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Abstract

It is shown that time-varying compensation gives no improvement over
time-invariant compensation for the ti-sensitivity minimization problem.

I Introduction
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Figure 1: Basic Feedback System

Consider the feedback control system shown above in Figure 1 where P

and C are causal linear operators mapping some normed linear space B, with
norm 11 IB, into itself; we assume that the system is well-posed. A sensitivity
minimization problem for this system is a problem in which one aims to pick
the compensator, C, to stabilize the closed-loop and minimize 4(Hyd) where
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Hyd denotes the transfer function from d to y and p is some given norm. The
optimum 'pu-sensitivity" is given by

a~ = inf /A ((I (1)
c stabilizes P

A problem that falls into this framework that has received much attention
([1,2,3,4,5] et. al.) is the Ho,- sensitivity problem where B = 12 (with its usual
norm) and pA is given by:

,AHd) A sup IIHyd(d)112
dee2, jld12

Here the optimum sensitivity is the minimum energy gain from disturbance to
output of the closed-loop system. It might be suspected that the achievable
minimum energy gain increases when only a restricted type of stabilizing con-
troller - e.g. finite-dimensional and time-invariant (FDLTI)- is considered.
However, when P is itself FDLTI, it has been shown ([4,9]) that the optimum
H-,O-sensitivity cannot be improved by considering time-varying or distributed
controllers.

Though H,O-sensitivity minimization has received much attention, it does
not directly control peak deviation in the output, and hence the El-sensitivity
minimization problem was formulated by Vidyasagar in [6]. For this problem,
B is chosen to be teo with its usual norm and p is selected to be

(Hd)sup IIHHyd(d)llo
dEO jIldllo

as this gives the peak gain from disturbance to output.
Once again, one might suspect that excluding time-varying or distributed

controllers from consideration would worsen the achievable optimum il-sensitivity.
Dahleh and Pearson ([7]) showed that excluding distributed compensators does
not worsen the achievable optimum, and gave a procedure for computing a (ra-
tional) compensator, optimal in the class of time-invariant compensators. The
question of improvement using time-varying compensation remained open. It
might be pointed out that results in the Ho, case on time-varying compensation
do not directly lead one to believe that a similiar result would be true in the
tl case. Firstly, the rational optimal solutions to the two problems have vastly
different properties ([121), and secondly the techniques used in H/o proofs are
not generally applicable in the El case.

In this paper we show that, for FDLTI plants, the optimum El-sensitivity
achievable with time-invariant linear compensation is the same as that achiev-
able with possibly time-varying linear compensation. Hence in fact the el-
sensitivity minimization problem shares with the Ho, problem the amazing
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property that over the class of time-varying distributed compensators, an FDLTI
compensator is optimal.

For brevity and clarity, we shall prove the result only in the single-input,
single-output (SISO) case. The generalization to the multi-input, multi-output
case is straightforward.

II Main Results

Let £ denote the normed ring of all bounded causal linear operators, H, from
eoo to itself that possess a pulse response' h(l, k), and let ZTI denote the subring
of £ consisting of time-invariant operators. For H E C it is easy to show that

00

sup lH(x)llo_ =sup E Ih(l, k) I IHIlI1
xE4 0 11k. 1=0

We can think of the operators in £ as infinite matrices, J, that are lower
triangular, have each column in tl, and the sequence of absolute column sums
in 4e,. Of course, an operator in ZT, is marked by the fact that its matrix is
Toeplitz. We may also identify T,, with the space tl. An isomorphism of £Tr

onto l1, for instance, takes an infinite Toeplitz matrix to its first column.
The dual of L, VC*, is also representable as a space of infinite matrices, R,

upper triangular, with rows in eoo and the sequence of absolute row supremums
in t4.

These observations are summed up in:

Lemma 1

1. The subring ZT, may be identified with el. The dual of el may be identified with
eoo.

2. Any bounded linear functional, p, on £ can be identified with a doubly indexed
sequence, p(l, k) such that

E(sip Ip(l, k) ) =M < 

the action of p on H can be expressed as

0o 00

p[H] = E E p(j,i)h(i, j) (2)
i=0 j=o

1 Trace class is sufficient.
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3. Any sequence in 4., A(k), gives rise to a bounded linear functional, p on
whose doubly indexed sequence is

(I, k) | p(k) for 1 = 0;
0 otherwise.

Moreover, p's action on £T? agrees with p(k)'s action on el.

PROOF:
Easy. Left to the reader.

Note that the action (2) can be interpreted via matrices as Trace(RX)).

Lemma 2 Let N be a stable coprime factorization of P. Let X and Y
be stable and satisfy

XN + YD = I

Then any stabilizing compensator for P in ZC has the form

C = (X + D Q) Q E (3)
(Y- NQ)

With C as given in (3), the closed-loop map from d to y in Figure 1
is given by

Hyd = YD- NDQ (4)

and thus all disturbance to output maps achievable with a stabilizing
time-varying compensator are given by (4) with Q E £; all disturbance
to output maps achievable with a time-invariant compensator are
given by (4) with Q E TI?.

PROOF:
This result can be derived from work in [1]. It appears in [10, Theorem 2.7]

and [8]. I

Recalling (1) and using Lemma 2 the optimum l-sensitivity achievable with
time-varying compensation is given by

a = inf II(YD - NDQ)H1 (5)
QEZ

whereas the optimum El-sensitivity achievable with time-invariant compensation
is given by

&= inf II(YD-NDQ)II1 (6)

Our main result is the following.

Theorem 3 a = a.
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PROOF:
For clarity in the proof, we will consider ZTI to be a normed ring in its own

right and will denote elements of CTI with a tilde. The same operator considered
as an element of £ will be denoted without the tilde. Since £T? is a subring of
L2 we have a canonical imbedding (isometric isomorphism) 0b: LTI -- L. We will
write

& = inf U(H-U)I
QE£CTI

and
a = inf II(H- UQ)1l

Where H, U are defined appropriately from (6) and H, and U are the images
under q(-) of H, and tT respectively.

Define the sets

I {UQI QEL}_ C

E {p E I Ip[GIIl < GIIGlllV GE 1} c C*

E~( ~ E - E |pG< 11G111 V& E LTI} C LTI

An application of Fenchel's Theorem ([11, Theorem 1, p. 119]) then gives

a = max P[H] (7)
AEE

a = max p[H] (8)
pEE

Now, b induces a map, O*: C* L ,C, by

0*(p)[1G] - P[()] (9)

Morover, by the Hahn-Banach Theorem, O* is onto a*, and is norm non-
increasing.

By the results in [7] or [13], we have that E is spanned by m linear functionals
representable as elements in eo, by

pa = 1, R(Zol),aR(Z2),... .

Ps = 0, (o-l), ( o0),...

where zo is a non-minimum phase zero of O's z-transform. Now, for each such
z0 there are, by Lemma 1, elements p& and pa in 12* that are mapped to jp and
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pa under 0*. The action of 0* given in (9) and the observation that +(I) c I,
shows pa and pe annihilate I and hence are in E.2 Thus #* (E) = E.

Then

a = maxp[H] = maxp[(H)]
PEE pEE

= max * (p)[fI] (10)
pEE

= maxA[H]
pEE

= A

III Conclusions

We have shown that nl-sensitivity cannot be improved by the use of time-varying
compensation. This means the tl problem and the Hc~ problem both share
the property of having the compensator optimal over the class of all linear
compensators be FDLTI when the plant is FDLTI.

Acnowledgement: Munther Dahleh is supported by the army research office,
Center for intelligent Control, under grant DAAL03-86-K-0171.
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