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ABSTRACT We employ a binary hypothesis testing model, which
can be generalized to more general hypothesis testing

This paper deals with problems of quantitative problems. These are indeed generic in the situation
organizational design. We show that the optimal architecture assessment C2 function. We would like to develop a
of even a very simple team of two decision makers (DMIs) quantitative design methodology to deal with them.
performing binary hypothesis testing depends on variables
external to the team. On the other hand, there exist particular We examine several important issues of these problems,
probability distributions for the observations which lead to starting with real-time decision making rules for distributed
unambiguous optimal architectures in which the "better" hypothesis testing. The team architecture is the way the DMs
decision maker makes the final team decision based upon of the team are set-up. We want to obtain the performance of
finite-bit messages from the "worse" decision maker. But, a given team architecture (say the probability of error) and
even in these cases the results are difficult to generalize for compare the performance of alternative architectures. We
teams with three or more DMs, because of the complexity of also seek to design an organization to meet some global team
the problem. A heuristic algorithm for organization design is performance specifications and study the effect of adding a
presented. new DM to the team. Finally, we would like to understand

and develop the theoretical aspects and computational
1. LN'TRODUCTIO.N AND M.IOTINATION complexity associated with this class of problems.

Our main research goal is to develop basic Suppose that a team consists of N DMs. Evidently, the
understanding of decision making in distributed team may have many alternative architectures and
organizations. As we shall see such problems can become communication protocols. For example, if N = 3, we can see
very complicated because of the distributed (decentralized) two different architectures in Figure la and lb. The
decision process. In order to gain understanding into the environment consists of several hypotheses. Each DM
basic fundamental issues we need a paradigm which receives a conditionally independent observation and makes a
represents simple decision making, and whose centralized tentative decision, based upon his own measurement and the
version is easy to formulate, solve, and compute. We have decisions of the other processors which have been transmitted
adopted the problem of hypothesis testing as our basic to him, according to some specified communication
paradigmr see references [1] to [4] for related prior research protocols. The final team decision has some costs associated
in this area. with it. We would like to determine somehow which

configuration results into superior performance; moreover,
The classic decision problem in this serttng relates to the given three DMs and a particular configuration, we would

design a team to perfoi-n target detection (no target vs target like to determine which DM should be employed ir. each
present) using several distributed sensors. Suppose that each position. We would also like to test the effects of different
sensor has significant computational capability to process his communication protocols. Another type of problem is
raw returns and can perform local target detection. Because illustrated in Figure lc. Given a team of DMs which does not
of the unreliability and uncertainty of the observations there meet certain specifications. we would like to determine what
is a high probability of erroc associated with each sensor's DM should be introduced to the team and in what position,
decision when he operates in isolation. Thus, it is desirable for the team to meet the posed specifications.
to have many sensors to operate together as a team to
decrease the error probability. In order to achieve this, we In this paper all the hypothesis testing performed is
have to define the architecture of the organization (i.e. which assumed binary. In Section 2, we will discuss the optimum
sensor communicates with- whom) and derive a decision configuration of a team consisting of two DMs. In Section 3,
protocol to fuse the "tentative" sensor decisions into a global we examine the same problem for the special case where the
team decision. observations of the DMs are described by Gaussian
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distributions with different variances under each hypothesis.
In Section 4, we present a problem of organizational design FIGURE 2
and an algorithm to solve it. Finally in Section 5, we present TWO DM ORGANIZATIONS
some concluding remarks and suggestions for future
research.

2. TWO DMI ORGANIZATIONS YA YB YA YB

2.1 General Remarks I 
A {B [[A B

Since organizations with two DMs are key building
blocks for larger organizations, our objective is to study them
extensively and analyze them completely. There are two

alternative architectures for this type of teams: fusion and t
tandem (Figure 2). Since the DMs in the tandem architecture (0,1)
can always employ the decision rules of the DMs in the
fusion architecture (hence even the optimal decision rules for FUSION TANDEM
the fusion architecture), the performance of the tandem
architecture is always at least as good as the performance of
the fusion architecture. Thus, we will restrict ourselves to the
study of the tandem architecture. 2.2 The ROC Curve

FIGURE 1 In the binary hypothesis testing problem each DM can
LONG RANGE OBJECTIVES be characterized by his Receiver Operating Characteristic

(ROC) Curve. This curve plots the probability of detection as
a function of the probability of false alarm.

The probability of detection, PD, is the probability that
the DM decides u = 1 (indicating that Hi is the true
hypothesis) when H1 is indeed true and is defined by

PD= J P.i(A I H1) dA (1)
where

DM3 FDM2 1 1 UT H)
(a)T ~A(y) P H)

P(y I Ho)
is the likelihood ratio and n represents the decision threshold.

The probability of false alarm, PF' is the probability that
the DM decides u = 1 when Ho is the true hypothesis and is
defined by

v PF= jPo(A I H0) dA(2)
DM2I FDM711 u_

Thus, the ROC curve is expressed by two parametric
equations, with the threshold parameter n varying from zero
to infinity; in general, can not be expressed in a closed form.
The ROC curve is concave and it has another useful property;

(b) suppose that by substituting n' in equations (1) and (2), the
point (PF',PD') of the ROC curve is obtained. Then, the

slope of the tangent to the ROC curve at (PF''PD') is n'
(Figure 3). Consequently, if a DM performs detection with
some given n', his optimal operating point is the point of the
ROC curve where the slope of the tangent is n'.

In our research, we use the ROC curve to quantify the
(v~~- i-i? t Irelative expertise of different DMs. Moreover, since the team

DM2 ' y l ~ Iof DMs also performs binary hypothesis testing, team
? ...... D M2 DM1 up performance can also be quantified by the team ROC curve.

:" 'If the ROC curve of DM A is higher than the ROC curve of

(c)
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DM B, then we say that A is a better DM than B, because for 2.3 The Problem
the same level of probability of false alarm, A will have a
higher probability of detection (Figure 4a). But, the DMs can
not always be ranked globally because sometimes their ROC Consider a team consstg of two DMs in tandem

curves intersect (Figure 4b). architecture, which performs binary hypothesis testing
(Figure 5a). The prior probabilities (Pi = P(Hi) for i = 0,1) are

FIGURE 3 assumed known, as well as the costs J(u,H) which are
ROC CURVE incurred by the team when it decides u and H is the true

n=0 hypothesis. It is assumed that it is more costly for the team to
err than to be correct. The team objective is to minimize the

1 ... ' expected cost incurred by the team.

P* .f n* Each DM receives a conditionally independent
D / ' observation. One DM, called the consultant DM, makes a

binary decision (u, = 0 or uC = 1) based on his measurement,
D y/, and transmits it to the othe DM, called the primary DM.

Then, the primary DM has to make the team decision (based
upon his own measurement yp and the message from the
consultant) which has to be either up= 0 or up= 1 indicating

0 P* 1 that the corresponding hypothesis is considered to be true.
PF

n=- p The optimal solution for the decision rules of the two
PF DMs is given by likelihood ratio test with constant thresholds

[3]. For the primary DM:
FIGURE 4 u= -

RANKING DECISION MAKERS If UC=0: A(y) n (3)

1 At= 0 Pc

A/ u=1 
If u = 1: A(v (4)

P I /B A: Br For the consultant DM:

B: WORSE U( = , n ()

where

0 P Po J(1 Ho) - J(O, H)
F P, J(,H) u= i- J(1,H,)

and PD (PFi ) is the probability of detection (probability of

false alarm) for the primary DM when uC = i was received by
.- ,,i< c the consultant (i = 0,1) and PDC (PFC ) is the probability of

% A/ /detection (probability of false alarm) for the consultant DM,
when both DMs are operated according to the optimal

D/ |decision rules of eqs.(3)-(5). For example,

PrA(y, ) > p H. (6)
PD

Figure 5b demonstrates the form of the operating points.
O A BEIER B BETER- 1

PF The ROC curve of the team as a whole can be computed
Fand is given by:

(b)
PFT = (1 PFc) PFt + PFc

PF1 (7)

PD (= -(PDC)PDy + PDC PD1 (8)
- 1~~~~~~~~~--- -- ssrrasasars~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~(>
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FIGURE 5 2.5 A Counterexample to the Conjecture

THE PROBLEM AND ITS SOLUTION In Figure 6, we present the ROC curves of two DMs,
one better than the other according to our prior definition.
Table 1 contains the discrete distributions of their
observations; the elements in the matrix denote probabilities.

H o or H For example, the "worse" DM will observe y = 1 with
probability 0. 1 if Ho is true and with probability 0.5 if Hi is
true. From Table I we can then see that the better DM has as
good or better discrimination of the two hypotheses, and of
course this is reflected in the dominance of his ROC curve in
Figure 6.

M,=-l- PK, A th In order to establish the counterexample we compared
~COTNSUtL JRIMARY L-p 1-0#1 the two architectures using tedious, albeit straight forward
TAurr Icalculations of the probability of error. The results are

illustrated in Table 2, which contains the probability of error
(a) for two different values of n for each architecture -- B

denotes the "better" DM, while W denotes the "worse" one.
For n = 1.0 having the better DM as the consultant is

PRIMARY DM CONSULTING DM FIGUJE 6
.1 ~___~~~~~~~............... THE ROC CURVES

J .7 ............. 1.

/

F F Fp I

(b)

O .i.2 .5 1
Note that the team ROC depends not only upon the 0 .1.2 5
characteristics ("expertise") of the individual DMs, but also PF
on the particular way that they have been constrained to
interact (the team or organization architecture).

TABLE 12.4 Architecture Comparisons TABLE 1
DESCRIPTION OF DMs

Suppose that one of the two DMs is "better" than the
other, i.e. his ROC curve is higher than the ROC curve of
the other DMl. There exist two candidate architectures for the WO
team; either make the "better' DM the primary DM or make
the "better" DM the consultant DM. Recall that the primary H H
DM makes the final team decision. We would like to y Ho H1 1
determine which of the two architectures yields better 0 z
performance than the other for all values of n, that is 1 0.1 0.5 1
whether the optimal architecture is independent of the
external parameters of the problem (details of cost function, 2 0.4 0.4 2 0.1 0.2
prior probabilities) which determine the value of n.

3 0.5 0.1 3 0.3 0.2
The architecture with the better DM as the primary DM

was conjectured [3] to be better. This conjecture is appealing 0 4 0.5 0.1
from an intuitive point of view; given two DMs one would 4
like to have the "better" DM make the final decision,
independent of the prior probabilities and the cost optimal while for n = 0.38 having the better DM as the
assignments. If this were the case, then the optimal way of primary is optimal. This can be also verified by deriving theorganizing two DMs would not change, say, as the prior t

probab lis o team ROC curves for each architecture (Filure 7a). As theprobabilities of the underlying hypotheses vary.
falclose-up of Figure 7b shows, in this special example two ROC curves intersect

false. near PF= 0.3. Thus, in this specal example, the optimal team
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TABLE 2 this case are simple and given in a closed form [1]. A
COMPARISONS OF summary of this case is given in Table 3.
PROB. OF ERROR 3.2 The First Architecture

Suppose that the better DM is made the primary. Then,
,-,S1-J--*. ~~-l'"from the solution of the problem and the property of the ROC

n= 1.00 0.200 (optimal) 0.215 curve
n = 0.38 0.1840 0.1833 (optimal)

new P" pF 0 _ PD

P1- P dP ) N IP;

FIGURE 7 - P P 2 

l- PD .Pr1 (PP) P

0.8 0

TEA DMs ROC curve is being differentiated. Solving the

0.4

0.2

o0.2 - which implies that whenever u = 1 is received from the
O.o0 , __,_,_,________consultant, the primary decides up = 1 independent of his own

0.0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 observation. Substituting into (7) and (8), we obtain that the
team ROC curve in this case is given by:

(a) PF( = PFO + PFC - PFO PF1 (12)

CLOSE UP PDT = PD0+PD' - PD PD (13)
0.88

for some (PF0 ,PDo ) [(PFC,PDC) ] in the ROC curve of the worse
0.83 . [better] DM.

P 0.78 /- WOIRSE DM PTFIKART
/t BErI DM PRHARE

0.73 _ TABLE 3

COMPARING GAUSSIAN VARIANCES

0.63 o
0.1 0.2 0.3 0.4 0.5 WORSE DM: BETTER DM:

Pt' Y1,Y2-N(0,o 2) Y1 ,Y 2-N(0, a)
(b)

architecture depends on the value of n (i.e. the numerical Ho = o 2 o = %2

values of the prior probabilities and costs). On the other H a 2 = N
hand, for this example, both architectures have very similar. a2 H1 a2 = N a1

2

performance, since their ROC curves are quite close (Figure G O
7a). 2 

P = P, PD P,3. COMPARING GAUSSIAN VARL4NCES D F D F

3.1 General Remarks

Consider special case of the problem presented in with: ' o2 < a;2 N> 
Section 2.3 above, where each DM receives two independent
observations distributed with the Gaussian distribution with
different variance under each hypothesis. The ROC curves in
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3.3 The Second Architecture 4.2 Adding a New DM

Suppose that now the better DM is made the primary. By introducing the "perfect" DM to the team, that is a
Then, we can arbitrarily assign to the DMs the following DM who always knows which is the true hypothesis (i.e. hisDM who always knos w`'hich is the true hypothesis (i.e. his
operating points: ROC curve goes through (PFPD) = (0,1) ), the team

(PFO,PDO): to the Consultant (Worse) DM probability of error will be reduced to zero. Hence,
specifications no matter how strict can always be met.

(PFcPDC)' to the Primary (Better) DMN when uc = O is received
(1,1) : to the Primary (Better) DM when ur = 1 is received We would like to introduce a trade off between the team

performance and the quality of the DM to be introduced. To
Substituting into eqs. (7) and (8), we obtain eqs. (12) and measure quality we need to rank the DMs even in cases of
(13) again. Since for this arbitrary assignment of operating ambiguity (Figure 4b). The measure we will employ is the
points, the architecture with the better DM as the primary can area under the ROC curve. This measure is scalar and
achieve performance equal to the optimal performance of the preserves the ranking of unambiguous situations (Figure 4a);
other architecture, the better DNI should alyvays be the the "perfect" DM has a measure of 1 and the 'worst" DM

rinmaln DM. (the DM who is equally likely to choose between either
hypothesis independent of his observation) has a measure of

3.3 Obtaining the Team ROC Curve 0.5.

Suppose that the better DM is the consultant. Then, The design problem will now be to find the "cheapest"
from the system of eqs. (9)-(11), we can solve for PFC to DM which will enable the team to meet the requirements; by
obtain: cheapest meaning the DM with the smallest area under the

ob_ t__ ain:2 ROC curve.

P, i ,([1)-J)], 0- - : n 4.3 A Sample Problem

[2 i-] 2 
° : -pn] :-

o Suppose we are given a DM ("old") with ROC curve:

This is an equation of just PFc. We could have substituted for P PrF
PDC from the equation of the ROC curve of the consultant

and a set of requirements for team performance (i.e.
(better) DM, but did not do it because of space limitations. If minimum levels of probabiiity of detection for specified
the equation is solved PFC is obtained. Moreover: levels of probability of false alarm). We want to find the

[1: "cheapest" DM ("new") with orniomorphic ROC curve to the
C -[tO:i l- n]ico- o old DM, that is:

Go l- P, ooF

By substituting into the equation of the ROC curve of the
primary (worse) DM, PDo is obtained. Finally by substituting which will make the team satisfy the requirements. In this
for all the probabilities into equations (7) and (8), the team case, the smaller the value of the constant K the cheaper the
ROC curve is obtained as a function of n, the variances of DM.
the DMs and N.

The problem is the same as the one described in Section
It should be clear that the team ROC curve will not be of 2.3 above. The two possible architectures are to use the new

the same form as the ROC curves of the individual DMs. In DM as the consultant or to use the new DM as the primary.
fact, it is not even given by a closed form expression. Thus,
we cannot easily extend the result to the case of three DMs in In the following algorithm we use our theoretical analysis
a tandem t-chitect.ue. which suggests that the better DM should be the primarv to

avoid a completely our trial and error approach.
4. DESIGNING ORGANIZATIONS

4.4 The Algorithm
4.1 General Remarks

STEP 0: Start with two identical "old" DMs
Suppose that we are given a team of DMis and a set of

requirements on the team performance, which are not met. STEP 1: If the requirements are met, then the team is too
We could perform several changes in the team, such as good. Thus, the new DM can be worse than what
adding or deleting a DM or changing the team he is, which implies that the K of the new DM can
interconnections, or redesigning the communication and should decrease. From our theoretical analysis
protocols, to make the team meet posed performance we know that the new DM should be the consultant
requirements. Presently, we are employing a trial and error Thus, we decrease the consultant's K and go to
approach because of the mathematical complexity of the STEP 3.
problems; we hope for analytical insight from our future
research.
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-[2] Tenney ,R.R., and Sandell, N.R., "Detection with
STEP 2; If the requirements are not met, then the team is tooDetection with

weak. Thus, the new DM should be better thanD i of Aersace nd Ele
what he is, which implies that the K of the new DM AES-17, July 1981, pp. 501-509
can and should increase. From our theoretical [3] Ekchian, L.K., "Optimal Design of Distributed
analysis we know that the new DM should be the Detection Networks"
primary. Thus, we decrease the primary's K and go Ph.D. Dissertation, Dept. of Elec .Eng. and
to STEP 4. Computer Science

Mass. Inst. of Technology, Cambridge, Mass., 1982
STEP3: If all the requirements are met and one is met [4] Ekchian, L.K., and Tennev R.R., "Detection

exactly, we stop. If the requirements are met then Networks"
we decrease the K of the consultant. If the Proceedings of the 2ls IEEE Conference on
requirements are not met we increase the K of the Decision and Control, 1982, pp. 686-691
consultant. We then repeat STE3P 3. [5] Kushner, H.J., and Pacut, A., "A Simulation Study of

a Decentralized Detection Problem"
STEP4: If all the requirements are met and one is met

exactly, we stop. If the requirements are met then rEEE Trans. on Automatic Control, 27, Oct. 1982,
we decrease the K of the primary. If the 1161
re uire~ents are not met we increase the K of the [6t: Chair, Z., and Varshney, P.K., "Optimal Data Fusion

in Multinle Sensor Detecion Systems"
primar3'. We then repeat STEP 4. Trfni.n Aen acs trnr !1 niC cStPms, 21

January 1986, pp. 98-101Our theoretical analyvsis indicated whether the new DM anuary 986, pp. 98-0
[7] Tsitsiklis, .. N.. "Problems in Decenualized Decisionshould be the primarv or the consultant. Using educated "Problems in Decentraized Decision

choises for the values of K in our tial and error approach our Maing and Comutation"problem will be solved efficiently. Ph.D. Dissertation, Dept. of lec. Eng. and
problem will be solved efficiently. C,Computer Science

5. CONCLUSIONS Mass. Inst. of Technology, Cambridge, Mass., 1984
[8] Tsitsiklis J.NT., and Athans, M., "On the Complexity of

Decenwalized Decision Mlaking and DetectionBy a counterexample we have shown that the optimal nl
team architecture may depend on parameters external to theic Control, 30, May 1985,
team (prior probabilities, cost structure etc). Hence, we can E Trans. on Automatic Control, 30, May 19
have ambiguity of whether a particular architecture is optimal pp. 440-446
for all values of the external parameters. It is possible, Numb Tsisi s "Decentraized Detecton by a Lar
however, to use the area under the team ROC curve to
remove the ambiguity. Mathematics of Control. Signals and Systems,

Vol.l, #2, 1988
Special distributions lead to architectural comparisons [10]Pearl J., "Fusion Propagation, and Structuring in

that are unambiguous. We demonstrated this in the case of Bayesian Networks"
comparing gaussian variances, in which the better DM Technical Report, Computer Science Dept.
should always be the frimarv DM. Computer simulations Univ. of Calif. at Los Angeles, Ca. 90024
(not reported here) indicated that this result holds true for [11]PaDastavrou J.D., "Distributed Detection with
comparisons of means of gaussian distributions, but the Selective Communications"
inherent complexity of the equations prohibited us from M.S. Dissertation, Dept. of Elec. Eng. and
obtaining analytical results. Computer Science

Mass. Inst. of Technolog-y, Cambridge, Mass., 1986
Even if the individual DM ROC curves are analytical, [12]Thomopoulos S.C.A., Viswanathan R., and

the team ROC curve is not. Thus, it is hard to generalize our Bougoulias D.C., "Optimal Decision Fusion in
results to teams with more than two DMs. We hope to obtain Multiple Sensor Systems"
some novel results to help us design more complex TEE TTnICson Aeronpace 2nd E=cro"nic Svste..s, 23
organizations; but, it is not clear whether such results exist. September 1987, pp. 644-653

[13]Reibman A.R., anb Nolte L.W., "Optimal
Finally, we plan to study the effects on the team Detection and Performance of Distributed Sensor

performance of different communication protocols as well as Svstems"
of more complex (non-binary) hypotheses. 1EE- Trans.on Aerospace and Elecrronic Systems, 23

January 1987, pp. 24-30
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