Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2005-050 Augdust 3,2005
MIT-LCS-TR-997

On Algorithms and Complexity for Sets
with Cardinality Constraints
Bruno Marnette, Viktor Kuncak, and Martin Rinard

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

MIT CSAIL Technical Report

On Algorithms and Complexity for Sets with Cardinality
Constraints

PSPACE and PTIME Logics for Program Analysis

Bruno Marnette

ENS de Cachan, MPRI
Paris, France

bruno@marnette.fr

Abstract

Typestate systems ensure many desirable properties of imperative
programs, including initialization of object fields and correct use of
stateful library interfaces. Abstract sets with cardinality constraints
naturally generalize typestate properties: relationships between the
typestates of objects can be expressed as subset and disjointness
relations on sets, and elements of sets can be represented as sets
of cardinality one. In addition, sets with cardinality constraints
provide a natural language for specifying operations and invariants
of data structures.

Motivated by these program analysis applications, this paper
presents new algorithms and new complexity results for constraints
on sets and their cardinalities. We study several classes of con-
straints and demonstrate a trade-off between their expressive power
and their complexity.

Our first result concerns a quantifier-free fragment of Boolean
Algebra with Presburger Arithmetic. We give a nondeterministic
polynomial-time algorithm for reducing the satisfiability of sets
with symbolic cardinalities to constraints on constant cardinalities,
and give a polynomial-space algorithm for the resulting problem.
The best previously existing algorithm runs in exponential space
and nondeterministic exponential time.

In a quest for more efficient fragments, we identify several
subclasses of sets with cardinality constraints whose satisfiabil-
ity is NP-hard. Finally, we identify a class of constraints that has
polynomial-time satisfiability and entailment problems and can
serve as a foundation for efficient program analysis. We give a sys-
tem of rewriting rules for enforcing certain consistency properties
of these constraints and show how to extract complete information
from constraints in normal form. This result implies the soundness
and completeness of our algorithms.

1. Introduction

Program analyses that reason about deep semantic properties are of
great value for software development; the value of such analyses
is growing with the adoption of language constructs that eliminate
low-level program errors. Many deep semantic properties are natu-
rally expressible in fragments of set theory, so constraint solving for
such fragments is of interest. This paper presents new algorithms
and improved complexity bounds for fragments of set theory. The
starting point of our constraints is the boolean algebra of finite (but
unbounded) sets.

Sets in program analysis. The boolean algebra of finite sets
is a fragment of set theory that allows the basic set operations
of intersection, union, and complement on sets of uninterpreted
elements. Although simple, it turns out that this fragment can

On Algorithms and Complexity for Sets with Cardinality Constraints

Viktor Kuncak Martin Rinard

MIT Computer Science and Artificial Intelligence Lab
Cambridge, USA

{vkuncak,rinard}@csail.mit.edu

express many properties of interest in program analysis. Examples
include typestate properties and public interfaces of data structures.

Set specifications generalize typestate properties [29, 26]: the
fact that an object o is in the typestate ¢ is represented as the set
membership of o in ¢. Through inclusion and disjointness con-
straints, sets can also express relationships (such as hierarchy or
orthogonality) between different typestates. Objects can be rep-
resented as sets of cardinality one using a cardinality constraint
|o| = 1, so set membership reduces to subset. Multiple set member-
ships can then encode constraints such as |t| > k for any constant
k.

Sets can also provide natural abstractions of container data

structures. When a content of a data structure is represented as an
abstract set s, an operation such as insertion can be characterized
by a postcondition s’ = s U e where e is the set corresponding
to the element being inserted. By expressing both typestates and
data structure abstractions, sets can be used to combine the results
of different analyses operating on the same program. Such an
approach allows us to combine the scalability of typestate analysis
with the precision of shape analysis and theorem proving [30, 28,
217, 46].
Sets with cardinality constraints. The use of the cardinality op-
erator on sets leads to a connection between set algebra opera-
tions and integer linear arithmetic, as evidenced, for example, in
the condition |a U b] = |a| + |b| for disjoint sets a and b. It is
therefore natural to consider constraints that combine integer linear
arithmetic with set algebra operations. These constraints constitute
the Quantifier-Free Boolean Algebra with Presburger Arithmetic,
or QFBAPA for short — they are the quantifier-free fragment of
BAPA constraints whose decision procedure and complexity we
have studied in [23, 22]. QFBAPA constraints can be used to ver-
ify an invariant such as |a| = |b| which allows us to conclude that
if a is nonempty, so is b, and therefore it is possible to call an op-
eration that removes an element from b. Similarly, if ¢ is an integer
variable and s is a set, it is possible to verify an invariant |s| = i
stating that an integer ¢ correctly maintains the size of the set s.
In our experience, specialized decision procedures such as [22] are
the only automated technique for deciding with non-trivial cardi-
nality constraints. Currently, however, the complexity of these de-
cision procedures limits their applicability. In this paper we give
new algorithms for solving set cardinality constraints; these algo-
rithms provide exponential improvements over existing approaches
and make the checking of cardinality constraints in larger formulas
more feasible.

Our paper provides a systematic study of constraints on sets in
the presence of cardinalities. We study both more expressive and
less expressive fragments and demonstrate a trade-off between the

1 2005/8/3

i= A|FIAFy |FIVFy | —F
Bi=By |BICBy | T\ =T |T1 <To | KdvdT
s|0|1|BiUBy | BiNB,y|B°

u= i|K|Ty+Ty|K-T| |BI

s= .| -2]-1]0]1]2]...

S I eV L

Figure 1. Quantifier-Free Formulas of Boolean Algebra with Pres-
burger Arithmetic (QFBAPA)

expressive power and the efficiency of the algorithms. The main
contributions of our paper are the following:

e PSPACE algorithm for QFBAPA. The best previously
known algorithms for QFBAPA [23, 22, 45] execute in non-
deterministic exponential time, and involve searching for an ex-
ponentially large object. In this paper we first give a form of
bounded model property that shows that it is possible to replace
reasoning about symbolic cardinalities such as |a| = iA|a| =i
where 7 is an integer variable, with guessing sufficiently large
constant cardinalities, such as |a| = 1000 A |b| = 1000. More-
over, we give a space-efficient algorithm for solving the result-
ing constraints on sets with large constant cardinalities. This
gives a PSPACE decision procedure for QFBAPA and is the
first contribution of this paper.

A Polynomial-Time Class. Given that QFBAPA constraints
are NP-hard, the question remains whether there are interest-
ing fragments of sets with cardinalities which can be reasoned
about in polynomial time. In a quest for such fragments, we
identify several features of constraints, each of which leads to
NP-hardness. By eliminating these features we have discovered
a class (called i-trees) that has a polynomial-time satisfiability
and entailment (subsumption) problems, while still supporting
subset, union, disjointness, and arbitrarily large cardinality con-
straints. This class can therefore express generalized typestate
constraints such as multiple orthogonal classifications into inde-
pendent or disjoint sets. The identification of this polynomial-
time class, and the development of algorithms for testing the
satisfiability and subsumption of constraints in this class is the
second contribution of this paper. While the resulting algo-
rithms are efficient, the proof of their completeness is some-
what lengthy, and involves characterizations of normal forms
of i-trees and the construction of models for i-trees in normal
form. We therefore only summarize the main ideas; we refer
the reader to the full version of the paper [32] for details. Addi-
tional proofs are also included in the Appendix.

We proceed by defining the fragment QFBAPA in Section 2. We
present a PSPACE algorithm for QFBAPA in Section 3, defining
the simpler CBAC constraints and identifying their NP-complete
fragment, CBASC constraints.

2. Constraints on Sets with Cardinalities

Boolean Algebra with Presburger Arithmetic. Figure 1 presents
the syntax of the constraints studied in this paper, we call these for-
mulas Quantifier-Free Boolean Algebra with Presburger Arithmetic
(QFBAPA). QFBAPA constraints contain two kinds of values: in-
tegers and sets, each with corresponding applicable operations. The
sets are interpreted as subsets of some arbitrarily large finite set. s
denotes a set variable, ¢ denotes an integer variable. The symbol
| B| denotes the cardinality of the set B and establishes the connec-
tion between set and integer terms. MAXC is a special free variable
denoting the size of the universal set. If b is a set, b denotes its
complement. K dvd T" denotes that K divides 7'. K denotes con-
stants, encoded in binary: a constant k is encoded using O(log k)

On Algorithms and Complexity for Sets with Cardinality Constraints

bits. The symbol A in Figure 1 denotes atomic formulas; a literal is
an atomic formula or its negation.

A quantified version of this language (BAPA) is studied in
[23, 22]; where we give an algorithm that establishes a doubly ex-
ponential space upper bound on the complexity. Because quanti-
fied BAPA subsumes Presburger arithmetic, the doubly exponential
nondeterministic time lower bound [15] applies to BAPA as well.

Preliminaries. If S is a finite set, |S| denotes the number of
elements in S. A literal is an atomic formula or its negation. Z =
{...,—1,0,1,...} is the set of integers, N = {0,1,...} is the
set of natural numbers. [a..b] denotes the set of integers {a,a +
1,...,b}.If f : A — B is a function and S C A, we define
J181 = {#(a) | a € S},

If A is a set, the notation AY has several potential meanings;
the specific meaning should be clear from the context. A™ for
n € {1,2,...,} is the set of vectors (a1,...,ar) where a; € A
for 1 < j < m, and A™" is the set of matrices [apq] With m
rows and n columns with elements a,, for 1 < p < m and
1 < ¢ < n. The expression A° denotes the complement of the
set A. If o € {0, 1}, then A% denotes A for & = 1 and A° for
a=0.

The relation = denotes the equality of the values of metavari-
ables denoting syntactic objects, so if f1 and f> are formulas, then
f1 = fo means that they are the same formula. In the context of
inclusion diagrams (Section 4), = will denote the semantic equiva-
lence of diagrams (we use = to denote the equality of diagrams).

3. A PSPACE Algorithm for QFBAPA

Verification conditions arising in program verification can often
be expressed using quantifier-free formulas, so it is natural to ex-
amine whether more efficient algorithms exist for QFBAPA con-
straints. When applied to QFBAPA formulas, existing algorithms
run in non-deterministic exponential time (NEXPTIME): the al-
gorithm [45] requires nondeterministically guessing an exponen-
tially large object, whereas the algorithm « from [22] produces an
exponentially large quantifier-free Presburger arithmetic formula.
The question arises whether there exist algorithms that avoid non-
deterministically guessing exponentially large objects. We show
that this is indeed the case. Namely, we first show that Presburger
arithmetic formulas generated by the algorithm « from [22] can in
fact be solved in deterministic exponential time. Our result reduces
QFBAPA to a simpler system of CBAC constraints (shown in Fig-
ure 3), then applies a theorem by Papadimitriou [36] in a novel
way. This leads to a deterministic EXPTIME decision procedure
for QFBAPA satisfiability, which is an improvement on previously
existing algorithms. Nevertheless, the question arises whether it is
possible to avoid the construction of a non-deterministically large
system of equations. It turns out that this is indeed possible: we
present an alternating polynomial-time (and therefore, PSPACE)
algorithm for QF BAPA. Therefore, it is possible to solve QFBAPA
using solvers for quantified boolean formulas [9, 48, 37].

Figures 2 and 4 present our PSPACE algorithm for QFBAPA.
The algorithm has two phases.

In the first phase, the non-deterministic polynomial-time algo-
rithm in Figure 2 reduces QFBAPA constraints to a simpler class
of constraints. We call these simpler constraints Conjunctions of
Boolean Algebra expressions with Cardinalities (CBAC). CBAC
constraints have a very simple syntactic structure (see Figure 3),
but capture the key difficulty in solving QFBAPA: the need to con-
sider exponentially large cardinalities on exponentially many set
partitions.

In the second phase, the algorithm in Figure 4 checks the satis-
fiability of CBAC in alternating polynomial time and therefore in
polynomial space. The key insight behind our algorithm is that it
is possible to use a divide and conquer approach to avoid explicitly
representing all possible regions in the Venn diagram.

2 2005/8/3

Let f be the input QFBAPA formula.

1. Replace each Z-variable with a difference of two N-

variables:
Cliv, ... in] — Cli =&, ... i — i,
1,44, ... 4,40 are fresh N-variables

2. Ensure that all set algebra expressions appear within
cardinality constraints by normalizing with the following
rules:

Clbr = b2] = C[b1 C b2 A b2 C b1]
Clbr € bo] = C[|br N 03| = 0]
3. Eliminate divisibility constraints:
Clkdvdt] — C[ki = t], i is fresh N-variable
4. Move all cardinality constraints to top level:

C[|b1|7 SRR ‘bn” - fl A f2

d
where f1 =4 Clity---yim]
def ™1 .
f2 = [1=MAXC A A |bj|=i;
j=1
and i1,...,%m, are fresh N-variables
5.Let p be a propositional formula such that
p(ai, ..., am,) = fi for atomic formulas a1, ..., Gmg-
Nondeterministically select the truth value o; € {0,1}

for each atomic formula a;, so that p(a1,...,am,) is

def ™0 P /
true. Let fi1 = A a;)”.
j=1

6. For each conjunct —(ti=t2) in fi1, non-
deterministically replace the conjunct with one of
the conjuncts (t1 + 1 < t2) or (t2 + 1 < t1).

7. Transform linear integer constraints to normal form:
C[ﬂ(tl < tQ)] — C[tg +1< tl]
Clti <ts] —Clt1—t2+i=0]
Cltr=ts] —C[RC7_, cjij = K

8. Let no be the number of integer variables in the entire
formula. The resulting system is of the form:

AU:dA/\T:ll |bj] = ip;

where A € Z™0™0 d € Z™°, and v = (41,...,%ng)
where each i; is a variable ranging over Z and 1 <

Piy...,Pm; < My are variables denoting cardinalities
of sets. Let S be the total number of set variables in
bi,...,bm,. Letm = mo +mi,n = ma.x(no,ZS),
and let M = n(ma)>™ 1,

9. Non-deterministically select a vector k = (ku1, ..., kn,)
where k; € {0,1,...,M} for 1 < j < no, such that
Ak = d.

my
10. Call CBAC decision procedure on A [b;| = kp,. If
j=1

there exists a solution, then report the formula satisfiable.

Figure 2. An NP Algorithm for Reducing QFBAPA Constraints
to CBAC constraints of Figure 3

On Algorithms and Complexity for Sets with Cardinality Constraints

>
Il

|B|=K | F1 A\ F>
B S|0|1‘B1UBQ|BlnB2‘BC
K == 0|1]2]...

Figure 3. Conjunctions of Boolean Algebra expressions with Car-
dinalities (CBAC)

Given a CBAC constraint
my
> Ibsl =k
=1

where the free set variables of by,..., by, are among s1,...,Ss,

run CBAC-check([], d) withd = (k1, ..., km,).

proc CBAC-check([v1, ..., vy], d) returns result
where v1, ..., vn, result € {0,1}; d € N"™
if (n < S) then
existentially choose do, d1 € N™! such that dy + di = d;
universally do
r1 = CBAC-check([v1,...,vn,0],do) and
rg = CBAC-check([v1, ..., vn,1],d1);
return 71 A ra;
else
let pj =eval(bj,[s1 — vi,...,85 — vs])
forall (1 <j <mai);
Jo={d; | p; = 0};
Ji={d; [p; =1}

return Jo C {0} A |Ji] < 1.

proc eval(b, o) returns result
where b : Boolean Algebra formula
a:{s1,...,ss} — {0,1}
result € {0,1}
treating b as a propositional formula,
return the value of b under assignment cv.

Figure 4. An Alternating Polynomial-Time (and PSPACE) Algo-
rithm for Checking the Satisfiability of CBAC Constraints

‘We next discuss our algorithm in more detail and argue that it is
correct. We begin with the description of the steps of the algorithm
in Figure 2, which reduces symbolic cardinalities to large constant
cardinalities.

1. Non-negative integers. To simplify the later steps, the first step
makes all integer variables range over non-negative integers N, by
replacing each integer variable ¢ with a difference ¢; — 72 of fresh
non-negative integer variables 71, i2.

2,3. Eliminating set equality and subset, and integer divisibility.
The next step converts set equality and set subset into cardinality
constraints. This step helps the later separation between the boolean
algebra part and the integer linear arithmetic part. We then elimi-
nate any divisibility relations using multiplication and a fresh vari-
able.

4. Flattening. The next step separates the formula into the
boolean algebra part, denoted f; and the integer linear arithmetic
part, denoted f>. This step simply amounts to naming the cardinal-
ity of each set by a fresh integer variable.

5,6. From quantifier-free formulas to conjunctions. An obvious
source of NP-completeness of QFBAPA is the presence of arbitrary
propositional combinations of atomic formulas. An effective way
of dealing with propositional combinations is to enumerate the

3 2005/8/3

satisfying assignments of the propositional formula using a SAT
solver, and then solve the conjunctions of literals [16, 17]. Steps 5
and 6 of the non-deterministic algorithm in Figure 2 are an abstract
description of such procedure. The goal of step 6 is to eliminate
disequalities, which involve non-deterministic choice between the
two inequalities.

7. Normal form for integer constraints. The algorithm elimi-
nates the remaining negations of atomic formulas and transforms
linear constraints into normal form Av = d.

8,9,10. Estimating sizes of integer variables. The resulting sys-
tem contains linear integer equations of the form Z;L:1 cji; =k,
and set cardinality constraints of the form |b| = 4. The algorithm
computes an upper bound M on integer variables in any poten-
tial solution of the system, using several parameters: the number
of conjuncts n, the number of integer variables ny and the number
of set variables S. The computation of the upper bound is based
on an observation that the satisfiability of the conjunction of con-
straints |b] = ¢ can be reduced to the satisfiability of equations
of the form Z§:1 l; = 1, where variables [; denote sizes of set
partitions (regions in Venn diagram) whose union is the set b; this
is a specialization of the idea in [22] to the case of quantifier-free
formulas.

Let s1,...,8s be all set variables appearing in formula and
consider a constraint [b| = 4. Consider all partitions (]_, S?j
for a; € {0, 1}. For each such partition by, introduce a fresh N-
variable [, which denotes the cardinality of cube b,,. Then consider
a constraint of the form |b| = 7. Each set is a union of regions in the
Venn diagram (by the disjunctive normal form theorem) so suppose
that b = by, U ... U by,. Then replace the term |b| = ¢ with the

3:1 lp, = i. We use the term “CBAC linear equations” to denote
a system of linear equations resulting from the constraints |b| = ¢
as described above.

As a result, we obtain a system of mo + m linear equations
over non-negative integers, where mg equations have a polynomial
number of variables, and m; equations (CBAC linear equations)
have exponentially many variables. It is easy to see that there exists
a surjective mapping of solutions of the original constraints on
sets onto solutions of the resulting linear equations (the mapping
computes the cardinality of each Venn diagram). Therefore, the
original system is satisfiable if and only if the resulting equations
are satisfiable. Moreover, we have the following fact.

FACT 1 (Papadimitriou [36]). Let A be an m X n integer matrix
and b an m-vector, both with entries from [—a..a). Then the system
Ax = b has a solution in N™ if and only if it has a solution in
[0..M]™ where M = n(ma)>™*".

Fact 1 implies that the estimate M computed in step 8 of the algo-
rithm in Figure 2 is a correct upper bound. Using this estimate, step
9 of the algorithm non-deterministically guesses the values of all
integer variables such that the original linear equations Az = d are
satisfied. All this computation can be performed in nondeterminis-
tic polynomial time, and (unlike [22]), does not involve construct-
ing explicitly a system with exponentially many equations. Having
picked the values of integer variables, including the variables ¢ on
the right hand side of constraints |b| = ¢, we obtain a conjunction
of constraints of the form |b] = k where k is a constant whose
binary representation has polynomially many bits—these are pre-
cisely the CBAC constraints in Figure 3. We have therefore shown
the following.

LEMMA 1. The algorithm in Figure 2 reduces in non-deterministic
polynomial time the satisfiability of a QFBAPA formula to the
satisfiability of CBAC formulas.

It remains to find an algorithm for CBAC constraints.

On Algorithms and Complexity for Sets with Cardinality Constraints

A PSPACE algorithm for CBAC. One correct way to solve
CBAC constraints is to solve the associated CBAC linear equa-
tions. This system has exponentially many variables, each of which
can take any value from [0..M]. Therefore, guessing the values of
each of these variables can be done in non-deterministic exponen-
tial time; similar approaches not based on equations also require
guessing exponentially large objects [45]. Note, however, that there
are only polynomially many CBAC linear equations. Using the idea
of the proof [36, Corollary 1], we can therefore show that a dynamic
programming algorithm can be used to solve the system in polyno-
mial time. In fact, we can use the dynamic programming algorithm
from the proof of [36, Corollary 1]. Instead of fixing the size of the
equations m. to be constant, we simply observe that m; is poly-
nomial in the size of the input, whereas the number of variables
is singly exponential. The bound M therefore yields a singly ex-
ponential deterministic time dynamic programming algorithm for
CBAC. While this is better than existing results, we show that an
even better result is achievable.

Clearly, any algorithm that explicitly constructs CBAC equa-
tions will require at least exponential time and space. Our solution
is therefore to adapt the dynamic programming algorithm to a di-
vide and conquer approach that always represents the equations in
terms of their original, polynomially sized, boolean algebra expres-
sion. Such an algorithm runs in alternating polynomial time, con-
suming polynomial space, and is presented in Figure 4. To see the
idea of our PSPACE algorithm, consider the CBAC linear system
of equations written in the vector form: Z?il ajl; = d where d,
aj are vectors and [; are the variables for 1 < j < 2. The algo-
rithm guesses the vectors do, d; € N™ such that dyp + d; = d, and
recursively solves two equations:

2Pl _q 27

Z ajli=do A Z ajly = d1

Jj=1 j=2r—1

This algorithm creates an OR-AND tree whose search gives the
answer to the original problem. A position in the tree is given by the
propositional assignment [v1, ..., vy] to boolean variables. Each
leaf in the tree is given by a complete assignment [v1,...,vs]
to set variables. Note that we never need to explicitly maintain
the system during the divide phase of the algorithm, it suffices to
determine in the leaf case p = 0 whether the coefficient a; is 0
or 1. The algorithm does this by simply evaluating each Boolean
algebra expression b for the assignment [v1, ..., vs].

THEOREM 1. The algorithm in Figure 4 checks the satisfiability of
CBAC constraints in PSPACE. The algorithm given by Figures 2
and 4 checks the satisfiability of QFBAPA constraints in PSPACE.

Theorem 1 improves the existing algorithms for QFBAPA from
both a complexity theoretic and an implementation viewpoint. A
deterministic realization of previous NEXPTIME algorithms runs
in doubly exponential worst-case time and requires exponential
space; a deterministic realization of our new algorithm runs in
singly exponential time and consumes polynomial space. Previous
algorithms would require running a constraint solver such as a SAT
solver [47] on an exponentially large constraint; the new algorithm
can be solved by running a quantified boolean algebra solver [48]
on a polynomially large constraint.

NP fragments of CBAC. We have seen that both CBAC and
QFBAPA constraints are in PSPACE. Both of these classes of con-
straints are NP-hard, because the constraint |b| = 1 is satisfiable iff
b is corresponds to a satisfiable propositional formula. Moreover,
Lemma 1 shows that QFBAPA constraints are in NP iff CBAC con-
straints are in NP. For some subclasses of CBAC constraints we can
indeed show membership in NP. Define conjunctions of boolean al-
gebra expressions with small cardinalities, denoted CBASC, to be
the same as CBAC but with constant integers encoded in unary

4 2005/8/3

notation, where an integer z is represented in space O(z) as op-
posed to O(log x); such encoding can therefore be exponentially
less compact.

LEMMA 2. The satisfiability of CBASC constraints is NP-
complete.

CBASC solutions are NP-hard because |b] = 1 is a CBASC con-
straint. One way to prove membership in NP is to observe that
CBASC is subsumed by the language of set-valued fields which
was proven to be in NP [24, 25] by reduction to the universal class
of first-order logic formulas, which has the small model property
[7, Page 258]. Another way is to consider the notion of sparse solu-
tions of CBAC linear equations. An M -sparse solution is a solution
to CBAC linear constraints with at most A non-zero elements. An
M-sparse solution to CBAC linear constraints with 25 variables
can be encoded as an M-tuple of pairs ([v1,...,vs], k) where the
propositional assignment [v1, ..., vs]; encodes one of the 25 in-
teger variables, and k specifies the value of that integer variable.
This encoding is polynomial in M Sw where w is the number of
bits for representing the largest component of the solution. For any
CBAC linear constraint A7, |b;| = k;, each solution is M-sparse
where M = max(ky, ..., km). For CBASC solutions, M is poly-
nomial in the size of the CBASC representation because each k; is
encoded in unary, so sparse solutions can be guessed in polynomial
time. This proves that CBASC constraints are in NP.'

4. Inclusion Diagrams

This section introduces inclusion diagrams (i-diagrams), a graph
representation of CBAC constraints. Figure 5 shows a formula with
sets and cardinalities and an equivalent i-diagram. I-diagrams allow
us to naturally describe fragments of CBAC constraints and the al-
gorithms for checking satisfiability and subsumption of these frag-
ments. The basic idea of i-diagrams is to represent the subset partial
order using a graph where sets are annotated with cardinalities, and
then indicate the disjointness and union relations by constraints on
direct subsets of a set. To efficiently represent equal sets, the nodes
in the i-diagram stand not for set names, but for collections of set
names that are guaranteed to be equal. Finally, we associate un-
interpreted predicates with collections of nodes, representing the
fact that elements of given sets satisfy the properties given by the
predicate. The uninterpreted predicates illustrate a way to combine
i-diagram representations with other constraints.

DEFINITION | (i-diagrams). We fix a finite set SN of Set-Names,
and a finite set PN of predicate names. We denote by PN the set
of atoms {+P, —P|P € PN}.
An i-diagram (Inclusion-Diagram) is either the null-diagram | 4 or
a tuple (S, D4, Sons, Split, Comp, CInf, CSup, ®) such that:
e S C P(SN) is a partition of SN containing (nonempty) equiva-
lence classes of set names that are guaranteed to be equal, with

Dy € S the equivalence class corresponding to names of sets
whose interpretation is the empty set ();

e Sons : S — P(S) represents subset relation;
we define S ~ S’ Lhos e Sons(S’); then (S,~) is a
graph, so we call elements of S nodes, and the elements of ~
edges; we write ~» for the transitive closure of ~;

e Split, Comp : S — P(P(S)) represent disjointness and com-
pleteness of set inclusions; if S is a node, then Split(S) is a set
of split views, where each view is a nonempty set of sons that

! Sparse solutions are interesting for general CBAC constraints as well. As
of yet we have no example of a CBAC constraint whose associated CBAC
equation system is satisfiable but has no sparse solutions; moreover, we can
generalize the notion of sparse solutions to solutions representable using
binary decision diagrams [8] while preserving polynomial-time verifiability.

On Algorithms and Complexity for Sets with Cardinality Constraints

+P Byls2)
\\. [0..0]
[55,561/0/ ?\ /C?
0.3
O —cg (54} [53323
[1.1] -0

D is such that CInf({s1}) = 1, CSup({s1}) = 5, Sons({s1}) =
{{s5,56}, {sa}, {s3}}, Comp({s1}) = {{{s5, 56}, {sa}, {s3}}}
split({s1}) = {{{ss,s6}}, {{sa}, {sa}}}, ®({s1}) = {+P}

and is equivalent to

so=0 A s5 =8¢ A

soUssUssUss CTs1 A st Css A sgCsa A ss Csg
s3Nsa=0 A s1 Cs3UsaUss A s4C 85
1S|81|§5/\|S4|=1/\|S5|S3/\|S3|SQ/\
V$€S1.P(ZE) A Vl‘ESg.ﬁQ(l‘)

Figure 5. An example i-diagram D and an equivalent formula

represent pairwise disjoint sets, and Comp(S) is a set of com-
plete views each of which is a set of nodes that represent sets
whose union is equal to the father; we require

U Split(S) = Sons(S)
J Comp(S) C Sons(.5)

forall S € S;

e CInf,CSup : S — N specify lower and upper bounds on the
cardinality of sets;

P : S — P(PNi) maps nodes to the uninterpreted unary
predicates and their negations that are true for all sets of a
node.

To avoid confusion between set names, nodes (sets of set names),
and views (sets of nodes), we use lowercase letters s, s;, s to
denote set names, uppercase letters S, S;, S’ to denote nodes,
and letters Q,C' to denote views and sets of nodes in gen-
eral. When D #.14 is a diagram, unless otherwise stated, we
name its components S,)4, Sons, Split, Comp, CInf, CSup, ®,
and similarly we name the components of D’ as
S, 0, Sons’, Split’, Comp’, CInf’, CSup’, ®’.

In a graphical representation of an i-diagram, we represent
each element S € S where S = {si1,...,sn} using underly-
ing sets {s1,...,Sn}. We represent inclusion S1 ~~ S> by an
arrow from S; to S2. We represent a split view @ € Split(.S)
where Q = {S1,...,Sn} with a circle connected with undirected
edges to Si,..., S, and an arrow leading to S. We represent a
complete view similarly, using a filled square instead of a circle.
For each node S € S we indicate its cardinality bounds by anno-
tating the node with [a..b] where a = CInf(S), b = CSup(S).
We represent =(S) = {£Pi,...,+P,} by annotating S with
+Pi,...,£P,. We represent)5 = {s1,...,sn} by annotating
the node {s1, ..., 8n} with 0g.

DEFINITION 2 (Semantics of i-diagrams). An interpretation of SN
and PN is a triple (A, a, E) where

o A is a finite set (the universe);

e o : SN — P(A) specifies the values of sets;

e Z: PN — P(A) specifies the values of unary predicates;

[1]

An interpretation I is a model for an i-diagram D, denoted I }= D,
iff Vs € Bq.c(s) = 0, and for all S € S where S = {s1,...,8n},
the following conditions hold:

5 2005/8/3

e a(s1) =...=a(sn);
accordingly, define @(S) = a(s1) = ... = alsn)
 CInf(8) < [(S)] < CSup(S)
e VP. (+P) € ®(S) = @(S) C E(P)
e VP. (—P) € ®(S) = @(S) C E(P)°
* VS’ € Sons(S). a(S") C @(S)
* VQ € Split(S).VS1,52 € Q.51 # Sz = @(S1)Na(S2) =0
* VQ € Comp(S). @(S) C Us, e @(S1)

We use the standard notions of satisfiability, subsumption (entail-
ment), and equivalence:

D is satisfiable <= 3I. I =D
D ED < VI.LIED =1ED
D=D < D EDADETD

DEFINITION 3 (Explicit Disjointness).
We write disjp g, (51, S2) as a shorthand for

S1# S2 A 3Q € Sons(S0). 51,52 € Q

and we say that S, Se are explicitly disjoint, and we write
disjp (51, S2) iff

351,93, 50 € S, 51~ S1 A 8o~ Sy Adisjp g, (51, 53)

LEMMA 3. I-diagrams have the same expressive power as CBAC
constraints.

By “same expressive power” we here mean that there is a natural
pair of mappings between the models of i-diagrams and solutions
to CBAC constraints.

Because nodes in i-diagrams are collections of set names, we
can define the following operations.

DEFINITION 4 (Factor-i-diagram). Let p C S X S be an equiv-
alence relation on nodes. We define D/p as follows. Define
La/p =Lg. Let D = (S, Bq4, Sons, Split, Comp, Clnf, CSup, ®).
We define D/p = D' = (S', Sons/, Split’, Comp’, CInf’, CSup’,
®') as follows. Define h so that if {Sh, - .., Sn} is the equivalence
class of S under p, then h(S) = S1 U ... U Sp. If Q C S, define
RIQ] = {h(S) | S € Q}. Then let S' = h[S]. Consider S" € S'.
Both S and S’ are partitions, and given S’ € S’ there is a unique

set {S1,...,Sn} C Ssuchthat S" = S1 U...U Sy. Then define:
CInf’(S") = max(CInf(S1), ..., CInf(Sy))
CSup’(8") = min(ClInf(S1), ..., CInf(Sy))

S
S
Sons’(S”) = h[Sons(S1) U ... U Sons(Sy,)]
O (S)=®(S1)U...UD(S,)

Split’(S") = {h[Q] | Q € Split(51) U ... U Split(S.)}
Comp’(S")={h[Q] | Q € Comp(S1)U...U Comp(S,)}

DEFINITION 5 (Merge). For any i-diagram D we define the i-

diagram D[Merge(Q)] wef D/p for the equivalence relation p =
{(51,52) | 51,52 € Q}U{(S,5)| S S}

In the sequel we impose the following restrictions on the form
of i-diagrams.

DEFINITION 6 (Simple Diagrams). A diagram is D is simple iff
D = (g4 or all of the following conditions hold for all S € S:

a) (S,~) has no cycles, in particular S ¢ Sons(.S)

b) Op ¢ Sons(S)

c) O & Split(S) AD ¢ Comp(S)

d)vVQ,Q". Qe Split(S)AQ' € Q= Q" & Split(9)

) ¥Q, Q. Q € Comp(S) A Q' 2 Q = Q' & Comp(S)

f) CSup(Ba) = 0,Sons(04)=P(Da) = 0

On Algorithms and Complexity for Sets with Cardinality Constraints

proc Simplify (D) :
1. use fixpoint iteration to compute p as

the smallest equivalence relation such that:
1.1. S1~5 82 A S2~% 51 = (S1,52) €p

1.2. (S,04) € pA S~ 8= (51,04) € p
1.3. 0 € Comp(S) = (S,04) € p
1.4. diSjD,SO(Sla Sg) A (51, Sg) cp= (Sz,wd) cp
1.5. disjp g, (S1,S2) A (S0, 51) € p= (S2,04) € p
1.6. {S1} € Comp(S) = (S,51) €p
2.D:=D/p
[Split(S) «—{Q — {0a}|Q € Split(S), S ¢ Q}
3. | Comp(S)—{Q — {0a}|Q € Comp(S5), S ¢ Q}
Sons(S) «Sons(S) — {0q4, S}

rSplit(S) « Split(S) — {0}
—{Q|3Q" € Split(5), Q' 2 Q}

4. | Comp(S) « Comp(S) — {0}

—{Q[3Q" € Comp(S). Q" € Q}

L Ses

CSup(@q) <« 0
D(Da) —0
5. | Sons(@a) « 0
Comp(Bg) «— 0
B Spllt(@d) <—®
6. return D

Ses

Where [a < b] denotes the result of updating the component a of
i-diagram D with value b.

Figure 6. Polynomial-time algorithm Simplify to compute an
equivalent simple i-diagram

Simplicity eliminates redundancy from diagrams, but does not re-
strict their expressive power, as the following lemma shows.

LEMMA 4. For every i-diagram D we can obtain an equivalent
simple i-diagram using the polynomial-time algorithm Simplify
in Figure 6.

5. Sources of NP Hardness and Definition of
I-Trees

The satisfiability of i-diagrams is NP-hard because i-diagrams have
the same expressive power as CBAC constraints. We have observed
that the general directed acyclic graph structure of i-diagrams al-
lows us to encode NP-complete problems; this motives the follow-
ing two restrictions.

DEFINITION 7.

An i-diagram D is tree shaped iff

(S, ~) is a tree (with an additional isolated node () 4)

An i-diagram D has independent views iff

for all Q1,Q2 € Split(S) U Comp(S) at least one one of the
following two conditions holds:

e QiNQ2=10
® Q1 € Split(S) A Q2 € Comp(S) A Q1 C Qo.

Recall that, by Lemma 4, it suffices to consider i-diagrams with
acyclic graphs of the subset relation. The tree shape condition is
then a natural next restriction on the structure of i-diagrams. How-
ever, due to the presence of Split and Comp, the tree shape condi-
tion by itself does not reduce the expressive power of i-diagrams,
and further restrictions are necessary. The independent views con-

6 2005/8/3

dition extends the tree condition to the entire graphical representa-
tion of i-diagrams, including the circles and squares that represent
Split and Comp views. The conjunction of these two conditions
can be expressed by saying that the graphical representation of i-
diagram is a tree.

REMARK 1. We can express the combination of the conditions:
being simple, being tree shaped, and having independent views by
saying that there are only four kinds of edges in the corresponding
graphical representation:”

e from an element S € S—{(q} to a circle

e from a circle to a square, indicating that all nodes of a split view
belong to a complete view

e from a circle to an element S € S—{0},

e from a square to an element S € S—{()4}.

Unfortunately, the restrictions on tree shape and independent views
are not sufficient to guarantee a polynomial-time decision proce-
dure in the presence of predicates associated with nodes. The rea-
son is that the ability to encode disjointness of arbitrary sets leads to
NP-hardness, yet even with tree structure and independent views it
is possible to assert that two arbitrary sets S; and .S, are disjoint by
letting (+P) € ®(S1) and (—P) € ®(S2) for some uninterpreted
predicate P. A simple way to avoid this problem is to require that
® contains only positive atoms (+P). A more flexible restriction
is the following.

DEFINITION 8. An i-diagram D has independent signatures iff
for every pair of distinct nodes S1,S2 such that (—P) € ®(S1)
and (+P) € ®(Ss2) for some P € PN, at least one of the following
two conditions holds:

1. S1 and Ss are explicitly disjoint, that is, disjp(S1, S2)
2. 51 and S5 have compatible signatures, that is, there exists a
node S such that

S1~5 S8 A S5 S A
Sig(S1) N Sig(S2) C Sig(S)

where Sig(S) = {P | (+P) € ®(S)V (—=P) € ®(5)}.

The independent signatures condition ensures that any disjointness
conditions are either 1) a result of the fact that the ancestors of
S1 and S are explicitly stated as disjoint, or 2) a result of a
contradictory predicate assignment (the case when S7 and S> have
compatible signatures, so there exists a parent that resolves which
of (+P) or (—P) hold for both .S; and S3).

The discussion above leads to the definition of i-trees, for which
we will give polynomial-time algorithms for satisfiability and sub-
sumption in Sections 6 and 7.

DEFINITION 9 (i-trees, iT). An i-tree 7 is a simple i-diagram
such that T =_1 4 or such that all of the following three conditions
hold:

1. T istree shaped
2. T has independent views
3. T has independent signatures.

We denote by iT the set of i-trees.

The following theorem justifies why all three conditions in our def-
inition of i-trees are necessary. Its proof is based on a reduction
from graph 3-colorability, which can be encoded using slightly dif-
ferent i-diagrams for each of the three cases. The common property
of these diagrams is that they can encode disjointness of arbitrary
pairs of nodes.

> - . Lo . .
“As a result, we can recognize this structure in linear time using, for
example, a tree-automaton [12].

On Algorithms and Complexity for Sets with Cardinality Constraints

THEOREM 2. Omitting any one out of three conditions from Defi-
nition 9 yields a class of diagrams whose satisfiability is NP-hard.

We note that in addition to NP-hardness, the omission of tree
shaped or independent views properties in fact retains the full
expressive power of CBAC constraints, using a similar argument
as in Lemma 3.

Our ability to specify i-trees as a natural subclass of i-diagrams
justifies the definition of i-diagrams themselves. For example, the
definition of i-trees would have been more complex had we chosen
to represent disjointness using a binary relation s; N sz = ().

Let us also observe that, despite the imposed restrictions, i-
trees are fairly expressive. In particular they can express hierar-
chical decomposition of a set given by a node S into disjoint sets
S1,...,Sn, by letting {S1,...,Sn} € Split(S) N Comp(S). De-
spite the independent view condition, we can have multiple orthog-
onal decompositions, so {S1, ..., Sy, } € Split(.5) N Comp(S) for
{S1,..., 8, }N{S1,...,Sn} = 0. This allows i-trees to naturally
express generalized typestate constraints.

6. Deciding the Satisfiability of I-Trees

In this section we prove that the satisfiability of i-trees is decidable
in polynomial time. For this purpose we introduce a set of weak
consistency conditions C; (Definition 10) such that:

(6.1) We can enforce weak consistency for any satisfiable i-tree us-
ing a rewriting system R* (Definition 11) with the following
properties (Lemma 5):

e R™ is semantic-preserving;

e if a non-_1 4 i-tree is in R™ normal form, then it satisfies
weak consistency conditions;

e for a particular strategy (Figure 9) the system R™ termi-
nates in polynomial time.

(6.2) Every i-tree that satisfies weak consistency conditions is satisfi-
able; Lemma 6 gives an algorithm for constructing a model for
any i-tree that satisfies weak consistency conditions.

Figure 9 summarizes the polynomial-time satisfiability decision
procedure whose correctness (Theorem 3) follows from the results
of this section.

DEFINITION 10 (Weak Consistency). An i-tree satisfies weak
consistency iff T #14 and T satisfies the following conditions
forall S € S:
VS’ € Sons(S). ®(S’) D ®(S) (C)
CSup(S) >0=VP € PN. {+P,—P} Z ®(S) (C2)
vQ € Comp(S). CSup(S) < =(CSup|[Q)]) (Cs)
VQ € Split(S). CInf(S) > 2(CInf[Q]) (Ca)
CInf(S) < CSup(S) (Cs)

6.1 A Rewriting System R* for Enforcing Weak Consistency

We introduce the following rewriting system to enforce weak con-
sistency properties when possible.

DEFINITION 11 (System R™). For each tuple (k, name,
condition, effect) in Figure 7, we define a rewriting rule on
i-diagrams by

spot

DEXD L4 (D £1,4 Acondition A D' = Deffect])

name
for each assignment spot of the free variables appearing in the
condition column. We define Ry, by
spot

DD £ Jspot. DA D

Ry, name

We define R" as union of ?for 1 <5 <5,
j

7 2005/8/3

conditions

a1) S € Sons(S")

b1) ¢n = ®(S) UB(S")
1) én € B(S)

a2) {+P,—P} C ®(9)
ba)n =0

c2) CSup(S) > n

a3) Q € Comp(S)

3 | UpSup | b3) n = X(CSup[Q])
c3) CSup(S) > n

as) Q € Split(S)

bs) n = X(CInf[Q])

ca) CInf(S) < n

a5) CInf(S) > CSUP(S) D14

[k [name

| effect |

1 | DnPhi O(S) — ¢n

2 | Unsat CSup(S)«n

CSup(S)«n

4 | UpInf CInf(S)—mn

5 | Error

Figure 7. System R* for ensuring weak consistency

A A A A
3.5 13..2]
[1'155] [3-155] [+P ! +P
LI L
B T OB T B 7B R
[4..5] [4.5] [4.5] [4.5] d
(e C C
[2?2] [2.2] [2.2] [2.2]
D D D D
0.6 [0..0] [0..0]
-3 9 +P_p +P-p
K 25T Adopy o A
DnPhi Unsat UpSup Error

Figure 8. An example sequence of rewriting steps for R

Figure 8 shows an example sequence of rewriting steps applied to
an i-tree.

LEMMA 5 (Properties of R™).
1. RY is iT-stable, that is
7 €iT A TﬁT’ =7 €iT
2. RY preserves the semantics, that is
D D=D=D

3. RY enforces weak consistency when possible, that is, a dia-
gram D in RY normal form is either equal to L g or it is weakly
consistent

4. RY terminates in polynomial for the strategy corresponding to
the algorithm R\ in Figure 9.

Proof sketch.
1. Follows easily from the fact that R* rules do not modify Sons,
Split, Comp.
2. Follows by construction of R* rules. Suppose D e D’. Then
D k& D’ follows from conditions a; (1<i<5), and D' = D
follows from conditions ¢; (1<i1<4).

3. For every k = 1..5, the condition of application of the rule Ry,
corresponds to the negation of Ci. When a diagram is in normal
form for the rule Ry, it either satisfies Cy, oris L 4.

4. To prove that Ry corresponds to a polynomial strategy, we
prove by induction that applying the rule R, in the speci-

On Algorithms and Complexity for Sets with Cardinality Constraints

proc Ry ()
1. for every S € S from the root to the leaves
for every Q € Comp(S)
try to apply DnPhi(S, Q) to 7
2.forevery S € S
for every P € PN
try to apply Unsat(S, P) to 7
3. for every S € S from the leaves to the root
for every Q € Comp(S)
try to apply UpSup(S, Q) to T
4. for every S € S from the leaves to the root
for every @ € Split(S)
try to apply UpInf(S, Q) to T
5. forevery S € S
try to apply Error(S) to 7
return 7

proc ItreeSAT(7)
if (RNg(7) =L4) return satisfiable
else return unsatisfiable

Figure 9. Polynomial-time algorithms Ryr and ItreeSAT to
compute R* normal form and check satisfiability of i-trees

fied direction (from the root to the leaves or from the leaves
to the root), enforces C, everywhere, and when Cj holds, the
rule is not applicable anymore. Finally, we prove that each
rule Ry for £ = 1..12 preserves the conjunction of proper-
ties \;_; (1) B, and as a consequence, we never need to
reapply any of the rules R; for j < k. m

6.2 Constructing Models for Weakly Consistent I-Trees

The following Lemma 6 is crucial for the completeness of our
algorithm, and justifies the definition of weak consistency.

LEMMA 6 (Model Construction). If an i-tree T is weakly consis-
tent, then we can construct a model for T .

The high-level idea of the proof of Lemma 6 is to first build the first
two components (A, «) of the model, and then extend the model
with = using the independent signatures condition for i-trees. We
build the (A, «) part of the model by building a model for each
subtree using an induction on the height of the i-tree. To construct
models that satisfy Split and Comp constraints in the inductive
step, we use a stronger induction hypothesis: we show that there
exists a model (A, @) for a tree rooted in node S with |A| = k
for all CInf(S) < k < CSup(S), and we rely on the properties
of weak consistency to prove the inductive step. The proof of this
lemma is interesting because similar ideas are used when building
example models that show the completeness in Section 7.

Putting all results in this section together using the argument at
the beginning of the section, we obtain the following theorem.

THEOREM 3 (ItreeSAT Correctness). 7 is satisfiable if and only
if WeakNF(T) #_Lq. Therefore, the algorithm ItreeSAT in Fig-
ure 9 is a sound and complete polynomial-time decision procedure
for the satisfiability of i-trees.

7. Deciding Subsumption of I-Trees

The goal of this section is to prove that we can decide the subsump-
tion of i-trees in polynomial time. Note that the subclass of i-trees
is not closed under negation or implication, so we cannot decide
7T E T’ by checking the satisfiability of =(7 = 7). Instead,
our approach is to bring 7 into a form where the properties of the
models of 7 are easy to read from 7. We then check that 7 en-
tails each of the conditions that correspond to the semantics of 7.

8 2005/8/3

[k [name | condition

as) ({S}T W Qo) € Comp(S”)

bs) n = Clnf(S")

~X(CSup[Qo])

cs) n > ClInf(S)

a7) ({S} W Qo) €Split(S")

b7) n = CSup(S’)

—3(CInf[Qo])

c7) n < CSup(S)

ag) Q € Split(S) A
CSup(S) <X(CInf[Q])

bs) Cr = Comp(S)U{Q}

cg) C, € Comp(S)

ag) @ € Comp(S) A
CInf(S) >%(CSup[Q])

bo) C,, = Split(S)U{Q}

c9) C,, Z Split(S)

aio0) Q € Comp(9)

10| UpPhi | bio) ¢n = ®(S) UN 2[Q]

Clo) ¢n Z (I)(S)

11] Void® | a12) S # 0a A CSup(S) = 0[Merge({S, 04})

12| Equal® | a11) {S"} € Comp(9) Merge({S, S"})

*Follow the application of these rules by Simplify.

[effect

6 | DnInf CInf(S) «—n

7 | DnSup CSup(S) —n

8 | CCmp* Comp(S) «—C,

9 | CSplit* Split(S) — C,,

D(5) — n

Figure 10. Rules for System R

We formalize the intuitive condition of being easy to read in the
notion of strong consistency. We build on the system R* from the
previous section to create a larger rewriting system R for ensuring
strong consistency. We introduce a polynomial-time strategy for R
that transforms every i-tree into _L 4 or into an i-tree that is strongly
consistent, and we give polynomial-time algorithms for extracting
the information from strongly consistent i-trees.

DEFINITION 12 (Strong Consistency). An i-tree T is strongly
consistent iff it is weakly consistent and satisfies all of the following
properties:

V@ € Comp(S).VSo € Q.
CInf(So) > CInf(S) — £(CSup[Q — {So}]) (Co)

VQ € Split(S). VSo € Q.
CSup(So) < CSup(S) — T(CInf[Q — {So}]) (C7)

VQ € Split(S). Q ¢ Comp(S) =

CSup(S) > 2(CInf[Q]) (Cs)
V@ € Comp(S). Q & Split(S) =

CInf(S) < B(CSup[Q]) (Co)
vQ € Comp(5). N(P[Q]) € ©(5) (Ci0)
S # @p = CSup(S) >0 (C11)
Q € Comp(S) = Q| > 1 (C12)

7.1 A rewriting system R to enforce strong consistency

This section follows the development of Section 6.1.

DEFINITION 13 (System R). The system R extends R with the
additional rules of Figure 10, analogously to Definition 11.

LEMMA 7 (Properties of R). 1. R is iT-stable, that is
T €iT A T?T’ =7 €iT
2. R preserves the semantics, that is
D—D =D=7D
R

On Algorithms and Complexity for Sets with Cardinality Constraints

proc Rne(7)
1...5.7 — WeakNF(7)
6. for each S’ € S from the root to the leaves
for each @@ € Comp(S)
forevery S € Q
try DnInf(S, S, Q)
7. for each S’ € S from the root to the leaves
for each @ € Split(S)
foreach S € Q
try DnSup(S, S’, Q)
8. foreach S € S
for each @ € Split(S)
try CCmp(S, Q)
9. foreach S € S
for each @ € Comp(S)
try CSplit(S, Q)
10. for each S € S from the leaves to the root
for each @ € Comp(S)
try UpPhi(S, Q)
11. for each S € S from the leaves to the root
try Void(.S)
12.foreach S € S
for each @ € Comp(S)
try Equal(S, Q)
return 7

Figure 11. Polynomial-time algorithm Rne(7) to compute R
normal form

3. R enforces strong consistency when possible, that is, a diagram
D in R normal form is either equal to L4 or it is strongly
consistent.

4. R terminates in polynomial time for the strategy corresponding
to the algorithm Rnr described in Figure 11.

Proof sketch.

1. The iT-stability is trivial for the rules DnInf, DnSup,
UpPhi. The other rules are marked with a star and we use the
algorithm Simplify. In fact, we can show that it is not necessary
to apply Simplify in its full generality, but only to remove any
redundant views introduced by CCmp and CSplit, remove
any self edges introduced by the operation Merge used in the
rules Equal and Void, and to remove the edges going to ()4
that can be introduced by the rule Void.

2,3. Follow by construction as in the previous section.

4. This part is significantly more difficult than for system R™,
because the interactions between the rules are more complex,
but follows the same structure as the proof for R".

7.2 Extracting Information from Strongly Consistent I-Trees

In this section we start from a strongly consistent i-tree 7 and con-
sider the problem of checking 7 |= D’. Analyzing Definition 2,
we observe that a diagram corresponds to a conjunction of con-
straints. Therefore, the subsumption problem 7 = D’ corresponds
to the problem of verifying that 7 entails atomic formulas of the
form s = (, s1 = s2, 81 C s2,a < |s| < b,s C P,s C P,
s1MNsz=0and s C Y{s1,---,Sn}. Without the danger of con-
fusion, we write 7 |= A when the atomic formula A holds in all
models for 7.

THEOREM 4. Let T be a strongly consistent i-tree and let HZ for

atomic formula A be as defined in Figure 12. Then T = A if and
only if H.

9 2005/8/3

proc Subsumes(7,D’)
T := RNF(T)
let f : SN — S such that Vs € SN. s € f(s)
let B’ : " — SN be any function such that V.S’ € S. b/ (S’) € S’
check all of the following conditions:

T
LA AN Huo,

Ses’ s1,52€8
def
wlquere HI s, & f(s1) = f(s2)
2. Hh(@&):@
where HZ_; LL f(s) = 0a

3. A Hwe(s)<in(s) <csm(s)
Ses’

where HZ_ _, €5 CInf(f(s)) < a < b < CSup(f(s))

4. A A
SeS’ (+P)ed’(S)

where Hip(s) % (+P) € 2(f(s))
5 A A Hlpues)y
Ses’ (—P)e®’(S)
where Hzp(s) SN (—=P) € 2(f(s))
6. A A Hiscus
Ses’ S’eSons’(S) B
where HZIQSQ & f(s1) ZT@d V f(s1)~ f(s2)

T AN A A
Ses’ QeSplit’ (S) S1,582€Q
S1#8S3

where HSTmSZ:@ FL2N f(s1)=0qV f(s2) =04V

disjz (S1, S2)

T
Hi p(nes))

Hh(s1)nn(s2)—0

8. A A Hiscung
Ses’ QeComp’ (S)
def

where HZQUZ < f(s) = 0q VIncluded(f(s), f[Z]. T)

where proc Included(Soy, C, T)
return \/ Incl(S)
So~5 S
proc Incl(S)
if S € C then return true

sercm V(A mels))

QeComp(S) \ S’eQ

Figure 12. An Algorithm for Computing 7 = D’ for a an i-tree
7 and an arbitrary diagram D',

It is easy to verify that H} implies 7 |= A. The proof of the
converse is based on the following two lemmas, which provide a
link between strong and weak consistency.

LEMMA 8 (Bounds Refinement). Let 7 be a strongly consistent i-
tree, S € 'S, i, s such that CInf(S) < i < s < CSup(S), let
T' = T[CInf(S) < i, CSup(S) « s] and Tyr = RYp(T'). Then
1) Tie #La, 2) Tne = T, and 3) if —(S ~> Sy), then

(CInf(So), CSup(So)) = (Clnfie(So), CSupie(So)).

Proof sketch.

1. We prove this result by induction on the depth of S in the tree
(S, ~). The key step of this proof is to show that the application
of UpSup and/or UplInf to the father S’ of S does not produce
a situation where as holds in the resulting diagram 7" (and
therefore the rule Error is not applicable in 7). We use the fact
that Ryr applies the rules Uplnf and UpSup bottom up, and
prove that each application preserves Cs, only increases Clnf

On Algorithms and Complexity for Sets with Cardinality Constraints

and only decreases CSup. At each step we distinguish three
cases:

(a) both UpSup and Uplnf are applicable; then the result fol-
lows from Cs;

(b) only UpSup is applicable; then the result follows from Cs;

(c) only Uplnf is applicable; then the result follows from Cx.

2. Follows easily from the hypothesis CInf(S) < i < s <
CSup(.S) and the fact that R\ is semantics preserving.

3. Itis enough to notice that only rules UpInf and UpSup are used
when applying Ry, and these rules are applied in the bottom-
up direction. m

The fact that the resulting i-tree 7y is not strongly consistent any-
more prevents us to apply this lemma twice from a given strongly
consistent i-tree. To enforce more than one restriction, we need to
refine simultaneously the bounds of several nodes. For this purpose,
we use the following lemma.

LEMMA 9 (Parallel Bounds Refinement). Let T be a strongly con-
sistent i-tree, and (Qo, ~>) a subtree of T such that

® The nodes of Qo are pairwise independent, that i