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Abstract

This thesis focuses on the study of collective dynamic behaviors, especially the spon-
taneous synchronization behavior, of nonlinear networked systems. We derives a body
of new results, based on contraction and partial contraction analysis. Contraction is a
property regarding the convergence between two arbitrary system trajectories. A non-
linear dynamic system is called contracting if initial conditions or temporary distur-
bances are forgotten exponentially fast. Partial contraction, introduced in this thesis,
is a straightforward but more general application of contraction. It extends contrac-
tion analysis to include convergence to behaviors or to specific properties (such as
equality of state components, or convergence to a manifold). Contraction and partial
contraction provide powerful analysis tools to investigate the stability of large-scale
complex systems. For diffusively coupled nonlinear systems, for instance, a general
synchronization condition can be derived which connects synchronization rate to net-
work structure explicitly. The results are applied to construct flocking or schooling
models by extending to coupled networks with switching topology.

We further study the networked systems with different kinds of group leaders,
one specifying global orientation (power leader), another holding target dynamics
(knowledge leader). In a knowledge-based leader-followers network, the followers
obtain dynamics information from the leader through adaptive learning.

We also study distributed networks with non-negligible time-delays by using sim-
plified wave variables and other contraction-oriented analysis. Conditions for contrac-
tion to be preserved regardless of the explicit values of the time-delays are derived.
Synchronization behavior is shown to be robust if the protocol is linear.

Finally, we study the construction of spike-based neural network models, and the
development of simple mechanisms for fast inhibition and de-synchronization.

Thesis Supervisor: Jean-Jacques E. Slotine
Title: Professor of Mechanical Engineering and Information Sciences; Professor of
Brain and Cognitive Sciences
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Chapter 1

Introduction

The complexity of the world we live is based on accumulation and combination of
simple elements. Collective behaviors of dynamic networked systems, such as spon-
taneous synchronization, pervade nature at every scale. Although the study of these
natural phenomena has lasted for a few centuries, it remains a mystery and attracts
more and more attention from researchers working across disciplines. In this thesis, a
body of new results on nonlinear networked systems is derived based on contraction
and partial contraction analysis.

Contraction is a property regarding the convergence between two arbitrary sys-
tem trajectories. A nonlinear dynamic system is called contracting if initial condi-
tions or temporary disturbances are forgotten exponentially fast. The basic results
of Contraction Theory are briefly reviewed in Chapter 2, followed which we derive
a sufficient condition to preserve contraction through an arbitrary feedback combi-
nation, and([ then develop the theory of partial contraction. Partial contraction (or
meta-contraction) is a straightforward but more general application of contraction. It
extends contraction analysis to include convergence to behaviors or to specific prop-
erties (sucl-h as equality of state components, or convergence to a manifold). Not
surprisingly contraction can be considered as a particular case of partial contraction.

The development of Partial Contraction Theory provides a general analysis tool
to investigate the stability of large-scale complex systems. In particular, it is power-
ful to study synchronization behavior by inheriting the central feature of contraction
that, convergence and explicit dynamics are treated separately, leading to signifi-
cant conceptual simplifications. We illustrate the idea in Chapter 3 by investigating
the behaviors of two coupled oscillators. Chapter 4 generalizes the analysis to cou-
pled networks with various structures and arbitrary sizes. For nonlinear systems with
positive-definite diffusive couplings, we show that synchronization will always occur if
coupling strengths are strong enough, and an explicit upper bound on the correspond-
ing threshold can be computed through eigenvalue analysis. Rather than linearized,
the results are exact and global, and can be easily extended to study nonlinear cou-
plings, to unidirectional couplings, and to positive semi-definite couplings as well. We
further connect the synchronization rate to a network's geometric properties, such as
connectivity, graph diameter or mean distance. A fast inhibition mechanism is also
studied.
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In fact, synchronization research has a very close connection with group cooper-
ation study. Recently, there is considerable interest in understanding how various
animal aggregations, such as bird flocks or fish schools, coordinate their collective
motions to perform useful tasks. A great effort has made to achieve similar behaviors
of artificial multi-agent systems, such as vehicles or satellites, with distributed cooper-
ative control rules. In Chapter 5 we build corresponding flocking or schooling models
by extending the previous analysis to coupled networks with switching topology.

We study the networked systems with different kinds of group leaders in Chapter 6.
The leader specifying global orientation is named power leader, while that holding
target dynamics is knowledge leader. In a knowledge-based leader-followers network,
the followers obtain dynamics information from the leader through adaptive learning.
Such a mechanism may exist in many natural processes, for instance, in evolutionary
biology or in disease dynamics. Synchronization conditions for both kinds of networks
are derived based on contraction or graph analysis.

In real-world engineering applications, communications between different systems
always involve non-negligible time-delays. In Chapter 7, we conduct a contraction
analysis on time-delayed feedback communications using simplified wave variables.
A condition to preserve contraction regardless of the delay values is derived. The
approach is then applied to study the group cooperation problem with time-delayed
communications.We show that synchronization is robust to time delays with linear
protocol, no matter if the dynamics is continuous or discrete-time, or if the network
is leaderless or leader-followers. A different but more general study of time-delayed
nonlinear systems will be presented in Chapter 8.

Finally, in Chapter 9 we develop an effective de-synchronization mechanism, based
on which a networked system converges to a well-ordered phase-locking solution very
quickly, and thus allows us to construct neural network models with the ability to
perform fast spike-based computations, such as coincidence detection and winner-
take-all. These basic computational units are able to be accumulated to execute
higher-level brain functions, the implementation of which will facilitate the realization
of, for instance, binding in machine vision and perception.

Brief concluding remarks are offered in Chapter 10.

12



Chapter 2

Contraction and Partial
Contraction

Basically, a nonlinear time-varying dynamic system will be called contracting if initial
conditions or temporary disturbances are forgotten exponentially fast, i.e., if trajec-
tories of the perturbed system return to their nominal behavior with an exponential
convergence rate. The concept of partial contraction allows to extend the applications
of contraction analysis to include convergence to behaviors or to specific properties
(such as equality of state components, or convergence to a manifold) rather than
trajectories.

2.1 Contraction Theory

Contraction Theory is a new nonlinear analysis tool, which investigates the stability
with respect to trajectories. Here we briefly summarize its basic definitions and main
results, details of which can be found in [81, 82].

Consider a nonlinear system
k= f(x,t) (2.1)

where x E R X1 is a state vector and f is an m x 1 vector function. Assuming f(x, t)
is continuously differentiable, we have

dt(xTax) = 2 6xTAx = 2 3xT x K 2 Amax 6xTOx

where x is a virtual displacement between two neighboring solution trajectories,
and Ama(x, t) is the largest eigenvalue of the symmetric part of the Jacobian J =
f. Hence, if Amax(x,t) is uniformly strictly negative, any infinitesimal length 116x1
converges exponentially to zero. By path integration at fixed time, this implies in turn
that all the solutions of the system (2.1) converge exponentially to a single trajectory,
independently of the initial conditions.

More generally, consider a coordinate transformation

Jz = eax (2.2)

13



where E(x, t) is a uniformly invertible square matrix. One has

d (6zT z) = 2 SZT6Z = 2 ZT ( + M)e - 1 

so that exponential convergence of J]z1] to zero is guaranteed if the generalized Jaco-
bian matrix

F ( + 8 1f )e-1 (2.3)

is uniformly negative definite. Again, this implies in turn that all the solutions of the
original system (2.1) converge exponentially to a single trajectory, independently of
the initial conditions.

By convention, the system (2.1) is called contracting, f(x, t) is called a contracting
function, and the absolute value of the largest eigenvalue of the symmetric part of F
is called the system's contraction rate with respect to the uniformly positive definite
metric M = eTe.

Note that in a globally contracting autonomous system, all trajectories converge
exponentially to a unique equilibrium point [81, 133].

2.2 Feedback Combination of Contracting Systems

One of the main features of contraction is that it is automatically preserved through
a variety of system combination. Consider two contracting systems and an arbitrary
feedback connection between them. The overall virtual dynamics can be written as

d Jzl Fzz1l
dt [Z2 F Z2

with the symmetric part of the generalized Jacobian in the form

Fs= 2 (F + FT)= G T F

(the subscript symbol s represents the symmetric part of the matrix). By hypothesis
the matrices Fla and F 28 are uniformly negative definite. Then F is uniformly negative
definite if and only if ([51], page 472)

F 2 < GT F G

Thus, a sufficient condition for the overall system to be contracting is that

A(F18) A(F2s) > 2(G) uniformly Vt 0 (2.4)

where A(Fia) is the contraction rate of Fi, and a(G) is the largest singular value of
G. Indeed, condition (2.4) is equivalent to

Amax(F 2 s) < Amin(Fr 1 ) a 2 (G)

14



and, for an arbitrary nonzero vector v,

vT F2 s v < Amax(F2s) v v

< Amjn(F 1 ) 2 (G) vTv

< Amin(Fj1) vTGTGv

< vT GT F1 G v

A simple example was studied in [81] where

F = , -G T F2

The result (2.4) can be applied recursively to larger combinations. Note that,
from the eigenvalue interlacing theorem [51],

A(F,) < min A(Fis)

2.3 Partial Contraction Theory

The concept of partial contraction came out firstly when we worked on the study
of network synchronization, since which its unique capacity and flexibility have been
proved in more and more application fields.

Theorem 2.1 Consider a nonlinear system of the form

x:k = f(x,x,t)

and assume that its auxiliary system

y = f(y, x(t), t)

is contracting with respect to y. If a particular solution of the auxiliary y-system
verifies a smooth specific property, then all trajectories of the original x-system verify
this property exponentially. The original system is said to be partially contracting.

Proof: The virtual, observer-like y-system has two particular solutions, namely
y(t) = x(t) for all t > 0 and the solution with the specific property. For a con-
tracting system, all solutions converge together exponentially regardless of the initial
conditions. This implies that x(t) verifies the specific property exponentially. E

Note that contraction may be trivially regarded as a particular case of partial
contraction. Consider for instance an original system in the form

= c(x,t) + d(x,t)

15



where function c is contracting in a constant metric. The auxiliary contracting system
may then be constructed as

y = c(y,t) + d(x(t),t)

In this example, contraction is a particular case of partial contraction when d = 0.
If d $ 0, the specific property of interest may consist e.g. of an equilibrium point, or
a relationship between state variables which we will illustrate through the following
sections. Here we study a few simple examples.

Example 2.3.1: Consider the system taken from [60]

[±X] ] [ -1 X1 ][ X1]

X2 -1 x 2 

to which we construct an auxiliary system

Y2 -xl -1 Y2

The y-system is contracting and has two particular solutions [Y ] = [i ] and
Y2 x2

[Y2 ] = [0] Thus, according to Partial Contraction Theory, xl and x2 will both

tend to 0 exponentially. 0

Example 2.3.2: Consider the system from [131]{ xl = 2 - x ( 4 + 2x2 - 10)
x2 = - - 3x5 (x 4 + 2x 2 - 10)

which is equivalent to

d -4 X2_10) )6 (4+ -10)
( 1 + 2x 2 - 4x10) = -(4x + 12x ) (4 + 2x 2 - 10)

and has an auxiliary system

= - (4x0l° + 122 ) y

The y-system has two particular solutions y = x4 + 2x2 -10 and y = 0, and is contracting
as long as not both xi(t) and x2(t) equal to 0. It is then easy to show that, the system
stays at the origin if xl(0) = x2 (0) = 0. Otherwise it tends to reach

x (t)4 + 2 x2(t)2 = 10

exponentially. 0

Example 2.3.3: Consider a convex combination or interpolation between contracting
dynamics

x = ai(x,t) f(x,t)

16



where the individual systems = fi(x,t) are contracting in a common metric M(x) =
0T(x)3(x) and have a common trajectory xo(t) (for instance an equilibrium), with all
cai(x, t) > 0 and Ei j &(x, t) = 1. Then all trajectories of the system globally exponentially
converge tIo the trajectory xo(t). Indeed, the auxiliary system

2/= E cei (x, t) fi (Y t)

is contracting (with metric M(y) ) and has x(t) and xo(t) as particular solutions. 0

The notion of building a virtual contracting system to prove exponential conver-
gence applies also to control problems[60, 135]. Consider for instance a nonlinear
system of the form

x = f(x,x,u,t)

and assume that the control input u(x, Xd, t) can be chosen such that

Xd = f(xd, x, u, t)

where xd(t) is the desired state. Construct now the auxiliary system

y = f(y,x,u,t)

If the y-system is contracting, then x tends xd exponentially.

Example 2.3.4: Consider a rigid robot model

H(q)i + C(q, ) + g(q) = r

and the energy-based controller [131]

H(q) ir + C(q, q)qr + g(q) - K(q - qr) = 

with K a constant symmetric positive-definite matrix. The virtual y-system

H(q) + C(q, )y + g(q) - K( - y) = 

has 4 and r as two particular solutions, and furthermore is contracting, since the skew-
symmetry of the matrix H - 2C implies

d
dt &YTH6Y =-25yT(C + K)6y + 5yTI2jy =-25yTK6y

Thus 4 tends to 4r exponentially. Making then the usual choice r = id - A(q - qd)
creates a hierarchy and implies in turn that q tends to qd exponentially. O

2.4 Line-Attractor

Recent research in computational neuroscience points out the importance of contin-
uous attractors [127, 71]. If a system contains a global stable equilibrium point, all

17



solutions converge to this point attractor regardless of initial conditions. If a system
contains a line attractor, all solutions will converge to this line, and the resting point
on this line depends on initial conditions. Figure 2-1 illustrates the difference between
these two types of attractors. In this section, we use partial contraction theory to
study line attractor.

Figure 2-1: Illustration of equilibrium point and line attractor.

2.4.1 Line-Attractor

Consider [47] a nonlinear neural network model

T'i + xi = [ wji xj + bi ]+ i= ,...,n

with [a]+ = max(O, a) and constant r > 0, or in matrix form

Tx + x = [Wx + b]+

with WT = W = [wj]. If I- W is positive semi-definite and b is in its range
space, a line attractor exists [47]. To prove global exponential stability of this line
attractor, arrange the eigenvalues Ai of I- W in increasing order, with 2 > A1 = 0.
The corresponding eigenvectors uj represent an orthonormal basis of the state space.
Consider now the auxiliary system

T- + = [Wy + b]+ + 2 UluT(x(t)-Y) (2.5)

Note that given positive initial conditions, all components of x and y remain posi-
tive. To apply partial contraction analysis, we need to do two things: first prove the
auxiliary system is contracting, and then find a specific property for y.
contraction proof.
To prove the auxiliary system (2.5) is contracting, we use contraction analysis re-
sults for continuously switching systems [82, 84]. Consider an arbitrary number of

18



continuously differentiable flow fields

x = f (x, t)

which are all contracting with respect to the same continuous (x, t). Now switch
arbitrarily among these different flow fields f. If the resulting flow is continuous in x
for any time t > 0, the overall system is contracting. A detailed proof for system (2.5)
to be contracting can be found in Appendix. The overall contraction rate is lower
bounded by .

2r''

specific property:
Besides y = x(t), there exists another particular solution for the auxiliary system (2.5)
which is

y = e + yoo Ul

Here e is a constant vector satisfying (I- W) e = b and y is a scalar variable
defined by

Ty + A2 Y = A2 U (x-e)

Note that we used uTu = 1 and the fact that, given positive initial conditions, one
has

[Wy+b]+ = [y+b-(I-W )(e+y ,ul)]+=[y]+ = y

Thus, according to partial contraction theory, x(t) verifies exponentially the spe-
cific property that (x(t) -e) is aligned with ul. Hence all solutions of the original
system converge exponentially to a line attractor of the form

x = e + xO, Ul

where xOo = 0 using the original x dynamics. The actual value of xoo is determined
by the initial conditions.

2.4.2 Generalized Line-Attractor

In this section, we study a generalized non-switching line-attractor model. Consider
a nonlinear system

x = f(x, t)

with Jacobian J(x,t) = of We assume J(x,t) that is symmetric, and arrange its
eigenvalues Ai = Ai(x, t) i = 1,..., n in increasing order. The corresponding eigen-
vectors u/ = ui(x, t) represent an orthonormal basis of the state space.

Theorem 2.2 For the general nonlinear model described above, if V i = 2,. .. , n, Ai <
0, A1 is upper bounded, and ul is constant, then all solutions of the original system
will converge to an attractor of the form

x(t) = e(t) + x~,(t) ul (2.6)
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where x~ (t) may depend on initial conditions. The convergence rate is lower bounded
by 1A21.

Proof: The virtual dynamics of the original system is

6* = J(x,t) x (2.7)

Consider an auxiliary virtual dynamics of the form

y = J(x,t) 3 y + ko(X,t) ulu (y - x) (2.8)

and choose k(x, t) = A2 (x, t) -Al (x, t). Then this auxiliary dynamics is contracting,
since

n

J(x,t) + ko(X,t) uluT = ZAi ,uiuT+ k uu < 2 (x,t) I

Next, a particular solution of the auxiliary system (2.8) is Jy = ulby¢, where

= (A + k) y - k uT x

= A2 hy - ( 2 - )uT 6x

Thus, from partial contraction, Sx converges exponentially to the form 6x = ul,6x,
where, by replacing in (2.7),

5o= Al 6x X

Hence all solutions x(t) of the original system exponentially satisfy (2.6), where e(t)
depends on the explicit form of f. Note that if Al > 0, the dynamics on the line
attractor is unstable. 0

2.5 Appendix: Contraction Analysis of (2.5)

To prove that the system (2.5) is contracting, we assume V i, j, wij > O. This implies
that all couplings are excitatory. Such a matrix W = [wij] is named a nonnegative
matrix [51].

Lemma 2.1 If W is nonnegative and I - W is positive semi-definite, then I + W,
and all their principle submatrices are positive semi-definite.

Proof:
Since Ai(I- W) = 1 - Ai(W), we have

V i = 1,...,n Ai(W) < 1 with Amx(W) = 1

According to extended Perron's Theorem [51](page 503), if W is nonnegative, then
its spectral radius p(W) is an eigenvalue of W, which implies that p(W) = 1 in
this case. Thus A(I + W) = 1 + Ai(W) > 0, i.e., I + W is positive semi-definite.
Furthermore, all submatrices of I - W and I + W are positive semi-definite, which
can be concluded from Interlacing Theorem. 0
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To conduct contraction analysis for system (2.5), we first study the case when
Vi = 1,.. . n, [ i wji yj + bi + > 0. Thus the system's dynamics is actually

r + y = Wy + b + A2 U1UT (X(t)-y)

which is contracting since Vv ~ 0, v = Ein1 kitu, and

= vT(I - W)v + A2 vTulUTv
n

= E(kui)T(I- W)(kiui) + A2(kui)TuuT(kui)
i=2
n

= 
i=2

Aik2 + A2kl2 > 

Moreover,

Amin(I- W + 2 ululf)
mvT(I- W + A2 luT)v= mm

vTv#0 vTv

E-n_-= Ak, + Ak ASi=2 +A2 > %2
= n k2 > A

i=l i

Next, by assuming W = [wij] =

and setting vT = [v_ 1 v], one has

vT(I - W + A2 uluT)v

= VT([
I-Wn_ 1

T
-Wn

Wn--1n T
wT Wn ] with w n = [ln ... W(n-l)n T

+ n2 uu)v

+ 2 ulu[v

Thus, if for element n(or any other one) [ En win yj + bn ]+ = 0, the Jacobian of (2.5)

changes to F =-(I- [ -1 Wn ]+ A2 UlUT), which is still contracting since
0 0 + 2U1Twihi tl otatn ic

- VTFV = VT([ I -Wn_ 1
I T

n

1Wn + A2 Ul UT) V

-lwn
= vT(I W + A2 UlUT)v + vT( [I -Wn

> vT( I - w+A 2
uu l )v >

0
1 + Wnn

+ A2 UlUlT)v

1A 2 vTv
2
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vT(I - W + A2 ulUlT)v

- Vn(I- Wn-1 )vn- 1 + vT(1 - Wnn)Vn -2Vn(V¥lWn)

> 2 vTv
+ A2 vTuu V

-Wn

- Wnn



The analysis can be easily extended. For instance, one can assume

W = [ij] = [ Wn-2
T

Wn- 1
-T
Wn

Wn-1

W(n-1)(n-1)

W(n-l)n

Wn

Wn(n-1)

Wnn

If for both elements n - 1 and n [ Ei wji yj + bi ]+ - 0, the Jacobian is

+ A2 lulT)

which is contracting since

-vTFv = lvT(I W + A2 uluT)V +

0 .
I + W nW(n-)(n-1) Wn(n-

W(n-l)n nn

+ A2 u uT)v

> lA 2v v
2

We conclude that, system (2.5) as a continuous switching system is contracting
because each of its piece-wise system is contracting based on an identity metric.
Furthermore, the overall system's contracting rate is lower bounded by A.27''
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Chapter 3

Two Coupled Oscillators

Initiated by Huygens in the 17th century, the study of coupled oscillators involves
today a variety of research fields, such as mathematics [24, 120, 141, 142], biology
[21, 99, 140], neuroscience [14, 50, 67, 89, 101, 130, 177, 182], robotics [10, 53, 64, 68],
and electronics [20], to cite just a few. Theoretical analysis of coupled oscillators
can be performed either in the phase-space, as e.g. in the classical Kuramoto model
[69, 142, 175], or in the state-space, as e.g. in the fast threshold modulation model
[66, 137, 138]. While nonlinear state-space models are much closer to physical reality,
there still does not exist a general and explicit analysis tool to study them. Starting
from this chapter, we develop a new method based on partial contraction theory.

The analysis is carried out in two steps. First, we prove that the whole coupled
system is contracting or partially contracting, implying for instance that all subsys-
tems converge together regardless of the initial conditions. In a second, easy step, the
final behavior is determined. We illustrate the idea in this chapter by investigating
the coupled networks composed by two oscillators. The theoretical results are then
simulated with general Van der Pol oscillators [99, 141], whose relaxation behavior
can be made to resemble closely some standard neuron models. In contrast with pre-
vious approaches such as e.g., [17, 119, 139], our results are exact and global. In fact,
the analysis method we developed is not limited by individual systems' dynamics. It
can also be applied to study any other coupled systems rather than oscillators.

3.1 One-Way Coupling Configuration

Consider a pair of one-way (unidirectional) coupled identical oscillators

{ l- f(xi,t)

k2 =f(x 2 , t) + u(x)-u(x 2 ) (3.1)

where x, 2 E Rm are the state vectors, f(xi,t) the dynamics of the uncoupled
oscillators, and u(xl) - u(x 2) the coupling force.

Theorem 3.1 If the function f - u is contracting in (3.1), two systems xl and x2

will reach synchrony exponentially regardless of the initial conditions.
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Proof: The second subsystem, with u(xl) as input, is contracting, and x2 (t) = x1(t)
is particular solution. 0

Example 3.1.1: Consider two coupled identical Van der Pol oscillators

1 + (x2- 1)±l + W2 X1 = 0

X2 + a(X2 - 1)±2 + w2 x2 = aC(Xl - 2)

where a, w and n ae strictly positive constants (this assumption holds for all the Van
der Pol examples). Since the system

-+ a(x2 + K - 1)5 + w2 x = u(t)

is semi-contracting for n > 1 (see Appendix 3.3), x2 will synchronize to Xl asymptotically.
0

Note that a typical engineering application with an one-way coupling configuration
is observer design, in which case xl represents the plant state needed to be measured.
The result of Theorem 3.1 can be easily extended to a network containing n oscillators
with a chain structure (or more generally, a tree structure)

x*1 = f(xl,t)

X2 = f(x 2 , t) + u(xl) - u(x2 ) (3.2)
I. . .

xn f(Xn, t) + u(xnl 1 ) - (xn)

where the synchronization condition is the same as that for system (3.1).

3.2 Two-Way Coupling Configuration

The meaning of synchronization may vary in different contexts. In this thesis, we de-
fine synchronization of two (or more) oscillators xl, x2 as corresponding to a complete
match, i.e., xl = x2. Similarly, we define anti-synchronization as xl = -x 2 . These
two behaviors are called in-phase synchronization and anti-phase synchronization in
many communities.

3.2.1 Synchronization

Theorem 3.2 Consider two coupled systems. If the dynamics equations verify

x - h(x 1 , t) = x2 - h(x 2, t)

where the function h is contracting, then xl and x 2 will converge to each other expo-
nentially, regardless of the initial conditions.
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Proof: Given initial conditions x1 (0) and x2 (0), denote by xl (t) and x2 (t) the solu-
tions of the two coupled systems. Define

g(x1, x 2, t) = i - h(xi, t) = x2 - h(x 2, t)

and construct the auxiliary system

y = h(y, t) + g(x1 (t), x 2 (t), t)

This system is contracting since the function h is contracting, and therefore all solu-
tions of y converge together exponentially. Since y = x1 (t) and y = x 2 (t) are two
particular solutions, this implies that x1 (t) and x2 (t) converge together exponentially.
0

A few remarks on Theorem 3.2:

* Theorem 3.2 can also be proved by construct another auxiliary system

S Y= h(yi,t) + g(x 1 ,x 2,t)

y2 = h(y 2,t) + g(x1,x 2,t)

which has a particular solution verifying the specific property Yl = Y2. In fact,
this auxiliary system is composed of two independent subsystems driven by the
same inputs. Thus, the proof can be simplified by reduce the dimension of the
y-system.

* Theorem 3.1 is a particular case of Theorem 3.2. So is, for instance, a system
of two-way coupled identical oscillators of the form

I X1 = f(xi,t) + u(x2 )-u(x 1 )
I 2 = f(x 2 ,t) + (xl)-U(X2 )

In such a system xl tends to x2 exponentially if f - 2u is contracting. Further-
more, because the coupling forces vanish exponentially, both oscillators tend to
their original limit cycle behavior, but with a common phase.

* Although contraction properties are central to the analysis, the overall system
itself in general is not contracting, and the common phase of the steady states
is determined by the initial conditions x1 (0) and x 2(0). This point indicates
the difference between contraction and partial contraction.

* The result of Theorem 3.2 can be easily extended to coupled discrete-time sys-
tems, using discrete versions [81] of contraction analysis, to coupled hybrid sys-
tems, and to coupled systems expressed by partial-differential-equations(PDE).

Example 3.2.1: Consider again two coupled identical Van der Pol oscillators

+ (X-l) + w2 xl = aK1(i 2 -l

X2 + a(x - 1)d2 + W2x2 = 2(l - 2)
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One has

X1 + a(X2 + --1 + 2 - 1)Xil + W2 X1 = X2 + a(X2 + K1 + 2 - 1)12 + W2X2

According to Theorem 3.2 and the result in Appendix 3.3, we know that these two
oscillators will reach synchrony asymptotically if

E1 + E2 > 1

for non-zero initial conditions. Figure 3-1 shows a
tions are chosen randomly.

x1. x2

simulation result, where initial condi-
J

timre(sec)

Figure 3-1: Two bidirectionally coupled Van der Pol oscillators synchronize.

3.2.2 Anti-Synchronization

In a seminal paper [136] inspired by Turing's work [99, 153], Smale describes a mathe-
matical model where two identical biological cells, inert by themselves, can be excited
into oscillations through diffusion interaction across their membranes. Using Theo-
rem 3.2, we can build a coupled system

{ x1 = h(x1 , t) + u(x2 , t)-u(x1, t)

|2 = h(x2, t) + (x 1 , t) - U(X 2, t)
(3.4)

to describe Smale's model.

Theorem 3.3 If the uncoupled dynamics h in (3.4) is contracting and odd in x, x +
x 2 will converge to zero exponentially regardless of the initial conditions. Moreover,
for non-zero initial conditions, x1 and x2 will oscillate and reach anti-synchrony if
the system

z = h(z, t) - 2u(z, t)
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has a stable limit-cycle.

Proof: Theorem 3.3 can be proved by change the sign of x2 in Theorem 3.2, or by
construct an auxiliary system

Yj = h(yl,t) + g(xl,x 2 , t)

Y'2 = h(y2,t) - g(xl,x 2, t)

with g(x1, x2, t) = u(x 2 , t)- u(x1, t). The y-system has a particular solution verifying
the specific property yl = -Y2. 

Example 3.2.2: Consider specifically Smale's example [136], where

h(x,t) = A X2 + [ ] u(x) = K x2
x3 0 2 Kx3

LX4 0 X4 

with [ 1+a 1 ya 0 ya 
A -1 a 0 ya K- 0 a 0 -ya

-'ya 0 2a 0 -7a 0 -2a 0
L0 -Sya 0 2a 0 -- ya 0 -2a

For a < -1, h has a negative definite Jacobian and thus is contracting, and h-2u yields
a stable limit-cycle, so that the two originally stable cells are excited into oscillations for
non-zero initial conditions. Requiring in addition that XV < -y < 3/2 guarantees that
all the eigenvalues of K are real and strictly positive, so that K can be transformed into
a diagonal diffusion matrix through a linear change of coordinates. 0

Example 3.2.3: Smale's example can be simplified by directly using two damped Van
der Pol oscillators { x + a(x2 + 2, - 1)±1 + w 2xl = -(2 - xl)

X2 + a(x 2 + 2K - 1)42 + w 2x2 = -an(xi - 2 )

with the simulation result plotted in Figure 3-2. 0

3.2.3 Oscillator-Death

Inverse to Smale's effect, there is a phenomenon called oscillator-death (or amplitude-
death) [5, 8, 121] where oscillators stop oscillating and stabilize at constant steady
states after they are coupled.

Theorem 3.4 Oscillator-death happens if the dynamics of the whole coupled network
is contracting and autonomous.
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xi,

Figure 3-2: Two Smale's cells anti-synchronize through diffusion interactions.

Example 3.2.4: Couple two Van der Pol oscillators with asymmetric forces

{ 1 + ac(x2 - 1).l + W2X1 = an(.2 - 1)

X2 + a(X 2 - 1)2 + W2 X2 = Cf(-Xl - X2)
(3.5)

where v > 1. By introducing new variables Yi and Y2 as that in system (3.8), we get a
generalized Jacobian

-a(X 2 + - 1) w am

-w 0 0
-an 0 -a(x 2+n-1)

0 0

0
01

WI
0]

<0

whose symmetric part is simply that of two uncoupled damped Van der Pol oscillators.
Thus both systems will tend to zero asymptotically. 0

3.2.4 Coupled Van der Pol Oscillators - a general study

As a conclusion of this section, we now consider two identical Van der Pol oscillators
coupled in a very general way:

IX1 + a(X2

I2 + (x2

- 1)il +W 2 X1 = C (Y2 -i Xl)

- 1)52 + 2x 2 = a (i -- 52)
(3.6)

where a is a positive constant. It can be proved that, as long as the condition

I I > 1 -
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XI,

time(sec)

Figure 3-3: Two Van der Pol oscillators die through interactions.

is satisfied, x converges to x2 asymptotically for all 7y > 0 while x converges to
-x 2 asymptotically for all y < 0. Note that if -y = 0 we get two independent
stable subsystems. Both x and x2 tend to the origin, which can be considered as a
continuous connection between > 0 and y < 0. This result agrees with the common
intuition that excitatory coupling leads to synchrony while inhibitory coupling to
anti-synchrony.

Next we need to study the stable behavior of the coupled systems in order to make
sure that if they keep oscillating or tend to a stationary equilibrium. Assume first
that y > 0, we have

xi a c(2-)i - 2xi -- ( - ) ti i = 1,2

which gives the stable dynamics of x1 and x2 as

Xi + a(x + - 1)>i + 2xi = O.

This dynamic equation has a stable limit cycle if y > - 1 or a stable equilibrium
point at origin otherwise. A similar result can be derived for -y < 0, where xl and x2
reach anti-synchrony if y < 1 - n or tend to zero otherwise.

Also note that:

* Setting = 1, xl and x2 will keep oscillating for all y ~ 0. Oscillator-death as a
transition state between synchronized and anti-synchronized solutions does not
exist except when -y = 0.

* In general, a positive value of -y represents a force to drive synchrony while
a negative value to drive anti-synchrony. Hence it is easy to understand the
behavior of system (3.5) where the coupling to the first oscillator tries to syn-
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chronize but the coupling to the second tries to anti-synchronize, with equal
strength. A neutral result is thus obtained. In fact, if we look at a coupled
system with non-symmetric couplings

I X + a(x - 1) + w 2x1 = a (1l2 - J)

{ + (x2 - 1) 2 + wx 2 = a (2i 1 - K2X2 )

the condition for oscillator-death is

hi>1, 1K2>1 , (-1 )(2-1)> (71Y + 2) /4.

* If we add extra diffusion coupling associated to the states x and x2 to sys-
tem (3.6){ + a(x2 - 1)l1 + w 2x1 = a (Y2 - K) + a (X 2 - Rx)

/X2 + a(x - 1) 2 + w2 x2 = a (7- x 2 ) + a Xl-x)

where n and are both positive, the main result preserves as long as y7 > 0.
If the condition I y I > 1 - n is satisfied, xl converges to x2 asymptotically for
all y > 0 while xl converges to -x 2 asymptotically for all y < 0. The second
coupling term does not change the qualitative results (but only the amplitude
and frequency of the final behavior) as long as

W2+a( - I I ) > .

These results can be regarded as a global generalization of the dynamics analysis
of two identical Van der Pol oscillators in [119, 139].

3.3 Appendix: Driven damped Van der Pol oscil-
lator

Consider the second-order system

+ + ax2)d, + W2x = u(t) (3.7)

driven by an external input u(t), where a, , w are strictly positive constants. In-
troducing a new variable y, this system can be written

= - -13X (3.8)

The corresponding Jacobian matrix

F [ -+aX) W]
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is negative semi-definite. Therefore,

d (zT6z) = 2 6ZT F 6z < 0

where 5z = [Sx, 6y]T is the generalized virtual displacement. Thus 5zTJz tends to a
lower limit asymptotically. Now check its high-order Taylor expansion:
if 6x 0,

6Z Tz(t + dt) - zT6z(t) = -2 (I + aX2 )(5X)2 dt + O((dt)2)

while if Sx = 0,

6zTjz(t + dt) - zT6z(t) = -4 (/ + ax 2)(ji)2 (dt)3 + O((dt)4)6Z + dt) ~~~~ ~~~- +0((dt)')3!

So the fact that zT6z tends to a lower limit implies that x and 6x both tend to
0. System (3.7) is called semi-contracting, and for any external input all its solutions
converge asymptotically to a single trajectory, independent of the initial conditions.

Note that if /3 < 0 and u(t) = 0, system (3.7) has a unique, stable limit cycle.
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Chapter 4

Nonlinear Networked Systems

Most coupled oscillators in the natural world are organized in large networks, such as
pacemaker cells in heart, neural networks in brain, fireflies with synchronized flashes,
crickets with synchronized chirping, etc.[140, 144]. System (3.2) represents such an
instance with a chain structure. In fact, there are many many other instances such
as the three symmetric ones we illustrate in Figure 4-1.

(a)

1 -- 4

2 -3

(b)

1-4

1 -- 4
2 -< >3

(c)
1 e~~ >412 >4

2~ 3

Figure 4-1: An n = 4 network with different symmetric structures.

In this chapter, we show that, partial contraction analysis can be applied to study
the synchronization phenomenon in networked systems, not limited as oscillators,
with various structures or arbitrary sizes. Either individual system's dynamics or
coupling forces could be nonlinear.

4.1 Networks with All-To-All Symmetry

As the beginning, we study a network with all-to-all symmetry, that is, each element
inside is coupled to all the others. Such a special example can be analyzed using an
immediate extension of Theorem 3.2.

Theorem 4.1 Consider n coupled systems. If a contracting function h(xi, t) exists
such that

il - h(xl, t) f t= * - ch(ix t)

then all the systems will synchronize exponentially regardless of the initial conditions.
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For instance, for identical oscillators coupled with diffusion-type force

n

xi = f(xi,t) + E (u(xj)-u(xi) )
j=l

(4.1)

contraction of f - nu guarantees synchronization of the whole network.

Example 4.1.1: Consider an all-to-all network containing four identical Van der Pol
oscillators

4

+ -(x? _ 1).t + a2X, = a. D - )
j=l

i = 1,2,3,4 (4.2)

which can be re-written as

i = 1,2,3,4..i + a(x/ + 4-).i + w2xi = any Ej
j=l

Thus, these four oscillators will reach synchrony if > , for non-zero initial conditions.
o~~~~~~~~~~~~~~~~~~0

In [96], Mirollo and Strogatz study an all-to-all network of pulse-coupled integrate-
and-fire oscillators, and derive a result on global synchronization. Their analysis is
based on an event called absorption which is unique to all-to-all coupled networks.

4.2 Networks with Less Symmetry

Besides its direct meaning to all-to-all networks, Theorem 4.1 may also be applied to
study networks with less symmetry.

Example 4.2.1: Consider an n = 4 network with two-way-ring symmetry (as illus-
trated in Figure 4-1(b))

*i = f(xi,t) + (u(xi)-u(xi)) + (u(xi+)-u(xi))

where the subscripts i - 1 and i + 1 are computed circularly.
oscillators into two groups (x1 ,x 2) and ( 3 , x4), we find

i = 1,2,3,4

Combining these four

*L - f(xi,t) + 2u(xi) = * -f(x 3 ,t) + 2u(x 3 ) 1 = U(X 2 ) + U(X4) 

S - f(X 2 ,t) + 2u(X2 ) J L 4 -f(x 4 ,t) + 2u(x 4 ) u(xl) + U(X 3 ) J

Thus, if the function f- 2u is contracting, (l,x 2) converges to
and hence {1 - ff(xl,t) + 2U(Xi) -- 2U(X 2 )

*k2 -f(x 2 ,t) + 2u( 2 ) -* 2U(Xi)

(X3 , X4 ) exponentially,

so that in turn xi converges to x2 exponentially if the function f - 4u is contracting. The
four oscillators then reach synchrony exponentially regardless of the initial conditions.
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For four Van der Pol oscillators,

+ Ca(x~ - 1) + w 2 x = aC ( ( i- -i) + (i+1 - ) )

a sufficient condition to reach synchrony is n > 

(4.3)

[]

An extended partial contraction analysis can be used to study the example below,
the idea of which will be generalized in the following section.

Definition 4.1 Consider n square matrices Ki of identical dimensions, and define

K 0 .. 0
In = 0 K2 .- 0

0 0 ... Kn

One has IK > 0 if and only if Ki > , Vi.

Definition 4.2 Consider a square symmetric matrix K, and define

K K ... K
K K ..- K

UK<= . ...
K K ... K

nxn

One has UK > O if and only if K > O .

Example 4.2.2: Consider an n = 4 network with one-way-ring symmetry (as illus-
trated in Figure 4-1(a))

x = f(xi,t) + K (xil - xi) i=1,2,3,4

where K = KT > 0 and the subscripts are calculated circularly. This system is equivalent
to

4

xi = f(xi,t) - K(2xi +xi+1 +xi+2 ) + KExj
j=l

4

Construct an auxiliary system driven by the input K E xj (t)
j=l

4

yii=f(yi,t)-K(2yi+yi+1+Y i+2)+KExj(t) i=1,2,3,4
j=1

The auxiliary system admits the particular solution Yl = Y2 = Y3 = Y4 = yOC with

4

Y = = f(y.,t) - 4K y + KExj(t)
j=1
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To apply Theorem 2.1 for the specific property Yl = Y2 = Y = Y4 and prove that all xi
synchronize regardless of the initial conditions, there only remains to study the Jacobian
matrix

J1 - 2K -K -K 0
j =0 J2 - K -KJ22K -K

-K 0 J3 - 2K -K
-K -K 0 J4 - 2K

where Ji = (yi, t). The symmetric part of the Jacobian is

J1s-2K _K -K K
K -K

2K J2 8- 2K 2 -K
Js = -K K 2 J 38 - 2K -K

2 2
_Ji,,-K K -K 2 _ J4s-2K

=(IJ-K)--~ U 4K-- J+

where
-K K 

J+ = K 0 K
K K 0 

We know that if Vi, Jis - K <0, then Ij K) < 0, and if K > 0 then UK > 0 and
J+ > 0. If both conditions ae satisfied, the Jacobian Js is negative definite.

A corresponding Van der Pol example is

xi + a(x 2 - )i + w2xi = a±(il-i) i = 1, 2,3,4 (4.4)

where the sufficient condition to reach synchrony asymptotically is > 1. 0

Note that up to now, we have studied the synchronization behaviors of coupled
networks containing four oscillators with chain, one-way-ring, two-way-ring and all-
to-all structures. Figure 4-2 lists simulation results of coupled Van der Pol oscillators,
whose dynamics are based on equations (3.2), (4.4), (4.3) and (4.2). The asymptotic

1 1repcieyGiethsynchronization conditions are > 1, > 1, > , > , respectively. Given the
same parameters ( = 0.5, w = 2, = 1.5) and the same initial conditions (chosen
randomly), we see from the figures that the synchronization rate increases in such an
order as

chain - one-way-ring -. two-way-ring -- all-to-all

We will explain this observation in Section 4.5. Note that in each figure, the ordinate
is xi and the abscissa is time. The solid curve represents x1 (t), the state of the first
oscillator which is the independent one in the chain structure.

4.3 Networks with General Structure

Based on partial contraction analysis, we now study networked systems coupled in a
very general structure. For notation simplicity, we first assume that coupling forces
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(a)

time(sec) time(sec)

(c) (d)

C 5 10 15 20
time(sec)

0 5 10 15 20
time(sec)

Figure 4-2: Four coupled Van der Pol oscillators synchronize with (a) chain, (b)
one-way-ring, (c) two-way-ring, (d) all-to-all structure.
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are linear diffusive with gains Kij (associated with coupling from node i to j) positive
definite, i.e., (Kij)8 = Kij8 > 0. We further assume that coupling links are bidirec-
tional and symmetric in different directions, i.e., Kij = Kji. All these assumptions
can be relaxed as we will show later.

Consider now a network containing n identical elements

xi = f(xi, t) + E Ki (x - xi) i = 1,...,n (4.5)
jEAr

where Ni denotes the set of indices of the active links of element i. It is equivalent to

n n

= f(xt) + E Kji (xj-xi) - K0 Ex,+Ko x
jei j=1 j=1

where K 0 is chosen to be a constant symmetric positive definite matrix (we will
discuss its function later). As usual, we construct an auxiliary system

n n

i = f(yi,t) + E Kji (Y - i)-Ko E Y + Ko E xj(t) (4.6)
jEAi j=1 5=1

which has a particular solution Y Y = = yoo with

n

yS = f(yc, t)-n Ko y + Ko E xj(t)
j=l

According to Partial Contraction Theory 2.1, if the auxiliary system (4.6) is con-
tracting, all system trajectories will verify the independent property x = .-. = xn
exponentially.

Next, we compute J8 , the symmetric part of the Jacobian matrix of the auxiliary
system.

Definition 4.3 Consider a square symmetric matrix K, and define

nxn

where all the elements in Tn except those already displayed in the four intersection
points of ith and jth rows and ith and jth columns are zero. TK > 0 if K > O.

Definition 4.4 Define the set
i = U ieiincluding a

including all the active links in the network.
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Definition 4.5 Define

LK = E T nKij.
(i,j)EJ

In fact, if we view the network as a graph, LK is the symmetric part of the weighted
Laplacian matrix [40]. The standard laplacian matrix is denoted as L.

Thus, we have
J = I. - LK - UK o

where Jis = ((yi, t))s.

Lemma 4.1 Define
Jr = -LK UK o

If K 0 > 0 , Kij > 0, V(i, j) E JV, and the network is connected, then Jr < 0.

Proof: Note that each of the two parts in Jr is only negative semi-definite. Given an
arbitrary nonzero vector v = [v1,. .. vn]T , one has

n n

VT Jr v = - (v-vj) Ki (v,- v- ( Vi)TKo (vi)
(i,j)EAr i=1 i

< 0

because the condition that the network is connected guarantees that

vT J r v= if and only if v1 =... = vn = -O.

Furthermore, the largest eigenvalue of Jr can be calculated as

Amax(Jr) = max v Jr = max( -vTLK-V vTUKov )
IlvII=1 I{viI=1

Since -vTUn v keeps decreasing as Ko increases except on the set i= vi 0, we
can choose Ko large enough and get

Amax(Jr) =- min vTLKv = -Am+1(LK)
Ilvll=lI1v1I=1
=1Vi=°

according to the Courant-Fischer Theorem [51] - note that K 0 is a virtual quantity
used to make Jr < 0 in the partial contracting analysis, and thus it cannot affect the
real system's synchronization rate. Here the eigenvalues are arranged in an increasing
order, and A(LK) = = Am(LK) = 0, where m is the dimension of each individual
element.

Note that in the particular case m = 1, and VKj = 1, eigenvalue A2 (LK) = A2 (L)
is a fundamental quantity in graph theory named algebraic connectivity [34], which is
equal to zero if and only if the graph is not connected. 0
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The above results imply immediately

Theorem 4.2 Regardless of initial conditions, all the elements within a generally
coupled network (4.5) will reach synchrony or group agreement exponentially if

Am+l(LK) > max Amax(Jis) uniformly (4.7)

or, in words, if

* the network is connected,

* Amax(Jis) is upper bounded,

* the coupling strengths are strong enough.

Proof: The auxiliary system (4.6) is contracting if the condition (4.7) is true. 0

A few remarks on Theorem 4.2:

* The conditions given in Theorem 4.2 to guarantee synchronization represent the
requirements on both individual system's internal dynamics and the network's
geometric structure. A lower bound on the corresponding threshold of the
coupling strength can be computed through eigenvalue analysis if a special
network is given.

* Theorem 4.2 can also be used to find the threshold for symmetric subgroups in
a network to reach synchrony, such as what we have illustrated in the simple
Example 4.2.1.

* Partial contraction analysis does not add any restriction on the uncoupled dy-
namics f(x, t) other than requiring Amax(Jis) to be upper bounded, which is
easy to be satisfied if for instance individual elements are oscillators. As an
example, Amax(Jis) = a for the Van der Pol oscillator. In fact, different quali-
tative choices exist for f, which can be an oscillator, a contracting system, zero,
or even a chaotic system [113, 133, 144]. For a group of contracting systems, if
E = I, the contraction property of the overall group will be enhanced by the
diffusion couplings, and all the coupled systems are expected to converge to a
common equilibrium point exponentially if f is autonomous. If L I, how-
ever, the situation is more complicated. A transformation process must be done
in order to guarantee exponential convergence of the virtual dynamics. The cou-
pling gain may lose positivity through the transformation, and the stability of
the equilibrium point may be destroyed with strong enough coupling strengths.
This kind of bifurcation is interesting especially if the otherwise silent systems
behave as oscillators after coupling, a phenomenon of Smale's cells [79, 136, 153].
A simple example when n = 2 has been discussed in Section 3.2.2.
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* The definition of the "neighbor" sets Mi is quite flexible. While it may be
based simply on position proximity (neighbors within a certain distance of each
node), it can be chosen to reflect many other factors. Gestalt psychology [124],
for instance, suggests that in human visual perception, grouping occurs not
only by proximity, but also by similarity, closure, continuity, common region
and connectedness. The coupling strengths can also be specified flexibly. For
instance, using Schoenberg/Micchelli's theorems on positive definite functions
[93], they can be chosen as smooth functions based on sums of gaussians.

* Partial contraction theory is derived from contraction theory. Thus many results
from [81, 132] apply directly. Consider for instance a coupled network with
constraints

xi = f(x, t) + n + E Kji (xj - xi) i 1,...,n
jEAi

where ni represents a superimposed flow normal to the constraint manifold
and has the same form to each system. Construct the corresponding auxiliary
system

~n n

ri = f(yi, t) + ni + E Kj (yj - yi)- Ko E yj + Ko E xj (4.8)
jENr j=1 j=1

Using [81], contraction of the unconstrained flow (4.6) implies local contraction
of the constrained flow (4.8), which means group agreement can be achieved for
constrained network in a finite region which can be computed explicitly. In same
cases, the introduction of the constraint combined with the specific property of
the particular solution implies that the constrained original system is actually
contracting. Similarly, because the auxiliary system is contracting, robustness
results in [81] apply directly.

4.4 Extensions

Besides the properties discussed above, here we make a few more technical remarks
and extensions to Theorem 4.2. We shall relax those assumptions made earlier.

4.4.1 Nonlinear Couplings

The analysis carries on straightforwardly to nonlinear couplings. For instance,

xi = f(xi, t) + E uji (xi, i, x, t)
jeAf4

where the couplings are of the form

uj = uji ( x -xi, x, t)
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with ui ( 0, x, t ) = 0 V i, j, x,t. The whole proof is the same except that we
define

Ouji ( xj- xi, x, t )
Kji = U ( xj-Xi > 0 uniformly

'9(xj - xi)

and assume Kji = Kij.
For instance, one may have

uj = ( Cji(t) + Bji(t) lxj- xi ) (x j -x i )

with Cj = Cj > 0 uniformly and Bji = Bij > 0.
Note that if the network is all-to-all coupled, the coupling forces can be even more

general as we discussed in Section 4.1.

4.4.2 One-way Couplings

The bidirectional coupling assumption on each link is not always necessary. Consider
a coupled network with one-way-ring structure and linear diffusion coupling force

ki = f(xi, t) + K ( i - xi ) i = 1,...,n

where by convention i - 1 = n when i = 1. We assume that the coupling gain
K = KT > 0 is identical to all links. Hence,

1 _U
Jr = -LK UKo2

is negative definite with
n

LK = ETK(i, i+1)
i=l

Since

n 1 n
Am+( T (i, i + 1)) = - Ain(K) A2(ET-(i, i+ 1))

i=1 2i=1

2ir)
= Amin(K) (1 - cos-)

n

the threshold to reach synchrony exponentially is

2i)Amin(K) (1 - cos - ) > max Ama(Jis) uniformly (4.9)

A special case was given in Example 4.2.2 with n = 4.
Thus, Theorem 4.2 can be extended to the network whose links are either bidirec-

tional with Kji = Kij or unidirectional but formed as rings with KT = K (where K is
identical within the same ring but may differ between different rings). Synchronized
groups with increasing complexity can be generated through accumulation of smaller
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groups.
In this context, for notational simplicity we do not differentiate between bidirec-

tional and unidirectional links throughout the remainder of the thesis.

4.4.3 Positive Semi-Definite Couplings

Generally, to apply Theorem 4.2, we need positive definite coupling gains. If this
condition can not be satisfied as the coupling gain Kij is only positive semi-definite,
we have to add extra restriction to the uncoupled system dynamics to guarantee
globally stable synchronization.

Without loss of generality, we assume

Kijs [ R j 0]

where Kij, is positive definite and has a common dimension to all links. Thus, we
can divide the uncoupled dynamics Jis into the form

E1 J11s J12 1
Ji. =LjT 2 

J12 J 2 2 i

with each component having the same dimension as that of the corresponding one in
Kij,. A sufficient condition to guarantee globally stable synchronization behavior in
the region beyond a coupling strength threshold is that, Vi, J22s is contracting and
both Amax(Jn1s), 7max(J12) are bounded.

To prove this result, we choose a nonzero vector v = [,... ,vn T and get

n

vTJsv = vTJisVi + VT Jr V
i=1

•~ ~v [j J12 J2 ]i +~ Zv [j ° 

T [AT J 1 2 ]Vi jT v i+

where
A = Amax(Jr) + max Amax(JI1)

and r i a new matrix by ruling out the rows and columns containing only zero
in Jr (we set Ko to be positive semi-definite and have the same form as Kij,) and
hence is negative definite. From feedback combination condition (2.4), we know that
a negative A with absolute value large enough, a contracting J2 2 , and a bounded
0-(J12) for all i guarantee the contracting of J, In fact, global contraction of J 2 2 s

is a very important necessary condition, without which the synchronization can not
occur in an unbounded parameter region. Pecora first pointed this out in [9, 114, 115]
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with a new concept called desynchronizing bifurcation. Recently, [118] independently
studied the similar phenomena.

Example 4.4.1: Consider a network composed of identical Van der Pol oscillators in
a general structure. The dynamics of the ith oscillator is given as

:i + a(x - 1)x + 2X= E -
jEMi

Using partial contracting analysis, we have

J=Is . + Jr = I~. -LK-UKO

with

Ji = [ (, Kj = Kij 0 0 

By rule out the even rows and even columns in Js where the components are all zero, we
get a new result

Js = I is L KOJ J/I8 -L U~

with
i= a(1 -), R = Ri, = 

The condition for Js to be negative definite is

1~~~~-< A2( E T) = A2(L)
i,jEf[

which guarantees simultaneously that Js is negative semi-definite. Using semi-contracting
analysis, we know that synchrony will happen asymptotically.

An important application of coupled nonlinear oscillators is the modeling of central pat-
tern generators [21, 22, 41, 42, 43]. Consider a two-way-ring neural network composed
of four identical Van der Pol oscillators as given in Figure 4-1(b). Assume that the first
oscillator is connected to the left front leg while the third to the right back one. The
system dynamics is given as

xi + a(x - 1) + w2xi = c( (i-1)i xi - xi ) ar( (i+1)i i+1-i )

with i = 1, 2,3,4. Choosing different values of coupling coefficient ?ij, this model is able
to generate rhythmic signals to drive different quadrupedal gaits. We set 'Yj = fYji = 1
if we want the oscillators i and j to synchronize while set 'ij = yji = -1 if we want
them to anti-synchronize. Thus, following the description of animal gaits in [21], we are
able to realize the pace, trot, bound and pronk, the quadrupedal gaits which are highly
symmetric and robust with relative phase lags of zero or half a period. For instance, the
pace gait(left/right pairing) is achieved by setting

741 =14=- 1 , 721 =712 = 1 , 732 =-723 =-1, 43 =y34 = 1

and coupling gain > . The convergence from one gait to another is global. Once all
the yij are set to be zero, we get the stand.
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A similar model can be used to study the locomotion of other numbers of legs. For
instance, consider a two-way-ring network composed of six oscillators. By setting > 1
and all the yij to be -1, we are able to generate the tripod gait, a common hexapodal
gait in which the front and rear legs on one side, and the middle leg on the other, move
together, followed by the remaining three legs half a period later [22].

Note that there are two different interpretations of locomotion, one of which believes that
the rhythmic signals are generated by coupled neural cells in a Central Pattern Generator
while another by interact the legs directly. 0

Example 4.4.2: The FitzHugh-Nagumo(FN) model [36, 100] is a well-known simplified
version of the classical Hodgkin-Huxley model [49], the first mathematical model of wave
propagation in squid nerve. Originally derived from the Van der Pol oscillator, it is given
by

fv=c(v+w-½v3 +I) 1- b < a < 1
=c -(v-a + b) O<b< 1, b<c2

where v is directly related to the membrane potential, w is responsible for accommodation
and refractoriness, and I corresponds to stimulating current. Consider a diffusion-coupled
network with n identical FitzHugh-Nagumo neurons

i c(v + wi- 3vi3 + I) + E kj (vj - vi)
jeAr (4.10)

tbi =-;(vi- a+bwi) i 1,...,
1~~ n

Defining a transformation matrix = [ ], which leaves the coupling gain un-

changed, yields the generalized Jacobian of the uncoupled dynamics

Ji= [c(1-vi2) 1]
_b

Thus the whole network will synchronize exponentially if the coupling strengths are strong
enough that

A2( Z Tn. )= A2(LR) > c
(i,j)EAr

Note that the model can be generalized using a linear state transformation to the dimen-
sionless system [99]

{ =v(a - v)(v - 1)-w+I (4.11){b =Sv - yw

where a,,/3, -y are positive constants. The contraction analysis of the coupled network{ = v(a - v)(v-1)- w + I + kji (vj - vi)
i Ejei (4.12){t =3v- fyw i = 1 ,...,n

yields a very similar result. We will use both models in the rest of the thesis. They are
switchable. °
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4.5 Algebraic Connectivity

For a coupled network with given structure, increasing the coupling gain for a link
or adding an extra link will both improve the synchronization process. In fact, these
two operations are the same in a general understanding by adding an extra term
-Tj.. to the matrix J. According to Weyl's Theorem [51], if square matrix A,
B are Hermitian and the eigenvalues Ai(A), Ai(B) and A(A + B) are arranged in
increasing order, for each k = 1, 2, ... , n, we have

Ak(A) + A1 (B) < k(A + B) < Ak(A) + An(B)

which means immediately

Ak(J-TK. ) < k(Js)

since Amax(-Tnij.) = 0. This result explains the observation from Figure 4-2.

In fact, connecting each node to more neighbors is an effective way for large-size
networks to lower the synchronization threshold. To see this in more detail, let us
assume that all the links within the network are bidirectional (the corresponding
graph is called undirected graph) with identical coupling gain K = KT > 0. Thus,
according to [52]

Am+l(LK) = A2 Amin(K)

where A2 is the algebraic connectivity of the standard Laplacian matrix. Denote

maxi Amax(Jis)

Amin(K)

If both the individual element's uncoupled dynamics and the coupling gains are fixed,
the synchronization condition (4.7) can be written as

A2 > uniformly

We can further transform this condition to the ones based on more explicit prop-
erties in geometry. Given a graph G of order n, there exist lower bounds on its
diameter1 d(G) and its mean distance 2 p(G) [97]

4
nA2d(G) > -,X
2 n-2

(n- 1)p(G) > - + 2

(these bounds are most informative when A2 is small) which in turn gives us lower

1 Maximum number of links between two distinct vertices [40]
2 Average number of links between distinct vertices [97]
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A2 > n.d(G)n-d(G)
A2 _>2 n2

(- )(n-) (G) -
2

A sufficient condition to guarantee exponential convergence within a coupled network
is thus derived as

4
d(G) < -

or
or) 2 + n-2

A(n- 1) 2(n-1)

These results imply that, different coupling links or nodes may make different
contributions to synchronization, because they may play different roles in network
structure. In this sense, links between far-separated nodes contribute more than
those between close neighbors.

Example 4.5.1: In [65], Kopell and Ermentrout show that closed rings of oscillators
will reliably synchronize with nearest-neighbor coupling, while open chains require nearest
and next-nearest neighbor coupling. This result can be explained by assuming all gains
are identical and expressing the synchronization condition (4.7) as

maxi )~ma ( Jis )Amin(K) > max Amax ) uniformly
A2

Assuming n extremely large, for a graph with two-way-chain structure

A2 = 2 ( 1-cos(-)) 2(n)2

while for a graph with two-way-ring structure

\2 = 2 ( 1-cos()) 8 ( -)2A 2 =~~n 

As illustrated in Figure 4-3, although the number of links only differ by one in these two
cases, the effort to synchronize an open chain network is four times of that to a closed
one. 0

Figure 4-3: Comparison of a chain network and a ring.

Example 4.5.2: As another example, illustrated in Figure 4-4, consider a ring network,
a star network and an all-to-all network. With the network size n -- oo, the threshold of
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the coupling strength to synchronize the ring network tends to infinite. It tends to 0 for
the all-to-all network, and only needs to have order 1 for the star network.

It is much easier to synchronize the star network than to the ring. The reason is that, the
central node in the star network performs a global role, which makes the graph diameter
keep as constant no matter how big the network size is. Such a star-liked structure is very
popular in real world. For instance, internet is composed of many connected subnetworks
with star structure. 0

Figure 4-4: Comparison of three different kinds of networks.

The result here is closely related to the Small World problem. Strogatz and
Watts showed in [143, 172, 173] that the average distance between nodes decreases
with the increasing of the probability of adding short paths to each node. They also
conjectured that the synchronizability will be enhanced if the node is endowed with
dynamics, which Barahona and Pecora showed numerically in [9].

4.6 Fast Inhibition

The dynamics of a large network of synchronized elements can be completely trans-
formed by the addition of a single inhibitory coupling link. Start for instance with
the synchronized network (4.5) and add a single inhibitory link between two arbitrary
elements a and b

Xa = f(xa, t) + E Kja (Xj-xa) + K (-xb-xa)
i EAra

xb = f(xb, t) + E K (j -Xb) +K (-xa - xb)

The symmetric part of the Jacobian matrix is

J= Ji - LK- K
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where Tn is composed of zeroes except for four identical blocks

.. K .-- .. K -.

... K ... ..
· : .

91 VI

The matrix J* =-LK - Tn is negative definite, since Vv # 0

vT J* v = - E (Vi-vj) T Kijs (v-vj) - (Va + Vb)T K (a + Vb)

(i,j)ET

< 0

Thus, the network is contracting for strong enough coupling strengths. Hence, the
n elements will be inhibited. If the function f is autonomous, they will tend to
equilibrium points. If the coupling strengths are not very strong, the inhibitory
link will still have the ability to destroy the synchrony, and may then generate a
desynchronized spiking sequence. Adding more inhibitory couplings preserves the
result.

Example 4.6.1: Consider a two-way-ring network of ten coupled FitzHugh-Nagumo
neurons (4.10). They synchronize with diffusion couplings. The whole network turns off
immediately if we add one extra inhibitory link between any two neurons, and resumes
firing if we remove the extra link, as illustrated in Figure 4-5. The parameters are
a = 0.7, b = 0.8, c = 8, I = -0.8. The coupling gains are identical as k = 100, and the
initial conditions are set randomly. The inhibitory link is added between the first and
fifth neurons at t = 100 and removed at t = 200. 0

Example 4.6.2: Consider a two-way-ring network of twenty coupled FitzHugh-Nagumo
neurons with dimensionless form (4.12). The synchrony is destroyed if we add one extra
inhibitory link between any two neurons (i.e., between the first one and the tenth one),
and resumes if we remove the link, as illustrated in Figure 4-6. The parameters are
a = 5.32,fl = 3, -y = 0.1,I = 60. The coupling gains are identical with k = 2. The
inhibitory link is actived at t = 60 and removed at t = 120. 0

Such inhibition properties may be useful in pattern recognition to achieve rapid
desynchronization between different objects. They may also be used as simplified
models of minimal mechanisms for turning off unwanted synchronization, as e.g. in
epileptic seizures or oscillations in internet traffic. In such applications, small and
localized inhibition may also allow one to destroy unwanted synchronization while
only introducing a small disturbance to the nominal behavior of the system. Cascades
of inhibition are common in the brain, in a way perhaps reminiscent of NAND-based
logic.

49

T n
K =



2.

V.

12

1.5

0.5

0

-0.5

-15

-1.5

-2
/ /

--0O

/ /1 /
50 100 150

/ /
200

/ /
250

Figure 4-5: Fast inhibition with a single inhibitory link.

Figure 4-6: A single inhibitory link destroys network synchrony.

50

300

-

-2.5

/~
I

A
I

i i iI i



Note that the same effect can be achieved if we add self-inhibition to one (or more)
arbitrary element. For instance,

ka = f(xa, t) + E Kj (j-xa) - Kxa
jEAJa

In this case T' is composed of zeroes except for one diagonal block

TK= K

nxn

4.7 Appendix: Graph Theory Preliminaries

In this section, we introduce some basic Graph Theory concepts [34, 40, 97].
A graph is denoted as G = G(V, E) , where V is a non-empty vertex (node) set

and E is an edge (link) set. If there is a direction of flow associated with each edge,
G is called a directed graph, otherwise it is undirected. A graph is connected if any
two nodes inside are linked by a path. The adjacency matrix of a graph is defined as

A(G) = [ai] R n xn

where aij = 1 for all i : j if (i, j) E , otherwise aij = 0. The valency matrix

V(G) - diag(vl, . . ., Vn) Rnxn

is a diagonal matrix with vi = -= 1 aij . The matrix

L(G) =V-A

is defined as Laplacian matrix of the graph G.
For an undirected graph G with order n, L is symmetric and positive semi-definite.

Denoting c as the number of connected components of G,

rank(L) = n-c

Its second minimum eigenvalue A2 = A2(L) is called algebraic connectivity, which
is zero if and only if the graph is not connected. The first eigenvalue is always zero,
corresponding to the eigenvector [1, 1, ... , 1]T.

Assign an arbitrary orientation a to an undirected graph G. We get the incidence
matrix

D = D(G) = [d^j ] C RnXr

where r is the number of the links in E. For each oriented link k which starts from
node i and ends at node j, we have dik = 1 and dk = -1 . All the other entries of
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D are equal to 0. Moreover,

L(G) = D(G-) DT(G-)

If the graph is weighted, we have the weighted Laplacian matrix

LK = D I.j DT
K%3

where E RTrXT is a diagonal matrix with the kth diagonal entry Kij correspond-KS-
ing to the weight of the kth link. If Kij E Rm xm is a matrix, I. is block diagonal.
Similarly D has block entries I, -I and 0.
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Chapter 5

Coupled Network with Switching
Topology

Closely related to oscillator synchronization, topics of collective behavior and group
cooperation have also been the object of extensive recent research. A fundamental
understanding of aggregate motions in the natural world, such as bird flocks, fish
schools, animal herds, or bee swarms, for instance, would greatly help in achieving
desired collective behaviors of artificial multi-agent systems, such as vehicles with
distributed cooperative control rules. In [122], Reynolds published his well-known
computer model of "boids", which successfully forms an animation flock using three
local rules: collision avoidance, velocity matching, and flock centering. Motivated
by the growth of colonies of bacteria, Viscek et al.[156] proposed a similar discrete-
time model which realizes heading matching using information only from neighbors.
Viscek's model was later analyzed analytically [57, 150, 151]. Corresponding models
in continuous-time [12, 76, 106, 107, 134, 164] and combinations of Reynolds' three
rules [73, 108, 110, 145, 146] were also studied. Related questions can also be found
e.g. in [15, 64, 70, 126].

In this chapter, we study coupled networks with switching topology. Animal
aggregate motions are composed of cooperating moving units. Since each moving
unit can only couple to its current neighbors, the network structure may change
abruptly and asynchronously.

5.1 Synchronization in Switching Networks

Consider such a network

Xi = f(xi,t) + E Kji (xj-xi) i= .,n
jEMi(t)

where .A/i(t) denotes the set of the active links associated with element i at time t.
Apply partial contraction analysis to each time interval during which the network
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structure Af(t) = UAi(t) is fixed. If

Am+l(LK) > maxAmax(Jis) uniformly V(t),

the auxiliary system (4.6) is always contracting, since 5zT6z with 6z = [l, ... , 6yn]T

is continuous in time and upper bounded by a vanishing exponential (though its time-
derivative can be discontinuous at discrete instants). Since the particular solution of
the auxiliary system in each time interval is Yl = = yn = yo, these n elements will
reach synchrony exponentially as they tend to Yl =' = yn which is a constant region
in the state-space. The threshold phenomenon described by inequality (5.1) is also
reminiscent of phase transitions in physics [117] and of Bose-Einstein condensation
[62] 

Figure 5-1: Evolution of virtual displacement of a sample switching network.

5.2 A Simple Coupled Model

We now study a simplified model of schooling or flocking in continuous-time with
f = 0. Consider such a group

ii = E Ki (xj-xi)
jEt(t)

(5.2)

where xi E IRm denotes the states needed to reach agreements such as a vehicle's
heading, attitude, velocity, etc. XM(t) is defined for instance as the set of the near-
est neighbors within a certain distance around element i at current time t, which
can change abruptly and asynchronously. The coupling gain Kji satisfies those as-
sumptions proposed in Section 4.3 and 4.4, i.e., the links are either bidirectional or
unidirectional formed in rings. Since Ji, = 0 here, the condition (5.1) is satisfied if
only the network is connected. Therefore Vi, xi converges exponentially to a partic-
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ular solution, which in this case is a constant value

= -Z xi(0)
n i=l

Note that in the case of heading agreement based on spatial proximity, the issue
of chattering is immaterial since switching cannot occur infinitely fast, while in the
general case it can be simply avoided by using smooth transitions in time or space.

Moreover, the network (5.2) need not be connected for any t > 0. A generalized
condition can be derived which is the same as that obtained in [57] for a discrete-time
model.

n

Lemma 5.1 For a coupled network (5.2), E I Ix 12
i=1

lower limit nl lx 12 .

converges exponentially to its

n

Proof: Letting xi = [xil,'" , xim]T , we have E i = 0 which leads to
i=1

n

EXi
i=1

n n

= ZxiO) = nx with xij = nj
i=1 i=1

n

E Ixi-X 112 + n I1:I 12
i=1

n m

= Z Z (xij -_j)2 + n III 2

i=l j=l
n m m

= Z( x2 - 2Exij j +
i=1 j=l j=1

n n m

= EIIXIll2 - 2 E E xijj
i=1 i=1 j=l
n

= E IIill2
i=1

m

*: j) 

j=l

+ 2n I 12

- n II 12

(5.4)

where we used

n m m n m n m

X ,jtj =,j=E(Zx) = En = n(Ex)= En = n 1112
i=1 j=l j=l i=1 j=l i=1 j=l

From partial contraction analysis, we know that any solution of the system (5.2)
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converges exponentially to a particular one,

X 1 Xn = X = -EXi(O)
n

n

i=lwhich implies that E Ix/- RI I' tends to zero exponentially. Using (5.3) completes
the proof. 0

With Lemma 5.1, we can now largely generalize the condition to reach group
agreement.

Theorem 5.1 Consider n coupled elements with linear protocol (5.2), the neighbor-
ship of which can change abruptly and asynchronously. Separate time into an infinite
sequence of bounded intervals starting at t = O. If the network is connected across
each such interval', the agreement xl = ... = xn will be reached asymptotically.

Proof: Assume that at some time t the network is not connected, but instead is
composed of k isolated subnetworks, each of which is connected and containing nj
elements with j = 1,.. , k. Defining zi = x- , we get

zi = E Ki(zj-zi) i=,...,n
jEeAr(t)

nj

and from Lemma 5.1, with 2j(t) = Zi(t)

n k nj k nj

EIZIll = E E lizIl 2 = E(lE lIzi-jl 2 + n II1ll2)
i=1 j=1 i=1 j=l i=1

Note that 2j is a local agreement compared to the global one x (corresponding to . =
0). Vj, 2j is constant as long as the current network structure keeps unchanged, and

nj

according to partial contraction analysis, El lzi - jl l2 tends to zero exponentially
i=1

n

during this period. Thus E I zi l' is non-increasing.
i=1

n

Furthermore, the condition in Theorem 5.1 guarantees that E ilz I 2' always de-
i=1

creases across each defined time interval. Hence, it will tend to reach the lower limit
zero asymptotically. 0

'As in [57], being connected across a time interval means that the union of the different graphs
accounted along the interval is connected.

56



Note that the essential fact behind Theorem 5.1 and its proof is that: the closer
a subgroup is to the local agreement, the closer it is to the global. This is illustrated
in Figure 5-2, where a connected subgroup containing only two elements x1 and x2.
Point O represents the global agreement and point C the local. The initial position
is set at point A and the system trajectory will be along the line ABC.

U

Figure 5-2: Closer to the local agreement, closer to the global.
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Chapter 6

Leader-Followers Network

As we have noticed in the previous chapters, for a leaderless network composed of
peers, the phase of its collective behavior is hard to predict, since it depends on the
initial conditions of all the coupled elements. Thus, in order to let the whole network
behave as desired, an additional group leader is necessary. Here the leader is defined
as the one whose dynamics is independent and thus followed by all the others. Such
a leader-followers network is especially popular in natural aggregate motions, where
the leader "tells" the followers "where to go". We name this kind of leader the power
leader.

There also exists another kind of leader, which we name the knowledge leader. In
a knowledge-based network, members' dynamics are initially non-identical and mutu-
ally coupled. The leader is the one whose dynamics is fixed or changes comparatively
slowly. The followers obtain dynamics knowledge from the leader through adapta-
tion. In this sense, a knowledge leader can be understood as the one who indicates
"how to go". Different than a power leader, a knowledge leader does not have to be
dynamically independent. It may be located at any position in a network.

3 * -Af - 4 1 
IW W-W > < H < W > 

(a) (b) (c)

Figure 6-1: Networked systems with (a). a power leader (the most left node); (b). a
knowledge leader (the hollow node); (c). both leaders.

6.1 Power Leader

As illustrated in Figure 6-1(a), a power leader is the one whose dynamics is indepen-
dent in a coupled network.
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Consider the dynamics of a coupled network containing one power leader and n
power followers

xo = f(xo, t) (6.1)

xi = f(xi,t) + E Kji (xj - xi) + yi Koi (xo- xi) i = 1,...,n
jEAri

where vector xO is the state of the leader, and xi the state of the ith follower. Yi is
equal to either 0 or 1, representing the connection from the leader to the followers.

i denotes the set of peer-neighbors of element i, i.e., it does not include the possible
link from xO to xi.

Theorem 6.1 Regardless of initial conditions, the states of all the followers within a
generally coupled network (6.1) will converge exponentially to the state of the leader
if

Amin(LK + InKoj) > max Amax(Jis) uniformly. (6.2)

Proof: Since the dynamics of xO is independent, we can treat it as an external input
to the rest of the network, whose Jacobian matrix has the symmetric part

J = I - -LK - IKo S

The matrix Jr = -LK -In Koi is negative definite if the augmented network with
n + 1 elements is connected. In fact, Vv $ 0,

n

vT J v =(v -vj)' Kijs (Vi- )- E 3/ (vi Ki vi) < 0vT J~~~~~~~~ v = - i vTKo, v) 
(i,j)E i=l

Thus the system [,..., xn]T is contracting if the coupling strengths are so strong
that the condition (6.2) is true. Therefore, all solutions will converge to the particular
one

Xl -- Xn = Xo

exponentially regardless of the initial conditions. This result can be viewed as a gen-
eralization of Theorem 3.1. 0

A few remarks on Theorem 6.1:

* For nonnegative max Amax(Ji), a necessary condition to realize leader-following

is that the whole network of n + 1 elements is connected. Thus the n follow-
ers xl, . . . ,xn could be either connected together, or there could be isolated
subgroups all connected to the leader. Note that the network structure of a
leader-followers group does not have to be fixed during the whole time. Similar
to the result in section 5.1, given the dynamics of n followers as

:i = f(xi,t) + E Kji (x; -xi) + i(t) Koi (xo - xi)
jEfi(t)
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a sufficient condition to guarantee exponential following is that (6.2) is true
Vt > O.

* Comparing conditions (4.7) and (6.2) shows that, predictably, the existence
of an additional leader does not always help the followers' network to reach
agreement. But it does so if

Amin (LK + Ii Koi,, ) > Am+l(LK)

Example 6.1.1: Consider for instance the case when the leader has identical connec-
tions to all other elements, Vi, Koi = kI, k > 0. Then

Amin(LK ± IyKoi.) = m Tin V( LK + II )v = kA~j. (LK + "Yi~oi.) vHI=1 

This means the connections between the leader and the followers do promote the conver-
gence within the followers' network if

Am+l(LK) < k

which is more likely to happen in a network with less connectivity. 0

* The connectivity of the followers' network helps the following process, which
can be seen by applying Weyl's Theorem [51],

Ai( LK+In Ko ) > A( IiKoi ) =, ,mn7i~os- 

This result can be used e.g. to modify the application in Section 9.3.3, by
adding couplings between local neighbors according to similarity, so as to react
even faster.

* In a generalized understanding, the power leader does not have to be single. It
can be a group of leading elements. The leader even does not have to be inde-
pendent. It can receive feedback from the followers as well. Such an example
is synchronization propagation, where the density is not smoothly distributed
through the whole network. Since synchronization rate depends on the net-
work connectivity, a high-density region will synchronize very quickly despite
disturbances from other parts of the network. The inputs from these leaders
then facilitate synchronization in low-density regions, where the elements may
not be able to synchronize by themselves. [182] observed a similar phenomenon
by setting different interior connection weights inside different subgroups. Note
that the leaders group here is very similar to the concept of core group in infec-
tious disease dynamics [92], which is a group of the most active individuals. A
small change in the core group will make a big difference in whether or not an
epidemic can occur in the whole population.

Example 6.1.2: Consider two groups of FitzHugh-Nagumo neurons (Figure 6-2), the
first composed of eight neurons coupled all-to-all, and surrounded by a second group of
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sixteen neurons coupled as an one-way ring, with every other neuron in the second group
connected bilaterally to a distinct neuron of the first group. The system dynamics follows
equation (4.10) with coupling gain k > 0 identical in the whole network. Figure 6-3 shows
simulation results, from which we can observe initially significant phase lag between the
two groups. Note that the second group alone would not synchronize without couplings
from the first group, as we illustrate in Figure 6-4. In both simulations, the parameters
are a = 0.7, b = 0.8, c = 8, I = -1.4, k = 0.5. Initial conditions are chosen randomly.
0]

Figure 6-2: Synchronization propagates in a network with non-uniform connectivity.

* Synchronization can be made to propagate from the center outward in a more
active way, for instance, through diffusion of a chemical produced by leaders
or high-level elements and having the ability to expand the communication
channels it passes through, i.e., to increase the gains through diffusion. Such
a mechanism represents a hierarchical combination with gain dynamics. By
extending the state, the analysis tools provided here can apply more generally to
combinations where the gain dynamics are coupled to each other (with arbitrary
connectivity) and to the xi

* Different leaders x of arbitrary dynamics can define different primitives which
can be combined. Contraction of the followers' dynamics (i = 1,..., n)

xi = f(xi,t) + E Kji (xj-xi) + aj(t)'y Ki (xo-xi)
jEM J

is preserved if Ej oaj(t) > 1, Vt > 0.

* Besides its dubious moral implications, Theorem 6.1 also means that it is easy to
detract a group from its nominal behavior by introducing a "covert" element,
with possible applications to group control games, ethology, and animal and
plant mimicry.

* Besides orientation, the moving formation with a power leader has other advan-
tages, such as energy saving in aerodynamics [25, 126].
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(b)

Figure 6-3: vi of the neurons in
group links.

2

1

0

-1

-2

(a).the inner group, (b).the outer group with inter-

vI

t
I I T | I

0 20 40 60 80 100 120 I d
(a)

(b)

Figure 6-4: vi of the neurons in (a).the inner group, (b).the outer group without
inter-group links.
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6.2 Knowledge Leader

A knowledge-based leader-followers network is composed of elements with initially
non-identical dynamics. A knowledge leader may be located in any position inside a
network as we illustrated in Figure 6-1(b). Its dynamics is fixed or slowly changing,
while those of the followers are learned from the leader through adaptation. Synchro-
nization or group agreement can still be achieved in such a network with only local
interactions. To show this, we first study a very simple case, which contains only two
coupled systems with adaptation.

6.2.1 Two Coupled Systems with Adaptation

Consider two coupled systems as in Theorem 3.2

|i = h(xi,a,t) + g(xl,x 2 ,t) (6.3){ x2 = h(x2, , t) + g(x 1 , X2, t)

Assume that a parameter vector a is unknown to the second system. To guarantee
state convergence, we generate an estimated parameter a through an adaptation
mechanism

a = P WT(x 2 , t) 

where = xl - x 2 , P > 0 is constant symmetric, and W(x 2, t) is defined as

h(x2 , , t) = h(x2 , a, t) + W(x 2, t)i

with = a - a. A similar adaptive technique was used in [81, 82], but is generalized
here in the sense that the couplings could be bidirectional.

Theorem 6.2 In a coupled system (6.3), x will converge to zero asymptotically if xl
is bounded and h is contracting. Furthermore, ai will converge to zero if

t+T

3 a > O,T >O, Vt>O j WT(x 2 , t)W(x 2 , t)dr > aI (6.4)
Jt

Proof: Define the Lyapunov function

1 T
V = ( T: + Tp-l ) > 

2
= RT(h(x at) - h(X2,a,t)

O1 hf0
- XT|a(X2 + j_()< 0

The boundedness of xi implies that of x2. Assuming all the functions are smoothly
differentiable, the boundedness of V can be concluded since all the states including
a are bounded. According to Barbalat's lemma [131], V and therefore x tends to 0
asymptotically.
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Note that a also tends to 0. Furthermore, since x is also bounded, we have the
asymptotic convergence of x to zero, which leads to the convergence of W(x2 , t) to
zero. In particular [131], if the condition (6.4) is true, a converges to zero asymptot-
ically. 0

The boundedness of xl is trivial if g = g(xl,t), which is a classical observer
structure with x1 dynamics independent. If g = g(x 1, X2, t), we have

xl = h(x1 ,a,t) + g(x,x 1- , t) = e(xi, x,t)

where x is bounded. Thus the boundedness of x1 is determined by the Input-to-State
Stability [63] of e.

Example 6.2.1: Consider two coupled FitzHugh-Nagumo neurons

I)1 = VI(O - VI)(V - 1)-W + I + k(v2 - Vl)

/1 =lvi - )-W

v2 = V2(- V2)(V2 -1) -W2+ i + k(vl- 2)

lw2 = *v2- W2

in which case xi= [vi wi ]T,a= [ a I y ,3 > 0 and

h(xi, a, t) =[ -vi)(vi-- )-w + I -2kvw ]a, [ ~~vi - -twi

which is contracting if the coupling gain k is larger than an explicit threshold as we have
proved in Example 4.4.2. Thus

[V2 -V2 1 0 01
0 0 -W2 V2 J

Note that although the diffusion couplings are only based on variables vi, full-state feed-
back is needed for adaptation law in this case. See Appendix 6.4.1 for the bounded-
ness proof. Simulation result is illustrated in Figure 6-5, where the real parameters are
a = 5.32,/3 = 3,-y = 0.1 and I = 20 . The coupling gain k = 15 . The matrix
P = diag{0.6, 30,0.002, 0.4} . All initial conditions are chosen arbitrarily. 0

6.2.2 Knowledge-Based Leader-Following

Now consider a coupled network containing n elements with a general connectivity

i = f(xi,ai,t) + E Kji(xj-xi) i = 1,...,n (6.5)
jEAhi

Assume that the uncoupled dynamics f(xi, aj, t) contains a parameter set a which
has a fixed value a for all the knowledge leaders. Denote Q as the set of the followers,
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(a)

5 =-a10

5

0 10 20 30 40 50 60 70 80 90 100
(b)

Figure 6-5: Simulation of Example 6.2.1. (a).States vi (i = 1,2) versus time;
(b).estimator error a versus time.

whose adaptation laws are based on local interactions

= PiWT(xit) Z Kji (xj -xi) V i E (6.6)
jEvr.

where Pi > 0 is constant and symmetric, and W(xi, t) is defined as

f(xi, ai,t) = f(xi, a,t) + W(xi,t)&

with estimation error = a - a.

To prove convergence, we define a Lyapunov function

1
V = ( xTLKx + E i )

iEfl

where xT = [xT, x2,.., x7]. Thus

V = XaLKX + ETP1a/
iEf

f(xl, a, t) 
= XTLK( . ..... -LKX)

xTLK f(x, a, t)

= XT ( LKA-LK ) X
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where matrix LKA is symmetric and

T TLKA = D (IKij j) D = D I'(KA)j D (6.7)

Here is a r x r block diagonal matrix with the kth diagonal entryA,3

Ai= j f (xj +X(x - xj) a,t) dx

corresponding to the kth link which has been assigned an orientation by the incidence
matrix D. I(:KA)j is defined in a similar manner with (KA)ij, the symmetric part of
KijAij.

To complete the proof, we use the following lemma, which is derived in Ap-
pendix 6.4.2.

Lemma 6.1 Giving any x, if

Am+l,(Llc) > max Ama (KA)ijs (6.8)
An(L) IC

xT ( LKA -L2 ) x < 0 and the equality is true if and only if xl = x 2 = *. = xn,.

Theorem 6.3 For a knowledge-based leader-followers network (6.5), the states of all
the elements will converge together asymptotically if condition (6.8) is verified and all
the states are bounded. Furthermore, V i E Q, ai will converge to a if

t+T

3 a > O,T > O, Vt >O WT(x,r)W(xi,r)dr > aI (6.9)
Jt

Proof: Condition (6.8) means V is non-increasing. Assuming all the functions are
smoothly differentiable, the boundedness of V can be concluded if all the states are
bounded. According to Barbalat's lemma [131], V will then tend to 0 asymptotically,
implying that all the states xi converge together. Hence, W(xi, t)di will tend to zero,
which leads to the convergence of the followers' parameters under condition (6.9). 

Theorem 6.3 implies that new elements can be added into the network without
prior knowledge of the individual dynamics, and that elements in an existing net-
work have the ability to recover dynamic information if temporarily lost. Similar
knowledge-based leader-followers mechanism may exist in many natural processes.
In evolutionary biology, knowledge leaders are essential to keep the evolution pro-
cesses uninvasible or evolutionary stable [105, 111]. In reproduction, for instance,
the leaders could be senior members. The knowledge-based mechanism may also de-
scribe evolutionary mutation or disease infection [92], where the leaders are mutants
or invaders. Knowledge-based leader-following may also occur in animal aggregate
motions or human social activities. In a bird flock, for instance, the knowledge leader
can be a junior or injured member whose moving capacity is limited, and which is
protected by others through dynamic adaptation.
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Note that the adaptive model we described represents a genotype-phenotype map-
ping, where adaptation occurring in genotypic space is based on the interactions of
behavioral phenotypes. Due to its complexity, genotype-phenotype mapping remains
a big challenge today in evolutionary biology [105].

Additional Remarks:

* Similar as in Theorem 4.2, for condition (6.8) to be true, we need a connected
network, an upper bounded Amax (KA)ijs, and strong enough coupling strengths.
For an example, if m = 1 and all the coupling gains are identical with value n,
condition (6.8) turns to be

A~(L) a
> Aa(L) max (x, a,t)

while the coupling threshold to reach synchronization in condition (4.7) is

1 A
> A (L) maxaf(xit)

A higher strength threshold is caused partly by the choice of V. A lower value of
n will still work in practice but it may not be able to guarantee non-oscillating
convergence of V to zero. To show this, let us consider a network without
knowledge-leaders or adaptation. Thus

V = 2 xTLKX
1

= (x- y)TLK(x- y)
2

< - Ama(LK) (x-y)T(x-y)

where y = [Y1,Y2,... ,Yn] T is a particular solution of the auxiliary system
and Y = Y2 = -= yn since we assume all the subsystems yi have the
same initial conditions. The exponential convergence of (x- y)T(x- y) to zero
can be proved under the condition (4.7). But it only guarantees convergence,
not non-oscillating convergence, of V to zero. We can certainly choose other
potential Lyapunov functions, such as V = xT L x. The result will be slightly
different. Note that the analyzing method used in this section provides another
analysis tool for synchronization study in network (4.5).

* If the coupling gains are only positive semi-definite, extra restrictions have
to be added to the uncoupled system dynamics to guarantee globally stable
synchronization, similarly to the fixed-parameters result in Section 4.4.3. See
Appendix 6.4.3 for details.

* Leaders holding different knowledges are allowed to exist in the same network,
just like a human society may contain experts in different fields. As an ex-
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ample, consider (6.5) again. Assume the dynamics f contains parameter sets
a, a 2 ,.., al with

f(xi,al, .. , ,t) = f(xi,a., .. ,al,t) + Wk(i,t)i
k=l

Denoting by Ql, Q2,.. , fl the followers sets corresponding to different knowl-
edges, the adaptation laws are, for k = 1, 2,.. , 1,

= Pi W (Xi, t) E Kji (xj - xi) V i E
jEKi

States and parameters will converge under the same conditions as those given
in Theorem 6.3.

* The adaptation law we used corresponds to inserting an integrator in the feed-
back loop [131]. Such an integrator can be replaced by any operator which
preserves the passivity of the mapping from measurement error to parameter
error. For instance, the adaptation law (6.6) may be refined as

a = ai + QiWT(xi, t) E Kj (j - xi)
jEi

where Qi > 0 is constant and symmetric, and ai is defined by (6.6). Note that
in the theoretical analysis we should use a modified Lyapunov function

V - (XTLKX + Ea P ) + J Z'Qizidt2 K fl icl
iEFO iEO

where k = a - a and zi = WT(xi,t) Kji (xj - xi). Using estimated
JEM

parameter a, in the followers' dynamics corresponds to putting an PI block in
feedback loop, which improves the convergence rate as compared to having only
the I operator.

* The number of leaders in a knowledge-based network can be arbitrary. At the
limit all elements could be adaptive, i.e., there is no leader at all, in which case
they may converge to any odd parameter set depending on initial conditions.
While all states will still converge together, the desired individual behaviors
(such as oscillations) may not be preserved.

* Theorem 6.3 requires the states to be bounded, which can be shown following
the same steps as we did in Section 6.2.1. In fact, since V < 0, we know that
Vi E Q, a, and V neighbored i, j, xi -xj are bounded. Thus the boundedness of
the states are simply determined by the Input-to-State Stability of the system
y, = f(y, a, t) + u where the input u is bounded.
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* The condition (6.9) is true if the stable system behaviors are sufficiently rich or
persistently exciting. This is the case, for instance, when the individual elements
are oscillators, where the possibilities that any component of xi converges to
zero can be excluded by dynamic analysis showing that zero is an unstable state.

* Both power leaders and knowledge leaders could be virtual, which is common in
animal aggregate motions. For instance, a landmark may be used as a virtual
power leader. Similarly, when hunting, an escaping prey could specify both the
where and the how of the movement.

Example 6.2.2: Consider six FitzHugh-Nagumo neurons (4.12), connected as in Fig-
ure 6-1(b). Assume that the parameter set a = [a, I, y, /3 ]T is fixed to the only knowledge
leader with the same values as in Example 6.2.1, and those of the others change according
to the adaptation law (6.6). Simulation results are plotted in Figure 6-6. D

(a)

(b)

Figure 6-6: Simulation of Example 6.2.2. (a).States
(b).estimation error .i of one follower versus time.

vi (i = 1,... , 6) versus time;

6.3 Pacific Coexistence

Different types of leaders can co-exist in the same network. A power leader could
be also a knowledge leader, or conversely, as we illustrated in Figure 6-1(c), a power
leader guiding the direction may use state measurements from its neighbors to adapt
its parameters to the values of the knowledge leaders.

Consider the power-based leader-followers network (6.1) again, assuming the dy-
namics f contains a parameter set a. There are knowledge leaders holding the fixed
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value a and knowledge followers using adaptation to learn. If 0 E Q, the set of the
knowledge followers, we have

n

a = PoWT(xo, t) yi Koi (xi-xo)
i=1

while if i E O with i = 1,..., n,

= PiWT(x~, t)(Z Kji (xj - xi) + 7i Koj (xo - xi))
jEAi

To prove state convergence, first we define several Laplacian matrices for a power-
based network structure:

* LK, the weighted Laplacian of the followers network.

* LK, the weighted Laplacian of the whole network, which is non-symmetric since
we have uni-directional links between the leader and the followers. Thus,

-- 0 0 I
LK= [-b C where b = yi Koi C = LK + I Koi

C is positive definite if the whole network is connected.

* LK, the weighted Laplacian of the whole network which we consider as an
undirected graph. Thus,

LK = LT + =iKoi 
-b 0[ io]

Define the Lyapunov function

1 T
V =- ( X LKX + TP )2

iEfl

We can show that

f(x1 , a, t)
V = XLK( .... -LKX)

f(xn, a,t)

= x ( LKA-K LK ) x

where LKA is defined similar as (6.7), except that here the incidence matrix is based
on the whole network which we consider as an undirected graph. See Appendix 6.4.4
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for the condition for LKA - L LK to be negative semi-definite. Following the same
proofs as those in Sections 6.2, this then implies that all the states xi, i = 0,1, ... , n
will converge together asymptotically. Parameter convergence conditions are also the
same.

6.4 Appendices

6.4.1 Boundedness of Coupled FN Neurons

For notation simplicity, define u = I + k(v 2 - vl) and v = A. The dynamics of the
first neuron changes to

I 1 = vl( - l)(vl - 1) -xOI + u (6.10)
W1 = VI/6V 1 - 7W 1

Define U= ( + 'i2 ). Then

: -(vl- )(v-_ 1)V2 - - + UV,

Since u is bounded, there must exist a large but bounded number vo > 0, V lvii > vo,
U < 0. We denote the region lIvI < vo as Q

If the system (6.10) starts inside Q, since the dynamics of iwl is linear and strictly
stable, vl and wv1 are always bounded as long as the system stays inside Q. In fact,

Iv 1(t)1 = I( 1(0) + j /7v1(t)edt ) e-Y1

< Iib(0)le- + vo- -(1-e-lt)

Thus, for any initial condition [li(0) > v0o-, we have I[zl(t) < li1(0)J, which

implies that the bound of lIv(t)I inside Q is max(vo , [l (0)I) 
Suppose that at some moment, the system leaves Q through point (o wot). Since

< 0 outside Q, v2(t) and fV2(t) will be both bounded by v2 + W172 until the
system trajectory re-enters f, at which moment we should have [li,nl < loz[tl. See
Figure 6-7 for an illustration. The proof is similar if the system starts outside Q.

Thus, xl = [ Vl w ] T is always bounded, which leads to asymptotic convergence
of x to 0 according to Theorem 6.2. Moreover, since the two FN neurons synchronize
along a limit cycle, the convergence of W(x2 , t)& to zero implies that of a.

6.4.2 Proof of Lemma 6.1

For notational simplicity, we first show the derivations for the case m = 1.
Since

LKA -L 2= D ( (Ii ) - IID DI ) DTLIKX Lj Ai D i (K x'^
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Figure 6-7: A solution trajectory of system (6.10) leaves and re-enters the region
: Ivil v< v0.

we know that 0 is always one of the eigenvalues of LKA - LK, with one corresponding
eigenvector v = [1, 1,... ] T. Assume all the eigenvalues Ai are arranged in increasing
order for i = 1, 2,..., n. According to Weyl's Theorem [51], for two Hermitian matrix
A and B,

Ak(A) + Al(B) Ak(A + B) < Ak(A) + An(B)

for each k = 1, 2,..., n. Thus, we have

Ank+(LKA - L2) < An(LKA)- Ak(L,)

which implies that, Vk > 1, An-k+l(LKA - L ) < 0 if

An(LKA) < A2(L ) (6.11)

Therefore, An(LKA - L) = 0, i.e., LKA - L2 is negative semi-definite.

Denote maxAma(KA)ijs = A. If A < 0, we have An(LKA) < 0 and both the
k

conditions (6.11) and (6.8) are always true; if A > 0,

An(LKA) < An(L)

where L is the graph Laplacian matrix. Considering the fact that A2(LK) = A2(LK),
condition (6.8) is sufficient to guarantee (6.11).

For a real symmetric matrix, the state space has an orthogonal basis consisting
of all eigenvectors. Without loss generality, we assume there is such an orthogonal
eigenvector set, {vl, v 2,. .. , vn}, of LKA - L 2 , where vn = [1, 1, ... , 1 T is the only
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n

zero eigenvector. For any x, we have x = E kiv i and
i=

n n

X ( LKA-L ) X k ( (LKA-L ) E kiv
i=1 i=1

n-1 n-i1

= E kivT ( LKA-L ) E kV,
i=l i=1

n-1

= E Aik2v"Tvi
i=1

Since the eigenvalue Ai <0 Vi < n, xT ( LKA - L ) x = 0 if and only if x = knvn,
that is, x1 = x2 -= xn.

In case m > 1, we can follow the same proof except that zero eigenvalue here
has m multiplicity, and the corresponding eigenvectors {vI,v 2 ,... ,Vm} are linear
combinations of the orthogonal set [I, I,. . , I]T where I E R mXm is identity matrix.

6.4.3 Positive Semi-Definite Couplings

Assume the coupling gain of the kth link (between nodes i and j) is

0 0 k
where Kk is symmetric positive definite and has a common dimension to all links.
We divide the uncoupled dynamics J, and in turn the block diagonal entry of A into
the form

Of F[Jii J12][Alk = Of(Rk, a, t) = J(kk, t) = [ 1 J k

where x is a value between the states of two neighboring nodes xi and xj, and each
component of Jk has the same dimension as that of the corresponding part in Kk.
Re-define the function V as

V = (xTLKx + xTLyx + E aTp-1I)

where
Ly = D I DTYOj

is a weighted Laplacian based on the same graph as LK but different weights

Yji= Yk [O K2lk
Y~jYk-0 K2 k
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and K2k is a constant symmetric matrix acting as an additional part of the coupling
gain. Using a modified adaptive law

i = PiWT(xi, t) ZE (K + Y)ji (xj - x) V i E 
jiEA

we can show that

V = XT ( L(K+Y)A-LK)X= xT ( LL ~)- L ) x
= XT L(K+Y)(A-A) X + X ( LKA-L ) X

where we define the diagonal entry [Alk = [ 1 so that
00k

k i- _ [K 1 ll 01[Kij ijIk 0 0 k

IT 1 _= K 1 (J1 1 -J 11 ) K1 J1 2 1
L(K+Y)i; (A-A)ij ]k K2J21 K 2 J2 2 k

A non-positive V can be guaranteed if

* LKA- L < 0 which can be satisfied under a similar condition as (6.8);

* L(K+y)(A A) < 0, which is true if Vk [I(K+Y) (A ] 0, i.e. the symmetric

parts of K 1(J 11-J 1 1 ) and K 2J 22 are both negative definite, and amax(K1J12+
jTTJ21K2') is bounded, an explicit condition derived from feedback combination

condition (2.4).

The rest of the convergence proof are the same as that of positive definite cou-
plings.

6.4.4 Network with Both Leaders

For notational simplicity, we only show the case m = 1. The proof is similar if m > 1.
Similarly to the proof in 6.4.2, LKA -L

T K LK is negative semi-definite if

)\.+l(LKA) < 2(LK LK)

and its only eigendirection for the zero eigenvalue is thus v = [1, 1,.. , 1]T. Since

[bTb - bTC1
LKLK L - Cb C 2

we have
A2(LK LfK) > A1(C2) = A(C)
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according to the Interlacing Eigenvalues Theorem for bordered matrices [51]. Thus a
sufficient condition to guarantee negative semi-definite is

>(C) > A+,(LKA) (6.12)

This condition is similar to the one we derived in Theorem 6.1 for synchronization of
pure power-based leader-followers network. Assuming all the coupling strengths are
identical with value a, condition (6.12) becomes

A> A(Li,) ma x ,'-(Yi
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Chapter 7

Contraction Analysis of
Time-Delayed Communications

In many engineering applications, communications delays between subsystems cannot
be neglected. Such an example is bilateral teleoperation, where signals can experience
significant transmission delays between local and remote sites. Throughout the last
decade, the both internet and wireless technologies have vastly extended practical
communication distances. Information exchange and cooperation can in principle
occur in very widely distributed systems, making the effect of time delays even more
central.

In the context of telerobotics, [2] proposed a control law for force-reflecting teleop-
erators which preserves passivity, and thus overcomes the instability caused by time
delays. The idea was reformulated in [102], which led to the introduction of wave
variables. Transmission of wave variables across communication channels ensures
stability without knowledge of the time delay. Further extensions to internet-based
applications were developed [104, 103, 18], in which the communication delays are
variable.

Recently, [83] extended the application of wave variables to a more general context
by performing a nonlinear contraction analysis [81] of the effect of time-delayed com-
munications between contracting systems. This paper modifies the design of the wave
variables proposed in [83]. One simplified form provides an efficient analysis tool for
interacted nonlinear systems with time-delayed feedback communications. Contrac-
tion as a generalized stability property preserves regardless of the delay values. The
result also explains the well-known fact in teleoperation, that even small time-delays
in feedback PD controllers may create stability problems for coupled second-order
systems, which motivated approaches based on passivity and wave variables. The
approach is then applied to study the group cooperation problem where the commu-
nications are delayed. We show that synchronization is robust to time delays and
network connectivity if the protocol is linear. In a leaderless network, all the coupled
elements tend to reach a common state which varies according to the initial condi-
tions and the time delays, while in a leader-followers network, this group agreement
point is fixed by the leader. The approach is suitable to study both continuous and
discrete-time models. At last, we construct and analyze the model of a large pop-
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ulation composed of loosely-tied groups, where synchronization in different groups
disturb by each other and the signals being transmitted contain only information on
group synchronization status. Its analogs exist widely, e.g., in human psychology and
macro-economics.

7.1 Contraction Analysis of Time-Delayed Com-
munications

Inspired by the use of passivity [2] and wave variables [102] in force-reflecting tele-
operation, [83] performed a contraction analysis of the effect of time-delayed com-
munications. In fact, as we will discuss in this section, the form of the transmitted
variables in [83] can be simplified, which then provides us a more powerful tool. It
can be applied to analyze time-delayed feedback communications, and also to realize
teleoperation in a more straightforward manner.

7.1.1 Wave Variables

Wave variables [102] are used in bilateral teleoperation systems to guarantee the pas-
sivity [2] of the time-delayed transmissions. The idea was generalized in [83] by con-
ducting a contraction analysis on time-delayed transmission channels. As illustrated
in Figure 7-1, [83] considers two interacting systems of possibly different dimensions
in x1 and x2,

'---2 delay T2 U'12

U 1 delay T2 v "21

Figure 7-1: Two interacting systems with delayed communications

X1 = f1 (xl,t) + G 21 T2 1 (7.1)

x2 = f2 (x 2, t) + G12r12

where G 12, G 21 are constant matrices and r12, 21 have the same dimension. The
intermediate variables are defined as

U21 = Glxl + T21 V12 = GX21 - T21

U12 = G12x 2 + T12 v 21 = G12x 2 - rl2

Because of time-delays, one has

u 12(t) = vl 2 (t- T12) u 21(t) = v 21(t- T21)
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where T12 and T21 are two possibly different constants. It can be proved that, if both f1
and f2 are contracting, the overall system is asymptotically contracting independently
of the time delays.

Note that the subscripts containing two numbers indicate the communication
direction. For instance, subscript 12 means the associated communication is from
node 1 to 2. Such a definition is helpful to make the notation clear in Section 7.2,
where our result will be extended to a group of interacted subsystems.

7.1.2 Time-Delayed Feedback Communications

Let us now consider modified choices of the transmitted variables above. Specifically,
for interacting systems (7.1), define now the transmitted variables as

U21 = GTx1 + k2 1T21 v12= G2Tx 1 (7.2)
Ul 2 = GT2x 2 + k12 T12 V21= GT2x 2

where k12 and k21 are two strictly positive constants. Consider, similarly to [83, 132],
the differential length

1
V = 2 X1 Xi + 2 JX2 X2 + V1,2

where

t 0 ~~~~~~~~~~0

t-T2 t-T21 -T12 T21

Note that

v1, 2 = j( 5v2v1 2 (f) - vT2v 1 2(E - T12) + V26V21 (6) 2- 1vJSv21 ( - T21) ) de

rt= j 6uu 12(v) + 6v 21(E) -UlTu() + v() U U2 1(6) ) de
ot rt

= -2 j( k2 1 6xTG216T 21 + k126xTG126rT12 ) d - ( k216jrT21"2j + k 2 6JrTT26T12 ) de

This yields

-v - f x + k12 x 122 2 - 2TT 22 -
x T22622

2 OX22 2

If f and f2 are both contracting with identity metrics (i.e., if 9f and _f2 are both' X1 8X2

uniformly negative definite), then V < 0, and V is bounded and tends to a limit.
Applying Barbalat's lemma [131] in turn shows that, if V is bounded, then V tends
to zero asymptotically, which implies that 6x 1 , 6x 2 , e'1 2 and 6 T21 all tend to zero.
Regardless of the values of the delays, all solutions of system (7.1) converge to a single
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trajectory, independently of the initial conditions. In the sequel we shall assume that
V can indeed be bounded as a consequence of the boundedness of V.

This result has a useful interpretation. Expanding system dynamics (7.1) using
(7.2) yields

= fl(x 1 , t) + I1 G 21 ( G2x2(t

= f2 (x 2,t) + G 12 ( G2x(t

- T21) - GTXlX (t) )

- T12 ) - GTx 2 (t) )

so that the above communications in fact correspond to simple feedback interac-
tions. If we assume further that xl and x2 have the same dimension, and choose
G12 = G2 = G, the whole system is actually equivalent to two diffusively coupled
subsystems

= f(x 1, t) +

= f2 (x 2 ,t) +

1GG
kl GGT ( x2(t- T21) - x(t) 

k c GGT ( X(t - T12) - X2(t) )

Note that constants k 2 and k21 and thus coupling gains along different diffusion
directions can be different. We can thus state

Theorem 7.1 Consider two subsystems, both contracting with identity metrics, and
interacting through time-delayed diffusion-like couplings (7.3). Then the overall sys-
tem is asymptotically contracting.

Figure 7-2: Two interacting systems with time-delayed diffusion couplings

Remarks

* Theorem 7.1 does not contradict the well-known fact in teleoperation, that
even small time-delays in bilateral PD controllers may create stability problems
for coupled second-order systems [2, 102, 103, 18], which motivates approaches
based on passivity and wave variables. In fact, a key condition for contraction
to be preserved is that the diffusion-like coupling gains be symmetric positive
semi-definite in the same metric as the subsystems, as we shall illustrate later
in this section.

* If there are no delays, i.e., T12 = T21 = 0, then V1,2 = 0. Thus, the analysis of
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the differential length yields that

d
V = 2 dt ( k2 16XT6x 1 + k 26xT2 ) k2 1xT Ix + k 12 6xT2 6X22dt~ ~ ~ ~ ~~~~~~~-~X O] 15 2 2X2

, Ama ( k2l 1x Tx + kl26X X )

where

Amax = Max- max f(, )s, Ama(a O) )

This implies that 5x1 and 6x 2 tend to zero exponentially for contracting dy-
namics f and f2, i.e., the overall system is exponentially contracting.

* If f1 and f2 are both contracting and time-invariant, all solutions of system (7.3)
converge to a unique equilibrium point, whose value is independent of the time
delays and the initial conditions. Indeed, in a globally contracting autonomous
system, all trajectories converge to a unique equilibrium point [81, 133], which
implies that if fi and f2 are both contracting and time-invariant, an equilibrium
point must exist for system (7.3) when T12 = T21 = 0. In turn, this point
remains an equilibrium point for arbitrary non-zero T12 and T21. Since the
delayed system (7.3) also preserves contraction, all solutions will converge to
this point independently of the initial conditions and the explicit values of the
delays.

* Theorem 7.1 can be extended directly to study more general connections be-
tween groups, such as bidirectional meshes or webs of arbitrary size, and parallel
unidirectional rings of arbitrary length, both of which will be illustrated through
Section 7.2. Inputs to the overall system can be provided through any of the
subgroup dynamics.

Example 7.1.1: Consider two identical second-order systems coupled through time-
delayed feedback PD controllers

{ -+ btl + w 2x1 = kd(x2(t -T 2 1) - 1Xl(t)) + kp(x 2 (t -T 2 1 ) - Xl(t))

~2 + b~2 + W2X2 = kd(&(t -T 12 ) - 2 (t)) + kp(xl(t -T 12 ) - x2(t))

with b> 0, w> O0. If T12 = T21 = 0, partial contraction analysis [134, 164] shows that
xl and 2 converge together exponentially regardless of initial conditions, which makes
the origin a stable equilibrium point. If T12 , T21 > 0, a simple coordinate transformation
yields

xi1 1 wy1 -bx 1
1 +K( x 2(t - T21) x1(t)

L 1 j [x'-WXY2(t - T2 1) J y(t) ]
x2 = [ y 2 -bx 2 1+K([ x(t - T12) [ x2(t)

[P2J -WX2 (y1(t - T12) J y2(t) ] )

where

f =[ Wyilbx1 ] and f2 = YwY2-bx2
- wxJ -WX2J
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are both contracting with identity metric [164]. However, the transformed coupling gain

K = kd 0k 0

is neither symmetric nor positive semi-definite for any kp : O. Contraction cannot be
preserved in this case, and the coupled systems turn out to be unstable for large enough
delays as the simulation result in Figure 7-3(a) illustrates. In Figure 7-3(b) we set kp = 0
so that the overall system is contracting according to Theorem 7.1. 0

0

Figure 7-3: Simulation results
PD control and (b) D control.
kd = 1, kp = 5 in (a) andkp
identical for the two plots.

of two coupled mass-spring-damper systems with (a)
Parameters are b = 0.5, w2 = 5, T12 = 2s, T21 = 4s,
= 0 in (b). Initial conditions, chosen randomly, are

The instability mechanism in the above example is actually very similar to that of
the classical Smale model [136, 164] of spontaneous oscillation, in which two or more
identical biological cells, inert by themselves, tend to self-excited oscillations through
diffusion interactions. In both cases, the instability is caused by a non-identity met-
ric, which makes the transformed coupling gains lose positive semi-definiteness. Note
that the relative simplicity with which both phenomena can be analyzed makes fun-
damental use of the notion of a metric, central to contraction theory.

7.1.3 Other Simplified Forms of Wave-Variables

Different simplifications of the original wave-variable design can be made based on
the same choice of V, yielding different qualitative properties. For instance, the
transmitted signals can be defined as

U21

U1 2

= GTlxl + k21 T21

= GT2x 2 + k12 T12

V12 = -k2T21

V21= - k1 2 T1 2
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which leads to

k 21 5 T0 f1 +X1 k T Of2 1 jXTGGTX 1 T= k21Xl + k12X2 2 '2x2 - (x 1 G 21 2Gxl - 6X2 G1 2G1 2 6x 2
Of1 1 f1 22 12

= xTO( k2l 1 G21GT1 )6X + XT( k2 2 G 12GT )Jx2 (7.4)
= (~T 210'2x-12

and thus also preserves contraction through time-delayed communications. Similarly
to the previous section, if both f and f2 are contracting and time-invariant, the whole
system tends towards a unique equilibrium point, regardless of the delay values. At
this steady state, u 12 (oo) = vl 2(oo) and u21 (oo0) = v21(oo), which immediately
implies that

G21 X1(O) = G2 X2 (O)

and, if G1 2 = G21 = G with G of full rank, that

X (o) = 2 (°o)

Thus, contrary to the case (7.2) of diffusion-like couplings, the remote tracking ability
of wave variables is preserved.

Example 7.1.2: Consider the example of two second-order systems

11 + b +w 2 x1 - F21 + Fe
xi= F 1{~~~~~i 2 + b2i2 + W2X2 = F12

where Fe is an external force, and F 21, F12 are internal forces undergoing time delays.
Performing a coordinate transformation, we get new equations

l1 1 _ Wlyq-bjx 1 F 11 -Wx + - I tW1

[ 2 = [w2Y2-b2X2 ] [o ]!)2 -02X2 EtaJ2

The signals being transmitted ae defined as simplified wave variables

U2 1 = Y1 + -F21 V2= - F21
WI1 Wi

U12 = Y2 2 -F 12 v21 =--F12
W2 W2

Note that here G1 2 = G21 =[ 0 ],and that although the variables y and y2 are

virtual, their values can be calculated based on x1, ±1 and x2, 2. According to the result
we derived above, the whole system will tend to reach an equilibrium point asymptotically.
This point is independent to the time delays and satisfies yi(oo) = Y2(oo), i.e.,

-xl(oo) = -X2(o00)
031i02

83



0

)

Figure 7-4: Simulation results of Example 7.1.2 with (a). T12 = T21 = 0 and with
(b). T12 = 2s, T21 = 4s. The parameters are bl = b2 = 0.5, l 2 = w2 = 5, k12

k2l = 0.2, and Fe = 10. Initial conditions, chosen randomly, are identical for the two
plots. Convergence to a common equilibrium point independent to the time delays is
achieved in both cases.

Finally note that even if the subsystems are not contracting but have upper
bounded Jacobian, for instance, as limit-cycle oscillators, the overall system still can
be contracting by choosing appropriate gains such that

G21G l > 2k2 1(- )9 and G12GT > 2k(2 - )s

Here the transmission of wave variables performs a stabilizing role.

There are also other simplified forms of wave variables. For instance, we can define
the transmitted signals as

= G + k21r2 =
U21 21 GT ix 1 + k21T2 1 v12 = k21T21

U12 = G2X2 + k12 T12 v21 = kl2T12

If both fl and f2 are contracting and time-invariant, and if G 12 = G21 = G with G
of full rank, the whole system tends towards a unique equilibrium point such that
X1(oo) = - x2 (oo).
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7.2 Group Cooperation with Time-Delayed Com-
munications

Recently, synchronization or group agreement has been the object of extensive liter-
ature [12, 57, 73, 106, 117, 122, 133, 144, 146, 156]. Understanding natural aggregate
motions as in bird flocks, fish schools, or animal herds may help achieve desired col-
lective behaviors in artificial multi-agent systems. In our previous work [134, 164],
a synchronization condition was obtained for a group of coupled nonlinear systems,
where the number of the elements can be arbitrary and the network structure can be
very general. In this section, we study a simplified continuous-time model of school-
ing or flocking with time-delayed communications, and generalize recent results in
the literature [109, 98]. In particular, we show that synchronization is robust to time
delays both for the leaderless case and for the leader-followers case, without requiring
the delays to be known or equal in all links. Similar results are then derived for
discrete-time models.

7.2.1 Leaderless Group

We first investigate a flocking model without group leader, whose non-time-delayed
version has been studied in Section 5.2. The dynamics of the ith element is given as

=E Kji (j-xi) i= 1,...,n (7.5)
iEi

where x E R m denotes the states needed to reach agreements such as a vehicle's
heading, attitude, velocity, etc. i denotes the set of the active neighbors of element
i, which for instance can be defined as the set of the nearest neighbors within a certain
distance around i. Kji is the coupling gain, which is assumed to be symmetric and
positive definite.

Theorem 7.2 Consider n coupled elements with linear protocol (7.5). The whole
system will tend to reach a group agreement

1
xl(t) = *'* = xn(t) =-(x 1 (0) + '' + xn(O))n

exponentially if the network is connected, and the coupling links are either bidirectional
with Kji = Kij, or unidirectional but formed in closed rings with identical gains.

Theorem 7.2 can be proved by using partial contraction analysis. In Section 5.2,
we illustrated the proof by studying switching networks ( = ti(t)) with looser
connectivity conditions. The result can be further extended to study time-varying
couplings (Kji = Kji(t)),
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Assume now that time delays are non-negligible in communications. The dynamics
of the ith element then turns to be

xi = A Kj ( xj(t- Tj) - xi(t) ) (7.6)
jeAf

Theorem 7.3 Consider n coupled elements (7.6) with time-delayed communications.
Regardless of the explicit values of the delays, the whole system will tend to reach a
group agreement xi(t) = .. = xn(t) asymptotically if the network is connected, and
the coupling links are either bidirectional with Kji = Kij, or unidirectional but formed
in closed rings with identical gains.

Proof: For notational simplicity, we first assume that all the links are bidirectional
with Kjj = Kij, but the time delays could be different along the opposite directions,
i.e., Tj $ Tij. Thus, Equation (7.6) can be transformed to

i = E Gjirji
jEAv

where ri and correspondingly rij are defined as

uji = Gjixi + rji vij = Gjx, (7.7)

u = GTxj + ij vji = G7:xjuj3=~% v Z

with Gij = G > 0 and Kj = Kij = GijGT . Define

I bxTjxi +V= x2 E bxXfxi+2 E Vij (7.8)
~i=l~ ~ (i,j)EAr

where K = U' =jA denotes the set of all active links, and Vi is defined as in Sec-
tion 7.1.2 for each link connecting two nodes i and j. Therefore

_1V-= -2 E (6Trj7tJr + 6 67ij)
(i,j)EJV

One easily shows that V is bounded. Thus according to Barbalat's lemma, 1V will
tend to zero asymptotically, which implies that, V(i,j) E V, 6-ji and 6Jij tend to
zero asymptotically. Thus, we know that Vi, &i¢ tends to zero. In standard calculus,
a vanishing 5xi does not necessarily mean that 5x, is convergent. But it does in this
case because otherwise it will conflict with the fact that 6xi tends to be periodic with
a constant period Tji + Tij, which can be shown since

6uji(t) = GTbxi(t) + 6T3i(t) = G T6x(t - Tjj) (7.9)

6uij (t) = GiT6xj (t) + 6Tij (t) = GjTx(t-Tij)
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From (7.9) we can also conclude that, if Vi x, is convergent, they will tend to a
steady state

Jxi(t) = = 6x(t) = C

where c is a constant vector whose value dependents on the specific trajectories we
analyze. Moreover, we notice that, in the state-space, any point inside the region
x = --- = x,, is invariant to (7.6). By path integration, this implies immediately that,
regardless of the delay values or the initial conditions, all solutions of the system (7.6)
will tend to reach a group agreement x1 = -. = x, asymptotically.

In case that coupling links are unidirectional but formed in closed rings with
coupling gains identical in each ring, we set

v = E xTix + - E ( vT6vjide - 6vvji de )
i=1 (j-i)E.A I -

= E xTJx + > j v j(E) - 6v TjVj(E - Th) ) de
~i=l (j-i)EA-

and the rest of the proof is the same. The case when both types of links are involved
is similar. 0

Example 7.2.1: Compared to Theorem 7.2, the group agreement point in Theorem 7.3
generally does not equal the average value of the initial conditions, but depends on the
values of the time delays.

Consider the cooperative group (7.6) with one-dimensional xi, n = 6, and a two-way
chain structure

1< -- 2< >3 -- 4 ---< 5 --- >6

The coupling gains are set to be identical with value k = 5. The delay values are
different, and each is chosen randomly around 0.5 second. Simulation results are plotted
in Figure 7-5. 0

Remarks

* The conditions on coupling gains can be relaxed. For instance, if the links are
bidirectional, we do not have to ask Kij = Kji. Instead, the dynamics of the
ith element could be

* = Ki E ( xj(t-Tji)-xi(t) )
jEvi

where Ki = 1 GGT and G is unique through the whole network. The proof is
the same except that we incorporate ki into the wave variables and the function
V. Such a design brings more flexibility to cooperation-law design. The discrete-
time model studied in Section 7.2.3 in in this spirit. A similar condition was
derived in [19] for a swarm model in the no-delay case.
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Figure 7-5: Simulation results of Example 7.2.1 without delays and with delays. Initial
conditions, chosen randomly, are the same for each simulation. Group agreement is
reached in both cases, although the agreement value is different.

* Model (7.5) with delayed communications was also studied in [109], but the
result is limited by the assumptions that communication delays are equal in all
links and that the self-response part in each coupling uses the same time-delay.
Recently, [98] independently analyzed the system (7.6) in the scalar case with
the same assumption that delays are equal in all links.

7.2.2 Leader-Followers Group

Similar analysis can be applied to study coupled networks with group leaders. Con-
sider such a model

xi = E Kji (xj(t - Tji) - x(t)) + i Koi (xO - xi) i = 1,..., n (7.10)
jEAPi

where x0 is the state of the leader, which we first assume to be a constant. Vi, xi
are the states of the followers; Ai indicate the neighborship among the followers,
where time-delays are non-negligible in communications; -yi = 0 or 1 represent the
unidirectional links from the leader to the corresponding followers. For each non-zero
7i, the coupling gain Koi is positive definite.

Theorem 7.4 Consider a leader-followers network (7.10) with time-delayed commu-
nications. Regardless of the explicit values of the delays, the whole system will tend
to reach a group agreement

X (t) =..= XO
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asymptotically if the whole network is connected, and the coupling links among the
followers are either bidirectional with Kji = Kij, or unidirectional but formed in
closed rings with identical gains.

Proof: Exponential convergence of the leader-followers network (7.10) without delays
has been shown in [134, 164] using contraction theory. If the communication delays are
non-negligible, and assuming that all the links among the followers are bidirectional,
we can transform the equation (7.10) to

= Z Gji +i Koi (xo-xi)
jEAr

where rji and correspondingly rij are defined as the same as those in (7.7). Considering
the same Lyapunov function V as (7.8), we get

n T1V = - E i~xTKoi~xi - - >j ( TFji + T7Jrij)(2 rj + )
~~~i=l ~(ij)E1r

where J = U=lJi denotes the set of all active links among the followers. Applying
Barbalat's lemma shows that, V will tend to zero asymptotically. It implies that, Vi
if Yi = 1, x will tend to zero, as well as STji and 5-ij V(i, j) K. Moreover, since

cTji(t) = G ( xj(t- Tji) - xi(t) )

we can conclude that, if the whole leader-followers network is connected, the virtual
dynamics will converge to

6x 1 (t) == xn(t) = 0

regardless of the initial conditions or the delay values. In other words, the whole
system is asymptotically contracting. All solutions will converge to a particular one,
which in this case is the point x1 (t) = .. = xn(t) = x. The proof is similar if there
are unidirectional links formed in closed rings. 0

Example 7.2.2: Consider a leader-followers network (7.10) with one-dimensional xi,
n = 6, and structured as

0 - 1 -- 2 -- 3 -- 4 -- 5 <-- 6

The state of the leader is constant with value x = 10. All the coupling gains are set to
be identical with value k = 5. The delay values are not equal, each of which is chosen
randomly around 0.5 second. Simulation results are plotted in Figure 7-6. 0

Note that even if x0 is not a constant, i.e., the dynamics of the ith element is
given as

i = E Kji (xj(t - Tji) - xi(t)) + -yi Koi (xo(t - Toi) - xi(t))
jEAri
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Figure 7-6: Simulation results of Example 7.2.2 without delays and with delays.
Initial conditions, chosen randomly, are the same for each simulation. In both cases,
group agreement to the leader value xO is reached.

the whole system is still asymptotically contracting according to exactly the same
proof. Regardless of the initial conditions, all solutions will converge to a particular
one, which in this case depends on the dynamics of xo and the explicit values of the
delays. Moreover, if xO is periodic, as one of the main properties of contraction [81],
all the followers' state xi will tend to be periodic with the same period as x0 .

Example 7.2.3: Consider the leader-followers network in Example 7.2.2 again. We
set everything the same except that the leader's states is not constant. Instead, we choose

t
xo = 10 sin(-)

2

The whole system is still asymptotically contracting regardless of the delays. Simulation
results are plotted in Figure 7-7. 0

7.2.3 Discrete-Time Model

Simplified wave variables can also be applied to study time-delayed communications
in discrete-time models. Consider the model of flocking or schooling studied in [57,
156], where each element's state is updated according to the discrete-time law that
computes the average of its neighbors' states plus its own state, i.e.,

xi(t + 1) l ( xi + E j i = 1..., n (7.11)
1 + ni jEA/i
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(a). Without Delays

I HI It HI !t-10 . L. 0 , ,x5.

0 0 20 40 60 80

Figure 7-7: Simulation results of Example 7.2.3 without delays and with delays. In
both plots, the dashed curve is the state of the leader while the solid ones are the
states of the followers, which converge to a periodic solution in both cases regardless
of the initial conditions.

or, in an equivalent form

xi(t+ 1) = xi(t) + 1 ( xj(t) - x(t) )

In fact, in equation (7.11), there is no difference if xi is a scalar or a vector. For
notation simplicity we set xi as a scalar, but our analysis can be extended directly to
the vector case. In equation (7.11), t is the index of the updating steps, so that its
value is always an integer. Ai denotes the set of the active neighbors of element i,
which for instance can be defined as the set of the nearest neighbors within a certain
distance r around i. ni equals to the number of the neighbors of element i. As
proved in [57], the whole system (7.11) will tend to reach a group agreement if the
network is connected in a very loose sense.

Assume now that time delays are non-negligible in communications. The updating
law of the ith element changes to

xi(t + 1) = xi(t) + l ( xj(t-Tji) - x(t) ) (7.12)

where the delay value Tji is an integer based on the number of updating steps. As
in previous sections, Tji could be different for different communication links, or even
different along opposite directions on the same link. For our later analysis, here we
make a few assumptions: all elements update their states synchronously, and the time
interval between any two updating steps is a constant; the network structure is fixed
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and always connected, which implies that Vi, ni is a positive integer; the value of
neighborship radius r is unique through the whole network, which leads to the fact
that all interactions are bidirectional.

Theorem 7.5 Consider n coupled elements (7.12) with time-delayed
tions. Regardless of the explicit values of the delays, the whole system
reach a group agreement xl (t) =... = xn(t) asymptotically.

communica-
will tend to

Proof: Equation (7.12) can be transformed to

xi(t + 1) = xi(t) + E rji(t)
jei

where the wave variables are defined as

uji = xi + kirji Vij Xi

and ki = 1 + ni. Note that compared to (7.7), here we have Gij = Gji = 1. The
cooperation law could be extended to a more general form otherwise. Define

n

V(t) = Ekix?(t) + E Vij(t)
i=w1 (i,j)EA)

where V(i, j) E f = U=lj\fi

t-1

Vij(t) = E v2j(e)
E=t-1-Tij

+
0

E VTi2j (E) 
f=-Tj

t-

e=t-l-Tji

0

E v2(e)
e=-Tji

and therefore

Vij(t)
t-1

= E( v2j(E) - uj2(,) + 65vf.(E)
e=O

t-1

= - E ( 2ki6xi6rji(E) + kJrjij(E)
e=O

- 25( e) )

+ 2kjsxjsrij(E) + krj(E) )

Since

Vij(t + 1) -
(ij)EA

= - E (2ki3x~irji(t) + kf2(t) + 2kj6xj6rj(t) + k i~(t))
(i,j)EAf

n

= -E ( 2ki E Sxirji(t) + k E T2i(t) )
i=1 j Ji j EJAi
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n

- Eki( 6x (t) +
i=1

E 6 Tei(t) )2 + E
iEi (i,j)Eg

n

= V(t) + E ki
i=1

(( ji(t) )2
jEAi

1 ... 1
= 6rT [ .. :

i [ -- 7i

-ni 1
= jrT 1 -ni

1 1

- ki E Z5(t) )
jEAi

JF - kiJFiT r

*.. 1
. ri

... -n i

< - LrsFri
j=EMA-2
jEvi

where Fri = [- , rji, ... IT E Rn . Thus, we conclude that

n

V(t+ 1) • V(t) - E ki E 6r i (t)
i=l jENVi

A lower bounded V guarantees that it converges, that is, V(i,j) E Ar, 6 rji tends to
zero as t tends to infinity. This implies that Vi, Jxi converges. The rest of the proof
is then similar to that of Theorem 7.3. 0

Consider the discrete-time model of a cooperating group with a leader-followers
structure, where the dynamics of the ith follower is given as

xi(t + 1) 1 ( xi(t) + E xj(t-Tji) + yio )
1 +n +7j EJEi

1 + ,xi (t) + E rji(t) + i + ++ ni +y Ti ~ 1+ni+

and rji is defined as the same as (7.2.3) with ki = l+ni+±yi and 7i = 0 or 1. One easily
shows that a very similar analysis leads to the same result as that of Theorem 7.4.

7.3 Mutual Perturbation

In a large population, interacted groups may not communicate tightly. For instance,
the signals between groups may not contain explicit state information, but only in-
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formation on group synchronization. In this section, we construct such a model and
investigate its dynamics behavior.

7.3.1 Synchronization of Coupled Nonlinear Systems

As the background, we first review our basic result on the analysis of coupled nonlinear
systems [134, 164]. Consider a leaderless network with all links bidirectional. Given
the dynamics of the ith element

xi = f(xi, t) + E Kji (xj-xi) i-1,.. ., n
jEv

the whole network will synchronize exponentially if

Am+l(LK) > max Am( a (xi, t))8 uniformly

where m is the dimension of xi, and LK denotes the weighted Laplacian matrix [40]
with

LK = D I DT

Assuming the network has r inner links, the n x r block matrix D is a generalized
incidence matrix by replacing each number or -1 in the incidence matrix [40]
with identity matrix I E Rmxm or -. Note that the incidence matrix is defined
by assigning an arbitrary orientation to the undirected graph. I.. is a r x r block
diagonal matrix with the kth diagonal entry Kij corresponding to the weight of the
kth link which connects the nodes i and j.

While the result (4.7) is based on partial contraction analysis, a very similar
condition [167] can be derived by defining x = [xT,..., xT]T and

V = 2 X LKX

which leads to

f(xi,,t)
V=xTLK([ .. ]LKx) = XT(LKA- L ) X

f(xn, , t)

with
LKA = D I(KAis)8 D

Here I(KjA j) is a r x block diagonal matrix where the kth diagonal entry is the
symmetric part of KijAij and

Ai = Jf (xj + (xi - xj), t) dx
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corresponds to the kth link. It can be shown that [167], if

A2+l(K)Al((L) > maxAmax(KijAij)s (7.13)
k

1V is negative semi-definite, which implies that all the states xi will synchronize. Here
L is the standard Laplacian matrix. Note that both synchronization conditions (4.7)
and (7.13) need the network to be connected and the coupling strengths to be strong.
Assuming m = 1 and all the coupling gains are identical with value , (4.7) turns
to be > .2) max O (xi,t) while (7.13) represents a higher threshold >

A(L) max -- (xi, t). Note that for the synchronization conditions to be true, (xi, t)
A1X2(L m x ax
needs to be upper bounded, which can be satisfied if the coupled systems are for
instance oscillators.

7.3.2 Mutual Perturbation Between Synchronized Groups

Consider now two groups of coupled systems

x = f(xi,t) + E Kji (xj-xi) i = 1,...,n
jEAri

'i = g(Yi, t)+ E Hji (Yj-yi) i=1,.. .,m
jEMi

with possibly different dimensions in xi and Yi. Communications are allowed between
the nodes in different groups, which transmits only information on group synchro-
nization and may undergo time delays. As a simple example, assume xl and Yj are
the only pair of such inter-connected nodes, whose dynamics change to

X1 = f(xl,t) + E Kjl1 (xj - xl) + Gy,( GT p(t - Ty,) - Gp(t)

jEAi

Y = g(Y1 , t) + E Hj1 (y j - y) + Gxy( Gp-(t-T)) p(t)

jEM1

where Px, py represent synchronization error in each group, as seen from its node 1,

P = E Kji (xj-xi)
jGKi

P = E Hji (yj-yi)
jEM1

Theorem 7.6 Consider loosely-tied groups described above. Synchronization in each
group is robust to mutual perturbation as well as to the time delays attached. However,
a small disturbance in a single group may cause big uncertainty in the entire population
and take a long time to finally settle down.
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Proof: Again, we use simplified wave-variables and define

1 T I T
V = !XTLKX + 1Y LH +

2 2 Y

2 ( v 1vvzde + vTv d - vTyvYde - v vyde )
T Vxy S o y: - zy -: y2 TXV ~~~ tTYx - TX V TV z

whee =[xT', 'T]Ty TT. T]T
where x = [x n... , X, y = [yi .. , yT]T, LK and LH are the weighted Laplacian
matrices in x and y groups, respectively, and the corresponding wave-variables are
defined as the same as those in (7.7) except that here we use p~, p. replace otherwise
x1 , yl. For instance,

T (t _T~y) T py = GXY p-(t- )- GYp(t)
- = GyTpx(t - Ty)- GTvpy(t)

Therefore

xT ( L L ) X + YT ( LH 2- )y - Tv 2
2 2~

and it is negative semi-definite if both groups satisfy the synchronization condi-
tion (7.13). This implies that, synchronization ability in each group preserves after we
add time-delayed mutual perturbation, which, however, makes the entire population
easier to be disturbed and the transition period much longer. 0

Note that the result can be extended directly to study more complex populations,
which may contain multiple groups and more general inter-connections. Similar phe-
nomena can be found e.g. in human psychology and macro-economics.
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Chapter 8

A General Study of Time-Delayed
Nonlinear Systems

In this chapter, we study nonlinear systems involving time delays in very general
dynamics equations. The method is again based on contraction analysis. We show
that, by satisfying some simple relations between time-delayed terms and non-delayed
terms, contraction property can be preserved regardless of the explicit value or chang-
ing rate of the delays. Especially, if the system dynamics is autonomous, all solutions
will converge to the same equilibrium point regardless of the delays. Such a property
is very useful to reach performance robustness in a distributed working environment,
for instance.

In Chapter 7, we developed contraction analysis methods for time-delayed commu-
nications using simplified wave-variables. Simplified wave-variables are very powerful
to study diffusive communications, in a sense the effects of time-delays in different
directions within the same communication channel are cancelled by each other. But
they are difficult to be applied to study other kinds of delayed terms. Although not
as strong as simplified wave-variables in analyzing diffusion couplings, the method
developed here has no limitation on application areas.

8.1 Time-Delayed Continuous Systems

8.1.1 Time-Delayed Continuous Systems

Consider a nonlinear system whose dynamics at time t depends on the current state
x = x(t) and on the delayed state XT = x(t- T),

= f(x, xT, t) (8.1)

The delay T > 0 can be time-varying, although we assume that the time-ordering of
the data is preserved in the transmission, i.e., that

T< 1
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Since the virtual dynamics is

Ax = J(t) Ax + B(t) axT

where
Of Of

J(t)= af B(t) = f (8.2)

consider the differential length

V = 2i xTax + k xTax(E) dE

with k a positive constant, yielding

xV = -Xc* + k(xTax - (1-T) 3xTxT)
= xT( J + kI )x + xT B xT - k( - T) jXTXT

=~~~~~~~~~~~
Jy T(t)[J +kI B ]yt
y(t) [J0 -k(1 - T)I ] y(t)

with yT = [JxT, 3xT]. Thus, V1 < 0 if

0 -k( -T)I < 0 (8.3)~~~~~~~~~~~~~(.

In the sequel, we shall assume that V is bounded as a a consequence of the bounded-
ness of V for the systems of interest. Then, Barbalat's lemma [131] shows that (8.3)
implies that V tends to zero asymptotically, and hence that x(t) tends to zero, i.e.,
that the system (8.1) is asymptotically contracting regardless of the explicit value of
T. This result may be considered as a generalization of the stability analysis of linear
switching systems in [179, 180].

Theorem 8.1 A nonlinear time-delayed continuous system (8.1) is asymptotically
contracting if

amax(B) < - Amax(Js) 1- T (8.4)

where J8 is the symmetric part of o9f Amax(Js) is the largest eigenvalue of J8 and
imax(B) is a constant upper bound on the largest singular value of B.

Proof: Contraction condition (8.3) can be written

J8 +kI B]
1 BT -k( -T)I < 0

Since k is positive, a necessary and sufficient condition for the above inequality to be
true is [51]

1s kI< 4B(-(1-)I -1TJ 8 + k1 < -B( -k(1 - T)I )-'BT
4
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Thus, a sufficient condition is

-Amax(Js) > k + 4( r) max(B)
4k( - )

The value k which minimizes the right-hand side of the above inequality is

1
k= 1 max(B)

21-T

yielding (8.4). 0
Theorem 8.1 guarantees that asymptotic contraction is preserved by arbitrarily

time-delayed feedback as long as the control gain is limited by the system's contraction
rate. Note the Doppler-like time in T.

Example 8.1.1: Consider a system with time-delayed feedback

x = f(x,t) + u(xT,t)

where u(xT, t) is a term containing the control input and based on time-delayed feedback.
One thus has the contraction condition

max( au < - Amax (f + af T) 

Since an autonomous contracting system contains a globally stable equilibrium point [81,
133], we now know that, the stability property of this equilibrium point is independent
to the value of time delay if the condition above is satisfied. 0

Example 8.1.2: The property that an equilibrium point could be stable independent to
the value of the time delay may help to realize robust performance in parallel computation
or distributed computation. For instance, to implement [133]

x = -grad(V(x))

we can let part of the task computed parellelly. If time delay is significant, we have

x = - grad(V (x)) - grad(V2(XT))

Regardless of the time delay, the whole computation will always converge to a unique
steady state if

a2v 2
2

1
max(a V2) < - mi(2 V+ 

The task can be further separated according to the extension result derived below. 0

8.1.2 Two Extensions

The result can be extended to nonlinear systems with multiple time delays,

= f(x,xT1 , .. ,xT , ,t) (8.5)
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where XT, = x(t- T). The virtual dynamics is now

l

65x -= J(t) x + EBi(t) 6 XTi

i=1

where

V = x x (t)
2

OfBi(t) = axTf

where the ki are positive constants, yielding

l

= x x(t) + E ki ( x T6x(t) -

i=1

J(t) + Z kI
= 6y T 0o

0

Bi(t) B"(t)
-kl(1 -T 1 )I ... B 6Y

. . . . . . . ..

0 -k.(l-T.)I

with 6 yT = [6xT(t), xT(t - T 1),. .. , xT(t - Ti)]. Similarly, if V < 0 and is
bounded, V will tend to zero asymptotically, which implies that the overall system is
asymptotically contracting regardless of the explicit values of the Ti's.

Proposition 1 A nonlinear system with multiple time delays (8.5) is asymptotically
contracting if

•. max(Bi) <

i 
- max (Js) uniformly

where the notations are the same as in Theorem 8.1,

Proof: For notation simplicity, we set Vi Ti = 0. (The proof is the same if Ti - 0.)
Assume that max(Js) < - ]i max(Bi) - 6 with 6 > 0 a constant. This implies

Js < (- E max(Bi) - ) I

Letting k max(Bi) in (8.1.2), we have~i
Letting ki O2'max(Bi) in (8.1.2), we have

0(
< yT

+ 2 EZ Jmax(Bi))I
T1BT2 1

~ m B 1 ) i i 1m x ( i I 0 1
27max(B1)I ... ° 6y < 0

. . . . . .. .

0 ...-. Iomax(B)I2~~
100
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+E
i=1

ki t

Jt
6xT6x de

TjX(tT(1 - Ti)6x i) )

I T1Bt



Indeed, the matrix above is a sum of symmetric negative semi-definite matrices, since
for each i

--½am2x<B/) -( ma(Bi) + amax(Bi < o 

In fact, Proposition 1 can be considered as a generalization of the feedback com-
bination of contracting systems [164].

Example 8.1.3: Consider coupled two systems with time-delayed feedback

x= f (xl, t) + U2(X2T2 ,t)

X2 = f2 (x2 ,t) + U1(X1T 1 ,t)

where XiT, = xi(t - Ti), i = 1, 2. According Proposition 1, the contraction condition is
thus

1 ~~Oui O.T
, / Omax(0 j ) < - max ma(i- + )

i=1,2 1 - OXiTj i=1,2 axi axi

0 0
Note that here B1 = atui 0 and similar is B 2.

0X1Tj

Readers can compare this result with those in our recent paper [168], where our analysis
is also based on Contraction Theory, but using a different methodology which we call
simplified wave-variables. Simplified wave-variables are very powerful to study diffusive
communications, in a sense the effects of time-delays in different directions within the
same communication channel are cancelled by each other. The contraction property of
two (or more) coupled subsystems are always preserved regardless of the coupling gains
or time delays. The result derived in this paper is weaker in diffusion case, but more
general since there is no limitation on the types of the couplings. [

The proposition below extends the result to the model where the open loop system
is contracting in a general metric.

Proposition 2 In system (8.5), if the open-loop function f is contracting with metric
eTe, contraction is preserved for the overall system if

max (Bi) < - Amax(Fs) uniformly

where F is the generalized Jacobian defined in (2.3) and Bi is re-defined in the proof
below.

Proof: Given a coordinate transformation (2.2), the virtual dynamics is now

l

z : F(t) z + ZBi(t) zT,

i=1

where F is generalized Jacobian defined in (2.3) and

OfBi(t) = e(t) Of 0-(t- T )
OxTi
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Define
1T5z/(t) + 6 kiV = c Ez(t ftki | h5zz de

2 i Ti

yielding

F(t) + E] kiI Bl(t) ... Bl(t)

= T 0 -k 1( -T 1 )I *... 0 y
... ... ... ...

0 0 . -kl( - )I

with yT = [_T(t), z(t- T 1 ),... , zT(t-Tl)]. The rest of the proof is the same
as that for Proposition 1. 0

8.2 Time-Delayed Discrete-Time Systems

Consider a nonlinear discrete-time system with part of its dynamics relying on a
delayed state

x(t + 1) = f(x, XT, t) (8.6)

where x = x(t), XT = x(t- T), and T is a constant integer. The virtual dynamics is
then

6x(t + 1) = J(t) x + B(t) xT

where J and B are defined as in (8.2). Now consider the differential length

t-1

V(t) = xT x(t) + k E xTbx(E)
e=t-T

with k a positive constant, yielding

V(t + 1)- V(t) = 6YT(t) [ JT J(t) + kI- I JTB(t) (8.7)BTj(t) BTB(t) - j(8.7)

where yT = [6XT, 6XT]. Thus, if uniformly

JTJ(t)+ kI - I JTB(t) (8.8)

BTJ(t) BTB(t) - kI < (88)

V(t) will converge to a limit asymptotically, which implies that V(t + 1) - V(t) tends
to zero. From (8.7) this implies that Sx tends to zero, i.e., that the system (8.6) is
asymptotically contracting regardless of the explicit value of T.

Theorem 8.2 A nonlinear time-delayed discrete-time system (8.6) is asymptotically
contracting if

cma (J) + ama (B) < 1 (8.9)
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where Umax(J) and amax(B) are constant upper bounds on the largest singular value
of J and B, respectively.

Proof: For condition (8.8) to be true, we need

BTB < kI (8.10)
JTJ- (1- k)I < TB (BTB - kI) - ' BTJ

Assuming k = aao2ax(B) and a > 1, (8.10) is verified. One then has

BTB-kI < -(a-1)max(B)I < 0

Therefore
(BTB- kI)- 1 >

1 

(a - 1) a(B)
and

JTB (BTB - kI) - 1 BTJ
1

JTBBTJ >
(a- 1)c'max(B)

1
- 1 jTj

a-1

Thus, (8.11) will be satisfied if

JTJ_ (1 -a ma(B))I < - j j 

that is, if

a jTJ + a (B)I < I

or, more sufficiently, if

a ,;ma(J) + a max(B)
a-1

< 1

The value a which minimizes the right-hand side of the above inequality is

a amax )+ 1
max (B)

which then yields (8.9).
Similar extensions as those in Section 8.1.2 can be made on discrete-time systems,

too.
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Chapter 9

Fast Computation With Neural
Oscillators

Recent research has explored the notion that artificial spike-based computation, in-
spired by models of computations in the central nervous system, may present sig-
nificant advantages for specific types of large scale problems [14, 29, 38, 44, 50, 56,
59, 61, 72, 77, 87, 129, 148, 149, 160, 163]. This intuition is motivated in part by
the fact that while neurons in the brain are enormously "slower" than silicon based
elements (about six orders of magnitude in both elementary computation time and
signal transmission speed), their performance in networks often compares very favor-
ably with their artificial counterparts even when reaction speed is concerned. In a
sense, evolution may have been forced to develop extremely efficient computational
schemes given available hardware limitations.

In this chapter, we study new models for two common instances of such computa-
tion, winner-take-all (and k-winner-take-all) and coincidence detection. In both cases,
very fast convergence is achieved and network complexity is linear in the number of
inputs. Fully distributed structures are further derived by replacing the single global
neuron with a group of interneurons synchronized by fast diffusion mechanisms. Such
mechanisms could be provided by electrical synapses, which are ubiquitous in the
brain [11, 27, 23, 39], for instance in the form of gap junction-mediated connections.

We first present a simple network of FitzHugh-Nagumo (FN) neurons for winner-
take-all computation, as well as for k-winner-take-all and soft-winner-take-all. In
contrast to most existing studies, the network's initial state can be arbitrary, and
its convergence is guaranteed in at most two spiking periods, making it particularly
suitable to track time-varying inputs. If several neurons receive the same largest
input, they all spike as a group.

Using a very similar architecture, but replacing global inhibition by global exci-
tation, we obtain an FN network for fast coincidence detection, in a spirit similar
to [14, 50]. Again the system's response is practically immediate, regardless of the
number of inputs.
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9.1 The FitzHugh-Nagumo Model

As we have introduced, the FitzHugh-Nagumo(FN) model [36, 100] is a well-known
simplified version of the classical Hodgkin-Huxley model [49], the first mathematical
model of wave propagation in squid nerve. Originally derived from the Van der Pol
oscillator [131, 141], it can be generalized using a linear state transformation to the
dimensionless system [99]

v = v(at-v)(v-1)-w + I (9.1)

b = &v - w

where , /3, -y are positive constants, v models membrane potential, w accommodation
and refractoriness, and I stimulating current.

Simple properties of the FN model can be exploited for neural computations. For
appropriate parameter choices, there exists a unique equilibrium point for any given
value of I, which is stable except for a finite range I < I < Ih where the system
tends to a limit cycle. The steady-state value of v at the stable equilibrium point
increases with I. Moreover, the FN model inherits Hodgkin-Huxley's excitability
feature, in that a small perturbation from the equilibrium point may cause a large
excursion to return. We can see this clearly in Figure 9-1(a), where the cubic curves
are the null dclines corresponding to = 0, and the straight lines corresponding to
b = 0. A small perturbation (point A) from the equilibrium point (point B) causes

a large excursion to return.

(a) (b)

v V

Figure 9-1: The FN model (9.1) in the state space. (a) Illustration of the excitability
feature; (b) illustration of the WTA computation.
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9.2 Winner-Take-All Network

Winner-take-all (WTA) networks, which pick the largest element from a collection
of inputs, are ubiquitous in models of neural computation, and have been used ex-
tensively in the contexts of competitive learning, pattern recognition, selective visual
attention, and decision making [4, 1, 31, 32, 45, 46, 55, 161, 184]. Furthermore,
Maass [85, 86] showed that WTA represents a powerful computational primitive as
compared to standard neural network models based on threshold or sigmoidal gates.

The architectures of most existing WTA models are based on inhibitory interac-
tive networks, implemented either by a global inhibitory unit or by mutual inhibitory
connections. Many studies, such as [33, 183], require the system dynamics to be initi-
ated from a particular state, which may be unrealistic biologically and also prevents
effective tracking of time-varying inputs. Starting with [72], many WTA implementa-
tions in analog VLSI circuits have been proposed. While they do guarantee a unique
global minimum, dynamic analysis is difficult and computation resolution limited.
Studies of spike-based WTA computation, as in [59], are comparatively recent. In
this section, we describe a very simple network of FN neurons for fast winner-take-
all computation, whose complexity is linear in the number of inputs. The network's
initial state can be arbitrary, and its convergence is guaranteed in at most two spik-
ing periods, making it particularly suitable to track time-varying inputs. If several
neurons receive the same largest input, they all spike as a group of winners.

9.2.1 Basic structure

The basic network consists of n FN neurons. Each neuron receives a stimulating input
Ii and a common inhibition current z from a global inhibitory neuron (Figure 9-2).
The dynamics of the FN neurons (i = 1, .. , n) are

J vi(a- v)(vi-1)-wi+ I - z

i Vi - 7Wi

Note that the coupling term z can be replaced by a more general form, for instance,
a nonlinear function of z.

The global inhibition neuron receives synaptic inputs from the FN neurons. It
spikes whenever any FN neuron spikes, after which it slowly converges to a rest
steady state. The specific dynamics of the global neuron can be very general. As
an example, we assume that it is composed of a charging mode and a discharging
mode. Specifically, charging starts if there is any FN neuron spiking in the network,
i.e. when v, exceeds a given threshold value v0 . It switches to discharging if the state
is saturated (close to the saturation value in simulation) and stays in this mode until
a FN neuron spikes next. For simplicity, we define

-k, (z- zo) charging mode

-kd z discharging mode (9.2)
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Figure 9-2: Basic WTA network structure

0 20 40 60 80 1 U
(b) time
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Figure 9-3: Simulation of WTA computation with n = 10. (a) States vi versus time
(the dashed curve represents the state of the neuron receiving the largest input); (b)
state z versus time.
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where z is a constant saturation value, and k and kd are the charging rate and
discharging rate.

To perform WTA computation, we set k to be large while kd to be small. As
illustrated i Figure 9-1(b) (where we only draw the curve ABCDEC as the trajectory
of the FN neuron receiving the largest input. It spikes within two periods. The
two cubic null dclines correspond to a full-valued inhibition, the lower one, and a
discharged inhibition, the upper one.), if there is any FN neuron spiking, the strength
of the inhibition current increases to its saturation value rapidly, leaving no chance for
other neurons to spike. Therefore, the potential value of all FN neurons drops sharply
(from point A to B), and then converges to a varying equilibrium point smoothly
(from B to C). The inhibition current discharges slowly after spiking, leading the
FN neurons approaching the oscillation region slowly. The first neuron entering the
oscillation region will be the one with the largest input. Because of the excitability
feature we explained in Section 9.1, this neuron actually spikes (from C to D) before
it enters the oscillation region, and its spiking ignites a repeating period (from D to
E and then to C again). Thus, the winner is identified within two periods. Note
that, since the FN neurons converge to varying equilibrium points with the inhibition
slowly discharging, and the potential values vi at equilibrium points are ranked by
the inputs Ii, the neuron with the larger input will soon occupy the higher position as
we can see in Figure 9-3. This property also helps the winner to spike first (otherwise
the neuron entering the oscillation region later may reach the spiking value first).

Given the parameters of the FN neurons, the frequency of the result depends on
the global neuron's saturation value, its charging and discharging rates, and the value
of the largest input. If we fix the global neuron's dynamics, the frequency increases
with the value of the largest input. A simulation result is shown in Figure 9-3 with
n = 10. The parameters of the FN neurons are set as = 5.32,0 = 3,,y = 0.1,
with spiking threshold vo = 5 . The inputs Ii are chosen randomly from 20 to 125.
The parameters of the global neuron are z = 160, kc = 1, kd = 1/50. All the initial
conditions are chosen arbitrarily.

9.2.2 Distributed Version

The linear complexity of the WTA network makes it possible to replace the single
global inhibitory neuron with a group of interneurons, each of which only inhibits
a set of local FN neurons (as illustrated in Figure 9-4). In this distributed ver-
sion, synchronization of the interneurons can be guaranteed by the general nonlinear
synchronization mechanisms derived in previous chapters. As an example, assume
that the interneurons are only coupled to nearest neighbors, and each of them spikes
if there is any local FN neurons spiking or if there is any neighboring interneuron
spiking. The specific form of the dynamics is given, for instance, as

Zi = f (zi) + E ji(zj - zi)
jE~Vi
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where Afi is the set of the neighbors of interneuron i, f represents the dynamics
defined in (9.2), and yji is equal to a constant positive value -'Y if neurons i and j
are in the same mode, otherwise it is 0. Such a coupling is based on both proximity
and similarity, and is achieved with electrical synapses. Note that electrical synapses,
such as gap junction-mediated connections, appear to play a central role in generating
widespread synchronous inhibitory activities in neocortex [11, 27, 23, 39], for instance.

Figure 9-5 illustrates a simulation result with four interneurons connected as a
chain. Each interneuron inhibits five FN neurons. The parameters are the same as
those in Figure 9-3, except that k = 10 and y = 1. The initial conditions and the
inputs are chosen randomly. Note that increasing interneuron connectivity would lead
to faster synchronization.

9.2.3 Discussion

In the following, while we refer for simplicity to the global mechanism of section 3.1,
the results apply as well to the distributed version of section 3.2.

* Initial conditions and computation speed
The mechanism described above guarantees that initial conditions can be set
arbitrarily, which cannot be realized by most of the previous WTA models.
With appropriate parameters, the computation can be completed at most in
two periods. The first spiking neuron is chosen partly by initial conditions,
while the second one will be the one with the largest input, and it remains
spiking until the inputs change. Actually, if the initial inhibition is set large
enough so that all the FN neurons are depressed in the beginning, the neuron
with the largest input will spike within the first period.

* Varying inputs and noise
Since initial conditions do not matter in our model, the network can easily track
time-varying inputs. Figure 9-6 illustrates such an example, where three inputs
switch winning positions several times. The parameters are all equal to those
in Figure 9-3. The state in plot (a) corresponds to the input in plot (b) with
the same color and style. Although the inputs change continuously, the spiking
neuron always tracks the largest input. Note that the computation is robust to
signal noise as well.

* Multiple winners
Decreasing the global neuron's discharging rate kd extends the waiting time
before the winner spikes. This is helpful if there exist several neurons receiving
the same largest input and we expect them all spike as a group of winners.
Enlarging the time neurons stay in the stable region allows these neurons with
the same input converge to each other, and to enter the oscillation region and
spike simultaneously. Figure 9-7 shows a simulation result, where the parame-
ters are the same as in Figure 9-3 except that k = 5, kd = 1/80. The inputs
are ... = 19 = 120, 10 = 119.5 . The first plot shows states vi versus
time. The dashed (red) line represents v and the solid (blue) lines the other
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Figure 9-4: A distributed WTA network structure.
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Figure 9-5: Simulation of distributed WTA computation. (a) States vi versus time;
(b) inhibitions zi versus time.
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Figure 9-6: Simulation result of WTA computation with varying inputs. (a) States
vi versus time; (b) inputs Ii versus time.
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Figure 9-7: Simulation result of WTA computation with multiple winners.
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vi's. The first nine neurons converge together during the waiting time and spike
simultaneously as a group of winners. The second plot, an enlarged version of
the first at a spiking moment, shows that v10 is completely depressed by the
winners even though the input difference is very small.

If its size is small, the network may be augmented with all-to-all couplings
between FN neurons, with the coupling gain increasing with the similarity of
the inputs, for instance, of the form e- I-Ii . This lets the neurons receiv-
ing identical inputs converge together exponentially and thus provides another
solution to the multiple-winner problem.

* Computation resolution
Computation resolution can be improved by decreasing the global neuron's dis-
charging rate kd while increasing the charging rate k. Decreasing kd allows the
winner fully distinguished with the following neurons; increasing kc prevents the
following neurons spike after the winner. In simulation, by setting kc = 5 and
kd = 1/80, a winner with Imax = 120 can be clearly identified while the second
largest input I = 119.5 (Figure 9-7). The resolution here is much better than
the WTA models presented previously, including [72, 154]. It can be further
enhanced by decreasing the relaxation time of the FN neurons.

* Input; bounds
The inputs to the FN neurons should be lower-bounded by I (the lower thresh-
old of the oscillation region) to guarantee that the neurons can spike before the
inhibition is fully released. They should also be upper bounded to set z.

* Spike-controlled coupling and slow inhibition
The feedforward and recurrent connections used in our WTA network are similar
to those in [61], where a "universal" control system is developed based on olivo-
cerebellar networks, and the neuron model is FitzHugh-Nagumo-like containing
four variables. The couplings inside the circuit are spike-controlled. Another
example is [161], where WTA is implemented to compute the object with the
largest size. Biologically motivated models using slowly-discharged inhibition
can be found in e.g. [80, 161, 171].

* Computational complexity
The complexity of the network is O(n). Since the FN neurons are independent,
they can be added or removed from the network at any time.

9.3 Extensions

9.3.1 K-Winner-Take-All Network

K-WTA is a common variation of WTA computation, where the output indicates for
each neuron whether its input is among the k largest [7, 37, 154, 178, 181]. Most
previous k-WTA studies are based on steady-state stability analysis. Many of them
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define the winners as the neurons with the largest initial states [88, 178], or require
initial conditions to be set precisely [181], which makes the networks not well suited
to time-varying inputs. Others adopt particular design methodologies [116, 126] but
the network size or the number of winners is limited. K-WTA is also implemented in
analog VLSI circuits [154], which extend the elegant WTA model in [72] but inherit
its low resolution limit as well.

The neural network described in Section 9.2 can be easily extended to k-WTA
computation, where an FN neuron spikes if and only if its input is among the k
largest. Indeed, as the global inhibition force decreases, the FN neurons approach the
oscillation region rank-ordered by their inputs. Thus, while for WTA computation,
the global inhibition neuron is charged after the first FN neuron spike, for k-WTA
computation the charging moment is simply modified to capture the kth instead.

To get this effect, we augment the dynamics of each FN neuron with a self-
inhibitory portion, which receives synaptic inputs both from the FN portion and the
global neuron. The specific form of the self-inhibition's dynamics can be very general.
Here we give an example:{i = Vi( -- vi)(i- 1) - w + Ii- i- 

bi = 3vi - wi

ti = k (uo - ui)

where u0 is a constant saturation value and ku the changing rate. The value of (i has
two possibilities, namely it switches to 0 if the global neuron spikes, else it switches
to 1 if the FN neuron spikes. Thus the value of ui varies between 0 and u0, with the
transition periods very fast by setting a large ku.

The dynamics of the global inhibitory neuron is the same as before, except that
we start its charging mode if any k FN neurons in the network spike. Such a moment
can be captured by determining whether Ei=1 ui approaches kuo. Therefore, if any
FN neuron spikes, it excites only the corresponding local inhibition but has no effect
on the rest of the network. But if there are k local inhibitions turned on, the global
inhibitory neuron spikes, which then releases all the local inhibitions and ignites a
new period.

Compared to the WTA network in Section 9.2, the basic principle underlying the
k-WTA network described above is the same, exploiting the simple properties of the
FN model. Thus, most of the computational advantages of the WTA network are
inherited by the k-WTA extension. Figure 9-8 illustrates an example which tracks
time varying inputs with n = 3, k = 2. The parameters of the FN neurons are the
same as those in Figure 9-3. The parameters of local inhibitions are u0 = 160, k. =
100 , and those of the global neuron are z0 = 240, kc = 100, kd = 1/40. All initial
conditions are chosen arbitrarily. The inputs are not constant. Each state in plot
(a) corresponds to the input in plot (b) with the same color and style. The spiking
neurons always tracks the two largest inputs.
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Figure 9-8: Simulation of k-WTA computation. (a) States vi
Ii versus time.

versus time; (b) inputs
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(b)

Figure 9-9: Simulation of soft-WTA computation. (a) States vi versus time; (b) global
inhibition z versus time.
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9.3.2 Soft-Winner-Take-All

Soft-WTA [85] (or softmax) is another variation of WTA computation, where the out-
puts reflect the rank of all inputs according to their size. Although soft-WTA is a very
powerful primitive [85, 86] in that it can be used to compute any continuous function,
its "neural" implementation is complex. Recently, [184] studied soft-WTA as an op-
timization problem not based on a biologically plausible mechanism; [55] presented a
hardware model of selective visual attention which lets the attention switch between
the selected inputs, but whose switching order does not completely reflect the input
ranks. In this section, we develop a simple soft-WTA neural network which generates
spiking outputs rank-ordered by their inputs, and inherits the main computational ad-
vantages of the WTA network. Potential applications may include selective attention,
associative memory and competitive learning, and desynchronization mechanisms for
perceptional binding [44, 129, 160, 163].

Letting k = n in the k-WTA network described in Section 9.3.1 yields a pre-
ordered spiking sequence in each stable period. However, such an nth spiking moment
may not be measurable if the number of inputs n is unknown or time-varying. To make
the solution more general, we let the global inhibitory neuron spike autonomously,
for instance let it spike if the inhibition z is lower than a given bound Zlo. Thus,
the spikings of all the FN neurons in the network are guaranteed by the sufficient
condition

Zlo < Imin- II

where I, is the lower bound of the oscillation region of the FN model and Imin is the
minimum input value.

Figure 9-9 illustrates such an example with n = 10. The parameters are the
same as those in Figure 9-8. The inputs Ii are distributed uniformly between 80
and 120. The inhibition lower bound is zlo = 60 . Initial conditions are chosen
arbitrarily. The computation is completed in the second period, during and after
which the spiking times of the FN neurons are ranked by their inputs.

9.3.3 Fast Coincidence Detection

Recent neuroscience research suggests that coincidence detection plays a key role in
temporal binding [78, 152]. Hopfield et al. [14, 50] proposed two neural network struc-
tures, both able to capture a "many-are-equal" moment, to model speech recognition
and olfactory processing. A similar computation can be implemented by FN neurons,
with faster and more salient response.

Consider a leader-followers network with a structure similar to Figure 9-2, except
that the global neuron (the leader) is now excitatory, and the connections from the
leader to the followers are unidirectional. For simplicity, we assume that all the
neurons are FN neurons with the same parameters but different inputs. The dynamics
of the leader (vo, wo) obeys equations (9.1) while those of the followers (i = 1, . .,n)
are { = vi(a - v)(vi - 1) - wi + 1i + k(vo - vi)

I bi = /svi - Ywi
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where k(vo - vi) is the coupling force from the leader to the followers. Neurons i
and j synchronize only if inputs Ii and Ij are identical. We define the system output
accordingly to capture the moment when this condition becomes true for a large
number of inputs, as illustrated in Figure 9-10 with n = 30. The parameters of the
FN neurons are the same as in Figure 9-3. The inputs are Io = 90 and I1,..., I30
varying from 20 to 80, and the coupling gain is k = 1.7.

Note that the coupling gain k should be large enough to guarantee synchronization
(an explicit threshold can be computed analytically), but not so large as to have the
leader numerically dominate the dynamic differences between the followers. As in
Section 9.2., the network structure can be fully distributed by replacing the single
leading neuron by a group of interneurons synchronized through electrical synapses.

I I I I I
output

time

I I I I I

time

Figure 9-10: Simulation of fast coincidence detection.
n max(0, i) versus time, and the lower I, . . I.~-~i=1 max((), )i) versus time, and the lower 1... n

The upper plot shows
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Chapter 10

Concluding Remarks

The combination of contraction analysis and graph theory generates a powerful tool
to study the collective behaviors of distributed nonlinear networks. In this thesis, we
derive explicit conditions for synchronization, identify different leader roles in dynamic
networks, investigate the effect of time-delayed communication, and propose simple
models to implement neural computation tasks.

Particularly, we introduce the concept of partial contraction, which investigates
stability with respect to a specific behavior or property, and therefore can be very
powerful to analyze large-scale systems. Based on contraction and/or partial contrac-
tion properties, synchronization analysis is greatly simplified by isolating the desired
convergence behavior from the overall system dynamics. Furthermore, because it is
virtual, the auxiliary, meta-system y can actually be centralized. Although this the-
sis focuses mainly on identical properties of subsystem states, future applications of
partial contraction to synchronization should investigate convergence to more general
properties, such as phase locking in locomotion systems.

Partial contraction analysis could also be applied in the context of discrete-time
systems, hybrid systems or switching systems. It then allows one to study, for in-
stance, the synchronization of pulse-coupled neurons in a distributed network, a wide-
used model in neuroscience which still lacks a complete theoretical explanation.

Finally, the results presented in this thesis could be extended to study systems
described by nonlinear partial differential equations such as reaction-diffusion equa-
tions, and to the case when connections occur stochastically. The principle of a virtual
centralized system may also have applications in quantum physics.
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