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Abstract

In this note we propose a polynomial-time algorithm for convex quadratic programming. This

algorithm augments the objective by a logarithmic penalty function and then solves a sequence of

quadratic approximations of this program. This algorithm has a complexity of O(ml/2-L) iterations

and O(m 3-5.L) arithmetic operations, where m is the number of variables and L is the size of the

problem encoding in binary. The novel feature of this algorithm is that it admits a very simple proof

of its complexity, which makes it valuable both as a teaching and as a research tool. The proof uses

a new Lyapunov function to measure the duality gap, which has itself interesting properties that can

be used in a line search procedure to accelerate convergence. If the cost is separable, the line search

is particularly simple to implement and, if the cost is linear, the line search stepsize is obtainable in a

closed form. This algorithm maintains both primal and dual feasibility at all iterations.
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1. Introduction

Consider quadratic programming problems of the form

Minimize (x,Qx)/2 + (c,x) (P)

subject to Ax = b, x 2 0,

where Q is an mxm symmetric, positive semi-definite matrix, c is an m-vector, A is an nxm matrix,

b is an n-vector, and (.,.) denotes the usual Euclidean inner product. In our notation, all vectors are

column vectors and superscript T denotes the transpose. We will denote by 9im (9in) the

m-dimensional (n-dimensional) Euclidean space.

For any vector x in 91m, we will denote by xj the jth component of x. For any positive vector x

in 9Im, we will denote by Dx the mxm positive diagonal matrix whose jth diagonal entry is the jth

component of x. Let S denote the relative interior of the feasible set for (P), i.e.

S={ xe9m IAx=b, x>O }.

We will also denote by e the vector in 9{m all of whose components are l's. "Log" will denote the

natural log and 11-111, 11-112 will denote, respectively the Ll-norm and the L2-norm. We make the

following standing assumption about (P):

Assumption A:

(a) Both S and { us 9in I ATu < c } are nonempty.

(b) A has full row rank.

Assumption A (b) is made only to simplify the analysis and can be removed without affecting either

the algorithm or the convergence results. Note that Assumption A (a) implies (cf. [3], Corollary

29.1.5) that the set of optimal solutions for (P) is nonempty and bounded. For any e > 0, consider

the following approximation of (P):

Minimize f,(x) (Pt)

subject to Ax = b,
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where we define fe:(0,oo)m--9- to be the penalized function:

fE(x) = (x,Qx)/2 + (c,x) - ej log(xj). (1.1)

Note that

1/xl 1/(xl)2 ... 0

Vfe(x) = Qx + c- : V2f(x) = Q + (1.2)

l/ (Xm)2

The first polynomial-time algorithm for (P) was given by Kozlov, Tarasov and Khachiyan [16]

and was based on the ellipsoid method [17], [18]. In this note we propose another polynomial-time

algorithm for (P) that is motivated by Karmarkar's method [1] and its interpretation as a projected

Newton method based on the logarithmic barrier function [19]. Our approach, which is similar to

that taken in [10]-[13], is to solve (approximately) a sequence of problems {(Per)}, where (r}) is a

geometrically decreasing sequence of positive scalars. The approximate solution of (Per), denoted by

xr, is obtained by solving the quadratic approximation of (Per-1) around xr- l. The novel feature of

our algorithm is the simplicity of its analysis, and yet it has an excellent complexity. Our algorithm

scales using only primal solutions and, in this respect, it is closely related to the algorithms of [11],

[13]. However, it differs from the latter in its choice of starting points and the choice of parameters.

This difference, as we shall see, gives rise to a much different (but much simpler and sharper)

analysis and reveals more of the algorithmic structure. In particular, convergence is based on the use

of a certain Lyapunov function that measures the amount by which the complementary slackness

condition is violated. This function has itself interesting properties that can be used in a line search

procedure to accelerate convergence. For linear programming problems (Q = 0), this line search

procedure is particularly simple. Such line search feature is not previously known for this class of

methods.

This note proceeds as follows: in §2 we show that, given an approximately-optimal primal dual

pair of (Pe), an approximately-optimal primal dual pair of (Pae), for some ae (0,1), can be obtained

by solving a quadratic approximation of (Pe). In §3 and §4 we present our algorithm and analyze its

convergence. In §5 we discuss the initialization of our algorithm. In §6 we discuss extensions.
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2. Technical Preliminaries

Fix any e > 0 and consider the problem (Pi)

Minimize (x,Qx)/2 + (c,x) -e j log(xj)

subject to Ax = b.

Let x be any element of S and let u be any element of 9gn . We replace the objective function by its

quadratic approximation around x. This gives (cf. (1.2))

Minimize (Qx+c-Z(X)-le,z) + (z,(Q+e(X)-2)z)/2

subject to Az = 0,

where we let x = x+z and X = DI. The Karush-Kuhn-Tucker point for this problem, say (z,u),

satisfies

Qx + c - e(X)-le + (Q+7e(X)- 2)z - ATu = 0, (2.1a)

Az = 0. (2. 1b)

Let d = ()-lz. Then Eqs. (2.1a)-(2.1b) can be rewritten as

(el + XQX)d - (AX)T(u-u) = r,

AXd = 0,

where we let r = ee -X(Qi + c - AT u). Solving for d gives

rl/2d = [I- F-l1/XAT[AX-1XAT] -lAXr-l/t 2 r-lTr, (2.2)

where we let r = eI + XQX. Since the orthogonal projection is a nonexpansive mapping (with

respect to the L2 -norm), we have from (2.2) that

Irtl/2dll2 < Ifr4-1/F112. (2.3)
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Let

x = x+z, (2.4)

and denote X = D x, A = Dd. Then X = X + AX and hence

ee-X(Qx + c-ATu) = ee-XQx -XQz-Xc +XATu

- AXQx - AXQz + A[-Xc + XATu]

= ed - AXQx- - AXQz + A[-Xc + XATu]

= A[ee -XQ-x -XQz -Xc +XATu]

= eAd,

where the second and the fourth equality follow from (2. la). This implies that

Ille - X(Qx + c - ATu)112 = ellIAdI 2

< ellAdll

= (lldll 2 )2

< (f1r1/ 2dl2)2

c (IfPr-l1/112)2, (2.5)

where the first inequality follows from properties of the Ll-norm and the L2-norm, the second

inequality follows from the fact that the eigenvalues of -l1 do not exceed l/e, and the third inequality

follows from (2.3).

Consider any [3E (0,1) and any scalar a satisfying

(f32+ml/2 )/([+ml/2) < (a < 1. (2.6)

Let £ = ae, r = Ee - X(Qx + c - ATu), and F = eI + XQX. Then
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= Ila-e - X(Qx + c - ATu)11l2/(a)

< Ille - X(Qx + c - ATu)112/(ac) + (1-a)-ml/ 2 /a

< (11Fr-lF112 )2/(Oe) + (1/a-l).ml/2 ,

where the first inequality follows from the fact that the eigenvalues of F-1 do not exceed l/e, the

second inequality follows from the triangle inequality, and the third inequality follows from (2.5).

Hence, by (2.6),

-l/I112Ie 1/2 < 13 = 11F-1/2rl12/£1/ 2 < f3. (2.7)

From (2.3) we also have IId112 < f < 1. Hence e+d > 0 and (cf. (2.4)) x > O0. Also, by (2.lb) and

(2.4), Ax = AGx+z) = b. Furthermore, from (2.1a) we have that Qx + c - ATu = e.X-l(e - d).

Since (cf. Ildll2 < 3 < 1) e - d > 0, this implies that

o < Qx + c - ATu = e.X-1(I+A)(e - d) < e.X-le, (2.8)

where the equality follows from the fact x-l = X-1(I+A) and the second inequality follows from the

observation that (I+A)(e - d) = e - Ad. Hence u is dual feasible. [If the dual cost of u, i.e. (b,u) +

min (y,Qy)/2 + (c-ATu,y) I ye 91m, y 2 0 }, is not finite, then there exists we 91m such that w > 0,

Qw = 0, and (c-ATu,w) < O0. Multiplying by w gives 0 < (Qx+c-ATu,w) = (c-ATu,w) < 0, a

contradiction.]

For any e > 0, let p,:(0,oo)mx39n--[0,oo) denote the function

p,(y,p) = II(EI+DyQDy)-1/2(e - Dy(Qy+c-ATp))112/e 1/2 , V ye (0,oo)m, V pe 9 n.

We have then just proved the following important lemma (cf. (2.7)-(2.8)):

Lemma 1 For any 3e (0,1), any e > 0 and any (x,u)e Sx<91n such that p<-~,u) < 3, we have
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(X,U)E Sx9jn , paw (x,u) < [,

0 < Qx+c-ATu < .(Dx)-le,

where oc = ([32 +ml/2)/([3+ml/2) and (x,u) is defined as in (2. la), (2. ib), (2.4).

[The function p,(y,p) measures the amount by which the complementary slackness condition Dy(Qy

+ c - ATp) = 0 is violated. It also has some nice properties which we will discuss in §6.]

3. The Homotopy Algorithm

Choose any [3e (0,1) and let a = ([ 2+ ml/2)/(5+ml/2). Lemma 1 and (2.1a)-(2. b), (2.4)

motivate the following algorithm for solving (P), parameterized by two positive scalars y < Ti:

Homotopy Algorithm

Step 0: Choose any (xl,u'l) Sx9<n such that p~(xl,ul) < [. Let e1 = A.

Step r: Compute (zr+l,ur+l) to be a solution of

Q+er(Dxr)-2 -AT z r(DO-le-Qxr-c

A 0 u 0

Set xr+l = xr + zr+l, £r+1 = ocr.

If er+l < Y, terminate.

We gave the above algorithm the name "homotopy" (or "path-following") because it solves

(approximately) a sequence of problems { (Per) } that approaches (P) (see [2]). Note that ur is dual

feasible for all r (cf. Lemma 1).



4. Convergence Analysis

By Lemma 1, the homotopy algorithm generates, in at most (log(y)-log(rl))/log(a) steps, an

(x,u)e Sx91n satisfying

o < Qx +c-ATu < y(Dx)-le, (4.1)

Ax = b.

Eq. (4.1) implies that

0 < (Qj,x) + cj - (Aj,u) if Xj < 1/2

0 < (Qj,x) + cj - (Aj,u) < y1/2 otherwise,

where Qj denotes the jth column of Q, cj denotes the jth component of c, and Aj denotes the jth

column of A. Also, since log is a concave function and its slope at 1 is 1, we have that log(1-8) <

-5, for any 6 (0,1). Therefore

log(c) = log(l-p(1-p)/(P+ml/ 2 ))

< -(1-P)/(p+ml/2).

Hence we have just proved following:

Lemma 2 For any ji (0,1) and any positive scalars y¥ < l, the homotopy algorithm generates, in at

most (log(1l)-log(y)).-(+m 1 /2)/P(1-P) steps, a pair of optimal primal and dual solutions to a

perturbed problem of (P), where the linear cost coefficients are perturbed by at most y1/2 and the

lower bounds are perturbed by at most y1/2.

Hence if we choose f = 1/2, rl = 2kL and y = 2-' L, where L denotes the size of the problem

encoding in binary (defined as in [10]-[14]), for some constant X sufficiently large, the homotopy

algorithm would terminate in O(ml/2 -L) steps with an optimal primal dual solution pair to a
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perturbed problem of (P) and the size of the perturbation is 2-(L). An optimal primal dual solution

pair for (P) can be recovered by using, say, the techniques described in [10] (also see [1]). Since the

amount of computation per step is at most O(m 3) arithmetic operations (not counting Step 0), the

homotopy algorithm has a complexity of O(m 3.5-L) arithmetic operations. [We assume for the

moment that Step 0 can be done very "fast". See §5 for justification.] It may be possible to reduce

the complexity to O(m3L) by using the rank-one update technique described in [1], [5], [11].

5. Algorithm Initialization

In this section we show that, for rl sufficiently large, Step 0 of the homotopy algorithm (i.e. to

generate a primal dual pair (x,u)E Sx91n satisfying p,(x,u) < 3) can be done very "fast".

Suppose that (P) is in the canonical form considered by Karmarkar (see §5 of [1] for details on

how to transform general convex quadratic programs into this canonical form). We claim that, for iT

= IlQe+cll2/f, a point (x,u)e Sx9t n satisfying pn(x,u) < P can be found immediately. To see this,

note that in Karmarkar's canonical form, A and b have the form

ei ' mb 

where A' is some (n-l)xm matrix, and the point e is assumed to satisfy Ae = b. Let x = e and p =

(0,...,0,-1)T. Then

e + (ADx)Tp = e + ATp

= e-e = 0. (5.1)

Hence, by the triangle inequality, we have that

P,(e,Tlp) = Il(llI + Q)-1/2 (-Qe - c + Tie + TIATp)112/ll/ 2

< IIQe + cll2/Ti + lie + ATpll2
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Alternatively, we can solve the problem (Pa), whose Karush-Kuhn-Tucker point (x,p) can be seen

to satisfy p,(x,p) = 0 (such a point exists since the optimal solution set for (P) is bounded). If the

feasible set for (P) is bounded, we can instead solve the following problem

Maximize j log(xj) (5.2)

subject to Ax = b,

whose Karush-Kuhn-Tucker point (x,p) can be seen to satisfy (5.1). Then, for 11 = 3IIDxQx +

Dxc112, we also have p,(x,rlp) < P3. Polynomial-time algorithms for solving (5.2) are described in

[7] and [8]. [Note that neither (P,) nor (5.2) need to be solved exactly.]

6. Conclusion and Extensions

In this note we have proposed an algorithm for convex quadratic programming and have provided

a short proof of its complexity. This algorithm solves a sequence of approximations to the original

problem, each augmented by a logarithmic penalty function. This algorithm maintains primal and

dual feasibility and has a complexity (in terms of the number of steps) that is comparable to existing

interior point methods for convex quadratic programming (see [10]-[14]).

There are many directions in which our results can be extended. For example, we can accelerate

the rate of convergence of the homotopy algorithm by setting Er to be the smallest positive e for

which pj(xr,ur) < [. This minimization is difficult in general, but if Q is diagonal, it can be verified

that the quantity £p(xr,ur)2 = j (-vj) 2/(e+qj) is convex in e (the second derivative is

nonnegative), where vj denotes the jth component of Dxr(Qxr + c - ATur) and qj denotes the jth

diagonal entry of DxrQDxr. Hence in this case the above minimization reduces to finding a solution £

of the equation
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j (e-vj)2/(e+qj) = 2. (6.1)

Because the lefthand side is convex in e, such a solution can be found using simple line search

techniques (see [15]). For linear programming (i.e. Q = 0) (6.1) further reduces to the scalar

quadratic equation

j (E-vj)2 = e 2 32, (6.2)

whose solution is unique and is obtainable in a closed form. In fact, even for general Q, the solution

of (6.2) is at least as good as ctr-l . [This follows from the observation that pe(xr,ur) < IIee - vll2/£

for all e > 0, where v denotes the m-vector whose jth component is vj, and that (cf. proof of

Lemma 1) Ila£r-le - vll2 /(aEr-l ) c j.]

We can also choose f to minimize a (this gives a = 2(m+m1/2 )112-2m1/ 2). Also, Freund [91

noted that, at the rth step, one can take a quadratic approximation for (Par) instead of for (Per). The

resulting analysis is slightly different, but achieves the same complexity. Other possible extensions

include complexity reduction and the extension to problems with upper bound constraints or with

general convex costs.
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