
Optimal Agent Cooperation with Local Information

by

Jan De Mot

Burgerlijk Werktuigkundig Ingenieur
Katholieke Universiteit Leuven, 2000

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Mechanical Engineering

May 12, 2005

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Eric Feron

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Daniela Pucci de Farias

Assistant Professor of Mechanical Engineering
Thesis Advisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
John N. Tsitsiklis

Professor of Electrical Engineering and Computer Science
Thesis Advisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lallit Anand

Professor of Mechanical Engineering
Chairman, Department Committee on Graduate Students



2



Optimal Agent Cooperation with Local Information
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Doctor of Philosophy in Mechanical Engineering

Abstract

Multi-agent systems are in general believed to be more efficient, robust, and versatile than
their single-agent equivalents. However, it is not an easy task to design strategies that
fully exploit the multi-agent benefits, and with this in mind we address several multi-agent
system design issues. Specifically, it is of central importance to determine the optimal agent
group composition, which involves a trade-off between the cost and performance increase
per additional agent. Further, truly autonomous agents solely rely on on-board environment
measurements, the design of which requires quantifying the multi-agent performance as a
function of the locally observed environment areas. In this thesis, we focus on the collabo-
rative search for individually rewarding resources, i.e. it is possible for multiple agents to
incur the same reward. The system objective is to maximize the aggregate rewards incurred.

Motivated by a cooperative surveillance context, we formulate a graph traversal problem
on an unbounded structured graph, and restrain the agent motion spatially so that only
the lateral agent separation is controlled. We model the problem mathematically as a
discrete, infinite state, infinite horizon Dynamic Program and convert it using standard
techniques to an equivalent Linear Program (LP) with infinitely many constraints. The
graph spatial invariance allows to decompose the LP into a set of infinitely many coupled
LPs, each with finitely many constraints. We establish that the unique bounded function
that simultaneously satisfies the latter LPs is the problem optimal value function. Based
on this, we compute the two-agent optimal value function explicitly as the solution of an
LP with finitely many constraints for small agent separations, and implicitly in the form of
a recursion for large agent separations, satisfying adequate connection constraints. Finally,
we propose a similar method to compute the state probability distribution in steady state
under an optimal policy, summarizing the agent behavior at large separations in a set of
connection constraints, which is sufficient to compute the probability distribution at small
separations.

We analyze and compare the optimal performance of various problem instances. We
confirm and quantify the intuition that the performance increases with the group size.
Some results stand out: for cone-shaped local observation, two agents incur 25% less cost
than a single agent in a mine field type environment (scarce though high costs); further, for
some environment specifics, a third agent provides little to no performance increase. Then,
we compare various local observation zones, and quantify their effect on the overall group
performance. Finally, we study the agent spatial distribution under an optimal policy, and
observe that as rewards are scarcer, the agents tend to spread in order to gather information
on a larger environment part.

Thesis Supervisor: Eric Feron
Title: Associate Professor of Aeronautics and Astronautics
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A careless word may kindle strife,
a cruel word may wreck a life,
a timely word may level stress,

a loving word may heal and bless.

anonymous
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Chapter 1

Introduction

Cooperative multi-agent systems exhibit significant advantages over single-agent systems.

Enhanced robustness, efficiency, flexibility and execution speed are only some of the typi-

cally claimed advantages in many applications. Fully exploiting the benefits of multi-agent

systems is not an easy task. One of the main design issues is related to choosing the right

agent group composition. To this end, one needs to have a fundamental understanding of

agent cooperation. This thesis builds insight in the origin of cooperation and focuses on a

set of important multi-agent design issues, including optimal group sizes.

1.1 The Collaborative Search for Individually Rewarding Re-

sources

In recent years, multi-agent navigation problems have become of major interest to many

researchers, mainly driven by the potential benefits multi-agent systems pose compared to

their single-agent equivalents. The main idea is that a group of multiple, possibly cheap

and diverse agents executes tasks faster, more reliably, and more efficiently than a single

agent.

To adequately situate the range of multi-agent problems this thesis addresses, we distin-

guish two general problem classes: the collaborative search for globally rewarding resources

and the collaborative search for individually rewarding resources. This thesis focuses on a

set of problems in the latter class. We discuss example applications and past and current

work in the literature regarding both problem types.

13



A reward is denominated global if, once incurred by one member of the agent group, it

is no longer a possible reward for any other agent. In other words, the group objective is

obtained if all rewards are collected, regardless of whether one agent incurs all rewards, or

each agent incurs some rewards. For example, in a reconnaissance mission [69, 70], or map

building mission [60, 73, 78], if an agent observed and assessed the situation in one part of

the environment, there is no reward for a second agent observing or mapping the same part

of the environment. We find a second example in formation flight [3,27,28,68]. One of the

motivations behind formation flight stems from the energy savings multiple agents enjoy by

reducing the drag in formation. The first agent in the formation is not able to reduce its

drag, only the following agents are. Since the total energy spent is minimized, this problem

indeed qualifies as part of the search for global rewards. Here, ’search’ is interpreted as

the process of finding the optimal agent configuration. A third example is the search and

rescue problem [4,54]. Similarly as in the reconnaissance problem, there is no reward to be

collected in areas where previously an agent made observations.

A reward is denominated local if, once incurred by one member of the agent group, it

is still a reward to be collected by any other member of the agent group. In other words, it

is potentially beneficial for the agent group if more than one agent incurs the same reward,

usually discovered by the first agent to incur the reward. A simple example occurs when a

group of people visit a huge museum, with hidden treasures. The group can decide to spread

out, while reporting discovery of such treasures by phone to the other group members. The

latter then decide whether the reward is high enough for them to make the detour and

incur the same reward. All people potentially incur the same reward by visually enjoying

the treasure. The same reasoning applies to the search of particularly enjoyable landscapes

while traveling with multiple cars along different routes, or even with multiple people in a

single car, observing different directions. Whale watching is especially suited as example,

since usually a whale is only visible for a limited amount of time and potentially reappears

in completely different locations around the vessel. Agents can be interpreted as different

passengers on one vessel, or, on a larger scale, as a set of vessels looking for whales.

A more technical example appears in competitive gliding [67]. The objective of a single

glider in competition is to reach a known target in minimum time. To this end, the glider

searches for thermals, cylinders of rising hot air, circling in which allows it to gain altitude

or potential energy. Upon reaching sufficient height, the glider descends and gains speed,

14



converting potential energy into kinetic energy and advancing towards the target, while

searching for the next thermal if necessary [34, 51]. In some gliding competitions, cooper-

ation is allowed, and in [67], the author reports cases where multiple cooperating gliders

reach the target in shorter time than single gliders. Indeed, the probability of detecting a

sufficiently powerful thermal increases when multiple gliders advance in parallel, covering a

larger area. Each glider shares the position and the strength of the encountered thermals

and based on this information, the other gliders possibly decide to deviate from their cur-

rent trajectory, joining a thermal they would otherwise not have detected, thus incurring

the same reward.

Another application arises in traffic management [44, 50]. Here, we consider a group

of vehicles, part of a taxi or bus company, or a group of friends in different cars, entering

a traffic-plagued city in as short a time as possible. Rather than relying on the traffic

forecast, which is not always available, delayed or inaccurate, the vehicles spread out, each

gathering information on the traffic situation of the route of choice. This information is

shared, allowing each vehicle to choose an adequate (traffic-free) route in a better-informed

manner. Multiple vehicles incur the same reward if each transfers to the same route.

In the military domain, various missions require a group of agents to traverse a danger

ridden environment. Examples include troop transportation in urban warfare settings,

or the traversal of a vehicle platoon through an unsafe area towards a search and rescue

mission [30]. In these applications, it is clear that if one agent discovers a safe area, it is

potentially beneficial for the other agents to traverse the same safe area on the way to the

target. Again, more than one agent possibly incurs the same reward.

1.2 Multi-Agent Systems

Single agents are the building block of multi-agent systems; hence, it is worth presenting

a brief overview of the state of art in this area. In fact, single-agent navigation has been

addressed extensively and rather successfully in the past two decades. The single-agent

motion planning problem consists of finding the control input to a vehicle such that it

moves from an initial location to a final location, optimizing a certain objective function.

The problem of basic motion planning in uncluttered environments for vehicles with general

non-linear dynamics is treated effectively using techniques of optimal control [2, 13] and,
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related, dynamic programming [6]. More specific techniques for non-linear dynamics are

described extensively in [71]. On a higher level, algorithms exist for navigation in obstacle

cluttered environments in, based on various principles. We refer to [45,46] for an overview.

Recently, extensions for real-time solutions have been developed. For example, in [32] the

authors present a motion planning algorithm which accounts for the computation time based

on dynamic programming, while the work in [72] uses a mixed integer linear programming

receding horizon approach to the same effect. We can safely conclude that the single-agent

motion planning problem is reasonably well understood.

Multi-agent problems, however, pose a set of interesting new challenges (see [16] for an

overview). As the union of single agents, we assume that once the individual tasks, tar-

get sequences, are determined, possibly in real-time, existing single-agent motion planning

algorithms suffice for the lower level execution. Hence, we can focus on the higher level

problems related to multi-agent systems; we distinguish: determining the optimal group

size and composition, the adequate sensing and communication infrastructure, the decision

structure and the corresponding (optimal) policies. In the following paragraphs, we give a

brief overview of the state of the literature for each and summarize the aspects we address

in this thesis, focusing on the collaborive search for individually rewarding resources.

Group Size

An essential question in the design of multi-agent systems is how many agents are required

for satisfactory task completion. This includes the possibility of a heterogeneous agent

group where specific subtasks are assigned in hardware to agent subsets of the group. For

example, the group can consist of a set of small cheap observers gathering threat information

in the environment, and thus providing necessary information to design safe strategies

for expensive larger agents with core task capabilities. A specific military example is the

transportation of personnel through a threat cluttered area. The optimal number of each

agent type is the result of a trade-off between the increase in group performance and the

increase in cost per additional agent, the latter including the agents fixed cost, and costs

related to the complexity increase.

Several researchers address this problem, mostly based on simulation or experiments

with some ad-hoc multi-agent strategy, confirming that the group performance improves

with an increasing group size. For example, consider the problem of exploration of an
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unknown environment. One expects that n agents reduce the time to completion by a

factor 1/n, at least. In [15, 73], the authors propose an ad-hoc strategy where the utility

of already explored areas is reduced. They show experimentally that the exploration time

decreases sub-linearly with the number of agents for an example environment. In [5], the

authors consider a multi-agent multi-target acquisition problem in an unsafe environment,

and for a strategy based on a suboptimal hierarchical approach, they present performance

results as a function of the number of agents assigned to each target for an example problem.

The simulation results seem to indicate that assigning an equal number of agents to each

target yields a better performance. Further, in [17], a multi-agent system is used for land-

mine detection. Local, suboptimal strategies based on a potential field type approach are

designed, and their performance is compared for different agent group sizes. In elevator

control, multiple elevators reduce the average waiting time significantly. Results on optimal

off-peak elevator positions and high traffic strategies can be found in [12] and [53]. The

authors use an exact dynamic programming method with some simplifying assumptions.

Simulations show average waiting time reductions of up to 70% with two to eight elevators.

Energy efficient formation flying is another area exhibiting a lot of research activity.

Much attention goes to control strategies that stabilize formation flight, yet not many

results are available that quantify the total energy saved. In [68] the authors consider a

set of aircraft whereby each aircraft has a different initial and final position. They devise

suboptimal strategies that allow subsets of the aircraft to join and travel in formation

towards their respective targets. Simulation results for a ten agent case indicate a significant

decrease of the energy spent per agent.

In each of these results, it is clear that multiple agents perform better than single agents,

but rigorous statements quantifying this improvement lack, also recognized in [1]. However,

some bounds on the optimal agent group performance exist. In particular, in [66], the

authors present a proof that two and three agents explore a convex polygonal environment

at least two and three times faster, respectively, than a single agent, under some fairly

restrictive technical conditions. A similar result is described in [9, 10] where the authors

treat a version of the dynamic traveling repairman problem. A group of m agents, moving

at constant speed in the Euclidean plane is required to serve demands whose time of arrival

and location are stochastic in nature. For infinite capacity per agent, they establish a lower

bound to the system time (average wait plus service time) that decreases by a factor of
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1/m2 as compared to the single-agent case. An optimal policy for the light traffic case is

provided, several heavy traffic suboptimal policies are analyzed. The decentralized version

of this problem is treated in [31], with similar results.

In this thesis, we rigorously quantify the group performance as a function of the group

size, for the problem of collaborative search for individually rewarding resources, with lim-

ited local environment information.

Local Observation

An essential property of truly autonomous agents is their ability to face unknown environ-

ments merely relying on observed or measured information. Several parameters of local

observation zones have an influence on the multi-agent performance: the direction (angle

over which observations are made), the range (the distance over which observations are

made), and the timing. It seems clear that not all possibly gathered information is of equal

importance. For example, in the target acquisition problem in an unknown environment,

where agents observe a local environment area visually, it is unnecessary to first map the

environment completely and then navigate towards the target in a known environment. It

suffices to selectively make observations on those parts of the environment relevant for the

particular target acquisition problem at hand. This idea appears in [37, 38, 36] where the

authors treat a pursuit-evader problem in an unknown environment. The pursuers observe

locally, mapping relevant parts of the environment, while focusing on acquiring the evader.

A suboptimal greedy policy is presented whereby at each decision step, the agents move to

the position with highest likelihood of encountering the evader. Further, in [60], the authors

present an algorithm for a single agent navigating to a target at a known position, through

an unknown environment. The agent repeatedly observes, focusing on the area in the tar-

get direction, and then navigates in the observed and thus known part of the environment

towards the target. Extensions to multi-agent systems seem fairly straightforward.

Usually, researchers choose a particular local observation zone and study the resulting

multi-agent system. A extensive part of the literature deals with visibility graphs as a

model for local observation. That is, they assume each agent can observe what is not

blocked by an obstacle. Other researchers assume a circle shaped local observation around

each agent’s current position. We find many examples in map building [66, 69, 73, 75] and

search problems [65]. In [52], the authors use a scheme whereby each agent observes the
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state of the agents located within a certain radius R, and prove stability in the sense that

all agents reach a consensus on the heading to adopt. Little to no effort goes in determining

the relevance of the observations in the different observation directions.

In [4], we find an example where the observation range is at play. In particular, the au-

thors consider a multi-agent navigation problem whereby the agents are required to reach a

set of targets, while avoiding threats. The environment structure is known, threat locations

are unknown. Each agent observes the environment over a distance equivalent to what can

be reached in L time steps, and the authors study the agent performance under suboptimal

policies, for one specific L. The extension of this work, whereby one investigates the effect

of choosing different values for L on the agent performance, could provide insight in the

value of local observations as a function of their distance to the current agent position.

Finally, in [58, 59], we find an interesting extension, whereby two agents use flashlights

to identify each other as fast as possible. In this work, optimal policies are devised that

indicate when it is opportune to make an observation, studying the observation timing.

In this thesis, we study different shapes and sizes of local observation zones, in order

to determine and quantify the value of the observation directions and range towards the

optimal multi-agent performance.

Communication

In multiple agent systems where each agent gathers local information, relative to its current

location, communication is essential to devise optimal agent strategies based on the union

of the individually gathered observations. In a centralized decision making scheme, one cen-

tral computation unit, possibly one of the participating agents, gathers the observations,

computes and communicates the optimal decisions to each agent. However, sometimes a

decentralized decision structure is sufficient for the agents to take optimal coordinated de-

cisions. Here, only the information that is relevant for each individual agent’s decision

process is required to be communicated. Indeed, in a two-agent example and for the case

where the inter-agent distance is large, local information the first agent observes is irrele-

vant to the second agent, rendering the communication of observations of little use. This

contrasts with the situation where two agents are at a small inter-agent distance; here, each

agent can exploit the observations of the other agents, rendering communication necessary

for optimality. Hence, there seems to be a quantifiable inter-agent distance beyond which
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communication is unnecessary.

In the literature, communication requirements and the effects on the agent performance

due to communication limitations have been treated for specific problems. In particular,

in [29], the authors consider the problem of formation flight, and study the minimum infor-

mation required to be communicated between agents for formation stability. They employ

graphs with varying topology representing the structure of the communication network

and relate the formation stability to properties of the graph. A decentralized information

exchange between vehicles is devised. In [55,56] an agent swarm is interpreted as a reconfig-

urable sensor array, in search for increasing concentrations of the measured quantity. The

agents communicate findings to a central unit, which computes the location of a set of vir-

tual leaders, and communicates sufficient information to each agent so that it can stabilize

with respect to the latter virtual leaders. A problem of a slightly different type can be found

in [14, 19, 20], where an agent group is required to cover an area as efficiently as possible.

Each agent has a sensing capability whose accuracy decreases as a function of the sens-

ing distance. Further, a given function indicates environment areas of higher importance

where accurate sensing is necessary. The authors propose a decentralized strategy where

each agent gathers sufficient information of the agent positions around its own location to

compute a moving direction. The agents are guaranteed to converge to a local optimum,

i.e. a configuration which locally maximizes the integrated sensing quality, weighed with

the location importance. In [47], the authors present a variation where the energy required

for communication is directly included in the objective function.

In this thesis, we intend to study the communication requirements for the particular

problem of cooperative search of individually rewarding resources. We intend to quantify

the inter-agent distance beyond which locally observed information is irrelevant to other

agents, thus rendering its communication of no use. In other words, we study the minimal

information to be shared among the agents so that each is able to determine an optimal

decision, and this as a function of the inter-agent distance.

Decision Structure and Agent Strategies

Finally, there is the need to devise an algorithm that, based on (part of) the current system

state, devises a decision for each agent that is at best optimal according to a well-defined

objective. In general, we distinguish two decision making schemes: a centralized and a
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decentralized one. In the former scheme, it is usually possible, at high computation cost, to

compute the optimal strategy for each agent, while in the latter, one sacrifices optimality for

a more computationally efficient approach, while maintaining essential system properties,

for example stability. The choice of the decision making scheme is closely related to the

system communication requirements, since centralized, optimal decision making in general

requires full system state information.

Decentralized methods are popular in systems with a large number of agents, since its

centralized equivalent is computationally too complex. For the problem where a group

of agents exchange their values asynchronously and form weighted averages with values

possessed by their neighbors, we refer to [79], where under weak conditions, the agents

are guaranteed to converge to a common value. Some extensions are presented in [11].

We find more recent example applications of this work in [57, 76, 77] where each agent

gathers information on the state of a limited number of agents around its current location

(fixed and variable topology versions are considered). The authors prove stability in the

sense that under this scheme and some technical conditions, the agent reach consensus

on the heading. An approach validated by experiments can be found in [33], where fixed

formations are controlled in a distributed fashion. In particular, each agent maintains a

fixed relative position with respect to an a priori chosen second agent, using visual sensing.

Other examples appear in [14,19,20], where a decentralized scheme is used to cover an area

with a set of agents, in [80], where the cooperative search problem is handled in a distributed

fashion, and in [28], where formation stability is established using local strategies.

In centralized methods, the full system state is available for strategy design. One can

use an optimization tool of choice; dynamic programming is very common. We repeat that

centralized method suffer from computational complexity issues, but yield optimal policies.

In this thesis, we study properties of optimal centralized agent strategies, detecting sub-

spaces of the system state space where simple decentralized, or almost (quasi -) decentralized

strategies are optimal.

1.3 Thesis Objectives

Throughout this thesis, we consider the problem of collaborative search for individually

rewarding resources. On a general level, the main issue we intend to address, is the de-
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termining of the optimal (with respect to a well-defined objective function) agent group

composition and size for this class of problems as a function of the task and the environ-

ment specifics. In particular, our objective is to give specific answers to the multi-agent

system designer on how many agents of which capabilities are optimally required for suc-

cessful task execution. To this end, we compute the group performance as a function of

the group composition and size. Information on the agent fixed costs and the additional

costs as a result of the system complexity then suffices to determine the optimal trade-off

between performance and cost.

A second general objective of this thesis is to gain a deeper understanding and a more

trustworthy intuition regarding multi-agent cooperation. In other words, we aim to under-

stand the mechanics of cooperation in its simplest form, hoping that this insight will lend

itself to more adequate multi-agent system design. We specifically stress that we refrain

from using approximate methods to determine the optimal agent strategies, thus creating

unbiased results which otherwise arise from suboptimal problem solutions. To this end, we

analyze optimal policy properties of multi-agent groups operating in different environments.

We specifically focus on discovering particular patterns in the optimal agent trajectories and

on studying spatial agent distribution properties, which shed light on possible underlying

simple cooperation dynamics.

Another objective of this thesis is to address issues related to the design of the local

observation and measurement infrastructure of the multi-agent system. As mentioned ear-

lier, autonomous agents are truly autonomous if they are capable of performing tasks in

partially or completely unknown environments, merely relying on locally observed and pos-

sibly shared information. Depending on the task at hand, it seems clear that not all local

information that can possibly be observed, is of equal importance to the performance of the

agent group. For example, in a target acquisition problem, the information in the general

direction of the agent movement is more important than environment information in other

directions. We aim to study the influence of the different types of observation zones on the

group performance for the problem involving individually rewarding resources.

Finally, a last objective of this thesis concerns the study of the communication require-

ments of multi-agent groups. In particular, we study the optimal agent strategies and

analyze the communication requirements that are sufficient for the agents to compute opti-

mal decisions at each system state. Behind this idea lies the reasoning that as the distance
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between two agents is large, local information one agent observes is of no immediate rele-

vance to the other agent, rendering its communication of no use. Therefore, in this thesis,

we focus on quantifying the inter-agent distance beyond which communication is unneces-

sary, for different environment specifics, hence simplifying the multi-agent system design

and reducing the communication infrastructure requirements.

One of the main challenges in multi-agent centralized optimal policy design, with locally

observed environment information, is the computational complexity. In [21], the authors

prove NP-hardness [74] of a simplified version of the search problem whereby the searcher

only has local environment information and minimizes the time to detection. The multi-

agent extension is at least as complex, also recognized by the authors in [35, 64], who take

a more general approach and present complexity results for different multi-agent problem

types. We recognize the complexity issues related to multi-agent systems. However, we also

recognize the importance of exact optimal solutions to possibly simple problems for insight

building. In this thesis, we present an algorithm which deals with the inherent computa-

tional complexity sufficiently to solve non-trivial instances of the collaborative search for

individually rewarding resources. The thus provided intuition serves as a great means to

develop solid heuristics for the inevitable approximate approaches, required for large-scale

systems [7].

1.4 Statement of Contributions

We summarize the thesis contributions as follows. First, we describe the results regarding

the development of policy design and analysis tools; then we present the analysis results

regarding the performance and properties of some multi-agent navigation problems. In

particular:

• We model the collaborative search for individually rewarding resources as a traversal

problem of a structured graph. The model simplicity allows to focus exclusively on

agent cooperation, and provides a tool to test the optimal performance of relatively

small multi-agent systems, creating benchmarks.

• We present and prove correctness of an algorithm which exploits the graph spatial

invariance due to its infinite dimensions, to compute the optimal agent policies. The

algorithm is sufficiently efficient to compute the exact solution for the navigation
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problem with limited size agent groups. Further, the unboundedness of the navigation

graph provides the additional advantage that the analysis results are independent of

unpleasant effects due to an otherwise bounded graph.

• Finally, for analysis purposes, we present an algorithm which computes the agent

state probability distribution in steady state given an optimal policy, for the graph

traversal problem. We exploit the problem spatial invariance to deal with the infinite

size problem state space.

The previous allows for the computation of the optimal policy for small multi-agent graph

traversal problems. In what follows we cite the thesis contributions regarding the analysis

results for different types of multi-agent designs. Specifically, we study the single, two-

and three-agent navigation problems, with local observation zones ranging from wide angle

cone-shaped views to narrow tunnel-shaped observation in the agent movement direction.

In particular:

• We quantify the optimal agent performance as a function of the agent group size for

a set of environment parameters and local observation zones. Two conclusions stand

out:

– In an environment with a cost structure similar to a mine-field, two agents with

cone-shaped local observations provide a 25% performance increase as compared

to a single agent.

– The optimal performance of a three-agent vs. a two-agent group is not signifi-

cantly better for short tunnel-shaped local observation zones and for a mine-field

type environment. This is one instance where we can conclude that two agents

suffice.

• For a fixed group size, we compare the optimal agent performance for several local

observation zones, indicating which local areas of the environment contain more value

towards the agent performance. We confirm and quantify the intuition that the more

is observed, the better the performance. We also conclude that cone-shaped local

information leads to a dramatic performance increase as compared to tunnel-shaped

local information.
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• We present characteristics of the optimal agent policies, to further our understanding

of cooperative agent behavior. For example, we confirm and quantify the intuition

that if rewards are scarce, the agents spread out in expected sense, decreasing the

intersection of the respective local observation zones, thus gathering more environment

information and increasing the probability of encountering a reward. Additionally, we

observe that for any environment cost structure, and for a short tunnel-shaped local

observation zone, the lateral distance between the members of a two-agent group is

upper bounded in steady state under an optimal policy.

• Finally, from the analysis of optimal policies, we have that beyond a problem specific

lateral inter-agent distance, the sharing of local observations is unnecessary for the

local computation of an optimal policy. The optimal policy can therefore be considered

as decentralized at the latter inter-agent distances, but remains necessarily centralized

otherwise.

1.5 Thesis Outline

The thesis is organized as follows. In Chapter 2, we present some asymptotic properties of

the multi-agent navigation problem, which we exploit in the development of an algorithm for

the computation of optimal agent policies. We give a conceptual overview of the algorithm

and introduce the ’vehicle’ for our analysis: the multi-agent graph traversal problem. Then,

in Chapter 3, we formulate the problem mathematically as a Dynamic Program (DP) and

convert it using standard techniques into an equivalent Linear Program (LP) with infinitely

many constraints. Exploiting the problem structure, we decompose the LP into an infinite

set of coupled LPs with finitely many constraints and show that the unique bounded vector

that solves the latter LPs represents the optimal value function, formally characterized as

the unique bounded fixed point of a properly defined function F . In Chapter 4, we present

and prove correctness of an algorithm to compute the latter fixed point of F for various

multi-agent problems. It is computed explicitly and described implicitly in the form a

recursion at small and large lateral inter-agent distances, respectively. In Chapter 5, we

exploit the problem structure again to compute the system state probability distribution

in steady state and under an optimal policy, for the same multi-agent problems and in

Chapter 6, we present the analysis results. Finally, in Chapter 7, we summarize the thesis

and suggest directions for future work.
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Chapter 2

Asymptotic Problem Structure and

Algorithm Concept

In this chapter, we introduce specific instances of the problem of collaborative search for

individually rewarding resources in a target acquisition setting, in Section 2.1. Then, we

study the asymptotic properties of the optimal agent strategies as the inter-agent distance

is large and approaches infinity, in Section 2.2. For a time-invariant environment whereby

the agents are constrained to advance towards a target spatially synchronously, the consid-

erations regarding the agent behavior at large agent separations allow for the development

of a sufficiently efficient algorithm to compute optimal agent policies. In Section 2.3, we

provide an overview of the basic concepts that underlie the latter algorithm. Finally, in

Section 2.4, we present the navigation problems on a structured graph that constitute the

vehicle of our analysis.

2.1 Cooperative Target Acquisition

Many multi-agent problems exhibit the property that several agents can incur the same

reward, yielding the individual reward structure introduced in Section 1.1. The main com-

ponent of multi-agent tasks involves the navigation of an agent group towards a target, as

efficiently as possible. Here, we associate a cost to different environment areas, reflecting

its adversity to agent traversal. The notion of adversity envelops anything from the energy

or time required to traverse, possible exposure to threats, visibility, etc, with the constraint

that a reward (or negative cost) can be incurred by several agents. We define the local
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A

B

Figure 2-1: Agents A and B observe the dark and light area, respectively, and share this infor-
mation. The dark area represents a high-cost region, while a low cost is associated with the light
area. Agent A joins B, and both incur the lower cost.

area an agent observes as its local observation zone, while the reachable zone indicates the

environment area an agent can reach given its current position and motion constraints.

Given that each agent locally observes the environment state and shares this information,

the group objective is to acquire the target by minimizing the sum of the incurred costs.

In this thesis, we constrain the agent movement further so that at all times the agents

are positioned at an equal number of steps from the target, leaving their lateral separation

as the unique degree of freedom. In other words, at each time step, the agents find an

optimal decision, and move in spatial synchrony, towards the target. This requirement

significantly reduces the problem complexity, but still allows for very rich, insight providing

problems. Relaxing the spatial synchrony constraint is a challenging avenue for future work

(see Section 7.2.4).

We give an example of a situation illustrating the possible benefits of cooperation.

Consider a two-agent group positioned in spatial synchrony some number of steps away

from the target. The two agents (A and B) are identical, and are required to advance

in a general movement towards the target. Let the agent separation be such that the

reachable zone of agent A overlaps with the local observation zone of the agent B. Due

to the agent symmetry, the opposite holds as well. If agent B observes a particularly

friendly environment area, only known to agent A by communication, then A can choose

to join B in case its own observation indicates a particularly adverse local environment.

Fig. 2-1 illustrates this example. The large arrow indicates the general target direction and

each agent can deviate from that direction by some specific maximum angle. Two agents

observe a larger part of the environment than a single agent could, and in this case the

extra information possibly leads to a more cost-beneficial strategy.

In the general N -agent situation, two tendencies are key to the agent cooperative behav-
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Figure 2-2: Dark and light gray areas represent the local observation zones and reachable zones,
respectively, associated with the different agents. (a) Large agent separation: no observation zone
overlap, but A cannot reach what B observes and vice versa. (b) Small agent separation: large
information overlap, but A can reach what B (and not A) observes (green area).

ior, illustrated in Fig. 2-2 for a two-agent group. First, since more environment information

yields an enhanced efficiency, the agents tend to spread, decreasing the size of the intersec-

tion of the local observation zones to an empty set (Fig. 2-2(a)). On the other hand, the

agents tend to converge so that overlap occurs between the reachable zone of one agent and

the local observation zone of another agent (Fig. 2-2(b)), at the cost of a local observation

zone overlap and less total environment information. Only in a situation of this type can an

agent take advantage of opportunities in the form of potentially cheap environment areas

the other agent observes (green area in Fig. 2-2(b)) and exploit the benefit multiple agents

have over single agents.

2.2 Optimal Policy at Large Agent Separations

In this section, we present insight regarding the agent behavior in the limiting case where

one or more inter-agent separations approach infinity, for spatially synchronous problems.

The insight is merely based on intuition and is presented without rigorous proof at this

point. It serves as a tool to understand the reasoning at the basis of the algorithm to

compute multi-agent optimal policies.

We start with the smallest multi-agent problem and consider a two-agent group (N = 2,

where N denotes the group size) with a particular reachable and local observation zone

associated with each agent. At large agent separation, the local observation zone of one
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agent does not overlap with the reachable zone of the other agent and vice versa. Hence,

what one agent observes is of no relevance to the other agent, since the latter cannot

reach the area the former observes. The opposite occurs at small separations. Indeed, the

reachable and local observation zones of the respective agents overlap, and hence, each agent

can exploit the extra relevant environment information, rendering the small separations

particularly attractive. If the agents are at infinite separation, they cannot reach a small

separation in finite time. Hence, the agents best behave as two single agents, both employing

a single-agent optimal policy. At very large, but not infinite separation, it seems clear that

the agents still adopt a single-agent optimal policy, but choose the particular optimal policy

that minimizes the resulting separation at each decision step. In this manner, the agents

’hope’ to reach the attractive small separations at some future time and incur the benefits

of cooperation.

A similar reasoning holds for N > 2. There are N − 1 agent separations, one between

each pair of neighboring agents. Consider the case where one separation approaches infinity,

splitting the agent group in two smaller groups of sizes N1 and N2, where N1 + N2 = N .

At infinite separation, the two groups behave independently. That is, the groups adopt

policies which are optimal for groups of size N1 and N2, respectively. The combination of

the two policies constitutes the global N -agent optimal policy for the case the group is split

into groups of sizes N1 and N2. As in the two-agent case, at very large but not infinite

separations, the two groups seem to best adopt an optimal N1- and N2-agent policy with

the understanding that degrees of freedom in the optimal policies are used to minimize the

resulting group separation at each decision step.

From the previous reasoning, we have that the optimal policy of a group of size N

split in any possible way by a large separation, should consist of the combination of two

policies, optimal for the respective group sizes in the split. It is intuitively clear that for each

possible way to split a group of N agents, there exists a specific separation beyond which

the latter two policies are adopted. Indeed, at large separations, the two groups behave

independently, adopting the respective subgroup optimal policies; at small separations, the

groups cooperate and a different policy is optimal. This observation is exploited to the fullest

in the next chapters, where we present an algorithm to compute optimal agent policies. In

the next section, we present the algorithm conceptually.

We make two further remarks. First, in the case more than two agent separations are
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infinitely large, it is clear that the resulting subgroups behave independently, adopting a

policy optimal for each particular subgroup size. For very large, yet not infinitely large

separations, it appears that each group still adopts such policy. However, it is not clear

what happens in the case more than one policy is optimal for a particular subgroup. We

give an example. Let the agent group be split in three subgroups of sizes N1, N2 and N3,

respectively, and such that N = N1 + N2 + N3. Further, consider a system state where

the middle subgroup (of size N2) has multiple optimal decision available. It can use this

decision freedom to decrease its separation with one of the two adjacent subgroups (of sizes

N1 and N3). Rigorous analysis is necessary to assess this issue.

A second remark concerns the relaxation of spatial synchrony. In a time independent

environment, the multi-agent strategy in the case longitudinal separation is allowed, is for

the agents to sequentially traverse the environment, whereby each agent uses all previously

observed information. That is, the first agent traverses the environment till reaching the

target with only its own local observations as environment information. Then, the second

agent advances to the target, using both its own observations and the observations of

the first agent. This is continued till the last agent reaches the target. However, the

problem becomes more interesting in a time-dependent environment, whereby area costs

vary following a particular model, for example a Markov chain. Then, the equilibrium

longitudinal agent separation reflects a trade-off between the size of the area on which

information is observed, and the reliability of the observations. We leave the relaxation

of spatial synchrony to future work (see Section 7.2.4) and limit ourselves to the spatially

synchronous problem.

2.3 Algorithm Concept

In this section, we present the concept of an algorithm that computes the optimal agent

policy, without entering into specific details. We consider a two-agent group. From the

previous section, we have that only at separations where an overlap exists between the local

observation zone of one agent and the reachable zone of the second agent, there is a possible

opportunity for the two agents to incur a aggregate lower cost than in the non-cooperative

case. The latter situation occurs at small agent separations. Further, in the previous

section, we present intuition that at large agent separations the agents adopt single-agent
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optimal policies. Therefore, we assume the existence of a specific separation s̄ such at all

separations s ≥ s̄, a combination of single-agent optimal policies constitutes the two-agent

optimal policy. The set of states for which s < s̄ and for which s ≥ s̄, are connected and

inter-dependent. That is, one cannot compute the optimal policy at the states for which

s < s̄ independently from the optimal policy computation at states for which s ≥ s̄ and

vice versa.

In the algorithm design, we assume that the optimal two-agent policy for s ≥ s̄ consists

of a combination of two single-agent optimal policies. Then, we solve for the optimal

agent policy at s < s̄, ensuring that the solution method contains the correct connection

constraints between the sets of states for which s < s̄ and for which s ≥ s̄, respectively.

The connection constraints are extracted from the agent behavior at s ≥ s̄, based on the

initial assumption, and are sufficient to determine the two-agent optimal policy at s < s̄. In

other words, the necessary information on the part of the state space at separations s ≥ s̄

that is required to render computing the optimal policy at s < s a stand-alone problem, is

summarized in the connection constraints. Finally, we need to check the correctness of the

initial assumption on the optimal agent policy at the states for which s ≥ s̄.

For the N -agent case, we envision a hierarchical approach, whereby we compute the

N -agent optimal policy given the optimal policies for groups of size N − 1 and smaller. Let

si, for i = 1, 2, . . . , N − 1, denote the separation between the ith and (i+1)th agent. Then,

we solve for the optimal group policy for the agent separations si < s̄i, where s̄i is defined

similarly as in the previous paragraph and account for the various ways the agent group

can split with the appropriate connection constraints. For further details, we refer to our

remarks for future work in Section 7.2.3.

2.4 Notation and Problem Formulation: Navigation on a

Structured Graph

In this section, we introduce the notation and formulate the N -agent navigation problem

as a graph traversal problem with partial edge cost information. In particular, N agents

are required to traverse a graph while minimizing the sum of the discounted costs of the

traversed edges. To each agent is associated a set of edges whose costs the agents observe

and share, which is the incentive for cooperation.
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Figure 2-3: Notation related to graph G. Black dots represent vertices, lines are edges.

We grid the navigation terrain into sectors and associate a vertex v ∈ V to each sector.

Edges e ∈ E connect pairs of vertices, which reduces the navigation problem into a graph

traversal problem on the graph G(V,E). We refer the reader to the literature for descriptions

of algorithms to convert generic navigation terrains into a graph (see for example [45]

and references therein). One typical example is the Voronoi graph for obstacle cluttered

environments, where edges consist of points at equal distance from its closest obstacles (see

for example [18]).

The structured transition graph we consider (see Fig. 2-3) consists of an infinite number

of vertical lines of vertices, having an infinite number of vertices each. A horizontal vertex

array is referred to as a lane, while a stage refers to a vertical line of vertices. Vertex vij

denotes the vertex at stage i and lane j where the first stage and lane are chosen arbitrarily.

Three edges ek
ij , k ∈ {−1, 0, 1}, connect each vertex vij to the set of three vertices vi+1,j+k

(k ∈ {−1, 0, 1}).

To each edge ek
ij is associated a cost ck

ij reflecting the edge traversal cost and the reward

an agent collects upon reaching vi+1,j+k. For example, if a priori information suggests that

the environment sector associated with vertex vi+1,j+k is a particularly unsafe sector, then

ck
ij is relatively high. The traversal cost in practical applications relates, for instance, to

the energy an agent requires to traverse an edge. In this work, we assume that the edge

costs are independent identically distributed (i.i.d.) random variables picked from a finite

set L = {0, 1}. We denote p as the probability of encountering a zero edge cost. A priori,

only the edge cost statistics are available and the edge costs are constant, i.e. independent

of time.
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Figure 2-4: The gray area represents the cone-shaped local observation zone for agent An located
at vertex vij . Formally, OAn,c

i is the set of red edges.
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0
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Figure 2-5: The gray area represents the short tunnel-shaped local observation zone for agent An

located at vertex vij . Formally, OAn,t2
i is the set of red edges.

In this thesis, we consider the graph traversal problem for a set of N agents, referred to

as agents An, for n = 1, 2, . . . , N . The graph traversal problem is modeled as a discrete time

decision making problem where at time zero, agent An for n = 1, 2, . . . , N is positioned at

the vertex at stage zero and on lane lAn
0 (∈ N and with lAn

0 ≤ l
An+1

0 , for n = 1, 2, . . . , N−1).

The subscript of lane l denotes the current time; the agents start at time zero. At each

time step, each agent chooses to traverse one of the three available links to the next stage.

Therefore, we let the time index coincide with the stage index and at time i the agents

reach stage i at lanes lAn
i , for n = 1, 2, . . . , N . Here, The agents are relabeled at each time

step such that lAn
i ≤ l

An+1

i , for i ≥ 0, and for n = 1, 2, . . . , N . Since at each time step, the

agents are positioned at the same stage, we refer to this as spatially synchronous motion.

At each stage i, we associate a local observation zone to agent An, for n = 1, 2, . . . , N ,

namely OAn
i , a set of edges whose cost is observed and known. In this thesis, we define
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Figure 2-6: The gray area represents the extended tunnel-shaped local observation zone for agent
An located at vertex vij . Formally, OAn,t3

i is the set of red edges.

three types of local observation zones for agent An positioned at vertex lAn
i = j (hence, An

is located at vertex vij). First, there is the cone-shaped local observation zone (see Fig. 2-4),

for which

OAn,c
i = {e0

ij , e
0
i+1,j , e

−1
ij , e1

ij}.

Then, there is the short tunnel-shaped local observation zone (see Fig. 2-5), for which

OAn,t2
i = {e0

ij , e
0
i+1,j}.

Finally, there is the extended tunnel-shaped local observation zone (see Fig. 2-6), for which

OAn,t3
i = {e0

ij , e
0
i+1,j , e

0
i+2,j}.

The additional superscripts c, t2, and t3, to the general local observation zone symbol OAn
i

for agent An at time/stage i, indicate the cone-shaped, short and extended tunnel-shaped

local observation zones, respectively. In this thesis, we only consider problems where to

each agent is associated the same type of local observation zone. Further, of unobserved

edges, only the a priori available information, i.e. the edge cost statistics, is known. The

term local stems from the fact that only edges in the neighborhood of the current agent

position are included in O(·)
i . At stage i, the set of agents incurs the costs associated with

the edges traversed to reach stage i + 1. Upon arrival at a vertex, each agent observes

the costs of until then unknown edges and communicates these to the other agent. This
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provides an incentive for cooperation since observations by one agent possibly are of use to

another agent.

The consideration of an infinitely wide and long graph involves an idealization with

respect to practical path planning problems which have bounded environments. However,

this idealization is analogous to the approach taken in control of dynamical systems, where

a long but finite time horizon is typically modeled with infinite horizon tools. Limiting the

graph width and length imposes boundary conditions on the problem which often do not

lead to elegant and insightful solutions.

We formulate the following main problem.

Problem 1 [Main] Let a set of N agents be located at positions lAn
0 on graph G(V,E),

for n = 1, 2, . . . , N . The edge costs are time invariant and i.i.d. random variables over L

with probability p for a zero edge cost. The agents navigate spatially synchronously through

the graph in the direction of increasing stage indices, infinitely far. Furthermore, the agents

share the costs of the edges in their respective local observation zones perfectly and instan-

taneously upon reaching a vertex.

Then, find the navigation strategy for the N agents so that the expected discounted sum

of costs incurred at each stage is minimized. The expected value is taken over all initially

unobserved edge costs; costs incurred at stage i are discounted by factor αi, where 0 < α < 1.

�

In this thesis, we solve Problem 1 for N = 1 and N = 2 three times, once for each type

of local observation zone. Further, we solve Problem 1 for N = 3, where to each agent is

associated the short tunnel-shaped local observation zone.

2.5 Chapter Summary

In this chapter, we introduce the multi-agent target acquisition problem, the focus of this

thesis. The problem is of the collaborative search for individually rewarding resources

type. In particular, the agent group objective is to reach a known target incurring the

minimum aggregate environment cost, whereby more than one agent possibly incurs the

same (low) cost. Each agent observes environment information in a local area around its

current position.
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We restrict the agents to spatially synchronous motion and present the intuitive notion

that at infinite separations, the resulting agent subgroups behave independently, adopting

a policy optimal for each particular subgroup size. We argue that at small separations,

when there exists an overlap between the reachable zone and local observation zone of two

neighboring agents, effective cooperation possibly takes place. Indeed, in such situation,

each agent obtains relevant environment information from its neighbor, which it can exploit.

We present the concept of an algorithm to compute the optimal agent policy for a two-

agent problem, exploiting the problem structure. In particular, we solve for the optimal

agent policy at the states with separation s < s̄ accounting for the agent behavior at states

with separation s ≥ s̄ by means of a set of connection constraints.

Finally, we model the multi-agent target acquisition problem as a traversal problem of

an unbounded, structured graph.
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Chapter 3

The Dynamic Program as an

Infinite Set of Linear Programs

In Chapter 2, we introduced the formal problem statement for a multi-agent target ac-

quisition problem on a structured graph. In this chapter, we take the first steps towards

solving this problem. In particular, in Section 3.1.1, we formulate the two-agent problem

mathematically as a Dynamic Program (DP) with an infinitely large state space, for the

cone-shaped, the short and the extended tunnel-shaped local observation zones. Then, we

present an equivalent Linear Program (LP) with an infinite number of constraints in Sec-

tion 3.1.2. Finally, in Section 3.2, we decompose the latter LP into an infinite set of coupled

LPs with a finite number of constraints, exploiting the constraint structure. We show that

the unique bounded simultaneous solution of the LPs represents the DP optimal value func-

tion. The results in this section are previously described in [24] and more extensively in [23].

3.1 Mathematical Problem Formulation

In Section 3.1.1, we present a DP formulation of the two-agent graph traversal problem, for

any of the three local observation zones. Then, in Section 3.1.2, we transform the DP into

an equivalent LP, whose structure we analyze in subsequent sections.

3.1.1 DP Formulation

We cast the two-agent navigation problem as a discounted cost, infinite horizon DP problem

as follows. Since graph G exhibits spatial invariance properties in horizontal and vertical
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Figure 3-1: Definition of relevant edge costs relative to the current position of agent An.

direction, and since we have spatially synchronous motion, we choose the system state x, an

element of set S2, to be independent from the current stage and from the absolute positions

of the agent pair. For an N -agent problem, we denote the state space as SN , though we

omit the subscript N when it is clear from the context which group size the state space

is associated with. For ease of exposition, we refer to the cost of the edges in the local

observation zone associated with an agent An (for n = 1, 2) relative to the current position

of An, rather than in absolute manner. In particular, let

aAn
k = ci(lAn

i , k), for k ∈ {−1, 0, 1},

bAn
0 = ci+1(lAn

i , 0),

cAn
0 = ci+2(lAn

i , 0),

for n = 1, 2 and where i is the current stage. Further, we define

dAn
m = ci+1(lAn

i + m, 0), for m = −1, 1,

for n = 1, 2, which are four edges that are not an element of OAn (for n = 1, 2), but whose

cost is possibly observed at the previous time step in the case of the extended tunnel-shaped

local observation zones. We refer to Fig. 3-1, for the edge cost definitions relative to the

current observer location. This set of edge costs is sufficient to cover the at the current

stage known and reachable edges for the three local observation zones considered. Let C

denote the vector with as entries the cost of the latter edges. In other words, C contains the

costs of the edges in OAn , for n = 1, 2 and a subset of {dAn
m }, for n = 1, 2, and m = −1, 1.
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We refer to Chapter 4 for the specific definitions of C for the three local observation zones

considered. Then, x = (s, C), where s ∈ N+ denotes the agent separation,

s = lA2 − lA1 .

Let S(s) ⊂ S denote the set of states associated with separation s. Let u = (uA1 , uA2) ∈ U

denote the decision vector where u(·) ∈ {−1, 0, 1} represents the three possible decisions

available to each agent (i.e. traversing edges with cost a
(·)
k , with k ∈ {−1, 0, 1}). The set

U = {−1, 0, 1}2 comprises the nine possible decision combinations for the agents and is

invariant. Given xi and ui at time i, the agent cluster moves into the new state

xi+1 = f(xi,ui), (3.1)

where f : S × U → S is the state transition function. The cost incurred in the transition

from state xi to xi+1 is

g(xi,ui) = aA1
uA1

+ aA2
uA2

,

which is the sum of the edge costs of the edges agents A1 and A2 choose to traverse.

Let policy µ : S → U be a particular agent policy. Then, the expected discounted cost

Jµ(x0) the agents incur in advancing for an infinite number of time steps, given initial state

x0 and under policy µ is

Jµ(x0) = lim
N→∞

E

[
N∑

i=0

αig(xi, µ(xi))

]
,

subject to the state transition function (3.1), and where 0 < α < 1 is the discount factor.

The cost function Jµ(x), for all x ∈ S, satisfies

Jµ(x) = E [g(x, µ(x)) + αJµ(f(x, µ(x)))] , (3.2)

where we drop the time index i since we have time invariance and an infinite horizon. The

discount factor α ensures that Jµ is well defined since with a bounded local cost g, the

total cost incurred is bounded. Using the principle of optimality, the optimal value function
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J∗(x) satisfies the corresponding Bellman equation:

J∗(x) = min
u∈U

E [g(x,u) + αJ∗(f(x,u))] . (3.3)

A policy that minimizes the right hand side (RHS) of Eq. (3.3) is referred to as an optimal

policy µ∗. Since the problem at hand has bounded local cost, we have that J∗ is the unique

bounded solution of the Bellman equation (see [6]). The optimal policy µ∗ is not necessarily

unique.

3.1.2 LP Formulation

We reformulate the DP defined in Section 3.1.1 as an equivalent LP. For any function

J : S → R, we denote the function obtained after applying the DP mapping as

(TJ)(x) = min
u∈U

E[g(x,u) + αJ(f(x,u))], x ∈ S.

Value iteration creates a sequence of functions (T kJ) : S → R, for k = 0, 1, . . . and x ∈ S,

such that

lim
k→∞

(T kJ)(x) = J∗(x), x ∈ S, (3.4)

where T k indicates the application of operator T with itself, k times, and for any bounded

function J : S → R. If J is chosen such that J(x) ≤ (TJ)(x), for all x ∈ S, then, using the

monotonicity property of DP (see for example [6]), we have that (T kJ)(x) ≤ (T k+1J)(x),

for x ∈ S, and for k = 0, 1, . . .. With the convergence property of value iteration [see

Eq. (3.4)], it follows that J(x) ≤ J∗(x), for all x ∈ S. Since we have a monotonously

increasing sequence of functions T kJ ≤ J∗ and since J∗ = TJ∗, we have that J∗ is the

“largest” function J that satisfies J ≤ TJ , which is equivalent to the set of constraints

J(x) ≤ E [g(x,u) + αJ(f(x,u))] , x ∈ S,u ∈ U. (3.5)

In particular, J∗ is the “upper right corner” of the polyhedron formed by the set of equality

constraints (3.5). With the purpose of formulating the LP cost function and of rewriting

the previous set of constraints in typical LP form, we define new variables. Let the vector
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xs ∈ Rns contain the value function J(x) for x ∈ S(s) as its entries, for s = 0, 1, . . ..

The dimension ns, for s = 0, 1, . . ., represents the number of different sets of known and

reachable edges the agents can encounter at separation s. For clarity of the exposition,

keeping the respective DP and LP notation conventions, we write in short that

J(x) ∼ xs, x ∈ S(s). (3.6)

Let e denote a vector whose entries are all ones. Let T denote a linear operator so that,

when applied to a vector x of size n, the vector Tx, of size n|U |, has as its first |U | entries

the first entry of x, the next |U | entries are the second entry of x, etc. In what follows,

we assume the dimensions of T to be clear from the context. Then, we have the following

equivalent LP:

maximize eTxs̃

subject to Txs ≤
2∑

σ=max{−2,−s}

Aσ
s x

s+σ + bs, s = 0, 1, . . . , (3.7)

where (·)T denotes the transpose of a vector and for any 0 ≤ s̃ < ∞. Since the optimal value

function is the maximum element of the lattice [22] formed by the constraints in Eq. (3.7),

the objective function can be any linear combination with positive coefficients of any set

of entries of the vectors xs, s = 0, 1, . . ., where the sum of the coefficients is finite. In the

remainder of this paper, we adopt different versions according to our needs. We denote this

LP by LPg. The matrices Aσ
s , for s = 0, 1, . . ., reflect the dependence of the constraint set

associated with xs [Eq. (3.7)] on xs+σ and are deducted from Eq. (3.5) in a strenuous but

straightforward manner. For s ≥ 2, we have that Aσ = Aσ
s , for σ = −2, . . . , 2.

In order to illustrate the LP problem structure adequately, we define the vectors

Xg =
[

(x0)T (x1)T . . .
]T

,

Bg =
[

(b0)T (b1)T . . .
]T

,

and the matrix Ag such that Eq. (3.7) can be rewritten in typical LP-format as (T −

Ag)Xg ≤ Bg. Note that Xg, Bg, and Ag have infinite dimensions. Fig. 3-2 shows the

block structure of Ag. Empty squares are zero block matrices, the grey squares denote the
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Figure 3-2: Matrix Ag. Empty squares are zero-matrices, the grey squares denote the relevant
matrices in Eq. (3.7).

relevant matrices that appear in Eq. (3.7). Since T is block-diagonal, the matrix T −Ag

has the same structure as Ag. The LP has a general block multi-diagonal structure, but is

not of the staircase type since non-zero blocks appear above and under the main diagonal.

For staircase LPs, efficient distributed algorithms based on nested decomposition have been

developed (see [40, 41] and references therein). In our problem, the optimal value function

at separation s ≥ 2 depends on the optimal value function at lower and greater separations

(namely, at separations s + σ, for σ = −2, . . . , 2), which renders the problem significantly

different from staircase LPs where, in equivalent terms, there is dependence uniquely on

the optimal value function at lower separations.

3.2 LP Decomposition and Solution as a Fixed Point

In this section we define a set of LPs Q = {LP(s)}, s = 0, 1, . . ., where LP(s) refers to the

LP associated with separation s. We show that Q is equivalent to LPg.

We have the following definition of LP(s) (for all s ≥ 0).

Definition 1 Let x̂s−2, x̂s−1, x̂s+1 and x̂s+2 be given vectors of appropriate dimensions.

Then, we define LP(s) for s = 0, 1, . . . as

maximize eTxs

subject to (T−A0
s)x

s ≤
∑
σ∈Ss

Aσ
s x̂

s+σ + bs, (3.8)

where S0 = {1, 2}, S1 = {−1, 1, 2} and Ss = {−2,−1, 1, 2}, for s ≥ 2. �
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The matrices e, T, Aσ
s and bs of the appropriate dimensions are defined as in Section 3.1.2.

Note that the RHS of the constraint set (3.8) is known.

In the rest of this section, we establish the equivalence between LPg and the set Q of

LPs. In particular, we show that the vectors xs, s = 0, 1, . . . of suitable dimension solve

LPg if and only if xs solves LP(s) where x̂σ+s in Eq. (3.8) is equal to xσ+s for σ ∈ Ss and

for all s ≥ 0.

We first introduce some notation. Let K = RN. Define the vector X ∈ K as the

concatenation of the set of vectors {xs} (s = 0, 1, . . .). In particular,

XT .=
[

(x0)T (x1)T . . .
]T

, (3.9)

where xs ∈ Rns , for s ≥ 0. The vector X∗ ∈ K is defined similarly from the set {xs,∗} (for

s = 0, 1, . . .), i.e., the optimal value function and solution of LPg. The following function

definition is key to the development in this section.

Definition 2 We define the function F : K → K : F (X) = X′, where X and X′ are the

concatenation of respective sets {xs} and {(xs)′} (s = 0, 1, . . .) [see Eq. (3.9)], and where

(xs)′ solves LP(s) with constraint parameters [see Eq. (3.8)] x̂s+σ = xs+σ, for σ ∈ Ss. �

We show that Q is equivalent to LPg by establishing that X∗ is the unique bounded fixed

point of F , presented in the remaining part of this section. We essentially prove that F is

a contraction.

We need the following set of auxiliary problems P(s), one for each separation s ≥ 0. Let

the set Ms =
⋃

σ∈Ss S(s+σ). Then, each auxiliary problem is an optimal stopping version

of the Main Problem 1, as follows:

Problem 2 [Auxiliary] Let two agents be positioned on an arbitrary stage of the graph

G(V,E) at separation s ≥ 0. The edge costs are time invariant and i.i.d. random variables

over L with probability p for a zero edge cost. The agents navigate spatially synchronously

through the graph in the direction of increasing stage indices. Furthermore, the agents share

the costs of the edges in their respective local observation zones perfectly and instantaneously

upon reaching a vertex. Let g(x,u) be defined as before as the sum of the edge costs the

two agents incur at state x and choosing decision u, and let f(x,u) be the state transition

function. Let Ĵs : Ms → R be any bounded function. Two situations occur:
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• The current agent separation equals s. Then, the local cost incurred in advancing to

the next stage equals g(x,u) if f(x,u) ∈ S(s) and g(x,u) + αĴ(f(x,u)) otherwise.

• The current agent separation differs from s. Then, the process terminates and the

agents do not incur further costs.

Then, find the navigation strategy for both agents so that the expected discounted sum of

costs incurred at each stage is minimized (discount factor 0 < α < 1). �

In other words, in Problem 2, the agents stick to separation s incurring the associated

aggregate edge costs, or move to a separation differing from s incurring a one-time cost and

stop.

Before we relate the solution of problem P(s) to the solution of LP(s), we define operator

Ts,Ĵs
as follows.

Definition 3 Given an arbitrary function Js : S(s) → R, and an associated bounded func-

tion Ĵs : Ms → R then, for all x ∈ S(s),

(Ts,Ĵs
Js)(x) = min

u∈U
E [v(x,u) + αVs(f(x,u))] , (3.10)

where

v(x,u) =

 g(x,u), f(x,u) ∈ S(s)

g(x,u) + αĴs(f(x,u)), f(x,u) ∈Ms,
(3.11)

and where

Vs(x) =

 Js(x), x ∈ S(s)

0, x ∈Ms.
(3.12)

�

In words, Ts,Ĵs
executes one value iteration step for the DP associated with Problem 2,

given Ĵs and Js. From the traditional value iteration results, we have that for an arbitrary

bounded function Js : S(s) → R and a given bounded associated function Ĵs : Ms → R

J̃s(x) = lim
k→∞

(
T k

s,Ĵs
Js

)
(x), x ∈ S(s), (3.13)
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where J̃s(x) (x ∈ S(s)) denotes the optimal value function for Auxiliary Problem 2, where in

the notation we do not explicitly mention the dependence of J̃s on the problem parameter Ĵs.

The following lemma relates J̃s to the solution of LP(s).

Lemma 1 Let x̃s ∼ J̃s(x), for x ∈ S(s), where J̃s is computed as in Eq. (3.13), given any

bounded function Ĵs : Ms → R. Then x̃s solves LP(s), with x̂s+σ ∼ Ĵs(x), for x ∈ S(s+σ),

and σ ∈ Ss. �

Proof: With the LP formulation of the DP associated with the Auxiliary Problem 2 (see

Section 3.1.2 for details), we have that J̃s is the solution to the following LP:

maximize
∑

x∈S(s)

Js(x)

subject to Js(x) ≤ E[v(x,u) + αVs(f(x,u))], x ∈ S(s),u ∈ U,

with v(x,u) and Vs(x,u) as defined in Eqs. (3.11,3.12). This LP is equivalent to an LP

with the same cost function but with constraints Js(x) ≤ E[g(x,u) + αV̂s(f(x,u))], for all

x ∈ S(s), and u ∈ U , and where

V̂s(x) =

 Js(x), x ∈ S(s)

Ĵs(x), x ∈Ms.

With xs ∼ Js(x), for x ∈ S(s), and for x̂s+σ ∼ Ĵs(x), for x ∈ S(s), σ ∈ Ss, the equivalence

of the last LP with LP(s) follows easily. Hence, x̃s ∼ J̃s, for x ∈ S(s) is the solution to

LP(s) and the proof is complete.

The following lemma establishes an essential monotonicity property of Ts,Ĵs
.

Lemma 2 For any two functions Js : S(s) → R and J ′s : S(s) → R and for any two

bounded functions Ĵs : Ms → R and Ĵ ′s : Ms → R such that

Js(x) ≤ J ′s(x), x ∈ S(s), (3.14)

Ĵs(x) ≤ Ĵ ′s(x), x ∈Ms,

we have

(T k
s,Ĵs

Js)(x) ≤ (T k
s,Ĵ ′

s
J ′s)(x), x ∈ S(s), k = 1, 2, . . . (3.15)

�
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Proof: We use induction. For k = 0, Eq. (3.15) holds trivially by Eq. (3.14). For the

induction hypothesis, assume

(T k
s,Ĵs

Js)(x) ≤ (T k
s,Ĵ ′

s
J ′s)(x), x ∈ S(s), (3.16)

for some k, then we have, for x ∈ S(s),

(T k+1

s,Ĵs
Js)(x) = min

u∈U
E
[
v(x,u) + α(V k

s )(f(x,u))
]

≤ min
u∈U

E
[
v′(x,u) + α(V

′k
s )(f(x,u))

]
(3.17)

= (T k+1

s,Ĵ ′
s

J ′s)(x).

Here, v(x,u) and v′(x,u) are as defined in Eq. (3.11), with Ĵs(x) and Ĵ ′s(x), respectively.

Further,

V k
s (x) =

 (T k
s,Ĵs

Js)(x), x ∈ S(s),

0, x ∈Ms.

The function V
′k
s is defined similarly. In Eq. (3.17), we use induction hypothesis (3.16)

for the inequality relation and twice the definition of Ts,Ĵs
[Eq. (3.10)]. This concludes the

induction and hence the proof.

Let e : S → R denote the unity function such that e(x) = 1, for all x ∈ S. Then, we

have the following property of Ts,Ĵs
.

Lemma 3 For k = 1, 2, . . ., for any function Js : S(s) → R, for any bounded function

Ĵs : Ms → R and for any scalar r ≥ 0, we have

(T k
s,Ĵs+re

(Js + re))(x) ≤ (T k
s,Ĵs

Js)(x) + αr, x ∈ S(s), (3.18)

(T k
s,Ĵs−re

(Js − re))(x) ≥ (T k
s,Ĵs

Js)(x)− αr, x ∈ S(s). (3.19)

�

Proof: We give the proof of Eq. (3.18) by induction (the proof of Eq. (3.19) is similar).

From the definition of Ts,Ĵs
[Eq. (3.10)], we have

(Ts,Ĵs+re(Js ± re))(x) = (Ts,Ĵs
Js)(x)± αr, x ∈ S(s). (3.20)
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For k = 1, Eq. (3.18) holds, by Eq. (3.20). Assume, as induction hypothesis that

(T k
s,Ĵs+re

(Js + re))(x) ≤ (T k
s,Ĵs

Js)(x) + αr, x ∈ S(s).

Then, applying operator Ts,Ĵs+re to both sides of the previous equation, and using Lemma 2,

yields

[
T k+1

s,Ĵs+re
(Js + re)

]
(x) ≤

[
Ts,Ĵs+re

(
(T k

s,Ĵs
Js) + αre

)]
(x), x ∈ S(s). (3.21)

Two cases occur:

• First, consider the set of pairs of x ∈ S(s) and u ∈ U such that f(x,u) ∈ S(s). Then,

for the RHS of Eq. (3.21), we have the following inequality:

[
Ts,Ĵs+re

(
(T k

s,Ĵs
Js) + αre

)]
(x) ≤ min

u
E
[
g(x,u) + α

(
(T k

s,Ĵs
Js) (f(x,u)) + αr

)]
,

= min
u

E
[
g(x,u) + α(T k

s,Ĵs
Js)(f(x,u))

]
+ α2r,

≤ min
u

E
[
g(x,u) + α(T k

s,Ĵs
Js)(f(x,u))

]
+ αr,

(3.22)

where, for all x ∈ S(s), the minimization is over all u ∈ U such that f(x,u) ∈ S(s).

• Second, consider the set of pairs of x ∈ S(s) and u ∈ U such that f(x,u) ∈ Ms.

Then, for the RHS of Eq. (3.21), we have the following inequality:

[
Ts,Ĵs+re

(
(T k

s,Ĵs
Js) + αre

)]
(x) ≤ min

u

[
g(x,u) + α(Ĵs(f(x,u)) + r)

]
,

= min
u

[
g(x,u) + αĴs(f(x,u))

]
+ αr, (3.23)

where, for all x ∈ S(s), the minimization is over all u ∈ U such that f(x,u) ∈Ms.

Combining Eqs. (3.22) and (3.23), yields[
Ts,Ĵs+re

(
(T k

s,Ĵs
Js) + αre

)]
(x) ≤

[
T k+1

s,Ĵs
Js

]
(x) + αr, x ∈ S(s),

and with Eq. (3.21), we have[
T k+1

s,Ĵs+re
(Js + re)

]
(x) ≤

[
T k+1

s,Ĵs
Js

]
(x) + αr, x ∈ S(s),

which concludes the induction and the proof.
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We now establish two properties of F , based on which we show that F is a contraction.

We first introduce some notation. For an arbitrary X0 ∈ K, define Xk ∈ K, for k = 1, 2, . . .

as

Xk = F (Xk−1), (3.24)

=
[

(x0,k)T (x1,k)T . . .
]T

.

Vector (X′)k ∈ K is defined similarly. We establish the first property of F , monotonicity.

Lemma 4 For any two bounded vectors X0, (X′)0 ∈ K such that

X0 ≤ (X′)0, (3.25)

we have

F k(X0) ≤ F k((X′)0), k = 1, 2, . . . (3.26)

�

Proof: We use induction. For k = 0, Eq. (3.26) holds trivially by Eq. (3.25). For the

induction hypothesis, assume that F k(X0) ≤ F k((X′)0), or using the notation in Eq. (3.24),

we have that

Xk ≤ (X′)k, (3.27)

for some k. From Eq. (3.24), we have that F (Xk) = Xk+1, and with Lemma 1, this yields

for all s = 0, 1, . . .,

xs,k+1 ∼
(

lim
l→∞

T l
s,Ĵk

s
Jk

s

)
(x), x ∈ S(s),

where Jk
s (x) ∼ xs,k, for x ∈ S(s) and where Ĵk

s (x) ∼ xs+σ,k, for x ∈ S(s + σ), for all

σ ∈ Ss. A similar statement holds for (x′)s,k+1. From Lemma 2, and with the induction

hypothesis (3.27), we have that for s = 0, 1, . . .

(
T l

s,Ĵk
s
Jk

s

)
(x) ≤

(
T l

s,(Ĵ ′
s)

k(J ′s)
k
)

(x), x ∈ S(s), (3.28)
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for l = 0, 1, . . .. Therefore, taking the limit for l →∞ in Eq. (3.28), we have that xs,k+1 ≤

(x′)s,k+1, for s = 0, 1, . . ., from which it follows that Xk+1 ≤ (X′)k+1, concluding the

induction and hence the proof.

The following lemma provides the second property of F required to show that F is a

contraction.

Lemma 5 For k = 1, 2, . . ., for any bounded vector X ∈ K, and for any scalar r ≥ 0, we

have

F k(X + re) ≤ F k(X) + αkre, (3.29)

F k(X− re) ≥ F k(X)− αkre, (3.30)

where e ∈ K contains ones as its entries. �

Proof: We prove Eq. (3.29). The proof of Eq. (3.30) is similar. We define the functions

Js : S(s) → R, for s = 0, 1, . . ., such that

Js(x) ∼ xs, x ∈ S(s), (3.31)

with

X =
[

(x0)T (x1)T . . .
]T

.

Similarly, we define the functions Ĵs : Ms → R such that

Ĵs(x) ∼ {xs+σ}, x ∈Ms, σ ∈ Ss. (3.32)

From Lemma 3, we have

(
T l

s,Ĵs+re
(Js + re)

)
(x) ≤ (T l

s,Ĵs
Js)(x) + αr, x ∈ S(s),

and taking the limit for l →∞, with Eqs. (3.31,3.32) and with Lemma 1, this yields

F (X + re) ≤ F (X) + αre. (3.33)
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We use induction. For k = 1, Eq. (3.29) holds by Eq. (3.33). For the induction hypothesis,

suppose F k(X + re) ≤ F k(X) + αkre. Applying F to both sides of the previous equation,

and using Lemma 4, yields

F k+1(X + re) ≤ F (F k(X) + αkre),

≤ F k+1(X) + α(αkre),

= F k+1(X) + αk+1re,

where the second inequality follows from Eq. (3.33). This concludes the induction, and

hence the proof.

The following lemma provides the basis for main result of this section.

Lemma 6 The function F is a contraction mapping. In particular, given any two bounded

vectors X,X′ ∈ K, we have that

max |F k(X)− F k(X′)| ≤ αk max |X−X′|,

where the max(·) is taken over all components of its argument. �

Proof: The proof, based on Lemmas 4 and 5, is identical to the proof of the fact that

operator T is a contraction as can be found in [6]. We give it here for completeness. Let

m = max |X−X′|. It follows that

X−me ≤ X′ ≤ X + me. (3.34)

We apply F k to both sides of Eq. (3.34) and use Lemmas 4 and 5 to obtain

F k(X)− αkme ≤ F k(X′) ≤ F k(X) + αkme,

which yields

max |F k(X)− F k(X′)| ≤ αkm,

which concludes the proof.

The following lemma provides an essential property of contraction mappings (see [6]).
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Lemma 7 If the function F : K → K is a contraction mapping, then there exists a unique

fixed point of F , within the class of bounded functions. In particular, there exists a unique

bounded vector X∗ ∈ K such that F (X∗) = X∗. Furthermore, if X is any bounded vector in

K, then

lim
k→∞

‖F k(X)−X∗‖ = 0.

�

Proof: For a proof, see [48] and [49].

We have now left to show that the solution of LPg is the unique fixed point of F . The

following theorem provides the main result.

Theorem 1 The solution X∗ of LPg is the unique bounded fixed point of F . �

Proof: From Lemma 6, we have that F is a contraction and from Lemma 7, F has a unique

bounded fixed point. Therefore, we only need to show that the solution of LPg, i.e.

X∗ =
[

(x0,∗)T (x1,∗)T . . .
]T

,

is a fixed point of F . For a all s ≥ 0, let

x̂s+σ = xs+σ,∗, σ ∈ Ss. (3.35)

Furthermore, let the solution of LP(s), with x̂s+σ (σ ∈ Ss) as in Eq. (3.35), be denoted as

x̃s. Then, for X∗ to be a fixed point of F , we need to show that for all s = 0, 1, 2, . . . we

have that

x̃s = xs,∗. (3.36)

Since X∗ solves LPg, xs,∗ is also a feasible solution of LP(s), with x̂s+σ as in Eq. (3.35).

It follows that x̃s ≥ xs,∗. To establish Eq. (3.36), we show that x̃s ≤ xs,∗, by contradiction.

Assume that

x̃s ≥ xs,∗, (3.37)
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with for at least one i

x̃s
i > xs,∗

i , (3.38)

where xs
i denotes the ith component of xs. We show that

X̃s =
[

(x0,∗)T (x1,∗)T . . . (xs−1,∗)T (x̃s)T (xs+1,∗)T . . .
]T

,

is a feasible solution for LPg, as follows. The constraints associated with separation s [see

Eq. (3.7)] are satisfied, since x̃s satisfies the constraints of LP(s) with x̂s+σ as in Eq. (3.35).

The constraints associated with all other separations also hold since x̃s appears in the RHS

with nonnegative coefficient matrices A(·)
s . From assumption (3.37) it follows that X̃s ≥ X∗,

where, under assumption (3.38) and for at least one l ≥ 1 we have that X̃s
l > X∗

l , where Xs
l

denotes the lth element of Xs. Since X∗ is optimal, we reached a contradiction and it

follows that Eq. (3.36) holds for all s ≥ 0. This concludes the proof.

We have shown that it suffices to compute the unique fixed point of F to find the optimal

problem value function.

3.3 Extension to Larger Agent Groups

So far in this chapter, we formulated the two-agent problem as a DP, for the three types of

local observation zones considered. We then used a standard procedure to convert the DP

into an equivalent LP with infinitely many constraints, and decomposed the latter into a

set of infinitely many LPs with a finite number of constraints. Finally, we proved that the

unique bounded solution of the LP set corresponds to the optimal value function. It is clear

that the DP and LP formulations, and the LP decomposition result hold for any finite-size

local observation zone, although we omitted this fact earlier in the chapter, focusing on the

three specific local observation zones considered.

The second remark concerns N -agent groups, with N > 2. The DP and equivalent LP

formulations hold for the general N -agent problem. In this thesis, we focus on two-agent

problems and on one three-agent problem (with short tunnel-shaped local observation zones)

which can be interpreted as a two-agent problem since we assume an upper bound on the

separation between the closest two agents (see Section 4.5 for further details). Hence, we
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refrained from presenting the DP and LP formulations for the general N -agent problem,

simplifying significantly the notation. However, it seems clear that even the LP decomposi-

tion into a set of infinitely many LPs with a finite number of constraints (one such LP per

agent separation set) holds true, with minor (mostly notational) modification in the proof.

3.4 Chapter Summary

In this chapter, we formulate the two-agent navigation problem on a structured graph as a

Dynamic Program (DP), focusing on the three types of local observation zones considered.

We then use a standard procedure to convert the DP into an equivalent Linear Program

(LP), with infinitely many constraints. Then follows the main result in this chapter: we

decompose the LP into a set Q of infinitely many LPs with a finite number of constraints,

one per agent separation, and establish that the unique bounded solution toQ is the problem

optimal value function. To this end, we define a function F which takes a candidate optimal

value function represented properly by the vector X, and converts it into F (X), a new

candidate value function computed as the union of the solutions to the LPs in Q with X

as parameter. Equivalently, we prove that the unique bounded fixed point of the function

F corresponds to the problem optimal value function. In the next chapter, we present a

method to compute this fixed point of F for a set of navigation problems involving two and

three agents, and the three types of local observation zones.
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Chapter 4

The Computation of the Linear

Program Set Fixed Point

In Chapter 3, we formulated the two-agent problem as a DP and used a standard procedure

to convert the DP into an equivalent LP (LPg) with infinitely many constraints. We then

decomposed LPg into a set Q of infinitely many LPs (one for each agent separation) with

a finite number of constraints and established the equivalence between Q and LPg in the

sense that the unique bounded solution to the LPs in Q, formulated as the bounded fixed

point of a function F , represents the problem optimal value function. In this chapter, we

present an algorithm to compute the fixed point of F for a set of navigation problems with

two and three agents, and for the three types of local observation zones. We compute the

optimal value function explicitly at the separations s < s̄ (for a specific well-defined s̄) and

provide an implicit description in the form of a recursion for the optimal value function at

the separations s ≥ s̄.

4.1 Algorithm Overview

For large s, it is intuitively clear that the optimal agent policy converges to a “stationary”

policy in the sense that as s increases, the optimal agent decision at each state becomes

independent of the agent separation s. In fact, in Section 2.2, we argue that intuitively

at large s, both agents adopt a single-agent optimal policy. Hereby, each agent’s decision

depends uniquely on its own local observation zone, and ties are broken by choosing the

particular decision that yields the smallest agent separation at the next stage. On the
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other hand, for small s, the optimal policy is expected to be significantly different from the

stationary policy valid at large s, since opportunities are exploited at small separations.

The algorithm to compute the optimal value function over the whole state space relies on

the two mentioned areas in the state space: for large s, the optimal policy is stationary

(independent of separation s), and at small s, the actual cooperation takes place. The

algorithm ensures the correct connection between the two state space areas.

The problem we face is computing the solution of an infinite set of LPs, each with a

finite number of constraints. To this end, we devise from Q a causal linear time invariant

(LTI) system with state xs, and with s as the equivalent of “time”, for s ≥ s̄, with s̄ a

particular small separation. We carefully choose the output so that its positivity indicates

optimality of xs in the corresponding LP of Q, for s ≥ s̄.

To determine the initial conditions for this LTI system, we formulate another LP with

a finite number of constraints, denoted LP in, with variables xs for s < s̄ and with an extra

set of equality constraints so that the solution to LP in is the particular value function

that exclusively excites the stable modes in the LTI system for s ≥ s̄. The added equality

constraints are the connection between the system behavior at small and large separations.

We establish that this provides the unique bounded fixed point of F and hence, the optimal

value function.

In Section 4.2, we present the derivation in depth for the two-agent problem with cone-

shaped local observation zones. Further, in Section 4.3, we show by a coupling argument

that the agent separation of the two-agent problem with short tunnel-shaped local observa-

tion zones is upper bounded by three. Hence, for this case, it is sufficient to solve a simple

finite state DP. Then, in Section 4.4, we treat the two-agent problem with extended tunnel-

shaped local observation zones, focusing on the aspects that are significantly different from

the in-depth exposition in Section 4.2, on the two-agent problem with cone-shaped local

observation zones. Finally, in Section 4.5, we present the fixed point computation for the

three-agent problem with short tunnel-shaped local observation zones.

4.2 Two Agents with Cone-Shaped Local Observation

In this section, we treat the two-agent problem with cone-shaped local observation zones in

depth. In Section 4.2.1, we introduce some notation. In Section 4.2.2, we study the single-
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agent problem, and compute the optimal single-agent policies. Then, in Section 4.2.3, we

assume that there exists a particular s̄ ≥ 0 such that for all s ≥ s̄ a particular policy based

on set of optimal single-agent policies, is optimal. We derive an LTI system with as state,

the optimal value function at one separation, where “separation” is the equivalent of “time”

in a traditional LTI system, in Sections 4.2.4 and 4.2.5. In Section 4.2.6, we formulate a

LP whose solution is the optimal value function at separations s < s̄, satisfying the fixed

point condition. Furthermore, the initial condition for the LTI system derived from this LP

solution, is such that the simulation of the LTI system yields a sequence of value functions

for s ≥ s̄ that also satisfy the fixed point condition. Finally, in Section 4.2.7, we present

a fix of the previous algorithm for a specific value of parameter p at which an otherwise

invertible matrix becomes singular.

4.2.1 Notation

In this section, we provide information on the organization of the optimal value function

in the vectors xs of size ns, for s ≥ 0. For the two-agent problem at hand, n0 = 16 and

ns = 136, for s ≥ 1. Let

CAn =
[

aAn
0 bAn

0 aAn
−1 aAn

1

]T
(4.1)

denote the vector with as entries the costs of the edges in OAn , for n = 1, 2 (see Fig. 3-1).

For this problem, the set of known edges C at each stage is defined as the pair (CA1 , CA2).

The first entry of x0 represents the value of the value function for two agents at separation

zero, and with local observation zones

CA1 = CA2 =
[

0 0 0 0
]T

,

the second entry of x0 represents the value of the value function at local observation zone

CA1 = CA2 =
[

0 0 0 1
]T

,

and so forth. Similarly, the ith entry of xs, for i = 1, . . . , n, represents the value of the

value function for two agents at separation s > 0, and at the ith local observation zone pair

(CA1 , CA2). The list of local observation zones is constructed as in the case where s = 0,
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but omitting local observation zone pairs for which

CA1 >b CA2 , (4.2)

due to the problem symmetry. In particular, the local observation zone pair where CA1 = C1

and CA2 = C2 is equivalent to the local observation zone pair where CA1 = C2 and CA2 = C1

and we omit one of the two equivalent pairs following the rule in Eq. (4.2). In the latter

rule, the inequality is to be interpreted in a binary manner as if the vectors CA1 and CA2

were binary numbers (remember that the entries of CA1 and CA2 are in L = {0, 1}). For

example,

C1 =
[

1 0 0 0
]

>b

[
0 0 0 1

]
= C2,

and the 25th entry of xs represents the value of the value function at local observation zone

pair (C2, C1).

4.2.2 Single-Agent Problem

We formulate the single-agent problem and find the optimal single-agent policies, a building

block for the two-agent problem.

Problem 3 [Single Agent] Let one agent be positioned on an arbitrary stage of graph

G(V,E). The edge costs are time invariant and i.i.d. random variables over L with proba-

bility p for a zero edge cost. The agent observes the costs of the links in its local observation

zone and navigates through the graph in the direction of increasing stage indices. Then, find

the navigation strategy so that the expected discounted sum of costs incurred at each stage

is minimized (discount factor 0 < α < 1). �

The state x = C ∈ S1 is the set of costs of the edges in the local observation zone

associated with the agent, summarized in vector C [see Eq. (4.1)]. We distinguish two

types of edge costs: a controllable edge cost is determined at least in part by decision u ∈

U1 = {−1, 0, 1}, whereas an uncontrollable edge cost is independent of u. Edge cost a0 is

controllable, as opposed to a−1, a1 and b0, which are uncontrollable. In particular, if at the

current state the agent chooses the edge straight ahead (u = 0), then a′0 = b0, where (·)′

denotes the value of (·) at the next time step. On the other hand, for any u ∈ U1, the edge
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costs a′−1, a′1 and b′0 are only known probabilistically, according to the a priori information

available on unobserved edge costs, and do not depend on the agent decision. Hence, a0 is

(partially) controllable. Since a0 is the only controllable edge cost, from Bellman’s equation,

it suffices to compute the expected value of the optimal value function for a0 = 0 and for

a0 = 1 to determine the optimal value function at all states.

Let a policy µ1 : S1 → U1 be determined by the following two rules:

1. Traverse the edge with the smallest cost,

2. Break ties by traversing the edge that leads to the smallest cost a′0, given the infor-

mation at the current stage. An unknown a′0 is considered better than a′0 = 1 but

worse than a′0 = 0.

Then, we can compute Jµ1 : S1 → R+, the value function associated with policy µ1. We

have that

E[Jµ1(x)|a0 = 0] =
(1− p)4

(
1 + p− p2

)
α

(1− α) (1 + pα− 5p2α + 6p3α− 2p4α)
, (4.3)

E[Jµ1(x)|a0 = 1] =
(1− p)2

(
1− pα− 2p2α + 3p3α− p4α

)
(1− α) (1 + pα− 5p2α + 6p3α− 2p4α)

, (4.4)

where 0 ≤ p ≤ 1 and 0 < α < 1. The function Jµ1(x) at the system states x = xi, for

i = 1, . . . , 16 then becomes

Jµ1(xi1) = αE[Jµ1(x)|a0 = 0], for i1 ∈ {1, 2, 3, 4},

Jµ1(xi2) = αE[Jµ1(x)], for i2 ∈ {5, 6, 7, 9, 10, 11, 13, 14, 15},

Jµ1(x8) = αE[Jµ1(x)|a0 = 1],

Jµ1(x12) = 1 + αE[Jµ1(x)|a0 = 0],

Jµ1(x16) = 1 + αE[Jµ1(x)].

We have the following lemma.

Lemma 8 The policy µ1 is optimal for the single-agent problem 3, for 0 ≤ p ≤ 1 and

0 ≤ α < 1. �

Proof: We show that Jµ1 solves Bellman’s equation and hence represents the optimal value

function J∗1 , where the subscript indicates we treat a one-agent problem. It suffices to show
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that at xi, for i = 1, . . . , 16,

Jµ1(xi) ≤ g(xi, u) + E[Jµ1(f(xi, u))], u ∈ U1,

where g(x, u) denotes the cost of the edge traversed when taking decision u in state x, and

where f(x, u) denotes the state reached upon taking decision u in state x. Establishing the

previous equation amounts to establishing that

E[Jµ1(x)|a0 = 0] ≤ E[Jµ1(x)|a0 = 1], (4.5)

αE[Jµ1(x)|a0 = 1] ≤ 1 + αE[Jµ1(x)], (4.6)

αE[Jµ1(x)] ≤ 1 + αE[Jµ1(x)|a0 = 0]. (4.7)

Substituting the Eqs (4.3,4.4) in the Eqs (4.5-4.7) yields the conditions

0 ≤ (1− p)2

Pd(p, α)
, (4.8)

0 ≤ Pn, 1(p, α)
Pd(p, α)

, (4.9)

0 ≤ Pn,2(p, α)
Pd(p, α)

, (4.10)

for 0 ≤ p ≤ 1 and 0 < α < 1, where

Pn1(p, α) = 1− 3p2α + 5p3 α− 2p4α,

Pn2(p, α) = 1− α + 4pα− 8p2α + 7p3α− 2p4α,

Pd(p, α) = 1 + pα− 5p2α + 6p3α− 2p4α.

Since the three polynomials are linear in α, it suffices to verify nonnegativity of Pn1(p, α)

and Pn2(p, α) and positivity of Pd(p, α) for α = 0 and α = 1, for all 0 ≤ p ≤ 1. We have

that

Pn1(p, 0) = Pn2(p, 0) = Pd(p, 0) = 1,
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so that we have left to establish nonnegativity of Pn1(p, 1) and Pn2(p, 1) and positivity of

Pd(p, 1), for 0 ≤ p ≤ 1. For each polynomial, we formulate a Linear Matrix Inequality (LMI)

constraint. We give details for Pd(p, 1); similar procedures lead to the proof of nonnegativity

of Pn1(p, 1) and Pn2(p, 1). For an in-depth treatment, see [62]. In particular, we find an

auxiliary polynomial P a
d (p) such that

P ′
d(p) = Pd(p, 1) + P a

d (p)
(
(p− 1/2)2 − 1/4

)
> 0, (4.11)

where

P a
d (p) =

 1

p

T  a1 a2

a2 a3

 1

p

 ,

with parameters a1, a2 and a3 such that P a
d (p) is Sum of Squares (SOS), or equivalently, its

coefficient matrix is positive semi-definite. Indeed, if such a polynomial P a
d (p) can be found,

then for 0 ≤ p ≤ 1 we have that the second term of P ′
d(p) is non-positive for 0 ≤ p ≤ 1

and therefore Pd(p, 1) is positive for 0 ≤ p ≤ 1. Requiring the P ′
d(p) to be SOS guarantees

nonnegativity and transforms Eq. (4.11) into an LMI constraint, although it is a more

stringent requirement. Here, we require positive definiteness of the coefficient matrix of

P ′
d(p), rather than positive semi-definiteness, since we want to prove strict inequality in

Eq. (4.11). The SOSTOOLS Sum of Squares Optimization Toolbox for Matlab [63] uses

semi-definite programming to find a satisfying P a
d (p), which yields

P a
d (p) =

 1

p

T  3 −7
5

−7
5

41
10

 1

p


as a possible positive definite quadratic form for the auxiliary polynomial (although only

positive semi-definiteness is required). The corresponding quadratic form for P ′
d(p) is

P ′
d(p) =


1

p

p2


T 

1 −1 − 8
15

−1 28
15 − 9

20

− 8
15 − 9

20
21
10




1

p

p2

 ,
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whose coefficient matrix can easily be verified to be positive definite. We conclude that

Pd(p, α) > 0 for 0 ≤ p, α ≤ 1.

Similarly, we can compute auxiliary polynomials P a
n1(p) and P a

n2(p). In particular, we

have that

P a
n1(p) =

 1

p

T  2 −1

−1 4

 1

p

 ,

P a
n2(p) =

 1

p

T  4 −3

−3 5

 1

p

 ,

where the coefficient matrices are positive definite. The corresponding quadratic forms of

P ′
n1(p, 1) and P ′

n2(p, 1) are

P ′
n1(p) =


1

p

p2


T 

1 −1 −1
3

−1 5
3 −1

2

−1
3 −1

2 2




1

p

p2

 ,

P ′
n2(p) =

 1

p

T  2 −2

−2 3

 1

p

 ,

where the coefficient matrices are positive definite. Again, the last four coefficient matrices

need only be positive semi-definite. Therefore, the proof is complete.

Hence, for any relevant p and α (0 ≤ p ≤ 1, 0 < α < 1), the same single-agent policy is

optimal.

4.2.3 Mixed Forward-Backward Recursion

In this section, we extract from LP(s) a recursion writing the optimal value function at

separation s as a function of the optimal value function at separations s + σ, for σ =

max{−2,−s}, . . . , 2. This recursion is neither forward, nor backward since at separation

s, the RHS includes terms at lower and greater separations. Let µs
∞ : S(s) → U denote

the policy, whereby at separation s each agent follows the single-agent optimal policy and

where ties are broken by choosing the pair of decisions that minimizes the resulting agent

separation. Then, we make the following assumption:
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Assumption 1 For any 0 ≤ p ≤ 1 and 0 < α < 1, we look for an optimal policy µ∗ : S → U

in the set of policies {µ | µ(x) = µs
∞(x) for x ∈ S(s), s ≥ s̄} for a particular s̄ ≥ 0.

This assumption is motivated in part by the development in Section 4.2.2, where we show

that for the set of relevant p and α, the same set of policies is optimal. Note that under

Assumption 1, µs
∞ is independent of s for s ≥ s̄ and therefore, for s ≥ s̄ we omit the

superscript s. One sanity check is that the optimal two-agent value function should converge

to twice the optimal single-agent value function for s going to infinity, since for infinitely

large s the two-agent problem is equivalent to the combination of two single-agent problems.

Assumption 1 satisfies this check, since for infinitely large s, each agent indeed uses a single-

agent optimal policy.

We write LP(s) in standard form as follows:

maximize cT

 xs

ys

 (4.12)

subject to (T−A0)xs + ys =
∑
σ∈Ss

Aσx̂s+σ,∗ + bs, (4.13)

xs = xs
+ − xs

− (4.14)

xs
+,xs

−,ys ≥ 0,

denoted LPf (s). Here, cT =
[

eT 0T
]T

with the vectors e and 0 of the same dimension

as xs and ys, respectively. Writing xs = xs
+ − xs

−, with 0 ≤ xs
+,xs

− ∈ Rn′
, where n′ = n0

for s = 0, and n′ = n for s ≥ 1, is a common procedure for converting a free variable to the

standard form format. Similary, introducing slack variables 0 ≤ ys ∈ Rn′|U | is a standard

method to transform inequalities into equalities. We refer the reader to [8] for details on

converting a general LP into standard form. The version of LPf (s) where x̂s+σ = xs+σ,∗,

for σ ∈ Ss, is denoted LP∗
f (s). Since xs+σ,∗ ≥ 0, for any s ≥ 0 and σ ∈ Ss, we can set

xs
− = 0 in LP∗

f (s), a helpful simplification.

We now derive a matrix equation relating xs,∗ to xs+σ,∗ (σ ∈ Ss) for s ≥ 0. To this

end, we show a property of the optimal basic feasible solution, which holds for all s ≥ 0.

In particular, consider the optimal basic feasible solution pair (xs,∗,ys,∗) of LP∗
f (s) for

any s ≥ 0. At (xs,∗,ys,∗), the n|U | linear equality constraints (4.13) are satisfied, where n

needs to be replaced by n0 for s = 0 (from here on, we omit this fact). Furthermore, from

the definition of a basic solution, we have that, out of all the constraints that are active,
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n+n|U | (i.e. the number of decision variables) are linearly independent. Therefore, at least

n of the inequality constraints ys ≥ 0 are active. To each particular xs,∗
i (0 ≤ i ≤ n), i.e.

at separation s and for the pair of observation zones corresponding to index i, is associated

a set of |U | equality constraints (see the definition of T in Section 3.1.2). Let ys
i ∈ R|U |

contain the slack variables associated with the equality constraint set related to xs
i . We

have the following property of ys,∗
i .

Lemma 9 At least one of the components of ys,∗
i equals zero, for all i = 1, . . . , n, and for

all s = 0, 1, . . . �

Proof: One way to see this is by contradiction. Suppose the opposite is true for some i, i.e.

ys,∗
i > 0, then we can increase xs,∗

i , adapting the elements of ys,∗
i accordingly so that the set

of |U | equality constraints (4.13) associated with xs
i remains satisfied, until some element

of ys
i equals zero. Increasing xs

i does not jeopardize equality constraints related to other

components of xs, since xs
i appears in the RHS of those constraints with non-negative

coefficients.

This procedure yields a feasible solution (x̄s, ȳs) such that x̄s ≥ xs,∗, where strict

inequality holds for at least one component. Since (xs,∗,ys,∗) is assumed optimal, this is a

contradiction and the proof is complete.

We now derive a linear equation in xs,∗, and xs+σ,∗ for σ ∈ Ss for all s ≥ 0. Since for

all i = 1, . . . , n, at least one element of ys
i equals zero (see Lemma 9), we can construct a

set of n equations with xs
i , i.e. the components of xs, as the n unknowns. Specifically, for

each i = 1, . . . , n we can pick an index js
i (1 ≤ js

i ≤ |U |), such that

(ys,∗
i )js

i
= 0, (4.15)

where the LHS denotes the (js
i )th component of ys,∗

i . Then, for each i = 1, . . . , n, and out

of the |U | equality constraints associated with xs
i , take the equality constraint with index

js
i as row i of matrix I − Ds,0, i.e., I and Ds,0 contain the relevant rows of T and A0,

respectively. Then, for all s ≥ 0, we have that

(I−Ds,0)xs,∗ =
∑
σ∈Ss

Ds,σxs+σ,∗ + ds, (4.16)
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where I−Ds,0,Ds,σ ∈ Rn×n (for all σ ∈ Ss), where Ds,σ and ds ∈ Rn contain the relevant

rows of Aσ
s (for all σ ∈ Ss) and bs, respectively. Note that in general the optimal basic

feasible solution need not be the same for all s, hence the addition of subscript s to the

composing matrices of Eq. (4.16).

We now restrict our attention to separations s ≥ s̄, where under Assumption 1, the same

basic feasible solution is optimal, and therefore we can write D0
.= Ds′,0, for all s′ ≥ s̄. The

matrices Dσ, for σ ∈ Ss and the vector d are defined similarly. We have then, for s ≥ s̄,

that

(I−D0)xs,∗ =
∑
σ∈Ss

Dσxs+σ,∗ + d. (4.17)

The structure of Main Problem 1 allows us to reduce the dimension of the matrices and

vectors in Eq. (4.17). Recall that in this problem, state x = (s, CA, CB) is a triple containing

the agent separation s and the costs of the edges in the local observation zones associated

with both agents, summarized in the vectors CA and CB [see Eq. (4.1)]. The edge costs aA
0

and aB
0 are controllable (see Section 4.2.2 for the definition of a controllable edge cost); aA

1 ,

aA
−1, bA

0 , aB
1 , aB

−1, and bB
0 , are uncontrollable.

We introduce some notation. Let

Exs,∗
qr = E[J∗(x)|aA

0 = q, aB
0 = r], (4.18)

where q, r ∈ L ∪ {×}, and where the expected value is taken over the uncontrollable edge

costs. Here, q = × (resp. r = ×) indicates that aA
0 (resp. aB

0 ) is unobserved. From

symmetry, we have that Exs,∗
qr = Exs,∗

rq , for q, r ∈ L ∪ {×}. Furthermore, we have the

relation

Exs,∗
q× = pExs,∗

q0 + (1− p)Exs,∗
q1 , for q ∈ L ∪ {×}, (4.19)

which follows immediately from the definition (4.18) of Exs,∗
qr .

We now use Exs,∗
qr and the fact that only aA

0 and aB
0 are controllable to simplify

Eq. (4.17), for s ≥ s̄. We investigate two cases. First, if at a particular separation s ≥ s̄,

the optimal two-agent decision ui ∈ U associated with some i (0 ≤ i ≤ n) is such that

s′ = s + 2 or s′ = s − 2, then xs,∗
i = di + αExs′,∗

××. Therefore, in Eq. (4.17), we have that
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the ith row of the matrices D0, D1 and D−1 equals zero. Furthermore, D2 and D−2 have

at most rank one. In particular, we have

D2xs+2,∗ = D′
2Exs+2,∗

×× (4.20)

where D′
2 ∈ Rn×1. A similar equation holds in the case s′ = s− 2.

Second, for ui such that s′ = s + 1 or s′ = s − 1, we have that xs,∗
i = di + αExs′,∗

q× ,

with q = bA
0 if uA

i = 0 and q = bB
0 if uB

i = 0. Hence, the matrices D1 and D−1 are at

most of rank two since at most two linearly independent linear combinations of xs+1,∗ (resp.

xs−1,∗), namely Exs+1,∗
0× and Exs+1,∗

1× (resp. Exs−1,∗
0× and Exs−1,∗

1× ), suffice in Eq. (4.17). We

have

D1xs+1,∗ = D′
1

[
Exs+1,∗

0× Exs+1,∗
1×

]T
, (4.21)

where D′
1 ∈ Rn×2. A similar equation holds in the case s′ = s− 1. For policy µ∞, we have

rank(D′
2) = rank(D′

−2) = 1 and rank(D′
1) = rank(D′

−1) = 2.

Finally, if ui is such that s′ = s, we have that, in similar fashion, matrix D0 is of rank

three and hence

D0xs,∗ = D′
0

[
Exs,∗

00 Exs,∗
01 Exs,∗

11

]T
, (4.22)

where D′
0 ∈ Rn×3, with the appropriate components. With Eqs (4.20-4.22), we write

Eq. (4.17) as

(I−D′′
0)
[

Exs,∗
00 Exs,∗

01 Exs,∗
11

]T
= . . .

D′′
−2Exs−2,∗

×× + D′′
−1

 Exs−1,∗
0×

Exs−1,∗
1×

+ D′′
1

 Exs+1,∗
0×

Exs+1,∗
1×

+ D′′
2Exs+2,∗

×× + d′′, (4.23)

where D
′′
σ = KD′

σ, for σ ∈ Ss, and where d
′′

= Kd. Here, the matrix K ∈ R3×n is such

that

[
Exs

00 Exs
01 Exs

11

]T
= Kxs, (4.24)

where the entries of K are known polynomials in p. In words, linear operator K takes the

appropriate linear combination of the elements of xs to compute the expected values in the
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LHS of Eq. (4.24). The explicit expressions for the matrices D′′
σ for σ = −2, . . . , 2 and for

the vector d′′ are

D′′
−2 = α


p2(1− p)2

p(1− 3p + 5p2 − 4p3 + p4)

(−1 + 2p− 3p2 + p3)2

 ,

D′′
−1 = α


2p2(1− p) 2p(1− p)4

p(1− p + 2p3 − p4) (1− p)3(1− 2p + 3p2 − p3)

2p(1− p)2(1− 2p + 3p2 − p3) 0

 ,

D′′
0,1 = αp2


(1 + 2p2 − 6p3 + 6p4 − 2p5)

(1− p)2(1 + p− p2 + 3p3 − p4)

(1− 2p + 6p3 − 7p4 + 2p5)

 ,

D′′
0,2 = αp(1− p)2


2(1− p)(1 + 2p2 − 2p3)

(1− p)(1− p2 + 6p3 − 2p4)

4p(1− 2p + 3p2 − p3)

 ,

D′′
0,3 = α(1− p)3


(1− p)2(1− p + 2p2)

(1− p)p(1− p + 3p2 − p3)

2p(1− 2p + 3p2 − p3)

 ,

D′′
1 = αp


2(1− p)2p 2(1− p)5

p(2− 5p + 6p2 − 4p3 + p4) (1− p)4

2(1− p)3p 0

 ,

D′′
2 = α(1− p)2p2


(1− p)2

(1− p)

1

 ,

d′′ = (1− p)2


0

1

2

 ,

where D′′
0,i denotes the ith column of D′′

0, for i = 1, 2, 3. The recursion in Eq. (4.23) is

neither forward nor backward in the sense that the optimal value function at separation s

depends (linearly) on the optimal value function at separations both lower and greater
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than s. In the following section, we convert Eq. (4.23) to a forward equation, so that given

the optimal value function up till separation s, we can compute the optimal value function

at larger separations.

4.2.4 Forward Recursion

In this section, we transform Eq. (4.23) into a forward recursion which allows us, under

Assumption 1, to compute the optimal value function for s ≥ s̄, given the appropriate

initial condition, involving Exs̄+1,∗
×× , Exs̄,∗

q× (q = 1, 2) and all information on the optimal

value function at separations s < s̄.

We first perform a change of coordinates in Eq. (4.23) and rearrange the terms in an

appropriate way. In particular, we express the expected values of the optimal value function

at a particular separation s as a function of Exs,∗
××, Exs.∗

1× and Exs,∗
11 . Specifically, we define

P1 ∈ R3×3 and P2 ∈ R2×2 as

P1 =


p2 2p(1− p) (1− p)2

0 p 1− p

0 0 1

 ,

P2 =

 p 1− p

0 1

 ,

so that

[
Exs,∗

×× Exs,∗
1× Exs,∗

11

]T
= P1

[
Exs,∗

00 Exs,∗
01 Exs,∗

11

]T
, (4.25)[

Exs,∗
×× Exs,∗

1×

]T
= P2

[
Exs,∗

0× Exs,∗
1×

]T
. (4.26)

Both P1 and P2 are invertible for 0 < p < 1. The cases where p = 0 or p = 1, yield trivial

navigation problems and or not of interest. Using Eqs (4.25,4.26), Eq. (4.23) becomes

R0

[
Exs,∗

×× Exs,∗
1× Exs,∗

11

]T
= . . .

R−2Exs−2,∗
×× + R−1

 Exs−1,∗
××

Exs−1,∗
1×

+ R1

 Exs+1,∗
××

Exs+1,∗
1×

+ R2Exs+2,∗
×× + r, (4.27)

where R0 = (I − D′′
0)P

−1
1 , where Rσ = D′′

σ, for σ ∈ {−2, 2}, where Rσ = D′′
σP

−1
2 , for

σ ∈ {−1, 1}, and where r = d′′. We regroup the terms in Eq. (4.27) to obtain the forward
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recursion

R′
2


Exs+2,∗

××

Exs+1,∗
1×

Exs,∗
11

 =
1∑

σ=−2

R′
σ


Exs+σ,∗

××

Exs+σ−1,∗
1×

Exs+σ−2,∗
11

+ r, (4.28)

where

R′
2 =

[
−R2 −R1,2 R0,3

]
, (4.29)

R′
1 =

[
R1,1 −R0,2 0

]
,

R′
0 =

[
−R0,1 R−1,2 0

]
,

R′
−1 =

[
R−1,1 0 0

]
,

R′
−2 =

[
R−2 0 0

]
,

(4.30)

where Rk,l denotes the lth column of Rk. Eq. (4.28) is only then a well-defined forward

recursion if R′
2 is invertible. We have the following lemma.

Lemma 10 The matrix R′
2 ∈ R3×3 is invertible for all p and α such that 0 < α < 1 and

0 < p < 1, p 6= p′, where

p′ =
1
3

4−
(

2
25− 3

√
69

) 1
3

−

(
25− 3

√
69

2

) 1
3

 ' 0.245.

�

Proof: Define

P1(p) = −1 + 5p− 4p2 + p3,

P2(p, α) = −1− 2p− p2 (1− α)− 10p3 α + 33p4 α− 42p5 α + 26p6α− 8p7α + p8α.

Then, we have

det(R′
2) = −(1− p)6pα2 P1(p) P2(p, α). (4.31)

71



We now analyze the polynomial in Eq. (4.31) with some straightforward manipulations.

In particular, one can verify that p′ is the only real-valued root of P1(p), and therefore,

det(R′
2) = 0 for p = p′ and any 0 < α < 1. Then, we establish that P2(p, α) 6= 0, for

0 < p < 1 and 0 < α < 1. Specifically, we show that P2(p, α) < 0 for 0 < p < 1 and

0 < α < 1. Since P2(p, α) is linear in α, it suffices to show that both P2(p, 0) < 0 and

P2(p, 1) < 0 for 0 < p < 1. The former can easily be verified to hold by noticing that

P2(p, 0) = −1− 2p− p2. Further, we have that

P2(p, 1) = −1 + p (−2 + p2(1− p)2 P ′
2(p))

where

P ′
2(p) = −10 + 13p− 6p2 + p3.

From this, we can see that the inequality P2(p, 1) < 0 holds for 0 < p < 1 if P ′
2(p) < 0 for

0 < p < 1. Since P ′
2(0) < P ′

2(1) < 0, we have as sufficient condition that

d

dp
P ′

2(p) = 13− 12p + 3p2 > 0.

This condition can easily been verified analytically to hold, which completes the proof.

Lemma 10 indicates that for all relevant p 6= p′ and α, Eq. (4.28) is a well-defined forward

recursion. For p = p′, rearranging terms in Eq. (4.28) yields a different, well-defined forward

recursion, for which the algorithm presented in the remainder of this thesis is valid. We

omit the details regarding this special case and assume from here on that p 6= p′.

4.2.5 LTI System

In this section, we analyze the recursion in Eq. (4.28) with control-theoretic tools. Rear-

ranging the terms in Eq. (4.28) and adding appropriate variables yields

Exs+1,∗ = A(Exs,∗) + B, (4.32)
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where

Exs,∗ =
[

Exs+2,∗
×× Exs+1,∗

1× Exs,∗
11 Exs−2,∗

×× Exs−1,∗
×× Exs−1,∗

1× . . .

Exs,∗
×× Exs+1,∗

×× Exs,∗
1×

]T
, (4.33)

and with

A =



(R′
2)
−1R′

1

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(R′
2)
−1R′

−2,1

1

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(R′
2)
−1R′

−1,1

0

1

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(R′
2)
−1R′

0,(1,2)

0 0

0 0

0 1

1 0

0 0

0 0



,

and

B =
[ (

(R′
2)
−1r
)T 0 0 0 0 0 0

]T
.

Eq. (4.32) is a necessary condition on the optimal value function, for s ≥ s̄. The superscript s

of the state vector indicates that at “time” s, the optimal value function is completely known

at separations up until and including s. Note that the entries Exs−2,∗
×× and Exs−1,∗

1× of Exs,∗

are unnecessary in the state transition equation, but are required in the state vector to

define the system output adequately.

We now consider any state sequence Exs
c, for s = s̄, s̄ + 1, . . ., and formulate the state

transition equation of an LTI system with system matrix A as follows:

Exs+1
c = A(Exs

c) + B, (4.34)

where Exs
c is defined as in Eq. (4.33), but omitting the asterisk; the subscript c indicates that

the value function associated with Exs
c, for s = s̄, s̄+1, . . ., is considered a candidate optimal

value function. We determine the output zs ∈ Rn|U | (for s ≥ s̄) so that non-negativity of zs
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verifies that xs
c is indeed the optimal solution of LPf (s), where x̂s+σ = xs+σ

c , for σ ∈ Ss,

an LP which we denote as LPc
f (s). Here, xs

c and xs+σ
c (for s ≥ s̄ and σ ∈ Ss) are computed

from the state vectors Exs
c and Exs+σ

c using Eq. (3.2) with µ∞ as policy [recall the notation

convention in Eq. (3.6)]. To this end, we rewrite the constraints of LPc
f (s) [see Eq. (4.13)]

as

ALP

 xs

ys

 = bs
LP ,

with

ALP =
[

T−A0 I
]
,

bs
LP =

∑
σ∈Ss

Aσxs+σ
c + bs,

where I has the appropriate dimensions. Note that we only consider non-negative candidate

optimal value functions xs
c, and therefore, in LPc

f (s), we can set xs
− = 0 [see Eq. (4.14)].

We need the following property of matrix ALP .

Lemma 11 The first n columns of the matrix ALP are linearly independent. �

Proof: Equivalently, we need to establish that the matrix T−A0 is full rank. Recall that

there are |U | rows of T−A0 associated with xs
i (1 ≤ i ≤ n), one row for each agent decision

pair (choose any s ≥ s̄). For any i (1 ≤ i ≤ n), the row of A0 associated with the decision u

where the two agents diverge, has all zero entries, since s′ = s+2, where s′ is the separation

at the next stage. Therefore, for each i (1 ≤ i ≤ n), there is an r (1 ≤ r ≤ n|U |) such that

Tri −A0
ri = 1 and Tri′ −A0

ri′ = 0 for i′ 6= i, where (·)ri is the entry on the rth row and

ith column of (·). Therefore, the first n columns of ALP are linearly independent, which

concludes the proof.

Let µs : S(s) → U be any two-agent policy for the Auxiliary Problem P(s), where

Ĵs(x) ∼ xs+σ
c , for σ ∈ Ss, s ∈ Ms. Let xs

µs ∼ Jµs(x), for x ∈ S(s), denote the value

function associated with stationary policy µs, i.e. the cost when the agents apply policy µs

at all stages. We show a property of xs
µs in the following lemma.

Lemma 12 For any µs, there exists a vector y ∈ Rn|U | such that (xs
µs ,y) is a basic solution

of LPc
f (s). �
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Proof: At the state associated with index i (1 ≤ i ≤ n), the agents take decision ui ∈ U

under policy µs. For each i, let index ji (1 ≤ js
i ≤ |U |) correspond to the decision ui. We

choose

(yi)ji = 0 for all i = 1, . . . , n. (4.35)

We now define the matrix Bµs

LP ∈ Rn|U |×n|U | as consisting of a copy of the matrix ALP ,

where the columns associated with (yi)ji are removed. We show that Bµs

LP is full rank.

From Lemma 11, we have that the first n columns of Bµs

LP are linearly independent. The last

(|U |−1)n columns of Bµs

LP are linearly independent since they consist of different columns of

I. Lastly, each of the first n columns is linearly independent of the last (|U | − 1)n columns,

since the ith column of Bµs

LP (1 ≤ i ≤ n), has a nonzero element on the row corresponding to

(yi)ji , and that the same row only contains zeros on its last (|U | − 1)n columns. Therefore,

the columns of Bµs

LP are linearly independent and Bµs

LP is an invertible matrix.

Let w ∈ R(|U |−1)n contain all entries of y except for the entries (yi)ji . With Bµs

LP , we

have  xµs

w

 = (Bµs

LP )−1bs
LP . (4.36)

The LHS of Eq. (4.36), with Eq. (4.35), satisfies the equality constraints of LPc
f (s). Since

ALP has linearly independent rows, and given the definition of Bµs

LP , we apply Theorem 2.4

in [8] to conclude that xµs is a basic solution of LPc
f (s), with corresponding matrix Bµs

LP .

From Lemma 12, it follows that to policy µ∞ is associated a basic solution of LPc
f (s)

with basis matrix BLP ∈ Rn|U |×n|U |. Two conditions need to hold for matrix BLP to be

optimal (see [8] for a detailed treatment). First, the basic solution associated with BLP is

required to be dual feasible. In particular, we have that

c̄T = cT − cT
BB−1

LPALP ≥ 0, (4.37)

where c̄ is the reduced cost vector, c is the cost vector of LPc
f (s) and where cB is the cost

vector corresponding to the basis BLP . This condition is independent of bs
LP and thus
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needs to be checked only once for each specific α and p, and not for all separations s ≥ s̄.

We have the following lemma.

Lemma 13 The vector c̄T = cT − cT
BB−1

LPALP ≥ 0, for all p and α such that 0 < p < 1

and 0 < α < 1. �

Proof: The basis matrix BLP corresponds to the policy µ∞, a two-agent policy that is a

combination of two optimal single-agent policies (see Section 4.2.3). Further, in Lemma 8,

we establish that for any 0 < α < 1 and 0 ≤ p ≤ 1, the same set of single-agent policies is

optimal. Therefore, in the limit for s → ∞, the policy µ∞ is an optimal two-agent policy

for all 0 < α < 1 and 0 ≤ p ≤ 1.

The vector of reduced costs c̄ is independent of separation s, for s ≥ s̄. Hence, since in

the limit for s →∞ the basis matrix BLP is optimal, we have that c̄T ≥ 0.

Lemma 13 allows us to conclude that dual feasibility is satisfied for s ≥ s̄, under As-

sumption 1.

The second condition is primal feasibility. In particular, we need to check that

B−1
LPbs

LP ≥ 0, (4.38)

for all s ≥ s̄. Therefore, we define the output zs of the LTI system as

zs = B−1
LP (M1Exs

c + M2) , (4.39)

where M1 ∈ Rn|U |×9 and M2 ∈ Rn|U | are such that bs
LP = M1Exs

c +M2. If dual feasibility

holds for a particular p and α, then zs ≥ 0 for all s ≥ s̄, indicates optimality of BLP for all

s ≥ s̄.

Therefore, given a state and output sequence of linear system (4.34,4.39) such that the

output is non-negative at all separations, then the state sequence represents the optimal

value function at separations s ≥ s̄. The next section deals with the only remaining issue

of computing the adequate system initial condition Exs̄−1
c .

4.2.6 Computation of the Optimal Value Function at Small Separations

We first establish a necessary condition on the initial state of system (4.34). Then, we

formulate a LP whose solution is the optimal value function for separations s < s̄. The
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necessary condition on the initial system state is one of the LP constraints, linking the

optimal value function at small separations to the optimal value function for s →∞.

Under Assumption 1, s = s̄ is the smallest separation for which the complete optimal

value function can be computed with forward recursion (4.28). Therefore, Exs′
c , for any

s′ ≥ s̄ − 1, is a valid initial state of system (4.34). We choose Exs̄−1
c . Since the optimal

value function for the two-agent navigation problem is upper bounded by twice the optimal

value function for the single-agent navigation problem, Exs̄−1
c can only excite the stable

modes of system (4.34), leading to a necessary condition on Exs̄−1
c as follows.

First we have the following lemma, regarding the spectrum λ(A) of the system matrix

A [see Eq. (4.34)]. The subscripts u and i indicate eigenvalues corresponding to unstable

and stable system modes, respectively.

Lemma 14 The following holds for all α and p such that 0 < α < 1 and 0 < p < 1,

p 6= p′. The spectrum λ(A) of matrix A contains exactly three eigenvalues λu,i ∈ λ(A),

for i = 1, 2, 3, such that |λu,i| > 1. Furthermore, for all other eigenvalues λs,j ∈ λ(A), for

j = 1, . . . , 6, we have that |λs,j | < 1. �

Proof: The proof is as follows. We first determine the characteristic equation of A as

CA(p, α, Y ) =
Y 3

−p3(detR′
2)

6∑
i=0

Pi(p, α)Y i,

with Y ∈ C and where Pi(p, α) for i = 0, . . . , 6 are polynomials in p and α. Note that for

a particular pair of parameters p and α, the values of Y such that CA(p, α, Y ) = 0 are the

eigenvalues of matrix A. For 0 < p 6= p′ < 1 and for 0 < α < 1, the factor −p3(detR′
2) 6= 0

(see Lemma 10) and can therefore be omitted. We assume from here in that p 6= p′, in

this proof. The polynomials Pi(p, α) are continuous functions of p and α, for i = 0, . . . , 6.

Therefore, the number of eigenvalues λ with |λ| < 1 can only be different at the parameter

pairs (p1, α1) and (p2, α2), for 0 < p1, p2, α1, α2 < 1, if there exists a parameter pair (p, α)

and a λ ∈ C, with |λ| = 1, for which CA(p, α, λ) = 0, with p1 ≤ p ≤ p2 and α1 ≤ α ≤ α2.

Hence, if we have that CA(p, α, Y ) 6= 0 for any 0 < p < 1 and 0 < α < 1 and for any Y ∈ C

with |Y | = 1, it follows that the number of eigenvalues λ such that |λ| < 1, is constant

for all parameter pairs (p, α). In other words, with the continuous variation of p and α,

no eigenvalue crosses the unit circle in the complex plane. Then, it remains to be verified
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numerically for some parameter pair (p̄, ᾱ), that there exist exactly three λi, for i = 1, 2, 3,

such that CA(p̄, ᾱ, λi) = 0, and with |λi| < 1.

Let

C ′
A(p, α, Y ) = Y 3

6∑
i=0

Pi(p, α)Y i. (4.40)

We now show there is no parameter pair (p, α) and a Y ∈ C with |Y | = 1 for which

C ′
A(p, α, Y ) = 0. Since Y 3 6= 0 for |Y | = 1, we can omit the factor Y 3 from Eq. (4.40)

which yields

C ′′
A(p, α, Y ) =

6∑
i=0

Pi(p, α)Y i,

and use C ′′
A(p, α) in stead of C ′

A(p, α). Next, we perform a change of variables that maps

the unit circle in the complex plane into the imaginary axis. In particular, let

Y =
1 + W

1−W
,

where W ∈ C. The equation C ′′
A(p, α, Y ) is transformed into equation DA(p, α,W ) and

proving that no root of C ′′
A(p, α, Y ) crosses the unit circle in the complex plane is equivalent

to proving that no root of DA(p, α,W ) crosses the imaginary axis, W = jω, for ω ∈ R.

Then, we define

DA(p, α,W ) =
1

(1−W )6

6∑
i=0

P ′(p, α)W i,

where W ∈ C, and where P ′
i (p, α) for i = 0, . . . , 6 are polynomials in p and α. The factor

(1−W )6 6= 0 for W = jω, with ω ∈ R, and can be omitted. Hence, equivalently, we show

there is no parameter pair 0 < p, α < 1, and ω ∈ R such that D′
A(p, α, jω) = 0, with

D′
A(p, α,W ) =

6∑
i=0

P ′
i (p, α)W i.

Substituting W = jω and separating the real and imaginary parts of the resulting equation,
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yields

D′
A(p, α, jω) = D′

A,1(p, α, ω) + jD′
A,2(p, α, ω),

with

D′
A,1(p, α, ω) = P ′

0 − P ′
2ω

2 + P ′
4ω

4 − P ′
6ω

6 (4.41)

D′
A,2(p, α, ω) = P ′

1ω − P ′
3ω

3 + P ′
5ω

5,

where the dependence of P ′
i on p and α, for i = 0, . . . , 6, is omitted for notational simplicity.

The proof has been reduced to establishing that D′
A,1(p, α, ω) = 0 and D′

A,2(p, α, ω) = 0

cannot both hold for any 0 < p, α < 1 and any ω ∈ R. We focus on Eq. (4.41), and show

that D′
A,1(p, α, ω) > 0 for 0 < p, α < 1 and ω2 ∈ R+. We first perform a change of variables,

with ω̄ = ω2. This yields

D′′
A,1(p, α, ω̄) = P ′

0 − P ′
2ω̄ + P ′

4ω̄
2 − P ′

6ω̄
3. (4.42)

We apply the Routh-Hurwitz Stability Criterion [43] on Eq. (4.42) and show that if ω̄ is

such that D′′
A,1(p, α, ω̄) = 0 for some 0 < p, α, 1, then <(ω̄) < 0. Hence, the corresponding

ω =
√

ω̄ is complex with a non-zero imaginary part and therefore there exists no ω ∈ R

such that D′
A,1(p, α, ω) = 0.

We have left to show that the requirements for the Routh-Hurwitz Stability Criterion

to hold, are satisfied. Specifically, we need to show that

−P ′
4

P ′
6

> 0, (4.43)

−P ′
4P

′
2

(P ′
6)2

− −P ′
0

P ′
6

> 0, (4.44)

for 0 < p, α < 1. Condition (4.43) is equivalent to

− P ′
6(p, α) > 0, (4.45)

P ′
4(p, α) > 0, (4.46)

for 0 < p, α < 1. If Eqs (4.45,4.46) hold, then it can easily be seen that it is sufficient to
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show that

P ′
4(p, α) > −P ′

6(p, α), (4.47)

−P ′
2(p, α) > P ′

0(p, α), (4.48)

for condition (4.44) to hold. We refer to the Lemmas 19-22, in Appendix A, where we

establish that the conditions in Eqs (4.45-4.48) hold for 0 < p, α < 1, and hence the proof

is complete.

Note that from Lemma 10, we have that for p = p′ and any 0 < α < 1, the forward

recursion in Eq. (4.28) is not well-defined. Hence, A is not well-defined at that parameter

value.

With

Ẽxs
c = (I−A)−1B− Exs

c, (4.49)

where I−A is invertible from Lemma 14, the state transition equation (4.34) becomes

Ẽxs+1
c = AẼxs

c. (4.50)

We use Schur’s unitary triangularization theorem [42], to write Eq. (4.50) as

V(Ẽxs+1
c ) = UV(Ẽxs

c), (4.51)

where V is a unitary matrix and where U = diag(Us,Uu) with Us ∈ R6×6 and Uu ∈

R3×3 upper triangular matrices containing as diagonal elements λs,j for j = 1, . . . , 6 and

λu,i for i = 1, 2, 3, respectively (see Lemma 14), and where VA = UV. The initial

state Exs̄−1
c excites only the stable modes if and only if Vu(Ẽxs̄−1

c ) = 0, where Vu consists

of the rows of V associated with the unstable system modes. With Eq. (4.49), this yields

Vu

(
(I−A)−1B− Exs̄−1

c

)
= 0, or

VuExs̄−1
c = Vu(I−A)−1B. (4.52)

Let V1 ∈ R3×3 contain the first two columns and the last column of Vu, i.e. the columns
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corresponding to the entries Exs+2
××,c, Exs+1

1×,c and Exs+1
××,c.

Eq. (4.52) allows us to formulate linear program LP in, whose solution is the optimal

value function for separations s < s̄. In particular, the structure of LP in is similar to

the structure of LPg for separations s < s̄, with minor changes. To compute the optimal

value function at separation s̄− 1, information is required on the optimal value function at

separations s = s̄, s̄ + 1. This information is provided implicitly by adding Eq. (4.52), the

necessary condition on Exs̄−1
c , as one of the LP in constraints. This yields the following LP:

maximize
s̄−1∑
s=0

eTxs

subject to (T−A0
s)x

s ≤
∑
σ∈Ss

Aσ
s x

s+σ + bs, s = 0, 1, . . . , s̄− 3, (4.53)

(T−A0
s̄−2)x

s̄−2 ≤
∑

σ∈{−2,−1,1}

Aσ
s̄−2x

s̄−2+σ + Ā2
s̄−2Exs̄

×× + bs̄−2, (4.54)

(T−A0
s̄−1)x

s̄−1 ≤
∑

σ∈{−2,−1}

Aσ
s̄−1x

s̄−1+σ + Ā1
s̄−1

 Exs̄
1×

Exs̄
××

+ . . .

Ā2
s̄−1Exs̄+1

×× + bs̄−1, (4.55)

Vu(Exs̄−1) = Vu(I−A)−1B, (4.56)

where Ā1
s and Ā2

s are such that

Ā1
s

 Exs+1
1×

Exs+1
××

 = A1
sx

s+1, (4.57)

Ā2
sExs+2

×× = A2
sx

s+2. (4.58)

A reasoning identical to the one that led to the derivation of Eqs. (4.20) and (4.21) leads

to Eqs. (4.57) and (4.58), where we use Eq. (4.19) with q taken to be × to yield Eq. (4.57).

The following theorem links the solution of LP in and the stable state trajectory of

system (4.34) to the fixed point of F , and therefore to the optimal value function, under

some technical conditions. Let xs
c, for s = 0, 1, . . . , s̄ − 1 and Exs̄

1×,c, Exs̄
××,c and Exs̄+1

××,c

denote the solution of LP in. Let the vector Exs̄−1
c [see Eq. (4.33)] be determined, based

on xs
c, for s = s̄ − 3, s̄ − 2, s̄ − 1 and on Exs̄

1×,c, Exs̄
××,c and Exs̄+1

××,c. Lastly, let Exs
c, for

s = s̄, s̄+1, . . . be the state of system (4.34) at separation s, with Exs̄−1
c as initial condition.
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For s ≥ s̄, let xs
c be defined as

xs
c ∼ Jc(x) = g(x, µ∞(x)) + αE[Jc(f(x, µ∞(x)))], x ∈ S(s)

where the expected value is taken over the unknown edge costs. Note that the required

expected values of Jc(x), for x ∈ S(s) and s ≥ s̄, are determined from Exs
c with Eq. (4.18).

Theorem 2 For any α and p such that 0 < α < 1 and 0 < p < 1, p 6= p′, the vectors xs
c

for s = 0, 1, . . ., represent the Main Problem 1 optimal value function for some s̄ ≥ 0 if V1

is rank three and if for the output of system (4.34), we have that

zs ≥ 0, s = s̄, s̄ + 1, . . . . (4.59)

Furthermore, we have that the optimal two-agent policy for separation s ≥ s̄ is µ∞. �

Proof: We show that

Xc =
[

(x0
c)

T (x1
c)

T (x2
c)

T · · ·
]T

,

is the unique fixed point of the function F , so that with Theorem 1, we have that Xc

represents the optimal value function and hence is equal to X∗.

We can see that the constraints in Eqs (4.53-4.55) of LP in are identical to the constraints

associated with the separations s = 0, . . . , s̄− 1 in LPg. Without any other constraint, the

presence of Exs̄
××, Exs̄

1× and Exs̄+1
×× in the RHS of Eqs (4.54-4.55) yields an unbounded

LP in solution. However, with the necessary condition in Eq. (4.56), where the matrix V1

is of rank three, we can express Exs̄
1×, Exs̄

×× and Exs̄+1
×× as unique affine functions of xs,

for s = 0, . . . , s̄. Since, xs
c for s = 0, . . . , s̄ − 1, solve LP in, we have that xs

c is the solution

of LP(s) with x̂s+σ = xs+σ
c (σ ∈ Ss). The latter follows from the definition of LP(s).

For the given parameter ranges, the matrices R′
2 and I−A are invertible (see Lemmas 10

and 14), and therefore the LTI system (4.34) and the constraint in Eq. (4.56) are well defined.

Then, from the latter constraint, we have that Exs̄−1
c as initial state for system (4.34) is

such that only the stable modes are excited. Furthermore, the vector xs
c solves LP(s) with

x̂s+σ = xs+σ
c (σ ∈ Ss), for s = s̄, s̄ + 1, . . . since both the primal [see Eq. (4.59)] and dual

[see Lemma 13] feasibility conditions are satisfied for all s ≥ s̄.
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Hence, xs
c solves LP(s) with x̂s+σ

c = xs+σ
c (σ ∈ Ss), for s = 0, 1, . . . and therefore

Xc is the unique fixed point of F and represents the optimal value function. Lastly, from

Assumption 1, we have that for s ≥ s̄, policy µ∞ is optimal, which concludes the proof.

We now have a computationally simple algorithm that computes the optimal value

function for s < s̄ as the solution of LP in, which is relatively small-sized given that s̄

is not too large. The optimal value function for s ≥ s̄ is implicitly described via a LTI

system. In Section 6.5, we give s̄ for different probabilities p; for most p, separation s̄ = 3.

Furthermore, numerical experiments indicate that the technical condition on the rank of

V1 holds in all cases computed.

Brief Algorithm Summary

Finally, we summarize the iterative use of the presented algorithm. In particular, we start by

constructing the LTI system using policy µ∞, the combination of two single-agent optimal

policies. We extract the connection constraints from the LTI system, necessary conditions

which ensure that the initial condition only excites stable LTI modes. Then, we start an

iterative process and choose a particular, small s̄. We solve LP in, including the connection

constraints, with the chosen value for s̄, extract the LTI initial condition and simulate the

LTI system. If its output is non-negative, the algorithm terminates successfully. Otherwise,

start a new iteration by solving LP in with s̄ incremented by one, and so forth.

4.2.7 Ill-Defined Forward Recursion: a Fix

For the sake of completeness, we present a solution for when p = p′. In this case, the

forward recursion as developed in Section 4.2.4 is not well-defined. In this section, we

present an alternative forward recursion and the corresponding LTI system which allows for

the computation of the necessary extra constraints in LP in, along the lines of the method

presented in the sections 4.2.4-4.2.6.

From Lemma 10, we have that for p = p′ the matrix R′
2 is singular. Therefore, the

transition from the mixed forward-backward recursion [Eq. (4.27)] to a purely forward

recursion [Eq. (4.28)] does not longer hold, and an alternative forward recursion is necessary.

We start with the mixed forward-backward recursion from Eq. (4.27), repeated here for
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convenience:

R0

[
Exs,∗

×× Exs,∗
1× Exs,∗

11

]T
= . . .

R−2Exs−2,∗
×× + R−1

 Exs−1,∗
××

Exs−1,∗
1×

+ R1

 Exs+1,∗
××

Exs+1,∗
1×

+ R2Exs+2,∗
×× + r. (4.60)

Recall the definition of matrix R′
2 from Eq. (4.29):

R′
2 =

[
−R2 −R1,2 R0,3

]
.

For p = p′, the matrix R′
2 ∈ R3×3 is singular; more specifically, rank(R′

2) = 2 and we have

that the first and second column of R′
2 are linearly dependent, or f1 R′

2,1 = R′
2,2, where

f1 = −2(1− p′)2

p′
.

Equivalently, and from the definition of R′
2, we have that f1 R2 = R1,2. We use the latter

relation to rearrange the terms in Eq. (4.60) which yields

R′′
2


Exs+2

×× − f1Exs+1
1×

Exs+1
××

Exs
11

 =
1∑

σ=−1

R′′
σ


Exs+σ

×× − f1Exs+σ−1
1×

Exs+σ−1
××

Exs+σ−2
11

+ r, (4.61)

with

R′′
2 =

[
−R2 −R1,1 + 1

f1
R0,2 R0,3

]
,

R′′
1 =

[
1
f1

R0,2 −R0,1 + 1
f1

R−1,2 0
]
,

R′′
0 =

[
− 1

f1
R−1,2 R−1,1 0

]
,

R′′
−1 =

[
0 R−2 0

]
,

where all matrices are computed for p = p′ and 0 < α < 1. One can easily check by

inspection that

det(R′′
2) = (0.4424 + 0.0058α)α > 0,
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for 0 < α < 1. Hence, R′′
2 is invertible and the recursion in Eq. (4.61) constitutes a

well-defined forward recursion, which we now transform in a straightforward manner to an

equivalent LTI system. Here, for simplicity, we only retain states necessary for the system

equation, omitting states required for the system output. In particular, we have that

Exs+1,∗ = A′Exs,∗ + B′, (4.62)

with state vector

Exs,∗ =
[

(Exs+2,∗
×× − f1Exs+1,∗

1× ) Exs+1,∗
×× Exs,∗

11 (Exs+1,∗
×× − f1Exs,∗

1×) . . .

Exs,∗
×× Exs−1,∗

××

]T
,

with system matrix

A′ =



(R′′
2)
−1R′′

1,(1,2)

1 0

0 1

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(R′′
2)
−1R′′

0,(1,2)

0 0

0 0

0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(R′′
2)
−1R′′

−1,2

0

0

0


,

and with

B′ =
[

((R′′
2)
−1r)T 0 0 0

]T
.

The remainder of the development for p = p′ is identical as in Section 4.2.6 where the eigen-

vectors corresponding to the eigenvalues associated with unstable system modes (gathered

as rows in matrix V′
u) are extracted from system matrix A′ yielding a necessary condition

for the optimal value function, here repeated from Section 4.2.6,

V′
u(Exs̄−1) = V′

u(I−A)−1B′.

This condition, added as a constraint in LP in ensures that the initial condition for the

LTI system, as computed in LP in, is such that only the stable system modes are excited.
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However, without a proof, we mention that for all values for 0 < α < 1 tested, the LTI

system in Eq. (4.62) has at least two unstable modes, rather than the previously established

three. To explain this difference, we repeat the LP in constraints in Eq. (4.54) and Eq. (4.55)

adapted for the case at hand where p = p′, which yields

(T−A0
s̄−2)x

s̄−2 ≤
∑

σ∈{−2,−1,1}

Aσ
s̄−2x

s̄−2+σ + Ā1
s̄−2Exs̄

×× + bs̄−2,

(T−A0
s̄−1)x

s̄−1 ≤
∑

σ∈{−2,−1}

Aσ
s̄−1x

s̄−1+σ + . . .

Ā2
s̄−1Exs̄

×× + Ā3
s̄−1(Exs̄+1

×× − f1Exs̄
1×) + bs̄−1,

where Ā1
s̄−2, Ā2

s̄−1 and Ā3
s̄−1 are such that

Ā1
s̄−2Exs̄

×× = A2
s̄−2x

s̄

Ā2
s̄−1Exs̄

×× + Ā3
s̄−1(Exs̄+1

×× − f1Exs̄
1×) = A1

s̄−1x
s̄ + A2

s̄−1x
s̄+1.

The latter relations are derived with a similar reasoning that lead to the Eqs. (4.57-4.58),

additionally taking into consideration the linear dependence of the first two columns of R′
2.

Notice that the constraints of LP in as adapted for p = p′ only depend on two linearly

independent functions of the optimal value function at separations s̄ and s̄ + 1, namely

Exs̄
×× and (Exs̄+1

×× − f1Exs̄
1×). Let V′

1 contain as its columns the first and second columns

of V′
u. The matrix V′

1 has at least two rows. Hence, for the proof of Theorem 2 to hold in

the case where p = p′, the matrix V1 is required to be of rank two. Numerical experiments

indicate that this is the case for different 0 < α < 1.

Therefore, the alternative method presented in this section for the particular case when

p = p′ and the original forward recursion is ill-defined, is correct.

4.3 Two Agents with Short Tunnel-Shaped Local Observa-

tion

For the two-agent problem with short tunnel-shaped local observation zones, we show that

the agent separation is upper bounded by three in steady state under an optimal policy.
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Further, we establish that if the initial agent separation is larger than three, the optimal

policy is such that the separation sequence is non-increasing until reaching a separation of

three or less.

Let an optimal navigation policy for the two-agent cluster minimize

lim
K→∞

E

[
K∑

i=0

αig(xi,ui)

]
,

where g(xi,ui) denotes the edge cost sum of the two traversed edges at stage i, where the

two-agent system is at state xi, and takes decision ui. Given an initial agent separation

s0 at stage 0 on G, let {si}, i = 1, 2, . . . denote the agent separation sequence with si the

separation at stage i. Let stage d ≥ 0 be the first stage where si ≤ 3. The following lemma

states that the maximum agent separation of a two-agent cluster is bounded above by three:

Lemma 15 Given s0 ≤ 3, then for a two-agent group under an optimal policy, the separa-

tion sequence {si}, i ≥ 0, satisfies: maxi{si} ≤ 3. �

Proof: We use a coupling argument. We consider two arbitrary trajectories tn = {li,n},

i = 0, 1 . . ., one for each agent An (n = 1, 2) where An is positioned on lane li,n at stage i

(see Fig. 4-1). Furthermore, let an
i denote the cost of the edge straight ahead of agent An

at stage i. Let ui,n indicate the decision agent An takes at stage i. Note that li,n− li−1,n =

ui−1,n.

We construct two trajectories, t′n = {l′i,n}, for n = 1, 2, one for each agent. Along

the new trajectory set, the agents incur each cost with the same probability at each stage

as along the trajectories tn, guaranteeing that the expected value of the discounted sum

of incurred costs is equal along both trajectory sets. However, the new trajectory set is

constructed such that at each stage the agent separation does not exceed three (see Fig. 4-

1). In other words, for any trajectory set (with s0 ≤ 3), we can find a trajectory set that

is at least as good and with the property that the agents do not exceed separation three.

In particular, t′n is such that at each stage i, the agents observe edge costs an
i with the

same probability as in tn. Furthermore, |ui,n| = |ui,n|, or, if at stage i, agent An chooses to

traverse edge an
i in the trajectory tn, then An does the same in trajectory t′n; if at stage i,

agent An chooses to take a diagonal edge in trajectory tn, it chooses a diagonal edge in the
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Figure 4-1: Principle of the proof. The bold grey lines denote the respective agent trajectories,
while the red vertical lines denote initial/final segment stages. Note that the maximum separation
of the bottom trajectory set is three.

trajectory t′n. This guarantees that the probability by which particular costs are incurred

along tn and t′n is equal, since unknown edge costs are i.i.d. random variables.

Now, we show how to construct t′n for n = 1, 2 such that |l′i,1 − l′i,2| ≤ 3, for i = 0, 1, . . ..

We split trajectories tn, for n = 1, 2 in an alternating sequence of two types of segments,

determined by the agent separation in the following way. Let {ik}, for k ≥ 0, denote the

set of stage indices where consecutive segments start (i0 = 0), then:

• Let a σ1-type segment start at stage ik and end at stage ik+1. Then, si ≤ 3, for

ik ≤ i ≤ ik+1. In other words, the maximum agent separation of the segment is three

(see Fig. 4-1). Note that sik−1 > 3, unless k = 0, and si(k+1)+1 > 3. Since s0 ≤ 3,

σ1-segments start at stages with even index k.

• Every σ1-segment is followed by a σ2-type segment, e.g. starting at stage ik+1 and

ending at stage ik+2. Then, si > 3, for i(k+1) + 1 ≤ i ≤ i(k+2) − 1. In other words,

the minimum agent separation over all stages in between the initial and final segment

stage, is at least four (See Fig. 4-1).

We construct t′n, for n = 1, 2, so that at the start of all σ1-segments, i.e. at states ik for k
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even, we have that

sik = s′ik . (4.63)

Choosing u′i,n = ui,n for n = 1, 2 ensures that s and s′ are equal in σ1-segments.

In σ2-segments, we construct t′n for n = 1, 2 so that at all stages the agent separation equals

two or three and so that Eq. (4.63) holds. Let a σ2-segment start at stage ik+1, and end at

stage ik+2. Since ik+1 is the last stage of a σ1-segment, we have that s′ik+1
= sik+1

∈ {2, 3}.

Furthermore, u′i,n for n = 1, 2, ik+1 ≤ i < ik+2, is chosen such that s′i ∈ {2, 3} in the

following way. Three distinct cases can occur at a particular stage i, for ik+1 ≤ i < ik+2

(see Fig. 4-1 for examples):

• ui,n = 0 for n = 1, 2 in which case we choose u′i,n = 0, for n = 1, 2, i.e. A1 and A2

choose the straight ahead edge leaving their separation unchanged.

• ui,1 = 0 and |ui,2| = 1, in which case we choose u′i,1 = 0 and |u′i,2| = 1 so that

si+1 ∈ {2, 3}, i.e. the agent separation changes by one, from two to three, or from

three to two. The symmetric case is similar.

• |ui,n| = 1 for n = 1, 2 in which case we choose u′i,n = 1 for n = 1, 2, or u′i,n = −1 for

n = 1, 2, i.e. A1 and A2 move parallel leaving their separation unchanged.

The construction of t′n, n = 1, 2, implies that s′ik+2
= sik+2

. In particular, if sik+1
= sik+2

,

then along this σ2-segment the separation changes an even number of times by one. The

construction of t′n, n = 1, 2, implies an equal number of separation changes by one as in tn,

n = 1, 2. Therefore, if sik+1
= s′ik+1

, it follows that sik+2
= s′ik+2

. A similar reasoning holds

when sik+1
6= sik+2

. This concludes the proof.

Lemma 15 shows that once the agent separation is within three, it remains within three

under an optimal policy. For s0 > 3, the following result shows that under an optimal policy

the agent separation does not increase until the agents reach separation three or smaller.

Lemma 16 Given s0 > 3. Then, for a two-agent group under an optimal policy, at all

stages i, for 1 ≤ i < d, where sd ≤ 3, the separation si ≥ si+1 > 3, �

Proof: We use a coupling argument. Take two arbitrary agent trajectories tn, for n = 1, 2.

Refer to the proof of Lemma 15 for the notation. We construct two trajectories, t′n, n = 1, 2,
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along which the agents incur the costs with the same probability as along the trajectories

tn, for n = 1, 2 respectively and which have the property of Lemma 16: si ≥ si+1, for

1 ≤ i < d. At each stage i, let the agents observe an
i along t′n. The probability of observing

an
i on both tn and t′n, n = 1, 2 is equal, since unknown edge costs are i.i.d. random variables

and since we choose |ui,n| = |ui,n| for n = 1, 2. That is, if at stage i, agent An takes edge

an
i on tn, then it takes edge an

i on t′n, and if agent An takes a diagonal edge on tn, it takes

a diagonal edge on t′n. This guarantees that the probabilities by which costs are incurred

along tn and t′n are equal.

Next, we show how to construct t′n, for n = 1, 2. Let s′0 = s0. Let stage r ≥ 0, be

such that sr ≤ 3, where si > 3, for 0 ≤ i ≤ r − 1. We construct the two trajectories t′n,

for n = 1, 2, such that sr = s′r. At stage r we can then apply Lemma 15, guaranteeing

a maximum agent separation of three from stage r on. If no such r exists, then omit the

previous step and consider r infinitely large in what follows. From stages 0 to r − 1, do

the following until the agent separation along the trajectories t′n, for n = 1, 2, equals two

or three. If ui,n = 0, take u′i,n = 0; if |ui,n| = 1, take u′i,n such that the si > si+1. Then,

follow a similar strategy as in the proof of Lemma 15 until stage r, guaranteeing that the

maximum agent separation does not exceed three. Similarly as in the proof of Lemma 15, we

can establish that the trajectories t′n, for n = 1, 2 constructed with the previous procedure,

are such that sr = s′r. This concludes the proof.

Given an initial separation s0 > 3, we have that from Lemma 16, the agents eventually

reach a separation of three under an optimal policy. Hence, from Lemma 15, we conclude

that in steady state, the agent separation does not exceed three. We compute the optimal

policy by solving a DP where decisions leading to an agent separation larger than three are

not allowed. This yields a standard finite state space DP, which can be solved with any

method of choice.

4.4 Two Agents with Extended Tunnel-Shaped Local Obser-

vation

In this section, we consider the two-agent problem with extended tunnel-shaped local obser-

vation zones. We mainly focus on the technical aspects which differ from the two-agent case

with cone-shaped local observation zones. In Section 4.4.1, we introduce some notation and
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Figure 4-2: Extended tunnel-shaped local observation zone: Example of an at the current stage i
unobserved, though known edge cost (edge d−1). Indeed, agent A observes edge d−1 at stage i− 1.
This edge is reachable and unobserved for A when positioned at stage i, after taking decision u = 1.
Note that the edges a0, b0, and c0 constitute A’s local observation zone at stage i, the set of red
edges denotes the set of known reachable edge costs at stage i.

present the single-agent optimal policies in a specific interval for p. Then, in Section 4.4.2,

we present the recursion which implicitly describes the optimal value function evolution

for s ≥ s̄ and indicate how to proceed with its rather cumbersome transformation into a

forward recursion. Finally, in Section 4.4.3, we present the connection constraints which

suffice for the problem instance at hand.

4.4.1 Single Agent Problem

In this section, we define the system state for the single-agent problem with extended tunnel-

shaped local observation zone and provide the optimal policies, computed by solving a finite

state, infinite horizon discounted cost DP, with any method of choice. We keep our habit

of referring to a particular edge by the symbol representing its cost.

We now define the system state, with corresponding state space S1. The subscript indi-

cates we deal with a single-agent problem. For the extended tunnel-shaped local observation

zone, it is possible for an edge cost to be known at the current agent position without being

an element of the agent’s current local observation zone. Fig. 4-2 shows an example where

edge cost d−1 is known at the current agent position (at stage i) through observation at the

previous agent position (at stage i− 1). Therefore, at each stage the system state denotes

the set of at that stage known costs of the reachable edges. Two types of states are possi-

ble. First, there is the set of states that occur in case at the previous stage, agent A takes

decision u = 0 (u ∈ U1 = {−1, 0, 1}, the decision space), i.e. chooses to traverse the edge

a0, the edge straight ahead, not deviating from its current lane. In this case, x = C where
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C =
[

a0 b0 c0

]T
, that is, the local observation zone associated with the agent at its

current position. Second, there is the set of states that occur in case at the previous stage

|u| = 1, that is, A chooses to traverse a diagonal edge. Then, the state x = (C, d). That is,

the state consists of the local observation zone C associated with the current agent position,

and edge cost d = du, known through observation at the previous stage and reachable from

the current stage (see Fig. 4-2). Due to symmetry, it is not necessary to make a distinction

between the cases where u = 1 and u = −1, at the previous stage.

Other aspects of the mathematical problem formulation are similar to the cone-shaped

local observation zone case, and a the solution of a finite state, infinite horizon discounted

cost DP can be computed using any standard method, for example by solving its LP equiv-

alent with CPLEX. Numerical computation of the optimal value function indicates that the

same set of policies is optimal for the values of p = 0.42, 0.43, . . . , 0.99. A change in the

optimal policy set occurs for some value of 0.41 ≤ p ≤ 0.42. The latter can be determined

in a straightforward manner by analysis of the LP, equivalent to the DP, but is outside

the scope of this thesis. We focus on the single-agent optimal policy µ∗1 : S1 → U1 at the

presented values for p, easily described in words. In particular, if the system state x is such

that a0 = 0, we have that µ∗(x) = 0. Otherwise, there are three possibilities. First, d is

unknown, in which case µ∗(x) ∈ {−1, 1}. Second, d = 0, in which case µ∗(x) is such that

A traverses the diagonal edge leading to the lane edge d is part of. Third, d = 1, in which

case µ∗(x) is such that A traverses the diagonal edge leading to the lane edge d is not part

of. We now proceed with the two-agent case with extended tunnel-shaped local observation

zones.

4.4.2 Value Function Recursion at Large Separations

In this section, we use the optimal single-agent policy to define the recursion describing the

evolution of the optimal value function at separations s ≥ s̄, where s̄ is defined similarly as

before as the smallest separation where a combination of two single agent optimal policies

constitutes the two-agent optimal policy. Again, in case the single agent optimal policy

exhibits a degree of freedom, that pair of decisions is chosen that results in the smallest

agent separation at the next stage. As before, s̄ is determined during the execution of

the algorithm that computes the two-agent optimal value function. With a slight abuse

of notation, we use the same symbols as in the two-agent case with cone-shaped local
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observation zones, omitting the explicit indication that in this section we treat its equivalent

with extended tunnel-shaped local observation zones. Further note that for the values of

p = 0.42, 0.43, . . . , 0.99, the same single-agent policy is optimal, and hence the development

that follows for the two-agent version of the problem only holds for the latter values of

p. For the values of p where the single agent optimal policy differs from the policy at

p = 0.42, 0.43, . . . , 0.99, a different analysis is necessary for the two-agent behavior at large

separations (s ≥ s̄).

We first define the system state x ∈ S, where S is the system state space, and the

vector xs,∗ which, as before, contains as its entries the optimal value function at the states

associated with separation s, i.e., element of S(s). The system state x = (s, CA1 , CA2 ,D),

where s is the agent separation, the vectors CA1 and CA2 have as entries the costs of the

edges in the local observation zones of the agents A1 and A2, respectively, and D is the set

of at the current stage unobserved, though reachable and known edges, observed by either

agent at the previous stage. The set D can contain no, one or two edge costs depending on

the agents decisions at the previous stage, in similar fashion as for the single agent version

of this problem.

We now define the entries of the vector xs,∗ for large s. The number of system states per

separation is constant for s ≥ 3, and hence the following definition of xs,∗ holds for s ≥ 3.

Since the length of xs,∗, for s ≥ 3 equals 820, we describe which system state is associated

to which vector entry in words. The first 36 elements of xs,∗ concern the states associated

with separation s with known edge costs as in Fig. 4-3(a). In this case, both agents chose

to stay on the same lane at the previous stage, or uA1
− = uA2

− = 0, where the subscript

indicates a decision taken at the previous stage. In the same manner as for the two-agent

cone-shaped local observation zone instance of this problem, we can exploit symmetry to

reduce the number of states associated with this case from 64 to 36. The ordering of the

states in vector xs,∗ is similar to the cone-shaped local observation zone version of this

problem, described in Section 4.2.1, but with the vectors CA1 and CA2 .

The following 128 entries in vector xs,∗ denote the optimal value function associated

with separation s and in the case the known edges at the current stage are as in Fig. 4-3(b).

In this case, we have that uA1
− = 1 and uA2

− = 0. There is no symmetry to exploit, and

hence, there are 128 possible states (s, CA1 , CA2 , dA1
−1) for this case, counting ‘binary’ from

(0, 0, 0, 0, 0, 0, 0) to (1, 1, 1, 1, 1, 1, 1), as described in Section 4.2.1. Similarly, the next 128
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Figure 4-3: Two agents with extended tunnel-shaped local observation: six possible sets of edges
(in red) with known cost at the current stage, for large separation s. The edges are part of a local
observation zone or are observed at the previous stage.
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entries in vector xs,∗ denote the optimal value function associated with separation s and in

the case the known edges at the current stage are as in Fig. 4-3(c), which is when uA1
− = −1

and uA2
− = 0.

The next 136 entries of xs,∗ are associated with the case in Fig. 4-3(d) at separation s,

where uA1
− = 1 and uA2

− = −1. This case exhibits symmetry, exploited similarly as in the

case of Fig. 4-3(a), with the vectors (CA1 , dA1
−1) and (CA2

1 , dA2
1 ), leading to 136 possible states.

Similarly, the following 136 entries are associated with the situation in Fig. 4-3(e), where

uA1
− = −1 and uA2

− = 1.

Finally, the last 256 entries of xs,∗ are associated with the situation in Fig. 4-3(f) at

separation s, where uA1
− = uA2

− = 1. There is no symmetry, and hence the 256 entries

are associated with the states produced by the binary sequence from (0, 0, 0, 0, 0, 0, 0, 0) to

(1, 1, 1, 1, 1, 1, 1, 1) of the vector (CA1 , dA1
−1, CA2 , dA2

−1).

For the description of the optimal value function evolution at large agent separations,

we can, as before in Section 4.2.2, reduce the size of the set of states by taking the expected

value of the optimal value function over the uncontrollable edge costs, thus constructing the

vector Ẽxs,∗ with 78 entries. In particular, for the situation in Fig. 4-3(a), the edges aA1
0 ,

bA1
0 , aA2

0 and bA2
0 are controllable. We can reduce the number of states to 10, by taking the

expected value over the uncontrollable edges cA1
0 and cA2

0 and exploiting the symmetry of

this case similarly as before. Specifically, the 10 first entries of Ẽxs,∗ are associated to the

expected value of the optimal value function, given the edge costs (aA1
0 , bA1

0 ) and (aA2
0 , bA2

0 ).

The next 16 entries of Ẽxs,∗ are associated with the expected value of the value function

at separation s given the controllable edge costs (aA1
0 , aA2

0 , bA2
0 , dA1

−1) in Fig. 4-3(b), ordered

as before, with no symmetry. Similarly, the following 16 entries of Ẽxs,∗ are associated

with the expected value of the optimal value function, given the controllable edge costs

(aA1
0 , aA2

0 , bA2
0 , dA1

1 ) in Fig. 4-3(c). The next 10 elements of Ẽxs,∗ are associated with the

expected value of the optimal value function, given the controllable edge costs (aA1
0 , dA1

−1)

and (aA2
0 , dA2

1 ). We exploit the symmetry and order the states in Ẽxs,∗ as before. Similarly,

the following 10 elements of Ẽxs,∗ are associated with Fig. 4-3(e), with controllable edge

costs (aA1
0 , dA1

1 ) and (aA2
0 , dA2

−1). Finally, the last 16 elements of Ẽxs,∗ are associated with

the case in Fig. 4-3(f) at separation s, with controllable edge costs (aA1
0 , dA1

−1, a
A2
0 , dA2

−1) and

no symmetry.

As in the two-agent cone-shaped local observation zone instance of this problem, we

95



assume the existence of a particular separation s̄ such that for all s ≥ s̄, the optimal two-

agent policy consists of a combination of two single-agent optimal policies where ties are

broken by choosing the particular pair of decisions at each state that leads to the smallest

separation at the next stage. Similarly as before, from LP(s), the LP with finitely many

constraints associated with separation s and constructed by decomposing LPg, we can

derive the following equation, connecting the optimal value function at separation s with

the optimal value function at the separations s − 2, s − 1, s + 1 and s + 2, for s ≥ s̄.

Specifically, we have that

Ẽxs,∗ =
2∑

σ=−2

DσẼxs+σ,∗ + d,

where the matrices Dσ (78 × 78) and the vector d are extracted from the constraints of

LP(s), similarly as in Section 4.2.3.

We now describe the conversion from the latter mixed forward-backward recursion into

a forward recursion and a corresponding LTI system, a technically not difficult, though

rather tedious task. Here, we note that theoretically, the z-transform allows to compute an

explicit solution to the recursion at hand, given an adequate initial condition. However, it

requires the symbolic inversion of the fairly large matrix, which is practically infeasible in

this case. We take an approach that is more closely related to the problem structure and

start by gathering the terms in Ẽxs,∗, which yields,

(I−D0)Ẽxs,∗ = D−2Ẽxs−2,∗ + D−1Ẽxs−1,∗ + D1Ẽxs+1,∗ + D2Ẽxs+2,∗ + d.

Left-multiplying by (I−D0)−1, an inverse which numerical experiments indicate exists for

the values of p considered, yields

Ẽxs,∗ = D′
−2Ẽxs−2,∗ + D′

−1Ẽxs−1,∗ + D′
1Ẽxs+1,∗ + D′

2Ẽxs+2,∗ + d′, (4.64)

where the primed matrices equal there unprimed equivalent, pre-multiplied by (I−D0)−1.

As a next step, we simplify the latter recursion by exploiting the fact that the matrices

D′
1 and D′

2 have four and three linearly independent columns, respectively. In fact, we can

write that D′
1 = C1L1, and D′

2 = C2L2, where C1 and C2 have four columns (the ones

with indices 27, 31, 35, and 39 of D′
1) and three columns (the ones with indices 53, 55, and
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60 of D′
2), respectively, and are of full rank. The matrices L1 and L2 are of appropriate

dimensions. The previous matrices can be found in a fairly straightforward manner by

computing the null space of both D′
1 and D′

2. Substituting in Eq. (4.64) yields

Ẽxs,∗ = D′
−2Ẽxs−2,∗ + D′

−1Ẽxs−1,∗ + C1Ẽ1xs+1,∗ + C2Ẽ2xs+2,∗, (4.65)

where Ẽ1xs+1,∗ and Ẽ2xs+2,∗ denote the vectors L1Ẽxs+1,∗ and L2Ẽxs+2,∗, respectively, and

represent the appropriate expected value of the optimal value function at the respective

separations. Note that the vectors Ẽ1xs+1,∗ and Ẽ2xs+2,∗ have four and three entries

respectively. We now write the recursion in Eq. (4.65) as follows:

[
I −C1 −C2

]
Ẽxs,∗

Ẽ1xs+1,∗

Ẽ2xs+2,∗

 = D′
−2Ẽxs−2,∗ + D′

−1Ẽxs−1,∗ + d′.

Considering the vectors Ẽxs,∗, Ẽ1xs+1,∗ and Ẽ2xs+2,∗ as variables, and the RHS as known,

the previous equation corresponds to a system of 78 equations in 85 unknowns. Note that

in the previous scheme, it is assumed that the optimal value function at separations smaller

than or equal to s − 1 is known, and that we can compute the optimal value function at

separation s. This starts approaching a forward recursion. However, in its current form,

the system of equations has no unique solution, we need more equations. Indeed, at the two

previous, hypothetical, recursion iterations, we compute Ẽ1xs,∗, and Ẽ2xs,∗, information

that needs to be included in the current set of equations. This yields,

M


Ẽxs,∗

Ẽ1xs+1,∗

Ẽ2xs+2,∗

 =


D′
−2Ẽxs−2,∗ + D′

−1Ẽxs−1,∗ + d′

Ẽ1xs,∗

Ẽ2xs,∗

 ,

where

M =


I −C1 −C2

L1 0 0

L2 0 0

 .

We now have a system with 85 equations in 85 unknowns. However the matrix M only
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is of rank 81, and thus only has 81 linearly independent columns. The previous holds for

p = 0.42, 0.43, . . . , 0.99, the values of p for which we compute the optimal two-agent policy

of the problem at hand.

In the next step, we remove four of the first 78 columns of M so that the resulting

matrix is of full rank. Determining the null space of M helps in choosing the appropriate

columns to be removed. We have that M = M′L3, where M′ has 81 columns and is of full

rank. Here, we have removed the columns with indices 19, 21, 36, and 50. We now need to

add four variables. Since we just removed the 19th, 21st, 36th and 50th element of Ẽxs,∗

from the set of variables, we need to compute their values at one of the next iterations.

Hence, we choose to add the variables with the same indices, but at the separation s − 1.

This yields

[
M′ Dc

−1

]


L3


Ẽxs,∗

Ẽ1xs+1,∗

Ẽ2xs+2,∗


Ẽxs−1,∗

c

 =


D′

−2Ẽxs−2,∗ + Dr
−1Ẽxs−1,∗

r + d′

Ẽ1xs,∗

Ẽ2xs,∗

 , (4.66)

where Dc
−1 contains the columns 19, 21, 36, and 50 of the matrix D′

−1, where Dr
−1 contains

all but the previous columns of D′
−1. Further, Ẽxs−1,∗

r contains the elements of Ẽxs−1,∗

with indices 19, 21, 36, and 50, and Ẽxs−1,∗
r contains all elements of Ẽxs−1,∗, but the

ones with the previous indices. Inspection of the resulting recursion tells us that at the

current iteration, certain elements of the RHS cannot be known as is. Indeed, not Ẽ1xs,∗

is known, though a linear combination of the latter vector with elements of Ẽxs−1,∗ and

Ẽ2xs+1,∗, computed at the previous iteration. Since at the current iteration, no information

is computed at separation s − 2 or lower, we can assume for now that the optimal value

function at the latter separations is known, computed from previous iterations. Hence,

we assume that Ẽ2xs,∗ in the RHS of Eq. (4.66) can be computed from the results of the

previous iterations. Finally, not Ẽxs−1,∗
r is known, though a linear combination of its entries

and the entries in the vectors Ẽ1xs,∗ and Ẽ2xs+1,∗. In particular, we have that

M′′


L3


Ẽxs,∗

Ẽ1xs+1,∗

Ẽ2xs+2,∗


Ẽxs−1,∗

c

 =



D′
−2Ẽxs−2,∗ + Dr

−1L3,1


Ẽxs−1,∗

Ẽ1xs,∗

Ẽ2xs+1,∗

+ d′

L3,2


Ẽxs−1,∗

Ẽ1xs,∗

Ẽ2xs+1,∗


Ẽ2xs,∗


,
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where L3,1 denotes the sub-matrix of L3 that contains its first 74 rows, and where L3,2 is

the sub-matrix of L3 containing the rows with indices 75, . . . , 78. The matrix M′′ is adapted

from its predecessor in Eq. (4.66) to accommodate the changes in the RHS, and preserve

the equality. Note that the last seven columns of L3,1 are zero and that only its columns

corresponding to the elements in Ẽxs−1,∗
c call for a change in the corresponding columns

of the predecessor of M′′. The same holds true for the matrix L3,2, where the last three

columns are zero, and changes to the columns associated with Ẽxs−1,∗
c in the predecessor

of M′′ suffice.

We now have 85 equations in 85 variables with coefficient matrix M′′. However, the

latter is of rank 84, and thus only has 84 linearly independent columns, yielding a set of

equations with no unique solution, yet. The last step is to remove the last column of M′′,

which contains only zeros as entries, and replace the variable in the fourth entry of Ẽxs−1,∗
c

by its equivalent, though at separation s−2. As before, the RHS and the coefficient matrix

need to be adapted accordingly. This yields

Mf


L3


Ẽxs,∗

Ẽ1xs+1,∗

Ẽ2xs+2,∗


Ẽxs−1,∗

c,1,2,3

Ẽxs−2,∗
c,4


=



Dt
−2Ẽxs−2,∗

t + Dr
−1L3,1


Ẽxs−1,∗

Ẽ1xs,∗

Ẽ2xs+1,∗

+ d′

L3,2


Ẽxs−1,∗

Ẽ1xs,∗

Ẽ2xs+1,∗



L3,3


Ẽxs−2,∗

Ẽ1xs−1,∗

Ẽ2xs,∗

− L3,4Ẽxs−2,∗
c,1,2



, (4.67)

where Ẽxs−1,∗
c,1,2,3 denotes the vector with the first three entries of Ẽxs−1,∗

c , while Ẽxs−2,∗
c,4

is the fourth element of Ẽxs−2,∗
c,4 . Further, Dt

−2 equals matrix D′
−2, but without the 50th

column of the latter. Similarly, Ẽxs−2,∗
t equals the vector Ẽxs−2,∗, but without its 50th

entry. Then, L3,3 is the sub-matrix of L3 containing the last three rows of L3, and L3,4 is

the sub-matrix of L3 containing the three last rows of the 19th and the 20th columns of

L3. The columns with indices 79, . . . , 82, corresponding to the entries in Ẽ1xs−1,∗ contain

zeros, and hence no compensation is required in M′′ regarding these terms. Further, only

the columns with indices 19, 21 and 50, associated with the vector Ẽxs−2,∗ in L3,3 contain

non-zero elements. The extra term with coefficient matrix L3,4 compensates for the first
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two, while changes in the last column of M′′ compensate for the non-zero column in L3,3

with index 50.

The transition of the mixed forward-backward original recursion in Eq. (4.64) to the

forward recursion in Eq. (4.67) is now complete. Indeed, each iteration provides sufficient

information to compute the RHS for the next iteration, and the matrix Mf is invertible

for the values of p for which computed (p = 0.42, 0.43, . . . , 0.99). The conversion to a LTI

system is now straightforward and in the next section, we address the connection constraints

required for this problem.

4.4.3 Sufficient Connection Constraints

In this section, we present the connection constraints sufficient for LP in (see Section 4.2.6

for the two-agent cone-shaped local observation zone version of the problem), to produce

the optimal value function for s < s̄. In particular, using a development similar to the

one used for the two-agent cone-shaped local observation zone, we require as additional

necessary condition that the optimal value function at separations s < s̄ is such that only

the stable system modes of the system

Exs+1,∗ = Exs,∗ + B,

are excited. The latter LTI system is derived based on the forward recursion developed

in the previous section using a method similar to one presented in Section 4.2.5 for the

two-agent cone-shaped local observation zone problem. The system exhibits five unstable

modes, providing five additional equality constraints for LP in:

Vu(Exs̄−1) = Vu(I−A)−1B, (4.68)

defined similarly as in Section 4.2.6 and where (I−A)−1 is invertible for the values of p for

which computed. From the development in the previous section, we notice that the number

of linearly independent linear combinations of the optimal value function at the separations

s̄ and s̄ + 1 appearing in the constraints associated with the separations s̄ − 2 and s̄ − 1,

equals ten (the four entries of Ẽ1xs̄,∗, the three entries of Ẽ2xs̄+1,∗, and the three entries of

Ẽ2xs̄,∗). Hence, the number of necessary equality constraints in Eq. (4.68) is insufficient for

an equivalent version of Theorem 2 to hold. Additional connection constraints are required.
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In fact, adding as extra constraint one iteration of the LTI system, yields the required

set of connection constraints. For this, the optimal value function at separation s̄ needs to

be included in LP in, so that one such iteration can be enforced. Therefore, the complete

set of connection constraints becomes:

Vu(Exs̄) = Vu(I−A)−1B,

Exs̄ = AExs̄−1 + B.

The linear program in LP in then contains the constraints associated with the separations

s = 0, 1, . . . , s̄, rather than at the separations s = 0, 1, . . . , s̄ − 1 as is the case for the

cone-shaped local observation zone version of the problem at hand.

More rigorously, we have that an equivalent version of Lemma 13 holds, establishing

the dual feasibility of LP(s) for s ≥ s̄ when adopting a pair of single-agent optimal policies

(policy µ∞) as two-agent policy for s ≥ s̄. Further, we define the system output zs, for

s = s̄, . . . as in Section 4.2.6. Then, we can verify optimality of the thus computed value

function (solving LP in for s ≤ s̄ and simulating the LTI system for s = s̄, s̄+1 . . .) for each

relevant p by verifying that the value function satisfies Bellman’s equation for s ≤ s̄ and by

verifying non-negativity of zs, for s = s̄, s̄ + 1, . . .. This assures that we obtain the unique

bounded fixed point of the function F .

Finally, we remark that, although not investigated further, the combination of connec-

tion constraints employed most likely ensures that the linear combinations of the optimal

value function at the separations s̄ + 1 and s̄ + 2 that appear in the RHS of the constraints

associated to the separations s̄− 1 and s̄, can be expressed in a unique manner as a linear

function of the value function at smaller separations, allowing for a stronger result, similar

to the one in Theorem 2. As for the cone-shaped local observation version of the prob-

lem, we solve for the optimal value function with increasing s̄ until we find the optimal

value function. We present values for s̄ associated with the extended tunnel-shaped local

observation zone in Section 6.5.
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4.5 Three Agents with Short Tunnel-Shaped Local Observa-

tion

In this section, we treat the three-agent problem with short tunnel-shaped local observation

zones. In particular, we present those aspects related to the problem solution that differ

from the solution method of the two-agent cone-shaped and extended tunnel-shaped local

observation zone cases.

We start by defining the system state. Let three agents be located at the lanes lA1 , lA2

and lA3 , at some stage of the graph G. At each stage, the agents are (re)labeled such that

lA1 ≤ lA2 ≤ lA3 . We define s1 = lA2− lA1 and s2 = lA3− lA2 as the two separations between

three agents. We can assume without loss of generality that s1 ≤ s2, due to the problem

symmetry. Then, at each stage, we define the system state as x = (s1, s2, CA1 , CA2 , CA3),

containing the two agent separations, and the costs of the edges in the local observation

zones associated with each agent.

In Section 4.3, we establish an upper bound on the agent separation in steady state

under an optimal policy for the two-agent version of the problem at hand. This provides us

with the intuition that if s2 is large, then s1 ≤ 3, in steady state under an optimal policy.

We formulate the following assumption:

Assumption 2 Let {si
1} and {si

2}, for i = 0, 1, . . . denote two sequences of agent sepa-

rations under an optimal policy in steady state, for the three-agent problem with short

tunnel-shaped local observation zones. Note that si
1 ≤ si

2 for i = 0, 1, . . .. Then, si
1 ≤ 3 for

i = 0, 1, . . ..

In words, the previous assumption states that two out of three agents remain within a

separation of three in steady state under an optimal policy.

Under Assumption 2, the three-agent problem can be treated effectively as a two-agent

problem. Indeed, the two agents whose separation remains under three in the three-agent

problem can be treated as a single agent. The separation s2 plays the role of the separation s

in the two-agent cases presented thus far. The state vector xs2 contains the states associated

with separation s2 and with the separation s1 = 0, . . . ,min{s2, 3}. We give details for the

vector xs2 for s2 ≥ s̄2, where s̄2 is defined as the smallest separation s2 where the optimal

three-agent policy consists of a combination of an optimal two-agent policy (adopted by

the two agents whose separation is smaller than three) and an optimal single-agent policy
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(adopted by the third agent). In particular, the vector xs2 contains four sets of states.

The first set is associated with the situations where s1 = 0, and contains 16 states, one for

each possible set of two local observation zones, and ordered similarly as in the two-agent

cone-shaped local observation zone instance of this problem. Then follow the sets of states

associated with separation s1 = 1, 2, 3, each containing 64 elements and ordered similarly.

The problem exhibits no useful symmetry for large s2.

Further, we mention that the rest of the solution development follows a similar line

as outlined for the two-agent extended tunnel-shaped local observation zone case, in the

previous section. For s2 ≥ s̄2, one can formulate the mixed forward-backward recursion,

transformed to a forward recursion and corresponding LTI system with a similar method as

outlined in the previous section. Again, the z-transform method is practically of no use here,

due to its complexity. Further, the connection constraints contain an additional iteration of

the LTI system, as before for the two-agent extended tunnel-shaped local observation zone

problem instance. Note that the single- and the two-agent optimal policies used here, are

optimal for all the values of p ≥ 0.384 for which computed (see Section subsec:tunnel2 for

further details). For some 0.383 < p′ < 0.384, a change in the optimal policy occurs and

for p < p′ a different set of policies is optimal than for p > p′. Hence, we have a different

recursion for s2 ≥ s̄2 in the problem solution. As for the two-agent extended tunnel-shaped

local observation zone case, the development of the latter recursion is a time-intensive and

tedious task, omitted in this thesis. We believe that it is possible to automate this task, but

consider it outside the scope of this thesis. However, to obtain reliable results for some values

of p such that p < p′, we compute an upper and lower bound to the problem optimal value

function considering a bounded (in width) and a cylindrically shaped navigation graph,

respectively. A large graph width (for the upper bound) and a large cylinder diameter

(for the lower bound) allow for determining bounds that are as tight as the accuracy of

CPLEX, at the cost of a large computation time. The problem complexity of the two-agent

problem with extended tunnel-shaped local observation zones did not allow the computation

of similar upper and lower bounds to the problem optimal value function.

Finally, rigorous confirmation of Assumption 2 is not provided in this thesis, and part

of future work (see Section 7.2.2). However, we note that numerical experiments further

confirm the intuition of a separation upper bound for the two closest agents. In particular,

one can compute the optimal value function for s1 > 3, for a bounded though fairly large
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environment, and study optimal policy properties.

4.6 Chapter Summary

In this chapter, we present an algorithm that computes the optimal value function for

various problem instances as the fixed point of the function F , defined in the previous

chapter. We develop the algorithm in detail for the two-agent cone-shaped local observation

zone problem instance. In particular, we compute the optimal value function explicitly for

the separations s < s̄ by solving an LP with finitely many constraints. Here, s̄ denotes the

smallest separation for which the optimal two-agent policy consists of a combination of two

single-agent policies. The separation s̄ is determined through the algorithm. Further, the

set of LP-constraints contains connection constraints which summarize the information on

the optimal value function for s ≥ s̄ necessary for the LP-solution to represent the optimal

value function for s < s̄. The optimal value function at s ≥ s̄ is described implicitly in

the form of a discrete linear time invariant system with as state vector the optimal value

function at separation s in some form; the LTI system is connected to the LP by way of

the connection constraints, which ensure that the LP-solution provides the adequate initial

condition for the LTI system. We establish that, with a proper definition of the system

output, its non-negativity guarantees that the computed value function is a fixed point of

F , and therefore optimal. For the case a particular choice of s̄ leads to a negative system

output for some s ≥ s̄, we increment s̄ by one and restart the algorithm.

For the two-agent problem with short tunnel-shaped local observation zones, we establish

an upper bound on the separation under an optimal policy in steady state. Therefore, an

analysis as in the cone-shaped local observation zone version of this problem is unnecessary.

For the two-agent problem with extended local observation zones, and for the three-agent

problem with short tunnel-shaped local observation zones, we describe the technical aspects

of the algorithm that differ. For the latter case, we assume that two out of three agents

remain within separation two, allowing to treat the problem successfully with the presented

two-agent algorithm.
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Chapter 5

The Steady State Separation

Probability Distribution

In Chapter 4, we compute the optimal policy for various instances of the target acquisition

problem. In this chapter, we provide a method to compute the state probability distribution

in steady state and under an optimal policy. We treat the two-agent problem with cone-

shaped local observation zones in Section 5.1, and some differing aspects on the two-agent

problem with short and extended tunnel-shaped local observation zone and on the three-

agent problem with short tunnel-shaped local observation zones in Section 5.2.

5.1 Two Agents with Cone-Shaped Local Observation Zones

In this section, we study the steady state agent behavior under an optimal policy. In partic-

ular, we present a method to compute the probability distribution of the agent separation

after initial transition effects have died out. The results in this section are also presented

in [26].

With the optimal policy µ∗, the state evolution can be described by means of an infinite

state Markov chain. Specifically, let δs
qr ∈ D (s ≥ 0, q, r ∈ L) denote the state whereby

the agent separation is s, and whereby the observation zone pair is any pair for which

aA
0 = q and aB

0 = r. Set D is the set of Markov chain states. For the remainder of this

section, we denote by state the Markov chain state δs
qr. Fig. 5-1 shows the Markov chain

structure conceptually, only depicting outgoing arcs for the three states associated with

separation s ≥ 2. This element is repeated for all separations s ≥ 2 with natural extensions
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Figure 5-1: Element of the two-agent Markov chain structure. For clarity, only the probabilities
of the transitions out of the states associated with separation s are shown. Large arrows indicate
possible transitions from any of the three states associated with separation s, to any of the three
states associated with separation s′ ∈ {s− 2, s− 1, s, s + 1, s + 2}.

at separations s = 0 and s = 1. Let pk(δ) denote the probability for being at state δ after

k state transitions. Let

πk =
[

(pk
0)

T (pk
1)

T (pk
2)

T . . .
]T

,

where

pk
s =

[
pk(δs

00) pk(δs
01) pk(δs

11)
]T

.

In words, πk contains the state probability distribution after k state transitions. We define

q(δ′|δ) as the probability the next state is δ′, given the current state δ. Given the edge cost

statistics and µ∗, we can compute q(δ′|δ) for all δ, δ′ ∈ D. Let matrix Q denote the state

transition matrix. Since from separation s, only the separations s + σ (for σ = −2, . . . , 2)

can be reached, the matrix Q has a block multi-diagonal structure (see Fig. 5-2). In Q,

the entry on the row and column corresponding to δ′ and δ, respectively, contains q(δ′|δ).

Sub-matrix Qs
σ ∈ R3×3 (σ = max{−2,−s}, . . . , 2) describes the transitions from the states

associated with separation s to the states associated with separation s + σ.

We have that policy µ∞ is optimal for all s ≥ s̄. Therefore, the matrix Q has a

recurring structure for all s ≥ s̄. In particular, let Qs contain the rows of Q corresponding

to separation s, for s ≥ s̄. Then,

Qs =
[

0 · · · 0 Q−2 Q−1 Q0 Q1 Q2 0 · · ·
]T

,

106



where the zero-matrices are of the appropriate dimensions. Specific expressions for the

matrices Qσ, for σ = −2, . . . , 2 as a function of parameter p are

Q−2 = p2(1− p)2


(1− p)2p2 (1− p)p2 p2

2(1− p)3p 2(1− p)2p 2(1− p)p

(1− p)4 (1− p)3 (1− p)2

 ,

Q−1 = p(1− p)


2(1− p)p2 p2(2− p)(1− p + p2) 2(1− p)2p2

2(1− p)2p(2− 2p + p2) (1− p)p(3− 5p + 4p2 − p3) 2(1− p)3p

2(1− p)5 (1− p)4 0

 ,

Q0 =


p2(1 + 2p2 − 6p3 + 6p4 − 2p5) p2(1− p)2 P1(p) p2(1− p) P2(p)

2(1− p)3p(1 + 2p− 2p3) (1− p)3p P3(p) 4(1− p)2p2 P4(p)

(1− p)5(1− p + 2p2) (1− p)4p P5(p) 2(1− p)3p P4(p)

 ,

Q1 =


2(1− p)p3 p2(1− p + 2p3 − p4) 2(1− p)2p2 P4(p)

2(1− p)2p2(2− 2p + p2) p(2− p)(1− p)(1− p + p2)2 2(1− p)3p P4(p)

2(1− p)5p (1− p)4(1− 2p + 3p2 − p3) 0

 ,

Q2 =


(1− p)2p4 (1− p)p3P4(p) p2(P4(p))2

2(1− p)3p3 2(1− p)2p2P4(p) 2(1− p)p(P4(p))2

(1− p)4p2 (1− p)3pP4(p) (1− p)2(P4(p))2

 ,

where

P1(p) = 1 + p− p2 + 3p3 − p4,

P2(p) = 1− p− p2 + 5p3 − 2p4,

P3(p) = 1− p2 + 6p3 − 2p4,

P4(p) = 1− 2p + 3p2 − p3,

P5(p) = 1− p + 3p2 − p3.

Fig. 5-2 shows the recurring structure of Q for s ≥ s̄.
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Figure 5-2: Conceptual representation of the block multi-diagonal structure of Markov chain
transition matrix Q.

We wish to compute

π∗ = lim
k→∞

πk,

the steady state probability distribution. The vector π∗ is the eigenvector corresponding to

the unique unit eigenvalue of Q. We exploit the structure of Q to obtain π∗, using a principle

similar to the one underlying the algorithm to compute the optimal value function presented

earlier. Specifically, we formulate an autonomous LTI system whose state trajectories are

the steady state probabilities for s ≥ s̄, where the separation s plays the role of “time”

in a classical LTI system. We then formulate a set of linear equalities whose solution are

the steady state probabilities for s < s̄. The set includes linear equalities that ensure the

computation of initial conditions so that only the stable LTI modes are excited. Lastly, the

condition that the probabilities are required to sum up to one ensures the set of equalities

yields a unique solution. The latter condition is equivalent to the maximization in LP in.

We mention here that one finds a similar problem in the treatment of queues [39], where the

steady state probability of a queue length of L depends on the steady state probability of

queue lengths of both L−1 and L+1. The separation s which appears in the two-agent graph

traversal problem at hand, takes on the role of the queue length L in the equivalence. In [39],

one computes the steady state probability distribution easily by imposing the condition that

the sum of all probabilities equals one, not sufficient for the problem at hand.
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We have that

Qπ∗ = π∗. (5.1)

Therefore, for s ≥ s̄, we have that

p∗s =
2∑

σ=−2

Qσp∗s+σ, (5.2)

where p∗s is the steady state version of pk
s . We transform this equation into a forward

recursive equation. In particular, we have that rank(Q2) = 1. Therefore,

Q2 = q2(r1)T , (5.3)

where

q2 = p2(1− p)2


p2

2p(1− p)

(1− p)2

 ,

rT
1 =

[
1 Pr(p) (Pr(p))2

]
,

with

Pr(p) =
P4(p)

p(1− p)
.

Since rank(Q1) = 2 and

rank
([

Q1 Q2

])
= 2,

we have that

Q1 = q11(r2)T + q12(r3)T , (5.4)
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where

q11 =


2p3(1−p)3

Pr(p)

2p2(1−p)4

Pr(p)

0

 ,

q12 =


p2(1− 3p + 6p2 − 4p3 + p4)

p(1− p)(2− 7p + 14p2 − 13p3 + 6p4 − p5)

(1− p)4(1− 2p + 3p2 − p3)

 ,

rT
2 =

[
2

Pr(p) 1 0
]
,

rT
3 =

[
0 0 1

]
.

Further, rank(I−Q0) = 3. Let ρi,∗
s = (ri)Tp∗s, for i = 1, 2, 3, or more compact,

ρ∗s = Rρp∗s, (5.5)

where

ρ∗s =
[

ρ1,∗
s ρ2,∗

s ρ3,∗
s

]T
,

and where

Rρ =
[

r1 r2 r3

]T
.

Since det(Rρ) = −1, the matrix Rρ is invertible. Then, we can write Eq. (5.2) as

(I−Q0)R−1
ρ ρ∗s = Q−2R−1

ρ ρ∗s−2 + Q−1R−1
ρ ρ∗s−1 +[

q11 q12

] ρ1,∗
s+1

ρ2,∗
s+1

+ q2ρ
1,∗
s+2. (5.6)

Let the vector q0i ∈ R3×1 denote the ith column of the matrix (I−Q0)R−1
ρ , for i = 1, 2, 3.
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We now write recursion (5.6) as

Q′
2ρ

′∗
s+2 =

∑
σ∈{1,0,−1,−2}

Q′
σρ′∗s+σ, (5.7)

where

Q′
2 =

[
−q2 −q12 q03

]
,

ρ′∗s =
[

ρ1,∗
s ρ2,∗

s−1 ρ3,∗
s−2

]T
,

and where Q′
σ (for σ ∈ {1, 0,−1,−2}) can be determined from Eq. (5.6). The following

lemma establishes the condition for Eq. (5.7) to be a well-defined forward recursion, namely

the invertibility of the matrix Q′
2 for 0 < p < 1.

Lemma 17 The matrix Q′
2 is invertible for 0 < p < 1. �

Proof: We show that the determinant of the matrix Q′
2 differs from zero for 0 < p < 1. In

particular, we have that

det(Q′
2) = (1− p)3p2 PQ,1(p) PQ,2(p) PQ,2(p),

with

PQ,1(p) = 1− 2p + 5p2 − 4p3 + p4,

PQ,2(p) = 1− 2p + 5p2 − 3p3 + 5p4 − 4p5 + p6,

PQ,3(p) = 1− 2p + 3p2 + p3 − 5p4 + 4p5 − p6.

We establish that the polynomials PQ,i(p) > 0 for 0 < p < 1 and for i = 1, 2, 3. We follow

a procedure similar to the one used in the proof of Lemma 8. Specifically, for PQ,i(p), for

i = 1, 2, 3, find an SOS auxiliary polynomial P a
Q,i(p) such that

P t
Q,i(p) = PQ,i(p) + P a

Q,i(p)
(
(p− 1/2)2 − 1/4

)
≥ 0, (5.8)

for p ∈ R. Indeed, if such a polynomial can be found, then the second term of P t
Q,i(p) is

nonpositive for 0 < p < 1, and therefore its first term, the polynomial PQ,i(p), must be

strictly positive. In stead of requiring positivity of P t
Q,i(p), we show that it is SOS with
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a positive definite coefficient matrix, a more stringent condition, but practically easier to

handle. We transform Eq. (5.8) into an LMI constraint and find a feasible solution using

semi-definite programming [62], by way of the SOSTOOLS Sum of Squares Optimization

Toolbox for Matlab [63]. Specifically, we have that

P a
Q,1 =

 1

p

T  1 0

0 2

 1

p

 ,

P t
Q,1 =


1

p

p2


T 

1 −3
2

1
3

−3
2

16
3 −3

1
3 −3 3




1

p

p2

 ,

with positive definite coefficient matrices. Further, we have that

P a
Q,2 = 2,

P t
Q,2 =


1

p

p2

p3



T 
1 −2 1

3 0

−2 19
3 − 3

2 − 1
6

1
3 − 3

2
16
3 −2

0 − 1
6 −2 1




1

p

p2

p3

 ,

with positive definite coefficient matrices. Lastly, we have that

P a
Q,3 =


1

p

p2


T 

1 0 −1

0 2 0

−1 0 4




1

p

p2

 ,

P t
Q,3 =


1

p

p2

p3



T 
1 − 3

2 − 1
3

3
4

− 3
2

14
3 − 1

4 −3

− 1
3 − 1

4 1 0
3
4 −3 0 3




1

p

p2

p3

 ,

with positive definite coefficient matrices. In the three cases, only a positive semi-definite

coefficient matrix for the auxiliary polynomials is required. Hence, the proof.

Lemma 17 confirms that the recursion in Eq. (5.7) is a well-defined forward recursion
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and we convert it into the autonomous LTI system


ρ′∗s+2

ρ′∗s+1

ρ′∗s

ρ′∗s−1

 =


Q′′

1 Q′′
0 Q′′

−1 Q′′
−2

I 0 0 0

0 I 0 0

0 0 I 0




ρ′∗s+1

ρ′∗s

ρ′∗s−1

ρ′∗s−2

 , (5.9)

where Q′′
σ = (Q′

2)
−1Q′

σ, for σ = 1, 0,−1,−2. We write system equation (5.9) in short as

ρ̄∗s+2 = Aρρ̄
∗
s+1. The subscript s of ρ̄∗s indicates the largest separation s at which some linear

combination of the steady state probability distribution is known, given ρ̄∗s′ for s′ ≤ s.

We now use the LTI system to compute

Σ∗
s̄ =

∞∑
s=s̄

(p∗(δs
00) + p∗(δs

01) + p∗(δs
11)) , (5.10)

where p∗(δ) is the steady state version of pk(δ). It can be verified that Aρ is diagonalizable.

In particular, we have that V−1
ρ AρVρ = Λρ, where ith column of Vρ is the ith eigenvector

of Aρ and where

Λρ = diagonal(λ1, . . . , λ12)

with λi the ith eigenvalue of Aρ (for i = 1, . . . , 12). The system has a set of stable modes

and a set of unstable modes. Unlike for matrix A in Section 4.2.6 (see Lemma 14), it

proved hard to establish that the number of unstable modes is constant with p. However,

for all values of p tested, there are nine unstable system modes. We divide Vρ, V−1
ρ and

Λρ accordingly into submatrices. Specifically,

Vρ =
[

Vρ1 Vρ2

]
,

where the columns of Vρ1 and Vρ2 are the stable and unstable mode eigenvectors, respec-

tively; similarly,

Λρ = diagonal(Λρ1,Λρ2)
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and

V−1
ρ =

[
V̄T

ρ1 V̄T
ρ2

]T
.

Let

ρ̄′∗s = V−1
ρ ρ̄∗s. (5.11)

Then, the diagonalized system equation becomes ρ̄′∗s+2 = Λρρ̄
′∗
s+1. We have that

Σ∗
s̄ =

∥∥∥∥∥
∞∑

k=0

p∗s̄+k

∥∥∥∥∥ ,

where ‖(·)‖ denotes the sum of the rows of (·). Let T3 ∈ R3×12 be such that ρ∗s = T3ρ̄
∗
s.

Then, with Eqs (5.5) and (5.11), we have that

∞∑
k=0

p∗s̄+k = R−1
ρ

∞∑
k=0

ρ∗s̄+k,

= R−1
ρ

∞∑
k=2

T3ρ̄
∗
s̄+k,

= R−1
ρ T3

∞∑
k=2

Vρ1ρ̄
′∗
s̄+k,1,

= R−1
ρ T3Vρ1(I− Λρ1)−1V̄ρ1ρ̄

∗
s̄+2,

where ρ̄′∗s̄+k,1 denotes the part of ρ̄′∗s̄+k associated with the stable system modes, and where

we use the fact that the unstable system modes are not excited, since otherwise p∗s diverges

which is impossible. For

W = ‖R−1
ρ T3Vρ1(I− Λρ1)−1V̄ρ1‖,

we have that

Σ∗
s̄ = Wρ̄∗s̄+2. (5.12)

In words, Eq. (5.12) provides the sum of the steady state probabilities for s ≥ s̄ as a linear

equation in ρ̄∗s̄+2.
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We now formulate a set of linear equalities with p∗s for s ≤ s̄+1 as solution. In particular,

let

p∗ =
[

(p∗0)
T . . . (p∗s̄+1)

T ρ1,∗
s̄+2 ρ2,∗

s̄+2 ρ1,∗
s̄+3

]T
.

The first 2 + 3(s̄− 1) equalities in Eq. (5.1) are then



Q0
0,I Q0

1 Q0
2 0 0 0 . . . 0 0

Q1
−1 Q1

0,I Q1
1 Q1

2 0 0 . . . 0 0

Q2
−2 Q2

−1 Q2
0,I Q2

1 Q2
2 0 . . . 0 0

...
. . .

0 . . . 0 Qs̄−1
−2 Qs̄−1

−1 Qs̄−1
0,I Qs̄−1

1 Qs̄−1
2 0


p∗ = 0, (5.13)

where Qs
0,I = Qs

0 − I. We adapt the equalities of Eq. (5.1) associated with p∗s̄ and p∗s̄+1

using Eqs (5.3) and (5.4) and the definition of ρ∗s [Eq. (5.5)], which yields

 0 · · · 0 Q−2 Q−1 Q0 − I Q1 q2 0 0

0 · · · 0 0 Q−2 Q−1 Q0 − I q11 q12 q2

p∗ = 0. (5.14)

Further, we add a set of equalities that ensures that the unstable system modes are not

excited. In particular, with Tρ such that ρ̄s̄+2 = Tρp, we have as necessary condition

V̄ρ2Tρp∗ = 0. (5.15)

In the set of equations (5.13-5.15), we have ne = 6 + 3s̄ equations and an equal number of

unknowns. However, less than ne equations are linearly independent, since otherwise only

the zero vector is a solution, which is impossible. We believe that for most relevant p and

α, there are exactly ne−1 linearly independent equations in the set, which is the subject of

further investigation. The neth linearly independent equation originates from the fact that

the probabilities sum up to one and, with Eq. (5.10), can be written as

s̄−1∑
s=0

p∗s + WTρp = 1.

We now have a set of ne linearly independent equations in ne unknowns, with as unique
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non trivial solution p∗s for s = 0, 1, . . . , s̄ + 1. For separations s ≥ s̄ + 2, we simulate the

autonomous LTI system in Eq. (5.9) with Tρp∗ as initial condition. From LTI system (5.9),

it is clear that for s →∞, p∗s decays exponentially to zero.

5.2 Remarks on Other Problem Instances

In this section, we present some aspects regarding the computation of the state probability

distribution under an optimal policy in steady state for the several other problem instances

considered in this thesis. Hereby, we focus on those specifics that differ from the solu-

tion presented in this chapter regarding the two-agent cone-shaped local observation zone

problem instance.

Two Agents with Short Tunnel-Shaped Local Observation Zones

For the two-agent problem with short tunnel-shaped local observation zones, we establish

in Section 4.3 an upper bound of three to the agent separation in steady state. Hence,

the Markov chain representing the system state evolution under an optimal policy has a

finite number of states, one set of states (with one state associated to each possible local

observation zone set) per separation 0 ≤ s ≤ 3. Therefore, standard methods to compute

the steady state probability distribution over the states of a Markov chain suffice (we refer

to [39] for further details).

Two Agents with Extended Tunnel-Shaped Local Observation Zones

The algorithm presented in Section 5.1, for the two-agent problem with cone-shaped local

observation zones applies to the extended tunnel-shaped local observation zone problem

version. We remark that the conversion from a mixed forward-backward recursion to a

forward recursion is not as straightforward as in the cone-shaped local observation zone

case, but can be executed along the lines of the method employed for a similar conversion

in Section 4.4. Note that we only consider values for p ≥ 0.42, the range of p for which

the recursion at large separations holds. We further mention that extracting the unstable

system modes presents some additional difficulties in the shape of numerical instabilities.

In fact, the equivalent of the matrix Vρ has a high condition number and is not reliably

invertible for the values of p for which computed. We use a linear transformation of the
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Schur type, which produces a block upper diagonal transformation, separating the stable

from the unstable modes. We consider it outside the scope of the thesis to address the

latter numerical instabilities, a problem that could be alleviated by selecting more involved

numerical algorithms.

For the purpose of the problem analysis, we compute an approximation to the state prob-

ability distribution in steady state under an optimal policy by imposing an upper bound

of 15 to the graph width. The thus obtained results indicate a probability of the order of

10−10, for the agents to be located at separation ten at the values of p for which computed.

Properties of the recursion describing the evolution of the steady state probability distri-

bution at large separations, indicate the latter probability decreases exponentially with s,

allowing us to be fairly confident in the accuracy of the results obtained.

Three Agents with Short Tunnel-Shaped Local Observation Zones

The algorithm presented in Section 5.1 applies as well for the three-agent problem with

short tunnel-shaped local observation zones, under the conditions presented in Section 4.5.

Again, the conversion from a mixed forward-backward recursion to a forward recursion

proves more involved but can be executed along the lines of the method employed for a

similar conversion in Section 4.4. Note that we we only consider values for p > 0.384, the

range of p for which the recursion at large separations holds. Further, we mention that

contrary to the two-agent extended tunnel-shaped local observation zone problem instance,

the matrix Vρ is invertible for the problem at hand. However, numerical instabilities arise

in the formulation of the equivalent of the set of equations (5.13-5.15) for the problem at

hand. In fact, the coefficient matrix of the latter set of equations has a high condition

number and the matrix is singular. More sophisticated methods are required.

For the purpose of problem analysis, we compute an approximation to the state proba-

bility similarly as in the two-agent extended tunnel-shaped local observation zone problem

instance, with similar accuracy.

5.3 Chapter Summary

In this chapter, we use the optimal policy associated with various problem instances to

formulate the corresponding Markov chain and compute the state probability distribution
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under an optimal policy in steady state. We develop the algorithm in detail for the two-agent

cone-shaped local observation zone problem instance, and present algorithm extensions and

differences for the other problem instances considered in this thesis. The algorithm exhibits

similarities with the algorithm to compute the optimal value function, presented in the

previous chapter. In particular, we compute the steady state probabilities for the system

states associated with the separations s < s̄ as the solution of a set of equations. Note that

at this point, s̄ is known. As in the previous chapter, a subset of the latter set of equations

provides sufficient information on the optimal agent policy at the separations s ≥ s̄ for the

solution to represent the adequate state probability distribution at the states associated

with s < s̄. Further, the state probability distribution for s ≥ s̄ is described implicitly

by a discrete linear time invariant system, whose initial condition is part of the solution

of the equation set. The connection constraints in the equation set ensure that the initial

condition, through simulation of the LTI system, leads to the state probability distribution

under an optimal policy in steady state, for s ≥ s̄.
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Chapter 6

The Efficiency of Cooperation

In Chapter 4, we presented an algorithm which efficiently solves the simple, though non-

trivial, multi-agent navigation problems at hand. Then, Chapter 5 describes the Markov

decision processes associated with the latter, and, given the optimal policy, presents a

method to compute the state probability distribution in steady state under an optimal pol-

icy. For multi-agent problems, where the state space is infinitely large, both the optimal

value function and the state probability distribution in steady state are described implic-

itly by means of a recursive equation for large separations, and given explicitly for small

separations.

In this chapter, we use obtain optimal policy properties for a set of multi-agent problems,

adequately chosen to address the main objectives of this thesis. In Section 6.1 we make some

preliminary remarks and introduce the notation. In Section 6.2, we study how the group

performance evolves as a function of the group size, for different local observation zones.

Then, in Section 6.3, we address the effectiveness of particular local observation zones,

for different group sizes. Further, in Section 6.4, we describe agent spatial distribution

properties for different group sizes and local observation zones. Finally, in Section 6.5, we

present the implications for the agents communication structure.

6.1 Preliminaries and Notation

In this section, we introduce the variables adequate for performance comparison. For any

navigation problem of the type studied in this thesis, the state space S contains a possibly

infinite, though countable number of states. Hence, we can meaningfully associate an index
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i ∈ N to each x ∈ S. Then, we have that S = {xi}, for i = 0, 1, . . . , ns, where ns = |S| for a

finite size state space, and where ns = ∞ for the problems with an infinite size state space.

Let X∗ denote a vector with as many entries as there are elements in S, such that its ith

entry contains J∗(xi). Further, let µ∗(x) denote an optimal policy, with associated state

transition matrix Pµ∗ = [pij(µ∗(xi))], for i, j = 1, 2, . . . , ns, and with pij(µ∗(xi)) denoting

the transition probability from xi to xj under optimal decision µ∗(xi). Let gµ∗ be a vector

with g(xi, µ
∗(xi)) as its ith entry, for i = 1, 2, . . . , ns, where g(xi, µ

∗(xi)) denotes the local

cost incurred at state xi under optimal decision µ∗(xi). Then, we have that

X∗ =
∞∑

k=0

αkPk
µ∗gµ∗ , (6.1)

where 0 < α < 1 is the problem discount factor. Let pµ∗ denote the vector of steady state

occupancy probabilities under an optimal policy µ∗. Note that pµ∗ is the eigenvector of Pµ∗

corresponding to eigenvalue λ = 1, and is computed by the procedure outlined in chapter 5.

Left-multiplying Eq. (6.1) by pT
µ∗ yields

pT
µ∗X∗ =

∞∑
k=0

αkpT
µ∗Pk

µ∗gµ∗ , (6.2)

=
1

1− α
γN,

where γ = 1
N pT

µ∗gµ∗ represents the average cost per stage and per agent under optimal

policy µ∗, and where N denotes the agent group size in the problem at hand. Indeed, pµ∗

is the vector of steady-state occupancy probabilities under optimal policy µ∗. Its product

with gµ∗ , the vector of locally incurred costs at each state under optimal policy µ∗, yields

the average cost per stage under optimal policy µ∗. Rearranging terms in Eq. (6.2) yields

γ =
(1− α)

N
pT

µ∗X∗.

In the sections 6.2.1-6.2.3, we compute γ for a set of different navigation problems and to

avoid confusion, we add possible subscripts 1, 2, or 3 to γ, to indicate its association with a

one-, two- or three-agent problem, respectively. Similarly, we use an additional superscript

d, t2, or t3 to indicate a cone-shaped, short tunnel-shaped, or extended tunnel-shaped local

observation zone, respectively.
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Figure 6-1: The cone-shaped local observation zone associated with agent A (grey dot), consisting
of the red edges. The symbols associated with the latter represent their cost.

Finally, we note that we by no means claim that the policy µ∗ minimizing the sum of

discounted local costs is also the policy minimizing the average cost per stage. We only use

the average local cost per agent, γ, as a means of comparing the performance of different

navigation problems, of the type studied in this thesis.

6.2 Performance as Function of the Group Size

In this section, we present how the group performance evolves as a function of the number

of group members for three distinct local observation zones. First, in Section 6.2.1, we

consider the cone-shaped local observation zone, and compare the single-agent performance

to the performance per agent for a two-agent problem. Then, in Section 6.2.2, we present

results regarding the short tunnel-shaped local observation zone, comparing the per agent

performance of a group with one, two and three agents. In Section 6.2.3, we study the

extended tunnel-shaped local observation zone and compare the per agent performance of a

group with one and two agents. Finally, in Section 6.2.4, we touch some aspects regarding

suboptimal agent policies for larger agent groups. The results regarding the cone- and short

tunnel-shaped local observation zones are previously presented in [25].

6.2.1 Cone-Shaped Local Observation Zone

We first consider the cone-shaped local observation zone case (see Fig. 6-1), and compare

the single-agent performance to the performance of two agents. In particular, Fig. 6-2

shows γc
1 (blue) and γc

2 (red), the average cost per agent and per stage in steady state,
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Figure 6-2: The average cost per stage and per agent under an optimal policy in steady state, as a
function of p, for a single (blue) and a two- agent problem (red) with cone-shaped local observation
zones.

for a set of values of p. To better present the asymptotic behavior of γc
1 and γc

2 as p

approaches zero, we use a higher resolution for 0 ≤ p ≤ 0.01; specifically, we display values

for p = 0.001, 0.002, . . . , 0.01. For 0.01 ≤ p ≤ 1, we use a lower resolution, and display

values for p = 0.01, 0.02, . . . , 0.97. Numerical problems occur for p > 0.97, outlined more in

detail later in this section.

We observe that, as expected, two agents perform better than a single agent. In par-

ticular, the average cost per stage and per agent is smaller for two agents than for a single

agent. The two extreme cases where p approaches zero and one, respectively, exhibit to-

be-expected behavior. As p approaches zero, the navigation graph consists primarily of

edges with cost one, and thus, the average local cost per stage approaches one. A similar

reasoning holds for the case where p approaches one.

The performance per agent is compared more effectively in a relative sense rather than

in absolute sense. Specifically, we compute

rc
1,2 =

γc
1 − γc

2

γc
1

,
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Figure 6-3: Decrease in the average cost per stage and per agent as a function of p (in percent) for
a two-agent group compared to a single agent, for the case of cone-shaped local observation zones.

and show 100rc
1,2 (in percent) in Fig. 6-3, for the same set of p’s as before. In words, Fig. 6-3

shows by what percentage the average cost per stage and per agent decreases when adding

a second agent to a single agent. For example, for p = 0.6 the average cost per stage and

per agent decreases by approximately 5.5%, when adding a second agent to a single-agent

system.

Since limp→0 γc
1 = limp→0 γc

2 = 1, it is clear that limp→0 rc
1,2 = 0. In words, as the

probability for encountering a zero edge cost decreases to zero, the benefit of two-agent

cooperation disappears, and two agents perform as efficiently as a single agent. Further, for

p ≤ 0.5, the average cost per stage and per agent decreases only by 3% or less. Hence, in

graphs where the majority of the edges are of cost one, a two-agent group is only slightly

better (< 3%) than a single agent. On the other hand, as p approaches one, and the graph

primarily contains edges with zero cost, a rather surprising and interesting observation is

made: an additional agent provides a cost decrease approaching 25%. In other words, when

the probability of encountering an edge of cost one is small (p close to one), a two-agent

group is up to 25% more efficient than a single agent. The surprise arises from the intuition
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that as the graph contains few rewards (edges with zero cost, p close to zero), more agents

seem to be required to increase the number of locally observed edges and thus increase

the probability of encountering an edge with zero cost. The results point in the opposite

direction, namely, they indicate that two agents with cone-shaped local observation zones,

are much more efficient detecting rare but high costs. Indeed, we note that the case where p

is close to one corresponds to the practical situation where the environment is mostly safe,

with very scarce but very damaging costs (for example, a mine field). In particular, notice

that the maximum local cost incurred is one, while we have that for the average cost per

stage in both the single-agent case as in the two-agent case γc
1, γ

c
2 << 1.

Limit as p Approaches One

As previously mentioned, Fig. 6-3 only shows the values of rc
1,2 for p ≤ 0.97. For p > 0.97,

numerical problems arise, and the value of γc
1 is not sufficiently accurate to compute rc

1,2.

In particular, γc
1 = O(10−8) for p > 0.97, which is of order of the accuracy of the LP

software CPLEX. However, with the single-agent and two-agent optimal agent policy for p

approaching one, it is possible to compute

r̄c
1,2 = lim

p→1
rc
1,2 = 0.25.

In particular, with ε = 1− p, we first show rigorously that γc
1 = ε4 + O(ε5), so that γc

1 ≈ ε4

for ε << 1. Then, we provide an intuitive, insightful explanation for this result. Finally,

by a similar intuitive reasoning, we obtain that γc
2 ≈ 3

4ε4, for ε << 1, without a rigorous

proof, which is more involved and left for future efforts. Specifically, in Section 7.2.1, we

indicate a possible method for the latter.

We first review some notation. Recall the definition of CA in Eq. (4.1):

CA =
[

aA
0 bA

0 aA
−1 aA

1

]T
,

which gathers the costs of the edges in the cone-shaped local observation zone associated

with agent A at its current position. Fig. 6-1 indicates the edges are associated with the

elements in CA; for further details, we refer to Section 3.1.1. The vector CB is defined

similarly.

We have the following lemma.
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Lemma 18 We have that γc
1 = ε4 + O(ε5). �

Proof: The proof goes as follows. We use the result of Lemma 8, which establishes opti-

mality of the policy µ1 (defined in Section 4.2.2) for all 0 < p, α < 1. Hence, we have that in

the limit for ε approaching zero, policy µ∗,c1 = µ1 is optimal. We compute the corresponding

state probability distribution in steady state, which provides enough information to find the

expression for γc
1.

Let the state x = (a1, b1, a−1, a+1) ∈ Sc
1, i.e., x contains the costs of the edges in the

local observation zone at the current agent position. We associate an index to each state,

which yields

x1 = (0, 0, 0, 0),

x2 = (0, 0, 0, 1),

. . .

x16 = (1, 1, 1, 1),

following an ordering as if the edge cost sets were binary numbers. With policy µ∗,c1 , we

can then write the state transition matrix Pµ∗,c
1
∈ R16×16, where entry q1,c

ij on row i and

column j (1 ≤ i, j ≤ 16) represents the probability of reaching state xi from state xj under

policy µ∗,c1 and in one time step. In particular, we have that

Pµ∗,c
1

=

 qc
1 qc

1 qc
1 qc

1 qc
1 qc

1 qc
1 0 qc

1 qc
1 qc

1 qc
1 qc

1 qc
1 qc

1 qc
1

0 0 0 0 qc
2 qc

2 qc
2 qc

1 qc
2 qc

2 qc
2 0 qc

2 qc
2 qc

2 qc
2

 ,

with

qc
1 = t1 + O(ε)t1,

qc
2 = εqc

1,

and with

t1 =
[

1 ε ε ε2 ε ε2 ε2 ε3
]T

.

We now compute the eigenvector pµ∗,c
1

of Pµ∗,c
1

corresponding to the unique eigenvalue equal
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to one. We have that

pµ∗,c
1

= t2 + O(ε)t2,

with

t2 =
[

1 ε ε ε2 ε ε2 ε2 ε3 ε2 ε3 ε3 ε4 ε3 ε4 ε4 ε5
]T

.

The eigenvector is scaled such that the sum of its entries converges to one, in the limit for

ε approaching zero. Entry i of pµ∗,c
1

(for 1 ≤ i ≤ 16) represents the probability that the

single-agent system state is xi in steady state and under an optimal policy. Finally, we need

the vector gµ∗,c
1

of local costs under the policy µ∗,c1 :

gµ∗,c
1

=
[

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
]T

,

which yields

γc
1 = gT

µ∗,c
1

pµ∗,c
1

= ε4 + O(ε5).

Hence, for ε << 1, we have that γc
1 ≈ ε4, which concludes the proof.

We now provide an intuitive explanation for the previous result, providing guidelines

for the two-agent case. In particular, we study the most probable periodical sequence

of states and compute the average cost incurred per stage. Note that under policy µ∗,c1

only two states lead to a local cost of one, namely the states x12 = (1, 0, 1, 1) and x16 =

(1, 1, 1, 1). Therefore, we study the most likely sequence of states computing the probability

of encountering x12 or x16. Most commonly, the agent encounters a local observation zone

where a0 = b0 = 0. In this case, the optimal decision is to traverse edge a0 and we can

compute the average number of stages n̄1 it takes for the agent to encounter an edge b0 of

cost one. In particular, we have that

n̄1 =
∞∑
i=1

i ε(1− ε)i−1,
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=
1
ε
.

Upon encountering an edge b0 of cost one, the agent traverses a diagonal edge of cost zero,

reaching a vertex on which previously no edge in the local information zone is observed.

Therefore, every n̄1 edges, there is a probability of ε3 that the agent incurs a local cost of

one, which yields

γ̃c
1 =

ε3

n̄1
,

= ε4,

where γ̃c
1 denotes the average cost incurred in the particular state sequence presented above.

Any other scenario leads to terms in γc
1 which are at least one order higher in ε. For example,

in the case where a−1 = a+1 = b0 = 1 and a0 = 0, then the optimal agent decision is to

traverse edge a0, reaching a node where with probability ε2 the agent must incur a local

cost of one. The latter scenario happens every n̄1 stages with a probability of ε4, and hence

leads to a term in the expression for γc
1 that is of order five (specifically, a term ε4

n̄1
= ε5).

Hence, we conclude that γc
1 = ε4 + O(ε5) and for ε << 1, we have that γc

1 ≈ ε4.

We now follow a similar intuitive reasoning for the two-agent case, studying the most

likely scenario, without providing a rigorous proof. For the latter, we refer to Section 7.2.1

for suggestions regarding future efforts.We assume that the policy µ∗,c2 optimal for ε = 0.03

is also optimal in the limit for ε approaching one. Under optimal policy µ∗,c2 , an agent incurs

a local cost of one in case the three edges leading to the next stage are of cost one. Hence,

we compute the probability of reaching such state. Policy µ∗,c2 is such that the agents A

and B traverse the edges aA
0 = 0 and aB

0 = 0, respectively, until an edge b
(·)
0 of cost one is

observed. Depending on the agent separation, we have the following three possibilities:

1. Separation s = 0. From the single-agent case, we have that the average number of

stages it takes for the agents to encounter an edge b0 of cost one is n̄0
2 = 1

ε . The

subscript of n̄ indicates the number of agents, while the superscript is the separation

of the case considered. At this occurrence, the agents split along the two diagonal

edges to reach two vertices where previously no edges are observed. The expected

local cost ḡ0
2 the two agents incur in this situation, is ḡ0

2 = 2((ε3 + O(ε4))− ε6) + 2ε6,

where the first and the second term are associated with the cases one agent and two
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agents face three edges of cost one, respectively. The term O(ε4) accounts for those

states where one agent observes the costs of the edges leading to the next stage to be

one, while the other agent observes the latter costs to be anything but three ones or

three zeros. This term also includes those scenarios where the separation at the next

stage equals two. Hence, we have that ḡ0
2 = 2ε3 + O(ε4).

2. Separation s = 1. In a similar computation as for the single-agent case, we find that

the average number of stages it takes for one of the two agents to encounter an edge

b
(·)
0 of cost one is n̄1

2 = 1
2ε . In the most likely case where only one edge is of cost one,

we conclude that no local cost is incurred at s = 1. Indeed, suppose that all edges

have zero cost, except for bA
0 which has cost one. Then agent A chooses the diagonal

edge that leads to B’s lane, encountering an edge cost (aA
0 )′ = (aB

0 )′ = bB
0 = 0 at

separation zero, where (·)′ indicates the value of (·) at the next stage. Hence, we write

that the expected local cost the two agents incur in this situation, is ḡ1
2 = 0 + O(ε5),

where the second term arises from much less probable scenarios. One of those is when

an agent A encounters two diagonal edge costs of one, while edge cost bA
0 = 1 and the

two diagonal edge costs at the next stage on the same lane equal one as well. The

second term further includes scenarios where the separation at the next stage equals

two or three.

3. Separation s = 2. From the case where s = 1, we have that the average number of

stages it takes for one of the agents to encounter an edge b
(·)
0 = 1 is n̄2

2 = 1
2ε . Suppose

that bA
0 is the only edge of cost one. Then, under policy µ∗,c2 , agent A traverses the

diagonal edge that leads towards B and to separation one, reaching a vertex where

previously no edges are observed. Hence, the expected local cost the two agents incur

is ḡ2
2 = ε3 + O(ε4), where the second term arises from less likely scenarios, including

the ones where the separation at the next stage is zero, three or four.

We are now ready to compute γc
2 by combining these results. In particular, we have that

γc
2 =

1
2

ḡ0
2 + ḡ1

2 + ḡ2
2

n̄0
2 + n̄1

2 + n̄2
2

,

=
3
4
ε4 + O(ε5).
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Figure 6-4: The short tunnel-shaped local observation zone associated with agent A (grey dot),
consisting of the red edges. The symbols associated with the latter represent their cost.

Hence, we have that

r̄c
1,2 = lim

ε→0

γc
1 − γc

2

γc
1

,

= lim
ε→0

(ε4 + O(ε5))− (3
4ε4 + O(ε5))

ε4 + O(ε5)
,

=
1
4
.

We conclude that based on the presented intuitive reasoning, a group of two agents is 25%

more efficient than a single agent, in the limit for p approaching one.

6.2.2 Short Tunnel-Shaped Local Observation Zone

We now consider the short tunnel-shaped local observation zone case (see Fig. 6-4) and

compare the performance of a single agent, two agents and three agents. In particular,

Fig. 6-5 shows γt2
1 (blue), γt2

2 (red) and γt2
3 (green), the average cost per agent and per

stage for a single agent, a two-agent group, and a three-agent group, respectively, for a set

of values of p. Again, to provide greater accuracy as p approaches zero, we use a small step

size of 0.001 for p ≤ 0.01. We use the same step size for 0.36 ≤ p ≤ 0.37, where an apparent

discontinuity appears in the curve for γc
1. Else, we use a normal step size of 0.01.

We observe that, as expected, three agents perform better than two agents, which in turn

perform better than a single agent. In particular, the average cost per stage and per agent

decreases the more agents the group contains. The two extreme cases where p approaches

zero and one, respectively, exhibit to-be-expected behavior. As p approaches zero, the
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Figure 6-5: The average cost per stage and per agent under an optimal policy in steady state,
as a function of p, for a single (blue), a two- (red), and a three- agent problem (green) with short
tunnel-shaped local observation zones.
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Figure 6-6: Decrease in the average cost per stage and per agent as a function of p (in percent)
for a two-(red) and a three-agent group (green) compared to a single agent, for the case of short
tunnel-shaped observation zones.

navigation graph consists primarily of edges with cost one, and thus, the average local cost

per stage approaches one. A similar reasoning holds for the case where p approaches one.

The performance per agent is compared more effectively in a relative sense rather than

in absolute sense. Specifically, we compute

rt2
1,2 =

γt2
1 − γt2

2

γt2
1

,

and

rt2
1,3 =

γt2
1 − γt2

3

γt2
1

,

for p = 0.001, 0.002, . . . , 0.009, and for p = 0.01, 0.02, . . . , 0.99, and show 100rt2
1,2 (green)

and 100rt2
1,3 (red) (in percent) in Fig. 6-6. In words, Fig. 6-6 shows by what percentage the

average cost per stage and per agent decreases when adding a second and a third agent to a

single agent, respectively. For example, for p = 0.5, two and three agents, under an optimal
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policy, incur an average cost per stage and per agent that is approximately 8% and 9.3%

smaller than the single-agent average cost per stage and per agent, respectively.

Since limp→0 γt2
1 = limp→0 γt2

2 = limp→0 γt2
3 = 1, it is clear that limp→0 rt2

1,2 = limp→0 rt2
1,3 =

0. In words, as the fraction of edges of cost one increases to one, two or three agents are as

efficient as a single agent. Then, for 0.35 ≤ p ≤ 0.72 two agents incur a cost per stage and

per agent that is between 6% and 9% smaller than the cost per stage a single agent incurs.

More interestingly, we observe that for approximately 0.05 ≤ p ≤ 0.7, three agents incur a

cost per stage and per agent that is about 1% smaller than the cost per stage and per agent

two agents incur. For, p ≥ 0.7, that difference in performance converges to zero, leading to

the conclusion that for p ≥ 0.7, three agents provide only a small to no benefit over two

agents. The presented quantitative results, together with the fixed cost of an agent, provide

the means to decide on the best group size for the type of task these problems model.

We now outline in further detail why limp→1 rt2
1,2 = limp→1 rt2

1,3 = 0, following an intuitive

reasoning. First, we note that the optimal three-agent policy, for p = 0.99 is such that two

out of three agents operate at separation zero. Hence, under the assumption that this policy

is optimal as p approaches one, three agents essentially behave as two, from which we have

that limp→1 rt2
1,2 = limp→1 rt2

1,3. Next, we consider the single-agent case, and compute γt2
1 ,

i.e. the average cost per stage. In an analysis similar to the one in Section 6.2.1, we find

that the average number of stages it takes for an agent to encounter an edge a0 with cost one

is 1
ε , upon which the agent chooses a diagonal edge, incurring an average cost of ε. Hence,

on average, the agent incurs a cost of ε, every 1
ε stages, and we have that γt2

1 = ε2. A similar

reasoning leads to an expression for γt2
2 . In particular, at s = 0, it takes an average of 1

ε

stages to encounter an edge aA
0 = aB

0 of cost one, upon which the agents diverge, choosing

different diagonal edges and incurring a total average cost of 2ε. At s = 2, it takes an

average of 1
2ε stages for one of the agents to encounter an edge a

(·)
0 of cost one. On this

occurrence and following optimal policy µt2
2 , the latter agent traverses the diagonal edge

that leads to s′ = 1, incurring a average cost of ε + O(ε2), where the second term accounts

for less likely scenarios. Finally and similarly, at s = 1, it takes an average of 1
2ε stages for

one of the agents to encounter an edge a
(·)
0 of cost one. Here, the latter agent chooses a

diagonal edge converging or diverging from the other agent, incurring a total average cost

of ε+O(ε2), where as before, the second term accounts for less likely scenarios. Combining
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the previous, yields

γt2
2 = γt2

3 = ε2 + O(ε3),

and hence,

lim
ε→0

rt2
1,2 = lim

ε→0

γt2
1 − γt2

2

γt2
1

= 0.

We conclude that both rt2
1,2 and rt2

1,3 approach zero, as p approaches one.

We now discuss changes in the optimal policy as a function of p. In the multi-agent

case, we additionally focus on the optimal policy as a function of p for infinite agent sep-

aration. For the single-agent problem we have that for the values of p ≤ 0.3640 for which

we computed the optimal value function, the same policy is optimal. A similar statement

holds for the (different) optimal policy for 0.3641 ≤ p. Hence, the optimal policy changes at

least once, for p ∈ [0.3640, 0.3641]. Although the optimal value function is continuous as a

function of p, the steady-state separation probability distribution changes in non-continuous

fashion when the optimal policy changes. Therefore, a single jump appears at p = 0.3641 in

the graph of γt2
1 . Further, a jump also appears in the graph of rt2

1,2 and rt2
1,3. We avoid the

term ’discontinuity’, since we represent the evolution of these variables at a discrete and

not a continuous set of values for p.

Similarly, the optimal policy for the two-agent case changes at various values of p.

In particular, by means of the following matrix, we indicate in which intervals for p the

optimal policy changes at least once, at separations 0 ≤ s ≤ 3. We only consider the latter

separation range, since in steady state, we established that under an optimal policy the

agent separation is upper bounded by three (see Section 4.3). Each column of the following

matrix corresponds to an interval, bounded by the entries in the first and second row:

G2 =

 0.060 0.068 0.120 0.286 0.312 0.314 0.318 0.324 0.332 0.382

0.062 0.070 0.122 0.288 0.314 0.316 0.320 0.326 0.334 0.384

 .

In each of these intervals, the optimal two-agent policy changes, leading to jumps in the

graphs of both γt2
2 and rt2

1,2, not always visible due the resolution employed. Note that at

large separations, the two-agent optimal policy changes for at least one p ∈ [0.3640, 0.3641],
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Figure 6-7: The extended tunnel-shaped local observation zone associated with agent A (grey
dot), consisting of the red edges. The symbols associated with the latter represent their cost.

since in that interval the single-agent optimal policy changes at least once. Finally, we

note that jumps in the graphs of γt2
3 and rt2

1,3 arise for more values of p, since the optimal

three-agent policy also changes at small separation as a function of p.

6.2.3 Extended Tunnel-Shaped Local Observation

Finally, we consider the extended tunnel-shaped local observation zone case (see Fig. 6-7)

and compare the performance of a single agent and two agents. In particular, Fig. 6-8

shows γt3
1 (blue) and γt3

2 (red), the average cost per agent and per stage for a single- and a

two-agent group, respectively, for a set of values of p. We notice that two agents perform

better than a single agent in the sense that the average cost per stage and per agent is

smaller for two agents than for a single agent. The extreme case where p approaches one,

exhibits to-be-expected behavior, similar as in the two-agent case with short tunnel-shaped

local observation zones.

Note that Fig. 6-8 and subsequent figures associated with the extended tunnel-shaped

local observation zone problem instance only show results for values of p ≥ 0.42, for reasons

related to the computation of the optimal value function. We refer to Section 4.4 for further

details.

The agent performance is compared more effectively in relative sense rather than in

absolute sense. In particular, we compute

rt3
1,2 =

γt3
1 − γt3

2

γt3
1

,
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Figure 6-8: The average cost per stage and per agent under an optimal policy in steady state,
as a function of p, for a single (blue) and a two- agent problem (red) with extended tunnel-shaped
local observation zones.
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Figure 6-9: Decrease in the average cost per stage and per agent as a function of p (in percent)
for two agents compared to a single agent, for the case of extended tunnel-shaped observation zones.

for p ≥ 0.42 and show 100rt3
1,2 in Fig. 6-9. In words, Fig. 6-9 shows by what percentage

the average cost per stage and per agent decreases when adding a second agent to a single

agent. We observe that for p ∼ 0.72, the relative performance improvement reaches a

maximum: two agents perform about 7% better than a single agent. We further note that

as p approaches one, rt3
1,2 approaches zero, the explanation for which is similar to the one

involving two agents with short tunnel-shaped local observation zones (see Section 6.2.2).

In particular, one can see that by the same reasoning, we have that γt3
1 = γt3

2 = ε2 + O(ε3),

from which we have that

lim
ε→0

rt3
1,2 = lim

ε→0

γt3
1 − γt3

2

γt3
1

= 0.

Further, note that the apparent discontinuities in the Figs 6-8,6-9 arise from changes in

the optimal policy as a function of p for some s < s̄.

Finally, we compare the performance increases for the short and extended tunnel-shaped

local observation zones. In particular, we point to a fairly peculiar difference. The maximum

performance increase occurs at p ∼ 0.5 for the short tunnel-shaped local observation zones

136



and at p ∼ 0.72 for the extended tunnel-shaped local observation zones, a difference which

is cumbersome to clarify intuitively.

6.2.4 Large Agent Groups

In this section, we make some remarks regarding larger agent groups. For large groups, one

traditionally uses approximate methods such as neuro-dynamic programming [7] to design

multi-agent trajectories that are hopefully close to optimal. However, from the previous

results, we can design suboptimal policies for moderately large agent groups, for which we

can determine an upper bound on the optimality gap under reasonable assumptions. For

example, for tunnel-shaped local observation zones, two agents increase the single-agent

performance by approximately 5.5%, a third agents increases the performance further by

approximately 0.5%, for p = 0.75 (see Fig. 6-6). We can conservatively assume that a fourth,

fifth and sixth agent, each increase the performance by 0.5%. Hence, a suboptimal policy

for a six-agent group that consists of a combination of two optimal three-agent policies,

possibly misses out on a 1.5% performance increase, providing an indication of the size of

the optimality gap. Fig. 6-10 shows an example six-agent trajectory set for p = 0.75 under

a policy that consists of two three-agent optimal policies. Note how at from horizontal

position 5 to 6 and from 24 to 27, the two groups of three intertwine, but do not interact.

We can obtain a less conservative estimate of the optimality gap by extrapolating the

evolution of the performance increase as the group size increases. By the latter reasoning,

and for the example considered, the optimality gap is approximately 0.6% (assuming that

the performance increase per additional agent decreases by a factor ten approximately).

5 10 15 20 25 30 35 40 45 50
0

2

4

East

N
or

th

Example Six−Agent  Optimal Trajectory Set; p = 0.75

Figure 6-10: Six-agent example trajectory set for p = 0.75 under a policy that consists of two three-
agent optimal policies. Blue (red) lines and arrows indicate edge costs of zero and one, respectively;
black arrows indicates an agent traversing a previously unobserved edge.
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We note that the success of the previous method, that is, splitting large groups into

small subgroups, depends highly on the size of the performance increase for small agent

groups. Indeed, for the cone-shaped local observation zone, and for p close to one, two

agents provide a performance increase of approximately 25%, rendering estimating the

performance evolution for larger groups cumbersome.

6.3 Performance as Function of the local Observation Zone

Structure

In this section, we present how the agent performance evolves as a function of the local ob-

servation zone shape for a single- and a two-agent group. Specifically, in the Sections 6.3.1

and 6.3.2, we consider a single- and a two-agent group, respectively, and compare the perfor-

mance for a short tunnel-shaped, extended tunnel-shaped and cone-shaped local observation

zones. The notation adopted in the previous section, serves us in this section as well.

6.3.1 Single Agent

We first consider the single-agent problem and compare the performance for different local

observation zones. In particular, Fig. 6-11 shows the average cost per stage for a set of

values of p, for a short tunnel-shaped (γt2
1 , blue), an extended tunnel-shaped (γt3

1 , red), and

a cone-shaped local observation zone (γd
1 , green). These three local observation zones are

shown in the Figs 6-4, 6-7, and 6-1, respectively. We observe that, as expected, a single

agent with an extended tunnel-shaped or a cone-shaped local observation zone performs

better than a with a short tunnel-shaped local observation zone. Somewhat less obvious,

but not surprising, is the fact that two diagonal edges added to the short tunnel-shaped

local observation zone lead to a more efficient agent compared to adding an extra edge

straight ahead.

The performance for the different local observations is better compared in a relative

sense, rather than in absolute sense. Specifically, we compute

rt2,t3
1 =

γt2
1 − γt3

1

γt2
1

,

rt2,c
1 =

γt2
1 − γc

1

γt2
1

,
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Figure 6-11: The average cost per stage under an optimal policy in steady state, as a function of
p, for a single agent with short (blue), extended (red) tunnel-shaped and cone-shaped (green) local
observation zones, respectively.
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Figure 6-12: Decrease in the average cost per stage as a function of p (in percent) for a single
agent with a short tunnel-shaped observation zone compared to a extended (red) tunnel-shaped and
cone-shaped (green) local observation zone, respectively.

and show 100rt2,t3
1 (green) and 100rt2,c

1 (red) (in percent) in Fig. 6-12. In words, Fig. 6-12

shows by what percentage the average cost per stage and per agent decreases when adding

diagonal edges or a third edge straight ahead, respectively.

We observe that a single agent with an extended tunnel-shaped local observation zone

performs between 5% and 13% more efficiently, for 0.07 ≤ p ≤ 0.7 with a maximum at

p ' 0.37. In the limit for p approaching zero, i.e. the probability of encountering a zero

edge cost decreases to zero, an extra edge cost straight ahead provides no advantage. In

an environment consisting mainly of edges of cost one, this is to be expected. Further, we

note that in the limit as p approaches one, i.e. an environment where the probability of a

zero edge cost approaches one, an extra edge straight ahead does not provide a significant

advantage either.

Regarding the cone-shaped local observation zone, the results are different. In particular,

a single agent with the latter local observation zone incurs an average cost per stage from

0% till 100% less as p goes from zero to one. Clearly, diagonal edges lead to a decrease in

average cost per stage that is significantly larger than in the case of a local observation zone
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Figure 6-13: The average cost per stage under an optimal policy in steady state, as a function
of p, for two agents with short (blue), extended (red) tunnel-shaped and cone-shaped (green) local
observation zones, respectively.

with an extra edge straight ahead. The limit of rt2,c
1 as p approaches one, using the results

for γ̃t2
1 and γ̃c

1 obtained in the Sections 6.2.2 and 6.2.1, respectively, yields

r̄t2,c
1 = lim

p→1
rt2,c
1

= lim
ε→0

γ̃t2
1 − γ̃c

1

γ̃t2
1

,

=
ε2 − ε4

ε2
,

= 1.

Hence, as p approaches one, we observe a 100% decrease in average cost per stage incurred.

6.3.2 Two Agents

We now consider the two-agent problem and compare different sets of local observation

zones. In particular, Fig. 6-13 shows the average cost per stage for a set of values of p, for

short tunnel-shaped (γt2
2 , blue), extended tunnel-shaped (γt3

2 , red), and cone-shaped local
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Figure 6-14: Decrease in the average cost per stage as a function of p (in percent) for two
agents with a short tunnel-shaped observation zone compared to a extended (red) tunnel-shaped
and cone-shaped (green) local observation zone, respectively.

observation zones (γc
2, green). Only values of γt3

2 for p ≥ 0.42 are presented for reasons

described in Section 6.2.3. We observe that as expected, both the extended tunnel-shaped

and the cone-shaped local observation zones yield enhanced performance in comparison to

the short tunnel-shaped local observation zones. Further, similarly as in the single-agent

case, two diagonal edges added to the short tunnel-shaped local observation zones lead to

a more efficient agent pair than in the case only an extra edge straight ahead is added.

The performance is more effectively compared in relative sense. In fact, we compute

rt2,t3
2 =

γt2
2 − γt3

2

γt2
2

,

rt2,c
2 =

γt2
2 − γc

2

γc
2

,

and show 100rt2,t3
2 (red) and 100rt2,c

2 (green) (in percent) in Fig. 6-14. The conclusions

are similar to the ones in the single-agent case. In particular, we observe that two agents

with extended tunnel-shaped local observation zones perform around 7% more efficiently

at p ∼ 0.42, decreasing towards 0% as p approaches one. In words, in the limit as p
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approaches one, local information on an extra edge straight ahead is of little to no use,

as in the single-agent case. Further, we observe that two agents with cone-shaped local

observation zones incur a local cost per stage and per agent that is 0% to 100% smaller

than in the short tunnel-shaped local observation zone case, as p evolves from zero to one,

respectively. Clearly, as in the single-agent case, two agents with diagonal local information

are far more efficient than two agents with enhanced straight ahead local information. In

the limit as p approaches one, rt2,c
2 approaches one. Specifically, since γ̃t2

2 = ε2 and γ̃c
2 = 3

4ε4

(see Section 6.2), we have that

lim
ε→0

rt2,c
2 = lim

ε→0

γ̃t2
2 − γ̃c

2

γ̃t2
2

= 0.

In the next section, we focus on the quantifying the performance benefits different

observed edges provide.

6.4 Spatial Distribution Characteristics

In this section, we present optimal policy properties related to the agent spatial distribution

for different problems and as a function of parameter p. In particular, in Section 6.4.1,

we consider the two-agent problem with cone-shaped local observation zones. Further, in

Section 6.4.2, we present results regarding the two- and three-agent problems with short

tunnel-shaped local observation zones. Finally, in Section 6.4.3, we handle the two-agent

case with extended tunnel-shaped local observation zones.

6.4.1 Two Agents with Cone-Shaped Local Observation Zones

Recall that Theorem 2 allows us to solve for the two-agent optimal value function in two

simple steps. First, solve LP in to obtain the optimal value function at separations s ≤ s̄−1.

Then, use its solution to compute the initial condition for the LTI system in Eq. (4.34) which

is simulated to obtain the optimal value function for any s ≥ s̄. For p = 0.7 and α = 0.9,

Fig. 6-15 shows Exs,∗
00 , Exs,∗

01 and Exs,∗
11 as a function of s. As expected, as s →∞, the two-

agent optimal value function converges to the dashed lines which represent the two-agent

value function in case both agents adopt a single-agent optimal policy at all separations

s ≥ 0. For this particular case, s̄ = 3 is the smallest s̄ for which we obtain the optimal value

function. Fig. 6-16 (bottom) shows a sample optimal two-agent trajectory set for p = 0.5.
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Figure 6-15: Two-agent problem with cone-shaped local observation zones. The optimal value
function (Exs,∗

00 , Exs,∗
01 and Exs,∗

11 ) as a function of the agent separation s (p = 0.7 and α = 0.9).
The dashed line in each figure denotes the optimal two-agent value function for non-cooperating
agents.

After the initial transition phase where, in expected sense, the agent separation decreases,

the steady state is reached, where with high probability the agent separation remains small.

Fig. 6-16 (top) shows the corresponding steady state probability distribution of the agent

spatial distribution.

Fig. 6-17 shows the probability distribution of the two-agent separation in steady state

and under an optimal policy for p = 0.1, 0.2, . . . , 0.9. Later in this section, we focus on the

agent behavior in the two extreme cases where p is close to zero and close to one. For all p, it

is clear that the agents remain close to each other with high probability. In fact, as s →∞,

the probability of encountering the agents at separation s decreases exponentially. Fig. 6-18

shows the expected value of agent separation in steady state. For p close to one, the expected

agent separation is the smallest and equals approximately 0.75. On the other hand, for p

close to zero, we have approximately the largest expected agent separation, equal to 2. This

is further support for the intuition that as the environment is more hostile, the agents spread

out to increase the size of the region where exact edge cost is observed, and thus increasing
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Figure 6-16: Two-agent problem with cone-shaped local observation zones. An example set of
trajectories. Blue and red edges denote an edge cost of zero and one, respectively (p = 0.7 and
α = 0.9).
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Figure 6-17: Two-agent problem with cone-shaped local observation zones. The steady state
agent separation probability distributions for p = 0.1, 0.2, . . . , 0.9, under an optimal policy.
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Figure 6-18: Two-agent problem with cone-shaped local observation zones. The expected value
of the agent separation under an optimal policy for several values of p.
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Figure 6-19: Two-agent problem with cone-shaped local observation zones. Top: Steady state
agent separation probability distribution for a p close to zero (p = 0.06), under an optimal policy.
Bottom: a set of sample trajectories, for p = 0.06. Red (blue) arrows and lines indicate traversed
and observed edges of cost one (zero), respectively.

the probability of encountering a zero edge cost. The apparent discontinuous changes in

the curve reflect changes in the optimal two-agent policy at the separations s = 0, 1, 2.

Fig. 6-19 and Fig. 6-20 show two extreme but instructive cases, for p = 0.06 and p = 0.94,

respectively; in each figure, the top depicts the probability distribution of the separation in

steady state, while the bottom depicts a set of sample trajectories. For p = 0.06, i.e. the

case where ones are abundant, the separations s = 1 and s = 3 are most probable. The

sample trajectories indicate the mechanics of cooperation. In particular, the agents tend to

the most favorable separation s = 1, where one agent can leverage opportunities the other

agent observes. However, with high probability, only ones are observed, driving the agents

apart to the separation s = 3, where a set of eight previously unobserved edges is observed,

thus maximizing the probability of encountering a zero. With high probability, only ones

are in sight, and the agents converge again to the favorable separation s = 1, where eight

previously unobserved edges enter the observation zone.

For p = 0.94, the case where zeros are abundant, the separation s = 0 is most likely,

followed by s = 1 and s = 2, both equally likely. Again, the sample trajectories indicate the
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Figure 6-20: Two-agent problem with cone-shaped local observation zones. Top: Steady state
agent separation probability distribution for a p close to one (p = 0.94). under an optimal policy.
Bottom: a set of sample trajectories, for p = 0.94. Red (blue) arrows and lines indicate traversed
and observed edges of cost one (zero), respectively.

mechanics of cooperation. In particular, let the agents start at s = 1, the most favorable

separation. Most likely, only zeros are observed, and agents continue straight ahead. With

probability p1 = 2p(1− p) (= 0.11. for p = 0.94), an edge of cost one enters an observation

zone one stage ahead (see for example stage 118 in Fig. 6-20). As a consequence, the agents

converge to s = 0, which is maintained till again a one appears one stage further, which

happens with with probability p2 = 1 − p (= 0.06 for p = 0.94). The agents split to

s = 2, maximizing the number newly observed edges. Again, one edge cost of one enters an

observation zone one stage ahead with probability p1, causing the agents to converge back

to s = 1. The difference in magnitude of p1 and p2 clarifies the difference of the probabilities

with which agent are at separation s = 0 and at the separations s = 1 and s = 2.

6.4.2 Two and Three Agents with Short Tunnel-Shaped Local Observa-

tion Zones

We first present results regarding the two-agent problem and proceed with the three-agent

problem.
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Figure 6-21: Two-agent problem with short tunnel-shaped local observation zones. Top: Steady
state agent separation probability distribution for a p = 0.50, under an optimal policy. Bottom: a
set of sample trajectories, for p = 0.50. Red (blue) arrows and lines indicate traversed and observed
edges of cost one (zero), respectively. A black arrow indicates a traversed edge with no previously
known information, a bold arrow indicates an edge traversed by two agents.

Two Agents

From the exposition in Section 4.3, we have that for 0 ≤ p ≤ 1 and for 0 ≤ α < 1 the

agent separation is upper bounded by three, in steady state. Hence, we can compute the

optimal value function at the separations s = 0, 1, 2, 3 by considering a problem with fi-

nite state space, imposing the latter upper bound in Bellman’s equation. Fig. 6-21 shows

the steady state agent separation probability distribution for p = 0.5 (top), and a corre-

sponding set of agent trajectories under an optimal policy (bottom). We observe indeed

that in this particular sample trajectory set, the two agents remain within a separation

of three. Correspondingly, only the steady state probability at separations s = 0, 1, 2, 3 is

shown; at larger separations, this probability is zero. Note that one agent uses informa-

tion the other agent observes at several occasions. Specifically, at the horizontal positions

8, 22, 28, 30, 33, 38, 40, 45, 47 and 48, an agent (A) traverses the diagonal edge leading to the

lane the other agent (B) is positioned at, ready to incur a cost agent B previously observed.

Fig. 6-22 shows the expected value of the agent separation under an optimal policies for

a set of values of 0 < p < 1 (dots) and for α = 0.9. We notice that the smallest average
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Figure 6-22: Two-agent problem with short tunnel-shaped local observation zones. The expected
value of the agent separation under an optimal policy for several values of 0 < p < 1 (dots on the
curve)
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Figure 6-23: Two-agent problem with short tunnel-shaped local observation zones. Top: Steady
state agent separation probability distribution for a p = 0.05, under an optimal policy. Bottom: a
set of sample trajectories, for p = 0.05. Red (blue) arrows and lines indicate traversed and observed
edges of cost one (zero), respectively. A black arrow indicates a traversed edge with no previously
known information, a bold arrow indicates an edge traversed by two agents.

separation is reached in the limit for p → 1, and equals 0.75, the largest average separation

equals two, and is reached in the limit for p → 0. As in the two-agent case with cone-shaped

local observation zones, the decreasing graph in Fig. 6-22 confirms the intuition that as less

zeros are available in the environment (p close to zero), the agents tend to spread out,

enlarging the union of the local observation zones and thus increasing the probability of

encountering a zero. Similarly, as the environment contains few ones, there is no need to

spread out and gather extra information. Specifically, the preferred separation is s = 1 so

that when one agent encounters a rare edge of cost one, the other agent’s observation of

edge b0 is of use to the first. Note that the apparent discontinuities in Fig. 6-22 reflect

changes in the optimal policy.

In the rest of this section, we study the extreme cases for p → 0 and p → 1 more in

detail. In particular, Fig. 6-23 (top) shows the steady state separation distribution under

an optimal policy for p close to zero (p = 0.05). An example of an optimal trajectory set

is depicted in Fig. 6-23 (bottom). A clear pattern emerges. In the event that no edges of

zero cost are observed, the agents oscillate between s = 1 and s = 3. Indeed, if at s = 1, all

observed edges are of cost one, the agents diverge, reaching two vertices at s = 3 where four
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Figure 6-24: Two-agent problem with short tunnel-shaped local observation zones. Top: Steady
state agent separation probability distribution for a p = 0.95, under an optimal policy. Bottom: a
set of sample trajectories, for p = 0.95. Red (blue) arrows and lines indicate traversed and observed
edges of cost one (zero), respectively. A black arrow indicates a traversed edge with no previously
known information, a bold arrow indicates an edge traversed by two agents.

previously unobserved edges enter the local observation zones. By this decision, the agents

opt to gather information, rather than to stay close. Similarly, at s = 3, the agents decide

to converge to s = 1, again observing four new edges, and with the additional advantage

that if bA
0 = 0, agent B can take advantage as well by converging to s = 0. The latter

situation occurs at horizontal positions 20 and 36 in Fig. 6-23 (bottom). This pattern is

reflected in the steady state separation distribution, where we note that, indeed, the agents

are at predominantly at s = 1 and s = 3, with equal probability.

Finally, we discuss the agent behavior as p → 1. In particular, Fig. 6-24 (top) shows

the steady state separation distribution under an optimal policy for p = 0.95. An example

of an optimal trajectory set is depicted in Fig. 6-24 (bottom). Similarly as for p = 0.05, a

clear pattern emerges. In fact, there is a clear similarity of the trajectory structure and the

associated steady state separation probability distribution between this problem and the

two-agent problem with cone-shaped local observation zones when p is close to one. The

latter is described in Section 6.4.1 and applies here in identical fashion.
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Figure 6-25: Three-agent problem with short tunnel-shaped local observation zones. A set of
sample trajectories for p = 0.70. Red (blue) arrows and lines indicate traversed and observed
edges of cost one (zero), respectively. A black arrow indicates an edge traversed without previous
information on its cost, and a bold arrow indicates an edge traversed by more than one agent.

Three Agents

For the three-agent problem, recall that we assume an upper bound of three on the smallest

agent-pair separation s1. Although we provide no procedure to formally prove correctness of

this assumption, numerical computations indicate that most likely the upper bound holds.

We refer to Section 4.5 for details, and discuss results related to the three-agent spatial

distribution here. Fig. 6-25 shows an example of a three-agent trajectory set under an

optimal policy for p = 0.7. Note how in many occasions two out of three or all three

agents converge to separation zero and traverse an edge with zero cost. Fig. 6-26 shows the

corresponding steady state agent separation probability distribution for different separations

s1 and s2. Since, without loss of generality, by using problem symmetry, we assumed that

s1 ≤ s2, probabilities appear for those pairs of s1 and s2 for which the previous relation

holds. From the exposition in Section 5.2, we have that the probability for the agents to be

at s1 and s2 decreases exponentially with increasing s2. Hence, from the figure, we conclude

that with a probability of approximately 0.99, the agents remain within a total separation

of four.

Fig. 6-27 shows the expected separation s1 (blue) and s1+s2 (red) for a set of values for p

(dots). In other words, for any particular 0 < p < 1, the average agent configuration is such

that one agent sits on the p-axis, the second agent sits on the blue curve, while the third

agent is located on the red curve. As for the two-agent problem with cone-shaped or short

tunnel-shaped observation zones, we have that the tendency to spread is more pronounced

in an environment predominantly containing edges with cost one (p < 0.5). Similarly, the

tendency to converge dominates for p > 0.5, the case where the environment mainly consists
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Figure 6-26: Three-agent problem with short tunnel-shaped local observation zones. The steady
state agent separation probability distribution for p = 0.7. From top to bottom, the figures represent
the distribution for s1 = 0, 1, 2, 3, respectively; the horizontal axis represents s2 (≥ s1).
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Figure 6-27: Three-agent problem with short tunnel-shaped local observation zones. The expected
value of the agent separation s1 (blue) and s1 + s2 (red) under an optimal policy for several values
of 0 < p < 1 (dots on the curve).

of edges with zero cost. Again, this confirms and quantifies the intuition that spreading and

information gathering is essential in environments with few rewards (zero cost edges, p close

to one). Further note that as p approaches one, separation s1 approaches zero, indicating

that for this type of environment, two out of three agents stay at separation zero. This

confirms the result in Section 6.2.2, where we conclude that the benefit of a third agent

disappears for p approaching one. Indeed, for such p, we have that two out of three agents

essentially behave as a single agent, by sticking together under an optimal policy. Finally,

note that the apparent discontinuities in Fig. 6-27 reflect policy changes as p varies.

We now focus on the agent behavior in two extreme cases, for small and large values

of p. Specifically, Fig. 6-28 shows a set of three-agent trajectories under an optimal policy,

for p = 0.01. We notice two different emerging patterns, equally present in Fig. 6-29, which

shows the steady state separation probability distribution, under an optimal policy and for

p = 0.01. The first pattern appears from horizontal position 1 to 13, and from 19 to 31.

Here, separation s1 = 1 and s2 = 3, where the two outer agents switch role at each stage.

This situation occurs when exclusively edges of cost one are observed and the agents tend
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Figure 6-28: Three-agent problem with short tunnel-shaped local observation zones. A set of
sample trajectories for p = 0.01. Red (blue) arrows and lines indicate traversed and observed
edges of cost one (zero), respectively. A black arrow indicates an edge traversed without previous
information on its cost, and a bold arrow indicates an edge traversed by more than one agent.
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Figure 6-29: Three-agent problem with short tunnel-shaped local observation zones. The steady
state agent separation probability distribution for p = 0.01. From top to bottom, the figures repre-
sent the distribution for s1 = 0, 1, 2, 3, respectively; the horizontal axis represents s2 (≥ s1).
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Figure 6-30: Three-agent problem with short tunnel-shaped local observation zones. A set of
sample trajectories for p = 0.95. Red (blue) arrows and lines indicate traversed and observed
edges of cost one (zero), respectively. A black arrow indicates an edge traversed without previous
information on its cost, and a bold arrow indicates an edge traversed by more than one agent.

to spread, maximizing the number of new edges observed, thus increasing the probability

of encountering an edge of zero cost. Note that at each stage two agents are at separation

one, so that two out of three agents have information on three reachable edges rather than

two, which is the case for the third agent, at separation three. The second pattern appears

from horizontal position 39 to 48, where s1 = 0 and s2 = 1. In this case, all three agents

have information on three rather than two reachable edges. This is better than in the first

pattern, but comes at a price, namely at each stage only three new edges appear in the

local observation zones, rather than six in the case of the first pattern. Different initial

conditions lead to the different patterns. On average, the first and the second pattern occur

at about 40% and 60% of the stages, respectively, as shown in Fig. 6-29. Finally note that

this strategy pays off at four occasions in Fig. 6-28. In particular, at horizontal locations

16, 32, 38, and 49, at least two agents traverse an edge of cost zero, previously observed by

only one agent. At these occasions, cooperation pays off.

Finally, we study the case where p is close to one. Fig. 6-30 shows an example set of

three-agent trajectories under an optimal policy, for p = 0.95. After effects due to initial

conditions have died out, the same pattern emerges as in the two-agent case with both cone-

shaped and short tunnel-shaped local observation zones. Indeed, two out of three agents

are at separation zero at all stages (in steady state), and we have a separation sequence

as in the previously cited two-agent cases. The fact that s1 = 0 at all stages reappears in

Fig. 6-31 depicting the steady state separation probability distribution, for p = 0.95. It

also appears in Fig. 6-27 where for p close to zero, we observe that the average separation

s1 = 0. For the description of the mechanics of cooperation in this case, we refer to the last

case discussed in Section 6.4.1, the two-agent problem with cone-shaped local information

zones, for p close to one.
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Figure 6-31: Three-agent problem with short tunnel-shaped local observation zones. The steady
state agent separation probability distribution for p = 0.95. From top to bottom, the figures repre-
sent the distribution for s1 = 0, 1, 2, 3, respectively; the horizontal axis represents s2 (≥ s1).
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Figure 6-32: Two-agent problem with extended tunnel-shaped local observation zones. Top:
Steady state agent separation probability distribution for a p = 0.5, under an optimal policy. Bottom:
a set of sample trajectories, for p = 0.5. Red (blue) arrows and lines indicate traversed and observed
edges of cost one (zero), respectively. A black arrow indicates a traversed edge with no previously
known information, a bold arrow indicates an edge traversed by two agents.

6.4.3 Two Agents with Extended Tunnel-Shaped local Observation Zones

In this section, we study the behavior of two agents with extended tunnel-shaped local

observation zones. In particular, Fig. 6-32 (bottom) shows an example of a two-agent

trajectory under an optimal policy for p = 0.5, and Fig. 6-32 (top) shows the corresponding

steady state separation probability distribution. From the exposition in Section 5.2, we have

that the steady state separation probability decreases exponentially with the separation s.

Hence, for p = 0.5, with a probability of about 99%, the agents remain within a separation

of five.

Fig. 6-33 shows the expected agent separation in steady state and under an optimal

policy for a set of values for p. As in the cone-shaped and short tunnel-shaped local

observation zone cases, the tendency to spread is more dominant as p decreases, and the

edges of cost one are more probable than edges of cost zero. Similarly, the tendency to

converge dominates for p > 0.5, the case where the environment mainly consists of edges of

zero cost. As also demonstrated in the problems with cone-shaped and short tunnel-shaped

local observation zones, we confirm and quantify the intuition that as rewards (edges with
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Figure 6-33: Two-agent problem with extended tunnel-shaped local observation zones. The
expected value of the agent separation under an optimal policy for several values of p.

zero cost) are abundant (p approaching one), it is not necessary for the agents to spread

and increase the size of the observed area. We note that in the limit, as p approaches one,

the average separation equals 0.75, illustrated more in detail later in this section. Finally,

the apparent discontinuities in Fig. 6-33 reflect policy changes as p varies.

We now study the extreme case where p is close to one. In particular, Fig. 6-34 (bottom)

shows an example of a set of two agent trajectories under an optimal policy for p = 0.95.

Fig. 6-34 (top) shows the associated steady state separation probability distribution. We

observe identical behavior as in the two-agent problems with cone-shaped and short tunnel-

shaped local observation zones. For a description of the mechanics of cooperation for this

case, we refer to the last case discussed in Section 6.4.1, where the two-agent problem with

cone-shaped local observation zones is discussed.

Finally, we discuss the extreme case where p is close to zero. In particular, Fig. 6-35

(bottom) shows an example of a set of two trajectories under an optimal policy for p = 0.05.

Fig. 6-35 (top) shows the associated steady state separation probability distribution. The

results presented for p = 0.05 are approximate. That is, we compute an upper bound and
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Figure 6-34: Two-agent problem with extended tunnel-shaped local observation zones. Top:
Steady state agent separation probability distribution for a p = 0.95, under an optimal policy.
Bottom: a set of sample trajectories, for p = 0.95. Red (blue) arrows and lines indicate traversed
and observed edges of cost one (zero), respectively. A black arrow indicates a traversed edge with
no previously known information, a bold arrow indicates an edge traversed by two agents.

a lower bound to the optimal value function by considering a bounded and a cylindrically

shaped navigation graph, respectively. If the upper and lower bound are sufficiently tight,

here of the order of 10−8, we can obtain the optimal policy at small separations. For

p = 0.05, we find that the optimal two-agent policy is such that the agent separation is

upper bounded by four, i.e. under an optimal policy the agents remain at all times in steady

state within a separation of four. Note that for p = 0.5 (see Fig. 6-35) the agent separation

is potentially unbounded under an optimal policy. Hence, there exists a 0.05 ≤ p̄ ≤ 0.5 at

which the optimal policy changes. Specifically, for p < p̄, the optimal policy is such that

the agent separation is upper bounded, and for p > p̄, there is no separation upper bound.

Numerical experiments indicate that computing p̄ by finding an upper and lower bound to

the optimal value function, is extremely sensitive to the choice of the width of the graph

for the upper bound, and the diameter of the cylindrical graph for the lower bound. The

algorithm to compute the optimal value function presented in this thesis is necessary and,

hence, we present no approximate results for p < 0.42.

We conclude with some remarks on the mechanics of cooperation for the case where p is

close to zero. In Fig. 6-35 (bottom), we notice two different modes. First, from horizontal

coordinates 8 to 17, from 24 to 28, and from 38 to 41, the agents move diagonally at
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Figure 6-35: Two-agent problem with extended tunnel-shaped local observation zones. Top:
Steady state agent separation probability distribution for a p = 0.05, under an optimal policy.
Bottom: a set of sample trajectories, for p = 0.05. Red (blue) arrows and lines indicate traversed
and observed edges of cost one (zero), respectively. A black arrow indicates a traversed edge with
no previously known information, a bold arrow indicates an edge traversed by two agents.
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separation two. In this mode, at each step, five previously unobserved edges enter the

local observation zones. Further, at separation two, the third edge straight ahead agent A

observes is reachable, and thus relevant to agent B, and vice versa. In the second mode,

from horizontal coordinates 1 to 5 and 42 to 51, the agents move diagonally at separation

one. In this mode, at each step, four previously unobserved edges enter the local observation

zones. Further, at separation one, the second and third edge straight ahead agent A observes

are reachable and hence relevant to agent B, and vice versa. The first and second mode

occur with a probability of about 0.6 and 0.2, respectively. Both modes indicate a balance

between the number of newly observed edges at each stage, and the number of edges one

agent observes that are relevant to the other agent. In the first mode, five new edges

are observed at each stage, and one edge observed by one agent is reachable by the other

agent; in the second mode, only four new edges are observed at each stage, while two edges

observed by one agent are relevant to the other agent. Finally, with probability 0.2, the

agents are at separation zero, where both agents traverse one or more edges of costs zero,

in general discovered while in one of the two modes. This occurs at horizontal coordinates

6, 22 and 30.

6.5 Implications for Communication

In this section, we discuss the requirements for agent communication under an optimal

policy. We assume a distributed system whereby each agent has access to a computation

unit with the optimal value function in its memory. Then, for each agent to determine

its optimal decision, it generally requires access to the complete system state, including

the current agent separation and the costs of the edges the other agent(s) observes. In

case multiple decisions are optimal, communication is required to reach a consensus. This

scheme is equivalent to centralized decision making.

However, consider a two-agent system. It is intuitively clear that when the agent separa-

tion is large, there is no need to communicate the costs of the observed edges. Indeed, edge

costs agent A observes is of no use to agent B since the latter cannot reach and traverse the

edges the former observes. Further, from the algorithm presented in this thesis, we have

that for s ≥ s̄, each agent uses a single-agent optimal policy, reducing the agent separation

in case multiple decisions are optimal (policy µ∞). Hence, for s ≥ s̄, only information on
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Figure 6-36: The value of s̄ for p = 0.01, 0.02, . . . , 0.99, for the two-agent problem with cone-
shaped local observation zones.

the relative position of the other agent is sufficient for each agent to determine its optimal

decision. In other words, agent A only needs information on whether agent B is on its

left or right. We denominate this as a quasi-decentralized optimal policy, since each agent

behaves independently as a single agent under an optimal single-agent policy, breaking ties

by choosing the decision that minimizes the resulting agent separation. On the other hand,

for s < s̄, the optimal agent policy differs from the combination of two optimal single-agent

policies. Communication is required to convert the distributed computing into a de facto

centralized decision making scheme.

In what follows, we discuss the size of s̄ for the different multi-agent systems considered

in this thesis, including the three-agent system, where s2 plays the role of the separation s

between the agents of a two-agent system.

Two Agents: Cone-Shaped Local Observation

We start with the two-agent problem with cone-shaped local observation zones. The table

in Fig. 6-36 shows s̄ for p = 0.01, 0.02, . . . , 0.99. The separation s̄ equals three for p ≥ 0.08

at the values of p for which s̄ is determined. For p < 0.08, we have that s̄ increases as

p decreases. Hence, we conclude that for p ≥ 0.08, communication and thus centralized

decision making, is only required when the agents are at separation s ≤ 2; for smaller p

centralized decision is required until somewhat larger separations.

We now give an intuitive explanation for the increase in s̄ for small p by comparing

the policy µ∞ to the optimal two-agent policy at 3 ≤ s < s̄ in the cases where s̄ > 3.

An example of a state (s > 3) where there is a difference between µ∞ and µ∗ is shown

in Fig. 6-37, where blue and red arrows or lines indicate an edge cost of zero and one,

respectively. Further, the gray arrows indicate the most probable future agent decisions,

given the high probability for encountering ones (only for p < 0.08 does it occur that s̄ > 3).

The optimal decision for the bottom agent under an optimal two-agent policy, given the

current separation and observation zones, is the same as under policy µ∞. However, for the

top agent, the solid arrows represent the optimal two-agent decision sequence, as opposed
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Figure 6-37: For any p such that s̄ > 3, the optimal policy at s < s̄ (solid arrows) differs from a
single-agent optimal policy (dashed arrows). A red arrow or line indicates an edge of cost one, while
a blue arrow or line represents a zero edge cost.

to the dashed arrows, which represent the decision sequence the top agent were to make if

it adopted policy µ∞. Under µ∗, the agents reach a separation of one, three stages from

the current stage, while under µ∞, the agents reach separation two. Separation one is more

favorable compared to separation two, particularly when the probability of encountering

zeros is low, since at separation one, each agent potentially can leverage opportunities the

other agent observes. Hence, odd separations are preferred over even ones, increasingly as

the environment contains less edges of cost zero. Therefore, the smaller p, the larger the

separations at which the agents anticipate, choosing those decisions that lead as fast as

possible to a separation of one.

Two Agents: Short Tunnel-Shaped Local Observation

Next, we discuss the two-agent case with short tunnel-shaped local observation zones. From

Section 4.3, we have that in steady state and under an optimal policy, the agent separation

is bounded by a separation of three. Therefore, in steady state, the agents communicate at

all times, thus employing a centralized decision making scheme. In transient state, with an

initial agent separation greater than three, again a quasi-decentralized organization suffices.

Two Agents: Extended Tunnel-Shaped Local Observation

The table in Fig. 6-38 shows s̄ for the two-agent problem with extended tunnel-shaped local

observation, for p = 0.42, 0.43, . . . , 0.99. Note that, as outlined in Section 6.2.3, we only

compute exact information for the latter values of p. A similar conclusion as in the two-

agent problem with short tunnel-shaped local observation zones holds: a quasi-decentralized
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Figure 6-38: The value of s̄ for p = 0.42, 0.43, . . . , 0.99, for the two-agent problem with extended
tunnel-shaped local observation zones.

p 0.39 0.40 ... 0.49 0.50 0.51 ... 0.99

s 7 5 ... 5 4 ... 55

Figure 6-39: The value of s̄ for p = 0.39, 0.40, . . . , 0.99, for the three-agent problem with short
tunnel-shaped local observation zones.

decision scheme suffices when the agent separation s ≤ 3. At the latter separations, the

locally observed edge costs and the direction of decreasing separations suffice for optimal

decision making.

Three Agents: Short Tunnel-Shaped Local Observation

Lastly, we consider the three-agent problem with short tunnel-shaped local observation

zones. In Section 6.2.2, we assume that the smaller agent separation s1 ≤ 3, while compu-

tations show that the larger agent separation s2 can grow unbounded. Hence, the two closer

agents communicate at each decision step in steady state. The communication studied here,

is between the group of two close agents and the third agent. The traditional s̄ represents

the separation that is such that for s2 ≥ s̄, the three-agent group behaves as an agent

pair employing a two-agent optimal policy, and a single agent, using a single-agent optimal

policy. In particular, the table in Fig. 6-39 shows s̄ for p = 0.39, 0.40, . . . , 0.99. Again,

from Section 6.2.2, we describe that we obtain exact results only at the latter values of p.

Similarly as before, we notice that a quasi-decentralized strategy suffices for separations s2

larger than a fairly small lower bound (s̄). From Section 6.2.2, we have that the optimal

policy at large separations s2 changes at least once for p ∈ [0.38, 0.39]. We observe that s̄

is larger for p = 0.39 than at larger values of p. We attribute this phenomenon, without

further study, to the influence of the presence of some p ∈ [0.38, 0.39] where two policies are

optimal. Lastly, we notice that at p = 0.50, the separation s̄ = 4, different from its values

for smaller and greater values of p. Without going in further detail, we mention that this

occurrence is perfectly possible due to two or more policy changes at small separations for

p ∈ [0.49, 0.51].
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6.6 Chapter Summary

In this chapter, we analyze and compare the performance of several multi-agent problems.

In particular, we compute the optimal value function and corresponding optimal policy, and

use the latter to determine the system state probability distribution in steady state.

First, we compare the multi-agent performance for groups with one, two and three agents

and for the cone-shaped, the short and extended tunnel-shaped local observation zones. We

confirm and quantify the intuition that more agents perform better. Two conclusions stand

out: two agents with cone-shaped local information reduce the average locally incurred cost

per agent by 25% in a mine field type environment, i.e. in the limit for p approaching

one, when the environment contains scarce, though high costs. Second, in the short tunnel-

shaped local observation zone case, three agents provide a performance increase of maximum

10% as compared to two agents. The latter performance benefit decreases rapidly to zero

for p > 0.8, indicating that two agents suffice, particularly in a mine field type environment.

Then, we compare the multi-agent performance for various local observation zones, in

the single- and two-agent cases. Both offer similar results. An extra observed edge cost

straight ahead (extended vs. short tunnel-shaped local observation zones) provides a limited

performance increase of maximum 10%, decreasing to zero for p approaching both zero and

one. However, adding diagonal edges provides a much larger performance increase. Indeed,

the performance increase ranges from 0% to 100% as p goes from zero to one.

Then, we study particular properties of the agent separation in steady state for the

different problem instances. In general, we notice that the expected value of the agent

separation increases as p decreases, i.e. as the environment contains more edges of cost one.

This confirms and quantifies the intuition that as zeros become scarcer, the agents spread

out to gather information on a larger local environment area. Further, for the two-agent

problem with short tunnel-shaped local information, the agent separation is upper bounded

by three in steady state and under an optimal policy, for any relevant value of p. Specific

patterns arise in the optimal trajectories for the extreme cases where p approaches zero and

one.

Finally, the study of optimal policies reveals that for the agent separation s ≥ s̄, the

agents adopt single-agent optimal policies in the two-agent cases, rendering the communi-

cation of locally observed environment information unnecessary. Since for s < s̄, communi-
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cation of locally observed information is necessary to compute optimal decisions, we denote

the policy as quasi -decentralized.
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Chapter 7

Conclusions

We present a thesis summary with concluding remarks in Section 7.1, and make suggestions

for continuing research efforts in Section 7.2.

7.1 Summary

Multi-agent systems are in general believed to be more efficient, robust and versatile than

single agents. We distinguish two types of multi-agent problems: collaborative search for

globally and individually rewarding resources. In this thesis, we focus on the version with

individually rewarding resources where more than one agent can incur the same reward.

We find an example of this scheme in the multi-agent navigation problem through a threat

cluttered environment where it is potentially beneficial for more than one agent to choose

the same safe path segment. Map building of a previously unknown environment, is an

example of the search for globally rewarding resources: indeed, it is generally of no benefit

for a second agent to map the same environment area.

We identify four key issues in multi-agent system design in the context of the search

for individually rewarding resources, addressed to some extent in this thesis. First and

foremost, it is of central importance to determine the optimal agent group composition

(possibly heterogeneous, with agents of different capabilities) for the problem at hand.

This involves a trade-off between cost and performance increase per added agent. Then,

truly autonomous systems solely rely on on-board environment measurements. Here, there is

trade-off between the cost and benefits of observations, calling for a study that quantifies the

performance changes for different locally observed areas. Third, agents share observations,
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key to efficient cooperation. However, not all information is of equal importance, possibly

reducing communication requirements. Finally, the system robustness is highly enhanced

if a decentralized decision scheme is employed. It is of interest to study under which

circumstances a decentralized scheme allows for optimal multi-agent strategies (Chapter 1).

The vehicle of our analysis is a multi-agent target acquisition problem on a structured

unbounded, partially unknown graph. We solve several instances of this problem for various

group sizes, and local observation zones, in order to rigorously address the issues presented

in the previous paragraph. In particular, we consider three types of local observation zones,

focusing on the impact of different local areas around the agent positions on the agent

performance: short and extended tunnel-shaped and cone-shaped local observation zones.

With the former two, we study the effect of observations in the general navigation direction,

while the latter is employed to study the benefits of lateral information. Further, we restrict

the agent motion to be spatially synchronous, leaving the lateral agent separation as the

only controlled degree of freedom (Chapter 2).

We divide the rest of the summary in two parts. In the first part, we summarize the

development of the algorithm that computes optimal multi-agent policies, the main technical

thesis contribution. In the second part, we present analysis results of the graph traversal

problems posed.

Development of Policy Design and Analysis Tools

Considering an infinitely long and wide graph ensures problem spatial invariance in both

the lateral and longitudinal direction, resulting in a computationally simpler problem. An

additional advantage is that the unattractive effects of boundary conditions in the form

of a graph of finite size are avoided. Insight regarding the agent behavior at large agent

separations allows for the development of an efficient solution method for this problem with

an infinite state space. In particular, at infinite, or very large separations, each resulting

agent group behaves independently of each other. For example, the two agents of a two-agent

group adopt optimal single-agent strategies whenever their separation is large (Chapter 2).

We formulate the problem as a Dynamic Programming, but use the Linear Program-

ming equivalent for our analysis. In particular, we decompose the LP with infinitely many

constraints into an infinite set of LPs with finitely many constraints and prove that the

unique bounded function that simultaneously solves the coupled LPs in the latter set repre-
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sents the problem optimal value function. In this manner, we convert solving one LP with

infinitely many constraints into solving infinitely many LPs with finitely many constraints

each, formulated as finding the unique bounded fixed point of a properly defined function

F (Chapter 3).

For the two-agent problem with cone-shaped local observation zones, we present a pro-

cedure to compute the fixed point of the function F explicitly for s < s̄ and implicitly

in the form of a recursion for s ≥ s̄. Here, s̄ is defined as the smallest separation where

the optimal two-agent policy consists of a combination of two single-agent policies. For

s ≥ s̄, we use the insight regarding the agent behavior at large separations to express the

evolution of the optimal value function as an autonomous Linear Time-Invariant system.

For s < s̄, we formulate an LP, denoted LP in, with finitely many constraints and whose

solution determines the optimal value function for s < s̄. However, the two parts of the

state space need proper connection. Indeed, we establish that LP in provides the optimal

value function for s < s̄ if supplemented with a set of connection constraints that guarantees

that the initial state of the LTI system excites only the stable system modes. Finally, we

define the output of the LTI system such that its positivity indicates the correct choice of

s̄, and satisfaction of the fixed point requirement for s ≥ s̄. We employ this method as well

for the two-agent problem with extended tunnel-shaped local observation zones and for the

three-agent problem with short tunnel-shaped local observation zones. For the two-agent

version of the latter problem, a coupling argument establishes an upper bound to the agent

separation under an optimal policy and in steady state, rendering the previous procedure

unnecessary in this particular case (Chapter 4).

Finally, for the analysis of optimal policy properties, it is essential to compute the state

probability distribution in steady state and under an optimal policy. For the two-agent

problem with cone-shaped local observation zones, we present a procedure to this end, in

fact computing the eigenvector corresponding to the unit eigenvalue of an infinitely large

state transition matrix. In particular, we exploit the fact that for s ≥ s̄, the optimal

two-agent policy is stationary (with s) and formulate an autonomous LTI system with the

steady state probability at separation s as LTI state. The requirements that only stable

system modes are excited, and that the sum of all probabilities equals one, allow for the

formulation of a set of equations which provides as solution the steady state probabilities of

the states with s < s̄. The two-agent problem with short tunnel-shaped local observation
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zones is straightforward due to the separation upper bound in steady state. Further, we

present peculiarities of this method for the two- and three-agent problems with extended

and short tunnel-shaped local observation zones, respectively (Chapter 5).

Results of Analysis

First, we discuss the performance as a function of the group size for different problem

instances. We confirm and quantify the intuition that the larger the agent group, the better

the performance. Two observations stand out. First, for cone-shaped local information and

in a mine field type environment where costs are scarce though high, two agents reduce the

average locally incurred cost per agent by 25% as compared to a single agent. Second, in

the short tunnel-shaped observation zone case, three agents provide a performance increase

of less than 2%, decreasing fast to zero for p ≥ 0.8, where p denotes the probability of

encountering a zero edge cost; this indicates that a third agent is unnecessary, especially as

the environment becomes more mine field like.

Second, we address the performance change for the different local observation zones,

in the single- and two-agent cases. Both offer similar results. An extra observed edge

cost straight ahead (short vs. extended tunnel-shaped local observation zones) provides

a decrease of the average locally incurred cost per agent of maximum 10%, decreasing to

zero as p approaches both zero and one. However, adding diagonal edges to the local

observation zones provides a much larger benefit. Indeed, the performance increase ranges

from 0% to 100%, roughly linearly, as p goes from zero to one. Intuition is confirmed and,

more importantly, we quantify the performance increases exactly.

Then, we study particular properties of the agent separation in steady state for the

different problem instances. In general, we notice that the expected value of the agent

separation increases as p decreases, i.e. as the environment contains more edges of cost

one. This confirms and quantifies the intuition that as zeros become scarcer, the agents

spread out to gather information on a larger local environment area. Further, for the two-

agent problem with short tunnel-shaped local information, the agent separation is upper

bounded by three in steady state and under an optimal policy, for any relevant value of p.

For the problems considered, the agent separation is smaller than five with a probability

of approximately 90%, its exact value depending on the problem specifics, and with an

exponentially decreasing probability (with varying speeds) as the agent separation increases.
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Further, specific patterns arise in the optimal trajectories for the extreme cases where p

approaches zero and one.

Finally, the study of optimal policies reveals that for the agent separation s ≥ s̄, the

agents adopt single-agent optimal policies in the two-agent cases, rendering the communica-

tion of locally observed environment information unnecessary. For s ≥ s̄, it is sufficient for

each agent to have information on the direction of the location of the other agent. Again,

this is intuitively fairly straightforward, but we quantify exactly beyond which separation

communication is of no use. Since for s < s̄, communication of locally observed informa-

tion is necessary to compute optimal decisions, we denote the policy as quasi-decentralized

(Chapter 6).

7.2 Future Work

In this section, we suggest directions for future research. Some suggestions are rather

technical, others are extensions that involve relaxing some of the constraints introduced for

simplification.

7.2.1 Two Agents with Cone-Shaped Local Information: Limit as p Ap-

proaches One

In Section 6.2.1, we introduce the agent performance as a function of parameter p for

the single- and two-agent cases with cone-shaped local observation zones. In the limit as

ε = 1 − p approaches zero, the performance increase of the two-agent group as compared

to a single agent becomes numerically cumbersome to compute since the optimal value

function at some states is of the order of magnitude of the LP-solver accuracy. However, we

believe it is possible to compute the limit of rc
1,2 explicitly in analytic form to show that rc

1,2

converges to 0.25, or a 25% performance increase, as ε approaches zero, i.e. in a mine-field

type environment.

One way to establish the result is to follow the development in the Chapters 4-5, neglect-

ing higher order terms in ε in summations. In particular, one needs to compute the optimal

value function for ε << 1, and establish the optimal two-agentpolicy in the limit. Then,

it is necessary to determine the state probability distribution in steady state and under an

optimal policy. Two methods seem possible: one can argue that the probability decreases
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exponentially with s and hence establish that artificially upper bounding the agent separa-

tion for ε << 1 yields the proper result; or, one can determine the recursion for the state

probability as s is large and formulate the set of equations which yields the optimal state

probability distribution at small separations. This information suffices to compute rc
1,2 as

ε approaches zero.

7.2.2 Three Agents with Short Tunnel-Shaped Local Observation Zones:

Separation Upper Bound

For the three-agent problem with short tunnel-shaped local observation zones, we assume

that under an optimal policy, the two closest agent are within separation three at all times.

This assumption is partly based on the agent behavior when two agents are separated by a

large distance from the third agent. In this situation, the two agents adopt a two-agent opti-

mal policy, while the third agent navigates under a single-agent optimal policy. Two agents

under an optimal policy do not reach a separation larger than three, motivating in part our

assumption, confirmed by numerical experiments, though not established rigorously.

A procedure that proves the assumption correctness could involve the following. As

in Section 4.5, we compute the candidate optimal value function at the separations 0 ≤

s1 ≤ 3 and s2 = s1, s1 + 1, . . ., where s1 and s2 denote the two separations between three

agents. Here, we assume that s1 ≤ s2, without loss of generality, and that s1 ≤ 3 under

an optimal policy. Then, it is necessary to formulate a set of autonomous LTI systems,

which sequentially compute the candidate optimal value function for 3 < s1 ≤ s2, one LTI

system for each s2 = 3, 4, . . .. The output of each LTI system can be defined such that its

positivity indicates that the computed value function is indeed a fixed point of F and hence

is optimal. How to precisely formulate the set of LTI systems in order to provide a token

for optimality, remains open.

7.2.3 Extension to Larger Agent Groups

On a more general note, we provide some comments regarding the natural extension to

larger agent groups. Remember that we solve the two-agent problem by relying on the so-

lution of the single-agent problem for s ≥ s̄. Similarly, we believe it is possible to solve the

N -agent case, by solving a relatively small LP in-type LP with as solution the optimal N -

agent value function where the maximum separation between two neighboring agents equals
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s̄. To LP in are added a set of constraints so that for each way the agent cluster can split,

only the stable modes are excited in the corresponding LTI-system. These LTI-systems are

determined from the optimal agent behavior of cluster sizes N − 1 and smaller, providing

a hierarchical solution method whereby the N -agent solution relies on the solution of the

problems involving agent groups of smaller size. Although the idea seems attractive, its im-

plementation might prove cumbersome. We should note here, that even for three and four

agent problems, the size of LP in can become large, calling for approximate methods [7]. The

results presented in this thesis translate into much needed heuristics, improving the quality

of the approximations. An initial step towards this is taken in Section 6.2.4, where a large

agent group with short tunnel-shaped local information is split into a set of smaller groups,

each operating independently under an optimal policy. We estimate the performance loss.

We cannot apply this to all types of local observation zones and environment characteris-

tics. Therefore, we envision to solve LP in approximately, for example using the constraint

sampling method in [61], providing initial conditions to the respective LTI systems and a

set of approximate recursions.

7.2.4 Spatial Asynchrony and Time-Varying Environments

A second natural extension involves removing the spatial synchrony constraint, allowing

a longitudinal agent separation. For the case of time independent edge costs, the best

multi-agent strategy seems for each agent to traverse the graph sequentially. That is,

the first agent traverses the graph, observing edge costs on its way, until reaching the

target. Then, the second agent traverses the graph, observing extra edges but exploiting

the observations of the first agent, etc. However, in a time dependent graph, matters

change drastically. For example, we can model the variation in time of each edge cost

by a simple Markov chain that is such that if an edge cost is observed at time zero, the

reliability of that information decreases with time. We envision a trade-off between two

competing tendencies that leads to an equilibrium longitudinal agent separation: for a

larger longitudinal separation, the trailing agent can enjoy information on more edges, but

that information is less reliable. Simplified versions of the relaxation to spatial asynchrony,

could involve fixing the longitudinal agent separation at different values and analyzing the

group performance.
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7.2.5 Non-Homogeneous Local Observation Zones and Irregular Graphs

An interesting avenue for future exploration concerns considering non-homogeneous local

observation zone problems. Here, each agent observes different local areas of the environ-

ment. For example, one could consider a two-agentproblem with cone-shaped and extended

tunnel-shaped local observation zones, respectively. This problem extension leans closely

to the work presented in this thesis and does not require major changes to the approach.

Considering agents with differing local observation zones seems to model groups where

agents have different capabilities. It is of interest to study whether the differing capabilities

naturally lead to an optimal policy where each agent takes on a particular role in the group.

Finally, in order to model real environments more accurately, it is necessary to consider

irregular graphs rather then the structured ones considered here, which provide advantages

regarding the computational complexity. Rather than graph invariance in one or more

directions, we could envision graphs where certain statistical properties are invariant in

some directions. For example, the probability distribution of the number of edges leaving a

particular vertex is invariant. This extension, in contrary to the previous one, seems rather

more involved.
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Appendix A

Proofs

Lemma 19 The inequality in Eq. (4.45), namely

− P ′
6(p, α) > 0, (A.1)

holds for 0 < p, α < 1. �

Proof: Let C0(p, α) = −P ′
6(p, α). Then, we have that

C0(p, α) = 1 +
3∑

i=1

C0,i(p)αi,

with −P ′
6(p, α) = C0(p, α), and with

C0,1(p) = −1 + 5p− 14p2 + 28p3 − 47p4 + 62p5 − 54p6 + 24p7 − 4p8

C0,2(p) = p(−1 + 10p− 53p2 + 186p3 − 483p4 + 993p5 − 1676p6 + 2316p7 − . . .

2522p8 + 2042p9 − 1152p10 + 420p11 − 88p12 + 8p13)

C0,3(p) = −p3(−1 + 5p− 14p2 + 18p3 − 10p4 + 2p5)3.

For Eq. (A.1) to hold, it is sufficient to prove that

DαC0(p, α) < 0, for 0 < p, α < 1, (A.2)

where Dα is an operator which represents the first derivative of its argument to parameter
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α, and that

C0(p, 1) > 0 for 0 < p < 1. (A.3)

For Eq. (A.3), we have that

C0(p, 1) = −4pC0,f (p),

and negativity of C0,f (p) for 0 < p < 1 is assured by noticing that C0,f (1) = 0 and by

proving that DpC0,f (p) > 0 for 0 < p < 1. We have that,

DpC0,f (p) = 1 + 12p− 93p2 + 304p3 − 425p4 − 834p5 + 6643p6 − 20808p7 + . . .

42750p8 − 62730p9 + 67122p10 − 52404p11 + 29497p12 − . . .

11648p13 + 3060p14 − 480p15 + 34p16.

To show negativity of DpC0,f (p) for 0 < p < 1, we find a Sum of Squares (SOS) auxiliary

polynomial Cp,a
0,f (p) such that

Cp,t
0,f (p) = −DpC0,f (p) + p(p− 1)Cp,a

0,f (p) > 0.

In particular, we require Cp,t
0,f (p) to be SOS with a positive definite coefficient matrix to

prove the strict inequality. Using the SOSTOOLS Sum of Squares Optimization Toolbox

for Matlab [63], we have that for

Cp,a
0,f (p) =

 1

p

T  19 −33

−33 60

 1

p

 ,

where the coefficient matrix is positive definite, the polynomial Cp,t
0,f (p), is SOS, with a

positive definite coefficient matrix. In particular,

Cp,t
0,f (p) = (Zp,t

0,f )T
[

Cp,t,1
0,f Cp,t,2

0,f

]
Zp,t

0,f ,
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where

Zp,t
0,f =

[
1 p p2 p3 p4 p5 p6 p7 p8

]T
,

with

Cp,t,1
0,f =



1 − 7
2 − 2575

192
499
8 − 1649

16
2023559
20160 − 13821

224
1341
64

− 7
2

1807
96

213
8 − 463

2
29297

64 − 211847
448

18315
64 − 54323

576

− 2575
192

213
8

2433
8 − 62409

64
569829

448 − 34739
32

390691
576 − 15791

64

499
8 − 463

2 − 62409
64

289423
56 − 308017

32
1428721

144 − 192139
32

124399
64

− 1649
16

29297
64

569829
448 − 308017

32
438368839

20160 − 402027
16

1009357
64 − 322703

64

2023559
20160 − 211847

448 − 34739
32

1428721
144 − 402027

16
505927

16 − 1337931
64

1097823
160

− 13821
224

18315
64

390691
576 − 192139

32
1009357

64 − 1337931
64

1159759
80 − 316585

64

1341
64 − 54323

576 − 15791
64

124399
64 − 322703

64
1097823

160 − 316585
64

21067
12

− 26
9

817
64

1147
32 − 8147

32
51089

80 − 56151
64

15653
24 −240



,

Cp,t,2
0,f =

[
− 26

9
817
64

1147
32 − 8147

32
51089

80 − 56151
64

15653
24 −240 34

]T
,

where the coefficient matrix of Cp,t
0,f (p) is positive definite, as required. Therefore, Cp,t

0,f (p) >

0 and the inequality in Eq. (A.3) holds.

We have left to show that the inequality in Eq. (A.2) holds. For this, it is sufficient to

show that

D2
αC0(p, α) < 0, for 0 < p, α < 1, (A.4)

and that

DαC0(p, 0) < 0, for 0 < p < 1. (A.5)

For the inequality in Eq. (A.5), we find an auxiliary SOS polynomial Cα,a
0 (p) such that

Cα,t
0 (p) = −DαC0(p, 0) + p(p− 1) Cα,a

0 (p) > 0.

As earlier, we require Cα,t
0 (p) to be SOS, with a positive definite coefficient matrix. In
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particular, we have that the previous requirements are satisfied for

Cα,a
0 (p) =


1

p

p2

p3



T 
2 −3 −1

3 0

−3 26
3 −1 −13

3

−1
3 −1 14

3 −1

0 −13
3 −1 10




1

p

p2

p3

 ,

where the coefficient matrix is positive definite. Then, Cα,t
0 (p) is a SOS polynomial. Specif-

ically,

Cα,t
0 (p) =



1

p

p2

p3

p4



T 

1 −7
2

23
6 −3

2
1
2

−7
2

43
3 −39

2
19
2 −3

2

23
6 −39

2 37 −57
2 7

−3
2

19
2 −57

2 38 −18
1
2 −3

2 7 −18 14





1

p

p2

p3

p4


,

with indeed a positive definite coefficient matrix. Therefore, Cα,t
0 (p) > 0 and hence the

equality in Eq. (A.5) holds.

We now focus on establishing the inequality in Eq. (A.4). We have that

D2
αC0(p, α) = 2p Cαα

0,f1
(p) Cαα

0,f2
(p, α),

with

Cαα
0,f1

(p) = 1− 5p + 14p2 − 18p3 + 10p4 − 2p5

Cαα
0,f2

(p, α) = −1 + 5p + p2(−14 + 3α) + p3(28− 30α) + p4(−47 + 159α) + . . .

p5(62− 528α) + 54p6(−1 + 22α)− 24p7(−1 + 76α) + . . .

4p8(−1 + 468α)− 1248p9α + 516p10α− 120p11α + 12p12α.

It suffices to show that

Cαα
0,f1

(p) > 0 for 0 < p < 1, (A.6)

180



and that

Cαα
0,f2

(p, 0) < 0, for 0 < p < 1, (A.7)

Cαα
0,f2

(p, 1) < 0, for 0 < p < 1, (A.8)

since Cαα
0,f2

(p, α) is linear in α. We follow a similar procedure as before to establish the

last three inequalities. Specifically, for the inequality in Eq. (A.6), we find a SOS auxiliary

polynomial Cαα,a
0,f1

(p) such that

Cαα,t
0,f1

(p) = Cαα
0,f1

(p) + p(p− 1) Cαα,a
0,f1

(p) > 0.

For

Cαα,a
0,f1

(p) =

 1

p

T  4 −4

−4 5

 1

p

 ,

with a positive definite coefficient matrix, we have that

Cαα,t
0,f1

(p) =


1

p

p2

p3



T 
1 −5

2
5
2 −1

−5
2 9 −10 7

2

5
2 −10 15 −15

2

−1 7
2 −15

2 5




1

p

p2

p3

 ,

with a positive definite coefficient matrix, and thus Cαα,t
0,f1

(p) > 0, and hence the equality in

Eq. (A.6) holds.

Next, for the inequality in Eq. (A.7), we find a SOS auxiliary polynomial Cαα,a
0,f2,0(p) such

that

Cαα,t
0,f2,0(p) = −Cαα

0,f2
(p, 0) + p(p− 1) Cαα,a

0,f2,0(p) > 0.

This inequality is satisfied requiring Cαα,t
0,f2,0(p) to be SOS with a positive definite coefficient
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matrix. Specifically, we have that

Cαα,a
0,f2,0(p) =


1

p

p2


T 

2 −3 −1

−3 9 −5

−1 −5 11




1

p

p2

 ,

with a positive definite coefficient matrix, and

Cαα,t
0,f2,0(p) =



1

p

p2

p3

p4



T 

1 −7
2 3 −3

4
1
5

−7
2 16 −79

4
46
5 −7

4

3 −79
4

226
5 −159

4
25
3

−3
4

46
5 −159

4
145
3 −12

1
5 −7

4
25
3 −12 4





1

p

p2

p3

p4


,

with a positive definite coefficient matrix, guaranteeing that Cαα,t
0,f2,0(p) > 0, and hence the

inequality in Eq. (A.7).

Finally, for the inequality in Eq. (A.8), we find a SOS auxiliary polynomial Cαα,a
0,f2,1(p)

such that

Cαα,t
0,f2,1(p) = −Cαα

0,f2
(p, 1) + p(p− 1) Cαα,a

0,f2,1(p) > 0.

This inequality is satisfied requiring Cαα,t
0,f2,1(p) to be SOS with a positive definite coefficient

matrix. Specifically, we have that

Cαα,a
0,f2,1(p) =



1

p

p2

p3

p4

p5



T 

8 −23 −5 29 21 −85
3

−23 87 −39 −71 −109
3 86

−5 −39 176 −520
3 63 −54

29 −71 −520
3 596 −547 213

21 −109
3 63 −547 1209 −781

−85
3 86 −54 213 −781 637





1

p

p2

p3

p4

p5


,
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with a positive definite coefficient matrix, and

Cαα,t
0,f2,1(p) =



1

p

p2

p3

p4

p5

p6



T 

1 −13
2 7 53

4 −227
10 4 111

28

−13
2 51 −295

4 −371
5

769
4 −2311

28 −13
2

7 −295
4

894
5 −45

4 −10389
28 374 −104

53
4 −371

5 −45
4

4441
14 −305

2 −1215
4 212

−227
10

769
4 −10389

28 −305
2

2087
2 −2013

2
1295

4

4 −2311
28 374 −1215

4 −2013
2

4067
2 −2079

2

111
28 −13

2 −104 212 1295
4 −2079

2 625





1

p

p2

p3

p4

p5

p6


,

with a positive definite coefficient matrix, guaranteeing that Cαα,t
0,f2,1(p) > 0 and hence the

equality in Eq. (A.8). This concludes the proof.

Lemma 20 The inequality in Eq. (4.46), namely

P ′
4(p, α) > 0, (A.9)

holds for 0 < p, α < 1. �

Proof: Let C1(p, α) = P ′
4(p, α). Then,

C1(p, α) = 3 +
3∑

i=1

C1,i(p)αi,

with

C1,1(p) = 5− 37p + 142p2 − 312p3 + 403p4 − 308p5 + 124p6 − 24p7 + 4p8,

C1,2(p) = p(5− 46p + 213p2 − 550p3 + 557p4 + 1473p5 − 7722p6 + 17446p7 − . . .

24744p8 + 23416p9 − 14680p10 + 5816p11 − 1312p12 + 128p13),

C1,3(p) = 3(1− p)3p3(1− 12p + 54p2 − 64p3 − 528p4 + 3328p5 − 10264p6 + . . .

20400p7 − 27952p8 + 26832p9 − 17936p10 + 8160p11 − 2408p12 + . . .

416p13 − 32p14).

Proving that the inequality in Eq. (A.9) holds, for 0 < p, α < 1 is equivalent to proving
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that

DpC1(p, α) < 0 for 0 < p, α < 1, (A.10)

and that C1(1, α) > 0. We have that C1(1, α) = 3 − 3α, and therefore C1(1, α) > 0 for

0 < α < 1. We have left to establish the inequality in Eq. (A.10). Specifically, taking the

first derivative to p of C1(p, α) yields DpC1(p, α) = αCp
1,f (p, α), where

Cp
1,f =

2∑
i=0

Cp
1,f,iα

i,

with

Cp
1,f,0 = −37 + 284p− 936p2 + 1612p3 − 1540p4 + 744p5 − 168p6 + 32p7,

Cp
1,f,1 = 5− 92p + 639p2 − 2200p3 + 2785p4 + 8838p5 − 54054p6 + 139568p7 − . . .

222696p8 + 234160p9 − 161480p10 + 69792p11 − 17056p12 + 1792p13,

Cp
1,f,2 = 9p2 − 180p3 + 1395p4 − 4734p5 − 3402p6 + 111984p7 − 587736p8 + . . .

1851120p9 − 4067976p10 + 6557472p11 − 7904832p12 + 7157472p13 − . . .

4838760p14 + 2402688p15 − 849864p16 + 202608p17 − 29184p18 + 1920p19.

It suffices to show that Cp
1,f (p, α) < 0 for 0 < p, α < 1. To this end, we find two SOS

auxiliary polynomials, Cp,a,1
1,f (p, α) and Cp,a,2

1,f (p) such that

Cp,t
1,f (p, α) = −Cp

1,f + p(p− 1) Cp,a,1
1,f (p, α) + α(α− 1) Cp,a,2

1,f (p) > 0.

For the condition Cp,t
1,f (p, α) > 0 to hold, we require Cp,t

1,f (p, α) to be SOS with a positive

definite coefficient matrix. The auxiliary polynomial Cp,a,1
1,f (p, α) is as follows:

Cp,a,1
1,f (p, α) = (Zp,a,1

1,f )T
[

Cp,a,1,1
1,f Cp,a,1,2

1,f

]
Zp,a,1

1,f ,

with

Zp,a,1
1,f =

[
1 p p2 p3 αp αp2 αp3 αp4 αp5 αp6 αp7 αp8 αp9

]T
,
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Cp,a,1,1
1,f =



52 0 −541 60296
105 −377 1315 −148913

140

0 36 −87
4 −160

3 10 −479
3

729
4

−541 −87
4

17855
3 −12739

2
10222

3 −47755
4 9631

60296
105 −160

3 −12739
2 7051 −13655

4 12194 −1043411
105

−377 10 10222
3 −13655

4 6778 −25549 22254

1315 −479
3 −47755

4 12194 −25549 100098 −92632

−148913
140

729
4 9631 −1043411

105 22254 −92632 496676
5

−43
4 34 −129

4
57
4 2235 −33994

5 −6040

5 71
4 −279

4 122 −3854
5 6353 −11924

23
4

69
4 −90 81 −313 2675 −14737

4

153
4 −1 −16 −183 −3443 50919

4 −9185

−31 −22 232 −200 2731
4 −4546 41607

4

24 −49 68 −163 −2286 37875
4 −68458

7



,

Cp,a,1,2
1,f =



−43
4 5 23

4
153
4 −31 24

34 71
4

69
4 −1 −22 −49

−129
4 −279

4 −90 −16 232 68
57
4 122 81 −183 −200 −163

2235 −3854
5 −313 −3443 2731

4 −2286

−33994
5 6353 2675 50919

4 −4546 37875
4

−6040 −11924 −14737
4 −9185 41607

4 −68458
7

25384 −38913
4 −4603 9659

4 −36650
7 1470

−38913
4 31264 −6649

4 −109191
7 1372 249

5

−4603 −6649
4

144216
7 −2842 −59096

5 1053
9659

4 −109191
7 −2842 117694

5 −1053 −16711
3

−36650
7 1372 −59096

5 −1053 33422
3 0

1470 249
5 1053 −16711

3 0 6688



,

where the coefficient matrix of Cp,a,1
1,f (p, α) is positive definite. Further, we obtain for the

second auxiliary polynomial Cp,a,2
1,f (p):

Cp,a,2
1,f (p) =

 1

p

T  24 −37

−37 74

 1

p

 ,
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with a positive definite coefficient matrix. This yields

Cp,t
1,f (p, α) = (Zp,t

1,f )T
[

Cp,t,1
1,f Cp,t,2

1,f

]
Zp,t

1,f ,

with

Zp,t
1,f =

[
1 p p2 p3 p4 α αp αp2 αp3 αp4 αp5 αp6 αp7 αp8 αp9 αp10

]T
,

Cp,t,1
1,f =



37 −168 30 96809
210 − 1836

5 − 29
2 11 1777

6

−168 928 −744 − 7066
5 1428 72 − 1565

6 −772

30 −744 14749
5 −4170 5924

3 − 89
6 935 − 415243

105

96809
210 − 7066

5 −4170 44408
3 −9911 −199 − 11727

10
57374

5

− 1836
5 1428 5924

3 −9911 7051 1583
10

2469
5 −7146

− 29
2 72 − 89

6 −199 1583
10 24 −37 − 1808

3

11 − 1565
6 935 − 11727

10
2469

5 −37 3811
3 −5140

1777
6 −772 − 415243

105
57374

5 −7146 − 1808
3 −5140 10623689

210

−566 25893
10

21114
5 −18908 12830 1841 1023749

210 −104807
1283
10 − 15691

5 7335 −5287 1068 −1929 7056 11375519
210

− 536
5 8139 −30930 43051 − 103479

5 2266 − 161874
7 15517

118019
210 −14159 46407 − 290614

5
130201

5 − 27012
7 31869 8143

−428 10674 − 169024
5

202991
5 −17527 3419 −24984 −27887

202 − 21759
5

62521
5 −13434 5237 −1597 9844 22206

− 524
5

7496
5 −3539 2638 −518 451 −2526 − 37859

5

156
5 −329 785 −347 −163 24 4446

5 −4669



,

186



Cp,t,2
1,f =



−566 1283
10 − 536

5
118019

210 −428 202 − 524
5

156
5

25893
10 − 15691

5 8139 −14159 10674 − 21759
5

7496
5 −329

21114
5 7335 −30930 46407 − 169024

5
62521

5 −3539 785

−18908 −5287 43051 − 290614
5

202991
5 −13434 2638 −347

12830 1068 − 103479
5

130201
5 −17527 5237 −518 −163

1841 −1929 2266 − 27012
7 3419 −1597 451 24

1023749
210 7056 − 161874

7 31869 −24984 9844 −2526 4446
5

−104807 11375519
210 15517 8143 −27887 22206 − 37859

5 −4669
1921018

7 −239292 159148 −296099 307332 − 787024
5 45167 5211

−239292 390512 −611869 922130 − 3893309
5 352493 −95278 − 2826

7

159148 −611869 1569644 − 489509747
210 1759037 −739400 1388375

7 3677

−296099 922130 − 489509747
210 3549554 −2708333 7894812

7 −299053 −4405

307332 − 3893309
5 1759037 −2708333 15026216

7 −905968 48555149
210 710

− 787024
5 352493 −739400 7894812

7 −905968 396244 −102014 −3330

45167 −95278 1388375
7 −299053 48555149

210 −102014 35844 − 903839
210

5211 − 2826
7 3677 −4405 710 −3330 − 903839

210 6688



,

The coefficient matrix of Cp,t
1,f (p, α) is positive definite and therefore Cp,t

1,f (p, α) > 0. Hence,

the inequality in Eq. (A.10) holds and the proof is complete.

Lemma 21 The inequality in Eq. (4.47), namely

P ′
4(p, α) > −P ′

6(p, α), (A.11)

holds for 0 < p, α < 1. �

Proof: Let C2(p, α) = P ′
4(p, α) + P ′

6(p, α). Then,

C2(p, α) = 2 +
3∑

i=1

C2,i(p)αi,

with

C2,1(p) = 2(3− 21p + 78p2 − 170p3 + 225p4 − 185p5 + 89p6 − 24p7 + 4p8),

C2,2(p) = 2(1− p)2p(3− 22p + 86p2 − 174p3 + 86p4 + 586p5 − 1937p6 + . . .
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3105p7 − 2964p8 + 1654p9 − 492p10 + 60p11),

C2,3(p) = 2(1− p)3p3(1− 12p + 42p2 + 68p3 − 1281p4 + 6048p5 − 17060p6 + . . .

32472p7 − 43386p8 + 41008p9 − 27156p10 + 12288p11 − 3616p12 + . . .

624p13 − 48p14).

Proving that the inequality in Eq. (A.11) holds, is equivalent to showing that

DpC2(p, α) < 0 for 0 < p, α < 1, (A.12)

and that C2(1, α) > 0 for 0 < α < 1. We have that C2(1, α) = 2(1 − α), and therefore

C2(1, α) > 0 for 0 < α < 1. We have left to establish the inequality in Eq. (A.12). In

particular, we have that DpC2(p, α) = 2αCp
2,f (p, α) where

Cp
2,f (p, α) =

2∑
i=0

Cp
2,f,i(p)αi,

with

Cp
2,f,1(p) = −21 + 156p− 510p2 + 900p3 − 925p4 + 534p5 − 168p6 + 32p7,

Cp
2,f,2(p) = (1− p)(3− 53p + 346p2 − 1126p3 + 1474p4 + 2914p5 − 18247p6 + . . .

42273p7 − 57726p8 + 49144p9 − 25260p10 + 7116p11 − 840p12),

Cp
2,f,3(p) = 3(1− p)2p2(1− 18p + 98p2 + 24p3 − 3193p4 + 20398p5 − 73356p6 + . . .

176480p7 − 299794p8 + 366500p9 − 322716p10 + 202176p11 − 87712p12 + . . .

25024p13 − 4224p14 + 320p15).

To establish the inequality in Eq. (A.12), we find two SOS auxiliary polynomials, Cp,a,1
2,f (p, α)

and Cp,a,2
2,f (p) such that

Cp,t
2,f (p, α) = −DpC2(p, α) + p7(p− 1)5 Cp,a,1

2,f (p, α) + α(α− 1) Cp,a,2
2,f (p) > 0.

For the condition Cp,t
2,f > 0 to hold, we require Cp,t

2,f to be SOS with a positive definite
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coefficient matrix. The auxiliary polynomial Cp,a,1
2,f (p, α) is as follows:

Cp,a,1
2,f (p, α) = (Zp,a,1

2,f )TCp,a,1
2,f Zp,a,1

2,f ,

with

Zp,a,1
2,f =

[
1 p p2 p3 α αp αp2 αp3 αp4

]T
,

Cp,a,1
2,f =



6039 0 −11774 −12599 −8666 4990 4132 1959
8 19830

0 23548 −10716 − 113434
3 −4545 10398 − 83617

8 −2037 −14751

−11774 −10716 226868
3 0 1 − 17409

8 20724 −23028 −39715

−12599 − 113434
3 0 154306 324927

8 −43489 −4383 18452 −3851

−8666 −4545 1 324927
8 37161 −31512 −42733 128689

4 −7738

4990 10398 − 17409
8 −43489 −31512 38541 140265

4 −37276 −22254

4132 − 83617
8 20724 −4383 −42733 140265

4 82073 −53152 −16586
1959

8 −2037 −23028 18452 128689
4 −37276 −53152 55475 36991

19830 −14751 −39715 −3851 −7738 −22254 −16586 36991 135459


where the coefficient matrix Cp,a,1

2,f is positive definite. Further, we obtain for the second

auxiliary polynomial Cp,a,2
2,f (p):

Cp,a,2
2,f (p) =

 1

p

T  11 −23
2

−23
2 15

 1

p

 ,

with a positive definite coefficient matrix. This yields

Cp,t
2,f (p, α) = (Zp,t

2,f )T
[

Cp,t,1
2,f Cp,t,2

2,f Cp,t,3
2,f

]
Zp,t

2,f ,

with

Zp,t
2,f =

[
1 p p2 p3 p4 p5 p6 p7 p8 p9 α αp αp2 αp3 . . .

αp4 αp5 αp6 αp7 αp8 αp9 αp10
]T

,
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Cp,t,1
2,f =



21 −78 − 1331
12

5181
8 − 3771

8 − 4409
12 101

−78 4391
6 − 8781

8 − 22979
8

183533
24 −3206 − 10999

8

− 1331
12 − 8781

8
15225

2 − 181123
24 − 36437

2
126397

4 − 147413
18

5181
8 − 22979

8 − 181123
24 42815 − 135059

4 − 3205547
72

270242
5

− 3771
8

183533
24 − 36437

2 − 135059
4

2595211
18 − 3994579

40 − 194333
4

− 4409
12 −3206 126397

4 − 3205547
72 − 3994579

40
1021083

4 − 4067781
32

101 − 10999
8 − 147413

18
270242

5 − 194333
4 − 4067781

32
1131585

4

4039
8 − 303514493

73920
44787

5 3289 − 261533
32 − 124037

8 − 1791287
8

− 3143
18

67359
10 − 52905

2 − 314641
32

899993
8 − 62181

2
1868997

20

− 2889
40 − 19029

8
430435

32 − 18185
8 − 442413

8
348711

10 − 84921
4

−7 133
8 60 − 1427

8
1007
20

6295
48 − 29

4

183
8 − 66361679

221760
4177

8
40708483

44352 − 125459
48 1214 8903

64

129
4

110436479
221760 − 127191

40
132775

48
58749

8 − 697345
64

246329
72

− 423
4

36839
40

67435
48 − 81045

8
367631

64
401377

36 − 932689
80

− 47
5 − 116111

48
41539

4 − 167321
64 − 1121423

36
2446181

80 − 217861
80

505
48 1651 − 836625

64
1359683

72
1514811

80 − 3751481
80

258569
8

27719999
221760 − 59825

64
47027

18 − 353929
80

361919
80

44655
8 − 912441

64

5135
64

5023
9 − 178889

80 − 63741
80

28403
4 − 441313

64 − 163131
8

− 3425
36 − 10149

80
270809

80 − 30575
8 − 529673

64 7815 141901
8

− 15249
80

48499
80

10497
4 − 497937

64 − 50023
8

228863
8 − 71639

8

10969
80 − 3773

8 − 160857
64

57519
8 4636 − 81751

4
17343

4



,
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Cp,t,2
2,f =



4039
8 − 3143

18 − 2889
40 −7 183

8
129
4 − 423

4

− 303514493
73920

67359
10 − 19029

8
133
8 − 66361679

221760
110436479

221760
36839

40

44787
5 − 52905

2
430435

32 60 4177
8 − 127191

40
67435

48

3289 − 314641
32 − 18185

8 − 1427
8

40708483
44352

132775
48 − 81045

8

− 261533
32

899993
8 − 442413

8
1007
20 − 125459

48
58749

8
367631

64

− 124037
8 − 62181

2
348711

10
6295
48 1214 − 697345

64
401377

36

− 1791287
8

1868997
20 − 84921

4 − 29
4

8903
64

246329
72 − 932689

80

7480381
10 − 3094459

4
58632771119

221760 − 2569
64

33709
36 − 714739

80
1305839

80

− 3094459
4

6085591
6 −385765 − 827

9 − 241577027
221760

1256299
80 − 103151

4

58632771119
221760 −385765 154306 5321

80
19909

80 − 54069
8

778031
64

− 2569
64 − 827

9
5321
80 11 − 23

2 − 1243
8

713
2

33709
36 − 241577027

221760
19909

80 − 23
2

1291
4 − 653

2 −2674

− 714739
80

1256299
80 − 54069

8 − 1243
8 − 653

2 5324 − 12027
2

1305839
80 − 103151

4
778031

64
713
2 −2674 − 12027

2
1486157

28

173027
8 − 2489993

64
61055

4 − 381
2

12391
2 − 952341

56 − 380877
4

− 3849881
64

158725
2 − 124653

4 103 − 62653
14

270431
8

5199931
72

− 104951
8

155641
4 − 151465

8 − 2399
7

18957
8 − 106408

9 − 1156543
20

84076 − 21915237959
221760

8275972319
221760

1013
4 − 241091

72 − 14762
5

3656269
44

− 224021
8

116175
8 − 73993

24 − 9989
72

100729
40 − 547325

88 − 2790019
40

− 195673
8

407867
24 − 10427

8
11186683

44352 − 61081
88

238631
40

1019209
36

140779
12 − 5637

8 −3851 − 3019
22

27337463
221760 − 20885

36 −5592



,
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Cp,t,2
2,f =



− 47
5

505
48

27719999
221760

5135
64 − 3425

36 − 15249
80

10969
80

− 116111
48 1651 − 59825

64
5023

9 − 10149
80

48499
80 − 3773

8

41539
4 − 836625

64
47027

18 − 178889
80

270809
80

10497
4 − 160857

64

− 167321
64

1359683
72 − 353929

80 − 63741
80 − 30575

8 − 497937
64

57519
8

− 1121423
36

1514811
80

361919
80

28403
4 − 529673

64 − 50023
8 4636

2446181
80 − 3751481

80
44655

8 − 441313
64 7815 228863

8 − 81751
4

− 217861
80

258569
8 − 912441

64 − 163131
8

141901
8 − 71639

8
17343

4

173027
8 − 3849881

64 − 104951
8 84076 − 224021

8 − 195673
8

140779
12

− 2489993
64

158725
2

155641
4 − 21915237959

221760
116175

8
407867

24 − 5637
8

61055
4 − 124653

4 − 151465
8

8275972319
221760 − 73993

24 − 10427
8 −3851

− 381
2 103 − 2399

7
1013

4 − 9989
72

11186683
44352 − 3019

22

12391
2 − 62653

14
18957

8 − 241091
72

100729
40 − 61081

88
27337463
221760

− 952341
56

270431
8 − 106408

9 − 14762
5 − 547325

88
238631

40 − 20885
36

− 380877
4

5199931
72 − 1156543

20
3656269

44 − 2790019
40

1019209
36 −5592

17533517
36 − 3886392

5
46045155

88 − 9946569
40

24636311
72 − 641471

2
802247

8

− 3886392
5

70950221
44 − 24695077

20
7090805

18 − 4502743
8

3000101
4 − 1131483

4

46045155
88 − 24695077

20
42773629

36 − 4177701
8

1800989
4 −569326 928055

4

− 9946569
40

7090805
18 − 4177701

8
2360105

4 − 1651851
4

1096855
8 − 113613

8

24636311
72 − 4502743

8
1800989

4 − 1651851
4

2377283
4 − 3800279

8
1099995

8

− 641471
2

3000101
4 −569326 1096855

8 − 3800279
8

2986305
4 − 604273

2

802247
8 − 1131483

4
928055

4 − 113613
8

1099995
8 − 604273

2
30039387839

221760



,

where the coefficient matrix of Cp,t
2,f (p, α) is positive definite. Therefore, Cp,t

2,f (p, α) > 0 and

the inequality in Eq. (A.12) holds, which completes the proof.

Lemma 22 The inequality in Eq. (4.48), namely

− P ′
2(p, α) > P ′

0(p, α), (A.13)

holds for 0 < p, α < 1. �

Proof: Let C3(p, α) = −P ′
2(p, α)− P ′

0(p, α). Then,

C3(p, α) = 2 +
3∑

i=1

C3,i(p)αi,
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with

C3,1(p) = 6− 42p + 156p2 − 340p3 + 450p4 − 370p5 + 178p6 − 48p7 + 8p8,

C3,2(p) = 6p− 88p2 + 554p3 − 2176p4 + 5872p5 − 11808p6 + 18882p7 − 24742p8 + . . .

26162p9 − 21186p10 + 12264p11 − 4684p12 + 1048p13 − 104p14,

C3,3(p) = 2p3 − 30p4 + 162p5 − 190p6 − 2310p7 + 15498p8 − 51510p9 + 111018p10 − . . .

167484p11 + 182036p12 − 143508p13 + 81324p14 − 32280p15 + 8520p16 − . . .

1344p17 + 96p18.

Proving that the inequality in Eq. (A.13) holds, is equivalent to showing that

DpC3(p, α) < 0, for 0 < p, α < 1, (A.14)

and that C3(1, α) > 0, for 0 < α < 1. We have that C3(1, α) = 2 − 2α, and therefore

C3(1, α) > 0 for 0 < α < 1. We have left to establish the inequality in Eq. (A.14). In

particular, we have that DpC3(p, α) = 2αCp
3,f (p, α), where

Cp
3,f (p, α) =

3∑
i=1

Cp
3,f,i(p)αi,

with

C3,f,1 = −21 + 156p− 510p2 + 900p3 − 925p4 + 534p5 − 168p6 + 32p7,

C3,f,2 = −3 + 88p− 831p2 + 4352p3 − 14680p4 + 35424p5 − 66087p6 + 98968p7 − . . .

117729p8 + 105930p9 − 67452p10 + 28104p11 − 6812p12 + 728p13,

C3,f,3 = 3(1− p)2p2(1− 18p + 98p2 + 24p3 − 2745p4 + 15150p5 − 44220p6 + . . .

81440p7 − 99954p8 + 82724p9 − 45532p10 + 15968p11 − 3232p12 + 288p13).

To establish the inequality in Eq. (A.14), we find two SOS auxiliary polynomials Cp,a,1
3,f (p, α)

and Cp,a,2
3,f (p) such that

Cp,t
3,f (p, α) = −DpC3(p, α) + p7(p− 1)5 Cp,a,1

3,f (p, α) + α(α− 1) Cp,a,2
3,f (p) > 0.
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For the condition Cp,t
3,f (p, α) > 0 to hold, we require Cp,t

3,f (p, α) to be SOS with a positive

definite coefficient matrix. The auxiliary polynomial Cp,a,1
3,f (p, α) is as follows:

Cp,a,1
3,f (p, α) = (Zp,a,1

3,f )T Cp,a,1
3,f Zp,a,1

3,f ,

with

Zp,a,1
3,f =

[
1 p p2 p3 α αp αp2 αp3

]T
,

Cp,a,1
3,f =



15616 0 − 74272
3 −30221 −101206 247509 −43956 −128710

0 148544
3 −37279 −72835 −18254 −7080 53072 5557

− 74272
3 −37279 145670 0 130034

3 −55970 7051 −48275

−30221 −72835 0 323695 379903 −870959 43849 524791

−101206 −18254 130034
3 379903 1097557 −2801676 1471891

3 1652080

247509 −7080 −55970 −870959 −2801676 22100092
3 −1618848 − 12483214

3

−43956 53072 7051 43849 1471891
3 −1618848 3334055

3 244593

−128710 5557 −48275 524791 1652080 − 12483214
3 244593 3104765



,

where the coefficient matrix Cp,a,1
3,f is positive definite. Further, we obtain for the second

auxiliary polynomial Cp,a,2
3,f (p):

Cp,a,2
3,f (p) =

 1

p

T  19 −23

−23 30

 1

p

 ,

with a positive definite coefficient matrix. This yields

Cp,t
3,f (p, α) = (Zp,t

3,f )T
[

Cp,t,1
3,f Cp,t,2

3,f Cp,t,3
3,f

]
Zp,t

3,f ,

with

Zp,t
3,f =

[
1 p p2 p3 p4 p5 p6 p7 p8 p9 α αp αp2 αp3 . . .

αp4 αp5 αp6 αp7 αp8 αp9
]T

,
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Cp,t,1
3,f =



21 −78 − 2371
12

65675
64 − 31257

64 − 72417
32

333359
112

−78 5431
6 − 94475

64 − 181259
32

1046743
64 − 855103

224 − 5845141
256

− 2371
12 − 94475

64
423375

32 − 918997
64 − 23341893

448
28888991

256 − 1881827
64

65675
64 − 181259

32 − 918997
64

23756295
224 − 24963365

256 − 7051705
32

6750027
16

− 31257
64

1046743
64 − 23341893

448 − 24963365
256

8608809
16 − 26958299

64 − 313947431
576

− 72417
32 − 855103

224
28888991

256 − 7051705
32 − 26958299

64
441420935

288 − 69278521
64

333359
112 − 5845141

256 − 1881827
64

6750027
16 − 313947431

576 − 69278521
64

232281783359
80640

− 13140067
40320

167335
8 − 2466487

32 − 38279821
288

6778091
8 − 130467709

224 − 113503817
64

− 72501
64 − 67753

32
34203385

576 − 4176121
32 − 3462757

14
62381977

64 − 12731985
64

29551
64 − 1263167

576 − 692525
64

16207225
224 − 152275

4 − 9842815
32

22206005
64

−11 1751
64

10143
64 − 16191

32 − 2667
64

5105
4 − 59877

56

2537
64 − 36981

64
48949

64
71061

16 − 931196699
80640

2521331
448

111047
16

− 357
32

55595
32 − 146231

16 − 9031
32

6766391
112 − 1294651

16 − 13595
36

14498819
80640 − 104811

64
340771

16 − 12388463
224

5235
64

36776737
576

528561
8

− 30801
32

358139
64 − 8975231

448
5343967

32 − 19822415
36

5459775
8 − 20946701

32

21943
16 − 2402377

112
1680011

64 − 139676003
576

81584903
64 − 119301937

64
117552577

64

− 274851
224

938753
32 − 24389729

576
10479417

64 − 8560503
8

61104175
32 − 517430631

224

66181
32 − 334700893

26880
916464779

80640
569301

16
1039257

8 − 196041269
224

105615724829
80640

− 1345139
576 − 201327

64
877037

32 − 3985755
32

124643035
448

72616931
384 − 3398343

16

28407
32

82303
32 − 503645

32
23443447

448 − 42620299
384 − 1010153

32 − 10580693
256



,
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Cp,t,2
3,f =



− 13140067
40320 − 72501

64
29551

64 −11 2537
64 − 357

32
14498819

80640

167335
8 − 67753

32 − 1263167
576

1751
64 − 36981

64
55595

32 − 104811
64

− 2466487
32

34203385
576 − 692525

64
10143

64
48949

64 − 146231
16

340771
16

− 38279821
288 − 4176121

32
16207225

224 − 16191
32

71061
16 − 9031

32 − 12388463
224

6778091
8 − 3462757

14 − 152275
4 − 2667

64 − 931196699
80640

6766391
112

5235
64

− 130467709
224

62381977
64 − 9842815

32
5105

4
2521331

448 − 1294651
16

36776737
576

− 113503817
64 − 12731985

64
22206005

64 − 59877
56

111047
16 − 13595

36
528561

8

105808815
32 − 130108405

64
10187599

24 − 559
8 − 2201809

288
671163

32 − 4267471
32

− 130108405
64

28655801
12 − 1618475

2
77981
288

121461
64

502307
16

164599
16

10187599
24 − 1618475

2 323695 − 2211
64

3689
64 − 762491

32
400699

14

− 559
8

77981
288 − 2211

64 19 −23 − 41603
96

70103
64

− 2201809
288

121461
64

3689
64 −23 42899

48 − 68183
64 − 2261833

160

671163
32

502307
16 − 762491

32 − 41603
96 − 68183

64
4216707

160 − 1330131
32

− 4267471
32

164599
16

400699
14

70103
64 − 2261833

160 − 1330131
32

118699367
224

81089955
64 − 642581479

448
206838707

384
242159

320
2987307

64 − 23658721
112 − 42947705

32

− 1719321619
448

1780253123
384 − 115855103

64 − 308805
64 − 12174621

224
23390945

32
37444128913

26880

1622422907
384 − 299433963

64
454484831

256
2095799

448
2012555

64 − 418801069
576 − 54867945

64

− 3452845
8 − 107436017

256
24045695

96 − 4603
64 − 3559903

144
1172409

64
266958085

288

− 529010841
256

153481585
48 − 41087207

32 − 1098109
576

777715
32

50989979
144 − 237047749

256

92513279
96 − 43020985

32 524791 57241799
80640 − 5198815

576 − 37965725
256

147864499
448



,
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Cp,t,2
3,f =



− 30801
32

21943
16 − 274851

224
66181

32 − 1345139
576

28407
32

358139
64 − 2402377

112
938753

32 − 334700893
26880 − 201327

64
82303

32

− 8975231
448

1680011
64 − 24389729

576
916464779

80640
877037

32 − 503645
32

5343967
32 − 139676003

576
10479417

64
569301

16 − 3985755
32

23443447
448

− 19822415
36

81584903
64 − 8560503

8
1039257

8
124643035

448 − 42620299
384

5459775
8 − 119301937

64
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32 − 196041269
224

72616931
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32

− 20946701
32
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64 − 517430631

224
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256
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64 − 1719321619

448
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256
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− 642581479
448
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384 − 299433963
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256
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32
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64
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256
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32 524791

242159
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64
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448 − 4603
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57241799
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224
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144
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2
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8
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96 − 15035503
2 3104765



,

where the coefficient matrix of Cp,t
3,f (p, α) is positive definite, and therefore Cp,t

3,f (p, α) > 0.

Hence, the inequality in Eq. (A.14) holds, and the proof is complete.
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