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Abstract

We present an algorithm to store data robustly in a large, geographically distributed network by
means of localized regions of data storage that move in response to changing conditions. For exam-
ple, data might migrate away from failures or toward regions of high demand. The PERSISTENTNODE
algorithm[2] provides this service robustly, but with limited safety guarantees. We use the RAMBO
framework[17, 11] to transform PERSISTENTNODE into RAMBONODE, an algorithm that guarantees
atomic consistency in exchange for increased cost and decreased liveness. In addition, a half-life anal-
ysis of RAMBONODE shows that it is robust against continuous low-rate failures. Finally, we provide
experimental simulations for the algorithm on 2000 nodes, demonstrating how it services requests and
examining how it responds to failures.

1 Introduction

As wireless devices proliferate and multiply in numbers, it will become increasingly impractical to admin-
ister them on a per-device level. An attractive alternative is to have the devices self-organize into ad hoc
computing platforms.

A key problem that must be addressed for any such platform is data storage. If a user is to entrust her data
to a distributed system, she must be able to trust that her data will not be lost, will remain readily accessible,
and will be consistent. This is not only a user-level issue: robust, atomic memory is a fundamental building
block of many distributed algorithms and facilitates the construction of higher level services.

The PERSISTENTNODE algorithm|[2] implements a virtual mobile node that travels through the static
network, servicing read/write memory requests. Each PERSISTENTNODE is a key/value pair replicated
on a set of topologically close members of the network. Once created, a PERSISTENTNODE engages in
self-repair and migrates through the network in response to changing conditions — for example, a PERSIS-
TENTNODE may be programmed to avoid regions where failures have occurred, or to move toward regions
where its data is in demand. PERSISTENTNODE is designed with large, geographically distributed networks
(e.g., a Metropolitan Ad Hoc Network) in mind. It operates correctly, however, in general networks, albeit
poorly in networks of low diameter.

The problem with PERSISTENTNODE is that while the data is robust and remains live under extreme
failure conditions, the atomicity guarantee holds only under certain, specific conditions. In this paper, we

augment PERSISTENTNODE using the RAMBO framework[17, 11], trading increased communication cost
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and decreased liveness for unconditional atomicity, and calling the resulting algorithm RAMBONODE. An
important contribution of this work, then, is examining the trade-off between consistency and availability in
the MAN setting.

The RAMBONODE algorithm is also the first implementation of a RAMBO-based algorithm which in-
cludes all reconfiguration details. Prior work on RAMBO left out several practical components of the algo-
rithm necessary for a real implementation of atomic memory. For example, it was assumed that an external
service determined who the current owners of the data should be and when reconfigurations should occur.
As aresult, in devising RAMBONODE, we answered a number of open questions presented in [11] regarding
the practical implementation of a RAMBO algorithm.

As a result, we are able to make stronger performance guarantees than are possible in the prior RAMBO
papers. In particular, we focus on showing that the RAMBONODE algorithm can tolerate continuous, ongo-
ing failures, as long as the rate of failures in any region of the network is not too high. This type of failure
analysis, while immensely useful in understanding the real-world applications of an algorithm, is relatively
rare among formally analyzed algorithms, and therefore is an important property of our new algorithm.

In this paper, then, we present and analyze the RAMBONODE algorithm. First, in Section 2, we provide
a brief overview of the MAN setting and the general network model. In Section 3, we summarize the PER-
SISTENTNODE algorithm and the RAMBO algorithm. In Section 4 we describe the RAMBONODE algorithm
in more detail, and in Sections 5 and 6 we provide a formal analysis of the algorithm, proving atomicity and
conditional performance guarantees. We also compare the theoretical performance of RAMBONODE with
PERSISTENTNODE, in order to understand the cost of consistency. We then present experimental results

from simulations on 2000 nodes in Section 7, confirming our theoretical results.

2 The MAN System Model

In this section, we first describe the challenges posed by the Metropolitan Ad Hoc Network (Section 2.1).
We then present, more formally, the network model used in this paper (Section 2.2). Finally, we compare
the MAN setting to other related types of networks, and discuss how our work compares to algorithms

developed for these networks (Section 2.3).



2.1 The Metropolican Ad Hoc Network

In the MAN scenario[22] we consider a large city, populated by millions to billions of computational devices,
each connected to its nearby neighbors by short-range wireless links. The MAN setting introduces several

difficult challenges, and a key contribution of this paper is an algorithm capable of handling these issues:

e Locality: Short-range communication links imply that the network has a high diameter, and thus the
cost of communication will be dominated by the number of hops a message must travel. This also
means that many tasks, for example, memory coherence, are significantly cheaper for geographically

local algorithms.

e Continuous Failure: With millions or billions of nodes, it is unrealistic to talk about a certain number
of failures during execution of the algorithm. Rather, we consider the rate of failure within a unit of

geographic area.

o Immobility: The sheer number of nodes in the network implies that most nodes can be assumed to
be immobile most of the time. (We assume that the most nodes are only moved by the actions of

humans.)

o Self-Organization: Direct administration of a network this large is impractical (to say the least), partic-
ularly under assumptions of continuous failure. Accordingly, these systems must be self-organizing,

requiring minimal human intervention, and they must adapt robustly to changes in the network topol-

ogy.

o No Infrastructure: We make no dependence on any pre-organized network structure, notably including
routing, naming, and coordinate services. While much research has been done on these infrastructural
services, it still remains quite challenging, especially in practice, to reliably provide these services in

such a difficult environment.

Other usage of the MAN setting includes Beal’s prior work with the PERSISTENTNODE algorithm in [2]
and in [3], where persistent nodes are used to partition the network into clusters that can be grouped together

to form a hierarchical partition of the network suitable for tasks like routing.



2.2 Formal Details

More formally, the MAN consists of an unknown, though bounded, number of partially synchronous nodes.
Nodes may fail by stopping (crashing). A node that has failed may restart, as long as it chooses a new unique
process identifier (and reinitializes its state).

The nodes are placed on a two-dimensional plane,' and they are connected by a network that allows any
node to send a message to any other nearby node (i.e., any node within a fixed, small distance). For the
purposes of correctness, no assumption is made as to how long a message takes to be delivered, or whether

it is lost in transit.

2.3 Relation to Sensor Networks

The study of networks with some of the properties of a Metropolitan Ad Hoc Network has often fallen
under the rubric of “sensor networks” (e.g., [12, 20, 5]). There are a number of aspects that differentiate
the Metropolitan Ad Hoc Network setting from traditional sensor network applications. While the results
described in this paper are equally applicable in more typical sensor networks, we were motivated by the
example of the MAN, and the PERSISTENTNODE and RAMBONODE algorithms were designed with that in
mind.

Much of the research on sensor networks is organized around the collection and propagation of sensor
data. Consider, for example, a typical sensor network application, the TinyDB project[19], that has imple-
mented a real-time database that stores consistent data. The database allows a special designated “root”
node to access distributed sensor data, by issuing complex queries. In our model, there is no special root
node, and any node can access the shared memory. In general, we want to enable a MAN to support higher
level distributed computation, not just to collect and process data from real-time sensors.

Another aspect typical of sensor networks research is the severe resource constraints imposed by the
tiny, lightweight sensor devices: the tiny motes have small batteries and small processors. In contrast, nodes
in the MAN environment are not necessarily as resource limited: MAN nodes are not necessarily small, and
may be connected to power sources.

As in sensor networks, however, communication bandwidth is a limited resource. With billions of nodes

all attempting to participate in the algorithm, it is important to limit the amount of data transmitted between

"Note that this is significantly stronger than the assumptions necessary for the results presented in this paper.



nodes.

3 Background

In this section, we discuss two prior algorithms, PERSISTENTNODE and RAMBO. Components of both
of these algorithms play an important role in the new algorithm, and it is therefore useful to review these

algorithms.

PERSISTENTNODE In an earlier memo [2], Beal began considering the problem of geographically-optimized
atomic memory in the MAN setting, and developed the PERSISTENTNODE algorithm. In this algorithm, a
cluster of nodes is designated to maintain replicas of the atomic data. This cluster can be thought of as a
“virtual mobile node” that travels around the network according to certain movement rules. The PERSIS-
TENTNODE moves by occasionally choosing a new set of nearby replicas (generally almost identical to the
current set) and sending the data to these new nodes. By choosing the new nodes according to its movement
rules, the PERSISTENTNODE is able to maintain the data far away from failed regions of the network and
near to where the data is needed.

The PN algorithm is the direct predecessor of the algorithm presented in this paper. While the PER-
SISTENTNODE algorithm implements an atomic shared memory, data consistency is timing dependent: if
too many messages between nodes are delayed or lost, atomic consistency is no longer ensured. Our goal,
then, is to guarantee atomic consistency, regardless of whether the network is delivering messages rapidly

or reliably.

RaMBO We transform the PERSISTENTNODE algorithm using the RAMBO framework (Reconfigurable
Atomic Memory for Basic Objects), an algorithm developed by Lynch, Shvartsman, and Gilbert to provide
atomic memory in highly dynamic networks.[17, 11] They show that RAMBO guarantees atomic consistency
in all executions, regardless of all forms of asynchrony and failures: delayed messages, lost messages, failed
nodes, etc.

The RAMBO algorithm, however, is presented in a fairly abstract form, and is missing many components
needed for a practical implementation. In particular, it does not specify what configurations (i.e. quorums

of replicas) should be used; nor does it specify when to initiate reconfiguration. Also, RAMBO assumes an



all-to-all communication network, and therefore does not operate well in the MAN setting. A contribution
of this work, then, is the design of an algorithm using the RAMBO framework that is adapted to the MAN
setting.

The RAMBO algorithm uses replicas to provide fault tolerance. In order to ensure consistency among
replicas, each write operation is assigned a unique tag, and these tags are then used to determine which value
is most recent.

The RAMBO algorithm uses configurations to maintain consistency. Each configuration consists of a set
of participants and a set of quorums, where each pair of quorums intersect. Quorums were first used to solve
the problem of consistency in a replicated data system by Gifford [8] and Thomas [23] and much research
has followed from this. Of particular note, Attiya, Bar-Noy and Dolev [1] use majorities of processors to
implement consistent atomic memory, and their approach is extended by the RAMBO algorithm.

The RAMBO algorithm allows the set of replicas to change dynamically, allowing the system to respond
to failures and other network events. The algorithm supports a reconfiguration operation that chooses a new
set of participants and a new set of replica quorums. Other earlier algorithms also address the reconfiguration
problem (e.g. [6, 13, 21, 7, 4]), but RAMBO provides more flexibility, and is therefore more suitable for our
application. In particular, it decouples the read and write operations from the reconfiguration process, so
that even during a long reconfiguration, read and write operations can complete rapidly. For more details
comparing these algorithms, see the full RAMBO paper [18].

Each node maintains a set of active configurations. When a new configuration is chosen, it is added
to the set of active configurations, and when a configuration upgrade operation occurs (upgrading the most
recent active configuration), old configurations can be removed from the set of active configurations.

When a node wants to perform a read or a write operation, it performs a two phase operation. In each
phase, the node communicates with one quorum from each active configuration. Since all pairs of quorums
in a configuration intersect, this ensures atomic consistency.

An important feature of RAMBO is the decoupling of the reconfiguration mechanism and the read/write
mechanism: a separate service is used to generate and agree on new configurations, and the read/write
mechanism uses all active configurations. In order to determine an ordering on configurations, a separate

consensus service, implemented using Paxos [14], for example, is used.



Figure 1: Screenshot from a simulation of RAMBONODE on a 2000 node MAN. Black nodes at the center
are in the configuration. Medium gray nodes surrounding the center participate in gossip communication,
but are not members of the configuration. Light gray nodes are non-participating. Light gray lines indicate
communication links.

RAMBONODE vs. PERSISTENTNODE = The use of RAMBO improves on the PERSISTENTNODE algorithm by
guaranteeing consistency, while maintaining the ability to tolerate significant and recurring failures. On the
other hand, the new algorithm is more expensive, requiring significantly more state and communication, and
provides reduced availability: the PERSISTENTNODE algorithm can return a response if even one replica
remains active and timely. Since it is impossible to guarantee a consistent, available, partition-tolerant
atomic memory [10], this work allows us to explore the trade-off between consistency and availability in
the MAN setting: the new algorithm guarantees consistency, but is only available when the network is

well connected; the PERSISTENTNODE algorithm guarantees availability at all times, but only guarantees

consistency when the network is well connected.

4 RAMBONODES

The RAMBONODE algorithm consists of a PERSISTENTNODE configuration service combined with the
read/write mechanism in RAMBO and the Paxos consensus esrvice. See Figure 2 for a high level descrip-
tion of the algorithm. We first discuss some general issues related to communication, then we present the

RAMBONODE reconfiguration algorithm, and finally present the read/write algorithm.



Read/Write Operations:

For a write operation at node 4:

1. Gossip until node 7 receives tag/value from a majority of nodes in active configurations.
2. Choose new tag.

3. Gossip until node ¢ receives acknowledgments that a majority of nodes in active configurations have received new
tag/value.

For read operation at node i:

1. Gossip until node % receives tag/value from a majority of nodes in active configurations.
2. Begin second phase.

3. Gossip until ¢ receives acknowledgments that a majority of nodes in active configurations have received tag/value.
Reconfiguration:
If node i is the center, or a neighbor of i fails:
1. Designate a neighbor to initiate a reconfiguration.
If a neighbor designates ¢ to initiate a reconfiguration:

1. Initiate broadcast/convergecast to choose new members.
2. Initiate Paxos consensus to agree on the new configuration.

3. Add configuration outputted by Paxos to the set of active configurations.

Configuration Upgrade:

If there is more than one active configuration:

1. Gossip until % receives a tag/value from a majority of nodes in all old configurations.
2. Note largest tag/value.

3. Gossip until node ¢ receives acknowledgments that a majority of nodes in the new configuration have received the
tag/value.

4. Mark old configuration as removed.

Figure 2: High level description of the RAMBONODE algorithm for node <.

4.1 Communication

RAMBO as previously specified depends on gossip-based, all-to-all communication: every so often, every
node sends portions of its state to every other node. The gossip based nature of RAMBO makes it conducive
to the MAN setting; however the algorithm must be adapted to require only local communication, rather than
all-to-all communication. To this end, we implement a local communication gossip service. The local gossip
flows through all active participants, plus all other nodes within £ hops of an active participant, allowing
communication across small gaps between active participants.

Much of the algorithm proceeds in phases. In each phase, the initiating node begins gossiping with its

neighbors. When it learns that a majority of nodes have received gossip messages from that phase, then the



phase is complete.

4.2 Reconfiguration

At any given time, there exists a tight cluster of nodes maintaining replicas of the atomic data. Therefore,
the active participants in our algorithm are a set of nodes within a radius, P, of the last node to successfully
complete a reconfiguration. We refer to the node that initiated the last reconfiguration as the center of the
configuration. Later, when analyzing the performance of the algorithm, for the sake of simplicity we assume
a bound on the maximum density of the network in order to limit the number of active participants. Alternate
mechanisms to limit the number of participants (such as decreasing P during times of high density) could
easily be developed.

Every so often, a reconfiguration occurs, choosing a new center and a new set of participants. In the nor-
mal case, when the center does not fail and the messages sent by the center are delivered, the center chooses
one of its neighbors to be the new center, based on an arbitrary distributed heuristic function calculated by
gossip among the members of the configuration (as in the PERSISTENTNODE algorithm). This function
may be used to bias the direction in which the data moves; for example, the function may attempt to choose
a direction in which fewer nodes have failed or from which more nodes send read and write requests. The
chosen neighbor then runs a broadcast/convergecast to generate a proposal for a new configuration.

On the other hand, if failures occur and some arbitrary node in the current set of participants notices
that a neighbor has failed (in particular, if a parent in the spanning tree rooted at the center fails), then the
node anoints one of its neighbors to try to become the new center. This chosen neighbor then also runs a
broadcast/convergecast to generate a proposal for a new configuration.

As a result, in the common case, only one node attempts to start a new configuration. In the case where
there are failures, many nodes may attempt to become the center of the new configuration. Either way, it is
guaranteed that at least one node attempts to start a new configuration.

This mechanism essentially implements an eventual leader-election service sufficient to guarantee the
liveness of the Paxos consensus algorithm. Each prospective configuration is then submitted to the Paxos
consensus service, which ensures that only one of the potentially many prospective leaders succeeds.

The Paxos protocol involves two rounds of gossip (i.e., two phases) in order to agree: in the first, a

majority of the old configuration is told to prepare for consensus; in the second, a majority of the old



(d) Discover Members (e) Gossip Consensus

(f) New Configuration

Figure 3: Changes to a new configuration (and location) occur via the following sequence. From the old
configuration [a] the centermost node (shown by an x) sends out a poll [b] requesting “goodness” estimates
from everything within distance 2r of the node. These are accumulated to the center [c] which uses it to
chooses a high-value nearby node as candidate to become the new center. The new center candidate runs a
convergecast to discover what nodes will be in the new configuration [d] and gossips for Paxos consensus on
the new configuration [e]. If consensus succeeds, then the new configuration is installed [f]. Under failure,
this process runs identically, except that it may be multiplied by many nodes believing they are centermost

and some processes dying.
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configuration is required to vote on the new configuration. (See [14] for more details on Paxos.) When
this is complete, the new configuration is added to the list of active configurations; this information spreads

through gossip to members of the old and new configurations.

4.3 Configuration Upgrade

In order to remove old configurations from the set of active configurations, an upgrade operation occurs
that upgrades the new configuration, transferring information from the old configurations to the new con-
figuration. The upgrade operation requires two phases. In the first phase, a node gossips to ensure that it
has a recent tag and value. When it has contacted a majority of the nodes in every old configuration, the
second phase begins. In the second phase, the node ensures that a majority of nodes in the new configuration
receive the recent tag and value. When a majority of nodes in the new configuration have acknowledged
receiving the tag and value, the upgrade is complete and the old configurations can be removed. The removal

information spreads through gossip to all participants.

4.4 Read/Write Operations

Each read or write operation consists of two phases. In each phase, the node initiating the operation commu-
nicates with majorities for all active configurations. For the moment, we assume that every node initiating a
read or write operation is near some member of an active configuration. If this is not the case, some alternate
routing system is used to direct messages to a node that is nearby, which can then perform the read/write
operation: in the MAN setting, we focus on local solutions to problems.

We first consider a write operation. In the first phase of the operation, the initiator attempts to determine
a new unique tag. The initiating node begins gossiping, collecting tags and values from members of active
configurations. When the initiator has received tags and values from a majority of nodes in every active
configuration, the first phase is complete. The node then chooses a new, unique tag larger than any tag
discovered in the first phase. At this point, the second phase begins. The initiating node begins gossiping
the new tag and value. When it has received acknowledgments from a majority of nodes from every active
configuration, the operation is complete.

A read operation is very similar to a write operation. The first phase again contacts a majority of nodes

from each active configuration, and thus learns the most recent tag and value. The second phase is equivalent
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to the second phase of a write operation: the discovered value is propagated to a majority of nodes from
every active configuration. This second phase is necessary to help earlier write operations to complete; if
the initiator of an earlier write operation fails or is delayed, the later read operation is required to help it

complete. This is necessary to ensure atomic consistency.

S Atomic Consistency

In this section, we show that the RAMBONODE algorithm guarantees atomic consistency in all executions.
The RAMBONODE algorithm was developed using the RAMBO framework, and therefore the proof of
atomic consistency closely follows that presented in [9]. We sketch the important ideas here.

In order to show that an algorithm guarantees atomic consistency, it is sufficient to show that for every
execution, «, of the algorithm, there exists a partial ordering, <, of the read and write operations with the
following properties: (i) the partial order, <, totally orders all write operations in «, (ii) the partial order,
<, orders every read operation in « with respect to every write operation in ¢, (iii) for each read operation,
if there is no preceding write operation in <, then the read operation returns the initial value; otherwise,
the read operation returns the value of the unique write operation immediately preceding it in <, and (iv) if
some operation, 71, completes before another operation, 7y, begins, then w9 does not precede 71 in <. If w9
is a write operation, then m; < m9. (See Lemma 13.16 in [16].)

In our case, we choose a partial ordering that is consistent with the sequence tag associated with each

operation. Properties (i)—(iii) are self-evident; we discuss Property (iv) in further detail.

Lemma 5.1 Assume w1 and mo are two read or write operations such that w1 completes before mo begins.
Then tag(m) < tag(me), and as a result, wo 4 w1, if w2 is a write operation, then tag(m1) < tag(mwa), and

as a result, my < mo.

Proof (sketch). If the sets of active configurations overlap, then this lemma follows from the quorum
intersection property. That is, if there is some configuration, ¢, active both during the second phase of
and the first phase of 71, then 7; must have updated a write-quorum of ¢, and 72 queried a read-quorum of
c. As aresult, tag(m1) < tag(ms), and if 7o is a write then the inequality is strict.

Let s1 be the largest configuration active during the second phase of ;. Let so be the smallest configu-

ration active during the first phase of mo. Assume that s; < so. Otherwise, it must be the case that there is

12



some configuration that was active during both operations.

Then there must exist some sequence of configuration-upgrade operations, 71,72, .- .,V that occur
between 71 and 72 and remove all the configuration that are smaller than so and > s;. (Otherwise, configu-
ration s; would still be active when 7o began.)

We can find such a sequence where tag(v1) < tag(vx), i-e., each upgrade operation passes on the tag
to the next operation. It is also not difficult to show that tag(yx) < tag(m2) (and the inequality is strict if
o 1S a write operation), since so is the smallest active configuration during . Similarly, we realized that
tag(my) < tag(y1).

We therefore conclude that tag(m) < tag(v1) < tag(vi) < tag(ms), and if 7o is a write operation the

inequality is strict. U

Having shown that the partial ordering meets the four requirements for atomicity, we can state the following

theorem:

Theorem 5.2 The RAMBONODE algorithm guarantees atomic consistency in all executions, regardless of

the number of failures, messages lost or delayed, or other asynchronous behavior.

6 Conditional Performance Analysis

We next consider the liveness properties of our implementation. In this section, we show that as long as the
rate of failure is not too high, read and write operations will always complete rapidly (and the RAMBONODE
will not fail). We first present some additional assumptions needed to guarantee liveness (Section 6.1), and
then we prove that if these conditions are met, we realize good performance (Section 6.2). Finally, we

discuss some of the implications of the theoretical results (Section 6.3).

6.1 Assumptions

Good performance of our algorithm depends on four additional, reasonable, assumptions about the way in
which failures occur and the network on which the algorithm runga) Half Failure, (b) Partition Freedom,

(c) Reliable Message Delivery, (d) Maximum Network Density,
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Half-Failure The Half-Failure assumption is the most important additional assumption. It requires that
the rate of failure in any given part of the network not be too high. If too many nodes in one area can fail,
then no localized algorithm can hope to succeed, and an alternate global algorithm must be used to maintain
the data.

We say that a timed execution satisfies (P, H )-Half-Failure if for all balls of radius P, for every interval
of time of length H, fewer than half the nodes in the ball fail during the interval.

The Half-Failure assumption is a generalization of the bounded half-life criteria, introduced by Karger,
Balakrishnan, and Liben-Nowell [15]. They require that over a specified half-life, fewer than half the active
nodes fail, and no more than twice the nodes join. The smaller the half-life of an algorithm, the higher rate
of failure it can tolerate.

We modify their definition by focusing on a localized region of the network (i.e., any ball of radius P),

and we ignore the limitations on joining (as that has no negative effect on our algorithm).

Partition-Freedom The Partition-Freedom assumption ensures that nearby nodes are really able to com-
municate efficiently with each other. If a partition occurs in the network, our algorithm continues to guar-
antee consistency; however it is impossible to guarantee fast read and write operations. We require first that
there are no partitions in the network. We also require that the route between any two nearby nodes does not
grow too long: if two nearby nodes are forced to communicate through a long chain of intermediate nodes,
then it is effectively a “local” partition and read and write operations may be delayed.

We say that a timed execution guarantees (P, k)-Partition-Freedom if for all nodes ¢ and j that are within

2 P distance units of each other, there is always a route from i to j of length less than 4k P hops®.

Reliable Message Delivery Assume that ¢ and j are two nodes in the network, and that the distance from ¢
to j is less than the communication radius 7. We assume that every message sent by ¢ to j is received within
time d. (In practice, we can tolerate some messages being lost or delayed, as long as information arrives by

some channel within the necessary time bounds.)

Network Density Lastly, we assume that nodes are not too densely distributed anywhere on the network.

We say that a network is (P, N)-Dense if for every ball of radius P in the network, there are no more than

2The algorithm is more robust when implemented with k larger; for the analysis we will assume k = 1
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2N nodes in the ball.
In practice, this is not a particularly severe restriction. It is always possible to choose P smaller, in order

to reduce the density. Alternatively, excess nodes could always sleep, saving energy.

6.2 Liveness Analysis

In this section, we present our theoretical performance results, and a few of the ideas in the proof. Details
have been omitted due to lack of space.

For the rest of this section, we assume that the requirements of Section 6.1 hold. We show that read and
write operations are guaranteed to terminate rapidly.

Choose = 4Pd, the time in which any two nodes in a configuration of radius P can communicate.

As in all quorum-based algorithms, liveness depends on a quorum (i.e., a majority) of the nodes in
active configurations remaining alive. The primary difficulty in ensuring that operations complete rapidly is
actually in ensuring that enough nodes remain alive in each configuration for the operations to complete at

all:

Lemma 6.1 If 7 is a read or write operation, and throughout the duration of ™ a majority of nodes in each

active configuration fail, then T terminates in 8 - 6.

In order to show that a majority of nodes in a configuration remain alive, we need to determine how
long it takes for a new configuration to be fully installed. The key part of this proof is showing that Paxos
terminates quickly, outputting a new configuration. Notice that Paxos itself will only complete if a majority
of nodes in the prior configuration remain alive. Therefore we must assume that the half-life, H, of the

algorithm is large enough to allow Paxos to terminate.

Lemma 6.2 If H > (40 + 22 - N) - 0, then Paxos will output a decision within time 11 -6 - N.

We can then prove the main result by combining Lemmas 6.1 and 6.2:

Theorem 6.3 Assume H > (40 +22 - N) -4 - P - d. Then every read and write operation initiated at a

non-failing node that remains a participating node completes within time 80 = 32 - P - d.

The argument here is similar to that in [18], Theorem 8.17, which shows that as long as the algorithm

guarantees enough configuration viability, then read and write operations terminate rapidly.
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Figure 4: Theoretical maximum rate of failure that the RAMBONODE algorithm can tolerate, when each
node communicates with its neighbors once per millisecond. Graph (a) assumes a constant minimum den-
sity, i.e., that regions remain populated by at least a few nodes at all times. As long as the maximum
density is not too large, or the radius of the RAMBONODE is not too big, then a reasonable rate of failures
is tolerated. Graph (b) assumes instead that there is a bounded ratio between the minimum density and
the maximum density, i.e., that the density stays within a predetermined range. In this case, the maximum
density has little effect on the allowable rate of failure. The radius of the RAMBONODE is the important
parameter. As long as the radius is not too large, a reasonable rate of failures is tolerated.

6.3 Discussion

In order to put the numbers in perspective, imagine an ad hoc sensor network in which nodes are deployed
with a density of ten units per square meter. (For example, imagine a smart dust application.) Choose a
radius of six meters for a configuration, and assume that adjacent nodes can communicate in one millisecond.
Then Theorem 6.3 requires only that no more than 50 units fail every five minutes. Except in a catastrophic
scenario, this rate of failure is extreme. In smaller configurations, it becomes even easier to satisfy the
Half-Failure property; in the same system, with configuration of radius one, it is only necessary to ensure
that no more than half the units fail in a 1.6s interval. Similarly, decreasing the density only helps reduce
the Half-Failure interval, though also decreasing the allowable failure rate. (Figure 4 graphs the permitted

failure rates.)
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Configuration Time per Theoretic Worst Time per
Radius Read/Write Case Read/Write  Recon
Rambo

2 hops 791 64 81.2

3 hops 11.59 96 113.5
4 hops 16.45 128 149.3
PersistentNode

2 hops 6 6 26

3 hops 9 9 34

4 hops 12 12 42

Figure 5: Comparison of RAMBONODE and PERSISTENTNODE latencies, for configurations of varying
radius. Average time per operation and average time per reconfiguration in the failure-free case, along with
theoretic worst-case latency for read/write and recon operations in failure-prone executions, in units of d,
where d is the maximum time for a message to travel between two neighboring nodes, and N is the expected
number of nodes in a configuration.
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Figure 6: Experiments simulating 2000 particles produce atomic traces of a radius three RAMBONODE.
This diagram shows serialization points (asterisks) for 43 operations, excerpted from a 316 operation trace
(including events for operations not completely contained in the trace).

7 Experimental Results

We implemented the RAMBONODE algorithm in order to verify that it behaves as predicted.?> See Figure 1
for a screenshot of a simulation in progress. As expected, every execution of RAMBONODE is atomic.
We ran experiments to determine the effect of node diameter and error rate on performance. These experi-
ments demonstrate the robustness of the algorithm, but also illustrate the expenses incurred by guaranteeing
consistency.

We ran the implemented algorithm in a partially synchronous, event-based simulator with 2000 particles
distributed randomly on a unit square. Communication channels link all particles within 0.04 units of one
another, yielding a network graph approximately 40 hops in diameter. At the beginning of a run a random

particle is selected to create the initial configuration. During the experiment particles involved in an active

3Code written by Jacob Beal is available online at:
http://www.swiss.ai.mit.edu/projects/amorphous/Dynamic/demos/hlsimJ/
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configuration randomly invoke read and write operations. Failures are simulated by deleting a particle and
filling its place with a new one — this happens to any given particle in any given round with probability py.

We verified the correctness of the algorithm by serializing events into a sequence of atomic operations.
As expected, all runs preserved atomicity, even with quite high rates of failures. (Of course, when the failure
rates were too high, operations did not complete; however consistency was never violated.) Figure 6 contains
a typical fragment of an event trace. This excerpt (from a radius three RAMBONODE) contains 32 events, of
which 24 event comprise 12 complete operations and eight are part of operations not completely contained
in the timespan considered. The serialization points have been inserted for the entire 337 operation sequence

to verify atomicity.

Read and Write Latency In Figure 5, we present data on the latency of various operations. The simulation
data in this figure comes from failure free executions of the algorithm on 2000 nodes. (Simulations with
small rates of failure were quite similar.) Read and write operations take, on average, time proportional to
twice the diameter of the configuration. This is a result of the two phase operations: in each phase, the
initiating node must communicate with other nodes that are, on average, half the diameter’s distance away;
round-trip communication with these nodes takes time proportional to the diameter of the configuration.
(See Appendix A for more detailed execution data.)

It is also interesting to note that the worst case latency for read and write operations is significantly
worse. This can be attributed to two main factors. First, failures can significantly increase the time an
operation takes. The Partition-Failure assumption allows failures to occur in such a way as to double the
cost of communication. Also, the pattern of failures may ensure that only the most distant nodes in a
configuration remain alive. Second, inopportune reconfiguration can also have some effect on read and write
latencies; in particular, if a reconfiguration completes just before an operation completes, the operation must

now contact a quorum from the new active configuration.

Reconfiguration Latency Choosing a new configuration requires more phases than a read or write opera-
tion, and thus takes significantly longer. Even so, the latency of reconfiguration in the simulation is an order
of magnitude faster than the theoretic worst-case latency. This reflects the difference between randomized
and adversarial failures. The consensus operation has the potential to take a very long time to complete:

each failure can significantly postpone the termination of consensus, requiring the process to essentially
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restart. In practice, however, this rarely happens.

Comparison to PERSISTENTNODE  One of the goals of this paper is to examine the costs of atomic consis-
tency in a MAN, and therefore we compare RAMBONODE to PERSISTENTNODE, an algorithm that does
not guarantee consistency. The first thing to note is that, in general, read and write operations are only
slightly slower using RAMBONODE. Worst case read and write times are significantly worse, and this accu-
rately represents the cost of handling the failures in an atomicity preserving manner. Reconfiguration, on the
other hand, is significantly more expensive when using RAMBONODE. The need for consensus significantly
slows down the reconfiguration operations, and leads to the significantly slower worst case times. These
comparisons in some ways justify the design goals of RAMBO: the burden for consistency is placed on the

reconfiguration service, allowing read and write operations to continue as usual.

Configuration Size As the radius of a configuration increases, the time to execute an operation and the
time to reconfigure are expected to increase linearly in failure-free executions: each phase of an operation
requires communication with a majority of nodes in a configuration. The farther away these nodes are, the
longer a phase takes. The data we obtained for configurations of radius two, three, and four suggests that
this is, in fact, the case. For configurations with radius greater than four, however, the configurations begin
to contain many particles, and the simulation becomes quite slow.

In order to complete an operation or a reconfiguration, RAMBO requires the initiator to collect informa-
tion on a majority of members of the configuration. This, in turn, requires every particle in a configuration
to maintain information about the other particles in the configuration and the ongoing operations. A naive
gossip implementation leads to large amounts of storage (O(N?) per particle), which in turn causes the
simulation to become untenable for large simulations when P > 5. An improved implementation would
reduce the storage (to O(NN) per particle); nevertheless, it is worth noting that the RAMBONODE algorithm
is only efficient when P, the radius of a configuration, is relatively small, and therefore a configuration does
not contains too large a number of replicas, i.e. N is not too large. PERSISTENTNODE, by contrast, requires

only O(1) storage per node.

Node Failures Finally, we ran simulations with varying rates of failure, ranging pj, from zero to an ex-

pected 20% failure during a single reconfiguration (based on actual, not worst-case, reconfiguration times).
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As long as the failure rate was low enough so that no more than half the nodes failed during a single half-
life (i.e., H), the algorithm continued indefinitely to respond to read and write requests, as predicted by
Theorem 6.3. We expected to find a sharp transition from 100% success to complete failure of read and
write operations, and were not disappointed. From 0-2% failure rate (per expected reconfiguration time),
radius three RAMBONODESs showed no significant change in time per operation, or number of operations
completed. Above 10% failure rate, nodes generally died after a few reconfigurations. The behavior of any

given test, on the other hand, varies greatly.

8 Conclusion

We have combined the PERSISTENTNODE and RAMBO algorithms to produce the RAMBONODE algorithm
which captures the safety properties of RAMBO and the locality and mobility properties of the PERSIS-
TENTNODE algorithm. We have shown that the new algorithm guarantees atomic consistency in all execu-
tions, and that the algorithm performs well, as long as the rate of failure is not too high. The RAMBONODE
algorithm is especially suitable for deployment in ad hoc networks, like a MAN. The algorithm is highly
localized, tolerates continuous failures, and requires no network infrastructure.

The MAN setting motivates a number of interesting open problems related to building and understanding
the primitive services for distributed computation in a MAN. In this paper, we have examined the cost of
atomic consistency in the MAN setting. Are there efficient implementations of other strong primitives,
such as atomic broadcast and group communication? Gossip-based communication seems quite promising
for the MAN setting, however naive implementations lead to expensive memory requirements for strongly
consistent algorithms. What problems can be solved efficiently using gossip-based protocols in a MAN?

There are also open questions related to the current PERSISTENTNODE and RAMBONODE algorithms.
The efficiency of the implementation can be improved. There are questions of how we can use these algo-
rithms, in combination with routing and clustering services, to provide higher-level resilience to correlated
failures. Finally, it might be interesting to see how these types of algorithms could be used in more traditional
sensor network applications. Can these algorithms for persistent data be used to enhance the fault-tolerance

of a data-collection network?
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A Execution Data

Excerpt from an experimental trace, showing 43 read and write operations.

Time | Particle UID | Event Value Time | Particle UID | Event Value
343 0.7176 | start write | 0.2927 469 0.3265 | start write 0.2420
344 0.8858 | start read 469 0.7742 | start read
353 0.7176 | end write 470 0.2794 | start write 0.0307
354 0.8858 | end read 0.7969 474 0.3998 | start write 0.4478
360 0.6779 | start read 480 0.7742 | end read 0.1217
362 0.4234 | start write | 0.5990 481 0.3265 | end write
362 0.9121 | start read 481 0.2794 | end write
363 0.3304 | start read 483 0.9033 | start read
368 0.6779 | end read 0.2927 487 0.3998 | end write
370 0.1527 | start read 494 0.9033 | end read 0.4478
370 0.4234 | end write 506 0.8641 | start read
372 0.9121 | end read 0.2927 508 0.3271 | start read
374 0.3304 | endread 0.5990 511 0.1527 | start read
375 0.9033 | start write | 0.5304 512 0.7176 | start write 0.3067
382 0.7742 | start read 517 0.8641 | end read 0.4478
382 0.5729 | start read 517 0.1244 | start write 0.7057
384 0.1527 | end read 0.5990 520 0.1527 | end read 0.4478
384 0.9033 | end write 522 0.3271 | end read 0.4478
388 0.5729 | end read 0.5304 523 0.0653 | start write 0.1060
389 0.7742 | end read 0.5304 523 0.7176 | end write
390 0.1530 | start write | 0.5531 529 0.1276 | start write 0.0150
400 0.3463 | start read 530 0.1410 | start read
403 0.1530 | end write 530 0.3271 | start write 0.7464
411 0.3463 | end read 0.5531 531 0.1244 | end write
412 0.8858 | start read 531 0.0982 | start read
418 0.6958 | start write | 0.9094 532 0.8858 | start read
418 0.5729 | start read 534 0.0653 | end write
420 0.8858 | end read 0.5531 537 0.8241 | start read
422 0.5541 | start read 540 0.1276 | end write
427 0.5729 | end read 0.5531 541 0.6496 | start write 0.3561
429 0.6958 | end write 542 0.5054 | start write 0.7986
429 0.6827 | start write | 0.9085 543 0.1276 | start read
433 0.6692 | start read 544 0.1410 | end read 0.1060
434 0.5541 | end read 0.9094 544 0.8858 | end read 0.01502
435 0.5541 | start write | 0.0646 545 0.3271 | end write
436 0.3265 | start read 545 0.0629 | start read
438 0.6827 | end write 547 0.0982 | end read 0.7464
441 0.1244 | start write | 0.7466 549 0.3998 | start write 0.2434
445 0.3265 | end read 0.9085 551 0.8241 | end read 0.7464
446 0.6692 | end read 0.9085 555 0.1276 | end read 0.7464
446 0.5541 | end write 556 0.5541 | start read
447 0.8858 | start write | 0.9352 558 0.6265 | start write 0.2072
451 0.9496 | start write | 0.1217 558 0.6496 | end write
455 0.1244 | end write 560 0.0982 | start write 0.3324
459 0.8858 | end write 561 0.0629 | end read 0.3561
462 0.9496 | end write
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