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Abstract

We present a constant-factor approximation algorithm for computing an embedding of the
shortest path metric of an unweighted graph into a tree, that minimizes the multiplicative
distortion.



1 Introduction

Embedding distance matrices into geometric spaces is a fundamental problem occurring in many
areas of Mathematics, and Computer Science. The applications of embeddings include data visu-
alization, computational chemistry, and approximation algorithms (see [Wor] for discussion). The
work of Shepard [She62a, She62b], Kruskal [Kru64a, Kru64b], and others, in the area of Multi-
dimensional Scaling (MDS) gives the first approaches for computing such embeddings [Wor].

In this paper we present an approximation algorithm for the following embedding problem:
given an unweighted graph G = (V(G), E(G)), compute a tree T = (V(T), E(T)), and a non-
contracting non-contracting (i.e. Dp(f(u), f(v)) > Dg(u,v)) for all u,v € V') mapping f of V(G)
into V(T'), such that the distortion of f, defined as

Dr(f(u), f(v))

u,weV(G) Dg(u, ’U)

is minimized. We give a constant-factor approximation algorithm for this problem.

To our knowledge, our results provide the first non-trivial approximation guarantees for the
standard (multiplicative) notion of distortion for embeddings into trees. Other results are known
for the additive distortion, as described in the following section.

1.1 Related work

Combinatorial vs Algorithmic Problem. The problem of computing low-distortion embed-
dings of metrics into geometric spaces has been long a subject of extensive mathematical studies.
[Ind01] surveys many applications of embeddings in computer science, that have been discovered
in the recent years.

The problem studied in this paper however, is inherently different from most of the embedding-
related problems considered so far. More specifically, our problem is algorithmic, as opposed to
combinatorial. That is, we are interested in computing efficiently the best possible distortion
embedding of a given metric. This problem is algorithmic is nature, as opposed to the problem
of determining the worst case embedding of a class of metrics into some host space. In fact, it is
a well-known fact (see e.g. [Gup0l]), that the worst case embedding of an n-point metric (even
if it is the shortest path metric induced by an unweighted graph) into a tree, is €(n). Thus, the
(combinatorial) problem of computing an embedding which is optimal in the worst case, is not
interesting. However, the (algorithmic) problem of approximating the best possible distortion gives
rise to exciting new algorithmic challenges.

Previous Work on the Algorithmic Problem. To our knowledge there have been few
algorithmic embedding results. Hastad et al. gave a 2-approximation algorithm for embedding an
arbitrary metric into a line R, when the mazimum additive two-sided error was considered; that is,
the goal was to optimize the quantity max, , ||f(u) — f(v)| — D(u,v)|. They also showed that the
same problem cannot be approximated within 4/3 unless P = N P [HIL98, Iva00]. Badoiu extended
the algorithm to the 2-dimensional plane with maximum two-sided additive error when the distances
in the target plane are computed using the I; norm [B03]. Badoiu, Indyk and Rabinovich [BIR03]
gave a weakly-quasi-polynomial time algorithm for the same problem in the ls norm.

Very recently, Kenyon, Rabani and Sinclair [KRS04] gave ezact algorithms for minimum (mul-
tiplicative) distortion embeddings of metrics onto simpler metrics (e.g., line metrics). Their algo-



rithms work as long as the minimum distortion is small, e.g., constant. We note that constraining
the embeddings to be onto (not into, as in our case) is crucial for the correctness of their algorithms.

In general, one can choose non-geometric metric spaces to serve as the host space. For example,
in computational biology, approximating a matrix of distances between different genetic sequences
by an ultrametric or a tree metric allows one to retrace the evolution path that led to formation of
the genetic sequences. Motivated by these applications M. Farach-Colton and S. Kannan show how
to find an ultrametric T with minimum possible maximum additive distortion [FCKW93]. There
is also an approximation algorithm for the case of embedding into tree metrics, with minimum
additive distortion [ABFCT96].

2 Definitions and Preliminaries

For a graph G = (V(G), E(Q)), let ¢, (G), and ¢,(G), be the minimum distortion of an embedding
of G into a weighted, and unweighted tree, respectively. For a node v € V(G), and an integer ¢ > 0,
we denote by Bg(v,t) the set of nodes in G, which are at distance at most ¢ from v.

Lemma 1. For any unweighted graph G, we have ¢, (G) < 16¢4,(G).

Proof. Consider an optimal embedding f of G, into a weighted tree T', with distortion ¢ = ¢, (G).
Using Gupta’s algorithm [GupO1], we can compute an embedding f’, into a weighted tree T’,
without steiner nodes, and such that the distortion of f’ is at most 8c.

By scaling the weights of 77, we can assume that f’ is non-contracting. Since G is unweighted,
it follows that the weight of each edge of T” is at least 1. We can construct an unweighted tree T",
by replacing each edge of T' of weight k, by a path of length [k]. Since k > 1, the distortion of 7"
is at most 16¢. O

3 The Algorithm

Let G = (V(G), E(G)) be an unweighted graph, such that G' can be embedded into an unweighted
tree with distortion c¢. Consider the following algorithm for embedding G into an unweighted tree.

Step 1. Set G’ := G. Pick a node v € V(G’), add a node r in V(G’), and add the edge {r,v} in
E(G"), of weight ¢. Set R:={r}, K:=0, and U := 0.

Step 2. While R # (), repeat Steps 2.1 2.2.

Step 2.1. Pick r € R, and set R:= R\ {r}. Let K, := Bg:/(r,2c— 1)\ U. Set U := U U K,
and K := CU{K,}.

Step 2.2. Let V1, Vs, ..., V; be the connected components of G[V (G’) \ U]. For each compo-
nent V;, we add a node r; in V(G'), and we set R := RU {r;}. Also, for each v € V;,
with Dgr(r,v) = 2¢, we add the edge {r;,v} to E(G’), of weight ¢. Finally, we set
parent(r;) = r.

Step 3. We construct a tree T" as follows. For each K, € KC, we construct a star with center r, and
leaves the nodes in K, \ {r}. Next, for each K, , K,, € K, with parent(r1) = ro, we connect
the stars of K,, and K,, by adding an edge {ri,r2} in T



Lemma 2. Let G be an unweighted graph. If there exist nodes vy, v1,v2,v3 € V(G), and XA > 0,
such that

o for each i, with 0 < i < 4, there exists a path p;, with endpoints v;, and V11 mod 4, and
o for each i, with 0 <i <4, Dg(pi,Dit2 mod 4) > A,
then, c,(G) > A.

Proof. Consider an optimal non-contracting embedding f of G, into a tree T. For any u,v € V(G),
let P,, denote the path from f(u) to f(v), in T. For each i, with 0 < ¢ < 4, define T; as the
minimum subtree of T', which contains all the images of the nodes of p;. Since each T; is minimum,
it follows that all the leaves of T; are nodes of f(p;).

Claim 1. For each i, with 0 < 1i < 4, we have T; = U{u VHEE(ps) Py

Proof. Assume that the assertion is not true. That is, there exists € V(T;), such that for any
{u,v} € E(p;), the path P, , does not visit . Clearly, z ¢ V(p;), and thus x is not a leaf. Let

THT?,... , T, be the connected components obtained by removing = from T;. Since for every
{u,v} € E(p;), Py, does not visit z, it follows that there is no edge {u,v} € E(p;), with u € T?,
v € T?, and a # b. This however, implies that p; is not connected, a contradiction. O

Claim 2. For each i, with 0 < i < 4, we have T; N T;19 moa4 = 0.

Proof. Assume that the assertion does not hold. That is, there exists ¢, with 0 < ¢ < 4, such that
T; N Tit2 mod a # 0. We have to consider the following two cases:

Case 1: T; M Ti49 mod 4 contains a node from V(p;) UV (pito mod4)- W.lo.g., we assume that
there exists w € V(pj12 mod 4), such that w € T; N Tj49 moq 4- By Claim 1, it follows that
there exists {u,v} € E(p;), such that f(w) lies on P,,. This implies

Dr(f(u), f(v)) = Dr(f(w), f(w)) + Dr(f(w), f(v)).

On the other hand, we have D¢ (p;, Pit2 mod 4) > A, and since f is non-contracting, we obtain

Dr(f(u), f(v)) > 2A.
Thus, ¢ > Dr(f(u), f(v))/Da(u,v) > 2X.

Case 2: T;NT;12 mod 4 does not contain nodes from V (p; UV (P12 mod 4)- Let w € T;NT; 49 mod 4-
By Claim 1, there exist {u1,v1} € F(p;), and {u2,v2} € E(pPi+2 mod 4), such that w lies in
both Py, 4, and Py, ,,. We have

Dr(f(ur), f(v1)) + Dr(f(u2), f(v2)) = Dr(f(u), f(w)) + Dr(f(w), f(v1)) +
Dy (f(uz), f(w)) + Dr(f(w), f(v2))
= Dr(f(u1), f(u2)) + Dr(f(v1), f(v2))

(
Dg(u1,u2) + Dg(v1,v2)

2D¢(pis Pi+2 mod 4)
22\

\YAR\VARLY,



Thus, we can assume w.l.o.g., that

Dr(f(u1), f(v1)) > A
It follows that ¢ > Dp(f(u1), f(v1))/Dg(ui,v1) > A

O
Moreover, since p;, and p;+1 mod 4, Share an end-point, we have
TiNTit1 moda # 0
By Claim 2, it follows, that U?:o T; C T, contains a cycle, a contradiction. O

Lemma 3. For every K, € K, and for every x,y € K,, we have Dg(z,y) < 8c.

Proof. Assume that the assertion is not true, and pick K, € K, and z,y € K, such that Dg(z,y) >
8c. Let 1 = r, and for each ¢ > 1, with parent(r;) # null, let ;11 = parent(r;).

Pick a node x; € K., with {r,z1} € E(G"), such that Dg(z1, ) is minimized. Similarly, pick a
node y; € K, with {r,y;} € E(G"), such that Dg(y1,y) is minimized. Inductively, pick x;,y;, for
i > 1 as follows: Pick a node z; € K,,, with {r;,x;} € E(G’), such that Dg(x;,z;—1) is minimized.
Similarly, pick a node y; € K,,, with {r;,y;} € E(G"), such that D (y;,y;—1) is minimized.

Let p?, and p?i’, be shortest paths from z; to z;41, and from y; to y;11, respectively. Let also p®,
and pY, be the paths resulting from the concatenation of the paths p?,p%, and pY, py, respectively.

Claim 3. Dg(p”,pY) > 2c.

Proof. We have Dg(z,y) > 8¢, Dg(x,x1) < ¢, and Dg(y,y1) < ¢, thus Dg(z1,y1) > 6¢. Observe
that Dg(zi41,2:) = ¢, and Dg(yit+1,yi) = ¢. Thus

DG(pfvpg{) > DG(xlayl) _263

and

Da(p®,pY) > Dg(z1,31) — 4c
> 2c.

O

Consider now the nodes x3, and y3, and let z be the node r, picked at Step 1 of the algorithm.
Let t;, be the shortest path from z3 to r, and let also ¢, be the shortest path from y3 to r. It
follows by the construction, that V (t;) N K,, = {z3}, and V(¢,) N K;, = {y3}. By the choice of x3,
and y3, and since t,, and t,, share an end-point, it follows that there exists a path p™ on G, with
endpoints x3, and y3, such that p™ does not visit any of the nodes of the sets K, for i < 2.

Moreover, since x1, and y;, are both in K, , it follows that = and y are in the same connected
component of G[V(G) \ ;> Kr;|. In other words, there exists a path p¥*, with endpoints z1, and
Y1, such that p¥* does not visit any of the nodes of the sets K., for i > 1.

Observe that any shortest path in G, from a node in K, , to a node in K,,, must visit at least
¢ nodes from K,,. It follows that

Dg(p™,p**) > e

We have shown that the nodes x1, y1, 3, and ys3, together with the paths p*, p™, p¥, and p¥*,
satisfy the conditions of Lemma 2, for A = ¢. Thus, ¢(G) > 2¢, a contradiction. O



Lemma 4. The contraction of the embedding, is at most 4c.
Proof. Let z,y € V(G). We have to consider the following cases for z, and y:

Case 1: z,y € K.

We have Dr(x,y) = 2, and by Lemma 3, Dg(z,y) < 8c. Thus, in this case the contraction is
at most 4c.

Case 2: There exist r1,...,7s, for some £ > 1, with € K., and y € K,,, such that for any 1,
with 1 <4 < k, parent(r;) = 7j41.

We have Dp(x,y) =k + 1. By the construction, it follows that there exists a node y' € K,,,
such that Dg(y',x) < ke. Moreover, by Lemma 3, Dg(y',y) < 8¢, and thus Dg(x,y) <
(k + 8)c. Since k > 2, the contraction is at most (k + 8)c/(k + 1) < 10¢/3.

Case 3: There exist rq,...,r, for some k > 1, with z € K., and r,..., 7}, for some [ > 1, with

y € K/, such that for any 4, with 1 <4 <&, parent(r;) = 741, and for any j, with 1 < j <,
parent(r}) =75, ;, and 7 = r7.
We have Dr(x,y) = k + [. By the construction, it follows that there exists a node 2’ € K,,,
such that Dg(2',z) < kc. Also, there exists a node 3 € K, , such that Dg(y',y) < lc. By
Lemma 3, Dg(2',y’) < 8¢, and thus Dg(z,y) < (k+ 1+ 8)c. Since k,l > 2, the contraction
is at most (k + 1+ 8)c/(k +1) < 3c.

O
Lemma 5. The expansion of the embedding, is at most 3.

Proof. To bound the expansion of the embedding, it suffices to consider nodes z,y € V(G), with
{z,y} € E(GQ). If z,y € K,, for some K, € K, then Dp(z,y) = 2, in which case the expansion is
at most 2.

Otherwise, let © € K., and y € K, for some K,, K,» € K, with » # r’. W.l.o.g., assume that
K, was created by the algorithm before K,.. It follows that before K, was created, x and y where
in the same connected component of G[V(G’) \ U]. Thus, after the creation of K, the node 7’ is
added in G’ and the algorithm sets parent(r’) = r. Thus, Dy (z,y) = 3, and the expansion is at
most 3. U

Theorem 1. There exists a polynomial time, constant-factor approximation algorithm, for the
problem of embedding an unweighted graph, into a tree, with minimum multiplicative distortion.

Proof. 1t follows by Lemmata 1, 4, and 5. U
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