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The Lions-Mercier Splitting Algorithm and the
Alternating Direction Method are

Instances of the Proximal Point Algorithm

by

Jonathan Eckstein*

Abstract

Suppose we have two maximal monotone operators A and B over a Hilbert space and wish to
find a zero of the operator A+B. We introduce an auxiliary maximal monotone operator SAAB
whose set of zeroes is very closely related to that of A+B. In the case that B is the normal
cone operator of a linear subspace, SL,A,B is virtually identical to the partial inversion oper-
ator of Spingarn [18],[19]. Furthermore, when r=l, the resolvent (I + rSX,A,)-l of S,~A,B is
the operator G(X) of Lions-Mercier [9]. Thus, the algorithm of Lions-Mercier is in fact the
proximal point algorithm applied to S;AB. We also conclude that Spingarn's technique for
minimizing a convex function over a linear subspace is essentially a special case of the Lions-
Mercier approach. Further, as the Lions-Mercier algorithm generalizes the alternating direc-
tion method for convex programming [4]-[8], as shown by Gabay [5], we obtain that the
alternating direction method is in fact an instance of the proximal point algorithm. We will
rederive this result directly.
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1. Introduction

This report aims to make clear the relationship between a number of similar algorithms

involving monotone operators, namely the proximal point algorithm first introduced by

Martinet [10] and further developed by Rockafellar [16], the Lions-Mercier method for finding

the zero of the sum of two maximal monotone operators [9], Spingarn's method of partial

inverses for monotone operators [18],[19], the "progressive hedging" stochastic program-

ming algorithm of Rockafellar and Wets [17], and the alternating direction method of multi-

pliers for convex programming of Glowinski-Marocco, Gabay-Mercier, and other authors

[4]-[8]. It is already known [5] that the alternating direction method is a special case of

Lions-Mercier. Also, the Spingarn and progressive hedging methods have been known since

inception to be instances of the proximal point algorithm. We demonstrate two (apparently)

new facts: that the Lions-Mercier method is in fact an instance of the proximal point

algorithm, and that the Spingarn and Rockafellar-Wets methods are essentially special cases

of Lions-Mercier (see Figure 4 at the end of this report for a summary of these relationships).

We also give a new development of the Lions-Mercier method.

The basic problem we consider is that of finding a zero of the monotone operator A+B, where

A and B are maximal monotone operators.

2. Foundations

Given any two sets X, Y we will say that a (possibly multivalued) mapping X Z Y is simply

any subset of X x Y. If A is such a mapping and xe X, we write Ax or A(x) to denote the set

Ax = ({yX I (x, y) E A }. Essentially, we make no distinction between a mapping and its

graph. This approach is not standard, but it simplifies many of the following definitions and

proofs. If A is single-valued, that is, the cardinality of Ax is at most 1 for all xE X, we will
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write oAx to denote the unique member y of Ax for all x such that Ax • 0. The domain of a

mapping A is its projection onto the first coordinate,

dom A = { xeX J 3 ye Y: (x, y) E A) = { xeX IAx # 0}.

We say that A hasfull domain if dom A = X. The range or image of A is similarly defined as

its projection onto the second coordinate,

im A = { ye Y 1 3 xeX: (x, y) E A .

The inverse A-1 : Y - X of a mapping A: X Y is { (y, x) (x, y) A }. Given two mappings

T: X ~ Y and R: Y Z Z, their composition RT or RoT is given by

RT= { (x,z) 1 3 yY:(x, y)e T, (y,z)e R },
hence

(RT)x= U Ry.
ye Tx

If Y is a real vector space, we make the additional definitions

cA = {(x, cy) I (x, y) E A} V ce R, A: X ~ Y

A+B = {(x, y+z) I (x, y) E A, (x, z) e B), V A,B: X - Y.

A zero of A is any xeX such that OeAx. The set of all zeroes of A, A- 1(0), will also be

denoted zer(A). Now let Hbe a real Hilbert space with inner product ( ., - ) and the

corresponding norm topology. An operator on His any mapping H{< AH We will always use

I to denote the identity operator { (x, x) I xe H}).

An operator A is monotone if

(x'-x, y'-y) >0 V (x, y), (x', y') E A

A maximal monotone operator is a monotone operator that is not strictly contained in any

other monotone operator. Perhaps the most common example of a maximal monotone

operator is the subgradient map of a convex function [12], [13]. Note that for A,B monotone,
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it is a straightforward excercise to prove that A+B is also monotone. However, it is not

always true that if A,B are maximal monotone, A+B is maximal monotone (see [3] and

[14]). One must usually require an additional "qualification" condition such as

ri(dom A) n ri(dom B) • 0

in order to have A+B maximal. A proof of the following result may be found in [3]:

Lemma 1. Given a monotone operator A on 1 A is maximal if and only if im(I+A) = H

We omit the proof of the following lemma, as it is entirely straightforward:

Lemma 2. Let r > 0 be a real number, and A an operator on H Then zer(A) = zer(rA), and A

is (maximal) monotone if and only if rA is (maximal) monotone.

3. Firmly Nonexpansive Mappings

We will now demonstrate the complete symmetry that exists between the collection of

maximal monotone operators on OHand the class of so-called firmly nonexpansive operators

with full domain on H This correspondence is already known, but is not particularly

prominent in the existing literature. An operator K on His said to be nonexpansive if

llx'- xll IIy'- yll V (x, y), (x', y) E K

Lemma 3. All nonexpansive operators are single-valued.

Proof. Given (x, yl), (x, Y2) e K, 0 = lx -xll >2 Iyl - y2ll, hence yl = Y2. ·

K is firmly nonexpansive [9] if

(x'-x,y'-y) > Ily'- y12 V (x,y), (x',y') e K
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Lemma 4. All firmly nonexpansive operators are monotone and nonexpansive. Thus, they

are also single-valued.

Proof. Let K be firmly nonexpansive. Since

(x'- x, y'- y) > Ily'- y11 2 > 0 V (x, y), (x', y') E K,

K is clearly monotone. An equivalent, but lengthier, statement of the firm nonexpansiveness

condition is given in [10],[16], namely

IlY' - y12 < Ilx' - x112 - Il(x' - y) - (x -_y)12 V (x, y), (x', y') E K.

(The equivalence may be checked by direct calculation.) From this form of the condition, it is

clear that K is nonexpansive, and hence by Lemma 3 that it is single-valued. ·

We now consider the problem of locating a fixed point of K, that is some x*e Hsuch that

Kx* = {x* }. A natural approximation scheme is the iteration xk+l = oKxk, starting from some

arbitrary point x 0 e XL If w is any fixed point of K, we note that from the proof of Lemma 4 one

has

llxk+l - wll2 < Ilxk - wll2 - ILxk+l- _xkl 2 V k > 0.

It is then immediate that the distance between xk and every fixed point is nonincreasing, and

that Ilxk+l -xkll -o 0. Thus, if any fixed points exist, the sequence (xk} must be bounded.

From here, depending on the conditions of the problem at hand, a number of different

arguments (dating back to [10]) may be used to deduce the convergence, usually in the weak

topology, of {xk} to a fixed point of K. In finite dimension, convergence is guaranteed.

We now demonstrate the connection with the topic of monotone operators. Given any

maximal monotone operator T and real number r > 0, we define the resolvent Jr,T of T to be

(I+rT)-l.
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Proposition 1. An operator T on Hf is monotone if and only if J1,T = (I+T)- 1 is firmly

nonexpansive. It is maximal monotone if and only if (I+T)- 1 is firmly nonexpansive and has

full domain.

Proof. To establish the first statement we note that

(x, y)E T r (x + y, X) E (I+T)-l
(x'-x,y'-y) 20 = (x'-x + y'-y,x'-x) >11lx'-xll2 .

By Lemma 1, T is maximal if and only if im(I+T) = H This is in turn true if and only if the

operator (I+T)-l has full domain. This establishes the second statement. ·

Corollary 1. An operator K is firmly nonexpansive if and only if K -1 - I is monotone. K is

firmly nonexpansive with full domain if and only if K-1 - I is maximal monotone.

Corollary 2. The functional taking T 4 (I+T)-1 is a bijection between the collection 9M(1H)

of maximal monotone operators on 9Hand the collection F(H) of firmly nonexpansive

operators on 1.

Corollary 3. For any maximal monotone operator T and real number r > 0, the resolvent

Jr,T = (I+rT)-l is firmly nonexpansive (hence single-valued) and has full domain.

Proof. By Lemma 2, rT is maximal monotone, hence (I+rT)-l is firmly nonexpansive and has

full domain. -

This last result is a seminal one in the field of monotone operators, and was first established

by Minty [11]. Although it may appear that we have obtained the result without using the

more subtle parts of the development in [11], it appears that similar analysis is still needed

to prove Lemma 1.
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Lemma 5. Given any maximal monotone operator T, real number r > 0, and xre 1; Oe Tx if and

only if Jr,T (x) = {x}.

Proof. By direct calculation, Jr,T = { (x + ry, x) I (x, y)e T}. Hence,

Oe Tx ,: (x, 0) rT -: (, X)E Jr,T -

Since Jr,T is single-valued, the proof is complete. ·

This last observation motivates the following asymptotic procedure for approximating a zero

of T [10]. Start with any r > 0 and x 0 e .H; then repeatedly compute

xk+l = lJr,T(xk) = o(I+rT)-lxk .

Rockafellar [16] proposed and extensively analyzed a generalization of this scheme, which he

called the proximal point algorithm. Here one takes a sequence {rk} of positive real numbers,

bounded away from zero, and an arbitrary starting point x0 e X1 One then performs the

iteration

xk+l = oJrk ,T(xk) = o(+ rkT)-lxk .

The arguments of [16] hinge primarily on the firmly nonexpansive properties of the resolvents

(I+rkT)-l. A partial statement of a principal result of [16] is:

Proposition 2. Let T be a maximal monotone operator. If zer(T) is nonempty, then the

sequence {xk} generated by the proximal point algorithm is bounded and converges weakly to

a zero of T. If zer(T) is empty, {xk} is unbounded.

It is important to note that any algorithm consisting of the iteration xk+l = oKxk, where K is

firmly nonexpansive with full domain, may be considered an application of the proximal point

algorithm to the maximal monotone operator K -1 -I corresponding to K, with {rk} fixed at 1.

This fact is not prominent in the literature of the proximal point algorithm.
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4. The Splitting Operator

We now consider the problem of finding a zero of A+B, where A and B are both maximal

monotone operators on X In the typical case that A+B is maximal, one may consider apply-

ing the proximal point algorithm to A+B. -However, we will primarily be interested in cases

where JrA+B is hard to compute, in which case such an approach may not be practical. We

instead present a method which will ultimately require only evaluations of JXA and JAB,

where AX > 0 is some positive real number.

To motivate the analysis, we may rephrase the problem of locating a zero of A+B as that of

finding (u, b) E B, (v, a) E A such that

v=U

a=-b.

For any real number A > 0, an equivalent system of equations is

u-v =0
v+2a = u- Ab .

One way to determine such u, b, v and a is to find a zero of the operator

SX,A,B = { (v+Ab, u - v) I (u, b) E B, (v, a) E A, v+;ta = u - b} ,

which may also be written

S,A,B = { (v+Ab, u - v) I(u, b) E B, (v, A-l(u - v) - b) E A }.

We call S,~AB the splitting operator associated with A and B. The choice of v+Ab as the first

member of each ordered pair in SA,B, may seem unmotivated at this time. However, as we

shall see in Proposition 4, it leads to SXA,B being maximal monotone whenever A and B are.

We do not exclude the possibilities that other, similarly-constructed operators might also be

monotone and/or result in useful algorithms.

The zeroes of S,4A,B and those of A+B are not identical, but are very closely related:
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Proposition 3. zer(SA,,A,) = { u+A.b I b E Bu, -b E Au } c { u+Vb I uc zer(A+B), b E Bu}.

Proof. Let S = SIA, and Z = { u+Ab I b E Bu, - b E Au 1. We wish to show that zer(S) is

equal to Z. Let z E zer(S). Then there exist some u, b, v e Hsuch that v+,b = z, u - v = 0,

(u, b) E B, and (v, A-l(u - v) - b) E A. These conditions simplify to u+Ab = z, (u, b) E B, and

(u, - b) E A, hence z E Z. Conversely, if z e Z, then z = u+)b, b E Bu, and - b E Au. Setting

u = v, we see that (z, 0) E S. Finally, the inclusion Z c { u+Ab I uE zer(A+B), b e Bu}

follows because b E Bu and - b E Au imply that u E zer(A+B). U

In the remainder of this report, we will continue to use the abbreviation S = SAAB where

convenient.

Proposition 4. If A and B are maximal monotone operators, S = S.AfB is also a maximal

monotone operator.

Proof. First we show that S is monotone. Let u, b, v, u', b, v' E H be such that (u, b) E B,

(v, -l(u - v) - b) E A, (u', b') E B, (v', A-l(u' - v)- b') A. Then

((v'+Ab') - (v+ab), (u' - v) - (u - v))

= A((v'+Ab) - (v+2,b), A-l(u'- v) - b'- A-l(u - v) + b)

+ Z((v'+Alb') - (v+A b), b' - b)

= Av'- v, ,-l(u'- v' - b' - A-l(u - v) + b)

+ A2(b'- b, ,-l(u' -v) - b'- -l(u - v) + b)

+ A(v'- v, b'- b) + A 2(b'- b, b'-b)

= ,(v'- v, A-l(u'- v) - b'- A-l(u - v) + b)

+ ,(b'- b,u'-u) - ,(b' b, v'-v) -A2(b '- b,b'- b)

+ A(v'- v, b'- b) + A2(b'- b, b'- b)

= l(v'- v, A-l(u' - v') - b'- -l(u - v) + b) + A(b'- b, u'- u) .
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By the monotonicity of A and B, the two terms in the final line are nonnegative, so we obtain

that ((v'+Ab') - (v+Ab), (u'- v) - (u - v)) 2 0, and S is monotone.

By Lemma 1, it now suffices to show that im(I+S) = X/ Since A and B are maximal mono-:

tone, so are AA and AB, hence im(I+XA) = im(I+AB) = [ Take any w E Xk Then there

exists some u such that u+A.b = w and (u, b) E B. Furthermore, there is some v such that

v+A2a = u - Ab and (v, a) E A. Then a = -l(u - v) - b, so we may substitute u, b, and v into

the definition of S to obtain that (I+S)(v+)b) 3 u - v + v +Ab = u+)b = w. ·

Thus, to approximate a zero u of A+B, one may apply the proximal point algorithm (with any

positive sequence {rk) bounded away from zero) to SAJB to obtain a sequence {zk}

converging (weakly) to a zero z of SXAB. Since the resolvent operator (I+AB)-1 = J&XB,

considered as a point-to-point mapping, is Lipschitz, it is also continuous, so the sequence

{uk ) = {J&,B(zk) converges (weakly) to the zero u = JB(z) of A+B. We will call this

procedure the splitting algorithm. Interestingly, S.AB4 is always maximal if A and B are,

even if A+B is not. Therefore the splitting algorithm is applicable even in cases in which A +B

is not maximal.

5. Implementation Issues

To implement the splitting algorithm, one must be able to calculate the value of (I + rS)-l at

an arbitrary point. A straightforward calculation yields that

(I + rS)-l = { ((1 - r)v + ru+db, v+Ab) I (u, b) E B, (v, ,-l(u - v) - b) E A ) .

Thus, to calculate (I + rS)-l(z), one must find (u, b) E B and (v, a) E A such that

(1 - r)v + ru+Ab = z a = A-l(u - v) - b)

Alternatively, we may state the problem as that of finding u,v E .[such that

z - (ru + (1 - r)v) e AB -z + ((1 + r)u - rv) E A .
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This does not appear to be a particularly easy problem. Specifically, it does not appear to be

any less difficult than the calculation of Jr, A+B at an arbitrary point z, which we are expres-

sedly trying to avoid. By comparison, that calculation involves finding (u, b) E B such that

(u, A-l(z - u) - b) e A.

Consider, however, what happens in the splitting algorithm when one fixes r at 1. Then one

has only to find

(u, b) E B such that u+Ab = z
(v, a) E A such that v+@a = u-b .

The conditions (u, b) E B, u+Ab = z uniquely determine u=oJAg(z) and b=A-l(z- u) inde-

pendently of v. Once u is known, then v is likewise uniquely determined by u=oJ~AA(u - Ab).

Thus, we have achieved a decomposition in which the calculation of J1,s = (I+S)-1 is replaced

by separate, sequential evaluations of J;tA = (I + 1A)-1 and JXB = (I + BY)-1 . It seems that

keeping r=l at all times is essential to the decomposition. Spingarn [19] has already

recognized this phenomenon, but in a more restrictive context. From now on, unless

indicated otherwise, we assume that the sequence rk=l for all k whenever the splitting

algorithm is applied. In the next section, we will show that with this restriction, the splitting

algorithm is equivalent to the method of Lions-Mercier [9].

Figure 1 illustrates the calculation of (I + AS)-l(z). The calculation of (u, b) may be thought

of as finding the point of intersection of B with the diagonal "line" of slope -1/A passing

through the point (z, 0). To subsequently calculate v, one moves from (u, b) to the point

(u, -b), and then subsequently along another diagonal "line" of slope -1/A, until one reaches

the point of intersection with A. The final (and usually much easier) computation of v+Ab can

then be depicted as a vertical movement to the point (v, b), followed by a diagonal movement

to the horizontal axis. For compactness, the graph depicts the average 2 (A+B) of A and B,

rather than their sum; these two operators have the same set of zeroes.



------- Calculation of (u, b) B

- * Calculation of v

...... Calculation of v+b = (I+S) -l(z)

_ =(u , )v+lb

A

Figure 1: Computing (I + S)-l(z).

The decomposition of the computation of (I + S)-l(z) into sequential computations of

(u, b) E B and (v, a) E A yields an alternate description of the splitting algorithm. We may

rewrite the sequence {zk) it generates, which obeys zk+l = (I + S)-l(zk), as {uk + Abk},

where (uk, bk) E B is the unique pair in B such that uk + Abk = zk. We thus obtain the

following description of the algorithm:
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(1) Starting from some (uk, bk) E B, compute (vk, ak) E A such that
vk+Aak = uk -_ Abk.

(2) Find (uk+l, bk+l) e B such that uk+l+Abk+l = vk+tbk.

This representation of the algorithm may be more pertinent algorithmically, since one is

presumably most interested in the sequence {uk}, which converges to a zero of A+B, rather

than {zk} itself. Figure 2 depicts the iteration (1)-(2). Unfortunately, the algorithm cannot be

described in terms of this sequence alone, for although {uk} obeys the recursion

uk+l E (I + AB)-I [(I + XA)-I(I - B) + 2B]uk,

the operator (I + AB)- 1[(I + XA)-l(I - AB) + AB] is not single-valued.1

We may think of (1) as a "mapping step" which computes the value of the operator J1,S at the

current iterate, and (2) as a "re-representation step" which puts the output of (1) into the

more useful form uk+l+Abk+l, where (uk+l, bk+l ) e B. Note that it is possible to initialize the

iteration (1)-(2) at any point (u0 , bO) E {Hx X4 even one that is not in B. The reason for this

is that (ul, bl) is automatically in B after the first execution of (2), hence the algorithm

quickly gets "on track".

Figure 3 gives another depiction of the splitting algorithm, using the fact that the zeroes of

A+B are precisely the points where the operator B and the the (generally non-monotone)

operator -A = (-1)A intersect.

1However, this description of the evolution of {uk}, which resembles a certain approximation
scheme for differential equations, appears to have been one of the inspirations for the work of
Lions-Mercier [7].
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k k ) k + bk (Vk b k

Calculation of (v ,a )["mapping step"]_ C I (k+ k+"] . (A+B)

Calculation of (u , b1 ) ["re-representation step"]

Figure 2: The splitting algorithm.
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FSlope 1A

-A

Figure 3: Alternate Depiction of the Splitting Algorithm

6. Relationship to the Method of Partial Inverses

We now consider a special case. Given an convex set C _c 1 the normal cone operator NC

associated with C is { (x, y) I x E C, (x' - x, y) < 0 V x' X C). It is well known that NC is a

maximal monotone operator, and that it is also the subgradient map of the convex indicator

function

c(x) = °+ o xx C

Now suppose V is a linear subspace of H Then NV= V/x V±-. Given any we 91- we denote

the projections of w onto ' and V-L by wv and wL-, respectively. Consider the case B = NV.

In this case the problem of locating a zero of A+B reduces to finding (u, v) E A such that

u E V and -v E Vi-, or, equivalently, u E V i/and v E Vi-. In this case we have
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SAA2B = { (v+Ab, U - v) I U E V, b e V-l, (v, A-l(u - v) - b) E A }

Given any (v, a) e A, the unique solution to

A-l(u - v) - b = a, u 'V, be lV-
is

u = (v + Aa), b = (-lz + a)vL.

It follows that

S = { (zv- Aao , )Aav- zzvp) I (z, a) E A } .

For any maximal monotone operator T and subspace V, Spingarn [18],[19] defines the partial

inverse

TV = { (xv+ yVi, y V+ xq/L) I (x,y) T .

Thus, except for a difference in signs, S is the partial inverse (AA)vof AA. The main appli-

cation of the partial inverse is to find some (x, y) E T such that x E V and y E V'/1 . Taking T=A,

this is the problem we are already considering. To solve it, Spingarn suggests applying the

proximal point algorithm to approximate a zero z of TV, and then projecting z onto Vand VI-,

respectively, to obtain x and y. Spingarn does not consider the parameter A, but by the the

closure of V under scalar multiplication, it makes no difference whether we take T=A or T=AA;

in the latter case, we must simply scale y by 1/A to obtain the final answer. For essentially

the same reason, the difference is signs between S and (AA)vis of no consequence. It is

easily confirmed that JX,, is the projection operator for V, so our splitting algorithm yields the

same procedure as Spingarn suggests, with the exception of the previously noted sign

difference. The stochastic programming method of Rockafellar and Wets [17] is in fact

identical to the splitting algorithm, A being present and there being no difference in signs.

7. Relationship to the Lions-Mercier Splitting Algorithm

Lions and Mercier [9] suggested the following algorithm for finding a zero of A+B: starting

with an arbitrary v0 E X7 perform the iteration vk+l = oGA(vk), where
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Gt = JLA(2JIB - I) + I - JAB.

(Note that this operator is called G(X) in [9].) We now give the key result of this report:

Proposition 5. Gt = (I + S,AB)- 1.

Proof. By direct calculation. First, we note

JXA ={ (y+la, y) I(y, a) E A}
JA,B = { (x+b, x) (x, b) E B)

Therefore,

2JA -I = { (x+ab, x- Ab) I (x, b) B}

JX,A(2JA,B -I) = { (x+Ab, y) I (x, b) E B, (y, a) E B, y+Zaa = x - Ab}

J2,A(2J4,B - ) = { (x+ab, y) I (x, b) E B, (y, A-l(x - y) - b) E A }

Gj = JXA(2I3B - I) + I - J;B = { (x+Ab, y+Ab) I (x, b) E B, (y, A-l(x - y) - b) E A }

It then follows that

G-1 - I = { (y+/ib, x - y) I (x, b) E B, (y, A-l(x - y) - b) E A } = S,,AB ,

establishing the claim. ·

Thus, the Lions-Mercier method is simply the splitting algorithm applied to A and B, with

rk=l for all k. We therefore conclude that the Lions-Mercier algorithm is indeed a special

case of the proximal point algorithm. (In fact, we first constructed SXAB by combining the

observations of section 3 with Lions and Mercier's proof that GX is firmly nonexpansive.)

Given the analysis of the previous section, we may also conclude that the "progressive

hedging" algorithm of Rockafellar and Wets [17] and the partial inverse techniques of

Spingarn [18], [19] (apart from minor sign changes) are special cases of Lions-Mercier in

which B is the normal cone operator of a linear subspace.
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8. Derivation of the Alternating Direction Method

We now demonstrate, following [5], that the alternating direction method for convex pro-

gramming is an instance of the splitting algorithm. We consider convex programs of the

general form introduced by Rockafellar in [13],

(P) min f(x) + g(Mx),
xE Rn

where M is an m x n real matrix, andf: R n -- (- oo, + oo] and g: Rm -- (- o, + oo] are closed

proper convex functions. While the results of this section should extend to general Hilbert

space, we will confine ourselves to Rn and Rm, under the canonical inner products, in order to

keep the linear algebra straightforward. One may rewrite the program (P) as

min f(x) + g(z)
(P') s.t. Mx = z

xe R n

z E Rm

Thus, a dual program to (P') is

max ¢(p)
s.t. p Rm,

where

¢(p) = inf {f(x) +g(z) +p T (Mx-z) 
n+m

(X, z)E R

= infx {f(x) + pTMx} + infz {g(z) -pTz}

= -f*(-MTp ) - g*(p),

where the * denotes the convex conjugacy operation. The dual to (P) may then be written

(D) min f*(-MT p)+ g*(p)
peR m
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As has been demonstrated in [5] and [15], the method of multipliers for convex programming

(see [1] for a survey) is in fact an implementation of the proximal point algorithm as applied

to the maximal monotone operator a[f*o(-MT) + g*]. (When we mix matrices and

multivalued mappings, we mean the matrices to be interpreted as the corresponding single-:

valued linear mapping; e.g. M should be interpreted as ((x, Mx) I xe Rn}.)

We now demonstrate, following [5], that, subject to certain regularity conditions, the alter-

nating direction method of [4]-[8], and [2] is in fact an implementation of the splitting method

as applied to the maximal monotone operators A = a[f*o(-MT)] and B = ag* = (ag)- 1. In

other words, it is the proximal point algorithm with r=l applied to the maximal monotone

operator S = SX,aV*,o(_MT)],ag*. It should be noted that in some exceptional cases this may not

be a valid approach to solving (D), the reason being that while it is always true that

aLf*o(-MT) + g*] D alf*o(-MT)] + ag* ,

equality may not hold unless some kind of additional qualification condition is met. Thus it is

conceivable that the set of solutions to (D), zer(a[f*o(-MT) + g*]), may be nonempty, but

that S has no zeroes. We leave the most precise and useful qualification conditions to be

refined in future research, and assume for the moment that

a[f*o(-MT) + g*] = a[f*o(-MT)] + ag* = A+B

Then, zer(S) is nonempty if and only if there are solutions to (D). We further assume that

im( MT) n ri(domf*) • 0, hence (see [13]) that

A = a[f*o(-MT)] = -M o af* o (-MT) = -M o (aj)-1 o (_MT).

Again, other appropriate qualification conditions remain to be worked out.

We now restate the alternating direction method: one starts with arbitrary z0, po E (R rm and

then performs the iteration
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k+ =argmin {f(x)+(pk Mx-z }
k+1 xe)Mx± IMx -z+

xE R

z = argmin {g(z)- (P k) + 1 2M -zll 2 }

zE RM

k+l k + Mk+l k +1)
p =P + ,(MX -Z .

Proposition 6. Let the sequences {xk}, {zk}, {pk} be defined by the alternating direction

method recursion above. Then for every k 2> 1,

pk +1 + Azk +1 = o(I + S;,a[,o(_MT)],ag*)-l(pk + Azk).

Proof. The explicit form of the operator A is

A = -M o (i)- (-M T)= { (u,-Mw) I (w, -MTu)E a f }

The explicit form of B is just B = { (u, b) I (b, u) E ag }. From the minimization step over x,

we know that for all k 2 0,

O E af(xk+l ) + MTpk + AMT(Mxk+1 - zk)

.: (xk+l, -MT(pk + ,(Mxk+l - zk))) E af

, ~(pk + I(Mxk+ 1 _ zk), _Mxk+l) E A .

From the minimization step over z, we likewise know that

o ag(zk+l) -pk + (zk+l _ Mk+l)

<, (zk+l, pk + (Mxk+l -zk+l)) = (zk+l,pk+l) E ag

<,: (pk+l, zk+l) E B

Recall that

(I+S)- 1 = { (u+/Ab, v+j,) I (u, b) e B, (v, A-1(u - v) - b) E A } .

For any k > 1, make the following substitutions:

u =pk b = zk v = pk + /(Mxk+ 1 _ zk)
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Since k > 1, we have (u, b) = (pk, zk) e B by our analysis of the z minimization step. Also,

A-l(u - v) - b = A-l(pk _ (pk + /(Mxk+l - zk))) _ zk = -Mxk+l,
hence

(v, /-l(u - v) - b) = (pk + L(Mxk+l _ zk), _Mxk+l)

which we already know to be a member of A by our analysis of the x minimization step. Thus,

the substitutions are legal, and we conclude that (I+S)-1 contains

(u+2b, v+).b) = (pk + Azk, pk + Mxk+l)
= (pk + zk, pk+1 + Azk+1)

The proof is complete. A

Thus, at every iteration except possibly the first, the alternating direction method performs

essentially the same calculation as the splitting method as applied to the specially defined

maximal monotone operators A and B. Note that the minimization over x implements the

"mapping step" (1) of section 5, whereas the minimization over z and the update of p perform

the "re-representation step" (2). That the conclusion of Proposition 6 may not hold for k=O is

a direct manifestation of the general phenomenon noted at the end of section 5, namely that if

the initial iterate does not lie in the operator B, it may take the algorithm an iteration to get

"on track" by producing an iterate that is a member of B.

By the theory of the proximal point algorithm, we are now guaranteed (at least in finite

dimension, where weak convergence and conventional convergence are equivalent) that the

sequence {pk + )zk} is convergent. Since the operator Jag = (I+B)- 1 is nonexpansive, it is

(Lipschitz) continuous, hence the sequence {JAB(pk + A2zk)} is also convergent. But this

sequence is identical with {pk}, except possibly in its first element. Therefore, we may

conclude that the sequences {pk} and {zk} are bounded and convergent, with {pk} converging

to a solution of (D). From here, one may now pursue the usual convergence proofs for the

alternating direction method.
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9. Conclusion

In conclusion, we have illuminated the connection between a large number of existing

algorithms. In particular, we have established that the Lions-Mercier splitting algorithm for .-.-

maximal monotone operators is an instance of the proximal point algorithm, and hence that

the alternating direction method of multipliers, already known to be an instance of Lions-

Mercier, is also a member of the proximal point class. Furthermore, the algorithms of

Spingarn and Rockafellar-Wets, already known to be proximal point variants, are in fact

special cases of Lions-Mercier. Figure 4 illustrates the exact taxonomy of these algorithms.

The important point is that it is the decomposition principle of section 4 that makes possible

the algorithm of Lions-Mercier, the decomposition method of Spingarn [19], and the

alternating direction method of multipliers. It appears that one must keep the parameter

sequence (rk} of the proximal point algorithm fixed at 1 to take advantage of this principle.

An interesting question for further research is whether it is still possible to obtain

convergence if one varies the parameter A from iteration to iteration of the splitting algorithm.
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Proximal Point
Algorithm

Splitting Algorithm
(General Irk})

Lions-Mercier

Alternating Methods of Partial
Direction Method Inverses

of Multipliers (Spingarn)

Rockafellar-Wets

Figure 4: Taxonomy of algorithms discussed. Black lines indicate relationships
established in this report; gray lines indicate relationships that were already known.
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