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A Note on the Greedy Approximation Algorithm
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A simple greedy approximation algorithm for the unweighted set covering problem
has been analyzed extensively in the literature. The common conclusion has been
that in the worst case, the heuristic yields a set cover of size Ko =l 1, where d
is the cardinality of the largest covering set and K, is the optimal cover size. This
bound is attained when N = z z! and Ko = z!, where N is the cardinality of the
set being covered and z is integer. We present here a bound that is is tight for all
values of N and K,. An interesting aspect of this bound is that it is tight for some
special cases of the set covering problem as well. For example, for the dominating
set problem, the bound is attained for all N and K,, N > KKO+1, where N is the
number of nodes in the graph and Ko is the domination number.
Procedures to construct instances for which the heuristic exhibits worst-case be-
haviour for the unweighted set covering and dominating set problems are also pre-
sented.
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The unweighted set covering problem is the following: Given finite sets, S and F where F =

{F1, F2 ,..., Fp}, and U¢=1 Fi = S, find a minimum cardinality subset f of F such that UFef Fi =

S. We denote N = ISI. Consider the following heuristic denoted Greedy: Define an element of S

to be "covered" in the beginning of an iteration, if it is contained in at least one of the sets picked

by the heuristic so far. Initially, no elements are covered. In each iteration, put into the set cover,

the least indexed element of F that covers the maximum number of uncovered elements of S, until

all such elements are covered. (Selecting the least numbered element is just a way of breaking ties.)

This heuristic has been analyzed in the literature, and it has been shown that the worst-case

fractional error is dl s where d is the maximum number of elements in any of the covering sets

[11,[21,[31,[41]. This bound is attained when N = zz!, Ko = z!, for integer z. We present a bound
that is attained for all values of N and K,. The analysis includes an algorithm for generating

worst-case instances for all values N and K,.

Let the set picked by Greedy in the it" iteration be si, and let there be d* iterations. Define mi to

be the number of uncovered elements of S covered by si when it is picked by Greedy.

The following theorem establishes a convenient relationship between K, and d*.

Theorem 1. If Greedy returns a set cover S* = {s1...sd. } then:

(a) Ef1 mi = N;
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(b) ml > m2 > ... md > 1;

(c) i= mi + Komp+l > N p = 0,1,...d* - 1.

Proof: (a) and (b) follow directly from the definition of Greedy. At iteration p + 1 there are

exactly N - Ei= mi uncovered elements. Let this set be Up+ 1. By choice of sp+l, no set covers
more than mp+l members of Up+l. Now consider any optimal set cover, S*, and let ca be the

member of this set that covers the maximum number of elements in Up+, of all the sets in S*.

This number is no greater than mp+l, but is certainly at least as great as the the average number

of nodes in Up+l which are covered by nodes in S*.

| 1 = -'= mi < mp+l, p = 0, 1, ,d* - 1.
Ko Ko

The result follows directly.

Now let T, be a lower bound on the minimum number of elements of S which could ever be covered
after z < d* iterations of Greedy. Tz is obtained by solving the following integer linear program,

ILP:

5

T. = min mi (1)
i=l

s.t

m-i. > M.m2 > .... > > 1, (2)
p

mi+ Komp+ N, p = O,l,...,z- 1. (3)
i=l

mi E Integers i = 0, 1, ... ,z. (4)

Lemma 1. Let an optimal solution be ql, q2, . . ., q, and let 3j the largest integer < z such that:

qj= [N-l QK ] + , A > 1 .
K 0

Then the following solution is also optimal.

{ qi, ifi = 1,...,j-i ;
[ =, ifi = j,...,z;ni N-Ei-1

Proof: We show that E,'j qi >_ =_j ni implying that E'-x qi > E'I_ ni, i.e., the set of n, is
also optimal. Our approach is to proceed by induction on r = z - j.

r = 0: Observe that qz = n- + A, implying that E'=i qi > i ni.
r = k + 1: We want to show that ,i+ (q, - ni) > nj+k+l - qj+k+l.
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Let
j+k j+k j
E qi = aKo + , ni = &K + , andN- n = a*K +',

i=3+l i=j+l p=l

where a, &, a* > 0 and 0 < 1B, < , B* < Ko. Substituting we have:

(a - &)(K, -1)+6- A + A > l [ (5)

Consider the case when / < /. Let 7 = 6 - A, 1 < 7 < Ko - 1. Substituting in (5) we must now
show that:

(~ - &)(Ko - 1)- -+ a _># -6 -S o 6 -1 - Aoo·Ko K0

Observe that by the induction hypothesis, a - & > 1. Thus:

,- - r A > -, -_ ' - / - .K.l - A* -- ---- + - o - o -[ Ko - K

Now suppose B > 8 . Let 7 = 6 - p. Again substituting in (5) we have:

(" -&)(Ko-1)++ A > [ o/l-_ -' -s 1.
Ko Ko

But this is true because:

(a-&)(Ko--1)+-+A > --+ > 1- -i ,6 - K - KoA > ' -[ 1-'-a-1 -K. K- K1o 1

Lemma 2. An optimal set of mi 's is:

N i- 1
mi = [ o 1 i=1,2,... z. (6)

Proof: By contradiction. Suppose this choice is not optimal for some N, Ko. Let q, ... , qz be an
optimal solution, and let qi ,..., qi, be the set such that

N -Ep-l qp
K.

We can now apply Lemma 1 I times to construct an optimal solution that is identical to the mni's.
But this contradicts our assumption, thus proving the lemma.

Combining this result with part (c) of Theorem 1 we have the result:
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Theorem 2. For any set covering problem:

d* 1
< -(z:T,= N) (7)

Ko - Ko

Next, we present an algorithm for constructing instances of the set covering problem for which,

given N and Ko, the bound in (7) holds. These instances have the pleasing property that if Greedy

is run on them, the number of uncovered elements covered by the set picked in iteration i, is exactly

mi, i.e. obtained from (6). The approach is to create two partitions of S, one consisting of Ko sets

and the other of d* sets. We choose these sets so that Greedy picks the d* sets even though the

optimal set cover size is K,.

Theorem 3. The bound of Theorem 2 is attained for all values of N and Ko, Ko < N.

Proof: The construction proceeds as follows:

[i] Let S = (1,2,...N}. Partition the elements of S into sets Go, G 1,...GKo-1 such that: IGil =

li = O. 1,2,..., (N mod K,)- 1, and IGil = J, i = (N mod Ko),..., K,-1
[ii] Define the sets F1 , F 2,... Fd* and initialize them to be null sets.

[iii] Partition the elements of S into these sets by executing the following simple procedure:
Poll-The-G's
begin

p:=O;
for i:= 1 to d* do

for j:= 1 to mi (* The mi's are obtained from (6) *)
begin

if = FiU{c(a}, aEGp n (Fi n F_ln...nF~)
p := (p+ 1) mod Ko;

end
end

At the end of the procedure we have the sets F1, F 2,... Fd- such that IFil = mi, i = 1, 2,. . d*

Since they fully partition the elements of S, the Fi's form a set cover of size d*. It is easy to show

by induction on i that

maxIGi -Uk=lFkl = IFi±+l, i= 1,2, .. .,d*-1 (8).

[iv] Let F = {F1 ,... Fd.+Ko) where F1,... Fd* are as defined above and Fd*+6 = G--l

for 6 = 1,2, .. ., K,.

Now suppose Greedy is run on the constructed instance of the set covering problem. By def-

inition, the minimum cover, f, is {Fd.+l, Fd.+2,...Fd*+Ko}, i.e., If l = K,. Since the heuristic
picks the lowest indexed member of F of maximum cardinality, s1 = Fl. At the end of the iteration

we see from (8) that the maximum number of uncovered nodes in any element of f is just F2, im-

plying that s2 = F2 . This continues until Greedy has picked F1, F2, ... Fd.. Since S is partitioned

over these sets, the heuristic terminates and we have met exactly the bound of Theorem 2.
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Done.

Corollary 3.1. If N = zz!, and Ko = z!, for some integer z, then f*(N, Ko) = E, - .

Proof: This can be seen by substitution into (6). We see that mi = z for i = 1... - ~; mi = z -1

for the next -z-l values of i etc. For the last z! values of i, mi = 1. Notice that:

d* z-1

Zm,=Z=E(z-p) - =zz!
i=1 p=O

Thus, d* = z! >=_ I . The result follows from Theorem 3.

The bound of Theorem 2 exactly characterizes the worst-case performance of Greedy, but we do not

have a closed-form expression for it. In our next few results we bound the worst-case performance

of Greedy (denoted by f* (N, Ko)) from above and below:

Theorem 4. For any set covering problem:

K O (9)If*(N,Ko) < Ko+ logo (K )* (9)

Proof: First, we claim that

N - Mt 1
m = max ,1 i = 1,...,z (10)

Ko

is an optimal solution to the integer relaxation of ILP. This can be seen by looking at the dual of the

problem and applying complementary slackness conditions. The interested reader is encouraged to

work out the details.

After some algebra we have:

mi = max K 1- ,1 i = ,2,. .. ,z.

For z = d*, simplification yields that mi 1= , og_ _ iKo where

By summing the geometric series:

i,,n -1

E my= N-K,.
j=1

But we want to find d: Td = N, since this will yield an upper bound on f*(N, Ko) (from Theorem

3). So, we have:

f*(N, K) < d= K + log N .

Done
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Theorem 5. Let f*(N, Ko) be the largest set cover returned by Greedy over all instances. Then

for Ko > 2:

f*(N, Ko) > log K. N

Proof: Define the following:

mi = m+ Ai i= 1,2,...,d*.

mi 1= K (1-K i=1,2,...,d*-1.

m i = - p= P i = 1, 2, ... , d*.

The fti's correspond to the values of the decision variables of the relaxation of ILP. The Ai's are the

"error terms" associated with approximating the solution of ILP by its relaxation. First, observe

that: i= 1: ml IO + 1 and mil Ki- So Al< 1.

mp+l= ZK 1 = [ 1 f= np+l -

-- K o K
So we have m+_.1 -< m+- K= + -

Ap+l < 1 Kio

Solving the recurrence in terms of A1, and setting Ai = 1:

LE aiE (1- 1 1

A=1 _ 1

The limit of this sum is K,. Thus, Ed mi - d i < K. The result follows from Theorem 3.

Finally, we show that all our results apply to two special cases of the Set Covering Problem-the

Directed and Undirected Dominating Set Problems. Here we are given a directed (undirected)
graph, G(V, A) with V = {1, 2,..., N}, and we are to find the minimum cardinality set of nodes

such that for every node, a that is not in the set there is at least one node in the set from which
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there is an edge to a. The size of smallest dominating set is called the domination number. The

following approximation algorithm, GREEDYd,, is considered:

Define a node a to be "covered" in the beginning of an iteration, if at least one of the nodes picked

by the heuristic so far has an edge to a. Initially, no elements are covered. In each iteration, put

into the dominating set, the least numbered node that covers the maximum number of uncovered

nodes, until all nodes are covered.

Let S = {1,2,...,N}, Fi= {i} {j : (i,j) E A} i = 1,...,N, and let K, be the domination

number of the graph. Thus, we have an instance of the set covering problem to which Greedy can

be applied. The resulting set cover can then be transformed to the dominating set that would be

picked by GREEDYdo,,,. The bounds in Theorems 1-4 clearly apply, and we now show that the

bound in Theorem 2 is attained, for values of K,o 2 and N > KK°+l. For K, = 2, the bound is

attained for N > 16. Before proceeding, we give a simple Lemma that will be useful later:

Lenuna 4. If N > K K° +1, mK > 2 K for Ko 2. If K -= 2 then m2 >4 for N > 16.

Proof: The proof is simply by substitution into (6).

In what follows we consider the undirected version of the Dominating Set Problem. This is because

given any undirected graph, we can convert it to a directed one by replacing every edge with two

directed ones. The construction procedure used in the proof of Theorem 3 has to be modified

to ensure that the Fi's correspond to the closed neighborhoods of the nodes of the graph i.e.

i E N(j) iff jE N(i).

ii] Let S = {1,2,... N}. (N > 16 if Ko = 2; else N > KK+1'.) Partition the elements of S into sets

Go,G 1,.. .GK.-1 such that: IGil = r-1 i = 0,1,2,..., (N mod Ko) -1, and IGil = - i=

(N mod Ko),..., Ko- 1

[iil Pick V1 = {vl, v2 ,... VK } such that vi E Gi+l. (This will be the optimal dominating set.)
[iii] Define the sets F1, F2,... Fd. and intialize them to be null sets.
[iv] We partition the elements of S into these sets by executing the following simple procedure:

Poll-The-G's-Carefully
begin

p:=O;
for i:= 1 to d* do
begin

Picked-From-Opt = false;
for j:= 1 to mi (* The mi's are obtained from (6) *)
begin

if (p = i - 1) AND (NOT Picked-From-Opt) then
begin

F1 = Fi U vi
Picked-From-Opt = true

end
else Fi = Fi u {c}, a E Gp -{v} n (Fi n Fi-1 n... n F1);
p := (p+1) mod Ko;

end

PAGE 7



A. K. PAREKH

end

Note that this is a special case of the earlier construction and so the set of Fi's forms a set cover of

S = {1,..,N}, as does the set of Gi's. We now have to show that this instance of the set covering

problem, is an appropriate instance of the Dominating Set problem:

Focusing on F1 , FKo, we know from Lemma 4 and the fact that the Fi's are formed by polling

the Gp's that

3di E Fi : di 7 viand di E Gi fori =1,2,...,K.

For i = Ko + 1,... d*, pick di to be any element of Fi. Let V2 = {d,.. . , dd}.

We are now ready to define our graph, G(V, A). Let V = {1,... N}, so that the node labeled i is di

for i = 1, 2,..., d*, and is vi for i = d* +1,... d* +Ko. The other nodes arelabeled d* +Ko+l,..., N

in any manner that completes the labeling. Define g(i) = vp : i E GP. The neighborhood of these

nodes complete the definition:

f iF-{i}, ifi = l,...,d*;
N(i) = Gil-{i} , ifi = d* + l,...d* + Ko;

g(i) , otherwise;

Observe that this is a valid set of neighborhoods. If we run GREEDYdom, on this graph it will

pick dl through dKo in the first Ko iterations and all nodes in the optimal dominating set, V1, will

be covered. We ensure this by putting vi in Fi for i < Ko (the boolean Picked-From-Opt in the

construction procedure does this). At any subsequent iteration, j, vj will be the least numbered

node to cover the maximum number of uncovered nodes (i.e. my), and will be picked by the

heuristic. Thus, we get the dominating set V2, of cardinality d*, for a graph with domination

number K,.

Done.
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