simulated and realistic environments. Error distributions
from the realistic test data were found to be close to normal, validating the use of the xz testing
technique and Kalman filter to smooth the noise inherent to measurement detections. This code
was written and developed using “C”.

Duy Nguyen appended this original kinematic tracker from 1999-2002 with his own feature-
aided-tracker software [1] described above. This code was also originally written in “C” with
select functions written in MATLAB. Initially, the code was strictly designed for use with 1-D
HRR profiles. This version of the FAT code is the one that is utilized and analyzed in this
report. [1] states that SAT, in the above form, cannot provide valuable assistance to the data
association problem using only HRR profiles. Accordingly, SAR (synthetic aperture array) and
ISAR (inverse SAR) imaging technology have been shown to improve the performance of SAT.
SAR and ISAR are less sensitive to aspect angle change, thus mitigating the problem of aspect
angle dependence. A move-stop-move scenario can exploit SAR technology when it is detected
that the target has stopped, leading to more accurate data association. Specifically, a SAR image
is taken when targets are stopped, and can further be used to compare a 2-D radar image against
future 1-D HRR profiles whose aspect separation exceeds the HRR aspect angle threshold
through simple rotation and projection procedures. The match and mismatch PDF’s from such
comparisons exhibit a higher degree of separation than those mentioned above from comparisons
involving 1-D HRR profiles leading to more valuable comparisons. These images can be used to
dynamically generate and utilize HRR profiles throughout a tracking scenario. However, the
prediction of ISAR opportunities depends upon knowledge of the terrain and road patterns.
Moreover, at 20 dB SNR (the SNR for the HRR profiles) the separation between the PDF’s is
significantly reduced when using SAR technology.

As previously mentioned, this work focuses solely on the use of less-complex 1-D HRR
profiles. The data and code utilized in the above studies were not easily obtained or utilized.
Furthermore, the code used below was meant to resemble a robust, realistic system with minimal
resources and maximal environmental stress (error/scenario difficulty). All previous research by
Lincoln Lab Group 104 (Intelligence, Surveillance, Reconnaissance) in this discipline used the
MSTAR data set for analysis. Conversely, all work analyzed in this report is original; new,
stressful scenarios have been utilized in conjunction with the untested MTFP data set. The use
and study of MTFP data will both verify previous performance evaluation and present unique
opportunities for simple algorithm enhancement.

Initially, a MATLAB conversion of Duy Nguyen’s original (HRR) code was obtained from
Bill Coate [7] in Group 102 (Embedded Digital Systems) at Lincoln Lab. This code was only
recently translated and verified for use in the Integrated Radar-Tracker Application for the
DARPA/IPTO PCA Program. Due to familiarity and ease of compatibility, it was strongly
desired to make this MATLAB code into the base for further research.

Numerous differences exist between the Group 102 MATLAB code and the code utilized by
both Keith Sisterson and Duy Nguyen. Group 102 has aimed to design code that stresses
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hardware, throughput requirements, and software engineering principles as opposed to the
“robustness” of the tracker. For example, fake target HRR profiles are generated and used in
combination with a non-moving radar platform and a 2-dimensional scenario environment to
ease computations. Error statistics and parameters are perfectly adjusted to obtain the desired
results. It is code explicitly used for “proof of concept”. It utilizes parallelism (“MATLAB
mpi’’) to maximize computational efficiency and will be released to a broader audience. Most of
the findings below require significantly more exhaustive analysis. Again, the research below
clearly does not focus on computational efficiency but more so on robustness and realism.

2.2 Code Changes

2.2.1 Minor Code Changes

There have been frequent adjustments and additions to the Group 102 MATLAB code in
order to achieve the desired level of realism and robustness. These changes have been both
minor and major in nature. Most importantly, there has been direct communication between
Group 102 and Group 104 through the duration of this research. Essentially, Group 102’s
software has been tested with real (or more-realistic) data in a robust simulation tool during
studies outlined within this document. Dialogue has been continuous. as minor corrections and
bug fixes are recommended.

One minor change is the parameterization of grazing angle (depression angle) of the radar
platform for use with a larger database. HRR profiles are distinct across grazing angle in
addition to aspect angle. During statistics training and CAT, profiles are extracted from the
template database according to this parameter. Currently, grazing angle also geometrically
restricts the simulated position of the radar platform.” Also of concern to FAT, the aspect angle
threshold alluded to in Sections 1.5 and 1.6, which determines whether or not SAT can be used,
was added to the MATLAB version of FAT. The authenticity of this system is thus significantly
increased.

A final change for future versions of FAT would include a grazing that is calculated on every
scan as radar platform position and target position varies. Ideally, the grazing angle calculated in
this manner should be used to extract profiles available in the database from angles closest to
that. Some of the other minor changes have already been mentioned, such as the adjustment to
the HRR generation code and the GPS data conversion code.

2.2.2 GMTI Simulator

This is the most significant addition to the base MATLAB code. This function utilizes
known radar principles to develop noisy radar detections based upon given parameters. The
GMTI (Ground-Moving-Target-Indicator) radar simulator takes the aforementioned GPS truth
data in Cartesian coordinates and outputs a radar detection (report) consisting of range, azimuth,
Doppler, and HRR profile subject to sensor measurement error. A parameter exists in the
current software to activate this error generation.

2.2.2.1 Radar Parameters Used

Recall that the fundamental motivation for this research was to provide a realistic
simulation tool. Therefore, most of the radar parameters used in this simulation are based upon
known parameters tuned to current military aircraft and radar systems. Specifically, this function

* This is due to the fact that the Database does not contain profiles from a large range of grazing angles
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attempts to simulate the operating environment and capabilities of the U.S. Air Force JSTARS
(Joint Surveillance Target Attack Radar System) surveillance aircraft. From Jane's electronic
aircraft, the aircraft’s primary sensor is the Northrop Grumman AN/APY-3 multimode,
electronically/mechanically steered, side-looking, combined MTI and SAR. Currently, MTI
radars are not capable of simultaneously detecting a moving target and forming an HRR profile.
First, low-resolution GMTI radar is used to identify moving ground targets above a minimum
detectable velocity (MDV). The bandwidth of these radars is typically on the order of 15 MHz.
Subsequently, higher resolution radar is pointed in the direction of the apparent target and an
HRR profile is formed. This study involves 1-meter resolution HRR profiles, requiring a
bandwidth on the order of 150 MHz.” Most of the following parameters are used to compute
measurement error and not HRR profiles, thus they are tuned to simulate the low-resolution
GMTI radar. Some of the parameters obtained for JSTARS are classified. However, the
numbers below are either unclassified known parameters or arbitrary nominal values. The true
parameters will increase the performance of the MTI radar due to decreased theoretical values
used to compute measurement error:

Figure 15. Air Force JSTARS Ground Target Surveillance Aircraft

Geometric Data:

1) Radar Platform Height = 10668 m. JSTARS operating altitude (35,000 ft). The combination in
this simulator of a fixed platform height and grazing angle currently restrict the range at which
the platform operates. A larger range increases the measurement error (the reason why
specifications for the Global Hawk UAV were not used: operating altitude of 19,000 meters).

2) Grazing (Depression) Angle = 8°. Used because it is the angle at which the most MTFP HRR
data was available.

3) Radar Platform Velocity. Given in Cartesian coordinates with no assumed z-direction
component. For JSTARS, typical orbit speed is between 200 and 260 m/s (390 and 510 knots).

Bob Coury of Group 104 has developed MATLAB code that utilizes the following radar

parameters to determine the expected SNR (Signal-to-Noise Ratio) needed for effective

moving target indication [6, p. 146]. This SNR plays a large role in theoretical measurement

error calculations:

4) Py (probability of detection) = 0.90. This corresponds to a rate of detection of 90%. This is a
typical value used to define the probability that a given target will be detected under given
conditions at a given range on any one scan of the antenna. Duy Nguyen also uses this value in

. c
" from AR(resolution) = 2B where ¢ = speed of light

w
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similar studies. In addition to being used in SNR calculations, this principle is included in the
code. It would correspond to 90% of the target reports generated being thrown away or “not
detected”. There is also a parameter to turn this feature on and off; for tests below this feature is
off.

5) Py, (probability of false alarm) = 1x10”. This is solely used in SNR calculations. A typical value
for this parameter is between 1x10®and 1x10™. It represents the probability of an incorrect
detection being recognized by a single target-detection threshold detector at the conclusion of any
single integration time for the Doppler filter whose output the detector is processing [4]. This has
been arbitrarily chosen.

6) # of CPI's (Coherent processing interval’s) = 5. This number is largely arbitrary as well; any
integer value could be used. As you decrease the number of CPI's, the SNR needed to detect
targets with the same P4 and Py, increases and you have less information about the target. This
number can be tuned for use with any particular system and should be a function of system

requirements.

7) Swerling Type = 1. This is a number representing a particular type of mathematical target model
that can vary a probability of detection curve. This is a suggested number for ground moving
targets.

The following radar parameters are later used to calculate measurement error variance:

8) P (Bandwidth) = 15 MHz. This is simply a nominal value chosen to represent the typical
bandwidth for X-band MTI radars, the most commonly used tracking radars. This parameter has
a large affect on range error.

9) f. (center frequency) = 10 GHz, The JSTARS center frequency is typically between 8-10 GHz.
A typical X-band tracking radar center frequency is 8-12 GHz. This is close to the center
frequency for the DCS sensor used in obtaining MTFP data (9.6 GHz).

10) A = ¢ (speed of light) /f, = 3 cm. Dependent upon f.. Typical of an X-band radar (between 2.5
and 4 cm).

11) T=.1s. This is the length of a CPI. This value is taken as a nominal value and can be changed
to fit system requirements. The true value for JSTARS is known but classified. This has a large
affect on Doppler error, the least influential of error sources.

12) D (radar aperture diameter) = 7.31 m. JSTARS value (24 ft). This has a large affect on azimuth
error.

The most important step in the development of a sensor model for this simulation is

accurately modeling error in each measurement. This measurement error is the reason that a
Kalman filter is utilized and aspect angle estimation error occurs, strongly influencing system
performance. From Section 1.3.3, the measurement equation is written as

z, =H,x, +noise

It is assumed and has been proven [2] that these errors, or noise, are zero-mean white Gaussian
processes. The theoretical standard deviations for these Gaussian processes can be set based on
the above sensor and signal processing characteristics. The following equations are taken from
[8, p. 47]:

c=——F _ -0892m

"~ 4B ISR @
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A
g, = =.366 mrad
®  2D-JSNR (23)

Go=— =0.0134m/s

AT~/ SNR (30)

The MTI simulator uses this information to add Gaussian noise to the true values for Range,
Range Rate (Doppler), and Azimuth. Below is a visual example of a straight-line constant
velocity scenario with added noise according to the above parameters. The dots are the true
target positions while the +’s are the detected target positions:
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Figure 16. Example of added measurement error in Cartesian coordinate plane.

In this case the radar platform is located at [53 km, 53 km] as shown above, leading to a range of
approximately R = 76 km. At this range, the 6y of .366 mrad translates to the expectation that
68% (1 standard deviation) of the measurements will have an error less than R x Gg = 28 meters.
The solid red line above indicates this threshold. By further examination, one can notice that
there are the expected 34 detections (68%) within these bounds. Additionally, the error is about

1/10™ of the beamwidth Rx8,,, = R x.SS% =273 m. Once this measurement error has been

validated, the Kalman filter is used to smooth this noise. All research and analysis below
implements this MTI error simulator and utilized the parameters as the constants outlined above.
More error (higher variances, lower Py, higher MDYV, longer R) places more stress on the tracker.
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Again, the purpose of this tracking system is to be able to mitigate the effects of this noise in a
realistic situation through the use of FAT.

2.2.3 Scenario Generation and Tracking Parameters
The scenario generating function is used to create the ground truth position and velocity
data for all targets in the form of a pre-generated Targets matrix (# of scans x [x &y ] x #of

targets). The GPS data depicted in Section 1.2.2 forms a base for generating multiple
kinematically challenging scenarios. As mentioned earlier, a text file is converted into
MATLAB position and velocity data. Furthermore, scenarios may be manually created by
cropping the GPS data or simply mathematically generating the Targets matrix.

Following the addition of measurement error, the complete formation of the detection
occurs when the radar report is augmented with an HRR profile. Currently, the true aspect angle
of each target is calculated and the corresponding profile is extracted from its template database.
The use of this non-moving HRR profile as a moving-target profile is rationalized in Section 2.3.
When data analysis and track-report association occurs, the following parameters essential
components of the tracking system:

1) Number of Classes, Class ID #'s - Typically 1 or 2 but can range as high as 100. All analysis
done below uses the most kinematically challenging two-target scenarios. Target type is
specified by an identification number obtained from the detection augmentation function
(TestMeas or GetFakeHRR). This ID # is used to extract the correct template database file.

2) Number of Other Classes, other ID # — Specify the number of “other” classes to be used in the
Statistics training function (typically 4).

3) Scenario Total Time — Preset, or set during the Scenario Generation function as the length of the
GPS history available.

4) GPS Scan Time — This is essentially the scan update time, dr. Tt will use this to extract the proper
cells from the Targers matrix in the Scenario Generator and will also be used in the Kalman filter.

5) MaxSpeed = 30 m/s and MaxAccel = 10 m/s” — This is used to constrain association possibilities.
It is the maximum expected speed and acceleration for the targets being analyzed. It is important
to have correct values, especially for MaxAccel. If not, correct associations may be labeled as
‘impossible’ by the criterton in Section [.3.2.2.

6) NewLimit =1, NoviceLimit = 2, Established Limit = 3 — This parameter describes the limit for the
number of scans that may pass without a detection before the specified type of track is removed.

7) Grid Size — The total grid size and grid element size are important pre-set parameters. As
previously mentioned, the tracker will only perform calculations on measurements with tracks in
the same or adjacent grid elements.

8) Platform Position and Velocity — This is currently parameterized and should eventually be input
to the system as a matrix similar to the Targets matrix with different information for every scan.

9) DeAlias Speed — As discussed in Section 1.3.2.1; defined as the velocity value of the PRF:

DeAlias(m/s) = IZ)RfF

-¢ . For efficient processing, it is recommended that the DeAlias value
be above the max speed. This is the case in most tracking simulation tools so as to avoid Doppler
ambiguous situations.

10) CVHLimit = 9.82, LatHLimit = 7.83, ArcHLimit = 7.83. These are the limits of the xz for the
acceptance of constant velocity, Linear Acceleration, and Arc-of-Circle hypothesis. These values
were taken from [1], but have not been verified for this research.
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11) Cvsq =9.82, latsq = 7.83, arcsq = 7.83. These are the vales for q, used in the formation of the
plant noise matrix in the Kalman filter. These parameters will play a small role in hypothesis
testing. They are taken from [1] but have not been verified.

2.2.4 Statistics Generation/Analysis Tools

The statistics necessary for proper functioning of CAT and SAT are generated prior to the
operation of the tracker. This statistics generation function has been adjusted to return all
necessary and available information from numerous HRR signature comparisons.

As explained in Section 1.5.1, the expected Match and Mismatch mean MSE score and
their variances (WUmatch, lmismatch, 02,,,atch, szismatch) are calculated for use in SAT. A comparison is
made between a “test” profile of one target and other template profiles of both the same (Match
statistics) and different (Mismatch statistics) targets. CAT (explained in Section 1.4.1)
necessitates the mean and variance of MSE scores used to form the MSE vectors. Again, this
vector is formed by comparing a test profile of one target at a particular aspect angle against a
group of profiles from the templates of all other targets within a parameterized aspect angle
“error window””.

An extensive test has been completed in which statistics were generated while testing
every single available MTFP profile for a grazing angle of 8°. This is a total of approximately
2600 HRR profiles tested in order to generate the most accurate statistics possible. Specifically,
the statistics generation function performs MSE comparisons using every one of these profiles as
a test profile against all other profiles within 50 degrees of aspect angle of the test profile aspect
angle. This produced over 6.5 million MSE comparisons. Every single comparison returned the
following information:

(1) aspect angle of the test profile

(2) target class of the test profile

(3) aspect angle of the template profiles

(4) target class of the template profiles

(5) resulting MSE scores

(6) difference between the aspect angles of the test profile and template profile
(2), (4), (5), and (6) are used to compute Match and Mismatch statistics for SAT. Statistics are
generated for all integer values of (6), which corresponds to 1-50°. Typically, match and
mismatch statistics are computed disregarding the sector of the test profile but have included
sector information in the tests below. Remember that the expected values for MSE Vectors used
in CAT are generated by comparing each “test profile” from the database from one class in one
sector against every template profile within 50 degrees of aspect angle in every class. The
resulting MSE scores from this test are organized in a way such that knowledge of (5) and (6),
will lead one to compute the expected MSE vectors for any error window between 0-50°. Lastly,
the function used in CAT to compute the MSE score now returns all MSE scores and
corresponding aspect angles to evaluate if the minimum MSE score came from the appropriate
template profile aspect angle.

Multiple MATLAB Performance Analysis Tools are available to better evaluate every
successive “run” of the tracker.” The functions CATGenerate and SATGenerate allow the user to
form MSE Vectors and match/mismatch statistics while specifying a desired error
window(s)/threshold(s). Moreover, it allows the user to select the ID # of the specific targets to

" one “run” is described as when targets are tracked from the beginning to the end of one scenario
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be used in statistics generation. With CAT, these will be specific to the scenario. The user may
also plot and view these results. The function DisplayEndOfRun, in multiple-run sessions, can
analyze and/or average any type of information returned from any point in a session or run (i.e.
the number of missasociations per run).

2.3 Data Usage (Concerns)

There is one main concern with the research below at this point. Section 2.2.3 briefly
mentions how each “moving-target” MTI detection is augmented with an HRR profile.

Currently this HRR profile is not a moving-target profile, but a profile from the non-moving
template database formed from SAR images. Therefore, a problem arises when pattern matching
is performed on a non-moving profile from a radar detection (should be a moving profile) and a
group of non-moving profiles from the template database. If an exact match is found as expected
in CAT, the log MSE score is negative. The results will not be similar to those expected in an
entirely real system/scenario where radar detections are augmented with moving-target HRR
profiles that should be noisy versions of the non-moving template profiles. This is a concern
both within MSE Vector formation in CAT and similar “group” MSE comparisons in a SAT
database (Section 5.3).

The temporary solution is that the minimum MSE score, which could be an exact match,
is not used in these “group” comparisons. Instead, the second-lowest score is used, resulting in
the guarantee that an exact match and thus a “too negative” MSE score will never occur. With
this method, the resulting MSE scores are as expected and mimic those of a more realistic
simulation, albeit the way in which they are obtained is unrealistic.

The only permanent solution would be to obtain real or simulated moving-target HRR
profiles. Thave explored these options extensively and there is no real unclassified moving-
target HRR data that could have been easily acquired and/or utilized. However, contact has been
made with the Submillimeter-Wave Technology Lab at UMass-Lowell, who has simulated
moving-target HRR’s in the past. They have radiated scaled target models provided by the
National Ground Intelligence Center in order to obtain HRR and other radar signatures at 360° of
aspect angle coverage. However, the bottom line is that the results from research on CAT and
SAT available to this point, while not entirely accurate numerically, do reflect important trends
and results that are expected to occur with real moving-target HRR profiles as well.

41



CHAPTER 3.
KINEMATIC TRACKING/ESTIMATION

3.1 Kalman Filter Performance

The noise inherent in radar detections is assumed to be Gaussian, hence legitimizing the use
of the Kalman filter to dampen the effects of this noise and produce “smoothed” detections. This
smoothing effect is demonstrated below.
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Figure 17. Kalman filter “smoothing” (e ground truth, + noisy detections, Kalman filter output) in
Cartesian coordinate plane: x (meters) and y (meters)

As evidenced above in Figure 17 (and leftmost plot below), the majority of Kalman filter position
estimates are closer to the ground truth position than are the radar detections. However, the intensity of
this smoothing effect depends upon scan update time (df) and the speed of the target. As you increase dt
and/or target speed, the PDF associated with the expected target position in state space widens thus
increasing the allowable position error. The Kalman filter then assumes that the noisy detections are
closer to the position mean, eventually leading to the acceptance of the detection as true position.
Consequently, the estimate is barely smoothed at all (see rightmost plots below).
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Figure 18. The effect of Kalman filter on various scan update times (dt) for
a target traveling at 10 m/s in Cartesian coordinate plane: x (meters) and y (meters)
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Figure 19. The effect of Kalman filter on various target speeds with
a scan update time of 5 s in Cartesian coordinate plane: x (meters) and y (meters)

Figures 18 and 19 show that the Kalman filter is ineffective as both speed and scan update time
increase. Current tracking systems typically operate at an optimal scan update time between 3-5
seconds. Additionally, the ground targets of interest typically have a cruising speed above 10
m/s. Therefore, the Kalman filter provides minimal mitigation of the noise inherent to radar
measurements within some of the scenarios tested below. When target maneuvers are expected
to occur, it is recommended that dr < T, where T, is the maneuver time constant (time to
complete 66% of the maneuver). Typically, the T, used in the scenarios generated for this study
are less than 5s, again proving that the effectiveness of the filter depends upon both the scenario
and target dynamics, and forcing the use of a smaller df for the purpose of analysis. Regardless,
the Kalman filter will still minimize the mean squared error as long as the target dynamics and
noise are modeled correctly. It additionally provides the following advantages [9]:

1) Different target types and environments can be modeled differently by simply changing a
few key parameters. For example, in this code, the various target maneuvers are modeled
using the parameter ¢ in the plant noise matrix.

2) The Kalman filter also models range-dependent target dynamics well. Clearly, as target
range increases, the target angular dynamics (expected error) changes. The Kalman filter
is equipped to mitigate these situations.

3) The filter is highly adaptable: The sampling interval (scan update time) is easily
adjustable and can handle missed detections.

4) It provides a measure of estimation accuracy through the covariance matrix, which is
useful for maneuver detection.

5) Recursive estimation is used, meaning that only the target history and covariance
matrices from the previous scan are used in state estimation.

3.2 Aspect Angle Estimation Enhancement

3.2.1 Filtering Options

The Kalman filter velocity output and thus aspect angle estimation is the most important
calculation in this tracking system. Therefore, an improvement in Kalman filter performance
would have a direct impact upon overall tracker performance. Much of the following is the
summary of [6, p.193]; a comparison of a variety of filtering methods. This information was
used to decide how research (track filtering, in particular) should proceed.

As stated in Section 1.3.3, this kinematic tracker uses a white noise constant velocity (CV)
dynamic model. Random target dynamics (target acceleration, i.e. maneuvers) are taken to enter
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the system as white noise. The Q matrix is where this uncertainty is modeled. The results from
this form of modeling are no different than if a constant acceleration (CA) target model were
used. The CA filter models the time-derivative of the target acceleration as white noise,
resulting in a dissimilar Q matrix (size and cell values). The selection of g for the formation of
this matrix is a process best performed by simulating expected target trajectories against the
tracking filter and adjusting parameters to minimize some error criteria. This study has been
performed in the past with this tracker and the g values used were determined in this manner.
Another alternative is the Singer Acceleration model, which assumes the target acceleration
(used in addition to position and velocity as a state) to be a first-order process. The state
transition matrix differs as does the Q matrix. The use of an acceleration state is only of value
when a velocity measurement is available. With a measurement of position alone (as in this
simulation environment), an accurate estimate of acceleration can only be provided when
10dr < 7,,. The results comparing the CV and CA filters with the Singer model showed little

difference despite the Singer model being matched to actual target dynamics.

Coordinated turn models are also available when velocity measurements are present. They
model the rate of change of the acceleration vector in terms of turn rate, velocity vector, and
white noise. This filter is typically used to model turning aircraft. One of these methods is the
nearly constant speed horizontal turn (HT) model, which directly uses target speed as a filter
state. The nearly constant speed constraint assumed for a coordinated turn is introduced using a
small value for the process noise entering the system through the speed state.

The choice of which filter models to use in a tracking system depends upon the types of
maneuvers expected. However, the various filters can be effectively used simultaneously in
maneuver adaptive filtering. The most popular and promising of these is the Interacting Multiple
Model (IMM) approach. The state estimates and covariance matrices from the multiple target
maneuver models are combined for the transition between target maneuver states. This approach
considers maneuver transition probabilities (probability that a target will transition to a maneuver
or remain in its current state). Using the transition properties, state estimates and covariance
matrices are computed by “mixing” the numerous filter outputs for the various maneuver
possibilities. This process is similar to the classification inherent to CAT with its dependence
upon Bayes’ decision rule.

A comparative performance study on various filtering methods was executed and outlined in
[6, p232]. Included in this analysis were the CV model, Singer model, adaptive Singer model,
HT model, and IMM (using CV, Singer, and HT). The kinematic tracker error results were given
by RMS (root mean squared) prediction error defined in terms of mean and variance of the error.
The CV filter generally outperforms the Singer filter while the large speed error and slower
recovery time hampered the Singer filter performance. The Maneuver Adaptive Singer filter has
a large peak error despite having better smoothing and recovery effects. Meanwhile, the IMM
filter gives the best overall performance, however recovery after maneuver may be slow at some
points depending upon the scenario/maneuver tested. The ability of this method to maintain the
correct velocity through turns was significantly better than other methods. While more complex,
the IMM was consistently the superior performer in this study during both periods of maneuver
and non-maneuver. However, for its level of complexity, the CV filter did not perform badly
relative to its counterparts. Due to implementation and time constraints, the decision was made
to continue analysis of the Lincoln Lab tracker using a CV filter. While the IMM filter did
appear to provide an advantage, this advantage was not large enough to warrant the transition to
an IMM approach, as this would basically be considered creating a new tracker.
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3.2.2 Curve-Fitting

In addition to altering the type of filter used, an attempt was made to utilize the position
outputs of the Kalman filter for curve fitting in an aspect angle estimation algorithm. A history
of these positions (of length k) for each track was stored after each scan; k is a pre-set parameter.
The MATLAB functions polyfit and polyval are used to perform these operations:

POLYFIT (X,Y,N) finds the coefficients of a polynomial P(X)
of degree N that fits the data, P(X(I))~=Y(I), in a least-
squares sense.

[P,8] = POLYFIT(X,Y,N) returns the polynomial coefficients
P and a structure S for use with POLYVAL to obtain error
estimates on predictions.

Polyfit was used twice to calculate Px, Sx and Py, Sy. Both times, the “X" used in the function
call above was the sequence of integers from 1 to k. When Px and Sx are calculated, “Y” is the
track history x-coordinates. When Py and Sy are calculated, “Y” is the track history y-
coordinates. Next, polyval was used twice:

Y = POLYVAL(P,X), when P is a vector of length N+1 whose
elements are the coefficients of a polynomial, is the value
of the polynomial evaluated at X.

“x2” and “y2” were calculated to be “Y” in the above function definition. “P” was Px and Py
respectively, while “X” was a number sequence from 1 to k, incremented by a small amount
from above in both cases. The technique of using the number sequence twice within polyfit
ensures that each set of position history coordinates (X, y) is followed by the resulting line
chronologically. Finally, “x2” and “y2” are the x and y coordinates of the new best-fit curve.
The order, N, of each “x” and “y” calculation involving in the above curve-fitting was
determined by visually evaluating the resulting curve fit for k = 4 data points meant to represent
a turning target; the situation that line fitting is needed most for. This test is shown in Figure 20
below where the numbers in the legend refer to the order, N, of the “Px” calculations and the
”Py” calculations, respectively. It was determined that a second order curve-fit for both
coordinates (case 2,2) best represents a true target path and would therefore provide the most

accurate estimation of aspect angle in this, and similar situations.
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Figure 20. Test to determine order, N, of line fitting operations.
[Cartesian coordinate plane: x (meters) and y (meters)]

Once curve fitting is performed on k data points, an estimate of the aspect angle is
calculated. As mentioned above, the final result of this fitting operation is a set of coordinates,
“x2” and “y2” (incremented by .01), that represent the best fit curve. There are 100 points on
this curve between each data point. Therefore, the slope of this line and thus a velocity vector in
both directions is calculated using the difference in x and y position between points on this
curve.

The point on the curve at which the velocity vector and aspect angle are calculated is a
chief concern. Initially, calculations occurred at the point on the curve closest to the actual data
point in question (current radar measurement). However, it was discovered that due to the
method that MATLAB performs line-fitting operations, the velocity vector at this point is not
close to what is expected. Therefore, tests have been performed that compute aspect angle at
various “delay points” along this line. The “delay” number represents a point on this curve
going back in time. For example, using scenario in Figure 20, if an aspect angle were calculated
for a delay of 50, it would correspond to a calculation point halfway between point 4 and 3. If
the delay were 0, the calculations would occur at point 4, if 100, point 3, if 200, point 2, etc.

A multitude of tests have occurred which evaluate the effectiveness of this curve-fitting
aspect angle estimation algorithm. The history size, scenario type, and maneuver type have all
been varied. The scan update time remains one second in order to evaluate more data points in a
best-case scenario. A full run of the kinematic tracking algorithm is performed, with the track
position history saved at each point. After each scan, the true aspect angle and Kalman filter
estimated aspect angle are calculated and stored. Additionally, a curve-fitting estimate of aspect
angle is calculated using the above algorithm. Both estimates (Kalman and curve-fitting) of
aspect angle are compared with the true aspect angle and a mean and standard deviation of the
resulting aspect angle estimation error throughout the scenario is plotted below. The x-axis
represents the delay number. The Kalman filter aspect angle estimation error (red *) remains
constant as delay differs. The curve-fitting error is represented by blue +’s.

3.2.2.1 Straight-Line Constant-Velocity Scenario

Figure 21 shows the results from a straight-line, constant velocity scenario involving 100
target detections with one target traveling at 10 m/s at a scan update time of 1 second with
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varying k. In a constant velocity scenario, it is hypothesized that increasing history time, k, will
improve the results (lower the mean aspect angle error) of curve fitting because more data points
exist that lie closer to the target ground truth (straight line):
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Figure 21. Aspect angle error estimate comparison while varying history size, k. (Red * — Kalman
estimate, Blue + - curve-fitting)

Figure 22 shows the results from a straight-line, constant velocity scenario involving 100 target
detections with one target traveling at 10 m/s with a history size of 6 with a varying dt. Ina

similar fashion, an increased scan update time should improve the results because the detections
are more spread in space and thus better resemble a straight line:
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Figure 22. Aspect angle error estimate comparisons while varying scan update time, dt. (Red * — Kalman
estimate, Blue + - curve-fitting)

A number of the above tests occurred. The velocity of the target was also varied as both 10 m/s
and 5 m/s to form tables 1 and 2 below. Visually, the use of curve fitting starts to become
advantageous when the minimum of the blue (+) curve initially reaches below the red (*) line as
in the middle plot in Figures 21 and 22. Any k and dtf above the values used at this point should
push the minimum mean error from curve-fitting below the mean error from the Kalman filter:

Effective k> Effective dt> Optimal Delay Optimal Delay/k
4 1.8 150 37.5
5 12 200 40
6 1.0 250 41.7
1 0.8 290 41.4
8 0.5 340 42.5

Table 1. Evaluation of minimum k and dt when curve-fitting aspect angle estimation becomes
advantageous (target traveling at 10 m/s in a constant velocity, straight-line scenario).
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Effective k> Effective dt(s)> Optimal Delay Optimal Delay/k
4 1.8 150 37.5
5 12 200 40
6 1.0 250 41.7
7 0.8 290 41.4
8 0.5 340 42.5

Table 2. Evaluation of minimum k and dr where curve-fitting aspect angle estimation becomes
advantageous with a target traveling at 5 m/s in a constant velocity, straight-line scenario.

The above results can be used to draw conclusions for the use of curve fitting as it applies to
aspect angle estimation in a straight-line, constant velocity scenario. Evidently, the optimal
delay point varies with history size. It can be assumed that

Optimal Delay = 41xk

Further testing below dt = 0.5 did not occur because a scan update time of 0.5 seconds is an
extreme best-case scenario. In conclusion, curve fitting appears to be an effective method for

- such a scenario. According to the above table, with a df of approximately 1.8, you must only
have a track history of 4 for minimal effectiveness. As mentioned earlier, a typical scan update
time is between 3 and 5 seconds; according to the above results an acceptable value for all
lengths of track history above k = 4.

3.2.2.2 Maneuvering Target Scenario

The results of the previous section can only be used in particular scenarios.
Implementation of curve fitting would have to occur when it is known that a target would be
maneuvering in that way. This could be possible if a network of roads were known and it was
assumed that targets would be following these paths. Additionally, if minimal radar
measurement error existed the use of curve fitting might also be possible because of accurate
detections. A more accurate and valuable maneuver detection algorithm would result.
Currently, due to the level of noise, almost all detections are associated with either constant-
velocity (‘CVT’) or unmodeled (‘UNM’) maneuvers. When either of these mitigating factors
mentioned above is unavailable, it must be assumed that targets will undergo maneuvers that are
most challenging to kinematic trackers. Therefore, further tests were completed using the
Curve/Sharp Turn scenario outlined in Section 1.2.2 and shown again below with a scan update
time of | second. Increased update times are achieved by down sampling this data:
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Cartesian coordinate plane: x (meters) and y (meters)

Of additional concern in maneuvering target scenarios is the overall amount of large aspect angle
estimation errors (greater than 10°). This measure of effectiveness is also evaluated in the plots
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below. Initially, the entire scenario was tested was tested; analysis was done at every position
point for various scan update times (df) and history sizes (k). Figure 23 analyzes this scenario

with a history size of k = 6 while varying update time.
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Figure 23. Aspect angle error estimation comparison for maneuver scenario
while varying scan update time, dt. (Red * — Kalman estimate, Blue + - curve-fitting)

The next set of plots represent the entire scenario as well, keeping the scan update time at 3

while varying the history size:
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Figure 24. Aspect angle error estimate comparison for maneuver scenario while varying history size, k.
(Red * — Kalman estimate, Blue + - curve-fitting)
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The above results do not support the conclusions of the previous section. First, increasing
history size is shown to be ineffective at lowering the minimum aspect angle error. This is most
because as you increase history size, you risk an occurrence in which the data points used in
aspect estimation are involved in multiple maneuvers. If so, aspect angle estimation error will
increase. Similarly, as you increase scan update time, there is a greater chance that data points
may be involved in different maneuvers, thus forcing the curve to fit to an incorrect maneuver.
A small scan update time, coupled with a small history size, might lead to data points that are
only undergoing a small part of the maneuver. For this reason it is again recommended that the
distance traveled by the target in the data points, d, is greater than the T, distance.

The above tests also disprove the constant-velocity assumption that the optimal delay
number is proportional to history size. Generally, the optimal history size from above would be
between k =4 to 8. A dt of approximately 3 seconds provides somewhat advantageous results.
However, it is clear that this study is inconclusive because at no point is the use of curve fitting
clearly advantageous in all situations. In part, this is because no clear relationship exists that
leads to the selection of optimal delay number.

Most realistic scenarios will resemble the maneuvers taking place in this scenario.
Therefore, further analysis was performed on aspect angle estimation during specific target
maneuvers. The following figure shows this scenario at df = 2 sec with 9 maneuvers labeled.

500 , , . . .
L I ....,pu..
400 _.' 1 ' -: 4 5 .o. -1
300 b : . i ]
2004 . : . 8 J -
! * : y e 3
100t " ' . o i » i
> ..2 3 .. '. E ? : E 9 ..o
D‘ | e te®™ey | | ot 't - cloni ‘et |
0 500 1000 1500 2000 2500 3000

Figure 25. Curve/Sharp turn Scenario with maneuvers labeled
in Cartesian coordinate plane: x (meters) and y (meters)

These maneuvers were used to further analyze curve fitting as a method of aspect angle
estimation during optimal performance when k=4, 5, and 6:
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Figure 26. Aspect Angle error comparison for maneuvers only
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The main objective of this section was to achieve improved aspect angle estimation
during target maneuvers. Despite the parameters being set for optimal performance above, there
is clearly no advantage gained. This method can provide improved estimation during constant-
velocity scenarios. However, the level of measurement noise and the assumed scan update time
of 5 seconds render the maneuver detector within the tracker ineffective (again, due to expected
selection of only ‘CVT’ or ‘UNM’ as the maneuver hypothesis regardless of ground truth
maneuver). If there is no accurate way to either determine when a target is maneuvering in a
simple straight-line scenario or to select the optimal delay point, there can be no effective way to
utilize the results of this section.

3.3 Aspect Angle Error Measurement

Improvement of aspect angle estimation would involve either major adjustments and/or
changes to the Kalman filter or extensive research into other state estimation methods (such as
the curve fitting method outlined above). In an effort to save time and maintain a low level of
complexity, measurement and comprehension of the inherent aspect angle error is expected to be
another, possibly more efficient, method of mitigating this problem. If we can model the
tendencies of this error, then we can compensate for it throughout FAT.

Originally, it was assumed that the majority of aspect angle errors are less than 10°. This
10° assumption is used in the formation of the error window during CAT and as the “threshold”
value in SAT. It is obvious that the radar range and measurement parameters directly affect the
amount of error encountered. However, it will be shown that it is important and useful to be able
to model and predict this error for the particular environmental geometry of any scenario because
this 10° assumption is invalid and inaccurate. Aspect angle error will be measured here using the
radar parameters outlined in Section 2.2.2.

3.3.1 Constant Velocity Scenario

The constant velocity scenario used above in Section 3.2.2.1 will be used to measure
aspect angle error. In each run, 100 detections are simulated with the true aspect angle held
constant for every detection. Thirty consecutive runs with random error in each were completed
during which the speed of the target was equal to the run number in m/s. The scan update time
was equal to 2 seconds and this test was performed twice: At constant aspect angles of 0° and
180° (target head-on and tail-on), representing the most geometrically challenging situations
facing a radar tracking system. This is because with a target at broadside (90° and 270°), the
overwhelming affect of azimuth measurement error will cause the detections of this target
traveling in parallel to the radar to appear spread so that they (the detections) also appear parallel
to the target, making for an estimated aspect angle that is always 90° or 270°. Overall, there are a
total of 60 tests with 3000 independent aspect angle estimates. After each run, the Kalman filter
track history and aspect angle estimates were saved for comparison with the true aspect angle.
Figure 27 depicts the overall mean and standard deviation of the aspect angle errors for each
speed tested.
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Figure 27. Aspect Angle Error from the Kalman filter for a constant velocity,
straight-line scenario at aspect angles of 0° and 180°

Predictably, there appears to be a correlation between target speed and aspect angle estimation
error. The true target speed as opposed to estimated target speed was used in the above tests
because the estimate is extremely accurate in this simple scenario. This will not be the case in
the following section. As speed decreases, the likelihood that a target is maneuvering increases
thus the confidence of the Kalman filter decreases. This is not evident in studies of the
covariance matrix of the Kalman filter, however, because the plant noise and measurement noise
matrices remain the same regardless of speed (so long as ‘CVT’ is the hypothesized maneuver,
which is typically the case).

3.3.2 Maneuvering Target Scenario

Because most realistic situations involve maneuvering targets, the maneuvering target
scenario used above in Section 3.2.2.2 is also used to measure aspect angle error. The desired
results are that the findings from this test mimic those of the constant velocity case so a
relationship can be established between target speed and aspect angle error regardless of
maneuver or scenario parameters.

The results below show the standard deviation of the aspect angle error for scan update
times of 1, 2, 3, 4, and 5 seconds. Each scan update time was tested in twenty random runs of
the maneuvering target scenario. Overall, there were 100 separate runs, with a total of
approximately 14,000 independent aspect angle estimations. The table below shows the mean
and standard deviation for all 5 tests. The radar platform was held constant.”

dt (s) = 1 (304 scans) | 2 (152 scans) | 3 (102 scans) | 4 (76 scans) 5 (61 scans)
Mean (deg) -1.22 -91 -1.24 -.97 0.11
Std (deg) 16.30 16.58 16.55 17.46 15.88

Table 3. The mean and standard deviation of aspect angle error for the maneuvering target scenario with
varying dt.

" If the platform is placed in the exact opposite position under the same conditions, the mean of the aspect angle
error is opposite as well while the standard deviation remains the same.
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The results in table 3 prove that the overall aspect angle error remains relatively constant for scan
update times less than 5 seconds. As expected, the mean is approximately zero. Depending on
the specific tracking environment, the aspect angle error could be well above 10°, disproving the
assumptions of previous studies of this system.

Figure 28 plots the test data from above to illustrate possible correlation between aspect
angle error and the Kalman filter estimate of target speed for this, more realistic, scenario. It
shows the speed and aspect angle error of every test point (13338 random test points), regardless
of target maneuver. This test will not be performed on specific maneuvering data points due to
the aforementioned ineffectiveness of the maneuver detector. Regardless, the scenario tested in
this case is generally more kinematically challenging than most real-life scenarios.
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Figure 28. Plot of Aspect Angle Error v. Estimated Speed for Maneuver Scenario

There were no true target speeds above 30 m/s, so all data points above this are in error, but still
must be considered. This plot shows a clear relationship between estimated speed and aspect
angle error. Again, this test is only for the specific tracking environment outlined above and
further tests must occur to validate this result. However, because of time constraints, the
assumption will be made that aspect angle error follows such a relationship.

3.3.3 Error Prediction

Surprisingly, the results in the above figure mimic the trends noticed from the constant
velocity test: that there appears to be a direct relationship between estimated target speed and
expected aspect angle error. The above result will be utilized within the tracker to correctly
determine both the CAT window size and SAT “threshold” value separately for each scan. The
above data points are again used to compute the expected standard deviation of aspect angle
error for specified speed intervals. Below is a table representing these computations for the
above tests and scenario:
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Speed(m/s) 0-1 1-2 2-3 34 4-5 5-6 6-7 7-8 89 9-10
(779) | (712) | (675) | (648) | (630) | (589) | (557) | (504) | (504) | (443)

Std (deg) 11.03 | 11.10 | 1245 | 13,19 | 13.22 | 13.28 | 1252 | 11.07 | 11.78 | 11.63

Speed(m/s) | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20
(427) | (431) | (388) | (387) | (382) | (346) | 401) | (352) | (371) | (363)

Std (deg) 12.01 | 12,07 | 13.29 | 1378 | 13.16 | 12.71 1245 | 10.80 | 9.94 7.74

Speed(m/s) | 20-21 | 21-22 | 22-23 | 23-24 | 24-25 | 25-26 | 26-27 | 27-28 | 28-29 | 29-30
(352) | (362) | (374) | (361) | (343) | (296) | (268) | (222) | (199) | (A73)

Std (deg) 71.57 7.49 6.80 6.05 7.36 5.09 6.26 6.83 5.69 5.84

Table 4. Standard deviation of aspect angle error for specified intervals of estimated speed with
the number of data points used in analysis in parenthesis

The above table shows that, approximately, 68% of aspect angle errors are less than 13 degrees
for estimated target speeds from O to 17 m/s and less than 8 degrees for estimated target speeds
from 17 to 30 m/s. Speeds can be grouped and analyzed with more or less detail, as desired.

Implementation: When FAT needs an aspect angle error prediction, the current Kalman filter
estimate of target speed will be used in conjunction with the above table of standard deviations to
determine error expectation. This occurs in window size determination in CAT (Section [.4) as
well as the determination of an aspect angle difference “threshold” used within SAT (Section
1.5). Specifically, the expected aspect angle error is computed as twice the standard deviation
shown above, so as to include, by definition, 95% of all aspect angle estimation error. Such
window “flexibility” requires that statistics be generated for “window” and “threshold” values
other than the standard ten degrees. This has been done and the results will be discussed later.

Overall, the discovery of this apparent relationship leads the user to gain a great deal of
comprehension of the probable performance of this tracking system. Again, it must be noted that
every scenario will produce a slightly different relationship and therefore, an a priori simulation
of the expected target maneuvers in the expected tracking environment must be performed. The
above results will be used in the specific analysis below.
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CHAPTER 4.
CLASSIFICATION-AIDED-TRACKING (CAT)

To study the performance of CAT, both the vehicle identification capability and track
continuity capability must be evaluated. The assessments below will be similar to those used to
test CAT in previous studies. In the past, all experimentation has used the MSTAR data set to
supply HRR profiles processed with BHDI (Section 1.2.1.3). The tests below will use the MTFP
data set and HRR profiles processed with the baseline weighted-FFT method to form the
template database, augment the radar target detections, and subsequently analyze the
performance of CAT.

4.1 Performance Analysis of Initial System

Detailed in Section 1.4, the operation of CAT basically involves using an ATR classifier
to aid in data association by measuring class continuity from scan to scan. CAT is used when a
multi-class database of HRR profiles is available a priori. Each report can be assigned a
probability or likelihood that it is a member of a specific target class or type. A Bayesian
classifier is then used to generate the class likelihood and is a function of both the ATR result
and the previous track identification. An MSE vector is formed, consisting of the minimum
MSE score from the comparison of the report HRR against a group of HRR templates from each
target class. This “group” of templates is collected by taking all template profiles from aspect
angles within ten degrees of the estimated aspect angle of the track/report pair in question. For
the current (initial) system, this aspect angle “error window” is 10°. As noted in the previous
section, this assumption of ten degrees of aspect angle error is incorrect; however, tests will be
performed on such a system to use in comparative analysis with enhanced versions of CAT.

4.1.1 Vehicle Classification

In order to evaluate the vehicle identification capability of the tracker, we simulate the
path of a Scud Launcher with no confuser vehicles using the maneuvering target scenario from
above. The expected MSE vector for this Scud launcher was formed from the pre-generated
statistics assuming a database of [ target class and an other class. With this 10° error window,
the statistics (in log-MSE score) from comparisons with all other classes in the database are:

Uscud = [0.4970] [0.5080] [0.4547] [0.4156] [0.4872] [0.4656] (sectors 1 — 6)

Goscud = [0.0291]  [0.0194] [0.0418] [0.0570] [0.0308] [0.0265] (sectors 1 — 6)

Worner = 1.1712 0 oher = 0.0695
It should be noticed that this initial version of CAT divides the target statistics according to
aspect angle sector (0°-30°,30°-60°...180°) while the other statistics are not. This is inherently
more inaccurate than if the other statistics were separated by sector as well. Also notice that as
targets approach broadside (90° aspect angle, sectors 3 and 4), the variance of the MSE scores is
higher than when they are head or tail-on (0° or 180°). This is because the target is only observed
in range and more range bins with valuable information will appear in a head-on situation. The
classifier will therefore have more trouble with targets at broadside.

Five runs (with random measurement noise) of the maneuvering target scenario were
completed and evaluated. The true aspect angle, aspect angle error, estimated target speed, and
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most importantly, and posterior probability (target classification) was saved after each scan.” A
scan update time of 1 second was used to produce useable information from 302 scans per run.
The Scud launcher is an exceptionally distinct target (in HRR) hence the following results will
be considered a “best-case” scenario.

Figure 29 is a plot of the posterior probability: A function of the ATR classifier result
and the prior knowledge of track class identification. It is a measure of the probability that the
Scud launcher report HRR came from an actual Scud launcher according to the classifier, given
past track history. Additionally, the blue ®’s indicate that the ATR classifier has correctly
identified a report. This is a function of the ATR result only. For example, if the classifier
returns a value of 0.73, it means that there is a 73% chance that the report came from a Scud
launcher, and a 27% chance that the target is of the other class of targets. If this percentage is
below 50, then a red + indicates that the classifier made an incorrect decision:
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Figure 29. Poster probability accumulation for the Scud Launcher in the maneuvering target scenario.
Blue e indicates correct classification by ATR classifier, while Red + indicates incorrect classification
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Figure 31. Aspect Angle Estimation Error v. Scan # for the Scud Launcher in the
maneuvering target scenario

" A significantly smaller number of tests can be run on CAT due to the large amount of processing and thus time
requirements

56



=Y
o
1
'
H
'
H
'
'
'
'
'
H
'
'
'
'
'
'
a
'
'
v
'
'
'
'
H
'
H
'
'
v
'
'
H
'
'
'
'
'
i
'
H
'
'
4
]
'
'
'
'
'
i
i
v
.
v
.
v
i
v
H
.
o
.
H
.
v
.
'
'
'
'
'
'
'
'
i
'
i
'
'
'
v
i
.
i
'
.
1
H
i
.
.
i
'
i
'
i
-
.

'
.
'
'
'
'
'
'
'
4
]
'
'
'
'
]
'
'
'
'
'
'
'
o
'
'
'
'
'
'
'
Il
'
Il
.
.
]
'
il
4
1)
'
Il
'
'
'
'
'
'
'
'
'
'
'
!
'
'
'
'
'
i
Il
'
]
'
Il
'
'
'
'
'
a
'
'
'
»
.
"
.
"
"
"
.
"
"
.
"
.
"
=
"

.......................................................................................

—_
o

.........................................................................................

Estimated Target Speed (m/s)
&

I i i I
50 100 180 Scang 200 260 300

Figure 32. Estimated Target Speed v. Scan # for the Scud Launcher in the maneuvering target scenario

o

o

The probability that a correct posterior (Ppos) decision being was made is 45.7% while
the percentage of correct classification (Pg.) from the ATR algorithm was 54.0%. Overall, the
ATR classifier returned an average value of 51.7%. This means that with no prior knowledge of
track identification, the classifier thought that there was an average predicted 51.7% chance that
the Scud Launcher report HRR profile actually came from a Scud Launcher. This means that
there was basically a 50/50 chance that the classifier was correct. Additionally, it is possible for
the posterior probability to converge to 99% despite an incorrect classification by the ATR. This
would stem from a prior probability that is so high that it overrides the classifier results. The
above results again reinforce the conclusion that as estimated target speed increases, aspect angle
estimation error decreases (Figures 32 and 31). The true aspect angle plot is used to show how
classification ability varies as aspect angle changes and targets approach broadside.

Five more runs of this scenario with the same random measurement noise were simulated while
forcing perfect aspect angle estimation.
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Figure 33. Poster probability accumulation for the Scud Launcher in the maneuvering target scenario
with perfect aspect angle estimation. Blue e indicates correct classification by ATR classifier, while Red
+ indicates incorrect classification

In this case, the Py is 99.3% while the P is 87.1%. The average classifier value was 80.6%.
This result reinforces the dependence of CAT upon accurate aspect angle estimation. With small
estimation error, one can achieve near-perfect vehicle classification. It is therefore extremely
important that the error window be large enough to include the true aspect angle, so that a
“match” in HRR is found and this level of classification accuracy can be approached.

4.1.2 Track Continuity/Maneuvering Target Scenarios

For the purpose of the following tests, a “misassociation” must be clearly defined: It will
be considered the case when, for a given scan, there is a change in the association matrix from
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the previous scan. There is a change in the assigned track-to-report association (i.e. track 1-
report 1, etc.) from one scan to the next. This tracking simulation software has perfect
knowledge of the true identification of every report (report “1” is always from the same target; as
is report “2” and so forth). Therefore, we can easily recognize when a report from one target is
assigned to the track of another target. Once this incorrect assignment occurs, the track takes on
the new identity of that report. All subsequent reports from that same target should be assigned
to that track. Again, a misassociation is then considered a change in these expected assignments.
Take a simple two-class, two-report test for example:

Scan 45: Track 1-Report 2; Track 2-Report [
Scan 46: Track 2-Report 2; Track 1- Report 1

This would be considered a misassociation. It is true that most trackers have the ability to
“correct” these missasociations, where the original association (track 1-report2, track2-reportl) is
again assigned during the next few scans. This does occur for the simulation software used in
this analysis, but there will still be at least one scan with such an inaccuracy to be counted.
Moreover, all of the below scenarios will be measured according to the same standards.

4.1.2.1 X-non-crossing Scenario

CAT has the ability to drastically improve situations in which targets approach from
different roads and then quickly diverge. Such scenarios are referred to as X-crossing or X-non-
crossing scenarios (see Figure 1). The X non-crossing scenario explained in Section 1.2.2 is
used to simulate a Scud launcher and a ZSU truck approaching an intersection and then quickly
diverging. It will be assumed that the template database consists of five targets. The other class
statistics will simply be comprised of the merged non-matching MSE scores from all targets in
the MTFP data set.

Kinematically, the expectation is that the targets will cross as opposed to diverge. One
hundred simulations (runs) of this scenario with a dt of 1 second show that the kinematic tracker
chose the correct association only 67% of the time.” Twelve runs of this scenario with CAT
implemented result in only 65.2% correct associations. This shows, with a limited amount of
testing, that this version of CAT degrades data association accuracy. Perfect aspect angle
estimation can improve this value considerably. Figure 34 plots the percent of missasociations
versus scan number.
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Figure 34. Percent of correct associations v. Scan # for X-non crossing scenario with CAT

" increasing the df would further decrease the effectiveness of the tracker as there are less data points where the
target would be turning and thus the tracker will be less likely to recognize the mancuver

58



Figure 35 represents the posterior probability for the Scud Launcher after each scan, averaged
over the 12 random test runs. A blue dot indicates a correctly classified target while a red plus
indicates the opposite.
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Figure 35. Averaged Posterior probability accumulation for the Scud Launcher in the X non-crossing
target scenario.

As the target enters the maneuver (Scan 7), the posterior probability decreases, as does the ability
to correctly classify and associate the target. As expected, after the maneuver (Scan 13), the
posterior probability and thus confidence in track continuity increases.

Kinematic missasociations are corrected by the difference in the resulting incorrect and
correct association y -like score. This score will be directly related to the posterior probability.
Therefore, as the prior probability increases, there will be less of an opportunity for
misassociation. Information from the tests above has been used to quantify the level of prior
knowledge within CAT needed to correctly associate the track/report pairs. This is done to
illustrate the dependence of xzcm and correct track-report association on track priors. The figure
below shows the a priori knowledge about the correct track identification on the x-axis.
Therefore, if track 1 is a Scud Launcher and track 2 is a ZSU truck, a value of .3 is the a priori
probability that track 1 is truly a Scud and track 2 is truly a ZSU. Again, the results of twelve
separate runs of this scenario are averaged. The resulting posterior probability for the correct
track-report association from the Bayesian classifier is indicated on the y-axis. As the percent
prior probability increases for the correct association, there is a greater chance that the target will
be correctly classified. This is true even for this less-effective version of CAT; the effect will be
maximized for variants of CAT with improved aspect angle estimation.
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Figure 36. Posterior Probability as a function of the Prior Probability for the Correct Association for a
scan update time of 1 second
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4.1.2.2 Merging/Diverging Scenario

A second scenario will be tested which represents two targets, the Scud Launcher and
ZSU truck, merging, following each other, and later diverging. This scenario is a descendent of
the X-non crossing scenario and is shown below:
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Cartesian coordinate plane: x (meters) and y (meters)

Again, a five-class template database is assumed. Ideally, at both the merge and diverge point,
CAT should correct any misassociation by the kinematic tracker. With 50 runs, the Kinematic
Tracker made the correct association 65% of the time while. Ten runs of CAT chose the correct
association only 64% of the time. Figures 37 and 38 represent the averaged percent of
missasociations and the posterior probability for the Scud Launcher after each scan. A blue dot
indicates a correctly classified target (on average) while a red dot indicates the opposite in Figure
38.
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Figure 37. Percent of correct associations v. Scan # for merging/diverging scenario with CAT
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Figure 38. Averaged Posterior probability accumulation for the Scud Launcher
in the merging target scenario.
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As the target enters the maneuver (Scan 7), the posterior probability decreases, as does the ability
to correctly classify and associate the target. The performance remains deteriorated throughout
the “straightaway” and remains so until after the targets diverge. Again, CAT does not improve
the performance of the kinematic tracker.

4.1.2.3 Passing Scenario

The same targets and template database used above were used to test a scenario in which
two targets travel in parallel 5 meters apart with a constant velocity of 10 m/s in a straight line.
One target is lagging behind the other by 3 meters; the scan update time is 5 seconds. With 50
runs, the Kinematic Tracker made the correct association 66.5% of the time while, while with 10
using CAT, the correct association percentage was only 61.5%. The figures below are similar in
explanation to those above.

[y
]
[
'
'
'
'
'
'
]
1
'
'
'
'
'
'
i
'
'
]
i
'
'
'
'
il
il
'
i
i
'
i
'
'
'
i
]
'
'
'
'
]
'
'
]
]
'
'
'
'
'
'

&
]
"
"
"
'
"
"
"
"
"

-
"
"
"
"
"
"
{3
"
.
"
"
"
"
'
"
1
'
'
'
'
'
J
'
"
!
"
'
"
1
'
'
'

A D
e e Rsmmsm Hrm s K e s 3o-memee- Gromooenees Posesooeoe- :
2 @ ¢ PO ¢ ¢ ©° | i E
% 06f--------- B et it it ity g st posevuases Grmmmmmees :
N EE T
5 Ol eeafrssspmunnay R S T AresaR R AR Jerasnaens S i
2 : : : ' i : : A <R
0.2 | | | ] | | | | |
2 4 B 8 10 Scan#12 14 16 18 20

Figure 39. Percent of correct associations v. Scan # for passing scenario with CAT
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Figure 40. Averaged Posterior probability accumulation for the Scud Launcher
in the passing scenario.

The percent of correct association shows no appreciable pattern related to scan number (as
expected in this constant velocity, straight-line scenario). More noticeable is the inadequate
performance of CAT. This was expected and can be attributed to the problem discussed below
in Section 4.2.1.1. The enhanced version of CAT is not expected to provide any improvement in
this situation. However, this scenario is a perfect candidate for SAT.

4.2 Error Window Optimization

The results of Section 4.1 clearly indicate that, given the proposed operating
environment, CAT does not provide significant improvement over the use of the simple
kinematic tracker alone. As mentioned earlier, it is hypothesized that this is due to error in
aspect angle estimation. Moreover, Section 3.3 proved the assumption that the aspect angle error
is consistently less than 10 degrees inaccurate. In fact, it was shown that for slower targets, one
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standard deviation of expected aspect angle error was 13 degrees. In order to improve the
performance of CAT, it was proposed that the aspect angle error estimation “window” be larger
and thus more accurate. This section describes the process of window size selection and details
the resulting statistical and performance changes.

4.2.1 Aspect Match Comparison

Specifically, the expected aspect angle error should be large enough so that most true
aspect angle errors lie within this limiting value. Additionally, the computational and time
requirements inherent to CAT should also be minimized. One goal was to ensure that at least
95% of all aspect angle errors should be included in this error estimate “window™.

The findings of Section 3.3 were used in an attempt to meet this objective. As evidenced,
the expected aspect angle error is strongly correlated with estimated target speed. Table 4, which
quantifies the standard deviation of aspect angle errors in terms of estimated target speed, was
used to determine the extent of this “error window”. Recall that subsequent to Kalman filtering
within FAT, a new aspect angle error widow is computed for each possible track-report
association. Again, this will be equal to 2 standard deviations of the expected aspect angle error,
given the estimated target speed for the current scan. 95% of all aspect angle errors should lie
within this window. A corresponding “match” of report HRR and database HRR should then be
found during CAT operations because this “error window” would ideally include the true aspect
angle of the report target.

Figure 41 measures whether this does, in fact, occur. The maneuvering target scenario
was used in this analysis to represent the most kinematically challenging scenario and to ensure
that there are no data association conflicts. The scenario scan number is on the x-axis, while the
aspect angle error is on the y-axis. The averaged aspect angle errors by scan are represented as
black points while the optimized error window is plotted as a blue line and the old error window
(10°) is plotted as a red line. A positive result occurs when, for any scan, the aspect angle error
lies beneath this blue “error window™ line. The amount of such occurrences is illustrated shown
on the figure in terms of a percentage, called the aspect match %. Both the initial and enhanced
CAT aspect match percentages are shown as ‘Old %’ and ‘New %’.

Maneuvering Target Scenario
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Figure 41. Aspect Angle Error and Error Windows v. Scan # for the maneuvering target scenario.
The plot shows that 91.7% of all aspect angle errors for this scenario lie within their

corresponding error window. While this does not meet the pre-set goal of 95%, one must realize
that this is a worst-case scenario. It still exhibits significant improvement over the initial version
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of CAT by 35.6%. Furthermore, it proves that the tradeoff between error window size and
computational requirements can be optimized under the assumption that estimated target speed
correlates with expected aspect angle error.

4.2.1.1 Usability of CAT

While the above findings might prove valuable to CAT, a major concern arises due to the
increase in error window. This occurs when the error widow is large enough so an aspect angle
and HRR “match” is found in both the correct and incorrect associations. This problem is
compounded when the aspect angle error window only leads to a match for the incorrectly
associated report. This is explained in more detail below:

Assume a two-target, two-class scenario. The correct associations are track 1 - report 1 and track
2 - report 2:

True aspect angles:
Report 1 (target class 1): 90° Report 2 (target class 2): 50°

Kalman filter estimated aspect angles for every possible association with an aspect angle error
window of 25°:

trackl-reportl; 85° -class 1 “match” is found (85°+25° > 90°)

track2-reportl: 68° -class [ “match” is found (68°+25° > 90°)

track2-report2:  65° - class 2 “match” is found (65°-25° < 50°)

trackl-report2; 74° - class 2 “match” is found (74°-25° < 50°)

In all cases, the estimated aspect angles lie within the error window, causing a “match” to be
found.

This situation is entirely possible; in fact, it can be considered likely when targets are traveling in
parallel or near-parallel situations. What the above example is trying to show is that the
incorrect association (track2-reportl and trackl-report2) will produce the same minimum log-
MSE score as the correct associations due to an “HRR match” being found for all possible
associations. Therefore the resulting XQCAT matrix will include cells with similar scores and thus
provide limited aid in ensuring accurate data association. This is especially prevalent in the
results of Sections 4.1.2.3 and 4.3.2.3, where the tracker provides little to no added accuracy.
The user of this tracking system must recognize this phenomenon in situations similar to above.

4.2.2 CAT Statistics Comparison

Another concern arising from the expansion of the aspect angle error window is the
gradual merging of the matching and mismatching PDF’s of the expected log-MSE scores for
each class of target. Again, as you increase the “error window”, there is a more extensive search
through the database to include more HRR profiles from a larger number of aspect angles. It is
hypothesized that there will be an increasing chance that an HRR profile from a non-matching
target class will return a lower score than the matching score. This is simply due to the fact that
more non-matching comparisons take place and the chance increases that a random non-
matching template profile might match well with the report profile. Conversely, the increase in
matching target comparisons should not affect the returned lowest log-MSE score. If an HRR
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“match” was found at a given aspect angle, then testing profiles from the same target at other
aspect angles will surely return a higher, and thus insignificant, unused score.

The clear advantage of using an expanded error window is that the likelihood that a
match is found considerably escalates (Section 4.2.1). The statistical disadvantage is that the
PDF’s will merge and an MSE score returned from a correct HRR “match” might be closer to the
mean MSE score for a non-matching target class. Statistics have been generated as explained in
Section 2.2.4 for window sizes to include every integer between and including 1 and 50°. Figure

42 shows the expectation of the minimum log-MSE scores from CAT comparisons for sector 1

using a ZSU truck HRR as the “test” report profile.

Again, the report profile signature is

compared against a group of profiles from all classes in the template database. The minimum

log-MSE score from these comparisons are used in

these target classification procedures. This

example is used to represent what will be seen with less detail in subsequent plots.
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Figure 42. CAT Statistics for a ZSU-23 truck “test” profile in Sector 1 (0°-30°)

As expected, the lowest mean MSE scores above correspond to statistics for the comparison of
the ZSU report profile against the database of ZSU HRR templates. Signature comparisons
involving a ZSU report profile and templates from other target classes result in different behavior
as the error window size is increased. Generally, the hypothesis that as aspect angle error
window size is increased, the matching-class MSE mean remains relatively constant while the
non-matching-class MSE mean gradually approaches the matching mean. It is at this point at
which CAT would no longer provide accurate or influential aid in resolving data association
conflicts. In Figure 42, the “merge point” does not occur for window sizes less than 50 degrees.
Since the maximum error window used according to Section 4.1 would be 27.5 degrees, it can be
declared that the disadvantages stated previously are not a concern. However, Figure 43 shows
otherwise. Included in this figure are 36 of the above plots. Every target class is denoted by the
same color line throughout every one of the plots below. The sector for each plot is denoted by
the row of the plot, while the plot column denotes the target class of the “test” report profile.

64



The “merge point” occurs below for a number of comparisons. Specifically, the
comparisons involving the three variants of T-72 tanks indicate that it is very difficult to tell the
difference between these variants and the ZSU carrier. The merge point in most of these
situations (columns 1-3) occurs before 10°. Additionally, the sector of the simulated report
profile also plays a role in determining the advantage that CAT can provide. This again proves
that targets at broadside (approximately 60-120°; sectors 3-4) are difficult to classify correctly
because the mean MSE Score (and thus PDF’s) are very similar for all target classes.

On the contrary, several advantageous situations are also presented below. The PDF’s
resulting from Scud report profile comparisons are extremely distinct across all aspect angles. It
is therefore relatively easy to recognize and classify this target type. The same can be said, but
to a lesser extent, for the ZSU carrier and Zil truck. In most meaningful comparisons (not
columns 1-3), the “merge point” appears to occur near 25°, but this approximation differs
depending on sector and target class. Overall, it can be concluded that increasing the aspect
angle error window from 10° to even 27° results in very little, if any, detrimental effects to the
separation of matching and non-matching class PDF’s. Thus the confidence in the results from
CAT should only heighten.

T72-A32: Blue T72-A65: Green T72-A10: Red Zil-131: Cyan ZSU-23: Purple Scud-R23: Gold

Sector

T72-A10 Iik31
OTarget Class

Figure 43. CAT Statistics for all Sectors and all Target Classes. The sector is indicated by row and the

target class of the “test” report profile is indicated by column.

4.3 Performance Enhancement
This section will consist of assessments of CAT performance using the exact same
scenarios, tests, and random runs as in Section 4.1. The initial system, with an assumed aspect
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angle error window of ten degrees, will be compared with the enhanced system with the
optimized error window size. Many of the same plots used above will be shown again for
comparative purposes.

4.3.1 Vehicle Classification

Five runs (with the same exact random measurement noise applied to the initial test) of
the maneuvering target scenario were completed with the new aspect angle error window
applied. This experiment has the same true aspect angle, aspect angle error, and estimated target
speed as above. However, the posterior probability and target classification should improve. A
scan update time of 1 second was again used to produce useable information from 302 scans per
run. Figure 44 compares the plot of posterior probability from the initial system with the plot
from the enhanced system.
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Figure 44. Poster probability accumulation for the Scud Launcher in the maneuvering target scenario for
the initial system (top) and the enhanced system (bottom). Blue e indicates correct classification by ATR
classifier, while Red + indicates incorrect classification

The percent probability that a correct posterior (Ppos) decision is made was 89.8% while
the percentage of correct classification (P..) from the ATR algorithm was 91.7%. Overall, the
improved ATR classifier returned an average value of 88.9% for the correct association. The
following table shows the statistical improvement over the previous system. The enhanced
system almost doubles the effectiveness of the vehicle identification capability of the tracker.
Since the overall goal is correct classification, it can be finally stated that aspect angle error
window expansion provides 69.5% (approx. 70%) improvement in vehicle classification
capabilities. Because data association is directly related to vehicle identification capability in
CAT, improvements of this magnitude are also expected in track continuity evaluations.
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Poost (%) P (%) ATR avg. (%)
Initial System (10° error window) 45.7 54.0 51.7
Enhanced System (variable error window) 89.8 91.7 88.9
Y% improvement 96.5 69.8 72.0

Table 5. Comparison of Vehicle Identification Capability

4.3.2 Track Continuity/Maneuvering Target Scenarios

4.3.2.1 X-non-crossing Scenario

The X non-crossing scenario explained in Section 1.2.2 is again used to simulate a Scud
launcher and ZSU truck approaching an intersection then quickly diverging. The same test
conditions used in Section 4.1.2.1 apply for this test. Again, the template database consists of
five targets and the other statistics will be comprised of the merged non-matching MSE scores
from all targets in the MTFP data set. Twenty runs of this scenario with the enhanced version of
CAT implemented were completed. Table 6 shows the percent of correct associations for the
KT, Initial CAT, and Enhanced CAT:

% of Correct Associations
Kinematic Tracker 67.0
Initial System (10° error window) 64.8
Enhanced System (variable error window) 72.8
%0 improvement over Initial System 12.3

Table 6. Percent of Correct Associations for 3 variants of the tracker using the X-non-crossing Scenario

Figure 45 plots the percent of missasociations versus scan number for both the initial system (red
squares) and the enhanced system (blue circles).
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Figure 45. Percent of correct associations v. Scan # for X-non crossing scenario with Initial and

Enhanced versions of CAT (initial — red square’s, enhanced — blue circle’s)

Finally, Figure 46 below compares the posterior probability for the Scud Launcher after each
scan, averaged over the 20 random test runs for both variants of CAT. A blue dot indicates a
correctly classified target while a red plus or indicates the opposite. The larger icons represent
the data from the enhanced version of CAT.
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Figure 46. Averaged Posterior probability accumulation for the Scud Launcher in the X non-crossing
target scenario (larger icons = enhanced CAT).

The above results support the conclusion that the enhanced version of CAT provides significant
improvement in vehicle identification capability, which can be represented by the posterior
probability plot (Figure 46 above). On average, all targets are correctly classified during each
scan. In both this figure and the previous (% correct associations), improvements are greatest
throughout the maneuver, between scans 5 thru 12; the desired effect.

4.3.2.2 Merging/Diverging Scenario

Again, the Scud Launcher and ZSU truck were used in analysis of the merging,
following, then diverging scenario. The scenario environment is the same as in Section 4.1.2.2.
There were 20 runs of this scenario completed with the enhanced version of CAT. Table 7 is
used to compare the percentage of missasociations among CAT variants:

% of Correct Associations
Kinematic Tracker 64.9
Initial System (10° error window) 64.0
Enhanced System (variable error window) 71.6
% improvement over Initial System 11.9

Table 7. Percent of Correct Associations for 3 variants of the tracker using the merge/diverge scenario

Figure 47 below plots the percent of missasociations versus scan number for both the initial
system (red circles) and the enhanced system (blue +’s).
| (menfJennyennnmmmmrmenmemmmngemmnseenqeemmmmmeepenseeeengeeed O initial CAT | yeeemenens,

i : : : E : O enhanced CAT @ © !

@ & ; : : i : : e
S 08f---em-- Anmmmmea temmmmme i rmrommesnmnnnnmns Besraired ‘---G----i""@-'g---ﬂ-"i --------- :
Id ' " . . ' i i ' "
‘D : o : $ : ' :
g ? 1ot B i ief% ¢ 10
RLUCT e R e S BN Q """" el S S B £ L posessees bt i
8 i oo o i oo ¢ PO | ;
= : : P o : : . . : :
& Qs . S S S SRR patamsens RS pommmmess Jreomoness :
* L
02 | | 1 1 ] | | | 1 |
2 4 6 8 10geqn #12 14 16 18 20 22

Figure 47. Percent of correct associations v. Scan # for merging/diverging scenario with Initial and
Enhanced versions of CAT (initial — red squares, enhanced — blue circles)
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Finally, Figure 48 compares the posterior probability for the Scud Launcher after each scan,
averaged over the 20 random test runs for both variants of CAT. A blue dot indicates a correctly
classified target while a red plus or indicates the opposite. The larger icons represent the data
from the enhanced version of CAT.
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Figure 48. Averaged Posterior probability accumulation for the Scud Launcher in the merging/diverging
target scenario (larger icons = enhanced CAT).

Again, on average, every target was correctly classified during each scan. During the merge and
diverge point (Scans 5-9, Scans 16-19, respectively), general performance denigrates. However,
this is when the enhanced CAT can provide the most aid. During the “straightaway”, enhanced

CAT denigrates because of the effect outlined in Section 4.2.1.1. Overall some improvement in
this scenario still exists.

4.3.2.3 Passing Scenario

The same targets, template database, and scenario environment used above in section
4.1.2.3 was used to test the scenario in which two targets are traveling 5 meters apart in parallel
in a constant velocity, straight line situation at 10 m/s.. There were 10 runs of this scenario with
the enhanced version of CAT implemented. The tables and figures below are similar in
explanation to those above:

% of Correct Associations
Kinematic Tracker 66.5
Initial System (10° error window) 61.5
Enhanced System (variable error window) 62.5
% improvement over Initial System 1.6

Table 8. Percent of Correct Associations for 3 variants of the tracker using the passing scenario.
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Figure 49. Percent of correct associations v. Scan # for the passing scenario with
Initial and Enhanced versions of CAT (initial — red 0’s, enhanced — blue +’s)
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Figure 50. Averaged Posterior probability accumulation for the Scud Launcher in the
passing scenario [larger icons (*’s denote enhanced incorrect classification) = enhanced CAT].

As hypothesized, there is little to no improvement over the initial CAT and strictly no
improvement over using the kinematic tracker alone. It is not recommended that CAT be
utilized in constant velocity, straight-line situations. However, the xchT scores for all possible
associations should be relatively similar and thus the intensity of the xzsAT scores should force
the tracker to choose the correct associations. Analytically, this is the case because the averaged
difference in correct and incorrect association XQCAT score from this test is 0.209. This is
approximately only 1.5% of the overall range of returned ¥’cat scores, meaning that the x> or
xzs,u scores would in almost all situations correct this poor performance.

4.4 Aspect Angle Return Accuracy

In other independent studies of FAT techniques (such as [10]), the concept of “back-
estimating” aspect angle has been utilized. This refers to the use of the aspect angle of the best-
fit template HRR found to “match” the report HRR in CAT (aspect angle producing the
minimum MSE) as the actual aspect angle of the report. For example, if the initial Kalman filter
estimate of the report target aspect angle is 68° and the search for a “match” in HRR via CAT
(minimum MSE) returns a template from an aspect angle in the database of 75°, the latter would
be stored and used as the true value for that report (used by future FAT operations).

The accuracy of this technique will be briefly studied using the maneuvering single-target
scenario to again represent the most kinematically challenging scenario and to ensure that there
are no data association conflicts. Five runs of this scenario with a scan update time of 1 second
have been completed while returning the aspect angle of the template HRR that best matches (by
MSE) the HRR of the target report. The average difference between true aspect angle and this
CAT returned aspect angle is 3.80°. Comparatively, the average difference between the true
aspect angle of the target and the Kalman filter estimated aspect angle is 8.03° (a difference in
overall average error of 4.23°). Figure 51 compares the above errors by scan # in the
maneuvering target scenario; only showing errors between 0° and 30°.
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Figure 51. Plot of aspect angle Back-Estimation error and Kalman Filter aspect angle estimation error v.
scan # for the maneuvering single-target scenario

Visually, it appears that this estimation method is much more affective than Kalman estimation.
More importantly, the use of this method requires that CAT be in a useable situation (the target
class is known and a database exists for that class), which is not always the case.

4.4.1 Correlation Adjustment for Back-Aspect-Estimation

An important detail not depicted above is that the average comparative difference of
back-estimation error to Kalman estimation error per scan is 4.67°, slightly higher than the
overall average difference of 4.23°, but still much less than the average error for the Kalman
filter of 8.03°. The reason for this can be seen below in Figure 52 where back-aspect angle
estimation error is shown for all magnitudes of error:
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Figure 52. Plot of Aspect Angle Back-Estimation Error v. Scan # for the
maneuvering single-target scenario

There are 3 scans (not counting the first) that have aspect angle errors greater than 30 degrees.
This is most likely due to the fact that the best match template profile came from a profile that
was “randomly similar” to the report profile. In order to fix this type of error, it was proposed
that the back-estimate of the aspect angle be generated using all of the returned information from
MSE comparisons as follows. The MSE score and corresponding template aspect angle for all of
the comparisons are stored and used. A plot of this information will always be similar to Figure
53 below:
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Figure 53. Template Aspect Angle v. log-MSE score after one CAT comparison

This figure would seem to indicate that the back-estimated aspect angle taken from the best-

matching template HRR would correspond to approximately 138°. The “random similarity”
referred to above, for example, might be visually represented by a random low spike in this
figure at 123° causing a much larger error in aspect angle estimation:
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Figure 54. Template Aspect Angle v. log-MSE score after one CAT comparison
showing “random HRR match” spike at 123° causing error

To mitigate these random circumstances, the MATLAB correlation function, xcorr, has been
used to find an “averaged” minimum. The above data is correlated with a vector of zeros the that
is the same size as the number of data points, except for a few consecutive cells with the value
“1” of a specified parameterized length. This essentially averages every data point in the above
figure using the specified number of surrounding data points. The minimum of the new,
averaged set of data points is taken as the back-estimate of the aspect angle. Figure 55 shows the
“smoothing” or “averaging” of the above data points for a variety of correlation “lengths™ given
the specific original return (jagged blue thin line on bottom):
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As you can see, the longer the correlation “length” of 1’s, the more smoothing takes place, thus
alleviating the above problem. The maneuvering target scenario was again used and tested with
a number of parameterized correlation lengths. The table below shows the resulting overall
average back-aspect estimation error as well as the averaged difference in estimation error
between the Kalman estimates and CAT Back-estimates (larger value is better). Additionally,
the problem referred to above, the number of specific scans with large error (error over 30°), is
also noted:

Correlation “length” ) 2 3 4 o) 10 20 30

| Average Overall Back Aspect Angle 380|432 372|441 | 6.01 | 489 | 5.31 | 6.57
Estimation Error (degrees)

Average Difference between Kalman | 4.67 | 470 | 4.73 | 5.09 | 3.71 | 3.84 | 3.36 | 1.63
and Back Estimation per scan

# of scans where Back Estimation Error 3 3 2 3 8 8 4 6
is greater than 30 degrees

Table 9. Back Aspect Angle Estimation performance for specified correlation lengths

The results indicate that the optimal correlation “length” is between 1 and 4. Using a correlation
length of 3 provides a large advantage over Kalman Filter estimation per scan (4.73°) and the
smallest overall average back aspect angle estimation error of 3.72°. There are only 2
problematic scans for a correlation length of 3 as opposed to 3 for lengths of 1, 2, and 4. Plans
exist to harbor these findings in the future. Specifically, back-estimation will be useful in the
accurate storage of HRR profiles in the SAT Database (Section 5.3) and as the track aspect angle
used in report-to-track or report-to-database aspect angle difference comparisons. Remember
that the above tests took place assuming the correct association. Therefore, the expected
performance in a true system would not be as high due to incorrect associations. However, this
should not have a major affect on performance because it is also expected that an incorrect
association is recognized during SAT and the database would be reset in a more accurate fashion
(see section 5.3.2 below).
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CHAPTER 5.
SIGNATURE-AIDED-TRACKING (SAT)

Studying the performance of SAT involves the analysis of the match/mismatch decisions,
which directly affect track continuity. The studies performed below will be similar to those used
to test the version of SAT initially obtained, where it was determined that SAT was largely
ineffective using only 1-D HRR profiles. This research will attempt to prove otherwise. Tests
have been performed on the previous algorithm in the past, using the MSTAR data set and BHDI
HRR processing. As stated in Section 1.5.1, the statistics and profiles evaluated in the tests
below were generated using the MTFP data set.

5.1 Performance Analysis of Initial System
As detailed in Section 1.5, SAT aids data association by comparing the stored track HRR

profile(s) to the HRR profile from the current radar detection. The most likely track-report pair
is determined by a likelihood value representing the probability that the HRR profile’s originated
from the same “matching” target. This “match” is different from the “match” described CAT: It
is considered a match in rarget as opposed to a match in target class. SAT requires no prior
knowledge of target class and thus can only make decisions based upon the belief that the report
target is the same as the stored track target. An MSE value for every possible track/report
association is computed and an additional adjustment is made to the association matrix (ngAT).

One must recall that if the difference between the current report’s estimated aspect angle
and the track’s stored aspect angle is less than a desired error threshold (typically ten degrees),
then this signature comparison can be made. It was proven above that the standard aspect angle
error is less than 10° only about 67% of the time. Therefore, the performance results from this
“initial” version of SAT will resemble the performance of the kinematic tracker alone on 33% of
the scans. When an MSE score is available, it is analyzed against the statistical expectations of
MSE scores for both matching and mismatching target HRR’s. Again, if an MSE score comes
from comparing two profiles of the same class, it is expected to lie near the center of the match
PDF; if not, it should lie near the center of the mismatch PDF. Therefore, greater separation in
match and mismatch PDF’s will result in more accurate and more valuable XZSAT adjustments
according to XESAT = -log(MatchPDF/MismatchPDF). Section 1.5.1 details the statistics
generation for the original system. The match and mismatch statistics are generated for a 10°
threshold and are not distinguished by sector. These statistics and the resulting PDF’s are as
follows:
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Figure 56. Match and Mismatch PDF’s for initial SAT version
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5.1.1 Constant Velocity/Parallel Following Targets

This scenario is exactly the same as the passing scenario tested during analysis of CAT.
Twenty runs with 100 scans were generated and evaluated. A 20-scan section of this scenario
(with a dr of 1 second instead of 5 seconds) with truth data and random measurement noise is
depicted below. The o’s and 0’s represent the target | truth data and detection, respectively,
while the +’s and ’s represent the same for target 2:
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Cartesian coordinate plane: x (meters) and y (meters)

This scenario represents the situation in which SAT can best aid the data association conflict.
During each scan, the following two hypotheses are evaluated:

Hypothesis 1 Hypothesis 2
s o |

I N |

Hypothesis | is the true hypothesis. However, at many points, the noisy measurements are
situated so that hypothesis 2 would seem correct. SAT is adept at fixing this problem because
the HRR profiles from scan A and scan B are used to determine which report HRR (scan B)
belongs to which track HRR (scan A). With the ground truth as hypothesis 1 above, the true
aspect angle for either will not change throughout the entire run. Therefore, all HRR profiles
from both targets should always be strikingly similar and SAT should correct most kinematic
missasociations.” This scenario is used to evaluate SAT performance in a “best-case” scenario.

Twenty runs of this scenario only using the kinematic tracker reveal that the correct
track-report association was chosen 50.4% of the time. Conversely, with the initial version of
SAT in use (with a 10° aspect angle threshold), the correct association was chosen 95.2% of the
time. If there were no aspect angle threshold in place, SAT would choose the correct association
with probability 95.5%. The exceptional performance in this environment is expected.

5.1.2 X-non-crossing Scenario

The X-non-crossing scenario used to test CAT was used in testing SAT as well. Itis
hypothesized that only a very slight advantage will be gained by SAT in this case, if any. This is
because as the target is maneuvering, aspect angle changes rapidly. The threshold will not allow

* for this same reason, CAT will be completely useless in this situation (Section 4.2.1.1)
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SAT to be used while there will be very large errors in aspect angle estimation due to maneuver.
If the SAT threshold were non-existent, the improvement would not be substantial because HRR
profiles are extremely distinct over all aspect angles.

In 30 runs, the kinematic tracker alone chose the correct association with probability
69.5%. Overall, with SAT during the same 30 runs, there were 73.6% correct associations.
Figure 56 shows the percent of correct associations for SAT in terms of scan #. All runs of this
scenario were averaged to provide the below results:
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Figure 57. % correct association v. Scan # for the X-non-crossing scenario using
the initial version of SAT

The following plot shows the average ngAT adjustment for both the correct associations (blue
line) and incorrect associations (red dotted line) involving the Scud Launcher and the ZSU-
carrier by scan #. Recall that a higher XZSAT relates to a lower confidence in association (i.e.
lower is better). Also recall that when a XESAT score 1s not available because of the threshold, the
cell in the xzsAT matrix is equal to zero; this is also averaged into the below results. In all
situations, the difference between correct and incorrect association xzsAT score is directly related
to the probability of misassociation.
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Figure 58. average y’sar adjustment for the correct (blue line) and incorrect (red dotted line)
associations in the X-non-crossing scenario using the initial version of SAT
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In scans 6-8 (the start of the maneuver), the x25 AT adjustment leads to an incorrect association,
however these mistakes are corrected soon after. Without the aspect angle threshold, the
percentage of correct percentage increases to 86.0%, most likely due to an incorrect assumption
for the aspect angle threshold.

5.1.3 Parallel Maneuvering Scenario

The parallel maneuvering scenario is made from the single-target maneuvering scenario
used to test vehicle identification capability with CAT. All analysis will be done with respect to
scan number. With a smaller df such as the 1 second used in this testing, the performance will
improve because there is less of a change in true and estimated aspect angle between scans.
However, a large df will cause the performance to degrade due to maneuvering, especially if dr >
Tm-

Twenty runs using the kinematic tracker alone led to 50.0% correct associations.
Through these 20 runs, SAT chose the correct association 81.3% of the time with an aspect angle
threshold and 90.6% without an aspect angle threshold. Figures 59 and 60 evaluate the
effectiveness of SAT during this scenario by scan #.
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Figure 59. % correct association v. Scan # for the parallel maneuvering scenario using
the initial version of SAT

4emnen- T LR Qo R e b ~--1 * corect association |-
e & : + incorrect association |
Y : b+ F o : :
5 + &7 : A th ! + :
S 2—---i—---%-#*ﬁ#ﬁ—iaw-q;--"3-4----- Y5 < AT RN S TS A S
E "t WL M T+ “F;t"?tr++ 4 o
B [¥%T e FA o : -l b
S gt T T i +E'*.‘1i—#+_-,_.+ P *+_H—:;ﬁ+¢‘3++‘#_+ L
= W » + : - . i » .
= Uvij;-'.'ﬁ*'"!’."".". """ Ao Ty “fﬁ‘iﬁ-ﬁ;*ﬁ"’."";’-';‘ ¥ T “t"t"&f\'".""" j}%
b S N IR TR 2 R A e RAICRATI T L NN 4
r&:e ’ ‘e :“‘. * * if— pe 4° -* ‘: " e .'o H o .‘: ¢ . % '+’:
S A R IO RERORS B
I B s A
NP I : u* ol : .
...o 5 E c.‘ H . .M.E‘ '...'!. .o
4 I I 1 I 1 1
0 50 100 150 gane 200 250 300

Figure 60. average ’sar adjustment for the correct (blue -’s) and incorrect (red +’s)
for the parallel maneuvering scenario using the initial version of SAT

There are only a handful of scans (all of which occur during maneuvers) in which the incorrect xls,ﬂ

score is lower than the correct one. However, at no point is the incorrect score too low as to
where it would not be corrected by an accurate Y car Or szT adjustment. This proves that SAT
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is extremely useful during constant velocity situations and provides little help or hindrance
during difficult maneuvering situations.
5.1.4 Merging Target Scenario

The merging target scenario tested below is the same as is used to analyze CAT. SAT
should be highly effect during the straightaway in the middle of each run and not as effective
during the merge and diverge points. The following plots are similar in explanation to those
above and are a result of 30 separate runs:
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Figure 61. % correct association v. Scan # for the merging target scenario
using the initial version of SAT
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Figure 62. average ¥ sar adjustment for the correct (blue line) and incorrect (red dotted line)
for the merging target scenario using the initial version of SAT

Thirty runs using the kinematic tracker alone led to 67.4% correct associations. SAT chose the
correct association 80.0% of the time with an aspect angle threshold and 87.9% without an
aspect angle threshold. As hypothesized, SAT performs exceptionally well during the
straightaway (scans 9-15) and not as well during the merge (5-8) or diverge point (15-18). It
appears that the merge point is a greater concern.

5.2 Enhanced SAT Statistics

As previously declared, the aid in data association that SAT provides is directly linked to
the accuracy of, and separation in, match and mismatch PDF’s. Additionally, the similarity
between the method used to form these statistics and the actual comparisons performed during
tracking is vitally important. Therefore, match and mismatch statistics have been evaluated
while differentiating statistics by aspect angle sector and while varying the aspect angle
threshold. This contrasts from the statistics used above in that no sector dependency existed and
the aspect threshold was incorrectly assumed to be 10°.
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The desired results are match and mismatch PDF’s with greater separation and accuracy
than in the above tests. PDF “separation” is measured by the difference between the lower (1
standard deviation) bound of the mismatch PDF and the upper bound of the match PDF. Using
the statistics from the initial tests above, this corresponds t0 Wmismatch - Cmismatch = 0.8440 and
Mmatch + Omarch = 1.3480 for a separation of —0.504. This is a measure of the PDF “overlap” with a
larger separation value obviously desired. A large, random sample of the available MTFP HRR
profiles have been used in the formulation of the below statistics. Specifically, there were 99485
matching target comparisons and 208193 mismatching target HRR comparisons used in statistics
formation.

5.2.1 Use of Sectors
During analysis of the CAT statistics (Section 4.2.2), it was noted that the mean log-MSE

scores are highly dependent upon aspect angle sector. Statistics were generated where, for each
HRR signature comparison, the following was recorded:

1) If the comparison originated from matching or mismatching target HRR profiles”

2) The aspect angle of both profiles (and the aspect angle difference)
Figure 63 shows the mean of the match (blue line) and mismatch (red dotted line) SAT statistics.
It is a plot of the log-MSE score versus aspect angle threshold where the plot row corresponds to
the aspect angle sector. Subsequently, Figure 64 shows the PDF separation in terms of aspect
angle threshold. Again, recall that the PDF separation in the initial version of SAT was
approximately —0.5.
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Figure 63. SAT Statistics (mean MSE score) for both matching and mismatching comparisons

* comparisons among the three variants of the T72 tanks were not used
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Figure 64. SAT Statistics (PDF separation) for both matching and mismatching comparisons

As with CAT, as targets approach broadside (90° aspect angle; sectors 3 and 4), the PDF
separation decreases. It is therefore assumed that SAT will provide less assistance for targets at
broadside. Only in sectors 1, 4, and 5 is the PDF separation generally above —0.5. Additionally,
the mismatch mean from sector 4 is lower than the match mean from sector 3. This is most
likely a product of the particular targets used in formation of these statistics. Regardless, this
proves that the use of sectors in statistical comparisons and during FAT is inherently more
accurate than when they are not; however, it remains to be seen if the performance of SAT
improves in such a case.

It must be discerned that the PDF separation decreases as aspect angle threshold
increases. However, there is still significant separation at the maximum error threshold point of
27.5 degrees (Section 4.1). This means that variable statistics and a variable aspect angle
threshold should be used with confidence. In further tests, the threshold is determined using a
method similar to error window size determination in CAT (Section 4.2.1). Figure 65 below is a
plot of the SAT Statistics (mean MSE and PDF separation) with fused sectors information:
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Figure 65. SAT Statistics (mean MSE score) for both matching and mismatching
comparisons without the use of sectors
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When the statistics are fused, as above, the PDF separation is higher than in sectors 2, 3, and 4,
but lower than in sectors 1, 5, and 6. However, the main point is that PDF separation does not
decrease severely after aspect angle thresholds between 10° and 25°. This means that there is
flexibility when implementing a larger database search. The exponential decay seen above for
the separation is due to a large increase in expected MSE variance when sectors are fused. Both
methods will be compared in tests below.

5.3 On-The-Fly SAT HRR Database

Another proposed improvement to the existing FAT algorithm was to include the use of
an “on-the-fly” SAT HRR database. Essentially, the report HRR profile, its corresponding
estimated aspect angle, and its predicted aspect angle error window will be stored in the track
history of its associated track after every scan. In future SAT HRR comparisons, the estimated
aspect angle of the current track-report association would be used to extract these previously
stored profiles from aspect angles within a calculated error threshold. Ideally this will eliminate
problems related to situations where profiles in two sequential scans are not within 10° of aspect
angle, thus rendering SAT useless. This error threshold takes into account the possible aspect
angle error of both the stored protiles and the current report:

e . =max(e

total track Database profile + ereport )

All profiles in the SAT database within this total error threshold may be used as the “group” in
MSE calculations. The error window used later to retrieve the appropriate statistics for YZSAT
generation is equal to the report error plus the mean of all €;yex pg profite Used in comparison
(template error from all available templates). Two proposed uses for the “group” of MSE
calculations are 1) using the minimum log-MSE score, or 2) using the average log-MSE score.

5.3.1 SAT Database Statistics

A MATLAB function was generated to statistically analyze comparisons in the manner
stated above. The maximum allowable error threshold is 50°. These statistics are 3-
dimensional: the aspect angle error threshold, the number of database profiles, and the sector are
all variables. One hypothesis is that as the number of profiles available for comparison
increases, there is less of an opportunity for random error using an average of the scores and
more of an opportunity for random error when using the minimum score. Therefore, before tests
were done, it was assumed that a combination of these methods might lead to maximum
effectiveness of an enhanced version of SAT.

Below are plots representing the mean, variance, and PDF separation of the log-MSE
comparisons using both the average and minimum techniques. During these statistical
evaluations, the matching and mismatching MSE scores were chosen at random from the overall
set of matching and mismatching scores. There are 100 random trials at each threshold level
between 1 and 50° and at each number of available profiles between | and 30. To ease
visualization and analysis, the plots below have fused the results from each sector. However, it
must be noted that the results for both of these techniques vary by sector in the same manner as
above. In Figures 66 and 67, the aspect angle threshold is set constant at 20° while the number
of available profiles is variable between 1 and 30."

“ Recall that the initial version of SAT uses a PDF separation of —0.5
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SAT Statistics for Minimum Technique (Aspect Threshold = 20 degrees)
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Figure 66. Merged SAT statistics for the minimum technique varying the # of profiles used
(aspect angle threshold = 20°)

SAT Statistics for Averaging Technique (Aspect Threshold = 20 degrees)
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Figure 67. Merged SAT statistics for the averaging technique varying the # of profiles used
(aspect angle threshold = 20°)
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The next set of plots holds constant the number of database profiles available at 5 while varying
the threshold value in order to demonstrate the affect of larger aspect angle error estimates:

SAT Statistics for Minimum Technique (# of available profiles = 5)
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Figure 68. Merged SAT statistics for the minimum technique varying the aspect angle threshold
(# of profiles used =5)

SAT Statistics for Averaging Technique (# of available profiles = 5)
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In both examples above, the averaging technique clearly provides greater PDF separation
than the minimum technique, particularly as the number of available profiles increases. In all
cases above, the PDF separation is greater than —0.5 at some point, leading to the conclusion that
the use of a database will lead to more accurate data association under optimal conditions.
Optimal conditions can be defined as when the aspect angle threshold is low and the number of
profiles available is high. As aspect angle threshold increases, the PDF separation decreases.
However, the PDF in the averaging technique is continually well above —0.5 with 5 profiles
available while the minimum technique is not. This allows us to confidently use a larger (and
more accurate) estimation of the aspect angle error. The combination of large PDF separation
and low variance is important because it will increase the effectiveness of % sar for MSE scores
very close to the match PDF. Therefore, it is hypothesized that little advantage will be gained
using the minimum SAT database technique, but a considerably larger advantage will be attained
when using the averaging technique; specifically as the number of profiles grows large (greater
than 5). Overall, at least minimal improvement is expected due to the simple concept of inherent
accuracy in enhanced aspect angle error estimation and the ability to search a running database
for closely matching profiles. While the use of sectors might improve performance, there 1s
concern about incorrect sector estimation and the extreme discontinuity in statistics between
consecutive sectors (2-3 or 4-5). Both techniques will be tested below.

5.3.2 Database Build-Up/Reset

One issue not addressed thus far is performance in the face of continually changing track-
report associations. More specifically, recognizing when a track has a new target assigned to it.
The answer is simple simulated environments yet remains the greatest challenge to a robust
system. As mentioned in the analysis of CAT, the simulation tool used in this report always
assigns the same number to the each target report (i.e. report 1 is always a Scud Launcher). Tt is
therefore easy to use this knowledge and identify incorrect track-report associations and
changing of track target class. When this occurs, the SAT database must be reset to begin to
include HRR profile’s from this new target. The results from this perfect knowledge case will be
used as a control for the other, more realistic methods to reset the database. This represents a best
case, or most-accurate situation, however, it is possible for other methods of resetting the
database to produce better results.

Specifically, an HRR profile will be added to the database if it produces an MSE score
within an expected “matching target” value. If a non-matching target HRR is added to the
database mistakenly, it will be used as part of the “group™ of HRR’s in future analysis. Using the
minimum technique, it will be harmful when the minimum MSE score from all comparisons
results from this “mistake” database profile. For this reason, it is imperative to reset the database
so that it does not contain such incorrect profiles. Using the averaging method, this incorrect
database profile will serve to raise the average MSE score during future comparison’s, thus
leading to an eventual database reset when the average MSE score is above a specific limiting
value. For this reason, there is less of an impact from these “mistake” profiles using the
averaging method. Basically, this only affects the averaging method when the database is small,
while it will persistently affect the minimum method. With the averaging technique, it is still
possible that a “missed reset” will lead to a higher percentage of correct association because of
the size and continual correct buildup of the database.

A realistic scenario does not have the luxury of perfect knowledge of target class-report
assignments, or tracking would be unnecessary. Therefore, a decision must be made according
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to a given standard as to when the target class of the track has changed and/or the database
contains too many “mistake” profiles. One solution is to use the output of the classifier in CAT.
However, one cannot rely upon the availability of this information because SAT, in contrast to
CAT, by definition, was created to handle unknown target classes. This method will not be
tested. A temporary solution to this problem is to use the actual SAT comparisons and statistics
to decide when the target is different from those in its database or if database profiles themselves
do not match well. There are several methods that can be used to perform these evaluations,
many of which have been explored but not noted during the performance comparison phase
below. Regardless, accurate resetting of the SAT database is imperative if one is to harbor the
advantage gained by the apparent extreme separation in match and mismatch PDF outlined
above.

The most effective method used to date forms the results below. Specifically, the SAT
database will be reset when an MSE score from the hypothesized correct track-report association
is greater than the expected mean matching MSE score plus 1 (or 2) standard deviation(s). A
parameter used in conjunction with this method is called the “fail limit”. It corresponds to the
number of consecutive scans that the MSE score is permitted to be below the above limiting
MSE value before the database is actually reset.” The SAT database of every track possibly
associated with the radar detection in question is also reset; it is assumed that the other
hypothesized association is also incorrect. This method is extremely dependent upon accuracy
of the PDF’s and statistics generation.

An additional tool used in database buildup is called “Database Cleansing”. This feature
can be easily turned on or off during initial parameter selection. If it is determined that the
database should not be reset, cleansing occurs: The report HRR profile to be added to the
database is tested against all other database HRR profiles within an appropriate error window. If
any of the resulting MSE scores are higher than the limiting MSE value, then the next constraint
is tested. An HRR profile is only added if the difference between the SAT MSE score from the
hypothesized correct association and the MSE score from the hypothesized incorrect associations
are all larger than a pre-determined limiting value. This limiting value is equal to the matching
mean MSE score minus the mismatching mean MSE score. This constraint will correct instances
in which all SAT MSE scores are below the high score limit yet the hypothesized correct
association MSE score is higher than the incorrect association’s MSE score. If all tests pass, the
database of the track involved in the association in question is appended with this new profile.”
The resulting system is somewhat complex, but has been created to mitigate situations found to
be difficult for SAT to handle.

5.3.3 Performance Comparison

The following evaluations will utilize the aforementioned on-the-fly SAT database and
database reset methods. Various methods of implementation are analyzed, including the original
technique, minimum Technique, and averaging Technique. For all of the new tests, the aspect
angle threshold value will be calculated as in section 5.3.”"" There were 10 runs of each test
using the same exact random number seeds (for measurement error) in each test. Some tests
were run with the high MSE limit set using 2 standard deviations as opposed to 1.

" if no templates are available for analysis, one-half (.5) of a failure is added towards reaching the fail limit
** again, some tests are donc using 2 standard deviations
*** the original technique test will only use an crror threshold value equal to €.,
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5.3.3.1 Enhanced SAT
The following table shows the percent of correct associations using the original SAT
technique:

Scenario / Constant Velocity | X-non Crossing | Merge/Diverge | Parallel Maneuvering
Parameters (10 runs) (10 runs) (10 runs) (10 runs)
Kinematic Tracker 50.2 70.0 70.0 499
Initial SAT 84.1 74.3 76.3 66.8
Initial SAT (no 84.0 80.0 79.5 79.1
threshold)
Enhanced SAT 80.9 80.0 79.5 72.1
(sectors)
Enhanced SAT 84.1 74.3 76.3 73.0
(fused sectors)

Table 10. % missasociations for the enhanced original technique

The improved performance of the initial SAT with no threshold is expected in scenarios where
the ground truth is relatively straight-line motion; all of the tested scenarios have such periods.
Slight improvement also occurs in the intersection scenarios (X-non-crossing and merge/diverge)
because the bulk of improvement occurs on the constant-velocity scans. Generally, it would not
be a bad idea to use the original version of SAT with no threshold, so long as the true target
aspect angle is not expected to drastically change in one scan-update-interval (d?).

The above show that the use of sectors is inherently more accurate and helpful in
maneuvering situations. However, performance is somewhat degraded in constant-velocity
situations. This inference holds true during scan-by-scan analysis of the parallel maneuvering
scenario, which includes scans of both constant velocity and target maneuvers. This can be
explained by the prevalence of incorrect estimation of target aspect angle sector. For example, if
a target has an aspect angle of 50° and a possible aspect angle error of 25°, the true sector would
be 2 while the possible incorrectly estimated sector could be either 1 or 3." Inexplicably, the
larger advantage comes when sectors are used during intersection scenarios. While it is hopeful
that SAT can be useful in all situations, more focus is placed upon the constant velocity and
parallel target situations that CAT cannot resolve. Therefore, if using the enhanced original
version of SAT, it is more advantageous to use a fused sector method.

Across all scenarios, the enhanced version of SAT using sectors provides an added 3.6%
advantage over the initial version and a 2.1% advantage exists when fused sector information is
utilized. Conversely, if a SAT threshold is not used with the initial system, an improvement in
performance of 7.0% is attained. Again, the use of sectors significantly improves the
performance and accuracy of SAT during the intersection scenarios.

5.3.3.2 Minimum SAT Database
Table 11 shows the percent of correct associations using the minimum SAT database
technique:

" Because of sector prediction error, the fusion of sector information might also aid in CAT; this fact was not tested
in this research

86




Scenario /
Parameters

Constant Velocity
(10 runs)

X-non Crossing
(10 runs)

Merge/Diverge
(10 runs)

Parallel Maneuvering
(10 runs)

Kinematic Tracker

50.2

70.0

70.0

49.9

Initial SAT

84.1

743

76.3

66.8

Initial SAT
(no threshold)

84.0

80.0

79.5

79.1

Minimum SATDB
(Perfect Knowledge)
- Sectors

73.8

80.0

78.4

69.3

Minimum SATDB
(Perfect Knowledge)
— Scctors/Std 2

38.6

80.7

81.1

71.0

Minimum SAT
DB (Fail Limit Q) -
Sectors

41.6

79.3

80.1

67.3

Minimum SAT
DB (Fail Limit 0) —
Sectors/Std 2

Lh
2
I

80.7

81.1

Minimum SAT
DB (Fail Limit 1) -
Sectors

46.7

80.0

81.6

68.3

Minimum SAT
DB (Fail Limit 1) -
Sectors/Std 2

537

79.3

81.1

68.6

Minimum SATDB
{Perfect Knowledge)
— No Sectors

80.8

81.4

78.4

75.0

Minimum SATDB
(Perfect Knowledge)
— No Sectors/Std 2

81.2

814

77.9

Minimum SAT
DB (Fail Limit 0) —
No Sectors

777

75.8

71.4

Minimum SAT
DB (Fail Limit 0) —
No Sectors/Std 2

73.5

80.0

77.9

75.3

Minimum SAT
DB (Fail Limit 1) -
No Scctors

73.0

80.0

76.3

71.8

Minimum SAT
DB (Fail Limit 1) -
No Sectors/Std 2

72.8

80.0

74.4

73.0

Table 11. % missasociations for the minimum SAT database technique

The minimum SAT database technique appears to provide little advantage over the initial SAT in
all scenarios. However, there is a slight advantage (4.7%) when perfect knowledge of incorrect
associations is used in evaluations with fused sector information. A severe degradation of
performance exists when using the realistic methods to reset track databases, most likely due to
the presence of the aforementioned “mistake” profiles in the database. Of note is the fact that in
realistic situations (when fail limits are used), a high MSE limit using 2 standard deviations leads
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to superior results. In most cases, the fusion of sector information improves performance.
Again, there is potential for the use of this type of SAT database when pertfect knowledge exists,
however, better results are expected from the averaging technique.

5.3.3.3 Average SAT Database
The following table shows the percent of correct associations for the average SAT

database technique:

Scenario /
Parameters

Constant Velocity
(10 runs)

X-non Crossing
(10 runs)

Merge/Diverge
(10 runs)

Paraliel Maneuvering
(10 runs)

Kinematic Tracker

50.2

70.0

70.0

499

Initial SAT

84.1

74.3

76.3

66.8

Initial SAT
(no threshold)

84.0

80.0

79.5

79.1

Average SATDB
(Perfect Knowledge)
- Sectors

72.2

78.6

84.7

75.9

Average SATDB
{Perfect Knowledge)
— Scectors/Std 2

78.6

84.7

Average SAT DB
(Fail Limit 0) -
Sectors

80.0

84.7

76.2

Average SAT DB
(Fail Limit 0) —
Sectors/Std 2

61.4

77.9

75.9

Average SAT DB
(Fail Limit 1) -
Scctors

61.3

75.0

Average SAT DB
(Fail Limit 1) —
Sectors/Std 2

61.9

77.1

74.4

Average SATDB
(Perlect Knowledge)
— No Scctors

78.5

Average SATDB
(Perfect Knowledge)
— No Sectors/Std 2

86.6

80.0

80.6

Average SAT DB
(Fail Limit 0) -~ No
Sectors

76.5

79.3

83.2

79.3

Average SAT DB
(Fail Limit 0) — No
Sectors/Std 2

72.8

71.7

80.0

79.1

Average SAT DB
(Fail Limit 1) — No
Sectors

78.5

81.1

76.4

Average SAT DB
(Fail Limit 1) — No
Sectors/Std 2

723

78.6

80.5

77.4

Table 12. % missasociations for the averaged SAT database technique
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Again, the use of sectors leads to inferior performance most likely because of incorrect sector
estimation. Without sectors, the use of the average SAT database given perfect knowledge
produces an impressive 7.7% advantage using 1 standard deviation to calculate the MSE limit
and an 8.9% advantage using 2 standard deviations. In the more realistic case where a fail limit
of 0 is used, an advantage of 5.6% is produced. Conversely, more attention should be paid to the
latter three scenarios tested because the constant velocity, straight-line scenario includes
exceptionally matching HRR profiles from scan-to-scan due to very little change in true aspect
angle. In the latter three scenarios, the use of a fail limit produces slightly better results (1.5%
better) than using perfect knowledge. A higher fail limit almost always degrades performance.

Regardless, the performance of the fused sector SAT database average method given
perfect knowledge is significantly better than that of the initial SAT system with and without a
threshold. This proves that if near-perfect knowledge of an incorrect association exists, than
optimal performance will be attained using this method in all kinematic situations. There is
strong potential for this technique in the future. Another observation to note is the percent of
correct associations given a large # of available profiles. Figure 70 plots this knowledge for a
variety of the better-performing SAT database methods up to the limiting case when 15 profiles
are available (sufficient tests were not available for numbers higher than this):
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s ---- Initial SAT
g — Initial SAT (no threshold)
0.65 1 ] 1 1 ] 1 =+=+ Min: Perfect Knowledege, No Sectors, Std 2
' 2 4 B 8 10 12 — AVG: Perfect Knowledege, No Sectors, Std 2
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Figure 70. % of correct associations v. # of available database profiles

Again, the performance of the averaging technique is superior when perfect knowledge is
attained and sectors are fused. However, in a realistic scenario using no sectors and 1 std, the
performance is still always above the initial SAT once 3 profiles are available and, on average,
still outperforms the initial version of SAT with no threshold. What must be taken from this
observation is the point that if a sufficiently large SAT Database is available, it is possible to
achieve near-perfect data association using the SAT averaging technique.
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CHAPTER 6.
FINAL ANALYSIS AND CONCLUSION

6.1 Fusion of CAT and SAT

Recall from the above research that CAT is only useful during “intersection-like” target
crossing situations. Conversely, SAT is particularly useful during parallel/following target
situations. The simultaneous use of an enhanced version of both CAT and SAT should provide
tracking performance that is far superior to both the kinematic tracker and the initial versions of
CAT and SAT (FAT). The best-performing versions of these algorithms discovered above are
used in this final analysis.

Specifically, the enhanced version of CAT with more accurate aspect angle error window
estimation will be used. A five-target CAT database is also used. The average SAT database
method will be used for SAT, testing both perfect knowledge and a fail limit of O using 1
standard deviation to calculate the high MSE limit. Additional tests will be performed using the
aspect angle returned from CAT as described section 4.4.1 to represent the aspect angle of the
report (as opposed to using the Kalman filter estimate) for later use with the SAT database. The
resulting aspect angle error will then be analyzed while performance is not expected to
drastically improve. Table 13 represents the percent of correct associations for the kinematic
tracker, the initial version of FAT, and enhanced versions of FAT:

Scenario / Parameters | Constant X-non Merge/Diverge Parallel
Velocity Crossing (S runs) Maneuvering
(5 runs) (5 runs) (1 run)
Kinematic Tracker 51.2 67.1 68.4 50.0
Initial FAT 88.7 68.6 63.2 66.2
Enhanced FAT 79.8 71.4 70.5 83.1
Enhanced FAT (perfect 88.0 71.4 77.9 80.5
knowledge SAT)

Table 13. % missasociations for specified tracking systems

Table 14 shows the average back-aspect angle estimation error per scan versus the Kalman filter
estimation error for the above scenarios:

Scenario / Parameters Constant X-non Merge/Diverge Parallel
Velocity Crossing (5 runs) Maneuvering
(5 runs) (5 runs) (1 run)
Avg. Back Error 4.1 14.4 11.9 17.2
(degrees)
Avg. Kalman Error 0.8 17.9 16.4 10.8
(degrees)

Table 14. Evaluation of Back-estimation of Aspect Angle

In a multi-target environment, back estimation improves aspect angle estimation only during
maneuvers. Again, an improved maneuver detector might be used in the future to take advantage
of these findings. However, there was only limited testing done above with little attention paid
to scan-by-scan evaluations.
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The following four figures show the averaged ¥ catand x’sat adjustments in addition to
final % fuseq @ssociation matrix score by scan for the above four tests in order to analyze the origin
of adjustments made throughout differing target maneuver models:

mean 72 adjustments for constant velocity scenario

10 1 1 1 1 L L 1 —— correct association
0 10 20 30 40 50 60 70 --~- incorrect association

Scan #

Figure 71. 7’ scores by scan # for the Constant Velocity scenario

As expected, there is little difference between the correct and incorrect XECAT adjustment due to
usability concerns (Section 4.2.1.1) in this straight-line scenario. Any assistance to data
association originates from x’sar. Even so, SAT does not provide enough separation in scans 15
through 43. More statistical PDF separation would ensure separation for closer MSE score
returns.

mean 12 adjustments for X-non-crossing scenario

-1 L L ! 1 ! ! — correct association
2 4 B 8 10 12 | === incorrect association

Figure 72. %’ scores by scan # for the X-non-crossing scenario
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CAT appears to be a hindrance to data association until the targets meet in the intersection
between scans 7 and 13. Additionally, SAT provides the greater advantage throughout the near-
constant velocity points in the scenario at the beginning and end; especially when an opportunity
for the buildup of the SAT database exists. Once the targets begin to meet and diverge, the
xzmsed score ensures near-perfect data association. It will be interesting to see if these findings
hold true during the merge/diverge scenario.”

mean 12 adjustments for merging/diverging scenario

. — correct association
0 2 4 B 8 10 12 14 | === incorrect association
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0 2 4 6 8 10 12 14 16 18 20
Scan #

Figure 73. % scores by scan # for the Merge/Diverge scenario

Again, SAT begins to provide aid once there is sufficient time for database buildup and
separation exists in the %’cat scores when the targets diverge and CAT becomes usable. Most
likely, CAT does not provide sufficient assistance initially because of insufficient time to build
up prior probability confidence.

mean 7° adjustments for maneuvering target scenario

Wy iy ’"f — correct association
= o ¥ 1. === incorrect association
% ol ol T 4 D =

e

Figure 74. %’ scores by scan # for the parallel maneuvering target scenario

" The data points outside of the range of the % fusea plot are due to an invalid score determined by the kinematic
tracker
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A number of “spikes” in difference between the x25 AT scores exist above, again pointing to
evidence of the advantages of a large database buildup. Also observable is the recognition of
maneuvers when a similar difference exists between the xzc at scores. The above plots lead us to
conclude that CAT should be effectively ignored when it is recognized that it might be unusable
via predicted aspect angle error ranges. Moreover, SAT should be consistently used, with larger
weight placed on xzs AT Scores emanating from comparisons involving a large amount of
available database profiles. Regardless, performance is generally improved in all areas as a
result of the implementation of the improved FAT system. However, more research and testing
must be completed into the proper fusion of SAT and CAT.

6.2 Future Research / Conclusions

Plentiful suggestions for future research have arisen as a result of this study. First and
foremost, a larger window of time would allow for an opportunity to adjust the kinematic tracker
used above. As proven, measurement error and track filter performance are strongly correlated
with aspect angle error. It is this error that drives the performance of the tracker and, if reduced,
can lead to performance improvement and further optimization of computational requirements.
Further exploration into maneuver detection (use of multiple, varying model types) might also
lead to the ability to establish advantageous relationships between maneuver type and aspect
angle error.

Additionally, as mentioned in chapter 1, SAR and ISAR technology has been used in SAT to
this point. The use of a SAT database in conjunction with this technology will almost certainly
lead to improved performance. The SAT database method should be analyzed in greater detail.
Specifically, the method used to buildup and reset the average database should be optimized.
Moreover, this same set of constraints and tests might also be used to aid in data association
through the creation of a new ¥ sar-like value. Clearly, the possibility exists to harbor both the
advantage presented by the PDF separation discovered in statistics generation and the data
association accuracy when a large SAT database exists.

CAT presents a simple optimization problem where one needs to balance the advantage in
finding a “match”, with both usability and computational concerns. Varying statistical methods
also exist and should be tested to evaluate the goodness-of-fit of the MSE vector. The use of
back-estimation of aspect angle in conjunction with SAT should further be explored and
quantified. In the absence of known targets, it still might be possible to classify the target as a
particular type, as shown by the MSE separation exhibited between different vehicle types
above.

Overall, this study cannot be validated or completed until real moving-target HRR profiles
are used in the simulation. Recently, the simulated moving-target HRR profiles made available
by UMass-Lowell have been obtained and future use of this data is imperative to confirm the
conclusions and trends involved in the above conclusions. Regardless, the preceding results can
be built upon at Lincoln Laboratory and elsewhere as the foundation of a robust, intuitive tracker
that has been and can be vigilantly tested and evaluated in all phases.
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