MIT Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
ph: 617/253-5668 I fx: 617/253-1690
email: docs@mit.edu http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

LATTICE APPROXIMATION IN THE STOCHASTIC QUANTIZATION OF $\left(\phi^{4}\right)_{2}$ FIELDS 1
 by

Vivek S. Borkar
Sanjoy K. Mitter

[^0]The Parisi－Wu program of．stochastic cuantization［8］involves con－ struction of a stochastic process hinich has a prescribea Euclidean guan－ tum field measure as i亡s invariant measure．This program was rigorously
\therefore \because carried out for a finite volume $\left(\varphi^{4}\right)_{2}$ measure by G．Jona－iasinio anc P．K．Mitter in［6］．These resul亡s ．veze extenced in［2］，wich also proves a finite to infinite volume
E is to prove a related limit theorem，viz．，tha亡 of the finite dimensi－.onal processes obtained by stochastic cuantization o三 the iattice（ \dot{c}^{4} ）三ielcus to their continuum limit，i．e．，the（ e^{4} ）process oE［2］，［6］． The p＝oof imitates that of the limit theorem oÉ［2］in b＝oad terms， though the technical aetails aiffer．Noさe 亡ちat this limit theorem can also be construed as an alternative construction o the（ c^{4} ）process
\qquad in finite volume．

The next section recalls the Eirite volume（í ${ }_{2}$ ，ミュocess．Section III sumanizes the relevant Eacts aiout tie Ia亡tice approximation to
\qquad the $\left(\dot{\phi}_{2}^{4}\right)_{2}$ Eiela Erom Sections 9.5 añ 9.5 of［4］．Section IV g＝oves the limit theorem．
\qquad シ
\qquad

\qquad \because
$\qquad$$\therefore$

[^1]\qquad

\qquad
 Laplace operator on A．It is diagonalized by the basis $e_{k}(x)=2$ $\sin \left(k_{1} x_{1}\right) \sin \left(k_{2} x_{2}\right), x=\left(x_{1}, x_{2}\right), k \in 3=\left\{\left(k_{1}, k_{2}\right) \mid k_{i}=n \pi, n \geq 1\right.$, $i=1,2\}$ ．In tact，$-\Delta e_{k}=k^{2} e_{x}{ }^{2}$ where $k_{2}=k_{1}^{2}+k_{2}^{2}{ }^{2}$ Fora a eR，Let H ia
车 to the inner product
$$
\left.\underset{E}{E} \quad\langle E, G\rangle \alpha=\sum_{k \varepsilon S}\left(k^{2}\right)^{\infty}\left\langle f, e_{k}\right\rangle<\Xi, e_{k}\right\rangle
$$
where $\langle\cdot$,$\rangle is the L_{2}$ scalar prociuct．mopologize $Q=U H^{\alpha}$ by the countable family o^{f} seminomms $\left\|_{0}^{2}\right\| \|_{n}=\langle\cdot,\rangle^{\frac{1}{2}}$ ana $Q^{\prime}=\bigcup_{\alpha} H^{-\alpha}$ via duality．

Let $C=(-\Delta+I)^{-1}, \quad \dot{C}(\cdot, \cdot)$ its integral kernel，C^{∞} its $\alpha-$ th operator power，and μ_{C} the centered Gaussian measure on H^{-1} with co－ variance C［2］，［6］．Let：denote tie Wick orciering with respect to C（see $[4] ; \mathrm{Ch} .3 ;$ For a definition）．The $\left(\phi^{4}\right)$ measure on H^{-1} is defined by \qquad
Ξ
\because

$$
\begin{equation*}
\frac{d u}{\dot{c} \mu C}=\exp \left(-\frac{1}{4} \int: \dot{c}: d x\right) / z \tag{2.1}
\end{equation*}
$$

$$
---10-2
$$

－＝where

$$
Z=\int \exp \left(-\frac{1}{L_{i}} \int_{\Lambda}: \phi^{4}: \dot{\mathrm{c} x}\right) d H_{c}<\infty
$$

：

See［4］，Section 8．E，for details．

\qquad
 Brownian motions．Define

$$
W(t)=\sum_{k \equiv B}\left(k^{2}\right)-(1-\varepsilon) / 2 \quad \hat{j}_{k}(t) \hat{E}_{K}(\cdot), 亡 \geq 0
$$

This defines an H^{-1}－valued wiener process with covariance $C^{1-\varepsilon}[2],[6]$ ． The equation
 $\left(\phi^{4}\right)$ process．See［2］，［6］For cetails．

1 III. LATTICE APPROXIMATION

2
Let $A=\left\{2^{-n}, n \geq 1\right\}^{\text {and pick } \delta \varepsilon A}$ Cham finite lattice Λ_{δ} with spacing

$3-\partial \Lambda_{\delta}=\partial \Lambda_{\rho} \cap \delta Z^{2}, \Lambda_{\delta}=$ int- $\Lambda_{\delta} U \partial \Lambda_{\delta}=\Lambda \cap \delta Z^{2} \cdot l_{2}\left(\right.$ int $\left.\Lambda_{\delta}\right)$ is the Hilbert space with inner product
$=\quad\langle\tilde{E}, f\rangle \operatorname{int} \Lambda_{\delta}=\sum_{x \in \operatorname{int} \Lambda_{\delta}} \delta^{2}|f(X)|^{2}$,
viewed as a subspace of $\ell_{2}\left(\Lambda_{\delta}\right)$. On $\varepsilon_{2}\left(\delta Z^{2}\right)$, define the forward gradient
$\because \partial_{\delta ; \alpha}$ in direction α by $\left(\partial_{\delta, \alpha} f\right)(x)=\delta^{-1}\left[f\left(x+\alpha \mu_{\alpha}\right)-f(x)\right]$ where μ_{α} is the
unit vector in the α-th direction for $\alpha=1,2$. The backward gradient
$\div \partial_{\delta, \alpha}^{*}$ is its adjoint with respect to the $\ell_{2}\left(\hat{0} Z^{2}\right)$ inner product.
Let $-\bar{\Delta}_{\delta}=\partial_{\delta, 1}^{*} \partial_{\delta, 1}+\partial_{\delta, 2}^{*} \partial_{\delta, 2}$. Then $\left(\bar{\Delta}_{\delta} f\right)(x)=\delta^{-2}\left(-4 \equiv(x) \div \sum \sum(y)\right)$ where the summation is over the nearest neighbours of x. Jet $I f$ be the \rightarrow projection $\ell_{2}\left(\delta Z^{2}\right)+\ell_{2}\left(\right.$ int $\left.\Lambda_{o}\right)$. The Dirichlet difference Laplacian A_{0} is defined as $\Pi \bar{\Lambda}_{\delta} \Pi$ and agrees with $\bar{\Lambda}_{\delta}$ on int Λ_{δ}.

Choose as a basis on $\ell_{2}\left(\right.$ int Λ_{δ}) the $\left(\delta^{-1}-1\right)^{2}$ functions
$-\left\{e_{k}^{\delta}(x)=e_{k}(x) \mid x \varepsilon\right.$ int $\left.\Lambda_{\hat{j}}, k_{\alpha}=\pi, 2 \pi, \ldots,\left(\delta^{2}-1\right) \pi ; \alpha=1,2\right\}$.
$=$ Lemma $3.1\left([4]\right.$, D. 221) $\left\{e_{k}^{\alpha}\right\}$ diagonalize $-\Delta_{0}$ with
$-\Delta_{\delta} e_{k}^{\alpha}=\lambda^{\delta} e_{k}^{\delta}, \quad \lambda_{k}^{\delta}=4 \delta^{-2} \sum_{i=1}^{2} \sin ^{2}\left(\frac{\delta k_{i}}{2}\right)$.
: iso, $\left\langle e_{k}^{0}\right.$, $e_{l}^{\delta}>$ int $\Lambda_{0}=I$ if $k=\ell,=0$ otherwise Lemma 3.2 ([4], P. 222). The map $i_{0}: e_{k}^{0} \rightarrow e_{k}$ defines an isometric imbed-ding- oft $\left(\right.$ int $\left.A_{i}\right)+L_{2}(A)$.

Let Π_{0} be the projection operator on $L_{2}(\Lambda)$ which truncates the
: Fourier series $\bar{a} \mathrm{~K}_{\alpha} / \pi=\hat{o}^{-1}$, so that
O $\Pi_{j} \sum \alpha_{k} e_{k}=\sum^{\hat{j}} \alpha_{k} e_{k}$ where $\sum^{\hat{o}}$ denotes the summation over

Consider $\bar{C}_{0}=\left(-\Delta_{0}+I\right)^{-1}: \ell_{2}\left(\right.$ int $\left.A_{0}\right)-{\underset{\sim}{2}}_{2}\left(\right.$ int $\left.A_{0}\right)$ as "an operation on $L_{2}(A)$, $\because \quad \mathrm{Z} i 2$ the above isometry, ie., let $C_{\delta}=i_{0} C_{j} i_{j}^{*}$ where the C_{δ} on the wight:
 $\underline{-} \quad i s \quad C_{0}(x, y)=\sum 8\left(\lambda_{k}^{0}+1\right)^{-1} e_{k}(x) e_{k}(y)$,
 \qquad the matrix entries of C_{0} as an operator on a_{2} (int h_{0}).
Lemma 3.3 ([4], pp. 222-224) \| $C_{0}-C \| \leqq\left(00^{2}\right)$ as operators on L_{2} (it),

 If ϕ is a Gaussian field with covariance $\bar{c}, \phi_{\delta}(x)=\left(i_{\delta}^{*} \phi\right)(x)$ for 1 －$x \varepsilon$ int Λ_{δ} defines a Gaussian lattice field with covariance $C_{\delta}=i_{\delta}^{*} C_{\delta} i_{\delta}$ ． 2 The field ϕ_{δ} can be realized by a Gaussian measure on $L_{2}\left(R \mid\right.$ int $\Lambda_{\delta} \mid$ ）．
 ${ }^{3}$＿R \mid int $\Lambda_{j} \mid$ ，the above－measure is given by

$$
\begin{aligned}
& -\quad \operatorname{d\mu _{\delta C}}=\left(\operatorname{cet} C_{\delta}\right)^{-\frac{1}{2}} \pi^{-\mid \operatorname{int} \Lambda_{\delta} \|^{\frac{1}{2}}} \exp \left(-\frac{\delta^{4}}{2} \sum_{x, y \varepsilon \operatorname{int} A_{\delta}} \phi_{\delta}(x) \bar{C}_{\delta}^{2}(x, y) \phi_{\delta}(y)\right) \\
& -
\end{aligned}
$$

This is the lattice analog of μ_{C} ．The lattice analog of μ can now be defined as follows：Define for $£ \in \ell_{2}$（int Λ_{δ} ），

$$
: \phi_{\delta}^{n}:(f)=\delta^{2} \sum_{x \varepsilon \operatorname{int} \Lambda_{\delta}}: \varphi_{\delta}^{n}(x): c_{\delta} f(x),
$$

The lattice analog μ_{δ} is given by
道 $\quad d \mu_{\delta}=\exp \left(-\frac{1}{4}: \phi_{\delta}^{4}(x):_{\delta}(1)\right) d \mu_{\delta C} / \int\left(\int \exp \left(-\frac{1}{4}: \phi_{\delta}^{4}::_{\delta}(1) d \mu_{\delta C}\right) \quad[3.1]\right.$
For $k \varepsilon B_{\delta}$ ，let $\left\{E_{k}(\cdot)\right\}$ be a collection of independent standard
－Brownian motions．For $0<\varepsilon<1$ ，cine

$$
B_{\delta}(t)=\delta^{2} \sum^{\delta}\left(\lambda_{k}^{\delta}+1\right)^{-(1-\varepsilon) / 2} \quad B_{k}(t) e_{k}(\cdot), t \geq 0 .
$$

This defines an $\frac{1}{2}$（ Λ－valued wiener process with covariance $C_{\hat{0}}{ }^{1-\varepsilon}$ ．The \qquad analog of［2．2］in the lattice case is

$$
\begin{equation*}
d \phi_{\delta}(t)=\frac{1}{2}\left(\bar{c}_{\delta}^{\varepsilon} \phi_{\delta}(t)+c_{\hat{0}}^{1-\varepsilon}: \dot{\varphi}_{0}^{3}(t):_{\delta}\right) \bar{\alpha} t+\bar{d} B_{\delta}(t) \tag{3.2}
\end{equation*}
$$

三 where the operators act on $L_{2}(\Lambda) \cdot \phi_{0}(\cdot)$ is viewed here as an $L_{2}(\Lambda)$－valued process．However，letting $\phi_{\delta}^{2}(t)=\sum^{0} \phi_{\delta k}(t) \epsilon_{k},[3: 2]$ translates into an equivalent stochastic di三Eerential equation for finitely many scalar
\because－processes $\varphi_{0 k}(\cdot)$ with locally Iipschitz（in Fact，polynomial）coefミici－ \qquad enis．This ensures the existence of an $2 \cdot s$ ．unique strong solution to［3．2］up to an explosion time．That it does not explode a•s• is proved by a standard application of Khasminskii＇s test for non－ explosion exactly as in［G］，Section． 3.

By identifying the vector $\left\{\hat{c}_{0}(x)\right.$, ye int $\left.\Lambda_{0}\right\}$ with $\phi_{0}(\cdot) \varepsilon l_{2}\left(\right.$ int $\left.\Lambda_{0}\right)$ ，
 isometry．i．，as a probability measure on $L_{2}(A)$ ．We retain the notation μ_{0} For the latter interpretation，as only this interpretation will be used henceforth．a computation similar to that of［2］，Section 3， shows that the generator of the Markov process described by［3．2］is seiE－adjoint on $L_{2}\left(H_{0}\right)$ ．By Theorem 2.3 of［3］，the same holds for the associated transition semigroup of $\left\{T_{t}\right.$ ，$\left.\ddagger \geq 0\right\}$ ，of operators on $L_{2}\left(\mu_{0}\right)$ ．．

—保
 for $\phi_{\delta}(\cdot)$. In fact, the resulting process will be ergodic. We won't need this fact here, so we omit the details. From now on, [3.2] will 2 always be considered with initial law ${ }^{2}$,

E IV.
THE CONTINUUM LIMIT
\qquad This section establishes the main result of this paper, viz., the convergence of $\phi_{\delta}(\cdot)$ to the $\left(\varphi^{4}\right)_{2}$ process as $\delta \rightarrow 0$ in A, in the sense of weak convergence of Q^{\prime}-valued processes. Thus we consider $\phi_{\delta}(\cdot)$ as aQ'valued : process and μ_{δ} as a measure on ε^{\prime} via the injection of $L_{2}(4)$ into Q^{\prime} : Erom theorem $9.6 .4, \mathrm{P} .228,[4]$, it follows that the finite dimensional marginals of the collection $\left\{\phi_{\delta}\left(e_{k}\right), k \in B\right\}$ under H_{δ} converge weakly to the corresponding ones under μ as $\hat{c} \rightarrow 0$ in A. Since $\mu_{\delta} \mu$ are supported on H^{-1}, it follows \therefore that $\mu_{0}+\mu$ weakly as probability measures on Q°. (A proof of the Eformer assertion would go as follows: Since H^{-1} is Polish, it is homeoEmorphic to a G_{μ} subset of $[0,1]^{\infty}$ whose closure \bar{H}^{-1} can be consicered - a compactification of H^{-1}. As a measure on $\bar{H}^{-1},\left\{\mu_{\delta}\right\}$ are tight and for \therefore-any weak limit point u thereof, its restriction u^{\prime} to H^{-1} must yield the same finite dimensional marginals for $\left\{\phi\left(e_{k}\right), k \varepsilon B\right\}$ as μ. Thus $\left.v=v^{\prime}=\mu.\right)$ As a first step towaras proving the continuum limit, we prove some
́ tightness resul亡s.

Let

$$
\begin{aligned}
& \phi_{\delta_{1}}(t)=\dot{\varphi}_{\hat{0}}(t) \\
& \phi_{\delta_{2}}(t)=\frac{1}{2} \int_{0}^{t} C_{\delta}^{-\varepsilon} \phi_{0}(s) d s \\
& \phi_{\delta_{3}}(t)=\frac{1}{2} \int_{t}^{t} C_{\hat{0}}^{1-\varepsilon_{i}} \phi_{\hat{0}}(s): d s \\
& \phi_{\delta_{4}}(t)=B_{0}(t)
\end{aligned}
$$

\qquad
\qquad
\qquad
$\Longrightarrow \int\left|c_{\delta}^{-s} \phi(£)\right|^{\varepsilon} d \mu_{\delta C}(\phi) \leq K\left\|C_{\delta}^{-\varepsilon} £\right\|_{2}^{\prime \prime}$.

Now

2
\equiv The summand on the right can be dominated in absolute value by $K<f, e_{k}>^{2} \lambda_{k}^{2}$ which is sumable for $f \varepsilon Q$ ．By the dominated convergence theorem，

$$
\lim \left\|C_{\delta}^{-\varepsilon} £-C^{-\varepsilon} £\right\|_{2}=0
$$

implying sup $\left\|C_{\delta}^{-\varepsilon} f\right\|_{2}<\infty$ ．［4．］］follows．
Lemma 4．2 $E\left[\left(\int_{t_{2}}^{t_{2}} C_{\delta}^{2-\varepsilon}: \phi_{0}^{3}(t):(£) d t\right)^{4}\right] \leq K\left|t_{2}-t_{1}\right|^{2}$.
This follows along similar lines．
Lemma 4．3 $E\left[\left(\left|B_{\delta}\left(t_{2}\right)(f)-B_{\delta}\left(t_{1}\right)(f)\right|^{4}\right] \leq K t_{2}-\left.t_{1}\right|^{2}\right.$.
Proof The lefthand side equals
$3\left|C_{\delta}^{-\varepsilon}(f, f)\right|^{2}\left|t_{2}-t_{1}\right|^{2} \leq 3 \sup _{\delta}\left\|C_{\delta}^{(1-\varepsilon) / 2} \equiv\right\| \|_{2}^{2}\left|t_{2}, t_{1}\right|^{2}$ ．Is in the proof \because of Lemma 4．1，one can prove

$$
\lim _{\delta \rightarrow 0}\left\|C_{\delta}^{(i-\varepsilon) / 2} £-C^{(1-\varepsilon) / 2} \equiv\right\|_{2}=0
$$

Thus $\sup _{\delta}\left\|C_{\delta}(-\varepsilon) \tilde{I}\right\|_{2}<\infty$ anc the claim follows．

$$
\text { Corollary 4.I } E\left[\left|\dot{\oplus}\left(t_{2}\right)(\bar{I})-\phi\left(t_{1}\right)(\Xi)\right|^{4} \leq K\left|t_{2}-t_{1}\right|^{2}\right.
$$

Proof Follows from［3．2］and［4．1］－［4．3］．
Lemma 4．4 The laws of the processes $\left[\phi_{\delta_{1}}(\cdot), \phi_{\delta_{2}}(\cdot), \phi_{0_{3}}(\cdot), \phi_{0}(\cdot)\right]$ viewed as $\left.\left(C(0, \infty) ; Q^{\prime}\right)\right)^{4}$－valued random variabies remain tight as ó varies over A．
\because Proof By Theorem 3．1 of［7］，it su̇ミices to establish the tigintness $\quad:$ of $\left[\phi_{01}(\cdot)(E), \dot{\phi}_{02}(\cdot)(三), \phi_{\delta z}(\cdot)(E), \phi_{0,}(\cdot)(三)\right]$ on $[0, T]$ as （ $C([0, T] ; R))^{4}$－valued rancom variables for arbitrary $T>0$ and EsQ．
\qquad This，however，is ̇mmeđiaむe 三＝om the tigiṅness o $=\left\{\mu_{0}\right\}$（since $\mu_{0}+\mu$ weakly as a measure on H^{-1} ），the estimates［4．1］－［4．4］ancitie criterion of［1］，2． 95.

Recall that a Eamily of nrobability measures on a procuct of Polisin spaces is tight i̇ anco oniy i̇ its jmages unāer projection onto each factor space are．Leさting $\left\{\bar{e}_{i} ;\right\}$ denote an enumeration of $\left\{\hat{e}_{k}\right\}$ ．
－This implies，in view of tie Eorecoing，in三t［ $\phi_{i}(\cdot)$（ \bar{e}_{1} ），
 $(C([0, \infty] ; R))^{\infty}$－valued ranãom variables．Эy dropaing io a subsequence
\qquad

 collection $\left\{g_{1}, \ldots, g_{k}\right\}$ ȯ 三inite Iinear cominations of $\left\{\bar{E}_{i}\right\}$ ，the proofs of Lemmas 4．1－4．3．－we have
$E\left[\left|c_{\delta 1}\left(t_{j}\right)\left(f_{j}-g_{j}\right)\right|^{2}\right] \leq M\left\|f_{j}-g_{j}\right\| \|_{2}^{2} \in R E=\square E$
3
$E\left[\left|{\dot{\varphi_{\delta}}}\left(t_{j}\right)\left(f_{j}-\underline{g}_{j}\right)\right|^{2}\right] \leq M\left\|C_{\delta}^{-\varepsilon}\left(\bar{E}_{j}-g_{j}\right)\right\|_{2}^{2}$
$\therefore E\left[\|\left.\delta_{\hat{0}}\left(t_{j}\right)\left(f_{j}-g_{j}\right)\right|^{2}\right\} \leq M\left\|C_{j}^{1-\varepsilon}\left(E_{j}-g_{j}\right)\right\|_{2}^{2}$
$E\left[\left|\dot{o}_{j}\left(t_{j}\right)\left(f_{j}-g_{j}\right)\right|^{2}\right] \leq M\left\|c_{\delta}^{(1-\varepsilon) / 2}\left(f_{j}-g_{j}\right)\right\|_{2}^{2}$
\therefore

for a suitable constant M depending on $\max \left(亡_{1}, \ldots, t_{k}\right)$ ．is $\hat{i}+0$ in A ， the righthand sides of［4．6］－［4．8］converge to the corresponding quan－ Etities with C replacing C_{0} ．Since G_{j} can be obtained by suitably trun－ cating the Fourier series of f_{j} in $\left\{e_{i}\right\}$ ，each of these limiting expres－． sions and the righthand side of［4．5］can be made smaller than any pre－

- －scribed $\eta>0$ uniformly in $1 \leq j \leq k$ by a suitable choice of $\left\{g_{j}\right\}$ ．It
－Follows that the righthand sicies of［4．5］－［4．3］can be mace smaller than any prescribed $\eta \rightarrow 0$ uniformly in $\delta \varepsilon A$ and $l \leq j \leq k$ by a suitable \because choice of $\left\{g_{j}\right\}$ ．
U Lé $\left\{h_{l}\right\}$ be an enumeration of Einite linear combinations $0 \equiv\left\{\bar{e}_{i}\right\}$ with ra亡ional coefミicieṅs．By a weli－known theorem of Skorohod（［5］，
－p．9），we can construct on some probability space random variables $X_{\text {oijl }}, Y_{i j \ell}, \delta \in A, l \leq i \leq 4, l \leq j \leq k, 2 \geq 1$ ，such that $\left\{X_{\text {oijl }}\right\}$ agrees in law with $\left\{\phi_{\delta i}\left(亡_{j}\right)\left(h_{\ell}\right)\right\}$ 三or each Eirea δ anc $X_{\delta i j \ell}+Y_{i j \ell} a \cdot s \cdot$ as $\delta+0$
－in A．By augnenting this probability space，if necessary，we may con－

$:$

 struct on it＝andom variables $Z_{o i j},(0, i, j)$ as above，such that the
 and $E\left[\left|X_{i j j \ell}\right|^{4}\right]=E\left[\left.\dot{c}_{\delta i}\left(亡_{j}\right)\left(h_{\ell}\right)\right|^{4}\right]$ can be bounded uniformly in $\hat{0}$ for each i，j，2 by Estimates aralogous to［4． 3 ］－［4．3］，we have $E\left[\left|X_{\text {cijjl }}-Y_{i j \ell}\right|^{2}\right] \div 0$ \because as $\delta \rightarrow 0$ in A ó each i，j，2．On the other hand，given $\eta \rightarrow 0$ ，we can pick $\ell(j), l \leq j \leq k$ ，such that setiing $g_{j}=h_{i(j)}$ in［4．5］－［4．8］makes all the guantities on the righthand siae there iess than η ．Thus

Thus $Z_{\text {ojj }}$ converge in mean square fon each i, j as $o \rightarrow 0$ in A．It follows
 5．3，［7］，now implies that $\left[0_{01}(\cdot), \ldots .\right.$. ，$\left.\varphi_{0,}(\cdot)\right]$ converge $\equiv s$

迫 the I．i．2．in $[3.2]$ ミlong $\equiv n$ appropエiate subsequence，

$$
\begin{equation*}
\phi_{1}(t)=\epsilon_{1}(0)+\sum_{i=2}^{4} \varphi_{i}(t) a \cdot s . \tag{4.2}
\end{equation*}
$$

Theorem 4．1 $\phi_{1}(\cdot)$ is the $\left(\phi^{4}\right)_{2}$ process．

\qquad
Proof we prove the theorems benting each term of［4．9］．Let feQ．三－By Jensen＇s inequality and stationarity，El｜ $\int_{\phi_{\delta}}^{t_{i}}(s)\left(C_{\delta}^{-\varepsilon} f\right)$ ds $\left.\right|^{2} I$ $\left.-\left.\int_{0}^{t} \varphi_{\delta}(s)\left(C^{-\varepsilon_{f}}\right) d s\right|^{2}\right] \leq \pm E\left[\mid \dagger_{\delta}(0)\left(C_{\delta}^{-\varepsilon_{f}} C^{-\varepsilon_{E}} \|^{2}\right]^{0} \leq t K\left\|C_{\delta}^{-\varepsilon_{f}}-C^{-\varepsilon_{f}}\right\|_{2}^{2}\right.$ ．
The righthand sice tencs to zero as $\hat{0}+0$ by arguments similar to those $\stackrel{-}{\square}$ employed in the proof of Lemma 4．1．Thus

It follows that

$$
\dot{\phi}_{2}(t)(\bar{I})=\frac{1}{2} \int_{\theta}^{t} \phi_{2}(s)\left(C^{-\varepsilon} f\right) d s a \cdot s \cdot
$$

－similarly
－$\equiv\left[1 \int_{0}^{t}: \epsilon_{j}^{3}(s):_{\hat{c}}\left(C_{\delta}^{1-\varepsilon_{E}}\right) d s-\int_{0}^{t}: o_{\delta}^{3}(s):\left._{0}\left(C^{1-\varepsilon_{f}}\right) d s\right|^{2}\right]$
－$\leq t E\left[1: \phi_{j}^{3}(0):\left.\left(C_{\hat{c}}^{2-\varepsilon_{f}}-C^{2-\varepsilon}\right)\right|^{2}\right] \rightarrow 0$ as in $\delta \rightarrow 0$ in A ，by arguments analogous to those above．Hence
$=$
\qquad \therefore
\qquad
\qquad
Iet $\alpha>0$ in A．Then \qquad

$$
\leq \in E\left[: \dot{\phi}_{\delta}^{3}(0):\left(C^{1-E} \Rightarrow\right)-: \dot{q}_{2}^{3}(0):\left._{0}\left(C^{2-E_{j}}\right)\right|^{2}\right] \leq 0\left(a^{3}\right) \text { 三or a suitable }
$$

$\tilde{3}>0$ uni三ormly in 0 as $0 \rightarrow 0$ ，by viriue $0 \equiv(9.0 .9)$ ，D．228，［4］．Thus －the righthana side cE［4．10］equals

\because
\because

$$
=\underset{\sim \rightarrow 0}{I \cdot i \cdot I} \cdot\left(\phi_{1}(\cdot), \int_{0}^{t}: \bar{\varphi}_{\alpha}^{s}(s):\left(C^{1-\varepsilon} \equiv\right) \text { as }\right)
$$

$$
\bar{o}_{\underline{\prime}}(t)(n)=\sum^{\infty} \phi_{1}(t)\left(e_{k}\right)\left\langle\varepsilon_{k}, n>, h \in Q .\right.
$$

$$
\begin{aligned}
& =\underset{\substack{\text { I.i.I.I. }}}{ }\left(\phi_{\delta}(\cdot), \int_{0}^{i}: \dot{\varphi}_{0}^{s}(s):_{\delta}\left(C^{1-\varepsilon}=\bar{i} s\right)[4 . I 0]\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\quad \begin{array}{l}
\text { l.i.1. } \\
=
\end{array} \phi_{\delta_{1}}(\cdot), \phi_{\delta 2}(t)(£)=\left(\phi_{2}(\cdot),-2 \epsilon_{2}(t)(f)\right) \\
& =\underset{\substack{\frac{1}{0} \\
\delta}}{\substack{i}}\left(\delta_{j}(\cdot), \int_{0}^{t} \phi_{\delta}(s)\left(\bar{c}_{0}^{-E_{f}}\right) d s\right) \\
& =\frac{1}{\delta} \cdot \frac{i}{t} \cdot \frac{1}{0} \cdot\left(\phi_{\hat{j}}(\cdot), \int_{0}^{t} \phi_{\delta}(s)\left(c^{-\varepsilon_{f}}\right) d s\right) \\
& =\left(\phi_{1}(\cdot), \int_{\phi_{1}}(s)\left(C^{-\varepsilon} \equiv\right) d s\right) \text {. }
\end{aligned}
$$

 The above limit equals

$$
\left(\phi_{1}(\cdot), \int^{t}: \phi_{1}^{3}(s):\left(C^{1-\varepsilon} f\right) d s\right)_{1}
$$

On＝p：er heazings imerographet

$$
\phi_{3}(t)(f)=-\frac{1}{2} \int_{0}^{t}: \phi_{1}^{3}(s):\left(C^{f} f\right) d s a \cdot s
$$

Finally，it is easy to check that $\phi_{4}(\cdot)$ will be a Wiener process with covariance $C^{1-\varepsilon}$ ．Thus $\phi_{2}(\cdot)$ satisfies［3．2］with initial law μ ．By the uniqueness in law of this equation（proved in［2］，Section IV），we con－ clude that $\phi_{1}(\cdot)$ is the $\left(\phi^{4}\right)_{2}$ process．

Corrollary 4．2 $\phi_{\delta}(\cdot)$ converge in law to $\phi(\cdot)$ as $C\left([0, \infty] ; Q^{\prime}\right.$－valued random variables as $\delta \rightarrow 0$ in A ，as defined originally．

Proof A careful look at the foregoing shows that any subsequence of A －will have a further subsequence along which the above convergence holas．

ACKNOWLEDGEMENTS

This work was done while both of us were at the Scuola Normale Superiore，Pisa．Vivek S．Borkar would like to thank C．I．R．M．，Italy， for travel support，and the Scuola Normale Superiore for financial support，winch made this visit possible．

$$
\begin{equation*}
\because \tag{1}
\end{equation*}
$$

REFERENCES

P．Billingsley．Convergence of Probability Measures；（John Wiley〔 Sons，New York，1968）．
\square ［2］V．S．Borkar，R．T．Chari and S．K．Mitter．＂Stochastic Guanti－ ［2］V．S．Borkar，R．T．Chari and S．K．Mitter．＂Stochastic guanti appear in J．Eunct．Inal．
\qquad $\stackrel{3}{2}$ \because 2
\qquad \because

QED

QED \because
［3］M．Fukushima and D．W．Stroock．＂Reversibility of solutions to martingale problems．＂To appear in Séminaires ce Probabilités， Strasbourg．［4］J．Glimm and A．Jニショe．Quantum Physics：A Functional Enさegral Glim and A．J̇ニニ̃．Quantum Physics：A Functional
Point of View，2nd． ed ．；（Springer－Verlag，1987）．
$\because[5]$ N．İeda and S．Watanabe．Stochastic Differential Equations－．
and Diffusion Processes；（North－Holland Publishing Company／ Koc̄ansina，1981）．
$-$
［6］G．Jona－Iasinio and P．K．Mitieer．＂On the stochastic quantization

［7］I．Mitoma．＂Tigntness of prodabiiities in $C\left([0,1], \xi^{-}\right), D([0,1]$ ， ξ^{-}）＂；Ennals OE Prob． 1 I（1983），989－999．
［8］G．Dミrisi and Y．S．Wu．＂Derturbation theory without gauge Eix－ －ing＂；Scienti三ica Sinice， 24 （I98I），483－496．
in

[^0]: ${ }^{1}$ The research of the second author was supported in part by the U.S. Army Research Office, Contract No. DAAL03-86-K-0171 (Center for Intelligent Control Systems, M.I.T.), and the Air Force Office of Scientific Research AFOSR-850227.

[^1]: The research of the second author was suミpoニ̇ea in ミaニン ふv the U．S．
 In亡eliigent Control Systems，Massaciuse＝こs Insiitu＝e ȯ Technology），

 $=$ AFOSR－85－0227．

