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Abstract

“Winner-take-all” networks typically pick as winners that alternative with the
largest excitatory input. This choice is far from optimal when there is uncertainty in
the strength of the inputs, and when information is available about how alternatives
may be related. In the Social Choice community, many other procedures will yield
more robust winners. The Borda Count and the pair-wise Condorcet tally are
among the most favored. Their implementations are simple modifications of classical
recurrent networks.

1.0 Introduction

Information aggregation in neural networks is a form of collective decision-
making. The winner-take-all procedure is probably the most favored method of
picking one of many choices among a landscape of alternatives (Amari & Arbib,
1977; Maas, 2000.) In the social sciences, this is equivalent to choosing the plurality
winner, which is but one of a host of procedures that could be used to choose
winners from a set of alternatives. More importantly, in the presence of uncertainty
about choices, the plurality winner is not the maximum likelihood choice (Young,
1995.) To obtain a glimpse into some of the problems associated with winner-take-
all, consider the analogy where the input is a population of voters. Then the plurality
winner - that outcome shared by most of the voters -- only needs to receive more
votes than any other alternative in the choice set. Hence it is possible for the winner
to garner only a very small percentage of the total votes cast. In this case,
uncertainty and errors in opinions can have a significant impact on outcomes, such
as when only a few “on-the-fence” voters switch choices. We sketch two other
procedures that yield more reliable and robust winners. These procedures utilize
information about relationships among alternatives, and can be implemented as
neural networks.

2.0 Plurality Voting

To provide background, the winner-take-all procedure is recast as a simple
voting machine. Let there be n alternative choices a; with v, of the voters preferring
alternative a,. The inputs to the n nodes in a neural network will then be the number
of voters v, sharing the same preference for a winner. The outcome is



plurality_winner = argMax(i) {v;} [1]

which can be found using a recurrent network whose dynamics is described
elsewhere (Xie, Hahnloser & Seung, 2001.) Note that no information about any
similarity relationships among alternatives is captured in [1]. In other words, the
Plurality voting method does not consider second ranked preferences of the voters.

3.0 Borda Method

To improve the robustness of outcomes, we now follow recommendations in
Social Decision-Making, and relax the constraint that only first choices will be
considered in the voting process (Runkel, 1956; Saari & Haunsberger, 1991; Saari,
1998.) Specifically, we include second (or higher) rank opinions, weighting these
inversely to their rank when the tally is taken (Borda, 1784.) The minimum of these
weighted sums is then taken as the winner. Here, we use the reversed Borda method,
with the first choice given a weight equal to the largest rank, the weight on the
second choice being the next largest rank, etc. The winner is then the maximum of
these weighted sums. To further simplify the computation and the network design, we
assume the alternative choices are related by a model M, that is held in common by
all voters. Each voter’s ranking of alternatives is now not arbitrary, but is also
reflecting information about choice relationships (Richards et al, 1998, 2002.) Note
that the effective role of M, is to place conditional priors on the choice domain.
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Although the shared model M, has typically been represented as a graph, G,,
it is more convenient to use the matrix M, where the entry “1” indicates the
presence of the edge ij in G, and 0 otherwise (Harary,1969). For the graphical
model of Fig 1, we would have:
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Here, for simplicity, we assume that the edges of M, are undirected, meaning that if
alternative a, is similar to alternative a,, then a, is equally similar to a,. However,
directed edges require only a trivial modification to the scheme.

With M, expressed as the matrix M; we can include second choice opinions
in a tally by deflnlng a new voting weight v, ; as

={2v,+ ZM;v, } [3]
where now first-choice preferences are given twice the weight of the second-ranked
choices, and third or higher ranked options have zero weight. (This is the reverse
Borda procedure.) The outcome is then

winner_Borda = argMax(i) {v';} [4]

A neural network that executes this tally is shown in Fig 1, and is a standard
winner-take-all (WTA) network supplemented by an input layer. (The collection of
WTA nodes in the “winner’s circle” does not show all the recurrent connections.)
The ith WTA node receives a synapse of strength 2 from the ith input node, which
in turn is driven by v, This twice weighted input to a WTA node is depicted by
heavy double arrows. The ith WTA node also receives synapses of strength M,
from the jth input. These inputs are depicted by the slimmer arrows, each of which
represents the assertion of an edge in M. In the neural network, one possible
implementation of these assertions would be a layer of neurons that inhibit inputs
from v; to v; in the winner’s circle if edge [v,,v;] is not in M. The highlighted WTA
node 3 is the Borda winner for the inputs v, given in the model M,. Note that the
more common winner-take-all plurality procedure would pick node 1.



4.0 Bias Vector

A disadvantage of the Borda Count is that a weighting on preferences is
imposed depending on rank. In our simple model using only first and second choice
preferences, the weightings were 2 for the first choice and 1 for the second. Let this
bias be represented as the vector {2, 1, 0}, where the O is the weight applied to all
preferences ranked after second choices. Then it is clear that the bias for the
Plurality method is {1, 0, 0}. But we could also invent another bias vector {1, 1,0}
that would weight the “Top Two” choices equally. More generally, a normalized
bias vector will have the form {1, b, ¢} with 0 <b < 1 and ¢ = 0 for our simplified
preference rankings. But now we see that the outcome of a Borda procedure will
depend on the choices for b, c.

To avoid specifying values for b and c, alternatives can be compared pairwise.
Each agent then simply picks the most preferred alternative of each pair — the one
with the higher rank in his preference order. This method, proposed by Condorcet
(1785) is a tournament, where the winner is that alternative beating all others.

Definition: let d; be the minimum number of edge steps between vertices i and j in
M, , where each vertex corresponds to the alternatives g; and a, respectively.

Then a pairwise Condorcet score S between alternatives g; and a; is given by
S;=Zy v, sgn[ djk -d,] [5]

with the sign positive for the alternative g, or g, closer to a,. Note that if g, or g, are
equidistant from a,, then sgn=0 and the Votlng weight v, does not contribute to S;-
Furthermore, as in the Borda Count, we again impose a maximum on the value of
d; of 2, which means that third or higher ranked alternatives do not enter into the
tally

A Condorcet winner is then

winner_ Condorcet = ForAll,_, I=; S; > 0. [6]
Although a Condorcet winner is a true majority outcome, it comes at a
computatlonal cost. For n alternatives, a complete pair-wise comparison would require
Czor O(n ) separate tallies. Hence a neural network that calculates the Condorcet
winner is superficially more complex than that for the Borda winner.



5.0 Condorcet Network

To reduce the computational complexity to O(n), the trick is to choose a
special subgraph of G,, namely g,, with kK << n. Conceptually, the subgraph we
choose is a ridge in the landscape of Borda weights. The ridge consists of the k
nodes in G, with the highest Borda scores. This choice is based on the observation
that for connected random graphs with weights chosen from a uniform distribution,
there is a 90% likelihood that the Condorcet winner and the Borda winner will
agree.

5.1 Specifics for the subgraph g,.

Let the Borda rank vector be {2,1,0} as before, with the Borda scores v*,. for
each vertex i in G,. Without loss of generality, label the vertices in G, by the rank
order of their Borda score, with vertex i = 1 having the largest score. In cases
where the Borda scores are tied, simply choose the indexing arbitrarily among the
tied vertices to create a total order. (If necessary, when ties occur for the kth and
k+1 vertices, the size of g, may be increased to include all vertices with scores
identical to the kth ranked score.)

Definition: g, is the spanning subgraph of G, containing the vertices with the top k
Borda scores.

Note that other definitions are possible. For example, we could require that g, be a
connected subgraph. In this case, for some G,, g, may not include all the top k
Borda scores. Or, rather than ordering vertices using their Borda scores, the Top-
Two bias vector {1, 1, 0} could be used. This latter choice may be more appropriate
for scale-free graphs or trees with long paths between large clusters. The principal
advantages of our definition are (i) ease of computation and (ii) uniqueness.

5.2 Sketch of a Neural Network

Here, our objective is to obtain a crude sense of the complexity of a plausible
neural network that calculates a winner for g,. There are three design challenges:
(1) finding g,, (2) computing the Condorcet winner for each pairwise comparison,
and (3) to determine which alternative (node) beats all others. We assume that the
maximum Borda ridge (nodes in g, ) has already been found. If g, can be
unconnected as defined, then a clipping algorithm might suffice. Alternatively, if we
wish to impose a connectivity constraint on g,, then some form of a greedy
algorithm beginning at vertex i = 1 seems appropriate. Simulations based on
random graphs G, ,for n=40 with edge probability 1/4 and weights chosen from a
uniform distribution show that in over 96% of cases, the winners with k=8 are the
same regardless whether the definition of g, is satisfied precisely, or found using a
greedy algorithm. This equivalence might be expected, because the vertices with the



highest Borda scores will typically have the largest vertex degrees and hence the
greatest connectivity. In either case, this step is of complexity O(n).

The second challenge is to implement ,C, pairwise comparisons [Eq. 5]. The
trick requires noting whether the vertices being compared are adjacent or not.
Consider first the case where two vertices in g, are not adjacent in G, (and hence
also not adjacent in g,.) Then we simply need to sum the weights of the neighbors
to each vertex, plus the weight of the vertex itself, and then compare these two
weight sums to determine the pairwise winner. Note that this is equivalent to using
the Top-Two bias vector {1,1,0} for each vertex, and then picking that vertex with
the largest score. If the two vertices being contested are adjacent, however, then
note that the weight of each vertex will be added to the score of the competing
vertex. Hence the weights of the vertices themselves will be cancelled if the Top-
Two bias vector is used. The patch is simple: just double the weight of each vertex
when adjacent vertices are being contested. This is the Borda bias vector {2,1,0}.
Hence, when calculating each pairwise Condorcet score, the rule is to use a Top-
Two bias vector {1,1,0} when vertices are non-adjacent in G,,, and to use the Borda
bias vector {2,1,0} when adjacent (Richards et al, 2002.) This requires making
explicit whether or not the ,C, edges in g, are adjacent or not in G,

The third challenge is to determine that node or vertex beating all others.
As will be seen below, this can be handled easily by a logical AND of the WTA
outputs from each pairwise comparison.

Fig. 2 depicts a g, network with six layers. The computation is carried out as
follows:

(i) the k~-maximum Borda ridge (nodes in g,) is given, as well as the
neighborhood sums in G, for each node in g, .

(1) activate the ,C, set of nodes in an “edge assertion” layer to make explicit
which edges in M, are present in G, (as was done previously in the Borda
network.) Note that this activation controls inputs to both the neighborhood
sums layer, as well as to nodes in the comparator layer.

(iii) for every node in g,, find the sum of the weight of vertex i and its
neighbors (neighborhood sums.) Again, this step is analogous to that used in
the Borda network of Fig. 1, except at this stage the sum uses the “Top-
Two” bias vector. The second input for the weight of vertex i itself will be
added in step (iv) depending upon edge connectivity in G,.



Winner's Circle

Comparator

Edge Assertion

Nodes in gk

input weights

Neighborhood
sums

Hog. 2. Condorcet network for Gn,no= 9, with subgrapgph gk, k=4 maa?' edoes.)
Mote that Borck counts for nodes 1 23,4 are respectively 17, 14, 158, 14,



(iv) project the “Top-Two” activity of neighborhood node sums onto each
member of a pair of nodes in the “comparator” layer that has the same
vertex label. (v) project the weight of vertex i itself onto the appropriate
member of all pairs in the comparator layer, but only if the two vertices in the
comparator layer are adjacent in g, (as controlled by the edge assertion
activations in (i1).)

(vi) use a WTA procedure to select the winner of each pairwise comparison in
the comparator layer, and send either a “0” (loser) or “1” (winner) signal
into the appropriate node in the “winner’s circle”.

(vii) do a logical “AND” of the inputs to each of the k nodes in the winner’s
circle. If there is a unique winner, then only one node will remain active. If
there is no such unique winner, then there is either a tie or a top-cycle. (A
top-cycle is when alternative a, beats a; which in turn beats a,, and then g,
beats the original alternative a..)

Note that although there are only k nodes in the winner’s circle, in the comparator
layer there will be a much larger set of roughly 2 x ,C, depending upon the tiling.
This comparator layer, and also the comparable edge assertion layer, are the critical
components that govern the size of the network. If the diameter of G, is very large,
the connectivities required become too distant. Some hint of this problem is given
in Fig. 2 for k = 4. This depiction also makes clear that neither G, nor g, appear
explicitly as graphs. Rather, the connectivity is represented by the filled nodes that
indicate whether the vector {2, 1, 0} or {1, 1, 0} should be applied to the paired
comparison in the comparator module. This representational form has the obvious
benefit that weighted edges, i.e. correlations among alternatives, can be easily be
incorporated by allowing analog, rather than binary inhibition by the “edge
assertion” nodes in layer 3 (small circles.)

6.0 Success of gk

Figure 3 shows the success rate of the k-Condorcet procedure for graphs of
size n < 250, with different choices for k. The models M, used were connected
random graphs with edge probability 1/4. A set of weights on the nodes was
chosen from a uniform distribution. Winners were also calculated using both the
Plurality (i.e. node with greatest weight) and Borda procedures for the same set of
weights. The graph shows the failure rate of g, to yield the same Condorcet winner
as G,, (There are over 100 trials per data point.) Also shown is the success of the
Plurality method (M) and the Borda count, compared with the Condorcet choice.
Regardless of n, the Borda and Condorcet winners differ only about 10% of the
time. A small fraction of this percent is due to top cycles in G,. Likewise, the
principal factor for different winners for g, and G, is the presence of additional top
cyclesin g,. In other words, when g, picks a winner, this winner is almost certainly



the G, winner (98+% for k > 8.) The approximation by g, is thus conservative:
there are few false positives, instead no winner is chosen, unlike the Borda count.
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Figure 4 provides some additional insight into the robustness of the
several aggregation procedures. Here again, random graphs of edge probability 1/4
were generated, with weights on nodes chosen from a uniform distribution. Winners
were then found using Condorcet, Borda and Plurality tallies, the latter being simply
that node with maximum input weight. Then the input weights were diddled using a
uniform sampling from +/- 50% of the initial node weight (hence and average of
25% variation.) Using the same graphical model M, a second set of winners were
then calculated. Figure 4 shows the probability that the winners were the same.



B

un}
=
|

)]
(]
I

FPercent Same Winhers
M2 I
[ (]
T

3 & 12 24 48 Q5
Mumnter of Alternatives

Hg. 4 Percentdifierent Wnners with rean weight variation of S0%;
B = Borda; C= Condorcet; P = Plurality imax weight node.)

For the Borda and Condorcet procedures, over 80% of the winners remained
the same (curve labeled BC), and over 60% when the subgraph g,, was used to
approximate G, (curve c12.) In contrast, the Plurality method (P) was not robust to
noisy input weights. Furthermore, as shown earlier in Fig. 3, the Plurality winner
seldom agreed with the Borda or Condorcet winners for graphical models
describing similarity relations among 10 or more alternatives. This difference shows
the large effect prior knowledge about the domain can have on the determining
optimal (maximum likelihood) choices.

7.0 Biological Feasibility

Obviously, the Plurality method is the simplest to implement, the Borda next,
with the Condorcet network being the most complex. Two questions emerge: is the
Condorcet network too complex? And second, is the additional complexity worth
the benefit? Surprisingly, from a biological perspective, the Condorcet network is
still rather trivial (Marr, 1969.) A more interesting issue is how the Condorcet
network might actually be implemented in detail. For example, should the network
be broken into overlapping modules or “receptive fields” of size k for the local
calculation, but with global inputs of size n? Local tilings with k >12 seem unlikely.
But, as seen from Fig 3, even with k ~ 12, similarity relations or correlations among
over one hundred alternatives or events could still be evaluated quite successfully.

The Condorcet network has a rather surprising benefit over the somewhat
simpler Borda network. Although each uses information about alternatives or similar

10



choices, the Condorcet network explicitly finds correlations among the most
significant because it must make explicit whether edges in M, are adjacent or not.
This design thus gives the network the potential to learn priors on such correlations.
Furthermore, it has a clear rejection strategy during the learning phase, namely the
presence of top-cycles. No other method mentioned above has this kind of built-in
feedback mechanism because all others always output a winner. Finally, it is not
inconceivable to see the potential of such a layered network design in primitive
cortical areas, even for the aggregation of rather simple features.
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