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Abstract

To better understand the role that turbulence plays in causing cycle-by-cycle variations,
an experimental study was carried out in which charge motion or laminar flame speed was
varied. Two sets of tests were done. The first consisted of using an air jet mounted in the intake
port to generate charge motion at a spark-timing sweep from 200 BTC to 200 ATC. Two jet
orientations were tested with the intent of generating swirl and tumble. Also done over this
spark-timing sweep, the second set of tests consisted of replacing the nitrogen in air with a
diluent, argon or carbon dioxide, to increase or decrease, the laminar flame speed. Tests were
conducted at fast-idle conditions. These were 2.6bar NIMEP, 1400rpm, 20'C average coolant
temperature, and relative air-fuel ratio set to 1.00.

In-cylinder pressure measurements yielded COV of NIMEP and bum duration. Exhaust
temperature was also recorded. The swirl jet improved COV of NIMEP a maximum of
approximately 30% at each spark timing tested. The tumble jet improved COV a maximum of
10% to 44% depending on the spark timing. No jet flow increased or decreased exhaust
temperature more than approximately 5%. Strong correlation was found between exhaust
temperature and combustion phasing. The turbulence test data showed a correlation between
exhaust temperature and COV as well as between COV and combustion phasing. However, the
change in laminar flame speed data showed a weaker correlation in both.

Thesis Supervisor: Wai K. Cheng
Title: Professor of Mechanical Engineering
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Chapter 1 Introduction

1.1 Overview

Cycle-by-cycle torque variations in a spark ignition engine is a phenomenon that is not

fully understood, and it affects the noise-vibrations-harshness (NVH) quality of the engine.

These variations are caused by variations in charge motion, by variations in the mixture

inhomogeneity in temperature and concentration, by variations in the amounts of the reactants,

and by variations in the spark discharge. The relative dependence on each of these mechanisms is

still being explored [1].

Increasing cycle-by-cycle variations (CCV), in general, results in several adverse effects.

The effects of high CCV are most noticeable in increased engine noise and poor drivability

caused by increased speed and torque fluctuations. Aside from reducing drivability, to suppress

the speed and torque fluctuations at idle also requires a higher engine idle speed, which results in

higher fuel consumption. Because some cycles feature a substantially slower burn rate than

optimized, incomplete combustion may occur, resulting in high fuel consumption as well as

higher HC emissions. At high loads, the cycles that feature higher a octane requirement than

average force the engine to operate further from the average cycle's knock limit [2]. In general,

reducing CCV allows the engine to be operated closer to its average operating limits [3].

The work herein seeks to develop greater understanding of the causes of cycle-by-cycle

torque variations by studying the effects of changing fluid motion and laminar flame speed. A

variable air jet in the intake port is used to vary in-cylinder turbulence whereas substitution of the

nitrogen of the air supply by carbon dioxide and argon, respectively, is used to vary the laminar

flame speed of the charge mixture. Relationships between burn duration, combustion phasing,

exhaust gas temperature, and covariance (COV) of net indicated mean effective pressure

(NIMEP) are explored.

1.2 Motivation

Using a catalytic converter for aftertreatment is an effective way to eliminate a great deal

of the unburned hydrocarbons (HC) in the exhaust of a spark ignition engine. However, the

catalyst is ineffective before it reaches a critical temperature (-300'C). Consequently, a

substantial portion of the total HC emissions produced in the Federal Test Procedure (FTP-75)
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occurs during the first few minutes of engine operation after the cold start before the catalyst

reaches light-off temperature. Approximately 75% of the tailpipe HC emissions occur in the first

two minutes of operations; while the engine-out HC emissions are only 20% of the total engine-

out emissions [4].

Substantial HC emission reductions can be realized by quickly heating the catalyst during

engine start so that it is effective for a longer percentage of engine operation. One strategy to

accomplish this is to increase the exhaust temperature by retarding the spark timing [5]. Late

combustion results in a high exhaust temperature. The charge does less work on the piston, and

there is less time for heat transfer from the burned gas into the cylinder walls.

Two notable side effects occur when spark timing is significantly retarded. First, HC

emissions are substantially reduced. Since the exhaust is hotter, more HC oxidation takes place

during the exhaust event and in the exhaust system than when the timing is close to MBT timing.

Russ et al. observed decreasing HC concentration measured in the exhaust port as timing is

retarded. Also, they observed the amount of bum-up in the exhaust system greatly increased [6].

Hallgren and Heywood observed similar results of HC burn-up in the exhaust manifold runner

and other parts of the exhaust system [7].

Retarding the spark timing also has the effect of increasing cycle-by-cycle torque

variations, especially at low load and low speed. Since the heat release of the mixture is not

optimally timed with compression, the peak cylinder pressure and the flame temperature are

lower than for combustion begun at maximum brake torque (MBT) timing. Consequently,

laminar flame speed is lower. Also, at a later ignition timing, turbulent fluid motion has decayed

more since its inception during the intake event. Because both the laminar and the turbulent

flame speeds are decreased, burn duration increases, and more time is allowed for cycle-by-cycle

variations in the turbulent motion of the mixture to affect flame propagation. Allowing more

time for chaotic processes results in a higher likelihood of variations in the pressure profile and

the torque [5]. Furthermore, when combustion occurs late, the indicated torque is much more

sensitive to combustion phasing.

Nissan Motor Company, the sponsor of the project, wishes to further understand the

mechanism for generating cycle-by-cycle torque fluctuations. It intends to use a spark-retard

strategy at engine start to accelerate catalyst light-off. It must mitigate the increased CCV so that

drivability is not sacrificed with this fast-light-off strategy. A probable start-up schedule would
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consist of initially bringing the engine speed above 2000rpm to ensure consistent starting. Then,

immediately reduce engine speed to a fast idle, about 1400rpm, at which point the timing is

retarded to heat the exhaust and light off the catalyst. This fast idle is used to increase the mass

flow through the engine for faster heat up of the exhaust system than a normal idle speed would

do.

After the catalyst light-off, the spark timing would be advanced to normal idle timing,

and the engine would reduce speed to the normal 600-800rpm to conserve fuel.
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Chapter 2 Combustion Process and Sources of Cycle-by-cycle Variations

To better understand test results, the engine combustion process will be briefly described,

and the primary causes of cycle-by-cycle torque variations will be explained. In a spark ignition

engine, premixed fuel and air are compressed then ignited by a voltage breakdown in a spark

plug. A spherical flame kernel develops and propagates outward. As the flame radius increases,

the reaction zone becomes increasingly wrinkled and folded through turbulent fluid motion until

the flame reaches the cylinder wall. The process can be divided into four stages: the flame

initiation stage, the flame development stage, the flame propagation stage, and the flame

termination stage. The flame initiation stage consists of the spark discharge and ignition. The

flame development stage is defined as the time for a small but significant amount of charge to

burn, typically at 10% of the total mass burned. Next, the flame propagation stage comprises the

burn from the end of the flame development stage to the point where a significant part of the fuel

has been consumed; this stage corresponds typically to the evolution of 10%-90% of the burned

mass fraction. The flame termination stage is where the final 10% of the charge burns; however,

as much as 25% of the charge can burn after the flame reaches the cylinder wall [5]. The causes

of CCV will be examined in the first three sections. Cyclic torque variations are not ascribed to

the fourth stage so it will not be considered [3].

CCV are caused by four separate sources during combustion: fluid motion, mixture

inhomogeneity, mixture composition variations, and variations in spark characteristics. Fluid

motion comprises fluctuations in large-scale motion and variations in the level of small-scale

turbulence [1]. Variations in the amount of each component of the mixture affect the speed and

total heat release during combustion. Finally, variations in spark characteristics, such as in the

discharge schedule, affect the amount of energy delivered to the initiated flame kernel. With a

modern ignition system, this effect is not significant [2].

2.1 Large-Scale Charge Motion

In-cylinder charge motion displays a mean velocity and a turbulent intensity at every

point in the cylinder, and there are cycle-by-cycle variations of each one because of the turbulent

nature of the flow. Described in Equation 2-1 and explained further in Appendix A, the

instantaneous velocity at a point can be defined by three components. First, there is an ensemble-

average velocity at the crank angle of many cycles UEA (0). Then, there is lower frequency mean
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velocity for a particular cycle U(O,i), and a term to describe the random fluctuations u at a

higher frequency.

U(Oj)=UEA(6)±0(O'j)+ u(O i) (2-1)

Fluctuations in large-scale charge motion represented by the variations of (0, i) cause CCV in

three mechanisms of varying importance: spark channel stretch, flame kernel displacement, and

mean-flow variations during the propagation stage. High frequency fluctuations, represented by

the fluctuations of u, affect the turbulent entrainment process and thus the burn rate.

2.1.1 Spark Channel Stretch

Mean velocity can stretch the discharge channel if it is strong enough. The energy

transfer to the gas consists of the heat loss to the electrodes and the ignition circuit discharge

rate. Since the energy transfer depends on the geometry of the discharge, the local velocity at the

spark plug may substantially alter the discharge characteristics.

2.1.2 Kernel Displacement

During the flame development stage a small, yet significant amount of the charge is

reacted, often considered 10% of the total burned mass. This stage is especially significant to

combustion stability because the random variations in this early part of the combustion process

have been found to be much larger than variations during later stages of combustion [8].

Fluctuations in flame kernel displacement significantly contribute to CCV in burn

duration and, hence, in NIMEP. Even under quiescent conditions in an engine, there is a finite

flow velocity in the vicinity of the spark plug gap that moves the flame kernel relative to the gap.

The distance from the flame initiation point to the furthest part of the cylinder wall defines how

far the flame must travel. In a chamber with one spark plug, if the flame kernel is blown toward

the center of the cylinder, the burn duration will be shorter than if it is blown away from the

cylinder center as depicted in the diagram in Figure 2-1.
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Spark Plug Flame Kernel Spark Plug

Fast Bur Flame Kernel Slow Burn

Figure 2-1 Chamber Plan View of Kernel Displacement. The small flame kernel displaces from the
spark plug and changes the distance to the furthest part of the cylinder wall. The burn
duration increases if the flame moves toward the nearest wall of the cylinder (right) or
decreases if it moves towards the center (left).

Large-scale turbulent flow causes the flame kernel to move in a random walk from the spark

plug. Keck et al. considered this the major cause of cycle-to-cycle variations in burn duration

during the fast flame propagation stage [9]. Based on previous work by Beretta et al., it was

shown that the distance that the flame center moved was significant. In their tests, the flame

center moved about 14mm in quiescent conditions. Given a bore of 101.6mm of their engine, this

distance significantly changes the effective starting point of combustion. Also, they noted that in

their experiment, there was a critical flame radius rf where the flame center stabilized. At rf =

28mm, it was clear in their experiment that the flame continued to move even as the envelope

was quite large [10].

Bianco et al. continued research on this topic. They optically studied the flame shape at

about the 0-2% burn mass angle under quiescent conditions as well as under swirl and tumble

flows. Aside from burn duration effects, they noticed a distinct difference in mean expansion

speed during the flame development stage between cycles where the kernel moved near the wall

versus those where the kernel moved near the center of the combustion chamber [11]. Not only

does the flame have a shorter distance to travel if it moves towards the center of the cylinder, but

it also traverses this distance faster. Variations in location cause variations in burn duration from

both of these effects.

Adding more understanding to the subject, Russ et al. measured the time for the flame to

reach different points on the wall of the cylinder with ionization probes. They showed that when
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they added mean flow vector to spark area in the cylinder, the resulting flame propagation would

be uneven. It would take a shorter time for the flame to reach one side of the cylinder than the

other, and the overall burn duration would increase [12].

2.1.3 Cold Surface Interactions

Aside from affecting the starting point of the outward flame propagation, the random

walk of the flame kernel also varies the heat transfer with cold surfaces, most notably the side

electrode of the spark plug. Modeled by Pischinger and Heywood, they found that a significant

amount of energy is transferred to the electrode as heat if the flame does not move away from the

center of the spark plug, as depicted in

Figure 2-2.

Faster Burn Slower Burn

Figure 2-2 Flame Kernel Development with Respect to the Spark Plug Electrodes. A significant amount
of energy is transferred to the side electrode if the kernel stays between the electrodes
(right).

If the flame kernel does move out from between the electrodes, less energy is lost, and the

expansion velocity is considerably higher. More energy is delivered to the flame kernel from the

discharge positive column, as well. The heat loss was found to be comparable to the amount of

energy released by the kernel from inception until it becomes 1.5mm in diameter, so it is

significant. They further showed that given a reasonable amount of in-cylinder turbulence, the

amount of heat transfer to the spark plug would change significantly cycle-by-cycle because of

the random movement of the flame kernel [13].

If the mean flow in the vicinity of the spark plug is large compared to the turbulence, the

randomness of the kernel movement will decrease. However, if the mean velocity is too high, the

flow can quench the flame entirely. In a separate paper, Pischinger and Heywood suggest 3-5m/s

as an optimal mean flow range to decrease random walk effects and to keep the flame from

losing energy to the spark plug [14].

18



2.1.4 Turbulence Effects During Flame Propagation

Large-scale mean velocity fluctuations play an important role in variations in the flame

propagation. The higher frequency velocity fluctuations distort the flame surface and affect the

entrainment of the unburned mixture into the flame front. Each of these effects is on a cycle-by-

cycle basis by variations. Wrinkling and folding the flame surface directly affects flame speed

because it increases the frontal area of the flame. While the contribution to NIMEP CCV from

the flame propagation stage is not negligible, it is smaller than the flame development stage

because the flame propagates much faster when it is larger. Also, the flame surface is much

larger so local fluctuations in burn rate become an increasingly small contribution to the burn

rate averaged across the whole flame front.

2.2 Turbulent Intensity Fluctuations

The turbulent intensity, defined in Appendix A, represents the amount of small-scale

turbulence in the cylinder. Small-scale turbulence viscous effects are generated by large-scale

motion during the intake event. During the compression stroke, shear forces in the mixture

dissipate the turbulence, reducing its level significantly from its maximum point during the

intake stroke. Any CCV in large-scale fluid motion translate into variations in the level of small-

scale turbulence, as well. Small-scale turbulence acts to entrain unburned mixture into the flame

and to distort the flame shape, which increases the frontal area of the flame [5].

2.2.1 Laminar and Turbulent Contributions During Early Flame Development

The flame starts as a smooth, thin reaction zone where laminar effects dominate over

turbulent ones. Turbulent eddies do not affect the flame speed until the flame becomes as large

as the characteristic length scale of the eddies; however, this happens early, within the first 2% of

the burn duration. Heywood notes that the laminar flame thickness of these sheets is on the order

of 0.1mm whereas the turbulent wrinkles that occur are on the order of Imm [5]. Bianco et al.

used a spark-plug-fiber-optics probe to observe flame kernel behavior at 2% mass burned, and in

their quiescent flow test, they found that the observed mean expansion speed was 40-50% higher

than the calculated laminar mean expansion speed [11]. While turbulent effects are not

negligible, they are much smaller here than during the flame propagation stage. Also, during this

period they grow in influence. Equation 2-2, proposed by Beretta et al. [10], models the rate of

flame propagation and shows the contribution of laminar and turbulent effects.
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dmb f SL (2-2)
dt rb

dmu/dt is the mass burn rate. p, is the unburned charge density; Af is the frontal area of the flame

SL is the laminar flame speed. rb is the turbulent time scale, and p is a parametric mass,

interpreted as the unburned mass entrained in the flame, as in Equation 2-3.

p=me -mb - PUT(AL -4A,) (2-3)

Here, me is the total mass entrained in the flame, and mb is the burned mass entrained in the

flame. iT is a characteristic length scale of wrinkles in the flame, and AL is the laminar flame

front area. The first component of the right side of Equation 2-2 represents the laminar

propagation whereas the second component represents the burning of unburned mass entrained in

the flame from turbulent wrinkling as illustrated in Figure 2-3.

Figure 2-3 Flame Surface Detail. Turbulence causes wrinkling in the flame surface that entrains
unburned charge into the flame.

Because turbulent eddies do not affect the flame when it is very small, the flame surface stays

smooth and very little unburned charge becomes entrained in the flame. The second term in

Equation 2-2 is small initially but its magnitude grows as the size of the flame grows. The flame

grows comparatively slowly, initially because the first term is also small because the frontal area

of the flame A1 is small. This is both because little mass becomes entrained in the flame and

because the flame has not distorted from a spherical shape yet. The surface is smooth so Af is

approximately AL, the laminar flame frontal area. Because of the slow propagation, the 0-2%

burn duration can take approximately 30% of the total bum duration [11].

As the flame kernel grows, it reaches a critical size where it is the same length scale as

the turbulent eddies in the charge. At this point, the flame front begins to fold and wrinkle, and
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unburned mass begins to become entrained in the flame. Once this begins, the flame speed

increases dramatically. Smith showed that this turbulent length scale is the Taylor microscale rM,

defined by relating the fluctuating strain rate of the turbulent flow field au/ax to the turbulent

intensity u', as in Equation 2-4 [15,5].

au U (2-4)
ax IM

Im is the Taylor micro length scale, related to the Taylor micro time scale by Equation 2-5 in

homogenous and isotropic turbulence, turbulence with no spatial gradients or preferred direction.

MI = UTM (2-5)

U is the average mean velocity.

A significant source of cycle-by-cycle IMEP variations can arise from CCV of this

length scale. When the local turbulent intensity is higher, the Taylor micro length scale is

smaller, and turbulence begins to play a significant role in burn rate earlier in the flame

development process. Since the level of small-scale turbulence in-cylinder is caused by bulk

motion, variations in bulk motion from cycle-to-cycle will generate global variations in small

scale-turbulence.

Hill showed that there are indeed significant cycle-to-cycle variations in the mass fraction

burn rate at the very beginning of combustion. From experimental data, he related the Taylor

micro length scale to the bum duration standard deviation, as in Equation 2-6.

= = M (2-6)
2~ 4SL }

o is the standard deviation of his data. From this relationship, Hill showed that micro scale

turbulence affects bum duration CCV through its magnitude in addition to its CCV [8].

Retarding or advancing the point at which turbulent flame propagation dominates over

laminar propagation also has a secondary effect of timing this point with a decreasing turbulent

intensity. Beginning at the intake event, the turbulent intensity consistently decreases through the

compression stroke. When the transition to turbulence-dominated propagation is delayed, not

only is a smaller portion of the flame propagation dominated by turbulence, but also the

turbulence in-cylinder is weaker [5]. This provides a significant source for the variation of burn

duration.
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2.2.2 Flame Stretch

During the early part of the flame development stage, a phenomenon called flame stretch

occurs where small-scale turbulence, on the order of the Taylor micro length scale, can cause the

flame to stretch, thus increasing its frontal area. The flame strains normal to its gradient of heat

and active species flux; the process results in lowered temperature and speed. Hacohen et al.

conducted an experiment and a theoretical model to show that the flame stretch rate crucially

affects early flame development and propagation rate later. Since the phenomenon is caused by

small-scale turbulence, it is a mechanism of CCV [16].

2.3 Mixture Concentration Variations

Combined with fluid motion, variance of the mixture in the cylinder causes cycle-by-

cycle variations in two distinct ways. First, the global mixture composition changes cycle-by-

cycle. Next, the local composition changes. When considering the flame development stage, the

effects of each one can be indistinguishable since the flame is only present in one spot.

2.3.1 Variations in Mixture Inhomogeneity

Considering local variations, turbulent fluid motion plays an important role in moving the

developing flame kernel to regions of varying concentrations of fuel, air, and residual gas or

moving varying concentrations of the mixture into the developing flame. CCV of the large-scale

fluid motion can affect the contribution of mixture inhomogeneity to cycle-to-cycle fluctuations

in burn duration. Mixture inhomogeneity affects flame propagation because it changes the local

air-fuel ratio (AFR) as well as the dilution ratio from residual gas. Dilution ratio is defined as the

mass of diluent divided by the total mass of mixture, as in Equation 2-7.

rd - Mdil"e"' (2-7)
mtotal

At the smallest level, the flame propagates at the laminar flame speed, which is driven by the

local composition of the mixture. Lee and Foster found that variations in local mixture

composition near the spark plug affected IMEP only when the A/F was globally lean [17].

2.3.2 Global Mixture Variations

While variances of local mixture concentrations will average across the large flame

frontal area, thus having negligible effects, global fluctuations by cycle result in noticeable
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change in the dilution ratio. Sher and Keck considered this in terms of a fluctuation of volumetric

efficiency q,, defined as the mass of air that enters the chamber ma divided by the displaced

cylinder volume Vd times the intake air density pa,i, as in Equation 2-8. So, it can be considered

in terms of mass of residual gas as in Equation 2-9.

7= Ma (2-8)
Pai Vd

1- m residual2-9)
Ma + residual + fuel

They found that a fluctuation in the volumetric efficiency of 5% led to a change in burning

velocity of 13%, which would noticeably affect NIMEP [18].

Hinze and Cheng used a global mixture perturbation method to understand the relative

contributions that variations in air, fuel, and residual masses would have upon COV of GIMEP.

They attributed 33% to fluctuations in residual gas mass, 7.5% to changes in air mass, and 4.6%

to fluctuations in fuel mass. The remaining 54% was attributed to flow field and charge

inhomogeneity effects [1].

2.4 Factors Influencing Cycle-to-Cycle Variation

Aside from those phenomena that cause cycle-by-cycle variations in bum rate and

consequently, IMEP, there are also several factors that increase the likelihood of CCV indirectly

through the flame speed. Decreasing the bum rate increases CCV, and increasing the burn rate

reduces CCV. A faster burn reduces cycle-to-cycle variations because there is less time for

random fluctuations in turbulence to alter the flame's trajectory. The flame kernel's movement

from the spark plug would be reduced because it would reach the critical diameter where it stops

moving sooner. Consequently, the variations of its movement would be lower. Some major

factors that affect flame speed and the likelihood of CCV are fuel type, air-fuel ratio, dilution

ratio, engine load, spark timing, large-scale fluid motion, and engine speed.

2.4.1 Mixture Effects

The mixture defines the laminar flame speed, so changing the air-fuel ratio, the dilution

ratio, or the type of fuel will change the laminar flame speed. The laminar flame speed is a strong

function of the adiabatic flame temperature, which can be found from an enthalpy balance as

shown in Equations 2-10 and 2-11.
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AHproducts - eacants =0 (2-10)

hformation+ c, (T)dT = hformation f C (T)dT (2-111)

AH is the enthalpy difference from a reference enthalpy. hfo,aion is the specific enthalpy of

formation of each specie. c, is the specific heat capacity. If more diluent is added to the mixture,

the mixture's thermal mass increases, and the adiabatic flame temperature will decrease. If the

air-fuel ratio is changed, the laminar flame speed will change, as well. The equivalence ratio at

which the maximum flame speed occurs depends on the fuel [3]. The fuel type matters because it

will change the enthalpy of formation of the fuel as well as the stoichiometry.

Another way to vary the laminar bum rate is to vary the load. Temperatures are higher at

higher loads because of the smaller heat loss relative to the charge energy. Turbulence levels are

also higher due to more mass flow through the intake valves [5].

2.4.2 Turbulence Effects

Changing the level of turbulence in cylinder can also significantly change the burn rate.

First, the size of the first eddy to interact with the flame kernel is important because it determines

when turbulence will accelerate flame propagation. Also, the level of turbulence in-cylinder will

determine the rate of mass entrainment into the flame front. As mentioned earlier, a mean

velocity in the vicinity of the spark plug will cause the flame kernel to move away from the spark

plug to grow faster. Also, the direction in which the kernel is moved will either shorten or

lengthen the burn duration depending on whether the kernel is moved toward the center of the

cylinder or away from it.

2.4.3 Inducing Turbulence

The amount of turbulence in-cylinder depends on the geometry and velocity of the air

flow inducted through the intake valves and on the geometry of the combustion chamber. Up to a

point, raising the engine speed, for example, causes air to rush into the cylinder at a higher

velocity, which increases in-cylinder turbulence. Engine designers also employ strategies to

generate high velocity airflow into the cylinder in such a way as to generate a particular flow in

the cylinder.

One strategy is to generate swirl, a rotational fluid motion about the axis of the cylinder.

Generated during the intake stroke, about a quarter to a third of the initial rotational momentum
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is dissipated as heat to the walls and through shear in the fluid by the end of the compression

stroke. However, a squish strategy can also be employed to increase fluid velocity during

compression. If the piston features a bowl, the rotating mass will be forced towards the axis of

the cylinder by this bowl geometry during compression, and by conservation of angular

momentum, the rotational speed of the fluid will increase. Since the rotation will be stronger near

the piston than near the head, the piston bowl matters more than a hemispherical head does [5].

During combustion, Witze notices two ways swirl effects flame propagation. First, light swirl

generates a higher level of in-cylinder turbulence to aid flame propagation through diffusion. If

the spark plug is located in the path of the rotating flow, strong swirl will accelerate the burn rate

through a convective process [19].

A second strategy for developing flow in-cylinder is to induce a tumbling motion, a

rotation about an axis perpendicular to the cylinder axis, during intake. Unlike in the swirl

strategy, the compression stroke significantly changes the geometry in which the tumbling is

occurring, and consequently, tumbling breaks down before top center. What results is a high

level of turbulence near the spark plug, if it is located near the center of the head. A notable

feature of tumble is that it affects the flame kernel differently depending on ignition timing. If

ignition is early, the spark may witness a strong mean flow; whereas, if ignition is significantly

retarded, only a high level of turbulence will affect the kernel [3].
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Chapter 3 Experimental Method

The methodology used to study combustion stability was to induce additional turbulence

to the charge motion in one set of tests and to change the laminar flame speed of the mixture in a

second set, varying the spark timing in both. First, combustion tests were conducted in which the

ratio of airflow through an added air jet versus through the manifold was varied to study the

effects on COV of NIMEP and on bum duration. Also, combustion tests were conducted in

which nitrogen in air was substituted with argon or carbon dioxide to delineate the effects of

laminar versus turbulent flame properties on bum rate and COV. Each of these sets of tests was

conducted at operating conditions used during fast idle.

3.1 Combustion Test Experimental Procedure

The first series of tests conducted was a baseline in which the speed, load, AFR, and

coolant temperature were held constant as spark timing was varied. No air jet was used in these

tests, and gaseous propane was introduced into the intake airflow in the middle of the runner.

The in-cylinder pressure trace, manifold air pressure (MAP), manifold air mass flow, and the

exhaust temperature were recorded for each test. Approximately 320 cycles were recorded.

3.1.1 Experimental Parameters

In these tests, as in each of the other combustion tests, the engine was run at an operating

condition to approximate a fast idle condition. Engine speed was held at 1400rpm. The load was

kept at 2.6bar NIMEP, which corresponds to approximately 20 Nm for a four-cylinder engine,

and coolant temperature was kept at 20'C. Spark timing was varied from 20 crank angle degrees

(CAD) before top center (BTC) to 20 CAD after top center (-20 CAD BTC). For consistency, all

spark timing will be referred to as before top center. The error of each parameter is noted in

Table 3-1.

Parameter Value Error Bound
Speed 1400 RPM ± 8 RPM
NIMEP 2.6 bar ± 0.1 bar
Coolant Temperature 20"C ± 1.5 0C
Relative AFR (average) 1.000 ± 0.005

Table 3-1 Operating Parameters Held Constant with Associated Bounds.
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3.1.2 Air Jet Tests

Next, two sets of combustion tests were conducted to see the effects that additional

charge motion would have on combustion stability, bum duration, and exhaust temperature. The

air jet was designed to induce swirl motion in one set of tests and tumble motion in the other set.

At each spark timing, the ratio of intake air from the jet versus from the intake manifold was

varied from 0 to 1. The in-cylinder pressure trace, manifold pressure trace, exhaust temperature,

and the manifold air mass flow were recorded.

3.1.3 Laminar Flame Speed Tests

The composition of inert gas in the mixture was varied in two sets of tests to differentiate

laminar and turbulent effects on bum duration and COV of NIMEP. In one set, intake air

partially was replaced by 02 and Ar to increase laminar flame speed. In the other set, the intake

air was partially replaced by 02 and CO 2 to decrease laminar flame speed. In these tests, load

was kept at 2.6 bar NIMEP. The amount of argon or C0 2, depending on the test, was introduced

equivalent to the mass of replaced nitrogen. The swirl air jet was left installed in the intake port

to allow for comparison between these tests and the air jet although no air was introduced

through it.

3.2 Apparatus

The apparatus consisted of a 1.8L, four-cylinder Nissan spark ignition engine equipped to

run on one cylinder. The engine's speed was maintained at a constant speed by a motoring

dynamometer. The experiment was conducted at the Sloan Lab at MIT in Cambridge, MA.

3.2.1 Engine Specifications and Setup

A 2003 Nissan QG18DE engine was used. The specifications are shown in Table 3-2.

Displacement 442.3cm 3

Compression Ratio 9.5
Bore 80mm
Stroke 88mm
Clearance Volume 208.1cm3

Connecting Rod Length 140.5mm
Valve Timing IVO: 5' BTDC; IVC: 510 ABDC
(held constant for tests) EVO: 260 BBDC; EVC: 20 BTDC

Table 3-2 Nissan GQ18DE Specifications.
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The test engine featured a fast-bum combustion chamber. The chamber had a bowl in

piston and a modest bowl in the chamber roof. The spark plug was centrally located, and the

engine featured double overhead cam actuation of four valves per cylinder, as shown in Figure

3-1.

71mm

Pressure Transducer
Intake Valves

32mm

80mm

Spark Plug

40mm

026mm 37mm 3m

Max Depth of Cylinder Head = 9.5mm

Figure 3-1 Engine Cylinder Head Diagram. The engine head is a shallow hemisphere design with four
valves and a near-centered spark plug.

Also, the engine featured variable intake valve timing and charge motion plates between the

intake runners and the ports. The valve timing was fixed in the default position as noted in Table

3-2, and charge motion plates were kept in the closed position.

The engine was modified for single-cylinder operation. The intake and exhaust of the test

cylinder were isolated from those of the other three cylinders. A plate was installed between

pieces of the intake manifold to block air flow from the throttle to the three motored cylinders.

Small air filters were added to the runners of these cylinders to allow air to enter them to reduce

the resistance upon the dynamometer caused by pumping air through them. The exhaust

manifold was modified to keep the test cylinder's exhaust isolated through the entire exhaust

system. Throughout all tests, the dummy cylinders were motored.
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3.2.2 Dynamometer

A 3DSE Dynamatic Co. dynamometer controlled the speed of the engine and absorbed its

power output. The 40hp dynamometer featured an effective speed range of 900rpm to 3500rpm.

The engine's crankshaft was directly coupled to the dynamometer with a flexible coupling.

While the dynamometer measured the brake torque of the engine, the measurement was not

accurate enough to be useful.

3.2.3 Engine Temperature

The target coolant temperature for testing was 20'C. The coolant temperature was

measured by K-type thermocouples at the inlet and the outlet of the coolant from the engine. The

average of these two temperatures was kept at 20'C + 1.5'C. A VWR 1179PD, lhp chiller was

used to dissipate the heat load of the engine. The chiller was rated to dissipate 285OW of energy

at 20'C.

3.2.4 Intake System and Charge Motion Jet

The experiment mainly focused on modifying the intake system and how it affected

combustion. In the baseline case, the air flowing through the custom throttle was directed

completely to the test cylinder. The throttle consisted of a large ball valve and a fine globe valve.

Adjustments were made by hand. Upstream of the throttle was a 55-gallon dampening tank and

then the mass flow meter. The mass flow meter was a 505-9A-02 made by Kurz Instrument Inc.

It was rated for 0-23.6g/s, and the meter's output varied by ± 0.02g/s at most during steady-state

operation. The manifold air pressure was measured by a Model SA pressure transducer made by

Data Instruments, which is now owned by Honeywell. The MAP sensor was mounted in the

plenum of the manifold. Its range was 0-25psia.

The charge motion jet was a 1/4in. copper tube with an inside diameter of 0. 190in. The

jet was supplied by a pressurized bottle of air, and the flow was regulated by a pressure regulator

and an orifice of known diameter that was changed for different flow rates. The jet was mounted

through the fuel injector hole through the port so that the end of the tube was positioned just

behind an intake valve, a shown in Figure 3-2. The jet was directed in two positions to generate

swirl motion and tumble motion respectively, also shown in Figure 3-2.
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Figure 3-2 Charge Motion Jets. The charge motion jet was installed immediately behind an intake valve
to generate swirl (bottom left) or tumble (bottom right). The jet was mounted through the
fuel injector hole (top).

For the laminar burn duration tests, oxygen and argon or carbon dioxide were introduced

separately from pressurized bottles into the flow upstream of manifold. A pressure regulator and

an orifice of appropriate area regulated the flow of each gas.

3.2.5 Fuel

In all combustion tests, gaseous propane was used as a fuel. Propane was chosen instead

of a liquid fuel because it is gaseous. Cycle-by-cycle variations in liquid-fuel vaporization would

contribute to cycle-by-cycle torque variations. Also, the addition of the air jet may have strongly

affected fuel vaporization.

In each combustion test, the propane was introduced at a constant rate into the intake

system, and the flow was controlled by hand with a needle valve. In the baseline configuration,

the propane was introduced into the middle of the intake runner. This was adequate while a
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substantial portion of the flow passed through the runner. However, when most of the air passed

through the jet, mixing problems arose, as variation in the AFR significantly increased. To

address this issue, a small fuel tube was installed in the runner and in the port to introduce fuel

next to the air tube.

The amount of fuel consumed could be estimated using the air mass flow with the

relative air-fuel ratio. The equivalence ratio was kept at 1.000 ± 0.005, although it deviated by :

0.005 during steady-state operation. The relative air-fuel ratio was measured by a Nissan wide-

band 02 sensor and an ETAS Lambda Meter.

3.2.6 In-Cylinder Pressure Measurements

In-cylinder pressure measurements were necessary to determining the COV of NIMEP as

well as to correctly set the engine to the proper operating condition. A Kistler 6051A

piezoelectric pressure transducer was mounted in the roof of the combustion chamber 32mm off

center, as shown in Figure 3-1. The sensor signaled a charge difference to the Kistler 5010 Dual

Mode Charge Amplifier through a high impedance cable. This type of sensor effectively senses

changes in pressure; however, it does not accurately sense absolute pressure. A dead-weight

pressure calibration device was used to establish the linearity of the pressure measurement

system. The absolute pressure in-cylinder was found by recording both the in-cylinder pressure

signal and the MAP. The in-cylinder pressure was pegged to the manifold pressure at BC before

the compression stroke. The in-cylinder pressure was calibrated against the manifold pressure for

every cycle to correct against any signal drift possibly caused by charge accumulation in the

piezoelectric transducer system.

3.2.7 Data Acquisition System

The data acquisition system consisted of several analog signals recorded by hand and the

quickly changing analogue signals that were recorded by the computer. Exhaust temperature,

intake air temperature, coolant inlet temperature, coolant outlet temperature, mass airflow

through the manifold, and engine speed were all recorded by hand. To record in-cylinder

pressure and manifold pressure, a National Instruments data acquisition system was used with a

desktop computer. Specifically, a BNC 2090 board was used in conjunction with a PCI-6025E

card. Labview was used to record data and to calculate NIMEP real-time. An encoder mounted

on the end of the crankshaft was used to provide a signal on 360 points per revolution on one
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channel and one point per revolution on a different channel. Every other signal of this second

channel was ignored, and the remaining one was aligned with BC before the compression stroke.

The 360-point signal was used as a clock signal for data acquisition, and the BC signal was used

as a trigger. This BC signal was also superimposed over the in-cylinder pressure trace as a

reference point for data analysis. The encoder was an H25E-F18-SS-360-ABZ-740GR-LED-

SM 16-S made by BEI Motion Systems Inc.

3.2.8 Engine Control System

All tests were conducted during steady-state operation so a manual control system was

adequate. The throttle and the fuel flow valve were adjusted by hand to keep the mixture at a

stoichiometric ratio. The NIMEP calculation done by Labview was used to check that the engine

load was correct.
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Chapter 4 Results and Discussion

To understand the dependence on COV of laminar flame speed and turbulence, four sets

of combustion tests were conducted. In two sets of turbulence tests, an air jet was installed

behind one of the intake valves to increase in-cylinder turbulence, and pressure data were taken

for nine spark-timing settings from 20 BTC to 20' ATC (referred to as -20* BTC). One spark

sweep at varying jet flows was done for each of two jet orientations, which were designed to

generate swirl and tumble, respectively. In the two sets of laminar flame speed tests, nitrogen

was replaced with carbon dioxide or argon to reduce or increase laminar flame speed,

respectively. The presented data consist of COV of NIMEP, bum duration, combustion phasing,

and exhaust temperature with respect to jet flow, spark timing, relative laminar flame speed, and

one another. All tests are taken at 20'C average coolant temperature, an equivalence ratio of

1.00, 1400rpm, and 2.6bar NIMEP. For comparison, a baseline is presented first.

4.1 Baseline

Exhaust temperature, COV of NIMEP, and 0-10%, 0-50%, and 10-90% bum durations

were collected for a spark timing sweep from 20' BTC to -20' BTC. In this set of data, the swirl

jet is installed in the intake port but not used. The presence of the 1/4 in. copper tube may affect

the airflow into the engine, so it is installed for a more accurate comparison.

4.1.1 Baseline Exhaust Temperature

As shown in Figure 4-1, the exhaust temperature is 463 C when the timing is set to 20

BTC. The exhaust temperature consistently rises as timing is retarded, reaching 648*C at -20'

BTC. This affirms the claim that retarding the spark timing during start-up will accelerate

catalyst light-off by heating the exhaust.

4.1.2 Baseline COV and Burn Durations

The COV of NIMEP and the 0-10%, 0-50%, and 10-90% bum durations are plotted

together in Figure 4-2. COV reaches a minimum of 3.85% at a spark timing of 150 BTC,

indicating that this is the closest point to maximum brake torque (MBT) timing. COV increases

with a positive derivative as spark timing is retarded from this point, reaching 6.27% at -5 BTC

and 9.55% at -20' BTC.
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Each of the three burn durations plotted remains approximately flat between the timing of

20' BTC and 100 BTC. Then, as timing is retarded, the burn rates increase consistently. From the

minimum value to the maximum values, the 10-90% bum duration is lengthened the most, about

88%. The 0-10% bum duration increases by 80%, and the 0-50% burn duration increases by

69%. Presumably, the longer combustion period allows turbulent fluctuations to cause more

variability between cycles. The 0-50% duration and the 10-90% duration should show similar

behavior to the 0-10% behavior because the early flame development affects flame propagation

speed. Since turbulent intensity is highly dependent on combustion phasing, the speed of early

flame development will determine the turbulent intensity during the propagation stage of the

burn [3].

4.2 Turbulence Tests

For the turbulence tests, the jet flow rate was adjusted from no flow to the entire flow or

close to it. The airflow through the manifold was adjusted to keep the engine load constant at

2.6bar NIMEP. Each jet was mounted as shown in Figure 3-2.

4.2.1 Exhaust Temperature Change

If the addition of a turbulence-enhancement strategy is considered for fast catalyst light-

off, it is necessary to see how additional turbulence affects the exhaust temperature. The change

in exhaust temperature with jet flow is examined in Figure 4-3 for the swirl jet and in Figure 4-4

for the tumble jet. Except for a datum at -5* BTC in the swirl jet set, the exhaust temperature

remains within 5% of the baseline set for each test.

4.2.2 Swirl Jet COV of NIMEP

In Figure 4-5, COV of NIMEP is plotted against jet flow, normalized against the total

airflow. As is consistent with the baseline, more retarded spark timings feature higher overall

COV percentages. The swirl jet is effective at reducing COV approximately 30% at each spark

timing at various flow rates, as shown in Table 4-1.

In each of the spark timing sets at 5' BTC and at more retarded timings, COV decreases

with increased jet flow until a point where it markedly increases. These data are replotted in

Figure 4-6 to show that this point occurs approximately at 1.1 g/s in each of the sets where it

occurs. In several cases, this point is the minimum COV of the set. After a peak in some of the
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curves, the COV again falls as jet flow is increased. Witze found similar results in his 1982

study. Comparing his COV data with his photographs, he concluded that when the jet flow was

low, the flame propagation was driven by the turbulent diffusion process. The jet added

turbulence and enhanced entrainment velocity. If the jet flow was increased enough, there was an

additional turbulence generating mechanism due to the wake formed by the jet-spark plug

interaction. He called this convection induced flame enhancement. At the transition between the

diffusion and convection mechansims, COV notably increased, but once the jet strength was

increased enough, the convection propagation became consistent and COV dropped [19].

Spark Baseline Min. COV COV Decrease Jet/Total Flow Jet Mass Flow at
Timing COV at Min. COV Min. COV (g/s)
200 4.26% 2.86% 33% 0.83 0.95
150 3.85% 2.69% 30% 0.74 0.95
100 4.01% 2.74% 32% 0.73 0.95
50 4.43% 3.05% 32% 0.48 0.64
00 5.37% 3.59% 33% 0.92 1.32
-50 6.27% 4.05% 35% 0.28 0.4
-100 7.26% 4.63% 36% 0.58 1.04
-150 8.86% 5.83% 34% 0.48 0.97
-200 9.55 6.88 28% 1.0 2.39

Table 4-1 Swirl Jet Improvements to COV.

4.2.3 Swirl Jet Burn Durations

For the swirl jet tests, the 0-10%, 0-50%, and 10-90% bum durations are plotted against

normalized jet flow in Figure 4-7, Figure 4-8, and Figure 4-9, respectively. The 0-10% bum

duration shows a decrease as jet flow is increased at low jet flows, but it reaches a minimum or

levels off near 0.6 in most cases. The 0-50% bum duration plot shows similar trends. The 10-

90% bum duration plot weakly shows this trend of decreasing duration as jet flow increases at

low jet flows. The effect is more pronounced during the first 10% of the bum.

4.2.4 Tumble Jet COV of NIMEP

As shown in Figure 4-10, the tumble jet affects COV differently than the swirl jet does.

The more advanced spark timings, 20 BTC and 15' BTC reach a minimum COV at low jet flow,

24% of total flow, and increase as jet flow is increased as shown in Table 4-2. The 100 BTC and

5* BTC timings feature a minimum COV at full jet flow. They decrease initially then flatten until

the jet is increased to full flow. The tests taken at more retarded spark timings show a decrease in
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COV as the jet is increased to approximately two thirds of the flow, about 80% for 00 BTC.

However, increasing the jet flow past this point increases variability.

The earliest spark timings should witness a different flow than later ones, as the tumble

motion should break down into turbulence by top center. 200 BTC and 15' BTC show a slight

decrease at low jet flow because the flame kernel is probably feeling slightly stronger direct fluid

motion caused by the jet. As the jet flow is increased, the flow exceeds optimal flow velocity

range, and COV increases to a point higher than the baseline. The curves for later timings feature

consistent reduction in COV with increased jet flow up to a higher amount than the earlier

timings because the jet is likely directly increasing the level of turbulence rather than creating a

significant mean flow that is interacting with the early flame kernel. At some turbulence level in

each of these timings, COV increases. This may be due to decreased mixing quality.

Spark Baseline Min. COV COV Decrease Jet/Total Flow Jet Mass Flow at
Timing COV at Min. COV Min. COV (g/s)
200 3.55% 3.19% 10.1% 0.24 0.31
150 4.02% 3.27% 18.7% 0.24 0.31
100 4.50% 3.13% 30.4% 1.00 1.36
50 4.82% 2.72% 43.6% 1.00 1.36
00 5.57% 3.31% 40.6% 0.81 1.21
-50 6.31% 3.92% 37.9% 0.68 1.13
-100 6.67% 4.27% 36.0% 0.67 1.21
-150 7.45% 5.26% 29.4% 0.67 1.49
-200 8.69% 7.19% 17.3% 0.55 1.36

Table 4-2 Tumble Jet Improvements to COV.

4.2.5 Tumble Jet Burn Durations

Shown in Figure 4-11, Figure 4-12, and Figure 4-13, the 0-10%, 0-50%, and 10-90%

burn durations for the tumble jet tests each feature a decrease in bum duration as jet flow is

increased. In the 0-10% and 0-50% plots, the curves of the earliest timing settings, 200 BTC, 15'

BTC, 100 BTC, and 50 BTC feature consistent decline in burn duration as the jet is increased to

full flow. The 10-90% plot shows 20' BTC and 15' BTC level off whereas 100 BTC increases at

full jet flow and 5' BTC continues to decrease as jet flow is increased. Later spark timing curves

show a decrease in burn duration with increased jet flow at low jet flows in each of the three

plots. These curves either reach a shallow minimum between 0.4 and 0.7 and then rise slightly at

high jet flows, or the flatten near a jet flow ratio of 0.5
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4.3 Laminar Flame Speed Tests

In two sets of tests, replacing the nitrogen in air with a different inert gas varied the

mixture's laminar flame speed. Argon was used to increase the laminar flame speed, and carbon

dioxide was used to decrease it. The relative laminar flame speed for each mixture used was

estimated with respect to that of a stoichiometric mixture comprised of air and fuel. See

Appendix A for how it was calculated.

4.3.1 Laminar Flame Speed COV of NIMEP

As shown in Figure 4-14, COV increases as laminar flame speed is decreased. Along

each spark timing curve, as laminar flame speed is decreased, COV increases approximately

linearly until a point where is suddenly increases rapidly. This point appears to be between SLSO

= 0.8 and 0.9 for all curves. The linear slope that the curves display tends to become more

negative as the spark timing is more retarded. Also, when the laminar flame speed is very high

the more retarded timings achieve a lower COV than the timings closer to the MBT point for the

baseline mixture.

This behavior is explained by the decreasing turbulent intensity in-cylinder as spark

timing is retarded. Turbulence dissipates, starting from the end of the intake event, with each

successive move to a more retarded ignition time. So, there is a lower amount of turbulence at

spark. This results in a larger first-eddy size, which allows more time for the growth of the flame

kernel in a laminar-dominated regime. At normal, early ignition timings such as 150 BTC, the

increase in laminar flame speed has almost no effect; whereas, at -10' BTC, for example, a much

greater reduction in COV is realized. Also, at late spark timings, the reduced turbulence and

increased laminar flame growth allows an improvement in COV beyond the baseline MBT value.

At each spark timing later than the original MBT timing, 15' BTC, COV is reduced increasingly

more below the MBT timing level. An explanation for this behavior is that the reduced

turbulence of late spark timing results in a larger average eddy size interacting with the flame

kernel. The interaction is later because the kernel must grow to the same length scale as the eddy.

While under normal laminar flame speed conditions, the kernel would move far from the spark

plug in this time, the kernel grows quickly and drifts little. Not only does the kernel avoid much

of the random walk phenomenon, the laminar flame speed also grows the kernel quickly

avoiding variations from flame stretch and small-scale turbulence that is less intense at late
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timing. Compared to the effects of artificially increasing turbulence at late timing, it appears that

the increased turbulence may have adverse effects on CCV that laminar flame speed

enhancement does not cause.

4.3.2 Laminar Flame Speed Burn Duration Tests

The bum duration plots, shown in Figure 4-15, Figure 4-16, and Figure 4-17, feature

similar trends as the COV plot for the laminar flame speed tests. In each spark timing curve, the

bum durations in each plotted percentage increase linearly as laminar flame speed is decreased

until a point at which the bum duration rises steeply. This point, between SL/SO = 0.8 and 0.9 for

each curve, corresponds to where the COV markedly increases. As in the COV plot, laminar

flame speed enhancement affects the later timing curves noticeably more than the early timing

curves. For example, in the 0-10% plot, the -20' BTC curve features 20' CAD difference

between where the slope changes at low SL/SO to the higher SL/SO. However, the 20' BTC curve

only changes by 5' for this range.

4.4 Global Data

To examine the relationships between COV, exhaust temperature, and bum duration, all

the data are shown together in several plots.

4.4.1 Exhaust Temperature vs. Combustion Phasing

To show the effect of combustion phasing on exhaust temperature, exhaust temperature is

plotted against the crank angle at which 50% of the charge is burned (CA 50%), as shown in

Figure 4-18. CA 50% is a useful metric to describe the phasing of combustion during the cycle

because 50% of the mixture combusts at about half the time required for complete combustion.

Exhaust temperature features a linear correlation with CA 50%. The conclusion that a later bum

causes an increase in exhaust temperature is consistent with the explanation that there is less heat

transfer to the cylinder walls if the bum is later. Also, a lower percentage of the chemical energy

of the fuel is transferred to the piston as work at later combustion phasing so the burned gas is

hotter at EVO, as a result.
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4.4.2 Exhaust Temperature vs. COV

The exhaust temperature is plotted against COV for the turbulence data and the laminar

flame speed change data as shown in Figure 4-19. There is a correlation between exhaust

temperature and COV in the turbulence data. The laminar speed change data show a looser

correlation. It is likely that this correlation is mostly caused by changing in combustion phasing.

However, this laminar speed data is confounded by the fact that the charge thermodynamic

properties are changed substantially. The relationship between exhaust temperature and

combustion phasing is clear, as in Figure 4-18. Also, from Figure 4-3 and Figure 4-4, it is clear

that the added turbulence does not affect exhaust temperature.

4.4.3 COV vs. Combustion Phasing

Figure 4-20, Figure 4-21, and Figure 4-22 show COV of NIMEP plotted against CA 50%

CA 90% and CA 10%. All of the data are plotted in each of these figures, but the data from each

set is distinguished to elucidate why the plot takes the shape it does. Considering the data from

all tests, COV seems to have a weak correlation with combustion phasing, as shown in the CA

50% plot in Figure 4-20. COV increases, generally, as CA 50% increases. COV and combustion

phasing correlate much better in the turbulence data than in the laminar flame speed data,

especially when CA 50% is later than 190 CAD. While the tumble and swirl data seem to

overlap each other, the CO 2 data features a higher COV than the argon data for all CA 50%

points. They also diverge as CA 50% increases. The shapes of the CO 2 and the Ar data are

different, as well. The CO 2 data seem to show a linear relationship, although the points are

spread out. The argon COV data tend to be clumped where CA 50% is early and then spread out

when CA 50% is later, thus showing less of a correlation.

In Figure 4-21 and in Figure 4-22, COV is plotted against CA 10% and CA 90%,

respectively. In both of these plots, the turbulence data show the same behavior as in CA 50%;

however, the laminar data show different behavior in each one. In the CA 10% plot, the Argon

data are about the same as in the CA 50% plot, but the CO 2 data are more spread out. In the CA

90% plot, both the Argon and the CO 2 data fall more tightly around the line that the turbulent

data form.
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4.4.4 COV vs. Burn Duration

For the global data set, COV is plotted against 0-10%, 0-50%, and 10-90% bum duration

in Figure 4-23, Figure 4-24, and Figure 4-25. In each plot, there appears to be a strong linear

correlation between COV and bum duration or flame speed, inversely. As bum duration

increases, COV increases. However, at the shortest bum durations in each range plotted, the

linear relationship would project COV to drop below 2% as the 0-10% stage is reduced to 15

CAD. This point is at about 23 CAD for the 0-50% segment and 15 CAD for the 10-90%

duration. There is considerable noise in the data at long bum durations in the 0-10% plot and the

10-90% plot. These points that do not align with others are related to the significant, non-linear

increase that both COV and bum duration display as the laminar flame speed is reduced, shown

in Figure 4-14 through Figure 4-17. The points in question lie at the point where the curves begin

to deviate from their linear path to the non-linear one.
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Chapter 5 Conclusion

An experimental study on combustion stability was conducted to further understand the

causes of cycle-by-cycle variability in a spark-ignition engine. Combustion experiments were

conducted in which in-cylinder turbulence was varied via an added air jet. Also, combustion

experiments were conducted where the inert gas in the mixture was varied to change the laminar

flame speed of the mixture. These tests were done at conditions to simulate fast-idle: 1400rpm,

2.6bar NIMEP, equivalence ratio equal to 1.00, and 200C coolant temperature. COV of NIMEP,

bum duration, combustion phasing, and exhaust temperature data from these tests were

examined.

The two jet orientations improved COV to varying degrees. The swirl jet improved COV

by about 30% at each spark timing, ranging from 28% and 35% improvements. The tumble jet

showed a wider range of effectively, improving middle-range timings by over 40% and by

improving early and very late spark timings by less than 20%, as little as 10% at 20' BTC. Bum

durations generally followed the trends of COV.

The laminar flame speed tests yielded reduced burn duration and COV in a linear fashion

as the laminar flame speed was increased. As it was decreased, COV and burn duration increased

linearly until at a point common to all spark timings, COV and bum duration increased

significantly, non-linearly. Laminar flame speed enhancement had an increasing impact on COV

and burn duration as timing was retarded, even to the point that later timing curves featured

lower COV points than earlier timing curves.

Plots featuring the global data set illustrated qualitative relationships between exhaust

temperature, COV, bum duration, and combustion phasing. Exhaust temperature showed tight

linear correlation to CA 50%; however, it showed a much weaker linear correlation with COV.

This is consistent with the fact that COV showed a weak correlation with CA 50%. In this plot, it

was clear that the turbulence data held a much tighter correlation than the laminar data did.

Compared to plots of COV vs. CA 10% and CA 90%, it became clear that the correlation

between COV and the combustion phase became tighter as the combustion phase became later.

Finally, COV was plotted against 0-10%, 0-50%, and 10-90% bum duration, and it correlated

well, linearly with each of them, except for the very shortest burn duration points where COV

leveled off instead of continuing to decrease.

54



From comparison between laminar and turbulent COV data, it is likely that additional

turbulence causes competing effects that do not all reduce CCV. Retarding the spark timing

reduces turbulent intensity, which increases CCV by allowing more random walk of the flame

kernel; however, it also seems to alleviate another effect. This is shown because increasing the

laminar flame speed improved COV beyond the point that it improved the COV of earlier spark

timings, which presumably featured more turbulence.

Further study is necessary to obtain quantitative relationships between these factors. In-

cylinder turbulence data would be necessary for this.
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Appendix A: Useful Parameters

Fluid Mechanics Definitions

The instantaneous velocity of a steady turbulent flow U features two components, a mean

velocity U and a fluctuating velocity u as in Equation A-1.

U(t)= U+ u(t) (A-1)

The mean velocity component U is the time average of U(t).

U =lim JU(t)dt (A-2)

In an engine, the velocity is unsteady. It can be written as a function of the crank angle of the

engine 0 for a particular cycle i.

U(0, i)= U(0, i)+ u(0, i) (A-3)

Here, U (0, i) is the time-average velocity of the duration of some crank angles in a particular

cycle. The averaging period is long compared to the small-scale velocity fluctuation but is short

to resolve the in-cylinder bulk motion. An ensemble average of the velocity over many cycles is

defined for a specific crank angle as in Equation A-4.

SN,

UEA (0)= U(o, i) (A-4)
Ne

N. is the number of considered cycles. u(0,i) is defined as the difference between the time-

average velocity of a crank angle of a particular cycle and the cycle-by-cycle average for the

crank angle. This is the cycle-by-cycle mean velocity variation.

O(0, i) = U(0, i)-- UEA (0) (A-5)

Incorporating this and the ensemble average, Equation A-6 shows the velocity in terms of the

average velocity for many cycles UEA (), the average deviation from it for a particular cycle

C(0, i), and the random fluctuation in a given cycle u.

U(0, i)= U EA(0)+0(0, i)+ u(0, i) (A-6)

The turbulent intensity u' defines the fluctuating velocity component u by its root mean square

value [5].
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U= Jim( +rU2d, )1/2 (A-7)

Net Indicated Mean Effective Pressure and Covariance

Net Indicated Mean Effective Pressure (NIMEP) is used throughout this project as an

indicator of torque. It is defined and related to torque as follows. Covariance (COV) is used to

measure the cycle-to-cycle variations of NIMEP.

W .
NIMEP = '' (A-8)

Vd

We,,i is the indicated work per cycle, and Vd is the displace volume of the cylinder. Work per

cycle is defined by the integral of cylinder pressure with respect to change in volume.

W . l1
NIMEP - '' - Ip . dV (A-9)

Vd Vd

The torque output of the engine T is related to NIMEP by displaced volume Vd and the number of

revolutions per cycle nr.

T= V NJMEP-T1-T
2T = Nf MEP - Tfriction accesso, ( A-10)

Tfriction and Taccessory are the torques acting against the engine due to friction and accessory loads.

If these are held constant by keeping engine speed constant and by engine control, torque and

NIMEP are proportional. Cycle-by-cycle torque variations are proportional to cycle-to-cycle

variations in NIMEP, which is estimated by covariance, as in Equation A-11 [5].

COVNIMEP NIMEP .100% (A-11)
AvgNImEp

COVNMEP indicates the variation in the pressure trace when NIMEP is taken over many cycles.

cNIMEP is the standard deviation and AvgNIMEP is the average NIMEP.

Burn Duration and Combustion Phasing

The percent bum durations were calculated using the Rassweiler and Withrow method

[20]. This simple method requires only the pressure at a given crank angle degree p(O), the

pressure at ignition po, the pressure at the end of combustion, p{ and the exponent n from the

polytropic relation in Equation A-12.
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pV" =k (A-12)

k is a constant. This equation is used to relate the pressure and volume of the initial unburned gas

to those of the unburned gas during combustion and the pressure and volume of the final burned

gas to those of the burned gas during combustion as follows.

Pov uO = PV" P1jbvb = P V" (A-13)

Vb = ( ) Vb, -- Vb (A-14)

Next, burned mass fraction is related to volume fraction. The in-cylinder pressure rise is due to a

combustion component Apc and a compression component Apv.

Ap = Ap + Ap, (A-15)

The pressure and volume change due to the compression component are estimated using an

isentropic relation.

p" = p7V" (A-16)

Incorporating this into Equation A- 15 yields Equation A- 17.

n

ApV = Pi -I (A-17)

The assumption is made that for a given mass of mixture burned, a corresponding pressure rise

results. The pressure rise is actually due to fuel chemical energy release, but this assumption

provides a reasonable estimate.

mb(it,,) Z Ap,

Here, N is the total number of crank angles considered. Using Equations A-15 to A- 18, burned

mass fraction is related to volume change.

V V
x u =1-O " b- (A-19)

VO Vf

Relating Equations A- 14 and A- 19, an equation relating burned mass fraction to in-cylinder

pressure, n, volume, pressure at ignition, and pressure at the end of combustion results [5,20].
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Xb "V- pi"V(-
xa = P 0O

b "Vn - Il"V

To calculate these parameters, many cycles

average cycle pressure trace is found. An example is

of data, specifically 320, are taken and an

shown in Figure A-1.

90 180 270
Crank

360 450
Angle (degrees)

540 630 720

Figure A-1 A Typical Pressure Trace. Spark noise causes the spike before the pressure rise.

Then, log(p) vs. log(V) are plotted. A line is fitted to the last 60 points before EVO, and

the slope of this line is used as an estimate for n. The spark timing is used as the combustion

starting point. The combustion ending point is estimated as the point where the log(p) vs. log(V)

plot becomes tangent with part of the trace during the expansion stroke that is a straight line, as

shown in Figure A-2.
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Figure A-2 log(p) vs. log(V) of a Typical Pressure Trace. The straight line of the trace during the
expansion stroke is used to find n. The point where the trace becomes tangent to it is
estimated to be the end of combustion. The red cross marks the spark point.

Using the acquired burned mass fraction curve, the crank angle degrees of 10%, 50%,

and 90% burn are found. An example of such a curve is shown in Figure A-3 Burn durations are

computed by finding the difference between each of these points and between them and the spark

crank angle. The aforementioned spark noise is the cause of jagged part of the compression

stroke near the beginning of combustion. The noise prevented accurate assessment of the 0-2%

burn duration.
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Figure A-3 A Burned Mass Fraction vs. Crank Angle Example Plot. This example plot illustrates the
rate of the burn during combustion.

Relative Laminar Flame Speed

Adding diluent, non-reactive species, to an unburned mixture can influence the laminar

flame speed. The diluent changes the thermodynamic properties of the mixture. For example,

substituting C02 for the N2 in air would reduce the temperature of the burned gas and the flame

speed. Substituting Ar would do the opposite.

An empirical way to account for the above dilution effect is to correlate the flame speed

to the adiabatic flame temperature, the value of which is a measure of the overall effect of

thermodynamic properties on flame behavior. The data of [21] as quoted in [5] was used for this

correlation. Then, the laminar flame speed SL is estimated relative to the laminar flame speed of a

stoichiometric mixture without any substitution for N2, as in Equation A-2 1.

0-.2.52 - )0-8TA-21)

C,,L. I a,
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Here, the subscript 0 refers to the value at undisturbed conditions. For each mixture of fuel, air,

oxygen, and diluent, CO 2 or Ar, the adiabatic flame temperature Tad is calculated by a chemical

equilibrium calculation.
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Appendix B: Data and Operating Conditions

Tavg: average coolant temperature
Tair In.: intake runner air temperature
Texh: exhaust temperature
Airflow: flow of air through the manifold
COV: covariance of NIMEP
MAP Avg.: average manifold pressure over data file
ATexh.: exhaust temperature minus exhaust temperature at no jet flow divided by exhaust
temperature at no jet flow
Sb/SO: relative laminar flame speed

Baseline Data

Spark Timing
CAD BTC

20
15
10
5
0

-5
-10
-15
-20

Tavg (C)
19.9

19.5
19.3
20.3
20.0
19.7
20.4
20.0
20.9

Tair In. (C)
25.9
20.3
25.9
24.6
25.8
23.1
23.6
23.4
25.5

Texh (C)
463
471
473
498
513
550
580
617
648

Airflow NIMEP
(g/s)

1.21
1.18
1.26
1.33
1.46
1.59
1.81
2.11
2.57

(bar)
2.61
2.56
2.60
2.55
2.61
2.60
2.65
2.54
2.60

COV (%)
4.26
3.85
4.01
4.43
5.37
6.27
7.26
8.86
9.55

MAP Avg.
(bar)

0.310
0.305
0.320
0.335
0.373
0.411
0.465
0.533
0.650

Spark Timing
CAD BTC

20
15
10
5
0

-5
-10
-15
-20

Burn Duration

0-10%
15
17
16
19
20
21
22
24
27

0-50%
26
26
26
29
31
33
35
38
44

Combustion Phase

10-90%
17
16
18
18
20
23
25
24
30

CA 10% CA 50% CA 90%
175
182
186
194
200
206
212
219
227

186
191
196
204
211
218
225
233
244

192
198
204
212
220
229
237
243
257
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Swirl Jet Data

Spark Timing
CAD BTC

20
20
20
20
20
20
20
20
15
15
15
15
15
15
15
15
10
10
10
10
10
10
10
10
5
5
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0

Airflow Jet Flow Jet Flow/
(g/s) (g/s) Total Flow

0 1.21 1.00
0.09 1.13 0.93
0.21 1.04 0.83
0.34 0.95 0.74
0.54 0.72 0.57
0.64 0.59 0.48
1.05 0.21 0.17
1.21 0 0.00

0 1.21 1.00
0.11 1.13 0.91
0.34 0.95 0.74
0.54 0.72 0.57
0.65 0.59 0.48
0.83 0.4 0.33

1 0.21 0.17
1.18 0 0.00

0 1.24 1.00
0.14 1.13 0.89
0.36 0.95 0.73
0.46 0.81 0.64
0.54 0.72 0.57
0.76 0.5 0.40
1.09 0.21 0.16
1.26 0 0.00
0.00 1.36 1.00
0.05 1.25 0.96
0.17 1.18 0.87
0.22 1.13 0.84
0.33 1.04 0.76
0.53 0.81 0.60
0.64 0.72 0.53
0.69 0.64 0.48
0.93 0.4 0.30
1.33 0 0.00

0 1.46 1.00
0.11 1.32 0.92
0.15 1.3 0.90
0.27 1.21 0.82
0.37 1.13 0.75
0.44 1.04 0.70
0.58 0.89 0.61
0.71 0.72 0.50

0.9 0.5 0.36
1.03 0.4 0.28
1.26 0.21 0.14
1.46 0 0.00

Tavg
(C)

19.9
19.5
19.8
19.8
20.1
19.7
20.0
19.4
19.8
19.5
19.7
19.9
20.2
19.3
20.0
19.5
20.3
19.8
19.7
20.0
20.3
20.2
19.7
19.3
19.6
20.1
19.1
19.7
19.9
20.0
20.0
20.0
20.0
20.3
19.6
18.9
19.3
19.9
19.9
20.0
19.9
20.2
20.5
20.5
20.1
20.0

Tair In.
(C)

30.2
28.5
28.0
28.4
25.5
23.1
26.4
25.9
29.9
28.1
28.8
26.6
24.9
24.0
21.7
20.3
28.3
29.6
28.3
27.6
27.7
22.1
26.3
25.9
30.3
30.5
28.8
28.2
28.2
28.1
25.9
26.6
24.5
24.6
31.1
28.7
28.8
26.1
26.6
27.7
27.6
27.8
26.9
26.6
25.9
25.8

Texh ATexh
(C) (C)

451
455
458
457
459
452
473
463
465
466
469
471
474
464
478
471
485
481
478
480
480
484
478
473
483
495
484
486
483
489
482
484
492
498
500
494
500
501
502
502
499
501
508
508
508
513

-2.7
-1.7
-1.1
-1.4
-0.9
-2.5
2.2
0.0

-1.3
-1.1
-0.4
0.0
0.7

-1.6
1.4
0.0
2.5
1.6
0.9
1.4
1.5
2.3
0.9
0.0

-3.1
-0.6
-2.8
-2.5
-3.0
-1.8
-3.4
-2.9
-1.2
0.0

-2.4
-3.6
-2.4
-2.3
-2.0
-2.0
-2.7
-2.4
-0.9
-0.9
-0.9
0.0

66



Spark Timing
CAD BTC

-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5

-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-15
-15
-15
-15
-15
-15
-15
-15
-15
-15
-15
-15
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20

Airflow Jet Flow Jet Flow/
(g/s) (g/s) Total Flow

0 1.67 1.00
0 1.61 1.00

0.12 1.49 0.93
0.25 1.36 0.84
0.42 1.24 0.75
0.53 1.13 0.68
0.58 1.04 0.64
0.79 0.805 0.50
0.96 0.64 0.40
1.01 0.4 0.28
1.32 0.21 0.14
1.59 0 0.00
0.01 1.85 0.99
0.07 1.73 0.96
0.20 1.61 0.89
0.49 1.36 0.74
0.61 1.21 0.66
0.69 1.13 0.62
0.75 1.04 0.58
1.11 0.64 0.37
1.56 0.21 0.12
1.81 0 0.00

0 2.2 1.00
0.02 2.12 0.99
0.15 1.99 0.93
0.23 1.92 0.89
0.45 1.79 0.80
0.64 1.49 0.70
0.86 1.24 0.59
0.94 1.15 0.55
1.04 0.97 0.48
1.36 0.64 0.32
1.87 0.21 0.10
2.11 0 0.00

0 2.39 1.00
0.15 2.45 0.94
0.24 2.37 0.91
0.35 2.28 0.87
0.57 1.99 0.78
0.79 1.79 0.69
0.92 1.61 0.64
0.99 1.49 0.60
1.11 1.36 0.55
1.26 1.15 0.48
1.43 0.97 0.40
2.35 0.21 0.08
2.57 0 0.00

Tavg
(C)

19.9
20.1
20.2
19.5
20.9
19.8
19.8
20.0
20.3
21.3
19.4
19.7
19.7
20.4
19.6
20.4
19.5
19.9
19.5
21.3
20.8
20.4
20.4
20.1
20.4
20.0
19.9
19.9
20.5
20.7
20.9
19.6
20.7
20.0
20.5
20.3
20.3
20.3
21.7
20.2
20.6
20.6
20.0
20.1
20.5
19.8
20.9

Tair In.
(C)

29.6
31.1
29.7
28.2
29.1
27.9
28.0
27.5
26.9
26.9
25.5
23.1
31.2
28.4
30.3
29.4
27.1
27.9
27.4
27.4
25.7
23.6
33.2
32.0
31.5
30.2
28.6
28.5
27.1
26.6
28.3
27.1
25.6
23.4
22.8
32.1
31.0
30.0
28.7
29.3
28.5
27.8
26.6
26.8
27.9
25.4
25.5

Texh ATexh
(C) (C)

530
531
528
526
545
542
538
535
538
512
504
550
562
552
566
568
571
571
571
555
569
580
603
597
600
600
600
599
617
609
610
610
610
617
644
644
645
643
652
644
648
653
644
645
638
642
648

-3.6
-3.5
-4.0
-4.3
-0.9
-1.4
-2.2
-2.6
-2.2
-6.9
-8.4
0.0

-3.1
-4.9
-2.5
-2.1
-1.6
-1.6
-1.6
-4.4
-1.9
0.0

-2.3
-3.2
-2.7
-2.7
-2.8
-2.8
0.1

-1.3
-1.1
-1.1
-1.0
0.0

-0.6
-0.7
-0.5
-0.8
0.6

-0.7
0.0
0.7

-0.7
-0.5
-1.6
-0.9
0.0
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Burn Duration
Spark
Timing
CAD
BTC

20
20
20
20
20
20
20
20
15
15
15
15
15
15
15
15
10
10
10
10
10
10
10
10
5
5
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0

NIMEP
(bar)

2.57
2.62
2.61
2.65
2.62
2.60
2.64
2.61
2.62
2.63
2.65
2.61
2.59
2.61
2.54
2.56
2.56
2.65
2.62
2.55
2.55
2.56
2.63
2.60
2.62
2.64
2.58
2.59
2.60
2.60
2.63
2.60
2.56
2.55
2.57
2.63
2.63
2.60
2.57
2.63
2.57
2.57
2.59
2.65
2.61
2.61

Combustion Phase

COV
(%)

2.92
2.93
2.86
3.07
2.90
3.66
3.89
4.26
2.92
2.87
2.69
2.76
3.09
3.06
3.78
3.85
3.58
3.07
2.74
2.91
3.07
2.94
4.01
4.01
3.70
3.30
4.25
3.88
3.50
3.06
3.36
3.05
3.64
4.43
4.27
3.59
3.83
4.51
4.36
3.68
4.00
4.11
4.50
4.55
5.14
5.37

MAP Avg.
(bar)

0.26
0.26
0.27
0.27
0.28
0.28
0.31
0.31

0.261
0.265
0.274
0.278

0-10%
12
12
13
13
12
14
15
15
13
13
13
12
14
16
17
17
13
14
14
12
12
15
16
16
14
14
15
15
15
13
15
16
18
19
17
15
15
17
17
16
16
16
18
18
19
20

0-50%
21
22
22
22
21
24
25
26
20
21
21
20
23
24
26
26
22
22
22
20
21
25
26
26
23
22
25
24
24
22
23
23
26
29
27
25
24
26
26
25
26
25
27
27
29
31

10-90%
14
15
14
14
14
16
17
17
13
14
14
14
14
14
15
16
16
14
14
14
14
17
18
18
17
15
18
16
15
16
15
14
14
18
19
18
17
17
16
18
18
17
17
18
19

CA
10%

172
172
173
173
172
174
175
175
178
178
178
177
179
181
182
182
183
184
184
182
182
185
186
186
189
189
190
190
190
188
190
191
193
194
197
195
195
197
197
196
196
196
198
198
199

0.305
0.268
0.275
0.279
0.276
0.279
0.294
0.318

0.32
0.288
0.285
0.296
0.289
0.292
0.292
0.310
0.306
0.317
0.335
0.31

0.309
0.309
0.315
0.317
0.319
0.328
0.329
0.338

0.35
0.362
0.373

CA
50%

181
182
182
182
181
184
185
186
185
186
186
185
188
189
191
191
192
192
192
190
191
195
196
196
198
197
200
199
199
197
198
198
201
204
207
205
204
206
206
205
206
205
207
207
209
21120 200

CA
90%

186
187
187
187
186
190
192
192
191
192
192
191
193
195
197
198
199
198
198
196
196
202
204
204
206
204
208
206
205
204
205
205
207
212
216
213
212
214
213
214
214
213
215
216
218
220
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Burn Duration
Spark
Timing
CAD
BTC

-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5

-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-15
-15
-15
-15
-15
-15
-15
-15
-15
-15
-15
-15
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20

NIMEP
(bar)

2.64
2.60
2.60
2.65
2.62
2.60
2.60
2.65
2.61
2.64
2.58
2.60
2.59
2.58
2.58
2.63
2.55
2.65
2.64
2.62
2.54
2.65
2.59
2.56
2.60
2.60
2.60
2.67
2.62
2.60
2.64
2.62
2.56
2.54
2.60
2.64
2.60
2.63
2.52
2.63
2.57
2.55
2.55
2.62
2.64
2.55
2.60

COV
(%)

5.03
4.94
4.92
4.85
5.43
4.92
4.47
4.30
5.19
4.05
5.20
6.27
6.06
5.92
6.20
5.95
5.77
4.79
4.63
5.78
6.68
7.26
6.91
7.08
6.56
6.58
6.50
7.29
7.38
7.54
5.83
7.22
8.00
8.86
6.88
7.60
7.86
7.78
8.02
8.91
9.95

10.20
9.47
7.52
7.93
9.19
9.55

MAP Avg.
(bar)

0.353
0.35
0.36

0.361
0.366
0.354
0.355
0.373
0.377
0.347
0.366
0.411
0.401

0.41
0.41

0.413
0.402
0.409
0.408
0.434
0.443
0.465
0.467
0.473
0.475
0.476
0.481
0.484
0.493
0.494
0.484
0.501
0.521
0.533

0.572
0.516
0.578
0.578
0.581
0.597
0.599
0.596
0.582
0.589
0.633
0.65

Combustion Phase

0-10%
18
18
18
17
18
17
17
18
18
13
14
21
19
19
19
18
18
17
18
20
21
22
20
21
21
21
21
21
21
21
21
21
24
24
21
23
25
24
25
24
25
25
24
23
24
27
27

0-50%
31
30
30
28
29
29
29
29
29
23
26
33
32
33
32
30
30
30
31
32
34
35
36
37
36
36
36
35
34
36
34
35
38
38
37
41
43
41
43
40
43
42
42
38
40
44
44

10-90%
24
23
22
22
22
21
22
21
22
19
22
23
23
25
24
21
22
24
23
22
25
25
27
28
25
27
26
25
25
26
24
26
25
24
28
31
33
30
31
30
33
31
32
27
28
29
30

CA
10%
203
203
203
202
203
202
202
203
203
198
199
206
209
209
209
208
208
207
208
210
211
212
215
216
216
216
216
216
216
216
216
216
219
219
221
223
225
224
225
224
225
225
224
223
224
227
227

CA
50%
216
215
215
213
214
214
214
214
214
208
211
218
222
223
222
220
220
220
221
222
224
225
231
232
231
231
231
230
229
231
229
230
233
233
237
241
243
241
243
240
243
242
242
238
240
244
244

CA
90%
227
226
225
224
225
223
224
224
225
217
221
229
232
234
233
229
230
231
231
232
236
237
242
244
241
243
242
241
241
242
240
242
244
243
249
254
258
254
256
254
258
256
256
250
252
256
257
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Tumble Jet Data

Spark Timing
CAD BTC

20
20
20
20
20
20
15
15
15
15
15
10
10
10
10
10
5
5
5
5
5
5
0
0
0
0
0
0

-5
-5
-5
-5
-5
-5

-10
-10
-10
-10
-10
-10
-15
-15
-15
-15
-15
-15

Airflow
(g/s)

0.00
0.20
0.56
0.70
0.99
1.19
0.32
0.46
0.60
0.99
1.21
0.00
0.31
0.63
1.03
1.27
0.00
0.14
0.49
0.78
1.08
1.33
0.09
0.29
0.49
0.80
1.21
1.46
0.06
0.40
0.54
0.87
1.39
1.65
0.00
0.34
0.61
1.04
1.62
1.86
0.09
0.28
0.73
1.18
1.66
2.31

Jet Flow Jet Flow/
(g/s) Total Flow

1.30 1.00
1.13 0.85
0.81 0.59
0.64 0.48
0.31 0.24
0.00 0.00
1.04 0.76
0.89 0.66
0.72 0.55
0.31 0.24
0.00 0.00
1.36 1.00
1.04 0.77
0.72 0.53
0.31 0.23
0.00 0.00
1.36 1.00
1.21 0.90
0.95 0.66
0.64 0.45
0.31 0.22
0.00 0.00
1.49 0.94
1.21 0.81
1.04 0.68
0.72 0.47
0.31 0.20
0.00 0.00
1.59 0.96
1.36 0.77
1.13 0.68
0.81 0.48
0.31 0.18
0.00 0.00
1.87 1.00
1.61 0.83
1.21 0.66
0.81 0.44
0.31 0.16
0.00 0.00
2.12 0.96
1.92 0.87
1.49 0.67
0.97 0.45
0.57 0.26
0.00 0.00

Tavg
(C)

20.6
20.5
20.8
20.7
19.8
19.5
20.5
20.5
20.4
20.5
20.3
20.3
20.4
20.1
20.7
20.5
20.6
20.5
20.6
19.7
20.6
20.5
21.0
20.7
20.8
20.1
19.9
20.4
20.5
20.9
20.7
20.6
19.5
19.4
20.7
20.9
20.8
20.7
19.8
19.6
21.0
20.8
20.8
21.1
21.0
20.0

Tair In.
(C)

34.1
31.9
31.2
29.9
26.0
25.0
32.5
31.8
30.4
26.3
25.6
33.7
32.9
30.3
26.6
25.9
34.8
34.2
31.8
29.5
26.8
26.1
34.1
33.9
32.5
29.6
26.5
26.1
35.9
33.3
32.3
29.6
26.4
25.9
36.9
34.2
32.3
28.8
26.3
26.5
36.9
35.5
32.3
28.1
26.2
25.7

Texh ATexh
(C) (C)

464
459
468
471
464
462
463
472
477
475
473
476
478
487
479
483
499
499
488
503
490
486
507
511
508
517
521
516
542
543
534
550
555
557
582
575
567
591
593
590
626
625
609
623
629
630

0.4
-0.7

1.2
1.8
0.4
0.0

-2.1
-0.3
0.8
0.4
0.0

-1.5
-1.2
0.8

-0.8
0.0
2.7
2.7
0.3
3.4
0.9
0.0

-1.6
-1.0
-1.6
0.2
1.1
0.0

-2.7
-2.6
-4.2
-1.2
-0.4
0.0

-1.4
-2.5
-3.8
0.2
0.5
0.0

-0.6
-0.7
-3.2
-1.0
-0.1
0.0
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Spark Timing
CAD BTC

-20
-20
-20
-20
-20

Airflow
(g/s)

0.27
0.55
1.12
1.90
2.69

Jet Flow Jet Flow/
(g/s) Total Flow

2.37
2.12
1.36
0.64
0.00

0.90
0.79
0.55
0.25
0.00

Tavg
(C) (C)

21.0
21.0
21.2
20.9
21.0

Tair In. Texh ATexh

36.2
34.1
30.2
26.8
25.7

(C) (C)
661
653
647
664
669

Burn DurationSpark
Timing
BTC

20
20
20
20
20
20
15
15
15
15
15
10
10
10
10
10
5
5
5
5
5
5
0
0
0
0
0
0

-5
-5
-5
-5
-5
-5

-10
-10
-10
-10
-10
-10

0-50%
18
19
21
22
27

Combustion Phase

10-90%
10
10
11
11
15

NIMEP
(bar)

2.57
2.59
2.65
2.66
2.63
2.63
2.68
2.55
2.55
2.58
2.56
2.63
2.63
2.57
2.63
2.58
2.64
2.58
2.67
2.63
2.58
2.56
2.65
2.64
2.60
2.66
2.62
2.60
2.61
2.61
2.61
2.63
2.66
2.66
2.58
2.61
2.61
2.62
2.65
2.66

COV
(%)

4.38
4.46
4.1

3.63
3.19
3.55
4.03

3.8
3.37
3.27
4.02
3.13
3.74
3.31
3.25
4.5

2.72
2.96

4
3.34
4.25
4.82
3.96
3.31

4
3.63
5.42
5.57
4.22
4.46
3.92
4.9

5.89
6.31
6.19
5.16
4.27
5.05
6.64
6.67

MAP Avg.
(bar)

0.264
0.27

0.276
0.282
0.286

0-10%
13
14
15
17
19

13
15
14
17
19
12
14
14
15
19
13
13
14
14
15
16
17
16
17
17
18
17
16
17
17
17

20
17
17
16
17
19
20

CA
10%

173
174
175
177
179

178
180
179
182
184
182
184
184
185
189
188
188
189
189
190
191
197
196
197
197
198
197
201
202
202
202

205
207
207
206
207
209
210

-1.2
-2.3
-3.2
-0.7
0.0

20
21
21
27
28
19
20
21
24
29
20
20
22
23
26
27
25
24
25
26
30
30
28
28
27
28

33
30
30
28
31
35
35

12
12
13
18
16
13
11
13
15
18
12
13
15
16
19
20
15
15
15
16
24
25
22
21
18
21

26
24
24
22
24
28
28

CA
50%

178
179
181
182
187

185
186
186
192
193
189
190
191
194
199
195
195
197
198
201
202
205
204
205
206
210
210
213
213
212
213

218
220
220
218
221
225
225

CA
90%

183
184
186
188
194

190
192
192
200
200
195
195
197
200
207
200
201
204
205
209
211
212
211
212
213
222
222
223
223
220
223

231
231
231
228
231
237
238

0.277
0.265

0.27
0.291
0.298
0.265
0.278
0.278
0.303
0.312
0.277
0.278
0.298
0.302
0.317
0.325
0.322
0.31

0.315
0.327
0.354
0.358
0.348
0.361
0.349
0.363

0.406
0.391
0.402
0.387
0.413
0.454
0.459

71



Burn DurationSpark
Timing
BTC

-15
-15
-15
-15
-15
-15
-20
-20
-20
-20
-20

Combustion Phase
CA CA

10% 50%
215 231
215 231
214 230
215 230

NIMEP
(bar)

2.67
2.66
2.65
2.66
2.67
2.65
2.62
2.60
2.54
2.54
2.65

COV
(%)

6.3
6.57
5.26
5.86
6.65
7.45
8.26
7.73
7.19
7.26
8.69

0-1
MAP avg.
(bar)

0.477
0.479
0.478
0.488
0.518
0.556
0.573

0.5778
0.566
0.594
0.65

0% 0-50% 10-90%
20 36 29
20 36 29
19 35 29
20 35 27
22 38 29
23 42 34
23 41 31
23 41 32
22 40 31
25 43 31
26 45 34

217
218
223
223
222
225
226

233
237
241
241
240
243
245

CA
90%
244
244
243
242
246
252
254
255
253
256
260
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Laminar Flame Speed Change Data

Spark Timing
CAD BTC
Co 2

20
20
20
20
20
20

Ar
20
20
20
20
20
20
20
20

Co 2
15
15
15
15

Ar
15
15
15
15
15
15

Co 2
10
10
10
10
10

Ar
10
10
10
10
10
10

MAP Avg.
SLISO Tavg (C) Tair In. (C) Texh (C) (bar)

1.00
0.90
0.85
0.81
0.79
0.77

1.00
1.34
1.43
1.52
1.62
1.65
1.76
1.82

1.00
0.91
0.84
0.78

1.00
1.35
1.53
1.66
1.80
1.87

1.00
0.91
0.80
0.81
0.79

1.00
1.34
1.53
1.66
1.81
1.89

20.3
20.1
20.5
20.1
20.6
20.6

20.3
20.3
20.5
20.6
20.7
20.3
19.9
19.7

20.3
19.9
20.4
20.5

20.3
19.3
19.9
20.3
21.0
19.7

20.5
20.1
20.7
20.5
20.6

20.5
21.0
20.0
21.4
21.1
20.9

25.0
25.0
24.9
25.4
26.5
26.2

25.0
25.8
26.1
25.1
25.4
24.8
25.4
25.7

24.0
25.6
25.5
26.1

24.0
24.9
24.1
22.6
23.5
23.9

23.8
25.6
26.0
26.4
25.6

23.8
24.5
22.9
24.4
25.1
25.3

448
467
471
506
531
548

448
465
467
462
444
416
404
397

468
468
481
546

468
451
449
390
392
375

471
477
520
535
571

471
480
464
464
435
403

0.29
0.30
0.30
0.29
0.37
0.39

0.29
0.27
0.26
0.26
0.25
0.26
0.26
0.26

0.30
0.30
0.32
0.39

0.30
0.27
0.25
0.26
0.26
0.26

0.31

0.32
0.32
0.42

0.31
0.28
0.26
0.26
0.25
2.52

NIMEP
(bar) COV (%)

2.60
2.66
2.58
2.55
2.66
2.67

2.60
2.58
2.55
2.66
2.52
2.54
2.55
2.61

2.65
2.58
2.57
2.68

2.65
2.60
2.55
2.53
2.59
2.61

2.64
2.60
2.64
2.68
2.57

2.64
2.64
2.62
2.62
2.60
2.59

4.24
4.18
5.53
5.09
8.23
8.85

4.24
4.21
4.14
4.23
3.95
4.39
4.35
4.00

4.48
4.64
6.56
8.11

4.48
3.82
4.22
3.98
4.09
3.92

3.68
5.12
5.62
4.69
9.56

3.68
3.55
3.66
3.25
3.26
3.76
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Spark Timing MAP Avg. NIMEP
CAD BTC SLSo Tavg (C) Tair In. (C) Texh (C) (bar) (bar) COV (%)
CO 2

5 1.00 20.5 23.4 489 0.32 2.57 4.85
5 0.90 20.2 25.8 497 3.38 2.58 5.47
5 0.87 20.4 25.9 517 0.36 2.64 5.74
5 0.84 20.4 25.4 537 0.37 2.60 6.94
5 0.80 20.3 25.4 579 0.45 2.54 11.17
5 0.79 20.4 25.8 589 0.47 2.60 12.48

Ar
5 1.00 20.5 23.4 489 0.32 2.57 4.85
5 1.34 19.4 25.2 477 0.29 2.61 3.75
5 1.52 19.7 25.4 484 0.27 2.62 3.27
5 1.60 21.4 25.9 492 0.25 2.58 3.44
5 1.80 20.8 25.2 452 0.26 2.62 3.22
5 1.88 20.6 25.1 438 0.25 2.59 3.02

CO 2
0 1.00 20.1 23.7 503 0.36 2.62 5.79
0 0.91 20.6 26.1 532 0.38 2.68 5.85
0 0.87 20.5 25.9 562 0.39 2.58 6.43
0 0.83 20.9 24.7 573 0.38 2.59 7.39
0 0.81 20.7 24.6 579 0.39 2.65 7.09
0 0.80 21.1 25.2 593 0.39 2.62 7.54
0 0.81 20.7 24.7 603 0.46 2.66 9.15
0 0.81 20.5 26.3 611 0.49 2.52 11.33
0 0.77 20.7 26.2 623 0.51 2.59 11.84

Ar
0 1.00 20.1 23.7 503 0.36 2.62 5.79
0 1.32 20.2 25.8 502 0.31 2.58 4.23
0 1.50 20.3 26.0 503 0.29 2.60 3.07
0 1.64 20.6 24.8 474 0.28 2.53 2.93
0 1.76 20.8 25.4 477 0.28 2.68 2.95
0 1.83 20.9 26.0 480 0.26 2.63 2.59

CO 2
-5 1.00 20.1 26.0 539 0.40 2.56 6.96
-5 0.88 20.7 26.3 586 0.44 2.65 7.18
-5 0.86 20.6 26.2 599 0.46 2.58 8.95
-5 0.84 21.0 25.8 614 0.46 2.54 9.40
-5 0.81 20.7 24.2 630 0.52 2.60 11.24
-5 0.81 20.5 26.3 633 0.55 2.56 12.78
-5 0.81 20.6 25.9 639 0.58 2.69 12.38

Ar
-5 1.00 20.1 26.0 539 0.40 2.56 6.96
-5 1.31 19.8 25.4 522 0.35 2.67 4.76
-5 1.48 20.3 25.2 517 0.32 2.64 3.49
-5 1.60 20.6 25.7 503 0.32 2.61 3.49
-5 1.72 20.8 25.3 491 0.30 2.64 2.95
-5 1.82 20.8 25.5 485 0.28 2.58 2.67
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Spark Timing MAP Avg. NIMEP
CAD BTC SLSo Tavg (C) Tair In. (C) Texh (C) (bar) (bar) COV (%)
CO 2

-10 1.00 21.2 25.0 586 0.46 2.66 6.98
-10 0.92 20.7 26.4 597 0.49 2.66 7.19
-10 0.88 20.9 26.4 619 0.51 2.63 8.43
-10 0.86 20.9 26.5 630 0.52 2.59 9.69
-10 0.84 20.8 24.7 632 0.48 2.51 8.55
-10 0.83 20.2 24.6 634 0.51 2.60 8.92
-10 0.83 20.4 22.8 663 0.61 2.58 13.06
-10 0.82 21.0 25.8 673 0.67 2.69 13.30

Ar
-10 1.00 21.2 25.0 586 0.46 2.66 6.98
-10 1.44 20.5 25.1 558 0.37 2.66 4.16
-10 1.58 20.0 25.8 537 0.36 2.56 4.59
-10 1.76 20.5 26.5 510 0.32 2.64 2.99
-10 1.90 20.0 21.2 504 0.27 2.65 2.66

CO 2
-15 1.00 20.4 25.5 628 0.54 2.67 7.55
-15 0.93 21.6 27.0 647 0.56 2.54 9.68
-15 0.90 21.0 26.6 660 0.61 2.61 10.02
-15 0.88 21.0 26.7 667 0.62 2.52 11.17
-15 0.84 21.3 25.0 692 0.71 2.62 13.60
-15 0.84 22.9 25.9 695 0.75 2.65 14.07
-15 0.83 20.6 25.5 698 0.78 2.65 14.29

Ar
-15 1.00 20.4 25.5 628 0.54 2.67 7.55
-15 1.33 20.9 23.6 598 0.45 2.62 5.39
-15 1.42 21.1 24.2 592 0.42 2.60 4.45
-15 1.49 20.5 25.3 593 0.40 2.61 4.65
-15 1.53 21.2 26.4 591 0.41 2.57 4.61
-15 1.65 19.3 26.6 568 0.39 2.67 3.60
-15 1.71 19.4 26.7 552 0.38 2.65 3.60
-15 1.82 23.2 549 0.32 2.68 2.65
-15 1.85 20.1 22.7 536 0.31 2.66 2.63

CO 2
-20 1.00 21.6 25.7 670 0.64 2.57 9.09
-20 0.92 21.3 26.4 684 0.68 2.64 10.05
-20 0.86 20.7 24.3 694 0.73 2.63 10.63
-20 0.85 23.6 25.6 720 0.72 2.60 11.31
-20 0.85 21.2 25.5 719 0.82 2.56 13.37
-20 0.85 22.6 25.6 723 0.87 2.66 14.25
-20 0.84 20.4 25.7 706 0.88 2.55 14.76

Ar
-20 1.00 21.6 25.7 670 0.64 2.57 9.09
-20 1.44 18.9 22.1 632 0.48 2.65 4.87
-20 1.59 20.1 26.4 603 0.46 2.66 4.25
-20 1.65 19.6 26.5 584 0.45 2.59 4.14
-20 1.75 19.7 23.3 577 0.37 2.60 2.94
-20 1.78 20.4 23.4 588 0.37 2.66 3.06
-20 1.87 20.9 23.9 580 0.34 2.63 2.51
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Combustion PhasingSpark Timing Burn Duration

CAD BTC 0-10% 0-50% 10-90% CA 10% CA 50% CA 90%
CO 2

20 12 23 18 172 183 190
20 15 26 18 175 186 193
20 18 29 19 178 189 197
20 19 29 18 179 189 197
20 28 44 40 188 204 228
20 31 48 44 191 208 235

Ar
20 12 23 18 172 183 190
20 9 19 15 169 179 184
20 9 17 13 169 177 182
20 11 17 11 171 177 182
20 10 16 10 170 176 180
20 11 17 10 171 177 181
20 11 16 9 171 176 180
20 11 16 9 171 176 180

CO 2
15 15 24 16 180 189 196
15 16 26 18 181 191 199
15 19 30 22 184 195 206
15 26 44 42 191 209 233

Ar
15 15 24 16 180 189 196
15 11 19 14 176 184 190
15 11 17 11 176 182 187
15 10 17 12 175 182 187
15 9 15 10 174 180 184
15 8 14 10 173 179 183

CO 2
10 14 24 18 184 194 202
10 16 28 21 186 198 207
10 17 28 21 187 198 208
10 17 28 21 187 198 208
10 27 46 43 197 216 240

Ar
10 14 24 18 184 194 202
10 12 20 14 182 190 196
10 9 16 13 179 186 192
10 9 17 13 179 187 192
10 9 15 10 179 185 189
10 7 14 11 177 184 188
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CAD BTC 0-10% 0-50% 10-90% CA 10% CA 50% CA 90%
CO 2

5 16 27 20 191 202 211
5 17 28 20 192 203 212
5 19 31 24 194 206 218
5 20 34 27 195 209 222
5 28 49 46 203 224 249
5 29 51 48 204 226 252

Ar
5 16 27 20 191 202 211
5 13 23 17 188 198 205
5 11 19 14 186 194 200
5 10 17 12 185 192 197
5 8 15 12 183 190 195
5 8 15 11 183 190 194

CO 2
0 18 29 21 198 209 219
0 19 30 21 199 210 220
0 21 34 26 201 214 227
0 21 34 26 201 214 227
0 22 35 25 202 215 227
0 22 35 25 202 215 227
0 27 45 41 207 225 248
0 28 48 44 208 228 252
0 29 50 45 209 230 254

Ar
0 18 29 21 198 209 219
0 16 25 17 196 205 213
0 14 22 14 194 202 208
0 14 22 14 194 202 208
0 11 18 13 191 198 204
0 11 17 11 191 197 202

CO 2
-5 22 33 22 207 218 229
-5 22 36 27 207 221 234
-5 24 40 32 209 225 241
-5 24 40 33 209 225 242
-5 26 47 43 211 232 254
-5 28 49 43 213 234 256
-5 29 50 42 214 235 256

Ar
-5 22 33 22 207 218 229
-5 17 26 17 202 211 219
-5 15 23 15 200 208 215
-5 15 23 16 200 208 216
-5 14 21 13 199 206 212
-5 12 18 11 197 203 208
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Spark Timing Burn Duration Combustion Phasing



Spark Timing
CAD BTC
Co 2

-10
-10
-10
-10
-10
-10
-10
-10

Ar
-10
-10
-10
-10
-10

Co 2
-15
-15
-15
-15
-15
-15
-15

Ar
-15
-15
-15
-15
-15
-15
-15
-15
-15

Co 2
-20
-20
-20
-20
-20
-20
-20

Ar
-20
-20
-20
-20
-20
-20
-20

Burn Duration Combustion Phasing
0-10% 0-50% 10-90% CA 10% CA 50% CA 90%

21
22
24
25
23
24
28
31

21
16
16
13
9

23
26
27
28
31
33
36

23
19
18
17
18
16
15
11
11

27
28
30
31
40
41
45

27
20
18
18
14
12
12

34
36
40
43
39
40
51
54

34
26
27
22
16

39
43
46
48
53
56
58

39
31
30
28
29
26
25
19
19

45
46
50
50
59
59
62

45
32
30
29
23
22
20

24
26
31
33
30
30
44
44

24
18
19
15
11

28
30
35
38
41
42
40

28
22
20
19
20
18
18
14
13

33
32
36
34
34
34
31

33
22
21
19
16
16
13

211
212
214
215
213
214
218
221

211
206
206
203
199

218
221
222
223
226
228
231

218
214
213
212
213
211
210
206
206

227
228
230
231
240
241
245

227
220
218
218
214
212
212

224
226
230
233
229
230
241
244

224
216
217
212
206

234
238
241
243
248
251
253

234
226
225
223
224
221
220
214
214

245
246
250
250
259
259
262

245
232
230
229
223
222
220

235
238
245
248
243
244
262
265

235
224
225
218
210

246
251
257
261
267
270
271

246
236
233
231
233
229
228
220
219

260
260
266
265
274
275
276

260
242
239
237
230
228
225
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