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ABSTRACT

This paper deals with problems of guantitative
organizational design. We show that the optimal architecture
of even a very simple team of two decision makers (DMs)
performing binary hyvpothesis testing depends on variables
external to the team. On the other hand, there exist particular
probability distributions for the observations which lead to
unambiguous optimal architectures in which the “"better”
decision maker makes the final team decision based upon
finite-bit messages from the "worse" decision maker. But,
even in these cases the results are difficult to generalize for
teams with three or more DMs, because of the complexity of
the problem. A heuristic algorithm for organization design is
presented.

1. INTRODUCTION AND MOTIVATION

Our main research goal is to develop basic
understanding of decision making in distributed
organizations. As we shall see suck problems can become
very complicated because of the dismibuted (decentralized)
decision process. In order to gain understanding into the
basic fundamental issues we need a paradigm which
represents simple decision making, and whose centralized
version is easy to formulate, solve, and compute. We have
adopted the problem of hypothesis testing as our basic
paradigm: see references [1] to [4] for related prior research
in this area.

The classic decision problem in this serdng relates to the
design a team to perform targe: detection (no target vs target
present) using several dismibuted sensors. Suppose that each
sensor has significant computational capzbility to process his
raw returns and can perform local target detection. Because
of the unreliability and uncerainty of the observations there
is a high probability of error associated with each sensor's
decision when he operates in isoladon. Thus, it is desirable
10 have many sensors to operate together as a team 1o
decrease the error probability. In order to achieve this, we
have to define the architecture of the organizaton (i.e. which
sensor communicates with whom) and derive a decision
protocol to fuse the “tentative” sensor decisions into a global
team decision.

We employ a binary hypothesis testing model, which
can be generalized to more general hypothesis testing
problems. These are indeed generic in the situation
assessment C? function. We would like to develop a
quantitative design methodology to deal with them.

We examine several important issues of these problems,
starting with real-time decision making rules for distributed
hypothesis testing. The team architecture is the way the DMs
of the team are set-up. We want 10 obtain the performance of
a given team architecture (say the probability of error) and
compare the performance of alternative architectures. We
also seek to design an organization to meet some global team
performance specifications and study the effect of adding a
new DM to the team. Finally, we would like to understand
and develop the theoretical aspects and compuiational
complexity associated with this ciass of problems.

Suppose that a team consists of N DMs. Evidently, the
team may have many alternative architectures and
communicaton protocols. For exarnple, if N = 3, we can see
two different architecrures in Figure la and 1b. The
environment consists of several hypotheses. Each DM
receives a conditionally independent observation and makes a
entadve decision, based upon his own measurement and the
decisions of the other processors which have been wansmitted
to him, according to some specified communication
protocols. The final team decision has some costs associated
with it. We would iike to determine somehow which
configuration results into superior performance; moreover,
given three DMs and z particular configuration, we would
like to determine which DM should be employed i each
position. We would also like to test the effects of different
communication protocols. Another type of probiem is
illusrrared in Figure 1c. Given a team of DMSs which does not
meet certain specificatons, we would like to determine what
DM should be inoduced to the team and in whar position,
for the team to meet the posed specificadons.

In this paper all the hypothesis testing performed is
assumed binary. In Section 2, we will discuss the optimum
configuradon of a team consisting of two DMs. In Section 3,
we examine the same problem for the special case where the
observations of the DMs are described by Gaussian




distributions with different variances under each hypothesis.
" In Section 4, we present a problem of organizational design
and an algorithm to solve it. Finally in Section 5, we present
some concluding remarks and suggestions for future
research,

2. TWO DM ORGANIZATIONS
~ 2.1 General Remarks

Since organizations with two DMs are key building
blocks for larger organizations, our objective is to study them
extensively and analyze them completely. There are two

alternative architectures for this type of teams: fusion and
tandem (Figure 2). Since the DMs in the tandem architecture
can always employ the decision rules of the DMs in the
fusion architecture (hence even the optimal decision rules for
the fusion architecture), the performance of the tandem
architecture is always at least as good as the performance of
the fusion architecture. Thus, we will restrict ourselves to the
study of the tandem architecture.
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2.2 The ROC Curve

In the binary hypothesis testing problem each DM can
be characterized by his Receiver Operating Characteristic
(ROC) Curve. This curve plots the probability of detection as
a function of the probability of false alarm.

The probability of detection, Py, is the probability that
the DM decides u = 1 (indicating that H, is the true
hypothesis) when H, is indeed true and is defined by

B = | B (A [ H,) dA (1)
where
Aw) = JO1H)
PG| H,)

is the likelihood ratio and n represents the decision threshold.

The probability of false alarm, P, is the probability that
the DM decides u = 1 when H is the true hypothesis and is
defined by

B, = L Py (A ] H)) dA @)

Thus, the ROC curve is expressed by two parametric
equatons, with the threshold parameter n varying from zero
to infinity; in general, can not be expressed in a closed form.
The ROC curve is concave and it has another useful property;
suppose that by substituting n” in equations (1) and (2), the
point (P.",P,") of the ROC curve is obtained. Then, the
slope of the tangent to the ROC curve at (P;".Py") is n”

(Figure 3). Consequently, if a DM performs detection with
some given n’, his optimal operating point is the point of the
ROC curve where the slope of the tangent is n".

In our research, we use the ROC curve to quantify the
relative expertise of different DMs. Moreover, since the team
of DMs also performs binary hypothesis testing, team
performance can also be quantified by the team ROC curve.
If the ROC curve of DM A is higher than the ROC curve of




DM B, then we say that A is a better DM than B, because for
the same level of probability of false alarm, A will have a
higher probability of detection (Figure 4a). But, the DMs can
not always be ranked globally because sometimes their ROC
curves intersect (Figure 4b).
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2.3 The Problem

Consider a team consisting of two DMs in tandem
architecture, which performs binary hypothesis testing
(Figure Sa). The prior probabilities (P, =PH,)) fori=0,1) are
assumed known, as well as the costs J(u,H) which are
incurred by the team when it decides u and H is the true
hypothesis. It is assumed that it is more costly for the team to
err than to be correct. The texm objective is to minimize the
expected cost incurred by the team.

Each DM receives a conditionally independent
observation. One DM, called the consultant DM, makes a
binary decision (u = 0 or u_= 1) based on his measurement,

Y, and transmits it to the othe DM, called the primary DM.

Then, the primary DM has to make the team decision (based
upon his own measurement Y, and the message from the

consultant) which has to be either u b= 0 or u,= 1 indicating
that the corresponding hypothesis is considered to be true.

The optimal solution for the decision rules of the two
DMs is given by likelihood ratio test with constant thresholds
[3]. For the primary DM:
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If u=0: Aw) L —=a @
u=0 i- Pn
?
u = 1 c
If u=1: AG) % e m (4)
u=0 "0
For the consultant DM:
u=1 1 .o
¢ Pr - P,
S R
v =0 p ‘D
where
oo _5_ J(1,H,) - 3(0,H,)
Pl JO,H,) - J(1,H,)

and P} (P ) is the probability of detection (probability of
false alarm) for the primary DM when u_= i was received by
the consuitant (i = 0,1) and Pyc ( P;=) is the probability of
detection (probability of false alarm) for the consultant DM,

when both DMs are operated according to the optimal
decision rules of egs.(3)-(5). For example,

o _ 1-Ps
Py = Pr(A(yP) =2 _P‘; n | Hy) (6)-

D

Figure 5b demonsmrates the form of the operating points.

The ROC curve of the team as a whole can be computed

- and is given by:

pP.T
P T

(1-Pp) PO + Pre Py @
(1-Pge)P0 + Ppc Pyl (®)
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Note that the team ROC depends not only upon the
characteristics ("expertise”) of the individual DMs, but also
on the partcular way that they have been constrained to
interact (the team or organization architecture).

2.4 Architecture Comparisons

Suppose that one of the two DMs is "better” than the
other, i.e. his ROC curve is higher than the ROC curve of
the other DM. There exist two candidate architectures for the
team; either make the "beuer” DM the primary DM or make
the "better” DM the consultant DM. Recall that the primary
DM makes the final team decision. We would like to
determine which of the two architectures yieids better
performance than the other for all values of n, that is
whether the optimal architecture is independent of the
external parameters of the problem (details of cost function,
prior probabilities) which determine the value of n.

The architecture with the better DM as the primary DM
was conjectured [3] to be better. This conjecture is appealing
from an intuitive point of view; given two DMs one would
like to have the "better” DM make the final decision,
independent of the prior probabilities and the cost
assignments. If this were the case, then the optmal way of
organizing two DMs would not change, say, as the prior
probabilities of the underlying hypotheses vary.
Unfortunately, as we show below, this conjecture can be
false.

2.5 A Counterexample to the Conjecture

In Figure 6, we present the ROC curves of two DMs,
one better than the other according to our prior definition.
Table 1 contains the discrete distributions of their
observations; the elements in the matrix denote probabilities.
For example, the "worse” DM will observe y =1 with
probability 0.1 if Hy is true and with probability 0.5 if H, is
true. From Table 1 we can then see that the better DM has as
good or better discrimination of the two hypotheses, and of
course this is reflected in the dominance of his ROC curve in
Figure 6.

In order to establish the counterexample we compared
the two architectures using tedious, albeit swaight forward
calculations of the probability of error. The results are
illustrated in Table 2, which contains the probability of error
for two different values of n for each architecture -- B
denotes the "better" DM, while W denotes the "worse" one.
For n = 1.0 having the better DM as the consultant is
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TABLE 1
DESCRIPTION OF DMs

"WORSE" DM "BETTER" DM

H H
v Hg H, : Y\ Ho H,
1 0.1 0.5 1 0.1 0.5
2 0.4 0.4 2 o1 0.2
3 0.5 0.1 3 0.3 0.2
4 0 0 4 0.5 0.1

optimal while for n = 0.38 having the better DM as the
primary is optimal. This can be also verified by deriving the
team ROC curves for each architecture (Figure 72). As the
close-up of Figure 7b shows the two ROC curves intersect
near Pp= 0.3. Thus, in this special example, the optimal team




TABLE 2
COMPARISONS OF
PROB. OF ERROR

B — Wi—3B—
n=1.00 0.200 (optimal) 0.215
n=10.38 0.1840 0.1833 (optimal)
FIGURE 7
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architecture depends on the value of n (i.e. the numerical
values of the prior probabilities and costs). On the other
hand, for this example, both architectures have very similar
performance, since their ROC curves are quite close (Figure
7a).

3. COMPARING GAUSSIAN VARIANCES
3.1 General Remarks
Consider special case of the problem presented in
Section 2.3 above, where each DM receives two independent

observations distributed with the Gaussian distribution with
different variance under each hypothesis. The ROC curves in

this case are simple and given in a closed form [1]. A
summary of this case is given in Table 3.

3.2 The First Architecture
Suppose that the better DM is made the primary. Then,

from the solution of the problem and the property of the ROC
curve
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where the superscripts B (better) and W (worse) indicate
which DMs ROC curve is being differentiated. Solving the
system of eqs.(9)-(11) and recalling the concavity of the
ROC curve, we obtain that in this case

(Pp]sPDI) = (1D

which implies that whenever u = 1 is received from the
consultant, the primary decides u,=1 independent of his own

observation. Substituting into (7) and (8), we obtain that the
team ROC curve in this case is given by:

P.T = P0+P; - POP, (12)
P,T = PLO+Pc - POP! (13)

for some (PO.P,0) [(Pee,Pp9)] in the ROC curve of the worse
[bett;r] DM.

TABLE 3
COMPARING GAUSSIAN VARIANCES

WORSE DM: BETTER DM :
Y,.Y,~N(0,6?) Y,.Y,~N(, o)
HO to? = 002 HO to? =‘002
Hlicz—ol" H1:62=N012
2 2
s %

_ o Nef
B, = P, P =P "

with : 602 < 012 . N>1




3.3 The Second Architecture

Suppose that now the better DM is made the primary.
Then, we can arbitrarily assign to the DMs the following
operating points:

(PO,PLO): 10 the Consultam (Worse) DM
(Pes,Ppe): 1o the Primary (Better) DM when u_ = 0 is received

(1,1 : 10 the Primary (Better) DM when u_=1is received

Substituting into eqgs. (7) and (8), we obtain egs. (12) and
(13) again. Since for this arbitrary assignment of operating
points, the architecture with the betzer DM as the primary can
achieve performance equal to the optimal performance of the
other architecture, the better DM should alwavs be the
primary DM,

3.3 Obtaining the Team ROC Curve

Suppose that the better DM is the consuliant. Then,
from the system of egs. (9)-(11), we can solve for Pce to

obrain:
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This is an equation of just P.c. We could have substituted for
Ppe from the equation of the ROC curve of the consultant

(betrer) DM, but did not do it because of space limitadons. If
the equation is solved Pge is obtained. Moreover:
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By substituting into the equation of the ROC curve of the
primary (worse) DM, P,0 is obtainzd. Finally by substituting
for all the probabilitdes into equations (7) and (8), the team
ROC curve is obiained as a functon of n, the variances of
the DMs and N.

It should be clear that the team ROC curve will not be of
the same form as the ROC curves of the individual DMs. In
fact, it is not even given by a closed form expression. Thus,
we cannot easily extend the result to the case of three DMs in
a tandem architecture. :

4. DESIGNING ORGANIZATIONS
4.1 General Remarks

Suppose that we are given a team of DMs and a set of

requirements on the team performance, which are not met.
We could perform several changes in the team, such as
adding or deleting a DM or changing the team
interconnections, or redesigning the communication
protoccls, to make the team meet posed performance
requirements. Presently, we are employing a mrial and error
approach because of the mathematical complexity of the
problems; we hope for analytical insight from our future
research.

4.2 Adding a New DM

By introducing the “"perfect” DM to the team, that is a
DM who always knows which is the true hypothesis (i.e. his
ROC curve goes through (P.,Pp) = (0,1) ), the team

probability of error will be reduced to zero. Hence,
specifications no matter how strict can always be met.

We would like to introduce a trade off between the team
performance and the quality of the DM to be introduced. To
measure quality we need to rank the DMs even in cases of
ambiguity (Figure 4b). The measure we will employ is the
area under the ROC curve. This measure is scalar and
preserves the ranking of unambiguous situations (Figure 4a);
the "perfect” DM has a measure of 1 and the "worst" DM
(the DM who is equally likely to choose between either
hypothesis independent of his observation) has a measure of
0.5. :

The design problem will now be to find the “cheapest”
DM which will enable the team to meet the requirements; by
cheapest meaning the DM with the smallest area under the
ROC curve.

4.3 A Sample Problem

Suppose we are given a DM ("old") with ROC curve:

od
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and a set of requirements for team performance (i.e.

minimum levels of probability of detection for specified

levels of probability of false alarm). We want to find the

"cheapest” DM ("new") with omiomorphic ROC curve to the
old DM, that is:

EH

LA P:' 1

; K20

which will make the team satisfy the requirements. In this
case, the smaller the value of the constant K the cheaper the
DM.

The problem is the same 2s the one described in Section
2.3 above. The two possible architectures are to use the new
DM as the consultant or to use the new DM as the primary.

In the following algorithm we use our theoretical analysis -
which suggests that the better DM should be the primary 0
avoid a completely our trial and error approach.

4.4 The Algorithm
STEP 0: Start with two identical "old" DMs

STEP 1: If the requirements are met, then the team is 0o
good. Thus, the new DM can be worse than what
he is, which implies that the K of the new DM can
and should decrease. From our theoretcal analysis
we know that the new DM should be the consulant
Thus, we decrease the consultant's K and go to
STEP 3.




STEP 2; If the requirements are not met, then the team is 100
weak. Thus, the new DM should be better than
what he is, which implies that the K of the new DM
can and should increase. From our theoretical
analysis we know that the new DM should be the
primary. Thus, we decrease the primary's K and go
10 STEP 4.

STEP 3: If all the requirements are met and one is met
exactly, we stop. If the requirements are met then
we decrease the K of the consultant. If the
requirements are not met we increase the K of the
consuliant. We then repeat STEP 3.

STEP 4: If all the requirements are met and one is met
exactly, we stop. If the requiremenis are met then
we decrease the K of the primary. If the
requirements are nor met we increase the K of the
primary. We then repeat STEP 4.

Our theoretical analysis indicated whether the new DM
should be the primary or the consulwant. Using educared
choises for te vaiues of K in our mizl and error approach our
problem will be solved efficiently.

5. CONCLUSIONS

By a counterexample we have shown that the optimal
team architecture may depend on parameters external 1o the
team (prior probabilides, cost szucture etc). Hence, we can
have ambiguity of whether a particular architecture is oprimal
for all values of the external parameters. It is possible,
however, 1o use the area under the team ROC curve to
remove the ambiguity.

Special distributions lead to architectural comparisons
"that are unambiguous. We demonstrated this in the case of
comparing gaussian variances, in which the better DM
should alwavs be the primarv DM. Computer simulations
(not reported here) indicated that this result holds mue for
comparisons of means of gaussian dismibutions, but the
inherent complexity of the equations prohibited us from
obraining anatytcal resuits.

Even if the individual DM ROC curves are analytical,
the team ROC curve is not. Thus, it is hard 1o generalize our
resuits to teams with more than two DMs. We hope to obtzin
some novel results to help us design more complex
organizadons; but, it is not clear whether such resulis exist.

Finally, we plan to study the effects on the team
performance of different communication protocols as well as
of more compiex (non-binary) hypotheses.
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