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Abstract

In this paper, we introduce the concept of internal stability for two-point

boundary-value descriptor systems (TPBVDSs). Since TPBVDSs are defined only

over a finite interval, the concept of stability is not easy to formulate for these

systems. The definition which is used here consists in requiring that as the length

of the interval of definition increases, the effect of boundary conditions on states

located close to the center of the interval should go to zero. Stochastic TPBVDSs

are studied, and the property of stochastic stationarity is characterized in terms

of a generalized Lyapunov equation satisfied by the variance of the boundary vec-

tor. A second generalized Lyapunov equation satisfied by the state variance of a

stochastically stationary TPBVDS is also introduced, and the existence and

uniqueness of positive definite solutions to this equation is then used to character-

ize the property of internal stability.
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1. Introduction

Noncausal physical phenomena arise in many fields of science and engineer-

ing. These phenomena correspond usually to processes evolving in space, instead

of time. To model such processes, the usual state-space models familiar to system

theorists are not appropriate, since these models were developed primarily to

describe causality, in the sense that the "state" of a system at a given time is a

summary of the past inputs sufficient to compute future outputs. One is then led

to ask: what is a natural class of models to describe noncausal phenomena in one-

dimension? It is the goal of this paper, as well as of earlier papers and reports [1]-

[4], to suggest that perhaps the most natural class of discrete-time noncausal

models in one-dimension is the class of two-point boundary-value descriptor sys-

tems (TPBVDSs). This conclusion is drawn from the observation that the impulse

response of a time-invariant descriptor system is noncausal, and that the dynam-

ics of these systems are symmetric with respect to forwards and backwards propa-

gation. In addition, for systems defined over a finite interval, two-point

boundary-value conditions will also enforce noncausality in the sense that both

ends of the interval play a symmetric role in the expression of the boundary con-

ditions.

The noncausality of discrete-time descriptor systems is a well known feature

of these systems. It is for example much in evidence in the early work of Luen-

berger [5]-[6], where it is also pointed out that two-point boundary-value condi-

tions are usually needed to guarantee well-posedness of these systems. In Lewis [7],

it was shown that these systems could be decomposed into forwards and back-

wards propagating subsystems, so that their solution involves recursions in both

time directions. However, in spite of these useful observations, it is fair to say

that most of the the literature on descriptor systems has focused mainly on issues

of structure [8]-[10], and their implication for the control of descriptor systems

[11]-[14]. This is primarily due to the fact that in continuous-time, descriptor sys-

tems display an impulsive behavior, which until recently has been the focus of

most of the attention.

One of the most important influences for the work reported here has been the

work by Krener [15]-[18] on the system-theoretic properties of standard (i.e.,
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nondescriptor) continous-time boundary-value systems, and on the use of stochas-

tic boundary-value systems to realize reciprocal processes. The results of Krener,

as well as the related work of Gohberg, Kaashoek and Lerer [19]-[21], have pointed

out that boundary-value linear systems have a rich internal structure, and can be

used to model a wide class of non-Markov, i.e. noncausal, stochastic processes.

The results presented in this paper, as well those of [1]-[4] combine in some sense

the degree of noncausality attributable to the boundary conditions, which was

already present in Krener's work, with an additional source of noncausality,

namely the noncausal dynamics of discrete-time descriptor systems.

Another important motivation for the study presented here is our own work

on linear estimation of noncausal stochastic processes in one or several dimensions

[22]-[24]. Since the framework proposed in [22] and [23] for the solution of non-

causal estimation problems is totally general, and is applicable to absolutely any

model in any dimension, one of our objectives has been to find 1-D models which

display as much noncausality as possible, so that estimation results developed for'

these models will be easy to transpose to higher dimensions. This has led us in [4]

to examine estimation problems for TPBVDSs. In this context, it was shown that

the TPBVDS smoother was itself a TPBVDS which could be decoupled into for-

wards and backwards filters through the solution of certain generalized Riccati

equations [25]. However, this study raised a number of system-theoretic questions:

do reachability and observability guarantee the existence and uniqueness of

positive-definite solutions for the generalized Riccati equations that we obtained?

Is the estimator stable, and if so, in what sense, since TPBVDSs are defined only

over a finite interval? More fundamentally, is it possible to define concepts of

reachability, observability, and minimality for purely acausal systems such as

TPBVDSs? In other words, we needed to develop a complete system theory for

TPBVDSs, and the present paper is part of a sequence of papers devoted to the

exposition of such a theory.

In [1], the concepts of outwards and inwards processes, which were originally

introduced by Krener [16] for boundary-value systems, were developed for

TPBVDSs, and were then used to define concepts of strong and weak reachability

and observability. Several recursive solution schemes for TPBVDSs were also



-4-

proposed, which rely on the forwards/backwards and inwards/outwards decompo-

sitions of these systems. These results were then specialized to shift-invariant

TPBVDSs in [2], and in this context, results linking reachability, observability,

and minimality were obtained. Again, these results were closely related to

corresponding results obtained by Krener, and by Gohberg and Kaashoek, for

boundary value systems. The present paper contains the first significant depar-

ture from existing work on boundary value systems in the sense that we introduce

a new concept, that of stability, which has not yet been used to study noncausal

systems. As will become apparent below, the notion of stability is not easy to for-

mulate for TPBVDSs, since these systems are defined over a finite interval. How-

ever, a relatively natural concept is that of internal stability, whereby as the

length of the interval of definition of a TPBVDS grows, the effect of the boundary

conditions on states located close to the center of the interval goes to zero. A

theory of stability that parallels the standard theory for causal systems is

developed by considering stochastically stationary TPBVDSs, and by showing

that stochastic stationarity can be characterized in terms of generalized Lyapunov

equations. The existence and uniqueness of positive-definite solutions to these

Lyapunov equations is then characterized in terms of the property of internal sta-

bility. It turns out that the stability results developed in this paper will play a

key role in the study of the stability and asymptotic properties of TPBVDS

smoothers, and of the generalized Riccati equations presented in [4] and [25].

This paper is organized as follows. In Section 2, the properties of displace-

ment two-point boundary-value descriptor systems, which were studied in [2], are

briefly reviewed. Displacement systems are such that their Green's function is

invariant under time-shifts, and they play therefore the same role for TPBVDSs

as time-invariant systems for causal nondescriptor systems. The results of this

paper are restricted to this class of systems. In our study we shall also examine

extendible displacement TPBVDSs, which are systems whose Green's function can

be extended to a larger interval. In Section 3, two notions of stability, namely

internal stability, as described previously, and stable extendibility are introduced.

Stable extendibility corresponds to the ability to extend the Green's function of a

displacement TPBVDS defined over a finite interval, in such a way that both the
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dynamics and Green's function of the original system are preserved, and the

extended Green's function is summable. However, it is shown that this concept of

stability is not as fruitful as that of internal stability. In Section 4, we examine

stochastic TPBVDSs, and study in particular stochastically stationary systems.

Two generalized Lyapunov equations which must be satisfied respectively by the

state variance, and the boundary variance of the boundary vector are introduced,

and the property of stochastic stationarity is characterized in terms of the second

of these equations. It is shown in Section 5 that the covariance function of a sto-

chastically stationary TPBVDS satisfies a second-order descriptor equation, with

appropriate boundary conditions. Finally, in Section 6 the existence and unique-

ness of solutions to the generalized Lyapunov equation satisfied by the state vari-

ance is characterized in terms of the property of internal stability. The concluding

Section 7 describes the role that the results of this paper are expected to play in

the study of the TPBVDS smoothers and generalized Riccati equations of [4] and

[25].

2. Displacement Systems and Extendibility

The two-point boundary-value descriptor systems (TPBVDS) considered in

this paper satisfy the difference equation

Ex(k +1) = Ax (k) + Bu (k) , O<k <N-1 (2.1)

with the two-point boundary value condition

V i x(O) + Vf x(N) = v . (2.2)

Here E, A, and B are constant matrices, x and v are n-dimensional vectors, and

u is an m-dimensional vector. Since the system theoretic properties of this class

of systems, such as the displacement, reachability, observability, and minimality

properties have been studied in detail in [1]-[3], we review here only the concepts

that will be needed in this paper.

It was shown in [1] that, without loss of generality, it can be assumedt that

i A necessary and sufficient condition [1] for (2.1), (2.2) to be well-posed - - i.e., to yield a
well-defined map from {v,u} to x --- is that, by multiplication on the left only, E, A, Vi,
and Vf can be brought to a form satisfying (2.3)-(2.4).
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the system (2.1)-(2.2) is in normalized-form, i.e., it satisfies the following two pro-

perties: (i) there exists some scalars c and / such that

aE + ±A = 1, (2.3)

which implies that E and A commute; and (ii) the boundary matrices Vi and Vf

are such that

Vi E N + Vf AN = I. (2.4)

A slight generalization of the above normalized form was introduced in [2],

and will be of value to us in our development. Specifically, (2.1)-(2.2) is said to be

in block-normalized form if (2.4) holds and

E = diag(E 1, ... , EM) , A = diag(A 1, ..., AM), (2.5)

where: (i) the block sizes of E and A are compatible; (ii) for each j, there exists

(cj, /j), possibly varying with j , such that

oejEj + 1jAj =1A , (2.6)

and (iii) the eigenmodes of distinct blocks of the system are different, i.e., for any

(s,t) # (0,0), IsEj - tAj I = 0 for at most one value of j. Any well-posed

TPBVDS can always be put in normalized or block-normalized form, and we will

frequently assume that our system is in one of these two forms.

A special class of two-point boundary-value descriptor systems which is of

great interest is the class of displacement TPBVDSs [2]-[3].

Definition 2.1: A TPBVDS is a displacement system if the Green's function

G(k,l) appearing in the solution

N-1
x(k) = AkENV- k v + Z G(k,l)Bu(l) (2.7)

1=0

of the TPBVDS (2.1)-(2.2) depends only on the difference between arguments k

and 1, so that

G(k,l) = G(k--1) . (2.8)

Note that the above terminology is consistent with that of Gohberg,

Kaashoek and Lerer [20] (see also [21]), who introduced a similar class of
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displacement systems in their study of boundary value systems with standard

nondescriptor dynamics. Unlike for causal systems, the fact that the matrices E

and A are constant is not sufficient to guarantee that the TPBVDS (2.1)-(2.2) is a

displacement system. The matrices E and A must also satisfy some properties in

relation to the boundary matrices Vi and Vf. The following characterization of

displacement systems was established in [2].

Theorem 2.1: A TPBVDS in block-normalized form is a displacement sys-

tem if and only if the matrices E and A commute with both Vi and Vf, i.e.,

[E, V] = [E, Vf ] = [A, V] =[A, Vf ] = 0, (2.9)

where

[X, Y] = XY - YX (2.10)

Another useful result from [2] is:

Theorem 2.2 Consider a displacement TPBVDS in block-normalized form.

Then Vi and Vf are also block diagonal with block sizes compatible with those of

E andA.

In the following, we shall restrict our attention to displacement TPBVDSs.

For a system of this type, and in block-normalized form, the Green's function

G(k,l) can be expressed as (see [2], [3])

ViAk-l-1EN-k+l k>1
G(k,l) = G(k-l) {Vf E-kA N--+k k<l (2.11)

which clearly depends only on the difference between arguments k and 1.

Note that the TPBVDS (2.1)-(2.2) is defined over an interval of fixed length.

In the context of the asymptotic properties studied in this paper , it is of interest

to consider the question of changing this interval of definition. In [1]-[2] a natural

method for propagating the boundary conditions inward was developed.

Specifically, for any [K,L] with 0 < K < L < N one can construct new matrices

Vi(K,L) and Vf (K,L) and a new boundary condition v(K,L), depending only on

v and the values of uz(k) for k E [O,K-1]U[L,N-1], so that the solution of (2.1)

together with the boundary condition
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Vi(K,L)x(K) + Vf (K,L)x(L) = v(K,L) (2.12)

agrees with the solution to (2.1)-(2.2) on [K,L]. Note that this implies that the

Green's function of (2.1), (2.12) on the smaller interval agrees with the restriction

of the original Green's function. Also, in [2] it was shown that for a displacement

TPBVDS in block-normalized form, we can take

V (K,L) = VE N - L +K (2.13a)

Vf (K,L) = Vf A N-L+K (2.13b)

For the study of asymptotic properties, we are naturally interested in extend-

ing rather than restricting the interval of definition. This leads to the following:

Definition 2.2: A displacement TPBVDS given by (2.1)-(2.2) is extendible if

given any interval [K,L] containing [O,N], i.e., such that K<O<N<L, there

exists a TPBVDS over this larger interval with the same dynamics as in (2.1), but

with new boundary matrices Vi(K,L) and Vf (K,L) such that:

(i) The new extended system is a displacement system.

(ii) The Green's function G(k-1) of the original system is the restriction of

the Green's function Ge (k-I) of the new extended system:

G(k--) = Ge(k--t) for 1k-i I<N . (2.14)

Using (2.13), it is possible to prove the following [2]:

Theorem 2.3: A displacement TPBVDS in block-normalized form is exten-

dible if and only if the following two conditions are satisfied:

(i) Ker(En) C Ker(V) (2.15a)

(ii) Ker(A' ) C Ker(Vf ) . (2.15b)

When conditions (2.15a) and (2.15b) are satisfied, it was shown in [2] that a

choice of boundary matrices for the extended system over [K,L] is given by

Vi(K,L) = ViE(ED )L-K (2.16a)

Vf (K,L) = Vf AN(A D )L - K , (2.16b)

where ED and A°D denote respectively the Drazin inverses of matrices E and A



(see [26], p. 8 for a definition of the Drazin inverse). Note that the extended sys-

tem is also in block-normalized form.

3. Stability

The extendibility property of displacement TPBVDSs satisfying (2.15) is an

important feature that will be useful below to characterize a concept of stability

called stable extendibility. It turns out, however, that this concept of stability

leads to relatively uninteresting results, and in fact there exists a more interesting

concept of stability for TPBVDSs, called internal stability. Both of these concepts

are now defined.

A. Notions of Stability

According to our definition of an extendible displacement TPBVDS, it is

always possible to extend the domain of definition of such a system. An interest-

ing question which is related to the issue of stability is under what conditions we

can push back the boundaries to ± oo in a meaningful way, so that the TPBVDS

(2.1)-(2.2) can be viewed as part of a system defined over an infinite interval.

Definition 3.1: An extendible displacement TPBVDS defined over [O,N]

admits a stable extension if the Green's function Ge (k) of the TPBVDS obtained

by extending the interval of definition to the whole real line is summable, i.e.,

+oo

IIGe, (k) II < oo, (3.1)
-00

where il. II denotes here the matrix norm induced by the Euclidean norm for vec-

tors of R n.

The above characterization describes one situation where the issue of stability

arises for TPBVDSs. However, there exists a second situation which is actually

more meaningful, and which leads to a different concept of stability. In this

second situation we examine a displacement, not necessarily extendible, TPBVDS

defined over a finite interval, and where the boundary condition (2.2) corresponds

to a physical constraint of the problem which cannot be modified. In this case,

when the dynamics (2.1) and boundary condition (2.2) are fixed, we would like to
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study the effect of increasing the size of the domain [0,N] of definition of the

TPBVDS on the state variables x(k) located close to the center of this domain .

One issue which arises in this context is that if the TPBVDS (2.1)-(2.2) is origi-

nally in bock-normalized form for a length N o of the interval of definition, and if

we increase the length to N without changing the matrices Vi, Vf and the vector

v appearing in (2.2), the system will not remain in block-normalized form, since

identity (2.4) is not satisfied for N> N 0. Observe however that the boundary con-

dition (2.2) is not affected by a left multiplication by an invertible matrix. Conse-

quently, if we renormalize (2.2) by a left multiplication by (Vi E N + Vf AN)-1

and change the matrices Vi, Vf and the vector v accordingly, the TPBVDS will

be in block-normalized form. In this context, it is possible to describe internal sta-

bility as follows.

Definition 3.2: The displacement TPBVDS (2.1)-(2.2) in block-normalized

form is internally stable if as the length N of the interval of definition tends to

infinity, the effect of the boundary value v on any x(k) located near the mid-

section of interval [0,N] goes to zero, i.e.,

lim EN12AN/2(ViEN + Vf AN)-1 =O 0 (3.2)
N-*<oo

To interpret condition (3.2), note that according to (2.7), and taking into

account the renormalization described above to put the TPBVDS in bock-

normalized form as the interval length N is increased, the effect of the boundary

vector v on state x(k) is given by AkEN-k(ViEN + VfAN)-lv. Thus, for

k = N/2, which corresponds to a point in the middle of interval [0,N] , the effect

of v x (N/2) is EN/2A N/2(ViEN + Vi A N)-lv.

It is also possible to develop another interpretation of this notion of stability,

which we will state without proof. Specifically, as we change N without changing

Vi and Vf, except for the renormalization, we actually are changing the entire

Green's function of the TPBVDS. Thus, what we have is a sequence of Green's

functions GN(k), 1-N < k < N, indexed by N. Internal stability is then

equivalent to

N
lim r GN(k) < Ao-, (3.3)

N-C'Vk =1-N



which should be contrasted with (3.1).

As an illustration of the above concept of stability, consider a system that

describes the heat distribution around a ring. Since the ring is closed, this system

has a periodic boundary condition x(0) = x(N), which is independent of the size

of the ring. In this case, if a perturbation in heating conditions is applied to one

point of the ring, one would expect that as the size of the ring increases, the effect

of this perturbation will become smaller and smaller for points which are located

on the opposite side of the ring.

As will be shown below, it is possible to obtain necessary and sufficient condi-

tions that characterize the properties of stable extendibility and internal stability

for TPBVDSs. However, the conditions that we shall obtain are quite different,

and consequently, the two concepts of stability described above do not coincide.

B. Decomposition of a Displacement TPBVDS

The characterizations of stable extendibility and internal stability that will

be obtained below rely on a particular decomposition of a displacement TPBVDS.

The starting point of this decomposition is the following result, which was already

used in [4].

Lemma 3.1: Given a TPBVDS, there exists invertible matrices F and T

such that

I O O

ED = FET= 0 Ab 0 (3.4a)

Af0 0O

AD =FAT = 0 I , (3.4b)
0 0 U

where A/ and Ab have eigenvalues inside the unit circle, and U has eigenvalues on

the unit circle.

The above decomposition is just a modification of the Weierstrass decomposi-

tion of a regular matrix pencil (see [27], p. 28; note that (2.6) guarantees here that

the pencil zE - A is regular). The transformation (3.4) can be achieved by left-
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multiplication of (2.1) by F and by performing the state transformation

x(k) = TD (k). (3.5)

Observe that ED and AD satisfy (2.5), (2.6) with (c1,l) -= (0 3, /3) = (1, 0) and

(Ce2, i2)= (0, 1). Also, by construction the eigenmodes of the three blocks are

different.

To complete the transformation of our system, B is replaced by

B D = FB, (3.6)

and the boundary matrices become

VDi = LViT , VDf =LVf T (3.7)

where the normalizing matrix L is selected here such that relation (2.4) is satisfied

by the new TPBVDS. Finally, if the original TPBVDS was a displacement sys-

tem, the new TPBVDS is also a displacement system since its Green's function is

related to the original Green's function through

GD(k-l) = T- 1 G(k-I)F-1. (3.8)

In this case, since the TPBVDS specified by (3.4), (3.6), and (3.7) is a displace-

ment system in block-normalized form, we can invoke Theorem 2.2 to conclude

that the matrices VDi and VDf are block diagonal, i.e.,

Vi' 0 0 Vf0i 0 0

VDi = 0 Vi 2 0 and VDf = V 0 f 2 0 (3.9)

0 0 Vi 3 0 0 V0

which yields the main result of this section:

Theorem 3.1: (Decomposition of a displacement TPBVDS): Through the use

of a state transformation T, and by left multiplication of (2.1) and (2.2) by inver-

tible matrices F and L, an arbitrary displacement TPBVDS can be decomposed

into three decoupled subsystems of the form

f (k+l) =Afxf (k) + Bf u (k) , Vl xf (O) + Vf lxf (N) = vl , (3.10a)

b (k) = Abb (k+l) -- Bbu(k) , Vi2b (0) + Vf 2Xb (N) = V2, (3.10b)



- 13 -

xm(k+l) = Uxm(k) + Bmu(k) , Vi3Xm(0) + Vf 3Xm(N)= V3 , (3.10c)

where the matrices Af and Ab have their roots inside the unit circle, and U has

its roots on the unit circle. The subsystems (3.10a)-(3.10c) are displacement sys-

tems, in normalized form.

In what follows, for convenience only, we will refer to (3.10a)-(3.10c) as the

forward, backward, and marginal parts of the system, respectively. Note, for

example, that the dynamics of (3.10a) look like forward dynamics, and those of

(3.10b) look like backward dynamics, but the boundary conditions in each case

can make each of these noncausal.

C. Characterization of Stable Extendibility and Internal Stability

An interesting aspect of the decomposition (3.10) of a displacement TPBVDS

is that it reduces the study of stable extendibility and internal stability for a

TPBVDS to the study of these properties for each of its components. We consider

first the forward component.

Lemma 3.2: Consider a displacement TPBVDS given by

x(k +i) = Ax(k) + Bu (k) (3.11a)

Vix(O) + Vf x(N) = v (3.11b)

where A has all its roots inside the unit circle. Then, the system (3.11) is inter-

nally stable if and only if the matrix Vi is invertible. If the system (3.11) is exten-

dible, i.e., if Ker (A n) C Ker (Vf), it is stably extendible if and only if Vf = 0, in

which case the system is causal.

Proof: Taking into account the definition (3.2) of internal stability, we see

that (3.11) is internally stable if and only if

lim A N/2(Vi + Vf AN)- = ,
N---oo

which is clearly equivalent to requiring that Vi should be invertible. To study

stable extendibility, it is convenient to note that by using a procedure similar to

the one employed to obtain decomposition (3.10), the system (3.11) can be

transformed so that
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where M is a nilpotent matrix and J is invertible, and

vi ° VJf O1

vi Lo vMi vf = vMf 
Then, the extendibility condition Ker (A n) C Ker ( Vf ) implies that we must have

VMf =0. (3.12)

Furthermore, by using the extension procedure of equations (2.16), it is easy to

check that the Green's function Ge(k) of the system which extends the Green's

function of system (3.11) to the whole line is given by

Ge(k) = ViAk-' for k > 0, (3.13a)

and

(-VJf JN-l+k o

G, (k) = 0 for k < 0 (3.13b)

Since P has its roots inside the unit circle, Ge (k) diverges as k -+ -oo, unless

VJf =0. (3.14)

Combining (3.12) and (3.14), we see that the TPBVDS (3.14) is stably extendible

if and only if Vf = 0, which is the desired result. In this case, the system (3.11) is

causal, and the normalized form relation (2.4) implies that Vi = I, which is obvi-

ously invertible. We can therefore conclude that in this case stable extendibility

implies internal stability. [1

Lemma 3.2 can then be used to obtain the following characterization of

stable extendibility.

Theorem 3.2: An arbitrary extendible displacement TPBVDS is stably

extendible if and only if the decomposition (3.10) of this system is such that

Vf 1 = i2 = 0, (3.15)

and the system does not have any eigenmode on the unit circle, i.e., it does not



- 15 -

contain a marginally stable component of the form (3.10c).

Proof: Condition (3.15) is a direct consequence of applying Lemma 3.2 to the

forward and backward components (3.10a) and (3.10b) of the TPBVDS. Then, if

we consider the marginal component, we see that its extended Green's function is

V(3(k) U k- -1 for k > 0
G() { UN -1+k for k <0

Since U has all its roots on the unit circle, Ge3(k) will not be summable for any

choice of boundary matrices VK3 and Vf 3 satisfying (2.4). Consequently, the

TPBVDS will be stably extendible only if it does not have any eigenmode on the

unit circle. [D

The above characterization shows that the class of stably extendible

TPBVDSs is not particularly interesting since it consists of systems which are

obtained by combining completely decoupled forward and and backward causal

and stable subsystems. It turns out that the concept of internal stability is more

fruitful, since it can be characterized as follows.

Theorem 3.3: A displacement TPBVDS is internally stable if and only if

the decomposition (3.10) of this system is such that boundary matrices Vi1 and

Vf 2 are invertible, and the system does not have any eigenmode on the unit circle.

Proof: The first part of the above characterization is obtained by applying

Lemma 3.2 to the forward and backward components (3.10a) and (3.10b). The

condition concerning the eigenmodes on the unit circle is derived by noting that

no choice of boundary matrices Vi3 and Vf 3 satisfying (2.4) will guarantee that

lim UN/2(Vi3 + Vf 3UN)- 1 = 0. [
N-+oo

Comparing Theorems 3.2 and 3.3, we see that stable extendibility implies

internal stability, so that internal stability is the weaker and more interesting of

these two properties. In fact, from this point on, we will restrict our attention to

internal stability.
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4. Stochastic TPBVDSs and Generalized Lyapunov Equations

In this section, we study the class of stochastic TPBVDSs given by (2.1)-

(2.2), where u(k) is a zero-mean white Gaussian noise with unit intensity, and

where v is a zero-mean Gaussian random vector independent of u(k) for all k,

and with covariance Q. Thus, we have

M[u(k)uT(1)] = IS(k--I) , (4.1)

where M[z] denotes the mean of a random variable z, and 8(k) is the Kronecker

delta function. In addition, it is assumed throughout the remainder of this paper

that the TPBVDS (2.1)-(2.2) is a displacement system in normalized form. The

displacement assumption is quite important, and all the results of this paper con-

cerning stochastic TPBVDSs are restricted to this class of systems.

In the continuous-time case, and for the usual nondescriptor state-space

dynamics, a related class of stochastic boundary-value systems was examined by

Krener [17],[18], who studied the relation existing between this class of systems

and reciprocal processes. In particular, Krener considered the problem of realizing

reciprocal processes with stochastic boundary-value systems. Our goal here is

somewhat different, in the sense that we shall seek to obtain a complete set of

conditions under which a stochastic TPBVDS of the form (2.1)-(2.2) is stochasti-

cally stationary. It turns out that the characterization that will be obtained

involves a Lyapunov equation for the boundary variance Q which generalizes the

standard Lyapunov equation for stationary Gauss-Markov processes.

Definition 4.1: A TPBVDS is stochastically stationary if

M[Z(k)x T (l)] = R (k,l) = R (k-l) . (4.2)

If the TPBVDS (2.1)-(2.2) is stochastically stationary, the variance matrix

P(k) = R (k,k) of x(k) must be constant, i.e., P(k) = P for all k. Thus, our first

step at this point will be to characterize completely the matrix P(k) for a dis-

placement TPBVDS in normalized form. Let

1I(k) = Ak-iEjEBBT(Ak-jEj )T (4.3)
j=o

Then, using the Green's function solution (2.7), (2.11), multiplying by its



- 17 -

transpose, and taking expected values, we obtain

P(k) = AkEN-k Q(AkEN-k)T + (ViEN-k)H(k--1)(ViEN-k)T

+ (Vf A k)HI(N-1-k)(Vf A k)T . (4.4)

This expression can also be rewritten as

P(k) = AkEN-k Q (AkEN-k)T + R, (k)R T(k), (4.5)

where

Rw(k) = [Vi EN-k R(k) Vf AkRs(N-k)1, (4.6a)

and where Rs(k) is the strong reachability matrix

Rs(k) = [Ak -1B EAk-2B Ek -1B] (4.6b)

The matrix R, (k) plays a central role for the concept of weak reachability of

a TPBVDS [1]-[3]. In [1] weak reachability is defined as the condition that the

range Im(Rw(k)) of Rw(k) for k sufficiently far from 0 and N (i.e., kE[n,N-n])is

all of R n . In [2], a somewhat weaker definition is used, namely

U Im(R w (k)) = R n (4.7a)
k

Note that this condition is equivalent to the statement

vTR,(k) = O for all k => v =0 . (4.7b)

Examining (4.5), we see that if the TPBVDS is weakly reachable in the sense of

[1], P(k) is positive definite for n < k < N-n. If the TPBVDS is weakly reach-

able in the sense of [2], this need not be the case. However, from (4.5) and (4.7),

we can conclude that

U Im(P(k)) = R n (4.8)

Thus, when the TPBVDS is weakly reachable in this sense and has a constant

variance P (so that Im(P(k)) is constant), we can conclude from (4.8) that P is

positive definite.
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The expression (4.4) for P(k) is an explicit description, and is valid in general

for displacement TPBVDSs in normalized form. However, as in the causal case,

where P(k) satisfies a a time-dependent Lyapunov equation, it is also possible to

obtain an implicit description for P(k) in the form of a recursion with boundary

conditions. Specifically, multiplying both sides of equations (2.1) and (2.2) by their

transposes, using the Green's function solution (2.7), (2.11), and taking expected

values, it can be shown that P(k) satisfies the TPBVDS

EP(k+1)ET - AP(k)A T = (VjEN)BBT(ViEN)T

- (Vf AN)BBT(Vf AN)T (4.9a)

V P (O)VT - Vf P(N)Vf = (ViEN)Q(VEN)T - (Vf AN)Q(Vf AN)T, (4.9b)

which can be viewed as a generalized time-dependent Lyapunov equation for P (k).

Note however that equations (4.9a) and (4.9b) may or may not characterize

completely the variance P(k), i.e., they may have several solutions, one of which

will be (4.4). This corresponds to situations where (4.9a) and (4.9b) do not com-

pletely capture the structure of (4.4), and in this case, additional conditions would

have to be imposed to make sure that we obtain a unique solution equal to (4.4).

To obtain conditions under which equations (4.9a) and (4.9b) specify P(k)

uniquely, these equations can be rewritten in the form of a TPBVDS of type

(2.1)-(2.2), and we can then apply the well-posedness test for TPBVDSs presented

in [1]. This can be done by denoting by p(k), q, and w the vectors obtained by

scanning the entries of matrices P (k), Q, and W = BB T columnwise, and rewrit-

ing (4.9a) and (4.9b) as

(E ®E)p (k +1) - (A ®A )p (k) = ( VEN Vi EN)w -(Vf A N Vf A N)w (4.10a)

(Vi Vi)P(O) - (Vf ®Vf )p(N) = (ViEN®Vi EN)q - (Vf A NOVf A N)q,(4.10b)

where ( denotes here the Kronecker product of two matrices [28]. Note that the

right-hand sides of the above equations are irrelevant as far as well-posedness is

concerned.

The well-posedness condition for the TPBVDS (4.10a)-(4.10b) reduces to the

invertibility of the matrix



FN = (Vi t®V)(E ®E )N - (Vf 0Vf )(A A)N

= (ViEN))(Vi EN) - (Vf A N)8(Vf A N). (4.11)

We obtain therefore the following result.

Theorem 4.1: Equations (4.9a) and (4.9b) characterize uniquely the variance

P (k) if and only if

#j *u& for all j and I , (4.12)

where Xj and /zj are the eigenvalues of of matrices Vi EN and Vf AN, respec-

tively.

Proof: Since matrices V/EN and Vf AN satisfy (2.4), they can be brought

simultaneously to Jordan form. Furthermore, the eigenvalues Xi and [j

corresponding to the same eigenvector z satisfy

Xj + -Aj = 1 . (4.13)

Then, it is easy to check that the eigenvalues of FN must have the form

xi 1XI - /juAl (assume that V/EN and Vf AN are in Jordan form in (2.4)), so that

FN is invertible as long as

xji Xi * --i y

Taking into account (4.13), this gives (4.12). 0I

Note that in the causal case the eigenvalues Xj and uj are all equal to 1 and

0, respectively. Thus, according to Theorem 4.1, P(k) is uniquely defined. This is

expected, since in this case (4.9a) is a forwards recursion for P(k), and (4.9b) is

the initial condition P (0) = Q.

Theorem 4.1 indicates that, except under very special circumstances, the vari-

ance P(k) can be uniquely computed from the generalized time-dependent

Lyapunov equations (4.9a) and (4.9b). In addition, when the TPBVDS is stochast-

ically stationary, the matrix P(k) = P is constant, and satisfies the two algebraic

matrix equations

EPET - APA T = (VEN)BB T(V EN)T (Vf AN)BBT(V AN)T (4.14)

ViPViT- Vf PVf = (ViEN)Q(VEN) T - Vf A N)Q(Vf AN)T, (4.15)
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obtained by setting P = P(k+1) = P(k) and P = P(0) = P(N) in (4.9a) and

(4.9b), respectively. Equation (4.14) is a generalized algebraic Lyapunov equation,

and by analogy with the causal case, it is tempting to think that, if a TPBVDS

has a constant positive definite variance matrix P satisfying (4.14), then the

TPBVDS is stochastically stationary. Unfortunately, as we shall see, this is not

the case, and the correct condition for stochastic stationarity, which is condition

(4.16) below, involves the variance Q of the boundary vector v.

Theorem 4.2 A stochastic TPBVDS is stochastically stationary if and only

if Q satisfies the equation

EQET - AQA T = ViBB ViT- Vf BB T VT. (4.16)

Proof: To prove that (4.16) is a sufficient condition, we need to show that

when (4.16) is satisfied, then R (k+1,1+1) = R (k,l) for all k, I E [O,N]. By using

the Green's function solution (2.7), (2.11) to evaluate R (k,l) = M[x(k)x T( )] for

k _I, we obtain

R (k,l) = A kE N - k Q(A IEN-I)T

I--1
+ Z ViAk-i-1EN-k+jBBT(ViAI-l-lEN-I+J)T

j=0

k-1

+ Z Vf Ak-i-1EN-k+jBBT(ViAN-1-i+IEJ-I)Tl(k-I-1)
j=l
N-1

+ Vf AN-1 -j+kEi-kBBT(Vf A N--i+lEi-)T , (4.17)
j=k

where 1(k) is the unit step function, i.e.,

1 for k>0
l(k)= 0 for k <0

From (4.17), it is easy to check that

R (k+1,l+1) - R (k,l) = AkEN-l-k [AQA T - EQE T

+ ViBB T ViT -Vf BBT Vf(AEEN-X-I)T (4.18)

which indicates clearly that when Q satisfies the generalized Lyapunov equation
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(4.16), then R (k+,l +l) = R (k,l) for all k, 1.

Conversely, to prove that (4.16) is a necessary condition for stochastic sta-

tionarity, assume that R (k+1,l+1) = R(k,l) for all k, 1. Then, the right hand

side of (4.18) is zero for all k, 1. Thus, if

A = AQA T _ EQE T + VBB T iT-Vf BB VfT , (4.19)

we have

A k EN-1-k A (A EN-1-1)T = 0 (4.20)

for all k, I. Taking into account the normalized form condition (2.3), as well as

(4.20), yields

A = (acE + AA )N-l (aE + PA )N-1

N-1N-1 (N1 )(N1 2(N-1)-k-yk+'A kEN-1-k A(A IEN-I-I)T = 0 (421)

k=O 1=0

which shows that Q must obey the generalized Lyapunov equation (4.16). E]

Note that for causal systems --- i.e., when E = Vi = I, Vf = 0 --- the

boundary covariance matrix is simply P(0), and equation (4.16) for Q in this case

is identical to equation (4.14) for P (which is the usual Lyapunov equation), and

(4.15) reduces to P = Q. For a general TPBVDS, however, P and Q are different

quantities.

Clearly, when a TPBVDS is stochastically stationary, it must have a con-

stant variance. Thus, if Q satisfies (4.16), the state variance is constant and

satisfies (4.14). The reverse implication is obviously true as well for causal sys-

tems, sice the two Lyapunov equations (4.14) and (4.16) are identical in this case.

However, constancy of the state variabce matrix does not imply stationarity for

all TPBVDSs. for all TPBVDSs. In order to see what happens, set k = I in (4.18)

and note that R (k,k) = P(k). This gives

P(k±1) - P(k) = AkEN-I-k[AQA T - EQET + ViBB T ViT

- Vf BB T Vfl(AkEN-1-k)T (4.22)

The relation (4.22) shows that when Q satisfies the Lyapunov equation (4.16),

then P(k+1) = P(k) for all k, as expected. Conversely, if P(k+1) = P(k) for all
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k, Q must satisfy the equation

AkEN--k [AQAT T _+ ViBBT ViT

- Vf BB T Vf (AkEN--k)T =0, (4.23)

for all k. In the special case when either E or A is invertible, this relation implies

that Q must satisfy (4.16). In other words, if either E or A is invertible, the

TPBVDS (2.1)-(2.2) is stochastically stationary if and only if it has a constant

variance. However, this is not true in general, i.e., (4.16) is not necessarily implied

by (4.23), as can be seen from the following example.

Example 4.1: Consider the TPBVDS

lO 0 0 0o0] i 0 0 0 1 x(k+l)= 0 1 -1 x(k) + 0 1 -1 u(k) (4.24a)

o 0 O o 0 1 o 0 1

100 0 0 0

0 0 0 x(O) + 1 N x(N) = v , (4.24b)

0 0 0 0

where the variance of v is given by

Q = N N 2 + 2 N]. (4.25)
1 N 1

The system (4.24) is in normalized form and is a displacement system. Then, it is

easy to check that Q satisfies (4.23), but not (4.16), and that (4.24) has a con-

stant variance matrix

I- 0 0
P = 0 2 0

LO 0 1

which satisfies both (4.14) and (4.15). This shows that a TPBVDS may have a

constant variance matrix even if (4.16) is not satisfied, and therefore, the system is

not stochastically stationary.

At this point, we have introduced two generalized algebraic Lyapunov equa-

tions, namely (4.14) and (4.16), for P and Q. These equations have exactly the
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same form and differ only by their right hand sides. Consequently, they admit a

unique solution under the same condition.

Theorem 4.3: The generalized Lyapunov equations (4.14) and (4.16) have

unique solutions if and only if the eigenmodes oj of the TPBVDS (2.1), i.e., the

values for which uE - A is singular, are such that

(i) ojar # 1 for all j and 1, (4.26)

(ii) there does not exist exist simultaneously eigenmodes which are zero,

and eigenmodes which are oo, i.e., the matrices E and A are not both

singular.

Proof: The proof is similar to that of Theorem 4.1. Equations (4.14) and

(4.16) admit unique solutions if and only if the matrix M = E E --AA is

invertible. But since E and A satisfy (2.3), they can be brought to Jordan form

simultaneously, and we may denote by ij and /oj the eigenvalues of these two

matrices appearing in corresponding Jordan blocks. Assuming that E and A are

in Jordan form, it is easy to check that the eigenvalues of M are XkX I --j/lt-

Furthermore the eigenmodes oa- = Atj/\j. Combining these two observations, and

noting from (2.3) that /j and Aj cannot both be zero, we see therefore that M is

invertible if and only if conditions (i) and (ii) are satisfied. c

Theorem 4.3 indicates that the class of TPBVDSs such that the generalized

Lyapunov equations (4.14) and (4.16) have a unique solution is somewhat res-

tricted, since either E or A must be invertible.

Thus, it may happen that a TPBVDS has a constant variance matrix P, but

yet the generalized Lyapunov equation (4.14) may not specify P completely, i.e.,

it may have several solutions. In this case, in order to compute P, instead of

using the implicit specification of P provided by the Lyapunov equation (4.14),

one should use the explicit expression (4.4) for an arbitrary value of c.

5. Covariance Characterization

In the previous section, it was shown that the variance P of a stochastically

stationary TPBVDS satisfies the Lyapunov equation (4.14). As long as the condi-

tions of Theorem 4.3 are satisfied, this provides a simpler method for computing
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P than the explicit evaluationf of (4.4). To this point, however, the only character-

ization that we have of the covariance fuction R (s) = R (I+s,l) for a stochasti-

cally stationary TPBVDS is (4.17), which we would need to evaluate for every

individual value of s = k -1. Our goal in this section is to obtain a recursive char-

acterization of R (s) that can be used to compute the covariance in a considerably

more efficient fashion. An interesting feature of the recursions that we shall obtain

is is that unlike the causal nondescriptor case, where the covariance satisfies first-

order causal recursions, for the TPBVDS case, the covariance satisfies second-order

boundary value recursions. Note however that this result is not totally unex-

pected, since it was shown by Krener [17] that the covariance of a continuous-time

stationary two-point boundary value process with standard dynamics satisfies a

second-order differential equation.

The starting point of our derivation is the observation that

ER (k+1,1) = M[Ex(k+1)x T (l)] = M[(Ax(k) + Bu(k))x T (I)] . (5.1)

Using the Green's function solution (2.7), (2.11) to compute M[u(k)x T (1)], we

find that (5.1) can be expressed as

ER (k+1,l) - AR (k,l) = -BB T(Vf Ek-I A N-1-(k-1))T for kl > (5.2a)

Similarly, it can be shown that

R(k,l+1)ET - R(k,l)A T = ViAk-l-1EN-(k-l)BBT for k>l . (5.2b)

Combining (5.2a) and (5.2b), we obtain therefore

[ER (k +1,1 +1) - AR (k,l+1)]E T - [ER (k +1,1) - AR (k,l)]A T = O, (5.3)

for k > I, which holds independently of whether the TPBVDS (2.1)-(2.2) is sto-

chastically stationary or not.

In the special case when the TPBVDS that we consider is stochastically sta-

tionary, by setting k-I = s +1 in (5.3), we obtain the following result.

Theorem 5.1: The covariance R (s) of a stochastically stationary TPBVDS

satisfies the second-order descriptor recursions

ER (s +1)E T + AR (s +1)A T = AR (s)ET + ER (s +2)A T , (5.4)

which are conditionable, in the sense that there exists boundary conditions
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involving R (0), R (1), R (N-1) and R (N), which when combined with (5.4) define

a well-posed second-order TPBVDS.

The recursions (5.4) are similar to the second-order differential equation

obtained by Krener [17] for the covariance of a continuous-time stationary two-

point boundary value process with standard dynamics. We still need to show the

conditionability of (5.4). Recall that the concept of conditionability for TPBVDSs

was introduced by Luenberger [5]-[6]. This will require the following lemma.

Lemma 5.1: The mth order descriptor system

Qmx(k+m) + Qm_lx(k+m-1) + * -+ Qo0x(k) = Bu(k), O<k<N-m (5.5)

is conditionable if and only if the determinant of the polynomial matrix

Q(z) = Qmz m + Qm_lz m - 1 + . · + Q 0 does not vanish identically.

Proof: Using state augmentation, we can rewrite (5.5) as

EF (k+1) = A(k) + Bu (k) , (5.6)

with

I 01 0
I 01 0

I =|I I , A = Ii ,= =..and B
~I ~0 I

Qm Qo -Qm-i B

Then, according to [6], p. 474, the descriptor system (5.6) is conditionable if and

only if the pencil zE-A is regular, i.e., iff det[zE-A ] = detQ(z) does not vanish

identically. E]

Now, using Lemma 5.1, the conditionability of (5.4) becomes equivalent to

the invertibility of -z 2 (E®)A) + z(E®OE + A )A) - A ®E) for some z. But,

this matrix is equal to (zE - A )®(E - zA ). Since E and A form a regular pen-

cil, we can always find a z such that (zE - A) and (E - zA ) are both invertible,

which implies that their Kronecker product is invertible. This completes the proof

of Theorem 5.1.

Theorem 5.1 indicates that there exists a set of boundary conditions involv-

ing R (0), R (1), R (N-1) and R (N), which when combined with (5.4) define a
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well-posed TPBVDS. However, as one might expect, there is in fact a wide choice

of boundary conditions which will work. In order to exhibit a specific set of boun-

dary conditions, instead of examining (5.4) directly, it is convenient to start from

(5.2a), where the TPBVDS is now assumed to be stochastically stationary. Setting

k-i = s inside (5.2a) gives

ER (s +1) - AR (s) = L (s) , O<s<N-1, (5.7)

with

L(s) = -BBT(Vf ESA N-l-s)T (5.8)

Then, noting that

L(s +1)AT _ L(s)ET =0 , O<s <N-2, (5.9)

it is easy to check that the coupled system of first-order descriptor equations (5.7),

(5.9) is equivalent to (5.4). A set of boundary conditions for this system will there-

fore be also applicable to (5.4).

Suppose for the moment that the function L(s) appearing on the right-hand

side of (5.7) has already been computed, with either the analytical expression

(5.8), or through recursions (5.9). Then, a boundary condition which when com-

bined with (5.7) defines a well-posed first-order TPBVDS is given by

VR (O) + VfR (N) = Q(EN)T . (5.10)

This boundary condition is obtained by multiplying (2.2) on the right by XT (0),

taking expected values, and using the Green's function expression (2.7). Note that

the TPBVDS (5.7), (5.10) has exactly the same dynamics and boundary matrices

as (2.1)-(2.2) and is therefore guaranteed to be well-posed. This leaves us with the

problem of computing L(s) for O<s<N-1 from the first-order recursions (5.9).

However, we already know that the solution must be given by (5.8). This implies

in particular that

ER (1) - AR (O) = L (O) = -BB T( Vf A N-1)T (5.11a)

and

ER (N) - AR (N-1) = L (N-1) = -BB T Vi (EN-1)T (5.11b)
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Note that, as expected, boundary conditions (5.11a) and (5.11b) involve only

R (0), R (1), R (N-1), and R (N). Also, the TPBVDS defined by (5.9) and (5.11a),

(5.11b) is clearly well-posed. In fact, it is overdetermined since the boundary con-

ditions (5.11a) and (5.11b) are redundant. This redundancy can be eliminated by

considering the smaller-size boundary condition

L (O)(ViA )T + L (N-1)(Vf E)T = _BBT VfT (5.12)

which is obtained by combining (5.11a) and (5.11b), and checking that the

TPBVDS (5.9), (5.12) is well-posed. Note that to some extent, the problem of

finding boundary conditions which guarantee that the first-order recursions (5.9)

for L(s) are well-posed is purely academic, since the closed-form solution (5.8) is

already available. However, if we consider the second-order recursions (5.4), the

above discussion shows that boundary conditions (5.10) and (5.12) will guarantee

well-posedness and therefore provide us with an implicit set of equations whose

solution yields the entire covariance function (including, of course, P = R (0)).

As was already mentioned, these boundary conditions are not the only ones

which will guarantee well-posedness. For example, if we use (5.2b) as starting

point, we obtain the coupled first-order descriptor equations

R (s)E T - R(s +1)AT =M(s) , O<s <N--1 (5.13a)

EM(s+l) -AM(s) = 0 , O<s<N-2 (5.13b)

where M(s) is in fact given by the closed-form expression

M(s) = ViA EN-- BBT . (5.14)

Then, these equations are well-posed for the boundary conditions

R (0) Vf/ + R (N) V T = A N Q (5.15a)

Vi EM(O) + Vf AM(N-1) = VsBBT , (5.15b)

where (5.15a) is obtained by multiplying (2.2) on the right by xT (N) and taking

expected values, and where (5.15b) is a direct consequence of analytical expression

(5.14). Substituting (5.13a) inside (5.15b), it is also easy to check that the boun-

dary conditions (5.15) for (5.4) involve only R (0), R (1), R (N-1), and R (N), as

desired.
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There are in fact many valid choices of boundary conditions for the second-

order system (5.4). For example, one obvious boundary condition is given by

R (0) = P, where P can be found either by solving the algebraic Lyapunov equa-

tion (4.14) or by using analytic expression (4.4).

Example 5.1: Consider the anticyclic system

x(k+l) = x(k) + bu(k) (5.16a)

(Y2)(x(0) + x(N)) = v , (5.16b)

where the variance of v is q. In this case, both sides of the generalized Lyapunov

equation (4.16) are equal to 0, so that the TPBVDS (5.16) is stochastically sta-

tionary independently of the choice of q. The Lyapunov equation (4.14) for the
state variance p also reduces to zero on both sides, and cannot therefore be used

to compute p. However, by direct evaluation of (4.4), it is easy to verify that

p = r(O) = Nb2/4 + q . (5.17)

We now compute the covariance function r(k) of (5.16) for k E [O,N]. We use the

second-order recursion (5.4), which here takes the form

r(k+2) = 2r(k+l)-r(k) . (5.18)

Since r(0) is already known, we only need r(1) to be able to solve (5.18) in the

forward direction. But according to (5.11a), we have

r(1) - r(O) =--b2/2,

so that

r(1) = (N - 2)b 2/4 + q,

and then using (5.18), we find

r(k) = (N - 2k)b 2 /4 + q . (5.19)

6. Characterization of Internal Stability

For causal systems, the relationship between the existence of a positive

definite solution to the standard Lyapunov equation and stability is well known.

Specifically, for a causal and reachable system, the Lyapunov equation has a
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positive definite solution if and only if the system is strictly stable. In this section,

for the class of displacement TPBVDSs, we study the relation existing between

the existence and uniqueness of positive definite solutions to the generalized

Lyapunov equation (4.14) for the state variance P, and the property of internal

stability. Note that, whereas the generalized Lyapunov equation (4.16) for Q was

the key to the characterization of stochastic stationarity derived in the previous

section, equation (4.14) for P plays the main role in our study of internal stabil-

ity. An important feature of this equation, which was not present in the causal

case, is that it depends on the interval length N. It turns out that this depen-

dence on interval length is in fact very useful in characterizing internal stability,

since this last concept relies also on increasing the interval length to study the

effect of the boundary conditions on states close to the center of the interval.

More precisely, to see why interval length plays an important role in study-

ing the generalized Lyapunov equation (4.14), consider the anticyclic system (5.16)

of Example 5.1. This system is clearly unstable, since its only mode is on the unit

circle. Yet, for an arbitrary value of the variance q of the boundary condition, the

system is stochastically stationary, and has a constant positive state variance

p = Nb2 /4 + q. Thus, the existence of a positive definite solution to the general-

ized Lyapunov equation (4.14) for a fixed interval length is clearly not sufficient to

guarantee that a TPBVDS is internally stable. However, in this particular case the

variance p, viewed as a function of the interval length N, diverges as N-*oo,

which is an indication that the system is actually unstable.

Another useful observation is that for TPBVDSs, the generalized Lyapunov

equation (4.14) for P may admit a nonnegative definite solution even when the

system cannot be made stationary by any choice of boundary vector variance Q,

i.e., there may be a nonnegative solution to (4.14) when there is no nonnegative

solution to equation (4.16) for Q. This is illustrated by the following example.

Example 6.1: Consider the system

x(k +1) = (1/2)x(k) + u(k) (6.1a)

m (x(O) + 2x(N)) = v , (6.1b)

where m = (1 + 2 (1/ 2 )N) -1, and u(k) is a white noise sequence with unit
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variance. System (6.1) is in normalized form and internally stable. The generalized

Lyapunov equation (4.16) for q takes the form

(3/4)q = -3m 2 , (6.2)

which yields a negative value of q, so that the system cannot be made stationary

over any interval [0,N]. Yet, the Lyapunov equation (4.14) is given by

(3/4)p = m 2 (1 - 4(1/4)N) , (6.3)

and its solution p is positive provided that N is larger than 1. However, this solu-

tion is not the state variance of the TPBVDS (6.1), which in this case is not even

constant. This can be seen by noting from (4.3)-(4.4) that the state variance p(k)

is given by

p(k) = q + 4m2 + 3 ] (6.4)
4k 3 4N 4k

which is clearly not constant.

Example 6.1 shows that the generalized Lyapunov equation (4.14) may admit

a unique positive definite solution P even when the TPBVDS (2.1)-(2.2) cannot be

made stochastically stationary for any choice of boundary vector variance Q, but

in general this matrix P bears no relation whatsoever with the state variance.

However, it will be shown below in Theorem 6.3 that, for an internally stable dis-

placement TPBVDS, independently of the choice of boundary matrix Q, as the

interval length N -oo, the variance matrices P(k) of states near the center of the

interval approach a constant matrix P* which is the solution to the generalized

Lyapunov equation (4.12) with N set equal to oo.

The main objective of this section is to characterize the property of internal

stability in terms of positive definite solutions of (4.14), regardless of whether such

solutions correspond to the variance of a stochastically stationary TPBVDS or

not. Specifically, it will be shown that for a displacement TPBVDS with no eigen-

values on the unit circle, if for any N, the generalized Lyapunov equation (4.14)

has a nonnegative definite solution P then the system (2.1)-(2.2) is internally

stable. The assumption that there are no roots on the unit circle is introduced

here to rule out a situation such as that of Example 5.1, where as was indicated
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above, (4.14) has positive definite solutions which grows unbounded as N - 0oo.

Our results will require the following lemma.

Lemma 6.1: Let A and V be two square matrices which commute, i.e.,

AV= VA . (6.5)

Then, if V is singular, there exists a right (left) eigenvector of A in the right (left)

null space of V.

Proof: We will prove this result for the case of a right eigenvector of A. Let

xEKer( V). Then,

Vx = 0

so that

VAx = AVx =0,

and consequently Ax EKer(V). Thus Ker(V) is A invariant, which implies that

A has at least one eigenvector in the null space of V. O

We can now prove the following result.

Theorem 6.1: Assume that the TPBVDS (2.1)-(2.2) is a weakly reachable

displacement system wih no eigenvalues on the unit circle. Then, if for some N,

the generalized Lyapunov equation (4.14) has a nonnegative definite solution P,

the TPBVDS is internally stable.

Proof: Since the TPBVDS that we consider has no eigenmodes on the unit

circle, the decomposition of Theorem 3.1 takes the form

E =[ Ab , A = O I] B = Bb ] (6.6a)

where the eigenvalues of Af and Ab are inside the unit circle, and

vIi =L° Vi2 | V'f l, 0 vf2/ (6.6b)

To prove stability, we need to show that Vil and Vf 2 are invertible. Using the

above decomposition, the generalized Lyapunov equation (4.14) can be expressed

as
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Pf - Af Pf Af i Bf -B(Vf lAf)Bf Bf(Vf Af)T (6.7a)

AbPbAbT -Pb = (Vi2A)B b BT(Vi2A)T Vf 2 (6.7b)

PfbAb -AfPfb = ViBf BbT (Vi 2AbN) T -(Vf AfN)Bf BTVf , (6.7c)

where

P = Pl Pfb | (6.8)

Clearly, if P is nonnegative definite, so is Pf. Since we also know that Af is

strictly stable, from (6.7a) we can conclude that if x T is an arbitrary left eigen-

vector of Af, then

xT(VilBf B/V5 - (VflAfN)Bf BfT(Vf lA)T)x > . (6.9)

We would like to show that Vi1 is invertible. To do so, assume that Vi1 is not

invertible. Then, according to Lemma 6.1, there exists a left eigenvector xT of

Af , i.e.,

zTAf = XkT , (6.10a)

such that

TVi =0 . (6.10b)

We also know that the system is weakly reachable, and from the characterization

of weak reachability presented in [2], we have

XT[Vi1Bf VflBf]*0,

so that

XT VfBf A 0. (6.11)

Now, taking (6.10b) into account in (6.9), and observing that Af and Vf 1 com-

mute, we find that

O = x T Vf 1AAfNB = XNx T VBf B (6.12)

where X is the eigenvalue appearing in (6.10a). But (6.12) is compatible with (6.11)

only if we have X = 0, so that T must be in the left null space of both Af and
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Vil. However, in this case the matrix

Vil + VfjA f

characterizing the well-posedness of the forward stable subsystem is not invertible,

which contradicts our assumptions. Thus Vil must be invertible. Similarly, it can

be proved that Vf 2 is invertible. O

As in the causal case, the above result has also a converse, i.e., given an

internally stable TPBVDS, there exists a positive definite solution to the

Lyapunov equation (4.14). However, this result is only valid for large N, and it

requires stronger conditions than those of Theorem 6.1. First, the conditions of

Theorem 4.3 on the eigenmodes of the TPBVDS must be satisfied, so that (4.14)

will be guaranteed to have a solution independently of the choice of of input

matrix B and of boundary matrices Vi and Vf, in which case this solution will in

fact be unique. The second condition is that the TPBVDS must be strongly

reachable, instead of weakly reachable as in Theorem 6.1. This is due to the fact

that we need to make sure that as N--oo, the solution of (4.14) is positive

definite, instead of merely nonnegative definite.

Theorem 6.2: Consider a displacement TPBVDS which is internally stable,

strongly reachable, and whose eigenmodes oi satisfy the conditions of Theorem

4.3 for the existence of a unique solution PN to the generalized Lyapunov equa-

tion (4.14) Here the interval length N is allowed to vary, and the dependence of P

on N is denoted by the subscript N of PN. Then, there exists N*>O0 such that

PN is positive definite for all N>N*. Furthermore, as N- oo,

PN P* P*, = (6.13)

where P* and Pb* are respectively the solutions of the usual algebraic Lyapunov

equations for the forward and backward stable subsystems, i.e.,

P- A P/AfT = Bf BfT , (6.14a)

Pb* - Ab Pb*A T = B B T . (6.14b)



- 34 -

Proof: First, observe that since the interval length N varies, the boundary

matrices Vil, Vf 1, and Vi 2, Vf 2 associated respectively to the forward and back-

ward stable subsystems need to be rescaled in order to satisfy the normalized form

identity (2.4) for all N. The rescaled boundary matrices are given by

Vi 1(N) = (Vi- + Vf AN)- 1 Vi , Vfl(N) = (Vil + Vf lA)-1Vfl (6.15a)

Vi 2(N) = (Vi 2A N + Vf 2)-li 2 , Vf 2 (N) = (V 2A N + Vf2) Vf 2 , (6.15b)

and since the TPBVDS is internally stable, the matrices Vil and Vf 2 are inverti-

ble, so that as N- oo,

Vi 1(N) -- I, Vf 1(N) - Vi Vf , Vi2(N) -+ V V i
2 , Vf 2(N) (6.16)

Consider now the matrix PN given by (6.8), whose entries satisfy the

Lyapunov equations (6.7a-c), where the boundary matrices on the right hand side

are replaced by the scaled matrices (6.15). We want to show that for N large

enough, the solutions Pf ,N and Pb,N of (6.7a) and (6.7b) are positive definite and

tend to Pf and Pb* given by (6.14), and that the solution Pfb,N of (6.7c) goes to

zero as N goes to infinity.

The first step is to observe that, as N--oo, since the scaled boundary

matrices tend to finite limits given by (6.16), the right-hand side of (6.7c) tends to

zero. But the eigenmodes of the system are such that the solution PN is unique,

and therefore the solution Pfb,N of equation (6.7c) is unique and tends to zero as

N goes to infinity.

Next, consider Lyapunov equation (6.7a), and observe that since the

TPBVDS is strongly reachable, the matrix pair (Af ,Bf ) is reachable in the usual

sense for causal systems. But since the system is internally stable, Vi 1(N) given

by (6.15a) is invertible, and noting that it commutes with Af, we can conclude

that the pair (Af, Vil(N)Bf) is also reachable in the usual sense. Then, the solu-

tion Pf ,N of (6.7a) can be expressed as

Pf ,N = P f ,N PfN (6.17)

where P , and PfN are respectively the solutions of

fN - Af Pf ,NA = Vj(N)Bf Bf TilN)T (6.18a)

- - -~~-~~~..-~s~-~~.1-- .-- ---f f f f f f~-
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P'N- A P.NA -= ( Vf l(N)A]7)Bf By( Vf (N)AfT . (6.18b)

Since (Af, Vil(N)Bf) is reachable, Pf+N is positive definite for all N, and since

Vi 1(N)--+I as N-Too, Pf+,N -Pf, where Pf is the unique positive definite solu-

tion of (6.14a). Furthermore, as N--oo, the right-hand side of (6.18b) tends to

zero, so that PlaN tends to zero. From (6.17), we can therefore conclude that there

exists an integer N* such that Pf ,N is positive definite for all N>N*. Similarly, it

can be shown that the solution Pb,N of (6.7b) is positive definite for large enough

N and tends to Pb*, which is the unique positive definite solution of (6.14b).

We have therefore shown that as N-oo, Pf ,N and Pb,N approach positive

definite matrices P7 and Pb*, and that Pfb,N tends to zero. Consequently, the

matrix PN is positive definite for sufficiently large N and has for limit P* given

by (6.13). EI

Example 6.2 Consider system (6.1), which is both internally stable and

stongly reachable. Then, the solution of the generalized Lyapunov equation (6.3) is

4
PN = -m 2(1 ) 

3 4N

which is positive definite for N>2. Furthermore, as N-+oo,

PN 'P = 4m 2 /3, (6.19)

where p* is the solution of the generalized Lyapunov equation (6.3) with N = oo.

It is worth noting that when N = oo, if the TPBVDS is internally stable, in

the coordinate system corresponding to decomposition (6.6), the generalized

Lyapunov equation (4.14) takes the form

EPE T -APA T = W, (6.20)

with

Bf B 7T 0

W = |0 -sB BT (6.21)

Then, independently of whether eigenmodes u(j satisfy the conditions of Theorem

4.3, one solution of (6.20) is P* given by (6.13)-(6.14), which is nonnegative



- 36 -

definite regardless of the reachability properties of the TPBVDS (2.1)-(2.2). In

other words, for N = oo, the conditions of Theorem 6.2 can be weakened, thus

giving the following result.

Corollary 6.1 Let displacement TPBVDS (2.1)-(2.2) be internally stable.

Then the generalized Lyapunov equation (4.14) with N = oo has a nonnegative

definite solution P*. This solution is positive definite if the system is strongly

reachable.

For an internally stable TPBVDS, the solution P* of the generalized

Lyapunov equation (4.14) with N = oo has also the following stochastic interpre-

tation.

Theorem 6.3 Let displacement system (2.1)-(2.2) be internally stable. Then,

for any choice of boundary variance Q, as N goes to infinity, the variance matrix

of states located close to the center of interval [0,N] converges to the solution P*

of the generalized Lyapunov equation with N = co.

Proof: Let PN(k) be the variance matrix of the state x(k) of system (2.1)-

(2.2) defined over interval [0,N]. Then, if I is an arbitrary but fixed integer, we

want to show that

lim PN((N/2)+l) = P* , (6.22)
N--+cx

where for simplicity it has been assumed that N is even. Our starting point is

expression (4.4) for the state variance, i.e.,

PN((N/2)+±) = A(N/2)+ E(N/2)- Q (A (N/2)+1 E(N/2)- )T

+ (Vj (N)E(N/2)-l)J((N/2)+l -- 1)(Vi (N)E(N/2)-I)T

+ (Vf (N)A (N/2)+1 )1((N/2)-I-1)( Vf (N)A(N/2)+1)T ,

where 11(k) is given by (4.3), and boundary matrices V/(N) and Vf (N) are

obtained by rescaling V i and Vf so that the normalized form identity (2.4) is

satisfied for all N. Then, in the coordinate system corresponding to decomposition

(6.6) of the TPBVDS in its forward and backward stable components, by using

expressions (6.16) for the limit of V (N) and Vf (N) as N -oo, and taking into

account the fact that Af and Ab are stable matrices, we find that
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liM PN((N/2)+l) = ( oo n( o + [ In(] i oo) [ (6.23)

But since

0 0o and [0 o]

commute with both E and A, (6.23) can be rewritten as

lim PN((N/2)+l) = lim A k-iE T (Ak-jE)T (624)
N-*+o k -+coj 00 Bb Bb T (624)

Thus,

A/ Bf Bf(A )T

y=0
lim PN((N/2)+l)= =oN-- oo co Too 0 ABb b b(A~)T

j=0

O = PP* (6.25)

This completes the proof of Theorem 6.3. 0

Example 6.3 Consider the TPBVDS (6.1) of Example 6.1. According to

(6.19), for this example the solution of the generalized Lyapunov equation (4.14)

with N = co is p* = 4m 2/3. Then, setting k = (N/2)+l in expression (6.4) for

the state variance, we obtain

lim pN((N/2)+l) = 4m 2/3 = p* ,
N--+oo

as expected.

Theorem 6.3 shows that, regardless of the boundary variance Q, the state

variance of an internally stable displacement TPBVDS converges to the constant

matrix P* given by (6.13)-(6.14). However an even more interesting observation is

that under the above assumptions, the TPBVDS will converge to a stochastically
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stationary system as N--oo. More precisely, if we denote by

RN((N/2)+k,(N/2)+I) = M[x((N/2)+k)x T ((N/2)+I)] (6.26)

the correlation matrix of states x((N/2)+k) and x((N/2)+l), where k and I are

fixed integers, by using the analytic expression (4.17) for the correlation matrix,

and following steps similar to those used in the proof of Theorem 6.3, it can be

shown that in the coordinate system corresponding to the forward and backward

stable decomposition (6.6), we have

lim RN((N/2)+k,(N/2)+I) = R *(k-I1)
N--oo

Af Pf A-f - Bf )Bb (A
j=0

-- = L ° p* (Akl)T ], (6.27)

where for convenience it has been assumed that k>l. Since the limit obtained in

(6.27) depends only on k--I, we can therefore conclude that independently of the

choice of boundary variance Q, an internally stable TPBVDS converges to a sto-

chastically stationary system as N---oo. This stochastically stationary system is

separable into forward and backward causal components, which are however

correlated through the input noise u (k). This last fact can be seen from (6.27),

where if we denote by x*(k) the limiting process obtained by letting N-+oo, and

by shifting the left boundary of the interval of definition to -oo, the cross-

correlation Rfb(k-l) between the forward component x(k) and the backward

component xb*(l) is nonzero for k >l, since both of these processes depend on the

noise over interval [l,k], whereas the cross-correlation between Xb*(k) and xf*(I) is

zero, since they depend on the noise over disjoint intervals.

7. Conclusions

In this paper, in spite of the fact that two-point boundary-value descriptor

systems are defined only over a finite interval, we have been able to introduce a

concept of internal stability for these systems. According to the definition that

was selected, a TPBVDS is internally stable if the effect of boundary conditions

on states close to the center of the interval goes to zero as the interval length goes
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to infinity. Stochastic TPBVDSs have also been examined, and the property of

stochastic stationarity was characterized in terms of a generalized Lyapunov equa-

tion for the variance of of the boundary vector. It was also shown that the state

variance satisfies another generalized Lyapunov equation which can be used to

characterize the property of internal stability. Specifically, it was shown that for

a weakly reachable TPBVDS over a finite interval, with no eigenvalues on the

unit circle, if the generalized Lyapunov equation for the state variance admits a

nonnegative solution, then the TPBVDS is internally stable. Conversely, it was

shown that for an internally stable TPBVDS, the generalized Lyapunov equation

for the state variance admits a positive definite solution when the interval length

N is sufficiently large. It was also proved that, independently of the boundary

matrix variance, an internally stable stochastic TPBVDS converges to a stochasti-

cally stationary process as the interval length N--oo.

As was already mentioned in the introduction, this paper is part of a larger

effort devoted to the study of the system properties, and the development of esti-

mation algorithms for TPBVDSs. In particular, the smoothing problem for

TPBVDSs was examined in [4], where it was shown that the smoother itself is a

TPBVDS which can then be decoupled into forward and backward stable com-

ponents through the introduction of generalized Riccati equations that were stu-

died in [25]. An interesting question which arises in this context is whether for a

strongly reachable and observable TPBVDS, the smoother is internally stable in

the sense discussed in this paper. It turns out that this is the case, and the proof

of this fact will appear in [29]. In other words, the concept of internal stability

developed here for a class of noncausal systems appears to be the natural generali-

zation of the corresponding notion for standard causal state-space models and

leads to just as rich a set of system-theoretic results.
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