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Introduction

We consider the problem of identifying the sinusoidal components in a short time

series. We assume that the samples are equally spaced in time. The necessity to

deal with a short sequence of samples arises in applications such that the process

generating the signal is short-lived (e.g., NMR spectroscopy) or that the process is

time-varying (e.g., sonar tracking of a moving object). In this report we compare

three spectral estimation methods that are designed to work well with short data

sequences.

Traditional methods and their short comings

Common spectral estimation methods are based on the discrete Fourier transform

(DFT) and are computationally efficient because of the availability of the fast

Fourier transform (FFT) algorithm. Let {x,} be the sequence of signal values

sampled at the interval r, and N samples are observed. Then the "Periodogram"

provides us with an estimate of the power spectral density (PSD) function for'

-7r/r < w < /r:

PP(w) = - N e-jwn

We can also obtain PSD from the estimate of the correlation process, rk -E(;n+kz2):

K

k=-K

which is often called the Blackman-Tukey estimator. The sequence {rk} is usually

estimated by some weighted averages of the correlations among the data {f}Xnlo.

Typically, these spectral estimators are computed digitally, and samples of Pp(W)

and PBT(W) are computed by DFT taking the places of the Fourier transform.

Methods utilizing DFT have great disadvantages when dealing with a short data

sequence [6]. First, they have a limited frequency resolution. Second, they produce

a distorted spectrum (the plot of the magnitude of PSD against frequency) such

that "sidelobes" of larger peaks tend to mask smaller peaks nearby. The main

sources for these problems are:
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* DFT models the signals as a linear combination of sinusoids with harmonically

related (equally spaced) frequencies.

* DFT implicitly models the entire sample sequence ( },n=_Oo as a periodic

extension of the observed sequence t{ X}nlo. This is not a realistic model of

the signal in general.

To see these problems in more detail, consider the DFT pair {yn and {Ym}:

N-1

Ym = E yne-j2mn/N (1)
n=O

1 N-1

Yn - N E YImed /N (2)
m=O

Note in (2) that {yn} is decomposed as a linear combination of harmonically related

sinusoids. Also, the implicit periodic extension, Yn+N = y, can be observed. The

spectral resolution is given by the interval in the frequency domain:

27r
Aw =-

Nr

Thus, for small N the resolution is not good.

Zero-padding the data, thereby increasing the appearent N, before the applica-

tion of DFT does not improve the real resolution. To see this, note that (Ym} in

(1) are not the samples of the Fourier transform of the true signal sequence, unless

yn's are zero outside of the observed time frame n = O,... , N - 1, i.e.,

Y(w) = E yne-j
n=-oo

Ym , Y(mAw).

Rather, Ym} are the samples of the Fourier transform of the truncated sequence:

N-1

Y'(w) = E yne-j
n=O

Ym = Y'(mAw)

By zero-padding the data sequence, one can achieve only a better approximation of

Y'(w) but not of Y(w). It can be shown that convolving Y(w) with a "sinc"-like,
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periodic function yields Y'(w) [8]. Such a convolution transforms a peak in Y(w)

into several lobes in Y'(w). The heights and locations of the peaks in the true

spectrum are obscured by overlapping of these lobes.

High resolution methods

The so-called "high resolution" spectral estimation methods are developed mainly

for the purpose of distinguishing closely-placed frequencies in the spectrum. A

variety of such methods exist, but this report focuses on three methods that employ

similar mathematical technique to deal with the noise. These are: the Total Least

Squares-Principal Eigenvector (TLS) method, Pisarenko Harmonic Decomposition

(PHD), and MUSIC method. In all three methods the ideal signal is modeled as a

linear combination of exponential sinusoids:

L

Xn = Epie jwin (3)
i=l

We are interested in estimating the number of the sinusoidal components (L), their

frequencies (wi), and their complex amplitudes (magnitudes and phases, pi). Unlike

the situation in the DFT-based methods,

* wi's are not harmonically related.

* The signal model is valid for all n, and it does not introduce any artifical

periodicity, i.e., there is no periodic extension.

The three methods differ in the manners they incorporate the noise into the signal

model:

TLS

L

Xn z E pie jwen (4)
i=l

PHD

L

7tk - E i2ejwi (5)
i=l
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MUSIC

L

Xn = ZPiewin +nn (6)
i=1

While TLS and PHD treat the noise as some unspecific perturbations in the data

samples, MUSIC requires an explicit noise model. {nn} is a zero-mean complex

random process uncorrelated with {pi). The complex amplitudes pi's are considered

to be a zero-mean complex random variables in PHD and MUSIC, but TLS assumes

no prior statistical information on them.

PHD models the correlation sequence {rk) instead of the raw data sequence,

implying that {(}, must be wide-sense stationary. This stationarity requirement

restricts {(pi to be an uncorrelated sequence:

rk = E(Xn+kkZ))
L L

E EE(pip )ei(wi-w )nejwik (7)
i=l m=l

Since rk cannot be dependent on the value of n, we must have

E(Pipm) = 0

for i - m. Thus, (7) yields (5) where P2 -E(lpil 2 ). Since we have taken the norm

of pi, the phase information is lost in PHD.

TLS and PHD are based on a computational technique called Prony's method

which implies that the behavior of the signal ({X,) or {rk)) can be described by a

linear predictive model. Interestingly, this hidden model specifies the noise process

in PHD:

PHD (implied models):

L

rk = i2e + tre,
i=l

L

Xn = aiXn-i + nn
i=l

where 6k is the impluse function, {a,} are the linear predictive coefficients, and nn

is a white noise with variance A7. Prony's method and its implications are discussed



later in more details. Let us note that the MUSIC procedure is not involved with

such an underlying model.

The goal of this report is to compare the three high resolution spectral estimators

from a common perspective.
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An Unified Viewpoint

A common theme exists in the noise reduction techniques used by TLS, PHD, and

MUSIC. This section previews the techniques and defines some terminologies in

order to establish a basis for comparison of the three methods in later sections.

The rank L data matrices

Throughout this report, let us denote the number of the sinusoidal components in

the signal and the number of samples in the time series as L and N, respectively.

We define the data vector x as a subsequence of K data samples where L < K < N:

Xm = [Xm+1, ..., Xm+K] , m = O, ... , N-K.

The value of K differs among the three methods. The data matrix X is a matrix

derived from the data vectors. Let us describe X in each method.

1. TLS: B is a matrix where rows are N - K + 1 distinct observation vectors

(transposed).

x0

X=B = - (8)

XTN-K

The number of rows must be at least L, i.e., K < N - L + 1. Inspecting the matrix

carefully, we see that the columns are also data vectors (of dimension N - K + 1).

2. PHD: R is the transpose of the correlation matrix. It is similar to B except that

its elements are {rk} instead of {x(}, i.e., its rows are subsequences of correlations.

X = R -[E(xx)]T = E(x*xT) (9)

The rows of R are some linear combinations of transposed data vectors.

3. MUSIC: Q is the K x K correlation matrix.

X = Q - E(xx) (10)
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Note R = QT. The columns of Q are linear combinations of data vectors.

In the ideal situation where there is no observation noise or modeling error, each

data matrix described above has rank L. To see this, we first note that an ideal

observation vector xR is in a L dimensional subspace. Let us define the sinusoidal

vector as

Si = [ewi*, .. , eiKi] i= 1, ... , L,

which are linearly independent when {w)} are distinct. From (3), x is in the sub-

space, St, spanned by {(si)}=l

X E S, - pan(S1, * ,,SL) (SL)

We call this L dimensional subspace the signal subspace.

For TLS, it is easy to see that rank(B) = L because each of its row and column

spaces is spanned by the corresponding sinusoidal vectors. The same is true for

PHD, i.e., rank(R) = L from (5).

For MUSIC, we must make some assumption about the second order statistics

of {Pi}, the amplitudes of the sinusoids, to ensure that rank(Q) = L. Let us define

the sinusoidal matrix as

S = [sl1 ISL]

Then,

x = Sp, (12)

where p = [pl, ... , pLjT. Since S has rank L, the rank of Q depends on the state

of the matrix P E(ppH):

Q = SE(ppH) SH = SPSH

A sufficient condition for rank(Q) = L is that P is invertible. We assume that this

condition holds; it implies that {Pi) are not strongly correlated from each other.
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The theme in noise reduction

A data matrix X is ideally of rank L, but because of the noise it tends to have a

full rank. Recovering the true rank of X is important because it yields an estimate

for L, the number of the sinusoids in the signal. Furthermore, by analyzing the

dimensionality of the data matrix we can optimally estimate the L dimensional

signal subspace. Specifically, when the signal to noise ratio is reasonably high,

the noise perturbs an ideal data vector x out of the signal subspace only by a

relatively small amount, so that the perturbed vectors cluster around the signal

subspace. Thus, X is almost rank L and thus is rank deficient. The singular value

decomposition is useful in the analysis of "near rank deficiency" of a matrix [1]. Let

X = rank(X) > L.

X can be decomposed as

X
X= Z i,u, v, (13)

i=l

where ai, ui,vi are the singular values, left singular vectors, and right singular vec-

tors, respectively. "H" denotes the conjugate transpose. An important observation

here is that since X is almost L dimensional,

nL+1, *.., cx are much smaller than the other singular values.

Let us distinguish the two groups of smaller and larger singular values by calling

them "near-zero" and "principal" singular values. The optimal rank L approxi-

mation, X', of X is obtained by reconstructing a matrix from the L "principal

components" in X:

L

X'= oiuiv. (14)
i=l

X' is optimal in the sense that it minimizes the Frobenius norm [1]:

IIX- X'11F Z (X -Ei)(]1 -i j~~~~~~~~~



Thus, the singular vectors associated with the "principal" singular values can be

used to estimate the signal subspace. For example, for X = Q (MUSIC), the signal

subspace can be estimated as

Ss = span(u1,. . ,UL)

The corresponding noise subspace is given by

31 = span(uL1,. . Ux)

8, I S,

Note that )/, is not the subspace spanned by the noise process. A random noise

process spans the entire space. Only the noise components in R), are identified, and
the components in S, are treated as parts of the signal. Nevertheless, the noise

perturbs the ideal data vectors out of the signal subspace in random directions so

that the average effect over many data vectors should be small. We can therefore

expect a fairy accurate estimate of the signal subspace.

Once the signal subspace is determined, the set of basis vectors {si}, 1 must

be identified. The identification of the spectral frequencies {wi}L 1= directly follows

this. The rest of this report attempts to contrast the ways TLS, PHD, and MUSIC

identify those frequencies.

A variation of the theme

TLS and PHD do not explicitly use the signal and noise subspaces as described

above. To them, the null space Null(X) is important. In particular, the identifi-

cation of the vector c such that Xc = 0 is a key step in Prony's method on which

TLS and PHD are based. Because an over-ranked X tends to have no non-trivial

null vector, we make the approximation that X'c = 0, which leads to

c E Null(X') = span(vL+l,... ,v) (15)

where {vi} are the right singular vectors of X, (13). c is related to the noise

subspace as

c* E xJ = span(v+l,.. .,v )
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This relation implies the connection between Prony's method and MUSIC which

is constructed on the concept of the signal and noise subspaces. We discuss this

connection further in the last section.

Another variation of the theme

In PHD and MUSIC, the rank L approximation is not the one given in (14); it is

L

X'= X- iI = (ai - 7)uiv' (16)
i=l

where

77 - L+1 P * * * aX

(Note that X in PHD or MUSIC is Hermitian.) The assumption that the "near-

zero" singular values are almost equal is acceptable for a noise uncorrelated with the

signal. X' is not an optimal approximation in the sense of the Frobenius distance,

but it yields a physically interpretable noise process as described in later sections.



Background Prony's Method

Prony's method is a computational technique for modeling equally spaced samples

with a linear combination of complex exponentials. It is a center-piece in both TLS

and PHD spectral estimators. Some specializations are required when applying

Prony's methods to TLS and PHD because the samples are to be modeled with

sinusoids (i.e., an additional constraint that all exponentials must have unit norm.).

Special issues involving the application of Prony's method to spectral estimation

are discussed later in this section. We first review the basics of Prony's method.

Prony's Method [5]

Let us consider a sequence of data samples {ynf=L1, and suppose that we want

to approximate the sequence as a linear combination of exponents of L complex

numbers {z }/L· :

L

En ; Caizin, n = 1,...,-N, (17)
i=l

where the coefficients {as} are also complex numbers (the amplitudes and phases

of the exponentials). Let us assume for the moment that N = 2L. Solving for

the 2L unknowns, zi's and pi's, from the same number of non-linear equations is

computationally unattractive. With Prony's method, however, all computational

stages except one are typical matrix algebra; the only other stage is the identification

of the zeros of a polynomial.

Let us define an Lth order polynomial Ob(z) (with coefficients c,, i = 1,... ,L)

whose roots are the unknown exponents:

L

+Jb(Z) _ (z--Z)
i=l

- cozL + c1ZL- + ... + CL, Co = 1. (18)

Then,

L L L

i=O i=O k=l
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L L

-= Eak zn-L cizL-i

k=1 i=O

L
ak Zkn-L (Zk)

k=l

= 0. (19)

This shows that the coefficients of the polynomial Oi(z) are the coefficients of a

linear predictive (LP) model:

L

yn C(- i)yn-i- (20)
i=l

Thus, the N data samples {yn} provide us with the following matrix equation:

Y1 Y2 ... YL CL -- YL+1

Y2 Y3 ... YL+1 CL- -YL+2 (21)

YN-L YN-L+1 ... YN-1 C1 -YN

We write this equation as

AC t b. (22)

In principle, therefore, the data samples can be used to evaluate c from which the

exponents {zi} can be found. In particular, if we assume that N = 2L (making

A a square matrix) and that A is invertible (dependent on the particluar data

sequence, of course, but practically acceptable), then the coefficients of L(z) can

be estimated as c = A-lb, and {zi)}l 1 can be obtained by finding the zeros of

the polynomial. Once zj's are known, (17) provides us with 2L linear equations to

solve for ai's. This overdetermined system of equations is usually solved by a least

squares method. This completes the exponential fit procedure. Note again that the

only nonlinear computation involved is the determination of the zeros of b(z).

Extended Prony's method

To solve for c in (22) we have just assumed N = 2L. A more realistic situation is

N > 2L, i.e., more data samples are used to "average out" the noise. This makes
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(21) an overdetermined system of equations. In the so-called "extended Prony's

method," the equations are solved by a least square fit. A key contribution of the

TLS method discussed in the next section is that it introduces the total least squares

criterion to solve for the overdetermined system of equations.

Sinusoidal fit with Prony's method

In TLS and PHD, the data samples are modeled with sinusoids, i.e., lzil = 1,

but Prony's method does not constrain the exponents to be of unit norm. The

following examples illustrate the danger in applying Prony's method to sinusoidal

fit carelessly:

example 1

Given L = 1, y = 1, and Y2 = 2 (N = 2L),

%6(z) = z- 2 = 

z= 2

Yn = 12n

Obviously, sinusoidal fit is not successful. If more data points are available, however,

Prony's method works:

example 2

Given additional data samples y3 = 1 and y4 = 2 and L = 2,

+(Z) = 2 _ 1 = 0

Z 1 = e10 , Z2 = -1 = ej

n = 3 + cos irn

The two examples have the same ratio of the number of samples to the number

of sinusoids. The difference between the two sample sequences in these examples

seems best described qualitatively: the second sequence shows periodicity while the

first one does not. Here is another example illustrating the lack of periodicity in the

data sequence leads to a failure. The same number of samples are generated from

the same waveform as in example 2, but this time the sampling rate is doubled:

example 3
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Given Yl = 1.5, Y2 = 1, y3 = 1.5, y4 = 2,

y, = 0.606 (1.348)n - 4.617 (-0.148) n

These examples seem to indicate that the applicability of Prony's method to sinu-

soidal decomposition must be judged based on some qualitative observation on the

periodicity in the data sequence.

In TLS sinusoids are fit to the raw data samples, (4), while in PHD they are

fit to the estimates of the correlation sequence, (5). The later is theoretically safer

than the former, because a sequence with the Hermitian property (rk = rk) can be

expressed as a linear combination of a small number of sinusoids. See the section

on PHD for more details. The rest of the report assumes that the data set {(x) is

determined "fittable" with sinusoids.

Resolution and LP model order

We have shown that Prony's method implicitly assumes an Lth order LP model of

the samples, (20). This roughly means that the method performs a decomposition

based on the behavior of the signal within the time frame of L + 1 samples. Noting

that sinusoids with similar frequencies must be observed for a relatively long time

to distinguish themselves, we argue that the higher the model order the better the

ability of the estimator to resolve the frequencies. The order of the LP model in

(20) is hence raised to M (L < M < N - L) to improve the frequency resolution.

We now have a rearranged equation Ac = b

X1 X2 · ·.. XM CM - XM+1

52 Z3 ... = XM+1 CM-1 -XM+2 (23)

XN-M XN-M+1 ... XN-1 Cl -- XN

and a Mth order polynomial

Ci(Z) = CZM + CZM-1 + c, C = 1. (24)

L of the M zeros of the polynomial is the exponents being sought; the rest of the

zeros are not related with the signal and are called "extranous zeros." A popular
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method for segregating the signal and extraneous zeros is described by Kumaresan

[7]:

Suppose {zx} are in fact samples of a linear combination of sinusoids

(no noise). If the system of equations (22) is solved so that c is of the

minimum norm among the possible solutions, then

· Izi = 1 for the signal zeros

· jzil < 1 for the extraneous zeros.

Still, identification of the signal zeros from a noisy data set can be difficult

especially when a wrong value of M is chosen [4]. Kay and Marple [6] suggests to

keep M < N/2 to avoid mistaking extraneous zeros as signal zeros. Contradictingly,

the case where M = N - L (note M > L), called the "Kumaresan-Prony" case,

yields a good result and is computationally attractive [4][14]. Typically, during the

theoretical development of a spectral estimator, the LP model order M is kept as

an implementational variable, so that the issue of choosing an optimal M is left

unanswered. That is the case for TLS.

A possible disadvantage of using a higher order LP model is that zeros must be

found from a higher order 4'(z), which may be computationally unattractive. PHD,

older among the high resolution methods, does not utilize a higher order model,

i.e., M = L.
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TLS: A Principal Eigenvector Method

The Principal Eigenvector spectral estimator is a direct application of the extended

Prony's method. The essence of the method is its optimal solution to the system

of equations (23). In what is commonly referred to as the Principal Eigenvector

method, Tufts and Kumaresan [13] have imposed a least squares criterion upon (23)

to solve for c. Later, Rahman and Yu [11] have rearranged (23) into a homogeneous

set of equations so that a total least squares criterion can be applied. We refer to

this as TLS. In this section we discuss both approaches and compare them.

The least squares formulation [13]

If (23) is overdetermined, c cannot be solved exactly in general. If, on the other

hand, (23) is underdetermined, there are infinitely many solutions. Hence, the

following least squares constraints are applied:

Find c that minimizes lb - Aijl. If there are more than one such c,

choose the one that has the minimum norm.

We have discussed the advantage of the minimum norm solution in segregating the

signal zeros of L (z) from the extraneous zeros. The least squares constraints can

be restated as follows:

Find the matrix A' such that fIA' - AIIF is minimum and b E range(A').

Find the minimum norm solution to A'C = b.

This alternative statement indicates that the least squares criterion correct for the

perturbations in A but not those in b.

Psudo-inverse and minimum norm solution

In the ideal case (no noise), the minimum norm solution is obtained using the

"psudo-inverse" of the matrix A [4]:

c = A-Pb. (25)
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In general the psudo-inverse A-P is defined by

rank(A)

A-P = E as lviH (26)
i=l

where a, ui, vi are the singular values, left singular vectors, and right singular vectors

of A, respectively. When A has a full column rank, the expression in (26) can be

shown to be equal to (AHA)-'AH, which is a common but not a general definition

of the psudo-inverse.

The principle behind Principal Eigenvector

A small perturbation in A tends to increase the rank of the matrix and create small

singular values which should have been zero. This leads to a large perturbation

in the psudo-inverse because the singular values are inverted in (26). One way

to avoid this problem is to make a lower rank approximation of A before taking

the psudo-inverse. The lower rank approximation A' of A is computed from the

singular values and vectors of A:

L

A' = c aiuivt (27)
i=l

The value of L is estimated by the number of "principal" singular values.

A' in (27) is the closest rank L approximation to A in the sense of Frobenius

norm. For any rank L matrix A" (which has the same physical dimensions as the

matrix A), we have [1]

rank(A)

IIA"-AllF E d r'
i=L+I

A" = A' achieves the lower bound; hence, A' is the closest rank L matrix to A.

The principle underlying the lower rank approximation is that the perturbation

in the data affect the singular values and vectors very little. Specifically, the singular

values and vectors of the ideal data matrix A are assumed to be related to those of

the perturbed matrix A by:

{| ia i=+1,...,ak(L (28)
ai 0 i = + 1, ..... , rank(A)
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ui Fii u i=1,..., rank(A) (29)
Vi P Vri

where cri,u i ,vi are the singular values/vectors of A and i, i, vi are those of A.

There are some experimental evidence supporting this assumption [14]. Also, the

assumption can be considered to be an extension of the observation that the eigen-

vectors corresponding with large, well-separated eigenvalues are relatively insensi-

tive to matrix element perturbations [15]. (Note that for a conjugate symmetric

matrix, eigenvalue/vectors and identical to singular value/vectors.)

Highlights of the least squares approach

* Estimate L from the number of principal singular values of A.

* Calculate A'- P , the psudo-inverse of the lower rank approximation of A, by

replacing "rank(A)" with "L" in (26).

* Find c using (25).

TLS-total least square approach [11]

One major drawback of the least squares approach described above is that it only

handles the perturbations in the matrix A but not in b. As you can see from (23),

both matrices are composed of the data samples, and correcting perturbations in

just one of them is biased. The total least squares approach rearranges (23) into a

homegeneous matrix equation:

[A -b][] =0,

which we write as:

Bc= 0 (30)

The dimension of B is (N - M) x (M + 1), and the last element of the M + 1

dimensional c must be 1. Let us consider the case in which the system of equa-

tions is overdetermined. With noisy data set, B tends to have a full column rank



(rank(B) = M+ 1). Then, no non-trivial solution to the equations exists in general.

The total least square criterion is thus imposed upon the equations so that a unique

c can be obtained:

Find the rank L matrix B' which minimizes IB' - BIIF. In the null

space of B', find the minimum norm vector c, whose last element is 1.

Again, the advantage of the minimum norm solution is in the segregation of the

signal zeros from extraneous zeros. B' is approximated based on the "Principal

Eigenvector principle" (28)(29) and is given as:

L

B' = cTiuivH, (31)
i=1

Its null space is given by:

Null(B') = span(vL+1, ... , Vak(B)). (32)

The minimum norm null vector (with the last element = 1) can be obtained

from the algorithm given by Golub and van Loan [2][1]: Let

, rank (B), a- > Ivi,M+1].
i=L+l

If a = 0 there is no solution; otherwise,

C = -E V;M+lVi (33)

i=L+l

which ensures that the last element of c is 1. vij is the jth element of vi. This

algorithm is also used to choose a unique c when (30) is underdetermined.

We can summarize TLS spectral estimation as follows:

1. Choose a LP model order M, L < M < N - L.

2. Form the matrix equation Bc = 0.

3. Estimate the number of sinusiodal components, L, by the number of the

"principal" singular values of B.
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4. Approximate the null space from the right singular vectors of B, (31). Obtain

the minimum norm solution c, (33).

5. Find the zeros of +p(z), (24). Identify the signal zeros which should have

unit norm and the extraneous zeros which should have norms less than 1.

There should be L signal zeros. The frequencies of the sinusoids are given by

{wi : eWi = Zi}L_- where z i 's are the signal zeros.

6. Once the frequencies are known, the amplitudes {pi}tL i can be found by solv-

ing a set of linear equations as prescribed by the Prony method.

Comparison between the two approaches

Let c = [CM, ... , C1]T and let ai,ui,vi be the singular values and left and right

singular vectors of the matrix A, (23). Rahman and Yu [11] show that c obtained

in the least squares (LS) and total least squares approaches can be expressed as:

CLS = -(u b)vi (34)

CTLS (b)v, (35)
i=1 ai -

where 77 is the near-zero singular values corresponding with the noise subspace of

B:

7 - aL+17 . M+1

where uaB's are the singular values of B. The assumption that these singular values

are approximately equal is acceptable especially when the noise is white.

According to (34) and (35), each principal singular value of A is corrected by

r72 /ai in TLS. These correction terms in TLS must be the result of the inclusion of b

in the lower rank approximation. Evidently, the additional information provided by

b indicates that the prinicipal singular values of A are perturbed by these amounts.

Note that the larger the singular values, the smaller the perturbation is. This

is in accord with the theme behind the noise reduction technique based on the

dimensionality of data matrices.
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Experimental comparison

Rahman and Yu [11] have conducted experiments to compare the performance of

the least squares and total least squares approaches. The signal in the experiment is

composed of equi-magnitude sinusoids with close frequencies: 27r(0.52) and 27r(0.50).

The signal is corrupted by an additive complex white Gaussian noise by signal to

noise ratios of: 12, 7, 3, 0.5 dB. The performance is measured by the average of the

sums of square differences between the estimated and true frequencies. The results

are summarized below, note that L < M < N- L:

1. TLS is consistently better than LS. The margin of performance is especially

large when M is low or when signal to noise ratio is high.

2. Both TLS and LS perform better as M increases. (We have discussed previ-

ously that the resolution of the estimator should improve as the order of the

underlying LP model increases.)

3. TLS and LS perform the same when M is maximum. (M = N - L is called

the "Kumaresan-Prony" case, and c can be solved for without singular value

decomposition. Use A - P = (AHA)-PAH in (25) [14]. )

4. At lower signal to noise ratios, both TLS and LS achieve the Cramer-Rao

bound for a maximum likelihood frequency estimator.

5. In TLS some extraneous zeros of 4(z) have magnitudes greater than one,

making frequency identification difficult.

These experimental results are rather disappointing because TLS is not so much

better than LS in important practical cases: high resolution (- M) and low signal

to noise ratio. Also, the erratic zero locations in TLS (item 5 above) are perplexing.

Rahman and Yu did not give explanation to this observation.
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Pisarenko Harmonic Decomposition (PHD)

Pisarenko [10] has shown that any finite sequence of correlations, rk - E(x,+kx,n),

can be decomposed into a linear combination of sinusoids plus a white noise:

L

rk = E 2ejwik + '76k. (36)
i=l

The corresponding PSD is a line spectrum in a background white noise:

L

p(w) = = + E e26(w-i).
i=l

Grenander and Szego [3] show (in the proof for the Caratheodory's theorem) that a

finite sequence with the Hermitian property, r-k = r*, can always be decomposed as

in (36). This served as the basis for the original derivation of the Pisarenko's har-

monic decomposition method. In this section we analyze PHD from the perspective

of Prony's formulation, which allows us to compare PHD with TLS.

The principle

Computationally, Pisarenko decomposition is an application of Prony's method. We

have discussed that the data sequence {Xz} may not be able to be fit into a linear

combination of sinusoids. But since we are dealing with the correlation sequence, we

are expressly assuming that {xn} is wide-sense stationary. Papoulis [9] shows that

if a wide-sense stationary signal fits a finite LP model exactly then its correlation

sequence can be described as a finite sum of sinusoids:

L

rk = E 
2 ejwik. (37)

i=l

Applying Prony's method, we see that the coefficients {ci} of +(z), whose zeros are

ejwi, are also the coefficients of the LP model similar to (19):

L

ZE Crk- io = 0, C= 1, (38)
i=O
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which yields the matrix equation:

r0 r1 ... rL CL

r-1 r ... rL-1 CL- (39)
=0 , (39)

r-L r-Lr+1 ·... r O CO

or

Re = 0. (40)

R is given by

R = [E(xxH)] T = E(x*xT) (41)

To obtain a non-trivial estimate for c, the (L + 1) x (L + 1) matrix R must be

singular. But in practice R tends to be nonsingular because of the noise in data as

well as possible modeling error in (37). One way to deal with this situation is to

approximate R by a singular matrix R'. In PHD,

R' = R - aI (42)

where a is an eigenvalue of R. Note that R' is singular; det(R') = det(R - aI) = 0.

We can assess the "closeness" of R' to R by the Frobenius norm:

IIR - R' II = l-aIoll = (L + 1)u2 (43)

The smallest eigenvalue, aimn, is used in (42) so that R' is as close as possible

to R. In fact, the smallest eigenvalue must be used to keep R' positive semi-

definite. R' must be positive-definite because it approximates the true correlation

matrix. By taking the similarity transformation (equivalent with the singular value

decomposition in this case) of R in (42) we can see that every eigenvalue of R' can

be obtained by subtracting o from each eigenvalue of R. If a > ,min,, then we would

have at least one negative eigenvalue of R'.

Using R' we can proceed with Prony's method to decompose {r'k):

L

rk= 2 eiwik. (44)
i=l
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Note that (42) with a = r,in suggests that

rk = rk - aminbk;

thus, we have the desired decomposition of {rk):

L

rk = i 2 ej iwk + aUmin6 k. (45)
i=l

Comparing this with (36) we have rl = amin.

Choosing the model order and an unique c

The harmonic decomposition method described above requires prior knowledge of

L, the number of the sinusoids in the signal. In many applications L is not known

and is to be estimated from the data. Suppose that we have N data samples from

which we can form a K x K correlation matrix RK, where the subscript denotes

the size of the matrix and L < K < N. From (37) we can see that only L columns

of RK are linearly independent in the ideal case. Hence, RK must have K - L

zero eigenvalues. In practice, RK is perturbed, but K - L of its eigenvalues are

nevertheless almost zero. Thus, L can be estimated by the number of "principal"

eigenvalues in RK.

To find an unique c in the null space of the correlation matrix, PHD forces

the null space to be one-dimensional by forming RL+i. A single eigenvector cor-

responding with a,mi of RL+1 spans the null space of R'L+1 = RL+1 - UminIL+1.

c is obtained by scaling this vector so that the last element is 1. The Pisarenko

harmonic decomposition method is summarized as below:

1. Estimate RK from the data {(xn and find its eigenvalues {ai}, i = 1, ... , K.

2. Estimate L, the number of exponential components, by the size of the eigen-

values, i.e., cl _> -... > UL > CL+1 X - '" AK 0. If none of the eigenvalues

is close to zero, more data samples and a larger K are desirable.

3. Form RL+1 from the data. Find an eigenvector corresponding with its small-

est eigenvalue. This eigenvector, scaled appropriately so that co = 1, is the

estimate for c. The smallest eigenvalue is the estimate for 77.
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4. Proceed with the Prony's method to solove for {wi} and {pi}.

Interpretation of the noise strength r7

Like TLS, PHD has an underlying LP model. Let us introduce a zero-mean white

prediction error {nn}:

L

n = C(-ci)x-i + nn (46)
i=l

rk = E(xn+kixn)

L

-= (-ci)E(xn+kixn) + E(nn+kXn)
i-1
L

= Z(-Ci)rk-i + V6k,
i=1

where v is the variance of the white noise. Note that (46) is an autoregressive

(AR) model of the data sequence. We now have a variation of (38) incorporating

an explicit noise model:

cirk-i = v bk, Co = 1,k > O. (47)
i=O

This is called the Yule-Walker equations. Writing them for k = L, L - 1, ... , 0 in

a matrix form we have

r0 rl ... rL CL 0

r-1 r0 ... r (48)

r-L r-L+1 ... r0 Co V

or

Rc = h (49)

For a non-singular R, we can apply the similarity transform to it and solve for v:

R = UAUH

A = diag(al,...,aL+1)
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UlU > - ' >_ L+1 > 0

UAUHc = h

AUHc = UHh

By equating the last elements from both sides of the last equation,

aL+1UL+1,L+1 = UL+l,L+lV

(CL+1 = V

v = CrL+1 = amin = 77. (50)

In another words, the magnitude of the noise in the Pisarenko decomposition (36)

can be interpreted as the variance of the white noise in the L th order AR model

(46).

Pisarenko method is suboptimum

An important feature of PHD is that the decomposition yeilds a noise term which

is physically interpretable as the white nosie in the AR model. This is the result of

the lower rank approximation R'L+1 = RL+1 - CminIL+1, (42). Since for any rank

deficient matrix R'

JR - R'IIF > Cmin,

(43) indicates that R'L+1 is not the optimal lower rank approximation of RL+1

in the sense of the Frobenius norm. If TLS is applied to the matrix RL+1, the

decomposition will be (44). That is, PHD produces the same (wi} and (pi} as an

optimal method does. It is the noise term r/7k that makes Pisarenko decomposition

suboptimal.
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The MUSIC Method

MUSIC (MUltiple SIgnal Classification) was originally developed for the identifica-

tion of the directions and amplitudes of the signals arriving at an array of antennas

[12]. The "angles of arrival" in the direction finding problem can be treated as

the spectral frequencies, and MUSIC is directly applicable to the high resolution

spcetral estimation problem. Compared with TLS and PHD, MUSIC formulates

the problem in a more general framework, hence its applicability to a wider range

of estimation problems. It also requires more prior information about the signal-

some second order statistics of the noise process and a set of "calibration" data

detailed below.

MUSIC in direction finding problems

Let us contrast the formulation of MUSIC with that of Prony's method on which

TLS and PHD are based. In the direction finding problem which motivated the

development of MUSIC, an array of antennas receives the linear combination of

sinusoidal signals arriving from various directions. The problem is to find the arrival

angle and complex amplitude of each sinusoid.

* In the direction finding problem, the unknown angles of arrivals are multi-

dimensional (e.g., latitudes and longitudes). These unknowns are treated as

the spectral frequencies w when MUSIC is appliced to the high resolution

spectral estimation problem. We denote the unknowns with 0's instead of w's

to signify the multi-dimentionality, but we still refer to them as "frequencies."

* The data set {x}zI=l is the set of complex numbers registered at the K re-

ceptors of the antenna array at a given time (or averages over time). Because

of the arbitrary geometrical configuration of the receptor array, {xn} are no

longer equally spaced samples.

* In the spectral estimation problem the signal subspace is spanned by vectors

of the form s(w) = [eiw, e2 iw,.. .]T. The equivalent expression for the signal

vectors in the direction finding problem is difficult to determine because of
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the multi-dimensionality of the frequencies and arbitrary spacing between data

samples. It must be obtained specifically for a given problem setting, e.g., for

a particular arrangement of the receptor array, and it is referred to as the set

of "calibration data." We denote it as s(0) which is a K dimensional vector
function of 0. The ideal signal is a linear combination of several samples of

s (0).

* The second order statistics of the noise process {n}, must be known. The

noise is assumed to be zero-mean but not white. The non-white assumption is

appropriate because the noise components in the data from receptors located

closely are likely to be correlated (e.g., the receivers may be under the same

noisy interferrance.).

The general principle

We have the ideal signal model x = Sp from (12). We now introduce an additive
noise n = [nl, ... , nK]T:

x= Sp+n (51)

Given this signal model and and the set of calibration data {s(O),VO}, MUSIC

provides us with a search procedure for si, i = 1,...,L. Ideally, each of the L

sinusoidal vectors {si}L_= must satisfy the following conditions:

* It is in the signal subspace.

* It is in the set of the calibration data, i.e., 30i such that si = s(0i).

We thus need to identify the intersection between the signal subspace and the set

s (0).

Like PHD, MUSIC tracks the problem from the singularity property of the ideal

correlation matrix. Let the K x K data correlation matrix defined as follows:

Q = E(xx")

= S E(pp ) SH + E(nnH)

= SPSH + H (52)
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Note that we have assumed that each pi is uncorrelated with each nn. Also, we

assume that P is non-singular. r1 is the noise strength, and H is the noise correlation

matrix. H is an identity matrix if the noise turns out to be white.

The K x K matrix SPSH is of rank L because rank(S) = L, rank(P) = K, and

K > L. Its column vectors belong to the signal subspace. To identify the signal

and noise subspace we start by requiring

det(Q - 7rH) = det(SPSH) = 0

since SPSH is singular. We see that ir must be a generalized eigenvalue corre-

sponding with the pencil Q - rH. As we show later in the section, since SPSH has

K - L zero eigenvalues, the minimum eigenvalue of Q - r/H has the multiplicity

of K - L. The corresponding right (generalized) eigenvectors {Ui}L+l span the

noise subspace. Now let us consider the Euclidean ("2-norm") distance d(0) from

a calibration vector s(8) to the signal subspace. d(O) is equal to the norm of the

projection of s(O) onto the noise subspace:

d(O) = IIsH(O)Us|II

Uns = [u+1 ... luK] (53)

In principle d(O) would have at least L zeros corresponding with the desired fre-

quencies { 0i}iL1. In practice we expect the noise to perturb d(O). MUSIC uses the

function

g(-) = sH (O)Uuus(O)l| (54)

on which the locations of {i}L_ 1 are identified as sharp positive peaks. Schmidt

[12] does not describe what to do when the number of peaks is not L, even though

he mentions such a possibility. It seems that the peaks must be chosen with some

qualitative judgements, and the value of L may have to be adjusted according to

the form of g(a).

Once the "frequencies" {fO}i=L are known, S can be evaluated and the elements

of P can be obtained from (52). The diagonal elements are the average powers of
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the sinusoidal components. Only the relative phase between a pair of sinusoids can

be identified from the cross-correlation term. If a cross-correlation term is zero, the

phase relation between the corresponding pair of sinusoids cannot be determined

directly.

Summary of the MUSIC method

1. Estimate the K x K correlation matrix Q from the data sequence.

2. Find the multiplicity of the minimum generalized eigenvalue of the pencil

Q - i7 H. K minus the multiplicity is the estimate for the number of signal

components L.

3. Find the K - L eigenvectors corresponding with the minimum eigenvalue.

Form U,, as in (53).

4. Find the L tallest peaks in g(O), from which {i,= 1 are identified.

5. Evaluate P and identify from its elements the average powers of the signal

components as well as the relative phases.

MUSIC in high resolution harmonic decompositions

In spectral estimation, white noise and equally spaced samples are reasonable as-

sumption. We have:

E(nnH) = I

S(9) = [ee,... IeiKe ]T

where 0 is now one-dimensional. From (52) we have

SPSH = Q-_II (55)

which is analogous to the rank L approximation in PHD, (42).

MUSIC then performs the search for the spectral frequencies using the eigen-

vectors associated with the noise subspace. Contrastingly, PHD reforms a smaller

correlation matrix to force the noise subspace to be one-dimensional. The noise
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subspace yields the coefficients of 6(z) whose L roots are the spectral frequencies;

thus, in principle PHD does not require a search. It seems that PHD has thrown

away some available correlation data by restricting the size of the correlation matrix.

However, one can argue that for a fixed number of data samples smaller correla-

tion matrices are estimated more accurately because more data are averaged. Thus,

there seems no definitive answer to which of the two methods should perform better.

The eigen-structure of Q - AH

We sidetrack a moment to show that the minimum eigenvalue i7 of the pencil Q - AH

does repeat K-L times and the corresponding eigenvectors span the noise subspace

of SPSH = Q - 77H. By definition generalized eigenvalues {A)} and eigenvectors

{ui} for the pencil satisfy

det(Q - AXH) = 0

(Q - AiH)ui = 0.

Let Q SPSH and its eigenvalues and eigenvectors be denoted {Ji} and {fi},

respectively, i.e.,

det(Q - &aI) = 0

(Q - aH)ii = 0.

Then, since Q = Q - 77H we have

Q-&I = (Q + &aH)-( +a)H (56)

(Q + aH 1 )- AH (57)

where H1 -- H - I. For each & there are K eigenvalues A for the pencil (Q +aH 1) -

AH and we observe from (56) and (57) that at least one of them must equal r7+ a.

Note that the generalized eigenvector corresponding with this eigenvalue (A = 7 +7 )

is iii. Since {(i)} are distinct, we can set the index so that the ith A relates to a:

Ai(&i) = 77 + i
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Note that Ai(O) is the generalized eigenvalue of the pencil Q-AH. Since{ = OKL+1'

Ai(0) = r/, i = L + 1, ... , K

Thus, K - L of the eigenvalues of Q - rIH are equal to r7.

We now show that 77 is the minimum eigenvalue. From [1], there exists an

invertible matrix X such that

Q -7H = XHdiag{qi - vhi}X

where {ql/hi, i = 1,..., K} are the eigenvalues. Note that the pencil is positive

semi-definite: Q - r7H = Q > 0. Since X is invertible, we must have

diag{qi - hi} >0

qi-rhi _ O, i = ,... ,K

< i i=1, ... ,K
hin

Hence, 77 must be the minimum eigenvalue.
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An Unified Viewpoint Revisited

The signal and noise subspaces in Prony's method

In TLS and PHD, we have a data matrix whose rows are derived from the data

vectors. From the singular value decomposition (13) we see that {vH } span the row

space of X. The signal and noise subspaces are thus identified as

S8 = span(vl, ... , v*) (58)

1/. = span(vL+l, ., ,vX) (59)

where {vi} are the right singular vectors and X = rank(X). The vector c in (30)

and (40) is in the null space of the rank L approximation X':

c E Null(X') = span(VL+l,-.. , x)

Let

C*.

Then,

a E J18

The polynomial +(z) in (24) is the inner product

rHZ = CTz = l(Z)

where z = [1, z,..., zK-1]T. If the noise subspace is estimated accurately, we have

si ± i = ,...,L. (60)

Thus,

I'Hsi = b(eijw) = O, E J,. (61)

This shows that in the ideal case any vector in the noise subspace will yield Prony's

polynomial +(z), whose L of K - 1 roots have unit norm.

The spectral estimation based on Prony's method can be restated as following:
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1. Identify the signal and noise subspaces based on the principle that the "prin-

cipal" singular values of the data matrix is much larger than the "near-zero"

singular values.

2. Choose a vector -y in the noise subspace. Find a set of basis vectors for

the (K - 1) dimensional subspace orthogonal to -y, under the constraint that

these vectors must be of the form z = [z, z 2 ,..., ZK]T. The constraint is there

because we know that the sinusoidal vectors {si}L 1 are vectors of the same

form.

3. Using the fact that the sinusoidal vectors span the signal subspace, identify

these vectors in the set of (K - 1) basis vectors. Then, find {wi}L=1.

4. Form and solve linear equations for {Pi},=1.

A distinguishing feature of Prony's method is that step 2 is achieved by finding the

zeros of a polynomial. The corresponding operation in MUSIC is the search for

peaks in g(O), (54). Also, whereas MUSIC employs the entire noise subspace in the

search for the spectral frequencies (53), Prony's method finds the frequencies based

on only one vector in the subspace. In another words, some information contained

in the noise subspace is not used in Prony's method. PHD is a special case to this

because its noise subspace is one-dimensional.

In practice, since the signal and noise subspaces in (58) and (59) are not exact,

(60) and (61) are not strictly true, implying that the signal zeros may not have unit

norm. We have stated that with the "minimum norm" -y (i.e., -y = projection of

[0,... ,0, 1]T on R,.) all the extraneous zeros should be found closer to the origin

than the signal zeros. When signal to noise ratio is low the zeros are expected to

be dislocated greatly, and there seems no good criteria to choose the signal zeros

and the corresponding spectral frequencies.

Concluding summary

The common features of the three spectral estimators discussed in this report are:
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* They model the signal as a linear combination of complex sinusoids; thus,

they produce line spectra instead of smooth waveforms.

* They estimate the number of sinusoids in the signal from the number of "prin-

cipal" singular values of some data matrices.

The three methods also have a number of contrasting features:

1. The signal and noise subspaces.

* In TLS and PHD, the row space of the data matrix X is associated with

the space of the (transposed) data vectors; thus, the signal and noise

subspaces are spanned by {v*).}Ll and {v *i}X =L+1, respectively.

* In MUSIC, the column space is associated with the data vectors. The

subspaces are given by {u,}L 1 and {Ui}XL+1.

2. The lower rank approximations.

* In TLS, the rank L approximation X', given in (14), has the smallest

Frobenius distance to X.

* PHD and MUSIC use the suboptimal approximation in (16). The partic-

ular form of the approximation allows them to describe the noise process

as the white noise in an AR model (46), in the PSD (36), or in the signal

model (51).

3. The search procedures.

* With TLS, one must search for the signal zeros from the roots of b (z).

This might be difficult under a low signal to noise ratio. The search is

required because a higher order LP model is used to improve frequency

resolution.

· PHD requires no search; all roots of +b(z) are signal zeros.

* The peaks of g(8), (54), must be found in order to identify the frequencies.

4. Other comments.
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* TLS works with the raw samples, i.e., unlike the other two methods it

does not require estimation of the correlations. To use TLS, one must

make sure that the ideal signal is a linear combination of sinusoids, for

TLS does not guarantee that any of the roots of 6b(z) has unit norm.

· PHD is the only one that does not require any kind of a search procedure.

It achieves this at the cost of forming the second correlation matrix.

* MUSIC formulates the problem in a general framework and has a wider

range of applications such as the direction finding problems. It also

requires more prior data, i.e., the set of calibration data.
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After Thoughts (March, 1988)

So, which of the three methods is the best? We have revealed some differences

among the three methods such as the ability to retain the phase information (p.4,

pp.29-30, p.35) and so on. But the main issue is the estimation of the frequen-

cies, and with this regard the three methods are pretty much the same. Their

characteristic features are:

1. The use of some subsequences of the data sequence to form what we call the

"data matrices" whose row or column spaces are ideally L.
of ra-

2. The estimation of L from the sizes of the singular values of the data matrices.

3. The identification of {wj} using the fact that the sinusoidal vectors (p.7) are

perpendicular to the noise subspace (p.29)(60).

The methods differ in accomplishing step 3. Whereas MUSIC uses a full set

of the basis vectors of the noise subspace to estimate the frequencies (53)(54), the

Prony-based methods (TLS, PHD) use only one vector in the subspace (61). It

seems that Prony's approach is wasting some available information in the subspace,

especially in TLS. However, there is no experimental evidence indicating that MU-

SIC estimates the frequencies more accurately than TLS '.

Step 2 is a crucial step. The task of identifying the "near-zero" singular values

becomes easier if their values are equal. We have shown that for the correlation

matrices (Q and R) such is the case (pp.31-32, p.23). Are MUSIC and PHD better

than TLS then? Theoretically the answer may be yes, but practically it is no.

Suppose for a given data sequence the matrix B (TLS) yields such singular values

{crB} that the estimation of L is quite difficult. Let us try MUSIC then. The

correlation matrix Q (10) is typically estimated by

Q 1 (BBH)

1private correspondence with Bruce Musicus
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whose singular values can be shown to be {uaB2}, unfortunately. Thus, practically

speaking, if TLS has a problem identifying the "near-zero" singular values, so would

MUSIC and PHD.

The interpretations of the noise in the three methods differ slightly. In TLS, the

rank L approximation to the data matrix is chosen to be the one which minimizes

the Frobenius norm of the difference between the two (31). We have called this an

"optimal" rank L approximation (p.8). Is it really the right thing to do? Maybe

not. The data samples {xZ} are repeated in the data matrix B, e.g., x 2 appears

twice; however, the minimization of the Frobenius norm implies that each element

of the matrix is perturbed randomly, ignoring the obvious correlations among the

matrix elements.

To identify the signal subspace accurately the three methods must assume that

the noise is additive and white (p.9). The "suboptimal" rank L approximation

(16) is shown to correspond with an additive white noise model (pp.25-26). In a

sense this approximation is superior to the "optimal" one (14), because it correctly

reflects the underlying assumption behind the noise reduction technique.


