
July 10, 1988 LIDS-P-1793
(revised May 27, 1989)

Solving H-Horizon, Stationary Markov
Decision Problems in Time Proportional to log(H)*

by

Paul Tsengt

Abstract

We consider the H-horizon, stationary Markov decision problem. For the discounted case, we give an
c-approximation algorithm whose time is proportional to log(l/c), log(H) and 1/(1-a), where a is the

discount factor. Under an additional stability assumption, we give an exact algorithm whose time is
proportional to log(H) and 1/(1-a). For problems where a is bounded away from 1, we obtain,

respectively, a fully polynomial approximation scheme and a polynomial-time algorithm. We derive
analogous results for the undiscounted case under the assumption that all stationary policies are proper.

KEY WORDS: computational complexity, dynamic programming, Markov decision process.

* This research is partially supported by the U.S. Army Research Office, contract DAAL03-86-K-0171
(Center for Intelligent Control Systems), and by the National Science Foundation under grant NSF-
ECS-85 19058.

t The author is with the Laboratory for Information and Decision Systems, Massachusetts Institute of
Technology, Cambridge, MA 02139.

Acknowledgement: We gratefully acknowledge the many helpful comments made by an anonymous
referee, particularly for suggesting a usable version of the bound t*, and by Professor J.N. Tsitsiklis.

1. Introduction

Complexity analysis [5], [13] has been widely applied in the areas of theoretical computer science
and combinatorialinteger optimization to measure the inherent difficulty of problems. In dynamic

programming, such analysis has been less common [11], [12], [14]. In this article, we make some

progress towards filling this gap. In particular, we consider the H-horizon, stationary Markov decision
problem [1], [4], [7], which is not known to be polynomial-time solvable, and show that an E-optimal

solution is computable in time that is proportional to log(l/E) and log(H). Under an additional stability

assumption, we show that an exact solution is computable in time that is proportional to log(H). For

the special case of discounted problems where the discount factor is bounded away from 1, we obtain,

respectively, a fully polynomial approximation scheme and a polynomial-time algorithm. Our result in

a sense brings us closer to a complete complexity theory for Markov decision problems, for which it is

known that the infinite horizon, stationary case is P-complete, and the finite horizon, nonstationary case

is in NC [14] (complexity for the infinite horizon, nonstationary case is undefined). [See Appendix A

for a brief explanation of the complexity terms used throughout this article.]

We describe the stationary Markov decision problem below. We are given a time horizon H > 0
(possibly H = +oo), a finite set of states S = (1,...,n} and, for each state i, a finite set D i = { 1,...,mi}
of controls. At each time t (t = 0, 1,..., H-1), we are in exactly one of the n states (the state at time 0 is

given) and, if we are in state i, we choose a control from D i. If we choose control ke D i, we incur a

cost gik and, with probability pijk , we arrive in state j at time t+1. If we terminate in state i at time H,

we incur a cost ci. Let ui(t) denote the control chosen when we are in state i at time t and let W(t) =

(ul(t),...,Un(t)). Then the Markov decision problem is to choose a policy (g(O),g(l), ... ,Ig(H-1)) to

minimize the expected total cost
H-1

C at , giUi() p(i,t;gl(0),...,g(H-1)) + aH cip(i,H;(O),...,(H-
t=O ij S is S

where ac (0,1] is the discount factor and p(i,t;g(0),...,g(H-l)) denotes the probability of being in state

i at time t under the policy (g(O),g(1), ... ,g(H-l)). Such a policy will be called an optimal policy.
Also a policy (g(O),g(1), ... ,Ig(H-1)) satisfying g(0) = g(1) = ... = W(H-1) will be called stationary

and will be written as g1(0). The Markov decision problem is discounted (undiscounted) if a < 1 (a =

1) and has finite (infinite) horizon if H < +oo (H = +oo). In what follows, 11.11 will denote the LOO-norm

and log(-) will denote the logarithm in base 2. For any g = (ul,...,un)e D 1x...xDn, we will denote Pi

= [Piju i] and g" = (glUl,...,gnUn). We will also denote c = (cl,...,cn).

We make the following standing assumption:

2

Assumption A: ca and the Pijk's are rational numbers. The gik's and ci's are integers.

Let 8 be the smallest positive integer for which Ba and the Bpijk's are all integers and Igikl < 6, Icil < 8

for all i and k. [6 represents the accuracy in the problem data.] We will denote

L = nlog(5)(X i m i + 1),

which represents the input size for the oo-horizon problem. [Note that log(H) is part of the input only if
H < +oo.] For notational simplicity, we will also denote L' = L + nlog(n)(X i mi).

To motivate our results, consider the case H < +*o. This problem is known to be P-hard (i.e. as

hard as any problem that is solvable in polynomial time) [14], but it is not even known to be in NP

(although it can be seen to be in the larger class PSPACE). If we use dynamic programming to solve
this problem, the complexity is O(n(X i mi)H) arithmetic operations. If we use linear programming,
then since the the linear program formulation can be seen to contain HX i m i constraints with an input

size of HL, the (theoretically) fastest linear programming algorithm [8], [10] would take
O(H4(X i mi) 3L) arithmetic operations! Hence, as a first step towards polynomial-time complexity, we

would at least like to find algorithms whose time is a polynomial in log(H). We propose a number of

such algorithms, both exact and inexact. These algorithms can be viewed as truncated dynamic

programming methods whereby truncation occurs the moment that an optimal stationary policy for the
oo-horizon problem is identified. For the discounted case, we obtain an e-approximation algorithm that

has a complexity of O((nX i m i log(l/e) + nL')/(l-o) + n3logH) arithmetic operations and, under an

additional stability assumption, an exact algorithm that has a complexity of O(nL'/(1-o) + n3logH)

arithmetic operations. Analogous algorithms are obtained for the undiscounted case under the

assumption that all stationary policies are proper.

This article proceeds as follows: in §2 we show that, for the o-horizon, discounted problem, an

optimal stationary policy can be identified by the successive approximation method in time that is a
polynomial in L and (1-a)-l; in §3 we use the preceding fact to derive exact and approximation

algorithms for the finite horizon, discounted problem; in §4 and §5 we perform an analogous analysis

for the undiscounted problem; in §6 we present our conclusion and discuss extensions.

2. Infinite Horizon, Discounted Case

In this case H = +oo and as (0,1). Let T:q9n-->9 n be the function whose i-th component is given by

3

Ti(x) = m rinkDi Ti(x), , gxn, (1)

where, for each ke Di, we let

Tik(x) = aXj pijk xj + gik. (2)

Also, for each g = (u 1,. . .,Un)e Dlx...xDn, let TL:9In--9-Rn denote the function whose i-th component

is Tiui. It is easily shown using (1)-(2) that T is a contraction mapping of modulus a with respect to

the LOO-norm. Hence T has a unique fixed point, which we denote by x* = (xl*, ... ,xn*) (i.e. x* =

T(x*)). Furthermore, there exists at least one optimal policy that is stationary and each stationary policy
g is optimal if and only if

x* = TV(x*)

(see [1, §5.3]).

Consider the Jacobi successive approximation iterations [1, §5.2] for solving this discounted

problem:

x(t+l) = T(x(t)), t = 0, 1, ... , (3a)

x(O) = c. (3b)

Since T is a contraction mapping of modulus a with respect to the LO-norm, we have from (3a) that

llx(t+l)-x*ll < allx(t)-x*l, t = 0, 1, ... ; (4)

hence the iterates x(t) converge to x* at a geometric rate. Furthermore, it is known that an optimal

stationary policy is identified after a finite number of iterations [1, pp. 236], [4]. Below we refine this

result by giving an explicit bound on the number of iterations:

Lemma 1 Let t* be the smallest positive integer such that, for all t > t*, x(t+l) = TVL(x(t)) implies x*

= TV(x*). Then t* < t, where

t = rlog(262 n+2 nn (licll + maxik Igikl/(l-c)))/log(l/ca)l.

Proof: By (3b) and (4), after t = rlog(e/llc-x*ll)/log(a)l iterations, the error IIx(t)-x*ll is less than e for

any e > O0. We show below that, for £ < 1/(2 8 2n+2 nn), the corresponding policy is optimal. This
would then imply that an optimal stationary policy can be identified after rlog(282n+2 nn Ilc-x*ll)

/log(l/a)l iterations. To obtain a usable bound, notice (cf. (1)-(2)) that x* satisfies

(I-aPpt)x* = gg, (5)

for some geDlx...xD n. Hence

IIx*11 = II(I + (aPg') + (ap)2 + ...)gIll

< Ilgll + Il(aP")gtll + II(acPg)2gJFII +...

< 11g1l/(l-a)

4

so that IIc-x*ll is upper bounded by the computable quantity Ilcil + maxi,k Igikl/(1--). By plugging the

latter quantity into the above bound, we obtain the desired t.

It only remains to show that if IIlx(t)-x*ll < 1/(2 62n+2 nn), then the corresponding policy is optimal.

Since 52 (I-oP ~) and 52 g4 are both integers (and the entries of 52 (I-caP~) do not exceed 52), it follows

from (5), Cramer's rule, and the Hadamard determinant inequality [6] that x* = w/(52n nn), for some

integer vector w = (wl, ... ,Wn). Consider any ie S and any ke Di such that xi* • Tik(x*). Since (cf.

(2))

Tk(x*) = a ..ijk xj* + gk

= (52 oaj pijk wj + (5
2n + 2 nn) gik)/(52 n +2 nn)

and the numerator is an integer, it must be that xi* and Tik(x*) differ by at least 1/(5 2 n+2 nn). Hence if

IIlx(t)-x*ll < 1/(2 52n+2 nn), then

ITik(x(t))-xi*l = la j Pijk (xj(t)-x.*) + Tik(x*)-xi*l
> ITik(x*)-xi*l - la j Pij (Xj(t)-xj*)I

2 1/(8 2n+ 2 nn) - oallx(t)-x*ll

> 1/(252n+2 nn)

> llx(t)-x*ll.
Since (cf. (3a), (4)) IIT(x(t))-x*ll < Ilx(t)-x*ll, this implies that Tik(x(t)) • Ti(x(t)). Q.E.D.

[A slightly different value for t is obtained if we use the alternative bound llc-T(c)ll/(1-a) on IIc-x*ll.]

Since log(-) is a concave function and its slope at 1 is 1, we have

log(a) = log(l-(l-a))

< -(1-a).

This, together with the facts (cf. Assumption A) Ilcll < 5, maxi,k Igikl/(l-a) < 62, implies that
A
t = O(nlog(n5)/(1-a)), (6)

which is a polynomial in L and 1/(1-a). This apriori estimate of t*, although, as we shall see, is

sufficiently small for deriving our complexity results, is nonetheless too large to be practical. A more

accurate estimate of t* is obtained by using a more accurate upper bound on llx*-x(t)ll. [Generation of

such a bound, although not useful for complexity analysis, is discussed in [1, pp. 190].] Then we can

estimate t* by t whenever this bound is less than 1/(2 5 2n+2 nn). Alternatively, we can estimate t* by

using bounds on x* to eliminate inactive controls. This approach is based on the following lemma:

Lemma 2 Fix any positive integer t. Let A be any scalar satisfying llx*-x(t)ll < A. Then, for any

iE S and ke D i, if

5

T -k(x(t)) - xi(t+l) > 2A(2a + gik + gi),

where k is any element of D i satisfying TiW(x(t)) = xi(t+l), then Ti(x(t)) • Tik(x(t)) for all t 2 t.

Proof: Suppose that for some t > t we have Ti(x(t)) = Tik(x(t)). By (4) we have Ilx*-x(t)ii < A and

hence Iix(t)-x(t)ll < 2A. This, together with (1), the monotonicity of Tik and the choice of k, implies

Tik(x(t)) < Tlk(x(t))

< Ti (x(t) + 2Ae)

= xi(t+l) + 2Ti(e),

where e denotes the n-vector all of whose components are l's. Similarly, we have

Tik(x(t)) > Tik(x(t)- 2Ae)

= Tik(x(t))- 2ATik(e).

Combine the above two inequalities and we obtain (cf. (2)) Tik(x(t)) - xi(t+l) < 2A(Tik(e) + Tik(e)) =

2A(2a + gik + gic). Q.E.D.

Lemma 2 provides a test for eliminating controls that are inactive in all future iterations. [Similar tests

for eliminating non-optimal controls are given in [1, pp. 198], [16].] When only those stationary

policies that are optimal for the co-horizon problem (which can be determined apriori) are left, then the

current iteration count is an estimate of t*. We have emphasized the accurate estimation of t* because,

as we shall see in §3, t* plays a key role in our solution of finite-horizon, discounted problems; the

more accurately we estimate t*, the better our solution times will be.

3. Finite Horizon, Discounted Case

In this case, H < +oo and ac (0,1). Consider the following dynamic programming iterations:

x(t) = T(x(t+l)), t = H-1, ... , 1, 0, (7a)

x(H) = c, (7b)

where T is given by (1)-(2) and x(t) denotes the cost-to-go vector at time t. A policy (g(O),u(1l),

... ,,g(H-1)) can be seen to be optimal for the H-horizon discounted problem if and only if x(t) =

Tg(t)(x(t+l)) for all t = H-I, ... , 1, 0. The problem is then to compute x(O), which is the optimal

expected cost (and perhaps to determine the optimal policy as well).

6

Since the iteration (7a)-(7b) is identical to (3a)-(3b), except for the reversal in time, Lemma 1
motivates an algorithm for computing x(O) whereby T in the iteration (7a) is switched to T1, with [I

being some optimal stationary policy for the oo-horizon problem, the moment that such a policy is
identified. We state this algorithm below:

Truncated DP (Dynamic Programming) Algorithm
Phase 0 Choose a positive integer t. Let x(H) = c.

Phase 1 Run the recursion x(t) = T(x(t+l)) until t = H-t-l. [If H < t, then quit when t reaches 0.]

Phase 2 Let i be any stationary policy satisfying x(H-T-l) = T'(x(H-t)). Then compute

x(O) = (xPg) H- i t (H-t') + [I + (aPp) + ... + (aPI)H- - l]gV.

We have the following complexity and accuracy results:

Proposition 1 The following hold for the truncated DP algorithm:

(a) It has a complexity of O(n(X i mi)t + n 3log(H-t)) arithmatic operations.
-, A

(b) For t = t, we have Ilx(O)-x(O)ll < 4aH 2 .

(c) If the oo-horizon problem has a unique optimal stationary policy, then for t tt, we have x(O) =

x(O).

Proof: We first prove part (a). It is easily seen that Phases 0 and 1 require O(n(Xi mi)t) arithmetic
operations. Since Ak and I + A + ... + Ak can be computed using binary powering and factoring (see
Appendix B) in O(n3 log(k)) arithmetic operations for any nxn matrix A and k > 1, we can perform

Phase 2 in O(n3log(H-T)) arithmatic operations.

We next prove part (b). From (7a)-(7b) and the fact that T is an Loo-norm contraction mapping of
modulus a we have that

Ilx(0)-x*ll < caHlic-x*ll, I 1x(H-!)-x*11 < a'llc-x*ll. (8)

By Lemma 1, pi is an optimal stationary policy for the oo-horizon problem, so that x* = T4(x*). This,

together with the observation that x(O) equals H-t successive applications of TV to x(H-t), implies

IIx(O)-x*ll< o tH-llx(H-)-x*ll. By combining this with (8), we obtain

1II(O)-x(O)11 < IIx(O)-x*l11 + IIx*-x(O)11 < 2aHIIc-x*11.

Since IIc-x*ll < Ilcll + Itx*ll < 262, this proves (b).

7

To prove part (c), note that, by Lemma 1, every stationary policy t satisfying x(H-T-1) =

Tg(x(H-T)) is optimal for the co-horizon problem. Since the -o-horizon problem, by assumption, has a

unique optimal stationary policy, it follows that x(t) = Tig(x(t+l)) for all t = H-T-I,..., 1, 0. This,

together with the observation that x(H-T) = x(H-T) and that x(0) equals H-t successive applications of

T4 to i(H-t), implies that x(O) = x(O). Q.E.D.

Parts (a) and (c) of Proposition 1 says that, if the o-horizon problem has a unique optimal stationary
policy, then x(O) (and the corresponding optimal policy) can be computed exactly in (cf. (6))

O(n(Xi mi)t + n3log(H-f))
< O(nL'/(l-a) + n3 log(H)) (9)

arithmetic operations. If a is bounded away from zero, then this time is a polynomial in the input size.

To verify (in polynomial time) the uniqueness assumption, we can first compute x*, the fixed point of
T. [This can be done either by using recursion (7a)-(7b) to identify an optimal stationary policy i in

time t (cf. Lemma 1) and then solving (5), or by solving the linear programming formulation of the c-

horizon problem [1, pp. 206].] Then we check to see if, for some ie S, there exist two distinct k and k'

in Di satisfying xi* = Tik(x*) = Tik(x*). This requires an additional O(n2 Xi mi) arithmetic operations.

If the -o-horizon problem does not have a unique optimal stationary policy, then the optimal policy
may oscillate with time (see Appendix C for an example; also see [4, pp. 30]). In this case, it is not
even known if the optimal policy has a polynomial-sized description. Nonetheless, we have the
following e-approximation algorithm for solving this problem:

e-Approximation Algorithm (e > 0)

If H < (log(l/e) + 21og5 + 2)/log(1/a), then run the truncated DP algorithm with t = H;

otherwise run the truncated DP algorithm with t = t.

The complexity of this e-approximation algorithm is given below:

Proposition 2 For any e > 0, the e-approximation algorithm computes an x(O) satisfying IIx(0)-

x(O)II < £ in O((nX i m i log(l/e) + nL')/(l-a) + n3log(H)) arithmatic operations.

Proof: If H < (log(l/e) + 21og5 + 2)/log(1/ax), then clearly the algorithm computes x(O) and the time

complexity is O(n(Xi mi)H) < O(n(Xi mi)(log(l/e) + log6)/log(l/a)). Otherwise we have from part

(b) of Proposition 1 that the algorithm computes an x(O) satisfying

8

IIR(0)-x(0)ll < 4aH8 2(£,

where the second inequality follows from the hypothesis on H. The time complexity follows from part

(a) of Proposition 1 and Eq. (9). Q.E.D.

Notice that the e-approximation algorithm is not suited for problems where n is large since it must

compute powers of PlX, which are typically not sparse. Also notice that if a is bounded away from

zero, then the £-approximation algorithm is, in the terminology of [5], a fully polynomial approximation

scheme. In this special case, the H-horizon, discounted Markov decision problem remains P-hard [14],

but is not known to be in NP.

4. Infinite Horizon, Undiscounted Case

In this case H = +-o and a = 1. This problem is of interest primarily when there is a cost-free state,

say state 1, which is absorbing. The objective then is to reach this state at minimum expected cost (see

[2, §4.3.2]). More precisely, we say that a stationary policy g is proper if every entry in the first

column of (pai)t I_ 1 as t -- +o. We make the following assumption in addition to Assumption A:

Assumption B: pllk = 1 and glk = 0 for all ke D 1. Furthermore, all stationary policies are proper.

Assumption B essentially requires that all states other than state 1 be transient and that state 1 incurs

zero cost. Under Assumption B, it can be shown (see Proposition 3.3 in [2, §4.3.2]) that an optimal

stationary policy for this problem exists. Moreover, a stationary policy !g is optimal if and only if

x* = TL(x*).

where T is given by (1)-(2) with ao = 1 and x* is the unique fixed point of T restricted to the subspace X

= { xe~ }n Ix1 = }.

An important fact is that T restricted to X is a contraction with respect to some weighted LO-norm

(see Ex. 3.3 in [2, §4.3]), which then allows us to apply an argument similar to that used in §2. We

give a short proof of this fact below. Under Assumption B, {2,...,n) can be partitioned into nonempty

subsets S 1, ... , Sr such that for any se { 1,...,r}, iE Ss, and ke D i, there exists some j'E { 1 }uSlu...

uSs.1 such that Pijk > 0 (j' depends on both i and k). Define weights 2, -...-, COn as follows

COi = 1 -I 2 S, ViS s, V s = 1,...,r, (10)

9

where 11 = mint pi k I i, j, k such that pijk > 0 1. We have the following lemma:

Lemma 3 Xjl pijk C0j/ci < y, for all ke D i and all i•l, where

TY = (1 - T 2r-l)/(1 - 12 r). (11)

Proof: Since T1e (0,1), we have from (10) that

0 < coi < 1, V ie S. (12)
Fix any s > 1, ie S s, and ke Di. Let j' be an element of { 1)uSlu... uSs.1 such that pijk > 0. We

have from (10)-(12) that

(XjE S pijk coj)/i < (jE SMtj') pijk + Pijk cOj')/O)i

= (1 + Pijk(otj-l))/Coi

< (1 + n(coj,-1))/coi

< (1 - TI2s-l)/O i

= (1 - T2S-1)/(1 - r 2 s)

< 'Y,

where the second inequality follows from the fact pijk > ri and the third inequality follows from the fact

(cf. (10)) j, < 1 - T12 s-2. Q.E.D.

[Lemma 3 is a refinement of Ex. 3.3 in [2, §4.3] in that it gives an explicit expression for woi and 7.]

Lemma 3 implies that (cf. (1)-(2)), for any i • 1, any x = (Xl,...,xn)e X and y = (yl,...,yn)E X,

Ti(x)-Ti(y) < _j Pijk(xj-Yj)

= Ej`l (pijk oj)(xj-yj)/Cj

< 'y °i maxj { (xj-yj)/o) },
where k is an element of D i for which Ti(y) = Tk(y). Similarly we have

Ti(Y)-Ti(x) < y oi maxj { (yj-xj)/oj}.
It then follows that

IIT(x) -T(y)ll' 5 y Ilx -yll', V xe X, V yc X, (13)

where 11-11'° denotes the Lo,-norm scaled by (1,oc 2,...,con), i.e. Ilxll' = II(xl,x2/CO2,...,Xn/COn)11.

Since rl = z/6 for some integer z and r < n-l, it can be seen from (10)-(1 1) that each log(coi) and

log(y) is a polynomial in L and that l-y 2 r12r. Also, since glk = 0 for all ke D 1, T(X) C_ X. Then by

a contraction argument analogous to that used in the proof of Lemma 1, we obtain that an optimal

stationary policy can be identified after a number of successive approximation iterations (i.e. Eq. (3a))
that is bounded by a polynomial in rl' 2r and L. [Alternatively, it can be seen that T restricted to X is an

r-stage contraction with respect to the ordinary Lo,-norm, and that the modulus of contraction is

10

estimated by 1 - mninl, 2... p [Pl2 ...p ']i . This estimate is difficult to compute in general, but itself

can be seen to be upper bounded by 1-Tlr.] Notice that we do not need to know the Ss's in order to

compute this bound; it suffices to know i1 and an upper bound on r. On the other hand, if a tight upper

bound on r is not available, then we can compute the Ss's by using, say, a labeling algorithm similar to

Dijkstra's shortest path algorithm, whereby at the s-th iteration all iE S s are labeled. The complexity of

this algorithm can be shown to be O(n 2Xi mi). We can also minimize the function

maxiElk,kE Di { ji pijk 0oj/ o,) over all (C02 ,. .,COn)E (O,+oo) n- I to obtain the sharpest estimate of the

modulus of contraction; but this minimization seems to be difficult in general.

5. Finite Horizon, Undiscounted Case

In this case H < +oo and a = 1. By making (in addition to Assumption A) the Assumption B and

combining the arguments in §4 with arguments analogous to those made in §2 and §3, we can find an

e-approximate solution in time that is a polynomial in log(l/e), 1' -2 r, L and log(H), where il and r are

defined as in Lemma 3. If the oo-horizon problem has a unique optimal stationary policy, then we can

find an exact solution in time that is a polynomial in rl-2r, L and log(H). These times are unfortunately

very slow even for moderately large values of r and 1/rl.

6. Conclusion and Extensions

In this article we have shown that an e-approximate solution of the H-horizon Markov decision

problem with H < +oo is computable in time proportional to log(l/e) and log(H) and, under an

additional stability assumption, an exact solution is computable in time proportional to log(H). For the

discounted case where the discount factor is bounded away from 1, we obtain, respectively, a fully

polynomial approximation scheme and a polynomial-time algorithm. However, in view of the stability

assumptions needed to obtain an exact solution and the absence of negative results, we are still far from

a complete complexity theory for this problem. If the stability assumptions are removed, the example in

Appendix C shows that we must consider policies that have a certain periodic property. Optimal

policies having such a periodic property remain poorly understood.

References

[1] Bertsekas, D. P., Dynamic Programming: Deterministic and Stochastic Models, Prentice-Hall,

Englewood Cliffs, NJ (1987).

[2] Bertsekas, D. P. and Tsitsiklis, J. N., Parallel and Distributed Computation: Numerical

Methods, Prentice-Hall, Englewood Cliffs, NJ (1989).

[3] Cook, S. A., "Towards a complexity theory of synchronous parallel computation," Enseign.

Math. 2, 27 (1981), 99-124.

[4] Federgruen, A. and Schweitzer, P. J., "Discounted and undiscounted value-iteration in Markov

decision problems: a survey," in (Puterman, M. L. ed.) Dynamic Programming and Its

Applications, Academic Press, New York, NY (1978), 23-52.

[5] Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-

Completeness, Freeman, San Francisco, CA (1979).

[6] Householder, A. S., The Theory of Matrices in Numerical Analysis, Dover Publications, New

York, NY (1964).

[7] Howard, R. A., Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA

(1960).

[8] Karmarkar, N., "A new polynomial-time algorithm for linear programming," Combinatorica, 4

(1984), 373-395.

[9] Lewis, H. R. and Papadimitriou, C. H., Elements of the Theory of Computation, Prentice-Hall,

Englewood Cliffs, NJ (1981).

[10] Megiddo, N. (ed.), Progress in Mathematical Programming: Interior-Point and Related Methods,

Springer-Verlag, New York, NY (1989).

[11] Orlin, J., "The complexity of dynamic languages and dynamic optimization problems," Proc.

13th STOC (1981), 218-227.

12

[12] Papadimitriou, C. H., "Games against nature," J. Comput. Syst. Sci., 31 (1985), 288-301.

[13] Papadimitriou, C. H. and Steiglitz, K., Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, Englewood Cliffs, NJ (1982).

[14] Papadimitriou, C. H. and Tsitsiklis, J. N., "The complexity of Markov decision processes,"

Math. Oper. Res., 12 (1987), 441-450.

[15] Parberry, I., Parallel Complexity Theory, Pitman, London (1987).

[16] White, D. J., "Elimination of nonoptimal actions in Markov decision processes," in (Puterman,

M. L. ed.) Dynamic Programming and Its Applications, Academic Press, New York, NY

(1978), 131-160.

13

Appendix A

We briefly explain below the complexity terms PSPACE, NP, P, P-hard, P-complete and NC. [See

[14] for a more detailed explanation. Also see [3], [5], [9], [13], [15] for comprehensive discussions.]

PSPACE is the class of problems that can be solved using polynomial space.

NP is the class of problems that can be solved nondeterministically in polynomial time (e.g.

independent set, Hamilton circuit problem, integer programming).

P is the class of problems that can be solved in polynomial time (e.g. linear program).

A problem is P-hard if any problem in P is reducible to it using logarithmic space.

A problem is P-complete if it is both P-hard and in P.

NC is the class of problems that can be solved in parallel using a polynomial number of processors in

time that is a polynomial in the logarithm of the input size.

The following hierarchy (in order of increasing difficulty) for the above problem classes are known to

hold: NC c P c NP c PSPACE and P-complete c P. Notice that if any P-hard problem is shown

to be in NC, then P = NC.

14

Appendix B

Let A be any nxn matrix. We show below that, for any integer k > 1, we can compute A k and I + A

+ ... + A k in O(log(k)) matrix multiplications. First suppose that k is a power of 2. Then, by using

the recursive equations

Ak = (Ak/2)(Ak/2),

I + A + ... + Ak = (I + A + A + .. + A A /2) + A/2(I + A + ... + At2),

we see that if Ak /2 and I + A + ... + Ak/2 are computable in 3log(k/2) matrix multiplications, then Ak

and I + A + ... + Ak are computable in 3log(k/2) + 3 = 3log(k) matrix multiplications. Hence, by

induction, we can compute Ad and I + A + ... + Ad for all d = 20, 21, 22, ... , k in 3log(k) matrix

multiplications. Now suppose that k is not a power of 2. Let us first compute and store the matrices

Ad and I + A + A ... +Ad- +Ad,

for all d = 20, 21, 22 , ... , 2 h, where h = Llog(k)J. [This takes 3h matrix multiplications as we argued

above.] We claim that, given the above matrices, A i and I + A + ... + A i are computable in 3Flog(i)1

matrix multiplications for any positive integer i < k. This claim clearly holds for i = 1. Suppose that it

holds for all i up to (but not including) some re {2,3,...,k}. Then by first computing A r-d and I + A +

... + Ar' d, where d is the largest power of 2 less than r, and then using the identities

A r = (Ad)(Ar-d),

I+ A +... + A = (I + A + ... + Ad) +Ad(I + A +... + Ar-d),
we can compute Ar and I + A + ... + Ar in 3Flog(r-d)l + 3 matrix multiplications. Since r-d < d, this

bound is less than 3log(d) + 3 = 31og(2d). Since d is the largest power of 2 less than r, we have d < r

< 2d so that Flog(r)l = log(2d). This then completes the induction.

15

Appendix C

Consider the following H-horizon, discounted Markov decision problem:

a=.5, gl=(0,0), g 2 =(0,0), H<+oO,

l 0 1 f .5 .5 1
Pl = p2 =

L 0 J J.5 .5 J
Then

r
I min{x 2,.5(x1+x 2))}

T(x) = .5,
I min(xl,.5(xl+x2))}
L j.

and Tl(x) < T 2(x) if x1 > x2 while Tl(x) > T 2(x) if xl < x 2. Therefore if xl(H) • x2(H), then the

optimal control at time t would alternate between (1,2) and (2,1), depending on whether t is odd or
even. If xl(H) = x2 (H), then any sequence of controls is optimal. Note that, for this example, any of

the four stationary policies is optimal for the o-horizon version of the problem.

