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ABSTRACT. We study properties of algorithms which minimize (or almost-minimize) empirical error over
a Donsker class of functions. We show that the La-diameter of the set of almost-minimizers is converging
to zero in probability. Therefore, as the number of samples grows, it is becoming unlikely that adding
a point (or a number of points) to the training set will result in a large jump (in Lo distance) to a new
hypothesis. We also show that under some conditions the expected errors of the almost-minimizers are
becoming close with a rate faster than n=1/2,
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1. INTRODUCTION

Let (Z,.A) be a measurable space. Let P be (an unknown) measure on (Z,.4) and Zi, ..., Z, be indepen-
dent copies of Z with distribution P. Let F be a class of functions from Z to R. In the setting of Learning
Theory, samples Z are input-output pairs (X,Y) and for f € F, f(Z) measures how well the relationship
between X and Y is captured by f. The goal is to minimize Pf = Ef(Z) where information about the
unknown P is given only through the finite sample S = (Z1,...,Z,). Define the empirical measure as

Definition 1. Given a sample S and class F,

1 n
fs := argmin P, f = argmin — Z f(Z)
fer fer N4

is a minimizer of the empirical risk (empirical error), if the minimum exists.

The Empirical Risk Minimization (ERM) algorithm above has been studied in Learning Theory to a great
extent. In this paper we prove some properties of almost-ERM algorithms, which, to our knowledge, do not
appear in the literature. ERM is a reasonable strategy only if the class F is uniform Glivenko-Cantelli, that
is, F satisfies the uniform law of large numbers. In this paper we focus our attention on more restricted
classes: Donsker classes. These are classes satisfying not only the law of large numbers, but also a version
of the central limit theorem. The specific structure of the limit of this convergence will allow us to control
correlation of the empirical means of the minimizers of empirical error.

Since an exact minimizer of the empirical risk might not exist, as well as for algorithmic reasons, we
consider the set of almost-minimizers of empirical risk:

Definition 2. Given £ > 0 and S, define the set of almost empirical minimizers

MS ={feF:P,f— inf Pg<¢}
geF

and define its diameter as

diamM§ = sup |f —gl-
F.9eMS

The ||| in the above definition is the seminorm on F induced by symmetric bilinear product
(f.fy=P(f—PH({ —PF).
This norm is a natural measure of distance between functions, as will become apparent later, because the

dot product above is the covariance of the limiting gaussian process. Due to a close relation of the |||
norm to the Ly(P) norm, the results of this paper will hold for the Ly(P) norm as well.

Definition 3. Empirical Process v, indexed by F is defined as the map

fov(f)=vn(P.—P)f % Zzn:l(f(Zi) - PJf).

Definition 4. A class F is called P-Donsker if
Up ~ U

in £>2(F), where the limit v is a tight Borel measurable element in {°(F) and ” ~~ 7 denotes weak
convergence, as defined on p. 17 of [10].

In fact, it follows that the limit process ¥ must be a zero-mean Gaussian process with covariance function
Ev(fv(f) =1 = FI.

Various Donsker Theorems provide sufficient conditions for checking if a class is P-Donsker. Here we
mention a few known results (see e.g. [10]) in terms of entropy log N and entropy with bracketing log V.

Proposition 1. If [;* \/log N[j(e, F, L2(P))de < oo, then F is P-Donsker.
Definition 5. An envelope F of the function class F is a measurable function with F > |f| Vf € F.



Proposition 2. If the envelope F is square integrable and [;° supg \/log]\/(e [Fllga:F, L2(Q))de < 0,

then F is P-Donsker for every P, i.e. F is universal Donsker class. Here the supremum is taken over all
finitely discrete probability measures.

If F is a {0,1}-valued class, then F is uniform Donsker class if and only if its VC dimension is finite (see
[3]). Rudelson and Vershynin [7] extend Dudley’s result: a class F is uniform Donsker if the square root
of its VC dimension is integrable.

2. MAIN RESULT

We now state the main result of this paper:
Theorem 1. Let F be a P-Donsker class. For any sequence &(n) = o(n~'/2),
diam/\/lg.(") 0.
The outer probability P* above is due to measurability issues. Definitions and results on various types

of convergence, as well as ways to deal with measurability issues arising in the proofs, are based on the
rigorous book of van der Vaart and Wellner [10].

Corollary 1. The result of Theorem 1 holds if the diameter is defined with respect to the La(P) norm.

We start, the proofs with two technical Lemmata.

Lemma 1. Let fo,fi € F, fo— fill = C/2, Ifull < Ioll- Let hs F — R te defined as h(f") = L2250,
Then for any € < %
2
inf h— sup h> C—
B(fg,e) B(fl,E) 16
Proof.
A = inf h— sup h
B(fo€) B(f1,¢)
= h(fo) = h(f1) + nf{n(f" = fo) + h(fr = f')If" € B(fo,€). f" € B(f1,€)}
2¢ 8e
> h —h ——— >h —h - =,
= h(fo) = h(f1) ol = (fo) = h(f1) — &
since || fo|| > C/4.
Finally
2 2 2 2 C?
2(fo = f1. fo) = lfo = Al = (AT + 1fl7 = [Ifo = £ll" = R
then
C? C?
h(fo) = h(f1) = > —,
8 foll* 8
which proves that
C? 8 _ C?
A>— — — >,
-8 C — 16
O

The following Lemma is an adaptation of Lemma 2.3 of [4].
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C3

Lemma 2. Let fo, f1,h be defined as in Lemma 1. Suppose € < 155.

with mean p and covariance cov(v,(f), vu(f')) = (f, f').

Then for all 6 > 0

Let v, be a gaussian process on F

. 640
Pr* (| sup v, — sup v,/ <6 | < -3
B(fos€) B(f1,¢) c

Proof. Define the gaussian process Y (-) = v,(-) — h(-)v,(fo). Since Cov(Y(f'),vu(fo)) = (f's fo) —
h(f") I fol> = 0, v, (fo) and Y'(-) are independent.

We now reason conditionally with respect to Y'(-). Define

Ti(z) = sup {Y(-) +h(:)z} with i =0, 1.

fie
Notice that
P (| sup v — sup vl <8V | = Pr* ([To(vu(fo)) — Ta(vu(fo))] < ).
B(fo,€) B(f1,€)

Moreover I'y and I'y are convex and

02
info_ T'g—sup04I'y > inf h— sup h > —,
0 p o _B(fo,ﬁ) B(fll,)E) - 16

by Lemma 1. Then I'y = I'; in a single point zy and

Pr* (|Co(vu(fo)) = T1(vu(fo))| < 8) < Pr* (vu(fo) € [20 — A, 20 + A])
with A = 165/C2.

Furthermore,
* 320
Pr* (vu(fo) € [20 — A, 20 + A]) < o2 QWVar(yu(fo))’
and Var(v,(fo)) = || fol®> > C2/16, which completes the proof. O

The proof of our main theorem relies on the Almost Sure Representation Theorem (Thm 1.10.4 in [10]).
Here we state the theorem applied to v, and v.

Proposition 3. Suppose F is P-Donsker. Let v, : Z™ + (*°(F) be the empirical process. There exist a
probability space (Z2', A’, P") and maps v), : Z' +— {>°(F) such that

(1) v, &

(2) E*f(v),) = E* f(v,) for every bounded f : (°°(F) — R for all n.

Lemma 1.9.3 in [10] in turn shows that when the limiting process is Borel measurable, almost uniform
convergence implies convergence in outer probability. Therefore, the first implication of the theorem above
states that for any C' > 0

Pr* <sup lv,, — V| > C’) — 0.
f

We are now ready to prove Theorem 1. The reasoning in the proof goes as follows. We consider a finite
cover of F. Pick any two almost-minimizers which are ”far apart”. They belong to two covering balls with
centers "far apart”. Because the two almost-minimizers belong to these balls, the infima of the empirical
risks over these two balls are close. This is translated into an event that the suprema of the shifted empirical
process over these two balls are close. By looking at the gaussian limit process, we are able to exploit the
covariance structure to show that the suprema of the gaussian process over balls with centers ”far apart”
are unlikely to be close.



Proof of Theorem 1. Fix C' > 0 and let ¢ = min(C®/128,C/4). Consider the e-covering { f;|i = 1,...,N (e, F, ||}
Such a covering exists because F is totally bounded in ||-|| norm (see page 89 in [10]). For any f, f’ € Mg(n)

sit. ||f = f'|l > C, there exist k and [ such that ||f — fi]| < e < C/4, ||f' — fill £ € < C/4. By triangle
inequality it follows that || fr — fi]| > C/2.

Moreover
ir}an < B(l]rcif’ )P <P, f< man+§( )
and
inf P, < inf P, <P,f < Hlan +&(n).
F B(fi€)
Therefore,

inf P, — inf P,| <&(n).
B(fkyg) n B(fl’g) n —6( )

The last relation can be restated in terms of the empirical process v,:

<¢&(n)vn.

Sup {Vn - \/ﬁp} — sup {Vn - \/ﬁp}
B(f1,€)

B(fk€)

Now choose an arbitrary § > 0 and fix ns s.t. for n greater that ns the Lh.s. in the above relation is less
than §. Then Vn > ng
< 5> |

Pr (diamMg(”) > 0) = Pr* (Hf, fre ME™MNIF = £l > C)
< 5) .

We now want to bound the terms in the sum above. By the Almost Sure Representation Theorem, there
exist a probability space (2, A’, P') and maps v), : Z' — £°°(F) such that Pr* (supr |v), —v'|) — 0 and
vy, and v/, have the same distribution. Assuming without loss of generality that || fx|| > || fi]|, we obtain

e 1)
o <)

sup {v' —vnP+v, —v'} — sup {V' —/nP+v, -V}
B(fk»€) B(f1,€)

sup {v, — v/nP} — sup {v, —/nP}

< Pr* (3 kst |fe— fill >C/2,
B(fx»e€) B(fi,€)

By union bound

N (eI
Pr* (diamMg(n) > C) < Z Pr* (
k=1
[ fe=fill2C/2

sup {vn —vnP} — sup {v, —/nP}

B(fr,e€) B(f1€)

sup {vn —V/nP} — sup {v, — /nP}
B(fi€)

B(fr»€)

sup {1/ —/nl} — sup{ —/nP}

B(fr»e€)

2

< 26) + Pr* (sup|V;L V| > 6/2)
F

:Pr*<

sup {v' —v/nP}— sup {V —/nP}

B(fr€) B(fi,€)
1286

< s <51]1:p|1/,’1—u'|25/2> ,

SPr*(

where the first inequality results from a union bound argument while the second one results from Lemma
2 noticing that v/ — \/nP is a gaussian process with covariance (f, f’) and mean —/nP, and since by
construction € < C3/128.

Finally we have

12
pPr* (diam/\/lgs(n) > C) < N(e, F,||-)? < 026 + Pr* (Sup v, —v'| > 5/2))
f
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and the thesis follows from the arbitrariness of é. O

Proof of Corollary 1. Note that
If = F1% = 17 = 1P+ (PO = 1)

The expected errors of almost minimizers over a Glivenko-Cantelli (and therefore over Donsker) class are
close because empirical means converge to the expectations.

Pt (31,1 € ME" st |If = 1'll, > C)
< pr (3 £.f e ME™ st [Pf—Pf| > C’/\/i) 4Pt (diam/\/tg(”) > O/x/i)

The first term can be bounded as

Pr* (3£, € ME™ st |Pf = Pf|>C/V2)

IN

Pr* (31,1 € Fo|\Puf = Paf'| S &), [P — Pf'| > C/V2)

IN

P (fs#gf ulf = )] > VAIC/VE - s<n>|>

which goes to 0 because the class {f — f'|f, f' € F} is P-Donsker. The second term goes to 0 by Theorem
1. (I

3. STABILITY OF ALMOST-ERM

Corollary 2 shows stability of almost-ERM on Donsker classes. It implies that, in probability, the Ly (and
thus L) distance between almost-minimizers on similar training sets (with o(y/n) changes) is decreasing.

This result provides a partial answer to the questions raised in the Machine Learning literature by [6, 8]: is
it true that when one point is added to the training set, the ERM algorithm is less and less likely to jump
to a far (in the L; sense) hypothesis? In fact, since binary-valued function classes are uniform Donsker
if and only if the VC dimension is finite, Corollary 2 proves that almost-ERM over binary VC classes
possesses L stability. For the real-valued classes, the uniform Glivenko-Cantelli property is strictly more
general than the uniform Donsker property, and therefore it remains unclear if almost-ERM over uGC but
not uniform Donsker classes is stable in the L sense. This provides a partial answer to the question raised
in [8], where L; stability over uGC classes was conjectured.

Use of L; stability goes back to Devroye and Wagner [2], who showed that it is sufficient to bound the
difference between the leave-one-out error and the expected error of a learning algorithm. In particular,
Devroye and Wagner show that nearest-neighbor rules possess L; stability (see also [1]). Our Corollary 2
implies L; stability of ERM (or almost-ERM) algorithms on Donsker classes.

It is known that exact empirical risk minimization is an NP-hard problem even for simple function classes.
An interesting further direction of research is to see whether the result of Corollary 2 can have algorithmic
consequences.

Corollary 2. Assume F is P-Donsker and uniformly bounded with envelope F = 1. For I C N, define
S(I) = (Zi)ier. Let I, C N such that M, = |I, A [1 : n]| = o(n'/?). Suppose f, € ME and

S([1n))
fl e Mg((;;)) for some &(n) = o(n~'/?) and &'(n) = o(n=/?) . Then

P
[lfn = fall — 0.

The norm ||-|| can be replaced by La(P) or Ly(P)-norm.



Proof. 1t is enough to show that f/ € ./\/l£ (") ) for some " (n) = o(n~'/?) and result follows from the

Theorem 1.
M, 1 ,
— E — + - E Z
f n + n fn( l)

7,6 [1:n] i€l

IA

M,, |In‘
< L4 =2 f
~ n + n (E( +912}‘ |In| Z )
1,
< —+| o an
n ’LGI
I,
< 27 | e Z a2
zeln
M, ||, .
< 22— 4 = f — Z;
< oMo Molor) ey v e L5 o)

i€[1:n]

Define ¢”(n) := 28= 4 %{’(n) + &(n). Because M,, = o(y/n), i.e. the two sets are not very different,
it follows that ¢”(n) = o(n~/2). Corollary 1 implies convergence in Ly(P), and, therefore, in L;(P)
norm. a

4. EXPECTED ERROR STABILITY OF ALMOST-ERM

We show that if a bound on the rate of decrease of the diameter in Theorem 1 is available, then, under
some conditions on the class, the difference between expected errors of almost-minimizers decays faster
than n~'/2. Similarly to the previous section, this implies that ERM is stable in the sense that when the
training set is perturbed, the difference of expected errors decays faster than n="'/2.

From the proof of Theorem 1, the rate of decrease of the diameter is bounded by the rate of convergence of
the empirical process to the gaussian process. Some results on the rate of such convergence can be found in
[5]. In the following Corollary, we will assume the rate of decay of the diameter is known and a condition
on the metric entropy growth is satisfied.

Corollary 3. Let F be a uniformly bounded function class with the envelope function F = 1. Assume
N(F,~) = Supg M(F,Q,7) < 0o for 0 < v <1 and Q ranging over all discrete probability measures. Let

./\/l?g(n) be defined as above with £(n) = o(n~/?) and assume that for some A(n) = o(n'/?)

(1) A(n)diamMmE™ 5 0,

Suppose further that

(2) An)Y2 —log N(F,n"Y2\(n)"Y/4) = +oc.
Then

Vioosw |P(f - ) 2o,

f,f’GMg(n)
In particular, if F is a VC-subgraph class, the condition (2) is satisfied whenever the diameter decays faster
than log®n, i.e. A(n)/log?n — occ.
The proof relies on the following ratio inequality of Pollard [9]:

Proposition 4. Let G be a uniformly bounded function class with the envelope function G = 2. Assume
N(G,v) = supQ./\/1 (G,Q,27) < o0 for 0 < v <1 and Q ranging over all discrete probability measures.

Then

sup

& @l + Pl +57 26) < 32N/(G,7) exp(—ne)
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Proof of Corollary 3. Define G={f—f': f,f € Ftand G’ ={|f — f'| : f,f € F}. It can be shown that
F, G, and G’ are Donsker classes (see [10]). In particular, N'(G,2y) < N(F,v)? and the envelope of G is
G = 2. Apply Proposition 4 to the class G:

pre [ sup L =)= P(F = )]
rprer €(Palf = 1+ PIf = f']) + 57

> 26) < 32N(F,~/2)? exp(—ney).

The inequality therefore holds if the sup is taken over a smaller (random) subclass Mg(n):

. [P = )|~ &)

> 26 | < 32N(F.~/2)? exp(—ne).
S Palf = P+ PIF= P+ 57 (o2l ew(=ne)
’ S

Since sup,. ggi; > sup, SHA(JE) __ sup, A(x)

p, B(z) — sup, B(z)’

Prof sup  [P(f—f)=&n)>26  sup  (e(Pulf = f[+ Plf = f']) +57)
f,f’eMg(n) f,f’EMg(")

< 32N (F,7/2)? exp(—ne).

By assumption,

An) sup  Plf—f] 0.
hfremy™

Because G is Donsker and \(n) = o(n'/?),

p*
An)  sup  |Po|f — f'| = PIf — f']| =— 0.
f,f’GMg(n)
Thus,
p*
A(n)  sup  Pu|f = f'[+P|f = f'| —0.
f’fleMg(n)

Now choose €, = n~'/2\(n)® and 7,, = n~/2\(n)~# for any 0 < # < a < 1. Then ne,v, = A(n)*? and

R2AM) sup en (Palf — |+ PIf — f1) 250,
f,f’GMES(n)

For the sake of simplicity, set « = 3/4 and = 1/4.
By definition of limit, for any § > 0, there exist Ng such that for all n > Ny,

Pr (Vi sup 26 (en (Palf = f/| 4 PLf = /1) + 5y) > 2M(n) 71" | <.
f,fIEMEv(n)

Thus,

Prr (Vi sup [P(7 £)] < Vign) + 20(m) 4| 2 1-82N(F, Do 2A(m) Y expl-A()/2) 4.
f,f’GMg(n)

The result follows by the assumption on the entropy and by arbitrariness of 4.

If F is a VC subgraph class of dimension V, its entropy numbers log N'(F,¢) behave like V log %, ie.
log N'(F,n=/2X(n)1/*) behaves like Vlogn + VlogA(n). Condition (2) will therefore hold whenever
A(n) grows faster than log® n. O
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