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-I. INTRODUCTION

The Parisi-Wu program of.stochastic cquantization [8] involves con-

struction of a stochastic process which has a prescribed Euclidean cuan---

turn field measure as its invariant measure. This program was rigorously

carried out for a finite volume (eC4) measure by G. Jona-Lasinio and

P. K. K.itter in [6]. These results .aere extended in [2], which also

proves a finite to infinite volume imi_ theorem. The aim of tis note

- is to prove a related limit theorem, viz., that of the finite dimensi-

onal processes obtained by stochastic cuantization of the lattice (c&)
2 

fields to their continuum limit, i.e., the (c:) process of [2], [6].
2

__ The proof imitates that of the limit theorem of [2] in broad terms,

though the technical details differ. Note that this limit theorem can

also be construed as an alternative construction of the (¢) process

- in finite vol-,me. -

The next section recalls the fi ite volue (4) =rocess. Section
____ 2

IT srumzarizes the relevant facts aSut the lattice approxim ation to

the (Y4) field from Sections 9.5 and 9.6 of [4]. Section IV proves

the lim.it theorem.

iT:e research of the second author was suoore=- in- -art -y the U.S.
Army Research Office, Contract NO. A.__LDo3-86-K-0!17 (Center for --

Intelliaent Control Systems, assa cuse_-s Institu-e of Technology),
and-by the A- Fr orce O0f - of Scie-fi=- Rescarch, Contract o.

-- AFOSR-85-0227.



II. THE (~4) PROCESS-
2 2

Let ICR 2 be a fi i-teb-rectangte,-whichirfor simplicity, we take to 2
be the unit cube x = (xeS (x- [0-J<L:, :xnt:¢e]j .hLet A denote the Dirichlet3 1 2 1 2-
Laslace oyerator on A. is diagoal 'd -byth&Ebasis ek (x) = 2

- sin (kx-) sin (k x), x= (x, X), k3 = k, k )k = n7r, n> 1, -11 22 1 2 ' 2-
i = 1, 2 . In fact, -A e= k 2 where k-k 2 + k2. Fcr aR, let H

K J 2 1 2
denote the Hilbert space obtained by completing -D (A) with respec --

,. & to the inner product

< f-, g > = (k2)' <f, ek> <g, ek>
_. _k3

where < ,-> is the L scalar product. Topologize Q=UHa by the countable:
_,family of semi.ntor~s 11*n= <'. > ani- Q'=UH - via duality.

Let C = (-A + 1)- C(-, -) its integral kernel, C" its a-th
" operator power, and pC the centered Gaussian measure cn H' with co-
variance C [2], [6]. Let - denote the Wick ordering with respect to
C (see [4], Ch. 38 for a definition). The (¢4) measure on HP- is

,^~9~~~~~~~~~~~ 2 -'~~~~2
-defined by

cdu = ex (- I dx) / Z 2.1 
-,_

where

Z = j e exp ( -- J dx) d& <00

See [4], Section 8.6, for details. -

Le. 0-<s <1 and k (-), ks3, a collection of ^ ide=�eeden- stan dard
Brovmnian motions. Define

W(t) = L (k-) -(- -)/2t >

This defines an H 1 -valued Wiener process with covariance C2- C [2, [6]

The ecuation

d¢(t) - -(C_-) + C(t).) dt + dW(t) [2.2] - .

with init-i l law B can be shown to hav a-e a nie ta na-y w =- so u- --

tion_ as. az. H. -- v-=lue- -process, defi.ini an erodc process called th_
-(4) process. See !12], [6] for details. --

2S
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1III. LATTICE APPROXIMATION

2 Let A = {2- n, n l}- and pick- 6cA. The finite lattice A. with spacing
*naier!ne=---r^s m .o-r.,n-. 6-

6 is defined as follows:, 'Let6Z2 {= zzcZ '2rA, intA-- int fl 6 2 ,

3--A= BAf)6Z 2 , = int-A -UBA= Arl 6Z2 .2 (int A.)-is the Hilbert space with

inner product

<f,f> : lf xEl ,
intA 6 xcint A6

_ viewed as a subspace of 2 (A6) On £2(6Z2), define the forward gradient

- 6' in direction a by (6, af) (x)= 6 'ff(x+du a) -f(x) ] where va is the

unit vector in the a -th direction for a= 1,2. The backward gradient

a, is its adjoint with respect to the Z2 (6 Z2) inner product.

* .

- Let -LA= a 1 + a,2 Then ( f)(x) = 62 (-4f(x) + f(y)6 6,1 6,1 6,2 6,2' 6

where the summation is over the nearest neighbours of x. Let n be the

-projection £2(6Z 2 ) -[2(int A6). The Dirichlet difference Laplacian LA
_ 0

is defined as T 6AI and agrees with A6 on int A.

Choose as a basis on Q (int A6) the (6-1-1)2 functions

{=6 (x) = (x)lxE int A., k = ,, 2 ... ,(6o1 -1)r; a =1,2.

-_Lemma 3.1 ([4], p. 221) {e diagonalize -Ao with

i=l

Also, <, > =1 if k= , =0 otherwisek -{'int 6n

-Lemma 3.2 ([4], p. 222) The map io e + defines an isometic- i.ed- -

ding- of-- (int At) L (A).
2 0 2

Let HO be the projection operator on L (A) which truncates the
0 2

-Fourier series at k /r = 6' , so that -

T_, I 6 > ek = a°<ek where dE enotes the sum=_ation over

=k= (k. .k) 1) < - < o6-l, i=1,2.- Then i - - we c an
1 2 - - _'

consider C. (t ) (- nt A.) as a:n oper-_r -. L (A),
o 0 2 0 2 0- 

via the above isometry, i.e., let i 6 C where Con the right_-

(resp.left) acts on £2 (int.)(resp.L
2 (.').As an operator onL9 (A) , its kernel

is C"(x,y) (' ' ey) '

-- wich when restricted to the latt ce zoints n i- t A 6, coinci es with -' .

--e matrix entries of CO as an ocerator on £2 (int A.).
o - 0

LeITma 3.3 ([4], pp. 222-224) i C - <r (O 62) as operators on L (A),

- Mcreover, supD- C6 (x(6 ) for a < (2p ',1).-~~~~~ H( C o t<(r
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If ~ is a Gaussian field with covariance C, 6(x) (i) (x) for

x int A6 defines a Gaussian lattice field with covariance C i= C i

2 The field 0. can b real .lized by a.Gaussian measure on L (Rlintisl) .
&1 -- *Xr-n-aqS m!-2!2 2

Explicitly, letting x d-eno-te+-he.Lebesgue measure on
j? I int i, A 

R int A6, the above-measure- is given by 

15 1 int A

I d86 (x).
x

This is the lattice analog of PC The lattice analog of p can

,now be defined as follows: Define for f s £2 (int A),

-: (f) 62 : 0^(,) f(x)-
X- Xint A O

The lattice analog p6 is given by

Brownian motions. For O <s <1, define

B (t) = 62 C& (X +1) (l-s)/2 Bk(t) ek(*) t >0.-

This defines an L (Anvalued Wiener process with covariance Cf £., The7 0

analog of [2.2] in the lattice case is-6 = 1 4 (x): (1))dp8C

Forhere the operators act on L (f).b (e) is viewed here as an L (a)d-valued 
2 0 2

.ocess. Hoeve, leting (t) = e °- 6k(t)ek, [3(2] tansltes into
an ec-uivalent stochastic differenial ec'a-c. ior finriely many scalar

_rocesses ¢ok(.) with locally Linschitz (in fact, polynomial) coeffici- -

ents. This ensures the existence o- an arsi unique strong solution

to [3.2] up to an explosin time. Thct et does not explode ase is

___proved by a standard a2clication of Khasm.inskii's test 'or 'on-

exolosion exactly as in [G], Secticn.3.
dy identifying the vectr 6 (t) 6, dt + dB (t 2 ),

5st can be considered =as a =rob _v -nres on £2(int) . via the __

ise the operators a ctroabiity measure on L (). iew e re tain (A)-e notatueion

or ehe latter interret ation, as only t s intertretation will be

usd enceorth. comutation ofsimilar toa-s- uniquet of [2], Section 3,solution

shos that the t enerxpator o te . That ov doces nodescribed y [3.2] is

se' -cdoin, on L st an). By T or!c 2.3 of [33s, tne seme hos s for nonhe
associated trnsltion senicroun o iTt, Sect of operzors on L (u3).2 20

$Ttgcu0=Jgu, ismey-ing t-ht To is 2n pva ant probability measure
.o a_ L. ., , -__

..gr4 ga mllg -nt i nJv~atnobbl I- u .:: used hencfrhAcoptinsiiatoato[2,Scon,::-=bow~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~sthtte==--.
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for ~a(-). In fact, the resulting process will be ergodic. We won't
need this fact here, so we omit the details. From now on, [3.2] will

2 always be considered with initial, law. v _.

IV. THE CONTINUUM LIMIT 

This section establishes the main result of this paper, viz., the_

c.onvergence of 6 ( )to the (¢?) 2process as6 in in n: the sense of weak

convergence of Q'-valued processes. Thus we consider 46(-)as aQ'-valued

_ process and u6 as- a measure. on Q'via the injection of L2t) into Q' From

-theorem 9 .6.4,p.2 2 8, [4] , it follorws that the finite diensional marginals of the

-collection {1&6(ek), ksB under ~p converge weakly to the corresponding

* ones under P as +-O in A. Since P, 1i are supported on H 1 , it follows

that ii p~i weakly as probability measures on Q'. (A proof of the

-former assertion would go as follows: Since H. lis Polish, it is homeo-

..morphic to a G subset of [0,1] whose closure T - can be considered

a compactification of HF1 As a measure on -1',{6 are tight and for

: any weak limit point U thereof, its restriction u' to H 'must yield the-

same finite dimensional marginals for { (e;) ,ksB as p. Thus u =u' ='.)
As a first step towards proving the continuum limit, we prove some

tightness results.

- _- Let

4.. (t) = aa(t)

2 (t) 2 fCO(s)ts

023 2- 
2C t) =2fJ - CO S: (s): ds

.0 4 0 (t)

-- for t < 0. Pick t < t 0 in [0,T], - > T> 0. In what follows, K denotes a~~~- -- 1 2
positive constant (not always the same) that may depend on T, but not

on 6. Let fsQ

Lerr,a 4.1 -[( C- C c (t) (f) at) I < Kit _[4. -

-Proof Using Jensen's inequalitv and stationarity of. (-) . one obtains

I_ -_ 1 (0) 1 4-- E[(Sta CY 6d(t) (f) dtC) < K t 12 [c C) ()1 4
-

tl

Letting A = ci / dt the e tecta-tion on _the rig-.t is bounded by
S l & cC'

a~''i c'C '.o 0 6

__By Lemrnma 9.6.2, p. 227, [4], the second term above is bounded uni formly

in 6. Using ey--man rap-n calculations, as in Theorem -.- 53, p ..191,

-- [4], one has

-;: ... . ,~ 8~1 11 l --,-- .- .--



' - r r -... -

.P-|d, (* 4CW)< K II c f i':

Now

~2 ~1;C f -C-icf1 =1:12fe, (-+ IksB (k+1))
; -, , _ _ _ e >; . ;

--The summand on the right can bedom.inatedin absolute value by 

K < fek>2 X2 which is summable for fcQ. By the dominated convergencek
theorem;

lirm II-Cs f -C_ f 112= 0

implying sup 1 CfI <. [4. 1]3 follows. QED

-Lemma 4.2 CE( -C(t) :() dt)c ] < Kt -t2 [4.2]
_ J ° ° - 2 1

,-2

This follows along similar lines.

-Lemma 4.3 E[(B ()(f4 1 ) (f) 14] < Kt'--t 1<2. [4.3]

Proof The lefthand side ecuals
-'=t f Ti2 It, t 12 As in the proof-

31 CC (f,f) 2 It 2 < 3 sp C t t in proo
_ of Lemma 4.1, one can prove

z±= l - / f --I ~' -O

6+0
Thus sup lCs('- E fl 2<- and the claim follows. QED

Corollary 4.1 E[1.(t z) (f) -(t) (f) 14 < Kit 2-t,]
2 [4.4]

Proof Follows from [3.2] and [4.1] --[4.3]. QD3-

Lermma 4.4 The laws of the processes [ ( '('), (') 8). )]
061 02 J03

viewed as (C(0,); Q'))4--valued random variables remain tichIt as .

varies over A.

Proof By Theorem 3.1 of [7], it suffices to establish the tightness

of [l ( ) (f) 6 ( - ) (f) (f) g8 ) (f)] on [0,T] as

(C([0,T]; R)) -valued random variables c'r abrStrary T> a0 nd f-Q.

This, however, is i d.e from te fiom tness of ,u4 (since 6:

weakly as a measure. on H '), the est-nmates [4 .1]-[4.4] and the

criterion of [13, p. 95. QED

Recall that a familv of probability measures on a product of

Polish spaces is tight if and only if its -mages under projection onto

each factor space are. Letting {~:;} denote an en; meration of {ei.

- This implies, in vi ew o =e f regoing, t [d ( ) (e), ..... 

6, ()(), ) Ce), ) C. () (e), . ) (e) ..)] are ti**t as
- '0 1 2..... 

(C([0,o]; R)) -valued random variables. droppinng to a subsequence

- of. A, denoted by A again, we =ay assm. e at. the y converg_ in law as
-0 along A. Then fcr an.- -' subse {t ,...,} of [0,] =--d a

·,, 1

_collection g,...,g of finite li-neair combinaions of , the

Lc ::-rc tr;:C e C === e ;: vorcTr:,i; -i ' _ .: : . -- C _-- : _-==:= ::=:. rC r.- _:; - . - t -
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joint laws of cl(tj)(gj) , < i < 4, <j < t converge. Consider a

L-collection f ... ,, in Q. Using the kind of estimates used in the

proofs of Lemnas 4-.1-4-.3, we have ....

2 <. .. . . _gj _r. , _ _4.5]

E[! 6 (tt.) (fj -.)I.<Mifj-j:- [.
Eli 2 t) (tj)(fj -gj) ] < MIl CI -a)2 ..I.](f -r f4.6]

Er!¢53 (tj)(fj -j -gj )!2

E[[E (tj ) (fj -gj) [2] < MI] C 1 -)/2 (f j [4 8]

'for a suitable constant M depending on max (t ,...,tk). As 6 O0 in A,

-the right-hand sides of [4.6] - [4.8] converge to the correspondina quan-

-tities with C replacing C6. Since cj can be obtained by suitably trun-

cating thne Foui er series of f in le_ , each of these limiting expres-

-sions and the righthand side of [4.5] can be made smaller than any pre-

-- scribed n >O uniformly in 1 <j <k by a suitable choice of {gj}. It

-:,follows that the righthand sides of [4.5] - [4.8] can be made smaller

than any prescribed Ti -+ 0 uniformly in 6cA and 1 <j <k by a suitable

'choice of g;j.

Let {h2z be an enumeration of fi nite linear combinations of {ei

with rational coefficients. By a well-known theorem of Skorohod ([5],

p. 9), we can construct on some probability space random variables

:Xij, ' Y. ij 6sA, 1 <i <4, 1 < j <k, Z > 1, such that { XijQ} arees i -

law with i (tj) (h 0)} for each fi-ed 6 and Xij Yij a-s as 6 i0

-in A. 3v augmenting this probabilitv space, if necessary, we may con-

struct on it random variables Zasij (~,i,j) s above, such that the

joint law of ['i(tj) (fj),t (hj, (t) (h) ... ] agrees with that

-of [Z6ij Xij2' 3 -or each 6, i,j. Si-ce Xcij Yij s

and E[IX .I] = E[L 6 t) (h)[]] ican be bounded uniformly in 6 'for each

i,j,Z by estim, a-;es analogous to [4.5]- [4.3], we have E[Xc6i j -Yij i 2]0

as 6 0 in A for each i,j,r. On the other hand, given -+ 0, we can -
pick Z(j), 1 < j < k, such that setting gj = n ') [A.5] - [4.8] makes

_. - rrt ('j ) -r.....

-all the Z_-anti _t es on the righthand side there less than n. Thus

!ira :[ ]- j -^Z j1- < 2_ , i = 2r -X

a. , A o, sA £

Thus Z 6 . converge in mean sauare fc- each i,j as 6 0 in A. It f1llows

*_ ^ ' (tj r < i < ' < Cj <k} conve srse.that the int laws of t) (f i < , 1 <_j <k ,;- Tho
5 -.3 [7, [7, now im-les that (, , (-)] con-erve as

(C([0,o]; Q') ) --va l ued random variabscs. ['' (-), t (' ), - (' ) ( )] 7

denote its nlim-_ law -. Z21re' -- as. "' .I nenceo Orth). By taing -
thn l . i -'i 2in 32] along an a apro*r' z e s=-n=ecue=e,
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2 (t) = ¢1 (o) + j ci(t) as- 14. 91i=2

Theorem 4.1 2 (*) is the__(g) 2 process.

Proof We prove the theore bv dent in a- iter of [4.9. Let f_____ ter of- --- ......._-~-Y,. ~ - [4.9]. Let fQ..

Byc ensen's inequality and stationarity, E[I j (s) (C f) ds |2
| ¢(s) (Ccf.) ds|] <1 tE[I (o)(C - ) < K_-1C-f C- 2

..he rig.thadna side ends to zero as o6 - 0 y arguments similar to those
employed in the proof of Lemma 4.1. Thus

- - 1.15i. (()(-, |. tg() (Cf)d)6+0
6 0

t foll ows -. t-t

2, (t) (fS) =2 J t¢, () ds a s)

SLilarly

[ (s) : (C6 f) ds s) : (C f) ds]

_< t E [j: d (0): (CC ,- c 0 as in 6o O in A, by a-ruments
analocous to those 2above. Hence

i. (°6 (-), I, (s) :O (CO .f) ds) = ((1 (),-2d(t) (f))
-- .

= .i.l. (4,) *(f: (S), : (C :f) ds) [4.10 
___ - . - O 

Let_ a > o in A. Then

_ Et - s): (C ds s): (C f) ds

< Et[ * (0) : (C f) C: (. (C <)] C() f-o a Suitab.;1
>O un io rmiy in o6 as o6 O, by virtue of (9.6.9), p, 228, [4]. vThus

-he richqthand side c f [4.01] e-l..als

-1_J. d) (s). (C -: 0~

., -,s /, _. f . _. (s). (C ) ° ds)

0-,- 0
w-tere- e- ~) i s * Ji - * 1d by

..t(.(- =: . $ (ts) e) e :, -hst(.
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-The above limit equals
1 t 1-C

(S): (C f) ds),

Thus .,-, a r.; :-- ....

)3 (t) (f) = 1 t -(s): (C f) ds a-s-

U

Finally, it is easy to check that Q4 () will be a Wiener process with

covariance C-. Thus s)(-) satisfies [3.2] with initial law yp. By the

uniqueness in law of this equation (proved in [2], Section IV), we con-

--clude that 1 (-)is the (~ )2 process. QED

.-Corrollary 4.2 6 (') converge in law to 4 (-) as C([0,]; Q'-valued
random variables as 6 -0 in A, as defined originally.

-Proof A careful look at the foregoing shows that any subsequence of A

-will have a further subsequence along which the above convergence holds.

QED
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