
Numerical Models for Scoring Failures of
Flexible Metal to Metal Face Seals

by

Jinchul Hong

B.S., Mechanical Engineering
Korea Advanced Institute of Science and Technology, 1998

S.M., Mechanical Engineering
Massachusetts Institute of Technology, 2000

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

at the

Massachusetts Institute of Technology

February 2005

@ 2005 Massachusetts Institute of Technology
All rights reserved MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

MAY 0 5 2005

Signature of Author LIBRARIES
Department of Mechanical engineering

September, 2004

Certified by ............
Douglas P. Hart

Associate Profes epartment of Mechanical Engineering
Committee Chair

Certified by ..........
Tian Tian

Lecturer, Departm nt of Mechanical Engineering
Thesis Supervisor

Accepted by
Lallit Anand

Chairman, Committee on Graduate Studies

BARKER



M ITLb ries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://Iibraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

The images contained in this document are of
the best quality available.



Numerical Models for Scoring Failures of
Flexible Metal to Metal Face Seals

by

Jinchul Hong

Submitted to the Department of Mechanical Engineering
on September, 2004 in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

ABSTRACT

The flexible metal to metal face seals (FMMFS) has unique features including
much more flexibility in the circumferential direction than in the radial direction,
identical rotating and stationary seals, and a loading mechanism using elastomeric rings.
This thesis work is the first attempt to explain scoring failures of this unique type of
mechanical face seal.

Numerical models and new scoring failure criteria were developed to explain
different scoring failures of the FMMFS. The numerical models consider interactions
among seal surface deflections, lubrication in the sealing band and thermal effects
simultaneously. The numerical models were validated from comparisons with
experiments and applied to scoring failure tests. The new scoring failure criterion
successfully predicted the likelihood of scoring failures for each seal pair at given loads
and speeds.

From in-depth analysis of the seal pairs with low and high scoring failure speeds,
it has been shown that discontinuous contact patterns can increase scoring resistance of
the seal pair. These discontinuous contact patterns are created by irregular surface
profiles of the sealing band. Irregular surface profiles can decrease high temperature
regions by reducing superposition of temperatures and thermal conduction resistance, and
finally delay scoring failures.
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Tian Tian
Lecturer, Department of Mechanical Engineering

Douglas P. Hart
Associate Professor, Department of Mechanical Engineering
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1 Introduction

1.1 Motivation

Mechanical face seals aim to minimize lubricant leakage and to delay the wear of

mechanical parts through proper lubrication. These seals are used in lubricating and

sealing various mechanical parts including lubricated joints, axles of trucks and other

rotating housings.

Dynamic sealing interface

Stationary side

Housing ramp

h

Housing

Rotating side

Toric ring

Seal ramp

Spherical

0 ff 0 0 1 0 0 0 J -
Figure 1.1 Radial cross sections of the FMMFS

The seal that is investigated in this thesis is a unique type of the mechanical face

seal (see Figure 1.1). The seal has a small cross section area with a large diameter. The

length of the inside seal surface (h) is at least one order of magnitude shorter than the

outside diameter of the seal ring (2*r0 ). The outside diameter varies from several

hundreds millimeters to several meters. Because of this geometric feature, the seal is

much more flexible in the circumferential direction than in the radial direction. Although

the outside diameter of the seal changes, the dimension of the radial cross section does
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not change significantly. Thus, the seal becomes more flexible along the circumference as

the outside diameter increases. Because of the flexibility along the circumference, and

because the seal materials are made of metal, the seal is called the flexible metal to metal

face seal (FMMFS).

The design of the FMMFS is simple, although the operation mechanism is still

unknown. As shown in Figure 1.1, two seals are compressed against each other and form

a dynamic sealing interface where a thin lubricant film exists. During operation, one seal

rotates while the other seal is stationary. The sealing interface prevents leakage of inside

oil and contamination by outside environment sources such as soils and dirt.

It is noteworthy that a pair of the FMMFS consists of two identical seals while a

pair of common mechanical face seals consists of two different materials and design. In

addition, loading mechanisms use rubber rings to transfer axial loads and allow the two

seals to close tightly with self-alignments during rotations. The FMMFS is known to be

specially designed for unique applications [1].

Two kinds of failure modes, excessive leakage and scoring failure, exist for the

FMMFS. Excessive leakage represents continuous leakage of an unacceptable amount of

the lubricant. For scoring failures, the seal pair works well without any visible signs of

leakage until friction and temperatures start to increase suddenly. Then, the seal pair fails

due to excessive friction and temperature rise accompanied with damages to the sealing

interface.

Figure 1.2 shows an example of failure speeds with corresponding initial axial

loading for leakage and scoring failure tests. Failure speeds are defined as linear speeds

in the middle of the sealing band. Measured failure speeds and loads are normalized by

10 m/s and 433 N, respectively in Figure 1.2. Differences in initial loads and failure

speeds are significant, especially in failure speeds. These results mean that performances

of FMMFS are inconsistent although all seal pairs used in failure tests satisfy

manufacturing specifications.

Early failure of the FMMFS means not only replacements of seals themselves, but

also a loss in productivity in the seal application due to down time and the cost of labor.

Thus, improvements in seal design for extended seal lives would bring tremendous

economic benefits.
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For improvements in seal design, understanding of fundamental operating and

failure mechanisms of the FMMFS is essential. However, there has been little

understanding of operating and failure mechanisms of this type of mechanical face seal

with flexibility and self-alignment along the circumference. The first objective of this

thesis work is to investigate operating mechanisms such as lubricant transport, heat

transfer process, and contact patterns by developing numerical models. An appropriate

scoring failure criterion using results of the numerical models could be developed. This

criterion would be useful for evaluating scoring resistant design of the FMMFS. Finding

such a scoring failure criterion is the second main objective of the thesis work. Better

understanding of seal operation and an appropriate failure criterion will lead to better seal

design and performance.

Leakage failure load and speed

0.7

v 0.6

0.5U)
U0 0.4

o 0.3

C 0.20
E5 0.1

0

'E

0

C
0
.9

1.50 0.5 1

Dimensionless load

Scoring failure load and speed

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 0.5 1 1.5

Dimensionless load

Figure 1.2 Two failure modes - leakage and scoring failure
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1.2 Backgrounds

1.2.1 The geometry of the metal to metal face seal

Recall that two FMMFS are pressed against each other as shown in Figure 1.1.

The surface geometry of the sealing interface where actual sealing occurs strongly affects

the seal performance. The surface geometry, on a macro and a micro scale of the sealing

surface, will be described in this section.

The surface geometry of the sealing interface on the macro scale is shown in

Figure 1.3. The overview of the sealing interface is shown in Figure 1.3 (a)', while a

radial seal profile is shown in Figure 1.3 (b). Figure 1.3 (a) shows circumferential

variations in the surface heights of the sealing band. These variations, called waviness,

are a consequence of many different manufacturing processes such as uneven lapping

process.

A sealing band where actual sealing occurs consists of two parts as shown in

Figure 1.3 (b): a transition and a flat part. The width of the sealing band is usually a few

millimeters. The region inside the sealing band is called a spherical region. The transition

part connects the flat part and the spherical region with a curvature. The ends of the

inside and the outside of the sealing band are defined as the inside (ID) and the outside

diameter (OD), respectively.

Figure 1.4 shows the micro geometry of surface roughness on the sealing band.

Each lateral dimension of the small area in Figure 1.4 (b) is several tens of microns, while

the root mean square of the surface roughness is on the order of 0.1 microns. The

polishing process of the sealing band is responsible for the longitudinal surface roughness

in the circumferential direction.

It is evident that all of the geometrical features on the macro and micro scale play

an important role in the performances of the FMMFS.

' Note that the radial position of the sealing band is normalized by the outer radius.
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1.2.2 Scoring mechanisms

Scoring failure is a sudden and severe mode of lubrication failure manifested by

unstable friction and temperatures [2]. It is known that asperities on nascent surfaces can

be easily bonded together. Bonding between the nascent metal surfaces is so strong that it

can lead to instant seizures. Several mechanisms related to the exposure of the nascent

surfaces can contribute to scoring failures, although their contributions and interactions

are still unknown. These mechanisms are the catalytic decomposition of entrained

lubricant, the removal of protective oxide layers on contacting surfaces, and the

desorption of an adsorbed lubricant film.

The first scoring failure mechanism is called the catalytic decomposition of the

entrained lubricant. When a hydrodynamic lubrication film breaks down, asperity

contacts between seal surfaces lead to wear of the seal surfaces. Nascent surfaces are

exposed by this mechanical wear process. It is known that nascent surfaces catalyze

decomposition reactions of organic compounds in the lubricant film and degradation of

the lubricant occurs [3]. If sufficient nascent surfaces are exposed, the rate of the

degradation of the lubricant exceeds the replenishment rate of fresh oil. With the

degradation of the lubricant, the lubricant can not sustain a high shear rate anymore. The

loss of lubrication capacity by the catalytic decomposition can lead to the increased

exposure of the nascent surfaces due to more asperity contacts, and finally to scoring

failure.

The second scoring failure mechanism is the removal of protective oxide layers on

the contacting surfaces. The presence of oxygen in lubricant oil or the atmosphere can

lead to the formation of oxide layers on seal surfaces. It is known that these protective

oxide layers provide the first line of defense against mechanical wear by asperity contacts

and delay the exposure of nascent surfaces [4]. Removal of the protective oxide layers

can lead to the exposure of the nascent surfaces which initiates scoring failures. The

oxide formation and removal rates depend on temperatures. Above some critical

temperatures, the oxide removal rate would exceed the oxide formation rate and so

initiates scoring failures.
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The third scoring failure mechanism, the desorption of an adsorbed lubricant film

also is also related to the exposure of nascent asperities. Even after the breakdown of a

hydrodynamic lubrication film, the adsorbed thin lubricant film prevents direct contacts

between the nascent asperities. This thin film forms a low shear interface between the

opposing asperities in the mixed or boundary lubrication regime. When the desorption

rate exceeds the adsorption rate of the thin lubricant film on the surfaces, the nascent

surfaces are exposed and direct contacts between the asperities lead to scoring failures.

The desorption rate is most sensitive to temperatures, but also depends on pressures,

sliding speeds, and oil composition [5].

All of these scoring mechanisms are interdependent and interactions are still

unknown. However, it is clear that temperatures play an important role in scoring failures.

First, the breakdown of a hydrodynamic lubrication film usually occurs at high

temperatures. The viscosity of the oil decreases exponentially with the increase of

temperatures. As the viscosity decreases, a hydrodynamic lift force is reduced. With a

decrease of the hydrodynamic lift force, the oil film thickness reduces until asperity

contacts occur to sustain the required lift force. Secondly, the catalytic decomposition of

the entrained lubricant highly depends on temperatures. Reaction rate between nascent

surfaces and the lubricant increases with temperatures and results in faster decomposition

activities. Lastly, the desorption rate of the lubricant film also are accelerated with the

increase of temperatures in the similar way. Therefore, many researchers have attempted

to predict scoring failures with temperature distributions from thermal models.

1.2.3 Thermal models

Contact temperatures of two sliding surfaces are the sum of nominal surface

temperatures and local temperatures [6]. Figure 1.5 shows the steady state temperature

profile along the line AA' across a contacting area. Note that the magnified view near the

contacting interface shows that real contact areas are much smaller than nominal contact

areas. For steady state conduction, a temperature drop within the contacting body is linear

except near the contacting interface. This linear temperature profile is called the nominal

temperature. Near the contacting interface, a sudden non-linear temperature drop occurs
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due to dramatic decrease of contacting areas. This non-linear temperature change is

called the local temperature rise. Boundary conditions on macro scales such as

convection to surrounding flows are important for the calculations of the nominal

temperature distribution. On the contrary, the local temperature distribution is not

affected by such large scale boundary conditions.

Several numerical models to calculate the nominal temperature distribution in the

mechanical face seals considering the viscosity dependence of oil on temperature have

been developed. Such numerical models are called thermo-hydrodynamic models. Knoll

developed a three-dimensional numerical simulation using finite element method which

accounted for waviness effects [7]. Person used a finite difference method considering

the effects of waviness and misalignment [8]. Tournerie included the heat transfer

through both a stationary and a rotating seal while Person's model considered heat

transfer through the rotating seal only [9].

A'

A

Tnominal,up ATIocal,uy

Tnominaljlow ATioc ijjow

Section AA'

Figure 1.5 Nominal surface and local temperature rise
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These published numerical models [7, 8, 9] of the nominal temperature

distribution assume that mechanical face seals operate in the hydrodynamic lubrication

regime without asperity contacts and cavitation effects. However, it will be shown that

the metal to metal face seal operates in the boundary lubrication regime with negligible

hydrodynamic effects in terms of load support (see section 3.4.2). Cavitation effects are

important for the calculations of the frictional heat flux distribution in the sealing band

(see section 2.5.4). Thus, those models are not suitable for this particular application,

FMMFS.

The local temperature rise can be estimated using the solution of a semi-infinite

body subjected to a single or multiple heat sources. Blok's classical model calculated the

surface temperatures of a semi-infinite body subject to a single concentrated heat source

[10]. Jaeger formulated the surface temperature distribution of a semi-infinite body due to

a moving heat source of various shape [11]. Ling and Pu considered random changes of

heat source distribution in space and time [12]. Tian and Kennedy studied the analytical

solution of the surface temperatures for different moving heat sources over the entire

Peclet number range [13]. Lai extended Ling and Pu's approach to consider more realistic

changes of heat flux distribution using computer- generated rough surfaces and asperity

contact models [14]. Liang and Cheng developed the temperature simulation of real

sliding rough surfaces in a mixed lubricated condition with more efficient numerical

methods [15].

The above thermal models [10-15] calculate the local temperature rise only. These

models neglect the nominal temperature rise assuming the local temperature rise is much

higher. This assumption is valid when the nominal temperature rise is relatively low due

to the large heat capacity of sliding bodies and relatively low total friction. However, this

assumption is questionable in many sliding bodies with a finite thickness under moderate

or severe friction. For the FMMFS, the nominal temperature rise is comparable with the

local temperature rise (see appendix A). Thus, both temperature rises need to be

considered together for the scoring failures of the FMMFS. The nominal temperature

distribution of the FMMFS system is directly calculated from the thermal model. On the

other hand, the effects of the local temperature rise are taken into account by considering
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the heat flux magnitudes at the high nominal temperature regions. For details, see section

4.3.

1.2.4 Scoring failure criteria

Two criteria, the critical temperature and the frictional power intensity, have been

widely used for prediction of scoring failures [2]. The critical temperature criterion by

Blok postulates that scoring starts when the total surface temperature reaches the critical

temperature. According to Blok's postulation, this critical temperature is constant for

each combination of the lubricant and sliding materials, and it is independent of other

variables. This postulation was supported by some experiments [16]. However, many

workers have found the critical temperature varies in a complicated manner with many

parameters such as sliding speeds, total load and oil additives [5].

It should be noted that the total critical temperature is the sum of the nominal and

local temperature rise. When the local temperature is comparable to the nominal

temperature, the thermal model needs to resolve large scale heat transfer as well as small

scale heat transfer. The macro scale thermal model calculates the nominal temperature

distribution with macro scale boundary conditions. Then, areas near contact surfaces are

divided into small sliding surfaces to calculate the local temperature rise with micro scale

heat transfer models. The size of the small rough surface is usually several orders of

magnitude smaller than the total contact areas. Thus, the calculations of the total

temperatures require tremendous computation costs due to a large number of divided

rough surfaces. This is why most of contact temperature models neglect the nominal

temperatures. However, recall that the nominal temperature distribution can not be

neglected for the FMMFS. Thus, it is clear that the critical temperature criterion based on

the local temperature rise only is not directly applicable to scoring failures of the FMMFS.

The other widely used criterion is the frictional power intensity (FPI). This criterion

postulates that scuffing occurs when frictional heat exceeds a certain critical value. The

FPI is defined as dividing total frictional heat input by total contact areas [17]. The

critical frictional power intensity also varies with many variables. Some studies show that

the FPI criterion predicts scoring failures better than the critical temperature criterion [2].
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However, the FPI criterion only considers the amount of frictional heat. Different

temperature distribution is possible for the same total frictional heat with different heat

flux distribution. Distribution of heat flux is proved to be important and finally can lead

to different scoring failure conditions. These effects will be discussed in detail in chapter

4.

In summary, a more appropriate criterion needs to be developed for FMMFS. The

new scoring failure criterion needs to consider both the nominal and the local

temperatures because they are comparable in operating conditions.
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1.3 Thesis outline

In this chapter, the objectives of the project and the background of previous scoring

models have been described. The FMMFS has unique features such as the flexibility

along the circumference, same material for the rotating and the stationary seal, geometry

variations on macro and micro scale, and a loading mechanism using the rubber ring. For

typical ranges of operating loads and speeds, the seal operates in the boundary lubrication

regime, where asperity contacts occur at the sealing interface. It also has been shown that

the nominal temperatures are comparable with the local temperature rise under typical

operating conditions. Thus, both temperature effects on scoring failures need to be

considered. Considering these unique features and operating conditions, it is necessary to

develop new types of numerical models and scoring criteria.

The next chapter will describe details in developments of the current numerical

models. The numerical models consist of three major programs: the 3D contact model,

the cavitation model, and the 3D thermal model. Each program will be explained with its

inputs, outputs and assumptions. These numerical models are validated by comparisons

with experimental results in chapter 3. Then, the numerical models are applied to scoring

failure tests with the new scoring failure criterion in the next chapter. Results show good

prediction abilities for scoring failure tests. Physical explanations for difference in

scoring failure speeds are also addressed in the same chapter. Conclusions of thesis work

and suggestions for future works will follow in chapter 5.
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2 Numerical models

2.1 Structure of numerical models

The difficulty in modeling of mechanical face seals is due to coupled interactions

of various mechanisms. When two seals are pressed against each other, sealing surfaces

deflect and generate the axial force from asperity contacts. When the seal operates, the

axial force is supported by the asperity contacts of sealing surfaces and the hydrodynamic

forces generated by lubricant film at the sealing interface. These hydrodynamic forces

deflect sealing surfaces. At the same time, a significant amount of frictional heat is

generated from asperity contacts and viscous shearing of the oil film. Frictional heat leads

to thermal distortion of seal faces, which affects the asperity contacts and the

hydrodynamic force at the sealing interface. Furthermore, the increase of temperatures

from friction in the oil film generally reduces not only the friction due to shearing of the

oil film, but also the hydrodynamic force. This decrease of the hydrodynamic force

results in more contacts of the small asperities on the seal faces to support the deficient

loads.

As a result, the numerical model of mechanical face seal needs to couple

lubrication, heat transfer and surface deflections. These models need to be solved

iteratively to consider mutual interactions. However, solving all three models

simultaneously requires tremendous computation costs. In addition, all interactions, such

as deflections of the surfaces and heat transfer process, are unsteady with rotations for the

pair of the FMMFS because it consists of two identical seals. These unsteady effects add

computation costs significantly.

Difficulties due to expensive computation costs can be overcome by simplifying

assumptions for each numerical model. At the same time, numerical models should

capture underlying physics with these assumptions. This chapter will describe each

numerical model in detail with corresponding assumptions and their validations. The flow

chart of numerical models is shown in Figure 2.1 below.

The most important simplification comes from the circumferential flexibility of

FMMFS. The FMMFS is much more flexible in the circumferential direction than in the
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radial direction. Therefore, initial waviness along the circumference can be flattened out

above a certain axial loads. Because initial waviness is the main source of generating

hydrodynamic pressures of the lubricant, effects of hydrodynamic pressures on the total

axial lift force would be negligible. In this case, the interactions between solid deflections

and hydrodynamic pressures of the lubricant can be decoupled and greatly reduces

computation costs. Figure 2.1 shows such decoupling of the iteration loop between the

3D contact model and the cavitation model.

The program starts from reading surface profiles, which can be imported from

measurements data. Alternatively, artificial surface profiles can be generated by defining

some important geometric parameters, such as a waviness, a concavity, and a radius of

curvature. For more details in generating artificial surface profiles, see appendix B.

Thermo-mechanical twist, Toil,avg

3DI L_ contact model

Gap heights, contact press

Cavitation model

Frictional heat at the sealing band
Maximum friction I

Surface profiles
(from measurements)

3D thermal model
Heat transfer
coefficients

Residual of twist, Toii,avg < E

Temperature distribution & friction coefficient

Figure 2.1 The flow chart of numerical models
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After importing surface profiles of the one seal pair, the 3D contact model

generates final gap heights and contact pressures under a certain axial load. Final gap

heights are used for the cavitation model to calculate cavitation regions and the average

density of oil in the sealing band. With contact pressures and oil distributions, frictional

heat flux on the sealing band and friction coefficients can be calculated.

Friction coefficients would vary with rotation due to changes in contact areas,

contact pressures, and oil distribution. For temperature calculations, the program captures

the moment when maximum friction occurs. With frictional heat distribution at the

moment of maximum friction, the 3D thermal model calculates temperature distribution

of the oil film, the rotating seal, and the stationary seal. Note that the 3D thermal model

calculates upper bound temperature distribution.

All of above procedures are repeated until solid deflections, oil pressure, and

temperature distribution converge.

2.2 Importing surface profiles

Filtering effects Filtering effects

before before
4.5 - after-- after

4.5--
4[

3 4-

M=2.5 - =3V)

2-

3.5-

1500 -150 -100 -50 0 50 100 150 20( -80 -60 -40 -20 0 20
Circumferential angle [degree] Circumferential angle [degree]

Figure 2.2 Surface profiles before and after filtering (right: magnified view)

As the first step, surface profiles of the seal pair needs to be imported to the

program. These surface profiles are measured using an interferometer from Zygo, Inc.

The interferometer generates surface data files of the sealing band in the rectangular
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coordinates. Transformation of data points to the cylindrical coordinates is necessary for

the future use in the program. Moreover, the optical measurement has the following

limitations: high frequency profiles and limited measurement capacity.

One of the measured surface profiles along the circumference is shown in Figure

2.2 . The same profile is also plotted after filtering out the high frequency components.

Note that high frequency profiles have the same order of magnitude as the surface

roughness, and thus may represent the variations of the surface roughness. To obtain the

surface profiles on macro scale, high frequency profiles are filtered. The cut-off

frequency for filtering is 15.

The optical surface measurement can not measure large variations of surface

heights. When the surface heights change abruptly in the transition regions with a

curvature, the optical measurements can not generate surface data files. Inside the

transition regions, gap heights change rapidly with the curvature (see Figure 2.3) and can

not be measured. However, it will be shown that these regions near ID are important for

calculations of contact areas, especially under a high load and speed (see section 4.5.2).

Thus, the extrapolation from the transition regions to the inside diameter is necessary to

include inside areas of the sealing band into calculation domains.

extrapolated profile measured profile
OD

(R
ID (xy)

Figure 2.3 Extrapolation of the radial profile
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It is found that the curvatures are almost constant along the circumference.

Assuming constant curvature along the circumference, three unknown variables need to

be solved: the coordinates of the curvature center (x,y), and the start of the curvature (0).

These three variables can be solved using the continuity of the surface profile and its

slope. Figure 2.4 shows the surface profile before (left) and after (right) the extrapolation.

This extrapolation process is repeated for each measured radial profile along the whole

circumference.

Measured surface profile

2

0

C-2
2

-8

-10

Extraploated surface profile

0.94 0.95 0.96 0.97 0.98
Normalized radial position

Figure 2.4 Surface profile measured (left) and after (right) extrapolation

2.3 The 3D contact model

2.3.1 Assumptions for the 3D contact model

An important simplification is made for the 3D contact model as mentioned

earlier. It is found that the FMMFS is much more flexible in the circumferential direction

than in the radial direction. To verify this simplification, we calculated deflections of the

seal surface under uniform loadings of 1 N/mm 2, which is less than a typical supporting

load. Each curve in Figure 2.5 represents the deflections at ID or OD of the seal surface

2 'N/mm' means the force per unit length along the circumference of the sealing band. For instance, total
axial force is about 300N for the FMMFS with 92 mm in diameter.
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when sinusoidal forces with the total magnitude of 1 N/mm are imposed on the ID or OD,

respectively. Because the amplitude of a waviness of the FMMFS is usually less than few

microns, deflection is one order of magnitude larger than the amplitude of waviness. This

means seal surfaces are so flexible in the circumferential direction that circumferential

surface variations due to the initial waviness do not matter after deformation even under

relatively low loading condition. When the initial waviness and rigidity in the

circumferential direction can be neglected, only surface profiles and rigidity in the radial

direction are important. Then, it is necessary to solve the 2D contact problem in each

radial cross section instead of solving the 3D contact problem.

The other assumption is that the total axial force is supported solely by the

asperity contacts of the seal surfaces. This assumption implies that the hydrodynamic

force generated from the lubricant film is negligible compared to the total axial force. In

other words, the FMMFS operate in the boundary lubrication regime where

hydrodynamic effects are negligible. With negligible hydrodynamic effects, the

deflections of seal surfaces are independent of the lubricant pressures at the sealing

interface. Thus, the interactions between the deflections of seal surfaces and the lubricant

pressures can be decoupled and reduce computation costs significantly. This assumption

is validated by comparisons with experiments over the wide range of axial loads (see

section 3.4.2).

Deflection with 1 N/mm uniform load from toric
Delcto 15 1 1 1 TDeflection 2f.

[ p.......]. ........... .......... .. ..... D

-5 - ----

0 7r
Circumferential angle

Figure 2.5 Deflections of the seal surface under 1 N/mm load
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In addition, it was also assumed that loading from toric rings are uniformly

distributed. This assumption implies that each radial cross section supports the same

amount of distributed load.

2.3.2 Calculations of twist angles

For each radial cross section, the contact model requires surface profiles of the

seal pair and twist angles as inputs (see Figure 2.6). Twist angles (Osta for the stationary

seal and 0 rot for the rotating seal) in Figure 2.6 are due to pressure loadings from toric

rings and thermal expansions from temperature gradients. These twist angles will be

referred as mechanical twist and thermal twist angles, respectively. Note that contact

areas tend to move radially inward with increasing twist angles.

N

;IE -

Figure 2.6 Mechanical and thermal twist angles
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Figure 2.7 Mechanical (a) vs. thermal twist angles (b) and (c)

Twist mechanisms are shown in Figure 2.7. Pressure loading from toric rings

imposes torques on each seal to rotate, and results in mechanical twist angles (see Figure

2.7 (a)). On the other hand, temperature differences lead to different thermal expansions

near the sealing interface and inside seal surfaces. Temperatures decrease from the

sealing interface to inside seal surfaces, where convection to oil flow occurs. These

temperature differences induce more radial (Figure 2.7 (b)) and axial (Figure 2.7 (c))

thermal expansions near the sealing interface and result in rotation of the seal pair.

Each kind of twist angles are calculated from the axis-symmetric solid contact

model. The commercial finite element package, ADINA, is used for twist angle

calculations. The solid contact model requires temperature distributions to consider

thermal expansion effects. The axis-symmetric thermal model is used for temperature

calculations. This thermal model will be explained in more detail for heat transfer

coefficients calculations (see section 3.2.3).

The axis-symmetric solid contact model is shown in Figure 2.8. Uniform pressure

loading from toric rings is imposed as shown in the left side of Figure 2.8. Meshes are

refined until band plots of contact pressures are continuous along boundaries of elements.

Each band in Figure 2.8 represents 10% of maximum contact pressures. Continuous band
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plots across the element boundary show satisfactory local equilibrium between elements

[18].

Spherical region Upper flat part

pressure -

Lower flat part

... .. ....

2 pm

Figure 2.8 The finite element contact model and the band plot of contact pressures

Mechanical twist angles are obtained from the 2D contact model when

temperatures of the seal pair are the same at room temperatures. Normalized axial

loadings are increased from 0.5 to 2.5 by 0.5. Then, mechanical twist angles are linearly

fitted to the corresponding axial loading.

Thermal twist angles are obtained in the same way, while total heat flux inputs in

the axis-symmetric thermal model are 70, 94, 114, 136, 160 and 300W. At the same time,

normalized axial loadings change from 0.5 to 2.5 by 0.5, then maintained 2.5 for 300W.

From twist angles calculations, mechanical twist angles are subtracted to exclude the

effects of pressure loading.

To calculate characteristic temperature differences, maximum temperatures at the

sealing interface and averaged temperatures at inside seal surfaces are selected. Then,

each thermal twist angle of the stationary and the rotating seal should be proportional to

Tmax-Tstator,in and Tmax-Trotor,in, respectively (see Figure 2.7). Thermal twist angles are

lineary fitted to the sum of these temperature differences, d70 , = (Tma -T,,,,,) + (T, -T,,,in).
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Figure 2.9 Mechanical (left) and thermal (right) twist angles and linear fittings

Mechanical and thermal twist angles with linear fittings are shown in Figure 2.9.

Note that mechanical twist angles are much smaller than those from thermal twist,

especially for high total frictional heat input. In addition, linear fitting seems to be precise

enough to calculate twist angles over a wide range of pressure loadings and frictional heat

flux input. The linear-fitting equations for mechanical and thermal twist angles are

expressed as,

Mechanical twist angles [Degree ]=5.0*103 *Loads [N/mm]-3.*10-',

Thermal twist angles [Degree ]=2.874 *10-' *AT,, -1.739 *10-3,

where dT,, = (Tm -Tsta,in ) + (Tm -Trotin ) .

With the axial loadings and temperature distributions, the program can calculate

total twist angles, which are the sum of mechanical and thermal twist angles. Note that

these total twist angles generally vary along the circumference due to circumferential

variations in Tmax.
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2.3.3 Finding the minimum film thickness

In reality, real contacts occur at a small fraction of nominal contact areas due to a

surface roughness. The surface roughness also creates finite gap heights among real

contact areas. As a result, averaged gap heights are not zero in nominal contact areas. An

equation which relates the average load to the average gap between two rough surfaces is

developed by Lee and Cheng [19]. This equation is valid for contacting surfaces with a

purely longitudinal roughness. It is known that FMMFS has approximately longitudinal

roughness generated from the manufacturing process. Therefore, Lee and Cheng's

equation was adapted to describe the relation between asperity contact pressure and gap

heights. The non-dimensional equation of the averaged load and the average gap height is

as follows:

4PgL e f(H) (2.1)
Eovc

where

f(H) = 3.01002 - 3.04431 H - 1.54827 H 2

+ 2.56951 H 3 - 0.920266 H'

Pavg: average contact pressure,

L: the profile segment length,

E': equivalent Young's modulus E'= 2 E1 + 1 2

v: Poisson's ratio,

a: composite rms roughness,

H: surface heights normalized by a.

Once average gap heights are known, average contact pressures can be calculated,

and vice versa. In addition to twist angles, the 3D contact model adjusts a minimum
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height to satisfy the required load for each radial cross section as shown in Figure 2.10.

These procedures are repeated for all radial cross sections along the circumference.

Finally, the 3D contact model calculates final gap heights and contact pressures for given

load and speed.

woowooones go- logg ......
hmin::j,

10 0
,*of 

Woo ft"

000 4111111 "Ift 00

10 

ftft

Figure 2.10 Finding minimum film thickness after adding twist angles

2.4 The cavitation model

2.4.1 Backgrounds for cavitation

Cavitation refers to the disruption of a liquid film by the presence of a gas or

vapor [20]. Figure 2.11 shows an infinite bearing with symmetric gap heights along the

center. If cavitation does not occur, the pressure distribution would also be symmetric,

and no net hydrodynamic lift force would be generated. However, it is known that the

emission of air or gas dissolved in the liquid occurs at the saturation pressure. This

pressure is called the cavitation pressure, and is usually determined by experiments.

Typically, the cavitatation pressure of oil which contains dissolved air is close to

atmospheric pressure. With cavitation effects, pressure distribution in the cavitation zone

will be constant at the cavitation pressure as shown in Figure 2.11. From the asymmetry

of pressure distributions, net lift force can be generated with cavitaion effects.
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Figure 2.11 The view of cavitation regions and pressure distribution

The cavitation zone is a mixture of air streamers and liquid flows as shown in

Figure 2.11. With positive hydrodynamic lift force, cavitation can drive oil into the

sealing band due to the low pressure in the cavitation zone. On the other hand, high

friction can occur in the cavitation zone if gap heights are so small that some dry contacts

occur in air streamers.

2.4.2 The cavitation model

The cavitation model is developed based on Payvar and Salant's work [21]. The

cavitation model calculates cavitation areas and the flow field in an oil film from solving

the steady unified Reynolds equation with Floberg's boundary condition [22]. This

boundary condition of cavitation assumes that all the lubricant flow passes between the

air cavities as shown in Figure 2.12 (a). In addition, none of the lubricant flow is carried

away under or over the cavitation region by the moving surfaces. Thus, the side view of

the lubricant flow in the cavitation zone shows that the region is filled by the lubricant
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flow only as shown in Figure 2.12 (b). Similarly, the vertical cross section along a gas

streamer is filled by the gas only. These assumptions are used for the frictional heat

calculation in section 2.5.4. Floberg's boundary condition of cavitation region was

validated from experiments of a lightly loaded rotating cylinder against a stationary plane

[20].

The other possible boundary condition at the film rupture due to cavitation is

shown in Figure 2.12 (c). In this case, a significant amount of the lubricant flow is carried

under the cavitation region by the moving surface. Thus, the cross section of the lubricant

flow near the film rupture is filled by gas and lubricant. The effects of this possible

boundary condition will be discussed in section 2.5.4.

cavitation zone
(a)

y

oil

U

(b)

y

oil
gas

U

(C)

Figure 2.12 (a) The bottom view of the cavitation region (b) Side view along the
lubricant flow with a full liquid film (c) Side view along the lubricant flow with a
gas-liquid interface
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The cavitation model using Floberg's boundary condition needs to solve the

following equation

3 8Prh -

ar
h' aP

r 80O
=6pco 

-

ao
(2.3)

in the oil film zone and the following equation

8 p h =0
a0ypc )

(2.4)

in the cavitation zone. Boundary conditions at inside and outside radius are written as,

P=P

P=Pa

at

at

r=ri (inside raidus)

r=ro. (outside radius)

(2.5)

(2.6)

where Ps is the sealed pressure and Pa is the atmospheric pressure.

The above two equations, (2.3) and (2.4), can be unified to a universal differential

equation by introducing a variable 4 whose definition changes in the oil film and the

cavitation zone. Definitions of the variable and the cavitation index F are as follows,

P--P
C =F#O

Ps -PC

-- =1+( - F)#
poil

(2.7),

(2.8),

33

+ I t a



where F=1 for #>O and F=O for #<O. From definitions, 4 represents a dimensionless

pressure in the liquid film while (1+) characterizes the ratio of the averaged density to

the oil density in the cavitation zone.

With following dimensionless variables,

2

r h 6po r,

r, href Ps -Pc href

equations (2.3) and (2.4) can be combined as

H 3 a(Ff)
a 7)

1 a H' 8(F#b) a [(1+(1 - F)#)H]
+ -- 1=2 '

7ao y q 0 ao
(2.9)

with following boundary conditions,

#=1.0 at ri=1 (2.10),

Ps-Pand # = "a Pc

P, -P,
at j= r,/ ri (2.11) .

Equation (2.9) is solved using the TDMA algorithm with relaxations of 4 and F to ensure

numerical stability. In other words, values of 4 and F are updated at each iteration step as

follows,

#= a#nn + (1 - a)#Old

F=3Fnew + (1 - )Fld

(2.12)

(2.13).

To ensure numerical stability, small values of relaxation coefficients, cc and P, are

required [21].
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The cavitation model generates the oil pressure distribution, the cavitation zone,

and the density distribution in the oil film. The density distribution in the cavitation zone

is expressed with the partial film content, which is the ratio of the averaged density in the

cavitation zone to the density of the lubricant. The partial film content will be used to

calculate frictional heat flux and the average properties of the oil film in the cavitation

zone.
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2.4.3 The quasi-steady cavitation model

When both of the rotating and stationary seal are wavy, the unsteady Reynolds

equation needs to be solved instead of the steady one, equation (2.9). Currently, only a

steady cavitation model is available with considering different gap heights and contact

areas for each rotation step. In other words, the quasi-steady cavitation model, instead of

the unsteady cavitation model, is used for the current numerical models.

IV

H

'V
I I V

rotor

H

stator

(a)

II IV

new H

new contact
(bV

new H

old contact

(b)

Figure 2.13 Transformations to the smooth rotor and wavy stator surfaces

As shown in Figure 2.13 (a), two wavy surfaces are transformed to the smooth rotor

and the wavy stator surface with equivalent gap heights and contact areas. With these

transformed surfaces, the lubrication becomes steady, and the steady Reynolds equation

can be solved. For next rotation step, gap heights and contact areas would be changed as

shown in Figure 2.13 (b). Again, the steady cavitation model with different equivalent

gap heights and contact areas generates the oil pressure distribution, the cavitation zone,

and the density distribution in the oil film. These procedures are repeated for every

rotation step during one revolution.
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2.5 Calculation of frictional heat flux in the sealing band

2.5.1 Definitions of contact regions and wet/dry contacts

In this thesis, contact regions do not mean actual contact regions but nominal

contact regions. It is well known that actual contact regions are much smaller than

nominal contact regions [23]. The rest of areas in the sealing band besides the nominal

contact regions are defined as the non contact regions.

Contact regions are further divided into dry and wet contacts depending on the

presence of lubricant. For dry contact, friction only comes from contact pressures at

contact regions. On the other hand, friction comes from contact pressure and viscous

heating of the lubricant for wet contact (see Figure 2.14). Viscous heating of the lubricant

can be significant in nominal contact regions due to small gap heights. Details in

calculations of frictional heat for different contact conditions are in following sections.

Macro scale Micro scale

Lubricant

Nominal contact

Figure 2.14 Nominal contact vs. real contact regions
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2.5.2 Calculation of frictional heat flux in dry condition

In this case, the only source of friction is from contact pressures. Thus, the

frictional heat flux for dry contact is obtained from,

on= o Pn V [W/m 2] (2.14),

fd: dry friction coefficient,

Pcon : contact pressure [Pa],

V : relative sliding velocity [m/s].

On the other hand, no source of friction exists in non contact regions. Thus, the

frictional heat flux for non contact regions in the dry condition is zero.

2.5.3 Calculation of frictional heat in wet condition

In the wet condition, friction comes from both contact pressures and viscous

heating of the lubricant in nominal contact regions. The frictional heat flux for contact

regions is expressed as,

,ua, (Toaiavg ) V2 2
q 0e =f PCOOV+ H [W/m2] (2.15),

where fb : boundary friction coefficient.

Note that the viscosity of oil depends on the average temperature of the oil film (for

definition, see section 2.7).

In non contact regions, the only source of friction is from viscous heating of the

lubricant. Thus, the frictional heat flux for non contact regions can be written as,

qnon-con ("",g V [W/m 2] (2.16),
H
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where toii(Toil,avg) : the viscosity of the lubricant [N s/M2],

H : gap height [m].

2.5.4 Calculation of frictional heat considering cavitation effects

The previous section deals with the full lubrication condition without considering

cavitation effects. As shown in Figure 2.15, cavitation regions are a mixture of the

lubricant and air. The cavitation model calculates the average density of the two phase

fluid.

The partial film content, kij, is defined as the ratio of the averaged density in element (ij)

to the density of the lubricant. Note that i and j are the index numbers in the x and y

direction, respectively. When Xii = 1, the the lubricant completely fills in element (ij).

Thus, the properties in this element should be the same as those of the lubricant. If i=O,

it means that the lubricant is vaporized completely, and the element is entirely filled with

air.

Cavitation

.................................... .. . . .

i xAair

X Element (i,j)

Figure 2.15 The element in the cavitation zone

In this case, the properties in element (ij) should be the same as those of air. With these

two extremes, the average viscosity and conductivity of two phase fluid in element (i,j)

can be approximated by using X i as follows:

pUY, =~ ii /
1

pi (Toj
1
,g )+(1 - A i)p, ~~a A.y paj,(Toii,v) [N s/rn

2
] (2.17),
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k,,cav= A Y koi +(1 - A U)kair [W/m K] (2.18),

where A, = P,avg : partial film content in element (ij)
Poil

and pij,avg: the average density of two phase fluid in element (ij) [kg/m 3].

From the definition of the average density of two phase fluid,

PY,,avg VY =Poj P ij, 1il +Pair yJair (2.19),

where Vij: the total volume in element (ij) [m3],

Vij,il: the volume occupied by the lubricant in element (ij),

Vij,air: the volume occupied by air in element (ij).

From Vj=Vjj 11 +Vya,., we can get P'"v V = AK V 1, 1 + Vai' Va,~ joi. It is thus
Poil Poil

possible to write,

Vy'Od A.,1
- -A '. (2.20)

Vu Au

where Aij,Oji: the area occupied by oil in element (ij) [m 2,

A,ij,air: the area occupied by air in element (ij),

Aij: the total area of element (ij),

because gap heights in the element are nearly the same if the element size is small enough.

In other words, X represents the ratio of the area occupied by the lubricant over the total

area of element (ij).

From heat balance in element (ij) for contact areas,
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fb Pi'',con V+Poil (T0 i,avg ) H j '"A + fd Py, con VAijaijqcon A0 (.2,

where Pij,co11: the contact pressure in element (ij) [Pa],

Hij : the gap height in element (ij) [m],

qij,con : the frictional heat flux from element (ij) in contact areas [W/m 2 ],

and V: sliding velocity [m/s].

Finally, the frictional heat flux from element (ij) in contact areas can be written as,

Poi (Toil~a ) V 2

qy, on = (fbPjcon V± + " a -)A + f d Ycon V( ) (2.22).

Note that above equation is the same as the frictional heat flux in the contact regions for

dry contacts when kij=0. When X;=l, the heat flux is same as the frictional heat flux in

the contact regions for wet contacts without cavitation.

On the other hand, the frictional heat flux in non contact regions only considers

viscous heating from the lubricant. Thus, it can be written as,

qy noo - Pod (Toii,avg ) V 2 ,Ay (2.23)

where qij, non-con : the frictional heat flux from element (ij) in non contact areas [W/m 2].

Note that equations (2.22) and (2.23) assume that only lubricant fills in the

vertical gap of Ao0 l with a linear velocity profile. If some proportion of the lubricant flow

is carried away under or over the cavitation region by the moving surfaces (see Figure

2.12 (c)), the viscous heating from the lubricant flow will decreases while the

conductivity through the gaps of the lubricant flow in the cavitation zone also decreases.

In addition, the velocity profile of the lubricant carried by the moving surface is non-

linear because the shear stress at the air-lubricant interface is close to zero. Thus,
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frictional heat calculations should be modified if other cavitation boundary conditions

besides Floberg's boundary condition are used.
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2.6 The 3D thermal model

2.6.1 Assumptions of the 3D thermal model

Once the distribution of frictional heat flux in the sealing band is known, the

friction coefficient can be calculated from,

N M

f == j=1 (2.24),
Support Load -Sliding Speed

where qij: the heat flux in element (ij) [W/m 2],
Aij: the area of element (ij) [m2 ].

In general, the distribution of frictional heat flux changes with rotation due to

changes in contact areas, contact pressure, and cavitation areas. Thus, a friction

coefficient also changes for each rotation step as shown in Figure 2.16 (c) below.
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Figure 2.16 Changes of contact areas and friction coefficients during rotation
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Recall that friction coefficient calculations come from the quasi-steady cavitation

model, which solves the steady unified Reynolds equation with equivalent gap heights for

each rotation step. However, the heat transfer process is still unsteady because contact

areas of the rotor surface, as well as heat flux to the rotor, change with rotations (see

Figure 2.17).

new contact on the rotor

rotor V rotor

H

stator stator

old contact on the rotor

Figure 2.17 Contact changes on the rotor

It is known that circumferential temperature variations due to variations of heat

flux are negligible compared to the mean temperature in many seals [24]. These

variations are especially small with large thermal inertia and the high rotation velocity of

the rotor. In this case, unsteady effects on the rotor due to circumferential variations of

heat flux can be neglected.

Circumferential temperature variations due to heat flux variations are roughly

estimated for the FMMFS. From the conduction solution of the semi-infinite solid

subjected to a periodic heat flux with amplitude of qo [25], the amplitude of

circumferential temperature variation can be written as,

A T -o (a (2.25)
k co
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where qo ~ f V P "0 ~ 0(106) W/m2 , k(conductivity) 0 0(10) W/mK, c(thermal

diffusivity)~ 0(10-6) m2 /s, o(rotation frequency) ~ 0(102) rad/s for the FMMFS. Then,

AT~O(1 0) C while average temperatures of rotor surfaces are 0(102) C. This rough

estimate shows that circumferential temperature variations are one order of magnitude

less than average temperatures of the rotating surface. Thus, the assumption of negligible

circumferential temperature variations is reasonable.

Using this assumption, the heat transfer process can be simplified as a quasi-

steady process at each rotation step. Then, the thermal model needs to solve the 2D

steady conduction equation for the rotor, and the steady 3D conduction equation for the

stator. However, solving the 3D steady conduction equation for every rotation step still

requires tremendous computation costs. Thus, the thermal model computes steady 3D

temperature distributions at one moment during the rotation. The most important moment

during the rotation is when maximum friction occurs. Temperature distribution would be

an upper bound calculation at the maximum friction. One example of the moment of

maximum friction during one revolution is indicated in Figure 2.16 (c).

Additional assumptions are made for the 3D thermal model. Frictional heat fluxes

are concentrated in the middle of the oil film, and temperature profiles in the oil film are

linear. These assumptions are valid when conduction across the oil film dominates

convection along the circumference. The FMMFS operate in the boundary lubrication

regime where the film thickness is less than the order of micrometers. Under typical

operating speed (-O(lm/s)) and scales along the circumference(~O(100mm)) and the

radius (-O(mm)), conduction term across the oil film dominates other terms in the

energy equation. These assumptions have been widely used for temperature calculations

of the seal system [15, 24].

2.6.2 Boundary conditions of the 3D thermal model

In order to solve conduction equations, distribution of frictional heat flux in the

sealing interface at maximum friction is used as one of the boundary conditions.

Convection boundary conditions are used at inside seal surfaces and outside seal surfaces

(see Figure 2.18). Details in calculating heat transfer coefficients for convection are

described in section 3.2. The 3D thermal model imposes adiabatic boundary conditions

45



on the rest of boundaries. These boundary conditions are validated by comparisons with

experiments in the next chapter.

Convection to
surrounding oil

1Stator

Frictional heat surrounding air

Figure 2.18 Boundary conditions of the 3D thermal model

2.6.3 Temperature calculations of oil film, stator and rotor

A thermal resistance along the indicated line is shown in Figure 2.19 . With

concentrated heat flux and linear temperature profile assumptions, heat flux to the rotor

(q,,j) and heat flux to the stator (q,, j) can be expressed as,

T -TN oiiij Trotor,]

qr,j=(Z k 1  H )I N
Hij /2

and q' =k~ To'y aor, Y

(2.26),

(2.27)
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where kij: the conductivity of the oil [W/m C],

qj : the average heat flux into rotor element j [W/m2],

Trotorj : the axis-symmetric temperature on rotor element j [C],

qs,ij : the heat flux into stator element (ij) [W/m 2 ],

Tstator,ij: the temperature on stator element (ij) [C],

TOijij : the temperature in the middle of the oil film in element (ij),

N : the number of circumferential nodes.

Note that heat flux to the rotor element (qrj) needs to be averaged along the

circumference from the assumption of negligible circumferential temperature variations.

Also note that k0ji should be replaced with kcav,ij from equation (2.18) in the cavitation

zone.

Thus,

I (qr,j +qs, ) Hu
T - rotor j + T ,,ao ,. + k 2

2 oil 2

Trotorj

IqrI
rotor ...

stator i

R,

R2

I

Jr

Tstatorij

Figure 2.19 Thermal resistances of the oil film and heat divisions
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Recall that total frictional heat flux distribution, qrj+qs,ij, is known already.

Once temperatures on the rotor and the stator surface are assumed initially, or known

afterwards, Toilij can be calculated from equation (2.28). Then, the 3D thermal model

calculates qrj and qs,ij from equation (2.26) and (2.27). These heat flux distributions to the

rotor and the stator surface are used as boundary conditions for conduction equations.

With the distribution of heat flux to the rotor qrj and the heat transfer coefficient

for rotating convection boundary, following conduction equation is solved for the rotor,

18T a 2 T 82 T
-- + + = 0

r ar ar2 8z 2
(2.29).

Equation (2.29) is discretized into finite difference equations by applying energy

conservation to a control volume of each element. Figure 2.20 shows the heat balance in

element (ij) of the rotor.

Each heat flux into the element can be written as,

T -T T - -T'. T -T
q,.=k , q =k j q =k , and qd,=k

dr dr dz dz

q1(r)

r -VV o p o

Rotor
z

TI, j.1

qr

qz+dz drI2

Figure 2.20 The control volume of the element
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From applying energy conservation to the control volume,

dr dr
q, (r - dr )dOdz + q,+dr(r + -dr)d~dz + q, rd~dr + qz+drd0dr = 0

2 2
(2.30).

Finite difference equations can be obtained from plugging each heat flux into equation

(2.30). Thus,

dr dr
k(r - )dz k(r+ )dz krdz krdr

T 2 +T 2 -T72( 1 +T
- dr ' dr ' dr dz )a

krdr +T

dz '

krdr 0

dz
(2.31).

According to the boundary condition and shape of the boundary, finite difference

equations can vary by applying energy conservation to different control volumes and to

the heat flux into them. For instance, at the convection boundary shown in Figure 2.21

below, heat inflows to the control volume of the element are,

T T

qr =h (Tf-Tisj), qr+dr

q1(r)

Rotor -

z

Convectio

T -T

=k - i+1,j ij 5 qz =k- I,1 * and
dr dz

qI
-0 OWI

qr
j*

n boundary

I
qr+dr

qz+dz

Figure 2.21 The control volume of the boundary element
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From energy conservation,

dr dr dr dr dr
qr dOdz+qr+dr(r + -)dOdz + q, (r+-)dO-+ .,(r+-) dO = 0 (2.32).

2 4 2 4 2

Finally,

dr dr dr dr dr drdr
k(r+-) k(r+-)dz k(r+-)dr k(r+---) k(r+--

Thrdz7'+t 2 -T I hrdzi 2 4 4 2 + 4 2 0 (233)
dr dr dz dz dz

In the same way, the 3D thermal model calculates temperature distribution of the

stator with the distribution of qs,ij and heat transfer coefficients. For the stator, the

following steady 3D conduction equation should be solved,

1 T a 2T 1 a 2 T a 2T
-- +- + =0 (2.34).
r ar ar 2  r 2 a0 2  aZ 2

Compared to the rotor case, adding circumferential heat inflows to each control volume is

necessary to obtain finite difference equations.

After obtaining finite difference equations, the Gauss-Seidel iteration scheme is

used to solve these algebraic equations. For each iteration step, temperatures of the stator

and the rotor change. These changes lead to a different oil temperature distribution (Tol,ij)

from equation (2.28), then result in changes in qj and qs,ij from equation (2.26) and

(2.27). For each iteration, the relaxation coefficient (relaxq) are used to update values of

qj and qs,ij to avoid numerical instability. Thus, for each iteration step,

q,, = (relax _ q) * qrjnew + (1 - relax _ q) * q,,jold (2.35),
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q,; = (relax _ q) * qs, + (1 - relax _ q) * q, U,0 d (2.36),

where qrj,new : the updated value of heat flux into rotor element j,

qrj,old: the previous value of heat flux into rotor element j,
qs,ij,new: the updated value of heat flux into stator element (ij),

qs,ij,old: the previous value of heat flux into stator element (ij).

Iterations are continued until temperature distributions of the oil film, the stator, and the

rotor converge.

2.7 Iterations of the 3D contact model, the cavitation model, and
the 3D thermal model

After calculating the temperature distribution, the program calculates the residuals

of the averaged oil temperature (Toii,avg) and twist angles. Toil,avg is defined as,

N M

E oil,'
T - i=1 =1 (2.37)

oil,avg (N .M)

where Tiij : the temperature of oil in element (ij),

N: the number of circumferential nodes,

and M: the number of radial nodes.

The residual of Toil,avg is written as,

T new _ old

residual of Totiavg = oil avd oil,avg (2.38),
oil ,avg

where Tnewvg : the updated average temperature of oil,

Tolavg : the previous average temperature of oil.
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On the other hand, the residual of twist angles is expressed as,

(twist angle ew - twist angle !")

residual of twist angles= N (2.39),
twist angle ld

where twist angle n, : the updated twist angle at radial cross section i,

twist angle,'d : the previous twist angle at radial cross section i.

The program continues until sufficient convergences of Toiravg and twist angles

are reached. Final outputs are contact pressures, final gap heights with twist angles,

cavitation index, partial film contents, frictional heat flux to the stator and the rotor,

friction coefficients, and temperatures of whole seal system.
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3 Validations of numerical models

Once numerical models have been developed, they need validation to justify the

underlying assumptions and to check the accuracy of final results. This chapter describes

the validation process for numerical models that have been developed in the last chapter.

3.1 Experimental setup

For validations of numerical models, the model results are compared with two

measurable quantities: temperatures and friction coefficients. The experiment was

conducted in a separte effort by the project sponsor. Experimental procedures are shown

in Figure 3.1.

toric ring L
tgz

U
Stationary

gap

Rotating

Rotating

Figure 3.1 Experimental procedures
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As a first step, an elastomeric toric ring is pushed into the back surface of the seal.

The seal pair with the toric ring is inserted into two separate fixtures; one remains

stationary while the other rotates. Before inserting the ring into the fixture, a small

amount of oil is spread on the sealing interface to prevent initial dry contacts. The

inserted seal with the rotating fixture moves upward and presses the other seal up to the

desired vertical load. Then, the oil flow comes into the cavity through the pipe in the

middle of the stationary fixture. The oil flow bounces back to the annular tube between

the pipe in the middle and the inside surface of the stationary fixture. After that, the

rotating fixture with the inserted seal starts to rotate and to increase speed gradually. The

vertical load, rotating speed, oil flow rate, and the pressure in the cavity can be

programmed in advance.

Torque is measured so that friction coefficients can be calculated with rotating

speeds and vertical load. In addition, temperature in the middle of the flange at the outer

diameter of the stationary seal is measured using thermocouples as shown in Figure 3.2.

!V *-Temperature

measured (T1)

Rotating

Figure 3.2 Temperature measurement at the outer diameter
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Sometimes two thermocouples are attached at different circumferential locations to check

possible circumferential temperature variations. In this case, one thermocouple is

attached at the peak position of the measured waviness of the stationary seal, while the

other thermocouple is attached at the valley of the waviness.

3.2 Estimations of heat transfer coefficients

Heat transfer coefficients to the surrounding oil flow are important input

parameters for the 3D thermal model. Heat transfer coefficients for inside surfaces of the

rotor and the stator are used as convection boundary conditions (see section 2.6.2).

Prior to this thesis work, heat transfer coefficients were obtained from correlations

of the rotating cylinder [26, 27], or adjustments by trials and error to match temperature

measurements. However, the former method is not applicable to a complex flow such as

one in the current experimental setup (see Figure 3.2). The latter method is useful to

determine heat divisions to the stator and the rotor, but it can not predict changes of heat

transfer coefficients with different oil flows and speed changes. Thus, estimations of

heat transfer coefficients from CFD simulations would be beneficial.

The fluid motion in the current experimental setup is complicated due to its three

dimensional features. Once the scheme for finding heat transfer coefficients for this

complex flow has been developed, the same scheme would be easily applicable to other

simpler flows.

3.2.1 New scheme for calculations of heat transfer coefficients

The surrounding oil is the main heat sink for the frictional heat generated at the

interface. The fluid motion of oil is inherently three dimensional and requires extensive

CFD analysis. The most direct approach is to simulate the heat transfer process by

considering the oil flow model and the thermal model of the seal pair together. This

approach should solve fluid motion, heat transfer of the oil flow, and conduction of the
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seal pair simultaneously. Such a procedure might be possible, but the computation cost

would be tremendous and beyond our computation capability.

Stationary

Rotating

seal
surface

Oil flow model

Z Iterations

Tseal surface

Thermal model

Figure 3.3 New scheme for calculations of heat transfer coefficients

Therefore, the new scheme for finding heat transfer coefficients is devised. The

oil flow model and the thermal model of the seal pair are separated as shown in Figure

3.3. At first, the oil flow model calculates heat transfer coefficients and the thermal

model uses them as convection boundary conditions. After calculating the temperatures

of the seal pair from the thermal model, the oil flow model uses seal surface temperatures

as temperature boundary conditions. Such iterations are repeated until heat transfer

coefficients and temperatures converge (see Figure 3.4). More details of the two models

and the iteration procedures are described in following sections.
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Oil flow model (3D) Thermal model of seal system (2D)

q(z) = h(z) (Tseal surface (z) - Toil) ATsea surace(Z)

+ iterations +1
havg = fh(z)dz Temperature distributions

Figure 3.4 Iterations between two models

3.2.2 3D oil flow model

The commercial finite element package, ADINATM, is used for the 3D oil flow

model. For the 3D oil flow model, ADINA-FTM with heat transfer is used to solve the

fluid motion of oil flows with heat transfer. Tetrahedral 4-node elements are used due to

the relatively high Reynolds number of the oil flow. Still, Reynolds numbers for the

rotating seal surface based on seal radius are less than 2000 until operating speed reaches

to 2 m/s, thus oil flows are still laminar. This laminar assumption is questionable for

higher speeds and a turbulent flow model would be more adequate for speeds higher than

2.5 m/s. Much finer meshes are used near seal surfaces to deal with high velocity and

temperature gradients (see Figure 3.3).

Figure 3.5 shows fluid and thermal boundary conditions of the oil flow model.

For the inlet and outlet of the cavity, fully developed velocity profiles are imposed.

Rotating velocity conditions are applied to the lower fixture and seal surface, while no

slip boundary conditions are applied to the rest of surfaces in the cavity. Prescribed

temperature boundary conditions are also imposed on the inlet and both inside seal

surfaces as thermal boundary conditions.
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Stationary

-- Rotaing

in3 0Tseal surface (z)

Wall boundary
Rotating boundary
Velocity boundary

Figure 3.5 Boundary conditions of the oil flow model

It is known that the viscosity of oil (SAE 1 OW) depends highly on temperature.

From the Vogel equation [28], the relation between low shear kinematic viscosity and

temperature is expressed as,

vo=kexp( 0 ),
02 +T

where vo: the kinematic viscosity of the low shear rate oil in cSt

k(cSt), 01(*C) and 02(*C) : correlation constants for an oil

T (*C) : oil temperature.

For accurate calculations of fluid motion and heat transfer of the oil flow, changes of the

viscosity with temperatures need to be considered.

Non-linear temperature dependence of the viscosity results in solving non-linear

finite element equations. For convergence of solutions, the equations are solved in several

time steps with incremental loading boundary conditions (see Figure 3.6). From the initial

time step to the time step N 1, only fluid boundary conditions increase gradually without
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changes in heat transfer boundary conditions. Then, from the time step N1+1 to the last

time step N 2, thermal loadings gradually increase while fluid boundary conditions are

held costant. Between each time step, the Newton-Raphson iteration scheme is used to

calculate solutions. The solutions in the previous time step are used as initial guesses for

the next time step to ensure convergence of the Newton-Raphson iteration at each time

step.

1

Tin=f3 T=4

Wall boundary
Rotating boundary(f 2)

Fluid BC

g1(t

01-- N1 -- N

ft=Vin g1(
f2=Vrot 91

s Thermal bCs

1 92(t)

2 01-N 1 - N2

Loading step

t) f3=Tin g2(t)
(t) f4 =Ts g2(t)

Figure 3.6 Incremental loadings of fluid and thermal BCs

3.2.3 2D thermal model

The oil flow model requires seal surface temperatures as thermal boundary

conditions. These temperatures on the inside seal surface are nearly axis-symmetric

because inside seal surfaces are far from the sealing band, the source of friction. This fact

allows use of the axis-symmetric thermal model to calculate temperatures on the inside

seal surface. Figure 3.7 shows finite element meshes with convection boundary

conditions and concentrated heat flux at ID. The amount of concentrated frictional heat
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flux comes from the torque sensor of the experimental setup. Adiabatic boundary

conditions are used for the rest of boundaries.

Convection BC

L (from oil flow model)

T1 Concentrated
heat flux at ID

Figure 3.7 The 2D thermal model

3.2.4 Iterations between two models

The oil flow model starts with uniform inside seal surface temperatures. After

convergence, heat flux magnitudes at several nodes on the seal surface are calculated.

Heat transfer coefficients at each node are obtained from dividing this heat flux

magnitude by the temperature difference between the temperature on the seal surface

and the average oil flow temperature in the cavity. These heat transfer coefficients at

different nodes are averaged for the rotating and the stationary seal surface using

havg = - Jh(z) dz where L is the vertical length of inside seal serface (see Figure 3.7).
L z

Averaged heat transfer coefficients for both seals are used as convection boundary

conditions for the 2D thermal model. After calculations, temperatures on the inside seal
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surfaces are known and used as thermal boundary conditions of the oil flow model. The

oil flow model starts computations with new temperature boundary conditions, then new

heat transfer coefficients are obtained. Figure 3.8 shows the changes in temperatures and

in the heat transfer coefficients of the stationary seal during these iterations. The rotating

speed is 1.8m/s while normalized axial loads are 2.03 and 2.5, respectively.

2.0, 12&1ftc 2.5 , 1.8m/sec

600

100
0

3009

100

0
1 2 3 4 5 6

INwbr d beraflon

-- TnB -+- T1 htp
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0.

E
U)

170
160

150
140
130
120

110
100

1 2 3 4

Number of iterations

-u-Tmax -+-T1 hup

Figure 3.8 Changes of some variables during iterations

Results show that heat transfer coefficients and temperatures tend to converge

within several iteration steps. 5-6 iterations are typical to estimate heat transfer

coefficients while each iteration step usually takes 3-4 hours.

3.3 Numerical results

In this section, numerical results from each part of the models in a particular

operating condition will be described. Figure 3.9 shows the surface profiles of the

3 Total axial forces are normalized by 289 N in this thesis.
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rotating and the stationary seal which are used in the experiments. Numerical results

under the normalized axial force of 2.5 and the rotating speed of 1.8 m/s will be presented.

Rotating surface

-1 9

0 092 094 0
Circumferential angle [degree] Normalized radial positron

(a)

Stationary surface

4 -

- -4

r-

0 0 92 09- 9 9
Circumferential angle [degree] Normalized radial positron

(b)

Figure 3.9 Surface profiles of (a) the rotating and (b) the stationary seal

3.3.1 Numerical results from the contact model

From the contact model, the final outputs are final gap heights after deformations

and contact pressures. These numerical results from the 3D contact model are shown in

Figure 3.10 (a) and (b), respectively.

Note the discontinuities in contact pressures around 40-140 degrees in

circumferential angle shown in Figure 3.11 (a). The radial surface profiles of the

stationary surface around these regions with discontinuous contact pressures are shown in

Figure 3.11 (b). It is clearly shown that contact patterns depend on the radial surface

profiles. Where the contacts occur near the outside diameter, the radial surface profiles

increase with radial positions near the outside diameter. On the contrary, the radial

surface profiles decrease near the outside diameter where the contacts occur inside
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regions. Such different contact patterns, depending on the radial surface profiles, will

lead to different distributions of frictional heat flux and temperatures.

Final gap heights [m]0

OD

ID
EI

0

-5

N

ID
a 0 50 100 150 200 250 30U 350

Circumferential angle
(b)

x 10-
5
4
3
2
1

x 10
3

2

1

0

Figure 3.10 Distribution of final gap heights and contact pressures
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Figure 3.11 (a) Distribution of contact pressures (b) radial surface profiles of

the stationary seal
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Figure 3.12 shows the final gap heights and contact pressures at OD along the

circumference. Along the circumference at OD, the contacts occur around 25-75 degrees

as shown in Figure 3.12 (b). It is clearly shown that these contact regions correspond to

those regions with the minimum final gap heights.

x 106 Fiani gap heights at OD

0 50 100 150 200 250 300 35C
Circumferential angle

(a)
x 1 Contact pressures at OD

0 50 100 150 200 250
Circumferential angle

(b)

300 350

Figure 3.12 The final gap heights and contact pressures at OD

Figure 3.13 shows gap heights before and after deformations. Each figure

represents contour plots of the same gap heights. It is clearly shown that initial gap

heights are flattened out along the circumference after deformations except the middle

parts near the OD. These facts confirm the simplification of the 3D contact model as well

as that of negligible hydrodynamic effects on load supports.
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Initial gap heights

0.955 - eo..O

0.95 , -e 4-006,

0 50 100 150 200 250 300 350
Circumferential angles [degree]

(a)

1

0.985-

0.98-

0.975-

0.97-

0.965-

0.96

0.955

0.95

Deformed gap heights

>2-e- -

-' -e6e0006

) 50 100 150 200 250 300 350
Circumferential angles [degree]

(b)

Figure 3.13 Initial gap heights (a) vs. deformed gap heights (b)
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3.3.2 Numerical results from the cavitation model

With the final gap heights obtained previously, the cavitation model calculates

cavitation regions and the average density of two phase fluid. Figure 3.14 (a) shows the

distribution of the cavitation index. In the cavitation areas the partial film content, the

ratio of average density over the lubricant density, is less than one as shown in Figure

3.14 (b) because the cavitation areas are a mixture of the lubricant and the air streamers.

Subsequently, the distribution of the partial film content is used for frictional heat

calculations.

cavitation

Cavitation index areas

0 50 100 150 200 250
Circumferential angle

(a)
Partial film content

300 350

1

0.8

0.6

0.4

0.2

100 200 300
Circumferential angle

(b)

Figure 3.14 Distribution of (a) cavitation index and (b) partial film content
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3.3.3 Numerical results from the thermal model

Distributions of the contact pressures and the partial film content are used for

frictional heat calculations. The distribution of frictional heat flux into the stator surface

is shown in Figure 3.15 (b). The distribution of frictional heat flux corresponds to that of

the contact pressures in Figure 3.15 (a), because contact pressures are main sources of

friction.

Contact pressure [Pa] x 10
-n 1 3

- O 0.982

0.96

M 0.94 0E0
< 0 50 100 150 200 250 300 350

Circumferential angle
(a)

Heat flux distribution to the stator [VV/m2] x 1061---
04
CL

- 0.98
-5 2
-c 0.96

0
0.94

0 0 100 200 300
circumferential angle [degree]

(b)

Figure 3.15 Distributions of (a) contact pressures and (b) frictional heat flux to the
stator

Temperatures on the stator surface at the sealing interface are shown in Figure

3.16. As shown in Figure 3.16, the distribution of temperatures on the stator surface

corresponds to that of the frictional heat flux into the stator surface.

The factors which lead to high heat flux regions shown in Figure 3.17 (c) are

investigated. This high frictional heat flux is believed to come from high contact

pressures in dry contact regions. Dry contact areas shown in Figure 3.17 (b) represent the
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contact areas where the average density is less than 0.8. Figure 3.17 shows that the areas

with high frictional heat flux are under high contact pressures and have the low average

density. Dry contacts are more likely to occur in low average density regions than in high

average density regions due to existence of more air streamers in low average density

regions. Thus, high contact pressures in low average density regions result in high

frictional heat flux.
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Figure 3.17 High frictional heat regions due to high contact pressures and dry
contacts
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3.4 Comparisons with experiments

Two measurable quantities from experiments, temperature and friction coefficient

with different axial loads are compared with simulation results. The rotating speed

increases from zero to 1.8 m/s gradually, then stays at 1.8 m/s until friction and

temperature measurements become steady. After measurements, the rotating fixture stops

and is cooled down until the whole system reaches to the room temperature. The same

procedures are repeated with an increase in the normalized axial load of 0.5.

3.4.1 Comparisons of temperature measurements

Figure 3.18 shows comparisons of TI (see Figure 3.2) when the axial load

increases from 0.5 to 2.5. Note that simulation results overestimate TI because the 3D

thermal model calculates upper bound temperature distribution. Simulation results at the

moment of minimum friction underestimate TI. However, differences between

simulation results and actual measurements are within reasonable ranges with good

agreements in trends.

Compauisons of T1

0.5 1 1.5
Loads [N/mm]

2 2.5 3

Figure 3.18 Comparisons of T1
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Circumferential temperature variations of TI are also compared as shown in

Figure 3.19. Recall that the 3D model overestimates circumferential temperature

variations due to steady contact patterns and frictional heat flux while contact patterns

change for each rotation step. Such unsteady contact patterns during the rotation tend to

distribute frictional heat flux so that decrease circumferential temperature variations,

which are not considered in the 3D thermal model. Despite of these factors, simulation

results give reasonable agreements and trends.
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Figure 3.19 Circumferential temperature variations of T1

3.4.2 Comparisons of friction coefficients

Comparisons of friction coefficients are shown in Figure 3.20. Recall that friction

coefficients vary during the rotation due to changes of contact areas and cavitation

regions. Friction coefficients shown in Figure 3.20 are averaged during one revolution.

Note that estimation of the boundary friction coefficient (fb) is necessary to calculate

friction coefficients. The minimum friction coefficient from experiments at low speeds is
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used for the estimated value of fb (See Figure 3.20). Averaged friction coefficients with

changes of axial loads also show good agreements with measurements.

Figure 3.21 (a) shows each friction coefficient from three different friction sources,

viscous shearing of the lubricant, boundary friction, and dry friction. From Figure 3.21

(a), it is clear that the changes of total friction coefficients with increasing load are

mainly due to the changes of the friction coefficients from viscous shearing of the

lubricant. As the axial load increases, temperatures of the lubricant film increase and

reduce the viscosity of the lubricant. Thus, the friction coefficients from viscous shearing

decrease and result in reductions of the total friction coefficients with an increase in the

axial load. The ratios of each friction coefficient to the total friction coefficients are

shown in Figure 3.21 (b).

Comparisons of friction coefficients
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Figure 3.20 Comparisons of friction coefficients

Recall that the 3D contact model assumes the hydrodynamic force generated from

the lubricant is negligible. Thus all axial support loads come from contacts between two

seal surfaces. In other words, current metal to metal face seals operate in the boundary

lubrication regime, where hydrodynamic effects on load support are negligible. Good

agreements strongly support the underlying assumption. This fact is important because
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the scoring failure mechanisms discussed in section 1.2.2 are valid in the boundary

lubrication regime where hydrodynamic lubrication film breaks down [5].
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Figure 3.21 (a) Friction coefficient of each friction source (b) Ratio of contribution
of each friction source to the total friction coefficient

To confirm the assumption of boundary lubrication, hydrodynamic lift forces with

corresponding axial loads are shown in Figure 3.22. Figure 3.22 shows that

hydrodynamic lift forces are negligible compared to total axial loads over a whole range

of axial loads. Typical normalized axial loads range from 1.0 to 1.5, thus hydrodynamic

lift forces are negligible under typical loading conditions.

It is also shown that hydrodynamic effects decrease with increasing loads.

Reduced viscosity of the lubricant due to high temperatures under high loading

conditions can explain this. When the axial load increases, total friction and temperatures

increase. Reduced viscosity due to high temperature leads to a reduction in the

magnitudes of hydrodynamic pressures. Figure 3.23 (a) and (b) show the pressure

distribution of the lubricant at the sealing band under the normalized axial loads of 0.5

and 2.5, respectively. Thus, the assumption of the boundary lubrication would fit better

for high loading conditions. Such trends are also shown in Figure 3.20, in which friction

coefficients from simulations approach closer to the means of measured friction

coefficients with increases of axial loads.
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Figure 3.22 Comparisons of hydrodynamic force with total axial force
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3.4.3 Effects of heat transfer coefficients

The effects of heat transfer coefficients on temperature changes of TI are shown

in Figure 3.24. With 200% of the calculated heat transfer coefficients, predictions of TI

underestimate temperatures for high loads. Even for lower loads, predictions are

considered to be low because the thermal model calculates the upper bound temperature

distribution. On the other hand, predictions with 50% of heat transfer coefficients show

overestimations of TI as well as faster increase rates. Comparisons show that predictions

with original heat transfer coefficients give the best results. Also note that differences

within 10% of heat transfer coefficients would not significantly affect temperature

calculations. These results show not only that estimations of heat transfer coefficients are

accurate enough, but also that current models can tolerate small errors in calculations of

heat transfer coefficients.
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Figure 3.24 Effects of heat transfer coefficients on T1
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4 Application to failure tests

Numerical models have been developed and validated by comparisons with

experiments in previous chapters. In this chapter, numerical models were applied to

scoring failure tests to find important factors affecting scoring failures. In addition, a

new scoring failure criterion based on the distribution of nominal temperatures and

frictional heat flux was proposed. Numerical results with new scoring failure criterion

predict the likelihood of scoring failures under certain operating conditions. Physical

explanations for different scoring failures are also investigated.

4.1 Scoring failure tests

Scoring failure tests for ten different seal pairs have been done at the laboratory of

the project sponsor. The procedures of failure tests are as follows. First, the seal pair is

inserted into the fixture. The gaps between the fixtures are held constant for all seal pairs.

The initial axial load is recorded before starting rotation. The initial rotating speed is 50

rpm and continues for 4 minutes, then stops for 1 minute. Then, the rotor starts to rotate

at 50 rpm in the reverse direction for another 4 minutes followed by 1 minute stop.

These procedures are repeated with increase of 50 rpm until scoring failure occurs.

When scoring failure occurs, the load and the speed at failure are recorded.

4.2 Simulation procedures

Ten different seal pairs with different scoring failure operating conditions have

been selected (see Table 4-1). Table 4-1 shows wide distribution of failure speeds with

the same normalized axial load, 1.46 . In reality, the axial load varies slightly and the

failure speeds are recalculated for having the same failure power with the normalized

axial loads of 1.46. The failure power values are calculated by multiplying the axial

loads by the failure speed.

4 In this chapter, the axial loads are normalized by 289 N.

75



Measured surface profiles are imported after the extrapolations to the numerical

models as described in section 2.2. For simulations, three different speeds are selected

while maintaining the same axial load: 1.8, 3.8 and 6.2 m/s. Note that each speed is close

to the failure speed of the following seal pairs, 1, 4 and 6, respectively. For the speed of

1.8 m/s, all seal pairs are simulated with the axial load of 1.46. On the other hand, only

seal pairs with the same as or higher failure speeds than 3.8 m/s, the seal pairs from 4 to

10, are simulated with the same speed of 3.8 m/s and the axial load of 1.46. Similarly,

only the seal pairs from 6 to 10 are simulated for the speed of 6.20 m/s.

Number of seal pairs Failure power [W] Failure speeds [m/s]
1 158.5 1.81
2 187.2 2.14
3 254.5 2.91
4 334 3.81
5 350.3 4.00
6 544.9 6.22
7 555.5 6.34
8 572.8 6.54
9 602.2 6.87
10 614.4 7.01

Table 4-1 Selected seal pairs with scoring failures

4.3 Scoring failure criterion

Total surface temperatures are important parameters for scoring failures as

discussed in section 1.2.2. Furthermore, the nominal temperature and the local

temperature rise are comparable for the FMMFS. Thus, scoring failure criterion should

include effects of both temperature rises.

From the numerical models, distributions of the nominal temperatures and the heat

flux are calculated. If one seal pair has larger areas of high nominal surface temperatures

than those of the other seal pair, scoring failure is more likely to occur for the seal pair

with more high temperature regions. In other words, the percentage of high temperature
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regions under similar operating conditions would be proportional to likelihood of scoring

failures.

Using the temperature distribution on the stationary surface at the sealing band, the

temperature above which the areas are upper x% of the total areas is defined as T,,

where n is the number of seal pair and x is the upper accumulated percentage of the areas

(see Figure 4.1). Ta,, for all seal pairs is calculated, then the maximum Tax among all

seal pairs is defined as the critical temperature, Tcrit,x.

High temperature regions (HTR) are defined as the regions whose nominal

temperatures on the stationary surface at the sealing band are higher than the critical

temperature. Finally, the percentage of high temperature regions of each seal pair is

calculated for all seal pairs. The percentage of the HTR for each seal is the same as or

smaller than x % because the critical temperature is the maximum Tn,x. Three different

percentages of the HTR are used, 3%, 5% and 10%.

Tmax

T n /

--A
CD
3
CD

C

Tmin

Tcrit,x=Max{ T }

0 x %
Accumulated

100
percentage of areas >

Figure 4.1 Definitions of T.,, and Terit,x

77

..........



The local temperature rise will be proportional to the magnitude of the local heat

flux when the seal surfaces have similar roughness. The magnitude of the local heat flux

is therefore the measure of the local temperature rise. The heat flux magnitude of the

HTR for each seal pair are averaged and used as the measure of the local temperature rise

over the HTR.

Considering the percentage and the averaged heat flux magnitude of the HTR, a

scoring value for each seal pair is defined as,

Scoring Value = [ % of the HTR ] [average heat flux over the HTR] .

After calculations of scoring values of all seal pairs, a scoring probability is expressed as,

(Scoring probability), = (Scroing value)1
E (Scoring value)i
i=1

where n is the total number of seal pairs.

With simulation results, the scoring probabilities of all seal pairs at the given speed and

axial load are compared in the next section.

4.4 Results

All ten seal pairs are simulated with the speed of 1.80 m/s and the axial load of

1.46. The scoring probabilities of all seal pairs are shown in Figure 4.2. The vertical axis

represents the scoring failure probability of each seal pair while the horizontal axis

represents corresponding seal pair. The scoring probability is the highest for the seal pair

1 whose failure speed is the closest to the simulated speed, 1.80 m/s (see Table 4-1). This

result is same when the percentage of high temperature regions is changed as 10%, 5%

and 3%.
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Figure 4.2 Scoring probability for 1.8 m/s

For the speed of 3.80 m/s, only seal pairs whose failure speeds are the same as or

higher than 3.80 m/s are simulated. The seal pairs with lower failure speeds are assumed

to have scoring failures already. As a result, the numerical models compute for only

seven pairs except the seal pairs of 1, 2 and 3. Same procedures and assumptions are

repeated for the speed of 6.20 m/s. The plots of scoring probability for 3.80 and 6.20 m/s

are shown in Figure 4.3 and 4.4, respectively.

Figure 4.3 and 4.4 show that scoring probabilities are maximum for the seal pairs

whose failure speeds correspond to the simulated speeds (see Table 4-1). In other words,

the scoring failure is most likely to occur for the seal pair with the same scoring failure

speed as the simulated speed. From these results, it is clear that the current numerical

model and the scoring failure criterion capture the fundamental physics underlying

scoring failures. The next step is to investigate the results from the numerical model and

explain the important features which lead to different scoring failure speeds.
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4.5 Physical explanations for different scoring failures

4.5.1 Comparisons of two seal pairs for the low speed (1.8 m/s)

Two different seal pairs have been chosen from the numerical results at the speed

of 1.8 m/s for more in depth analysis. The chosen pairs at 1.8 m/s are shown in Table 4-2.

Note that failure speed is much higher for seal pair 1 than for seal pair 8. Calculated

surface temperatures of the stationary seal of each seal pair is shown in Figure 4.5.

Seal pairs [failure speed] 1 [1.80m/s] 8 [6.54m/s]

Total frictional heat to stator [W] 23.7 26.8

% of area where Tmacro> 120C 3.54 0.79

Table 4-2 Comparisons of two seal pairs at 1.80 m/s
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Figure 4.5 Stator surface temperature of the seal pair 1 (left) and 8 (right)
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From Table 4-2, the areas whose stator surface temperatures are higher than 120C

is larger in seal pair 1 than in seal pair 8, although the amount of total frictional heat into

the stationary seal is larger in seal pair 8.

Distributions of heat flux into the stationary seal are investigated to explain this

contradiction and shown in Figure 4.6. Note that frictional heat flux for seal pair 1 is

concentrated around the outside diameter of the sealing band. On the other hand, heat

flux for seal pair 8 are distributed near the inside diameter as well as the outside diameter.

Distributions of heat flux are usually similar to those of contact areas because most of

frictional heat flux comes from contact pressures. Thus contacts occur near the inside

diameter and the outside diameter for the seal pair with higher scoring failure speed,

while contact regions are concentrated near the outside diameter for the seal pair with

lower scoring failure speed.
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Figure 4.6 Distribution of heat flux into the stator of seal pair 1 (left) and 8 (right)
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Surface profiles are investigated to understand different contact patterns under the

same operating conditions. Radial surface heights of the rotating and the stationary seal

of seal pair 1 and 8 along part of the circumference are shown in Figure 4.7 and Figure

4.8, respectively. Differences in radial profiles are clear. The radial surface heights of the

rotating seal of pair 8 (see Figure 4.8 (a)) show significant variations in surface heights,

especially near the starts of the curvature. These variations can lead to contacts near the

inside diameter while contacts near the outside diameter occur in the other regions. On

the contrary, radial surface heights of the stationary seal of seal pair 1 (see Figure 4.7 (b))

show small variations near the outside diameter without any significant variations near

the starts of the curvatures. In this case, all contacts would occur near the outside

diameter. In summary, different radial surface heights can create different contact

patterns and frictional heat flux, and eventually lead to seemingly contradictory

temperature distributions.
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Figure 4.7 Radial surface profiles of (a) the rotating and (b) the stationary seal of
pair 1
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Figure 4.8 Radial surface profiles of (a) the rotating and (b) the stationary seal of
pair 8

Effects of different heat flux distributions on temperature distributions are shown

in Figure 4.9. Each solid curve represents the temperature distribution due to each unit of

heat flux indicated by an arrow. These temperature distributions are superposed for

calculations of total temperature distributions due to all heat fluxes. Total temperature

distributions after superposition are shown in the below figure as dashed lines for the

concentrated (see Figure 4.9 (a)) and the distributed heat flux distributions (see Figure 4.9

(b)). Due to the effects of superposition, more high temperature regions exist for more

concentrated heat flux distributions. On the contrary, discontinuous contact patterns

contribute to distributions of frictional heat flux and eventually lead to reductions in high

temperature areas.

Moreover, discontinuous contact patterns reduce thermal paths to the inside oil

flows. It is known that more than 60 % of the total frictional heat is transferred to the

inside oil flows. For seal pairs 1 and 8, the contact positions are averaged along the

circumference. These averaged contact positions, the radial distance from the inside seal

surface to the averaged contact position at the sealing interface (Lavg in Figure 4.10), are

8.7 mm and 7.8 mm for seal pair 1 and 8, respectively. Thus, thermal paths for frictional
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heat transfer to the inside oil flows are shorter for seal pair 8. Shorter thermal paths

reduce the conduction thermal resistance so that temperatures on the sealing interface

decrease.

High
temperature High temperature regions

regions

(I)t (

(a) (b)

Figure 4.9 Effects of heat flux distributions on temperatures
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Figure 4.10 Comparisons of thermal paths for two seal pairs
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4.5.2 Comparisons of two seal pairs for the high speed (6.2 m/s)

Two different seal pairs have been chosen from the numerical results at the speed

of 6.2 m/s. Two chosen pairs simulated with this speed are shown in Table 4-3. The

failure speed is higher for seal pair 10 than that for seal pair 6. Note that the magnitude of

the total heat flux to the stator is similar for both seal pairs. However, surface

temperatures on the stationary seal surface of each seal pair in Figure 4.11 show that high

temperature regions are much larger for seal pair 6, whose failure speed corresponds to

the simulated speed. On the other hand, discontinuity of temperature distributions is

clearly noticeable for seal pair 10.

Seal pairs [failure speed] 6 [6.20 m/s] 10 [7.01m/s]

Total frictional heat to stator [W] 163.9 163.7

% of area where Tmacro > 180C 11.9 0.30

Table 4-3 Comparisons of two seal pairs at 6.2m/s
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Figure 4.11 Stator surface temperatures of seal pair (a) 6 and (b) 10
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Distributions of heat flux into the stator are investigated and shown Figure 4.12. It

is clear that heat flux distributions of seal pair 6 are more concentrated and continuous

(see Figure 4.12 (a)). On the contrary, discontinuities in temperature distributions of seal

pair 10 come from discontinuities in heat flux distributions. These discontinuities can

reduce high temperature regions for seal pair 10 as discussed in the previous section.

Additionally, the averaged contact length of seal pair 10 is 0.3 mm shorter than for seal

pair 6. Shorter thermal paths can also contribute to lower temperature distributions.
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0.99 0.99

C C
N0.98 0.98

0.9 0.9

5 0.97 -".9w

0.'94 0.94
ID

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
circumferential angle [degree] Circumferential angle

(a) (b)

Figure 4.12 Distributions of heat flux into the stationary seal of seal pair (a) 6 and
(b) 10

To understand different contact patterns, radial surface profiles of the stationary

seal of each seal pair along the circumference are compared in Figure 4.13. Notice

differences in the starts of the curvatures for both seals. Circumferential variations in the

starts of the curvatures show wider distributions for the stationary seal of pair 10 (see

Figure 4.13 (b)).

Under the high operating speed, thermal twist angles due to thermal gradients

increase. With increases of twist angles, contact regions gradually move radially inward.

Once contact regions reach to the starts of the curvatures, contact regions move inward at
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a slower rate with same increases of twist angles due to increased gap heights between

the surfaces. Finally, different starts of the curvatures can lead to discontinuous contact

patterns with sufficiently high twist angles. Also note the surface heights in the transition

regions rather than those in the flat band become important for high speed with high twist

angles.
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Figure 4.13 Radial surface heights of the stationary seal of pair (a) 6 and (b) 10
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4.6 Summary of scoring failure tests

From comparisons of seal pairs with low and high scoring failure speed, it has been

shown that discontinuous contact patterns play an important role in reducing surface

temperatures. Discontinuous contact patterns distribute frictional heat flux as well as

reduce the conduction thermal resistance due to shorter conduction thermal paths.

Distributed heat flux can reduce surface temperatures from less superposition effects of

temperatures.

Surface profiles are investigated to understand different contact patterns for low

and high operating speeds. Two important geometric features, radial variations in surface

heights and the starts of the curvatures, can explain different contact patterns under the

same operating conditions for low and high speed, respectively.

89



5 Concluding remarks

5.1 Summary

Numerical models have been developed to explain the different scoring failure

resistances of FMMFS. The seal which is investigated in this thesis has unique features,

such as much more flexibility in the circumferential direction than in the radial direction,

identical rotating and stationary seals, and a loading mechanism using elastomeric rings.

Despite of its wide range of applications, this type of mechanical face seal has never been

investigated before.

On the other hand, existing failure criteria for other type of mechanical face seals

are inadequate for the FMMFS. Thus, a new scoring failure criterion is necessary. The

new scoring failure criterion needs to consider both the nominal and the local

temperatures because they are comparable during normal operating conditions.

The main difficulties for numerical models of the FMMFS result from expensive

computation costs. For accurate temperature predictions, interactions among seal surface

deflections, lubrication in the sealing band, and thermal effects need to be coupled.

Furthermore, these interactions are inherently unsteady due to identical rotating and

stationary seals. This thesis work is the first attempt to develop numerical models

considering all these interactions and to predict scoring failures using numerical results

for the FMMFS.

To manage computation costs and capture underlying physics, the following

simplifications are made using special features of the FMMFS: circumferential rigidity in

the contact model, hydrodynamic effects in the cavitation model, and circumferential

temperature variations of the rotating seal surface in the thermal model are all assumed to

be negligible. All of these simplifications are validated from scaling arguments and

comparisons with experiments. Currently, the numerical models can generate useful

information to evaluate the seal performance including temperatures, friction coefficients,

contact pressures, final gap heights, and cavitation regions without empirical inputs. It

should be also noted that real seal surfaces can be imported to the numerical models, and
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heat transfer coefficients for convection to the surrounding oil flows can be calculated

with a commercial finite element package.

Combined with the numerical results, the new scoring failure criterion has been

suggested and applied to real scoring failure tests. This scoring failure criterion can

predict likelihood of scoring failures for each seal pair at given load and speed

successfully. From the scoring failure experiments, the scoring probability of the seal pair

whose failure speed corresponds to the simulation speed is much higher than that of other

seal pairs.
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5.2 Conclusions

Currently, complete numerical models are available. Numerical models can import

real seal surface profiles and calculate deformed gap heights, oil distributions, friction

coefficients and temperatures without empirical inputs. Heat transfer coefficients as

convection boundary conditions of the thermal model can be obtained from simulations.

Comparisons with experimental measurements and scoring failure tests show that

numerical models capture governing physics with simplifications from distinct features of

the FMMFS.

From this thesis work, it also has been shown that the FMMFS operates in the

boundary lubrication regime over a wide range of operating conditions including typical

loading conditions. The hydrodynamic effects due to the circumferential waviness have

been questionable, but here are proved to be negligible for current FMMFS.

Most importantly, the geometrical features which affect the scoring failures are

found using the results from the numerical models. Radial variations in the seal surface

heights and the different starts of the curvatures can reduce high temperature regions due

to discontinuous contact patterns and shortened conduction thermal paths. It also has

been shown that different regions of the seal surface are important according to operating

conditions. For instance, the surface profiles near the curvature regions are important at

high speeds at the same vertical loads, while those near the outside diameter become

significant at low speeds.

Finally, new scoring failure criterion using numerical results predicts the likelihood

of scoring probability successfully. One-value criteria, critical temperature and frictional

power intensity, failed to predict scoring failures for the FMMFS. The new scoring

failure criterion uses two values which are measures of nominal and local temperatures,

thus considers both temperature effects. This new scoring failure criterion can be used in

general applications, for instance, moderate or high frictions with finite dimensions of

sliding bodies.
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5.3 Suggestions for future works

Current numerical models include the quasi-steady lubrication model and assume

that the lubricant spreading on the whole sealing band reaches the steady state. In reality,

the lubricant penetrates from the inside to the outside diameter until it spreads onto whole

sealing band. Even after that, the lubricant flows would be unsteady considering the

squeezing effects due to changes of the gap heights during the rotation. The unsteady

model of lubricant flows is important for both kinds of seal failure modes, leakage

failures and scoring failures.

For the leakage failures, the unsteady flow model can show differences in oil

leakage among different seal pairs. Thus, the unsteady flow model of the lubricant is

necessary for finding the critical parameters of excessive leakage failure. The new failure

criterion for leakage failure needs to be developed with the unsteady flow model.

The unsteady flow model can also contribute to further development of current

numerical models for scoring failure predictions. First, the unsteady flow model may

calculate cavitation regions more accurately than the quasi-steady cavitation model. By

comparing results from the unsteady model, calculations of the cavitation regions from

the current quasi-steady model can be justified or improved. Moreover, accurate

calculations of the cavitation regions will lead to better estimations of the distribution of

frictional heat flux and temperatures.

Secondly, better estimations of the distribution of frictional heat flux from the

unsteady flow model can provide the numerical tools to reduce total friction at the sealing

interface for seal designers. This thesis work focused on distributing the frictional heat

flux rather than reducing total friction. If calculations of the frictional heat become more

accurate, the surface profiles which reduce the total friction can be investigated with the

numerical model and the surface generator. Reducing the total friction will require

decreases of dry contact areas. Less cavitation can be beneficial to reducing the risk of

the dry contacts. However, less cavitation also means ineffective oil transport into the

sealing band because low pressure regions in the cavitation areas act as the sinks of the

lubricant. Ineffective oil transport into the sealing areas leads to poor lubrication, high

total friction and eventually early scoring failures. Such tradeoff of cavitation effects to
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reduce the total friction generation requires further investigations with accurate

estimations of the frictional heat flux. Once critical features that control the cavitation

effects are found, the seal designer can delay scoring failures by reducing total friction as

well as distributing frictional heat flux.

Finally, the unsteady flow model can consider the effects of other important

parameters besides total surface temperatures on scoring failures. It is known that one of

the scoring failure mechanisms, the catalytic decomposition of the lubricant, strongly

depends on the supply of the fresh lubricant. If the degraded lubricant is replenished with

the fresh lubricant, the lubricant will maintain its lubrication capacity. Thus, the

replenishment rate of the fresh lubricant would be another important parameter of scoring

failures. The unsteady flow model can provide realistic information about the

replenishment rate of the fresh lubricant over the possible scoring failure regions.
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Appendix

A. Estimations of the local temperature rise

As written in chapter 1, most of the thermal models that predict scoring failures

only calculate of the local temperature rise. This assumption is valid when the nominal

temperature rise is relatively low due to the large heat capacity of sliding bodies and

relatively low total friction. However, this assumption is questionable in the case of

FMMFS. Thus, it is necessary to check the assumption by estimating the local

temperature rise for further investigations.

Two numerical models have been developed to estimate the local temperature

distributions. The first model is an asperity contact model between two rough surfaces.

This model calculates real contacts areas, contact pressures, and final gap heights.

Using the results from the asperity contacts model, the distribution of local heat flux is

calculated. The distribution of local heat flux changes with time when the one rough

surface slides over the other rough surface. The second model calculates the local

temperature distributions with time-varying local heat flux distribution.

a. Asperity contacts model

Extensive research has been conducted on the contact of real surfaces by tribology

researchers. In early studies, stochastic models were developed based on the following

assumptions [29, 30]: the summits of asperities which are approximated as quadratic

curves, no interactions between asperities, elastic deformation of asperities, and some

regular statistical distributions of asperities. These stochastic models provide important

information for the relationships among load, mean separation gaps, and real contact

areas. However, the above assumptions are questionable for dealing with real rough

surfaces.

On the other hand, the development of numerical capacity and techniques makes

the full numerical simulation of contacts between real rough surfaces possible. For our
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purpose, the numerical scheme based on the work of Ju and Zheng [31] has been

developed with a consideration of plasticity effects.

Figure A shows two contacting bodies before and after deformation. The wi

represents vertical elastic deformation of the body i. From the Boussinesq solution, the

wi due to applied pressure distribution can be expressed as,

= - , 2 _ p ( ,)d_ d

;rE , A _ -62 2

In the contact regions, wi(x,y)+w 2(x,y)=6(x,y). Thus,

K f p( ,7) d d77 ((,Y
Ar (x-) 2+(y-Y) 2 12

where the parameter K is defined as

K= +- P 2

rcE 1  rE 2

If the real contact areas are discretized into M contacting elements, the previous

equation can be written as,

M d d q
K I p j [x 2 +(y 1/ =-r5i (i,j = 1, 2, ... , M).

j=1 Aj [(X - )+(Y-77)2

This equation can be rewritten as,

M d d7
I B P = 3, where B, Kf 2 /
j=1 Aj[(x - )2 2(-q ]

The coefficient Bij characterize the vertical displacement of the element i due to a unit

pressure applied on the element j.
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Body 1

IInput for nominal distance

Removal of element jSolve for Pj
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Plasticity
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Total load=required load ?
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Pressure and final deflections

Figure B. The flow chart of the asperity contact model
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The flow chart of the asperity contact model is shown in Figure B. Measured

rough surfaces are imported with an initial guess of the nominal distance (nd in Figure A),

which is the distance between the average surface heights of two bodies. At first, the

interpenetration regions are selected as the initial guess of real contact regions. As these

selected regions are larger than the real contact regions, the pressures at some elements

become negative. If the calculated pressures at certain elements are negative, those

elements are removed for the next iteration step. Thus, the selected areas are reduced with

more iteration. These iterations are repeated until all contact pressures in the selected

regions are positive.

After deformation, some asperities might deform plastically with high contact

pressures. Considering plasticity effects, the contact pressures can not be larger than three

times of the yield strength. Thus,

P, =3oy when P, >3o-y where cYy is the yield strength.

Considering the plasticity effects contradicts with the original numerical scheme of Ju

and Zheng which considers elastic deformation only. However, it is known that possible

errors due to this contradiction are reasonably small [32].

After that, the total support load is computed from the real contact pressures and

compared to the desired load. If the calculated load is not within the specified range, all

of the procedures are repeated with adjustments of the nominal distance. After

convergence, the model generates the following final outputs: the real contact regions,

contact pressures and deflections of the asperities.

To validate the asperity contact model, its results are compared with those of the

other asperity contact models. The plot of dimensionless pressure vs. the average gap

between two rough surfaces is compared with that from Lee and Cheng's model [19] in

Figure C. Two rough surfaces are generated numerically with the following parameters:

rms (cy)=O.1 pm, the correlation length in x (Px)= 40y, the correlation length in y (py)=5Y,

Pe (Px/Py )=8 and Gaussian distribution.
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Recall that Lee and Cheng's relation between the contact pressures and the

average gap assumes 2D longitudinal rough surfaces (Pe=co). Some deviations for the

low contact pressures might come from the fact that generated rough surfaces are not

complete 2D longitudinal surfaces. However, two plots in Figure C show reasonable

agreement for wide range of the total loads, especially for high loads.

Comparison with Lee's model

L

Io Current

0

0

0

0

1.5 2
Dimensionless flim thickness

Figure C. Comparisons of the asperity contact model to Lee and Cheng's model

b. Local temperature rise model

With real contact regions, pressures and final gap heights, frictional heat flux can

be calculated as follows:

q(x,y) =fbP(x, y)V in the real contact regions,

q(x, y) =, v in the non-contact regions,
H(x, y)

where fb : the boundary friction coefficient,

P(x,y) : the real contact pressure at (x,y),
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V : the relative sliding velocity,

H(x,y) : the final gap heights at (x,y),

and p : the viscosity of the lubricant .

Note that contact pressures and gap heights change during the sliding motion. Thus, the

distribution of the frictional heat flux also changes with time.

The temperature increments on the stationary surface (x,y) at any time t due to an

instantaneous heat source with the heat flux magnitude of q(x',y',t') and the heat partition

to the stationary surface f(x',y',t') at x', y', and t' are calculated from Carslaw and Jaeger

[33] as,

f(x', y',t')q(x',y',t')dx'dy'dt' (x -x') 2 +(y - y')2

4p c[iratt - t')]"' I t') _

- x - y - 4at - q - 27P 12kT
Define x=-, y=-, t=- , q= , and T= where Pref is the reference

X X 12 P V Pref Vix

pressure and V is the sliding velocity. Then, the above equation can be non-

dimensionalized as,

-T-x-- f(x', y',t' )q(x, y,t') dx'dy'd' (X -)2 +(y - )2]
dT(x, y)= - / 2 exp -

t - t'y (t -- t')

Temperature rise on the stationary surface from time 0 to time t due to all the frictional

heat sources over the contact area A can be written as,

dT (x, y, t) = fo JJAdT(x, y, t) dx7y'dit.

When M by N calculating mesh is used for whole contact areas and L is the number of

contact time intervals until time t, the above equation can be rewritten as,
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- L-IN M

AT (i, j,l)= I I E f(i, j,l) q(m, n, k) R(i - m, j - n, L - k -1) in the discretized form
k= n=1 m=1

where

~~ 1 expf- (x - x') +Q(y - y)2 dxdcR(i-m,j-n,L -k -1):=fj+ fyj '~~ ), , 3( -,d'd'
tkYnX.(t - tY/ t - t

and f(ij,l) is the heat partition to the stationary surface at the element (ij) and the time 1.

For details in calculations of R(i-m,j -n,L-k- 1), refer to [15]. Finally, the local

temperature rise on the stationary rough surface can be calculated once distributions of

the frictional heat flux to the stationary rough surface are known.

To validate the local temperature rise model, the maximum temperature from Tian

and Kennedy [13] with a moving square heat source (heat flux magnitude = 5e8*V

[W/m2 ]) is compared with that from the numerical model in Figure D. For a wide range

of the sliding speed, the simulation results show good agreements.

Comparison of Tmax
550

V (1~5m/s) 500

(9450 7

400

E350 -
10 m

E~ 300

E250 -e- Tian & Kennedy

200 *- Simulation

150

Stationary surface 1000 , 5 6
0 1 2 3 4 5 6

Sliding velocity [m/s]

40 pm

Figure D. Validations with a moving square heat source

After validations, measured rough surfaces are imported to the asperity contact

model and the local temperature rise model. The size of the stationary rough surface is

178 pm parallel and 92.8 pm perpendicular to the sliding direction. Two rough surfaces

are pressed against each other with the pressure of 14.6 MPa. This value of the contact

101



pressure lies between the maximum contact pressure under the normalized axial loads of

1.0 and 1.5. The sliding speed is 1.8 m/s. The asperity contact model calculates the

unsteady distributions of frictional heat flux during the sliding of two rough surfaces.

To calculate the heat flux distribution into the stationary rough surface, the heat

partition function to the stationary surface has to be known. The heat partition function is

assumed to be constant and is obtained from the averaged heat partition of the 3D thermal

model.

Figure E shows the average local temperature rise (left) and the maximum local

temperature rise (right) on the stationary rough surface. Recall that the sliding motion of

two rough surfaces is unsteady. If the sliding surface is smooth and the stationary surface

is rough, the average local temperature rise would increase initially then reach steady

state after sufficient time. When both surfaces are rough, the average local temperature

would show similar behavior except that small variations exist even after sufficient time

due to changes of contact regions. This behavior of the average local temperature rise is

shown in Figure E (left).

1.4 30
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* 1222-0
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E E 20
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Tirme [micro seconds] Tirre [icro secords]

Figure E. The average (left) and maximum (right) local temperature rise on the
stationary rough surface during sliding motion
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After 60 micro seconds, the average local temperature rise shows small variations

of around 1.2 C. Thus, after 60 micro sections, the effects of initial heating have gone

away. The magnitudes of the maximum local temperature rise after 60 micro seconds are

on the order of 20C. The maximum nominal temperature for the stationary surface from

the 3D thermal model is approximately 90-105 C under the normalized axial load 1.0-1.5

and the speed 1.8 m/s. Thus, the maximum nominal temperature rise is comparable or

one order of magnitude higher than the maximum local temperature rise. This means

nominal temperature distribution can not be neglected for the current metal to metal face

seals.
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B. Surface generator

The seal surface generator has been developed to provide a complete tool with the

numerical models for further investigations and improvements in the seal design. The

general seal profile is shown in Figure F. Such a profile with two peaks and one valley

(where the first derivatives of the profile are zero) in the flat band region is the most

complicated possible found in the measurements.

CL

OD

.1idh1 h2 1h3 IN4 h5 Ne
ID R

r1
r2

r3

1 5 1 h rod
V y V y 4

Figure F. Radial surface profiles with parameters of the surface generator

Each parameter show in Figure F is defined as:

rid: the radial position at the inside diameter,

R: the radius of curvature,

ri, hi: the radial position and the surface height at the start of the curvature,

r2, h2: the radial position and the surface height at the first peak in the flat band,

r3, h3: the radial position and the surface height at the valley in the flat band,

r4, h4: the radial position and the surface height at the second peak in the flat band,

r5, h5: the radial position and the surface height near the outside diameter,

rod, h6: the radial position and the surface height at the outside diameter.
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The continuity of all positions and slopes are ensured for each segment of the radial

surface profile. In addition to the radial surface variations, the surface generator can

generate the seal surfaces with circumferential variations such as the starts of the

curvature, the radius of the curvature, and the amplitude of waviness of the surface

heights.

In summary, the current surface generator can fabricate seal surfaces with radial

and circumferential variations, which can be used for further investigations and design

process. Figure G shows the one of the generated surface profile with the following

parameters: two waves of amplitude of Ip m, 50 mm radius of the curvatures, and the

circumferential variations in the starts of the curvature (0.2 mm).
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Figure G. One example of the generated surface
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