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ABSTRACT

The viscosity of the globular protein, -lactoglobulin

(Sigma Chemical Co.) as a function of shear rate was studied

using a cone and plate viscometer (Ferranti-Shirley Viscometer

System). An aqueous buffer solution (pH 7, ionic strength

0.04) containing up to 40% protein was subjected to a rate of

shear between 800 and 17,000 sec . At a protein concentra-

tion :10% or higher, the viscosity of the protein solution

decreased asymptotically with the increasing rate of shear.

Under a constant rate of shear, the viscosity of 10 to

30% --lactoglobulin solutions increased with shearing time.

However, this rheopectic property was not consistently observed

but rather was dependent on the rate of shear at concentrations

lower than 20%. A hysteresis effect was also observed to be

rheopectic for 10 to 30% protein solution while that of a 40%

solution was found to be thixotropic. The rheopectic nature



appeared to be the result of the permanent denaturation of pro-

tein characterized by UV absorption and gel filtration. At a

protein concentration of 5% and lower, the viscosity was

independent. of the rate of shear or the time of shearing.
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OBJECTIVES

The objective of this study is to determine flow behavior

and effect of shear on the globular protein in solution. The

shear stress-shear rate relationship for a range of shear

rate, viscosity-shearing time relationship at constant shear

rate and the effect of shear on the molecular denaturation

of a globular protein in solution are investigated.

Protein is subjected to shearing force in many food pro-

cessing operations such as extrusion, spinning, whipping,

mixing, churning, centrifugation and flowing through the pipe

lines. These shearing processes may change the protein

molecules (Taylor, 1934; Edsall et al., 1965; Polson, 1939).

Such change may affect both operating processes and final pro-

ducts. In food fabrication processes, such as extrusion and

spinning, it is necessary to modify the conformation of

protein to obtain the maximum effect of the processes. At

present this is accomplished by enzymatic or chemical pre-

treatment or by concurrent heat treatment with shear. However,

enzymatic, chemical and thermal modification of protein often

accompanies off flavor and loss of nutrituional value. In

addition, these modification processes are difficult to control.

Therefore, possibility of the mechanical shearing as the alter-

native for the present method of modification of protein is

investigated since the shearing force may also cause changes

in the protein molecule.

When molecules of coiled protein are deformed or uncoiled,
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the viscosity of the protein in solution subjected to shear-

ing force should increase (Ram, 1967; Tanford et al., 1967;

Van Holde, 1971). The viscosity iS related to the molecular

properties. For instance as the molecular axis or charge

increases, the intrinsic viscosity as expressed by the ratio

of viscosity to concentration extrapolated to zero concentra-

tion, increases (Tanford and Buzzell, 1956).

This study is aimed at elucidating what changes might be

caused in protein during these processes by measuring viscosity

under shearing force. A model protein, -lactoglobulin,

crysta.lized and lyophilized (Sigma Chemical Co.) globular

protein, was made into solution with phosphate buffer of pH 7.0

and of a ionic strength of 0.04. The solutions of the differ-

ent concentrations of protein (3%, 5%, 10%, 20%, 30% and 40%

weight.) were subjected to shear rate between 800 to 17,000

sec-1, and shear stress was determined. The protein solutions

were then examined for conformational change by U.V. absorp-

tion and gel filtration.
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1. LITERATURE REVIEW

Rheological properties of substances can be related to

molecular properties and behaviors. Knowledge of heological

properties has wide application in various fields especially in

polymer synthesis and processing. The relationship between

molecular structure and viscosity and the effects of structural

changes, temperature and pressure on viscosity are important

in material synthesis and processing. The viscosity of

various systems has been investigated and attempts were made

to relate viscosity to a mathematical expression (Kruyt, 1952;

Mill, 1959; and Sherman, 1963).

When shear stress (T) acts on a homogeneous system

paralLel to the X-Y plane, as shown in Fig. 1.1, a shear strain

is produced.

Newton noted that the velocity of deformation is related

simply to shear stress as follows:

T = D

when T = shear stress

n = viscosity coefficient

D = velocity of deformation

A liquid system obeying this law is called Newtonian. The

unit of viscosity is poise (named after Poiseuille). Viscosity

of water at 200 C is 0.01005 poise. The effect of temperature

on viscosity for an ideal liquid can be expressed by:

= AeB/T (Ia)

or log n = A + B (Ib)
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when r = viscosity coefficient

A,B = constant

T = absolute temperature

These two equations indicate that viscosity decreases with

increase in temperature and that a linear relation exists

between log n and .

For laminar flow of liquid in a tube or capillary,

viscosity can be calculated by means of the following equa-

tion i(Poiseuille, 1947).

hgpir4 t
'= 21 v

when n = viscosity coefficient

h = height of liquid in tank

p = density of liquid

1 = capillary length

v = volume of a liquid

r = radius of capillary

t = time

g = acceleration due to gravity.

Therefore, the viscosity of dispersion is higher than that

of the pure liquid, since particles dispersed in the system

will disturb the flow of the liquid. The degree of this dis-

turbance was calculated using the change in energy dissipation

of the flowing liquid caused by the presence of a rigid

spherical particle (Einstein, 1906 and 1911), and the result

was expressed as:
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ns n o (1 + ) (III)

when ns = viscosity coefficient of the

dispersed system

no = viscosity coefficient of the

surrounding liquid

= volume fraction occupied by the

dispersed particle

v = constant for small spherical

rigid particle which carries

no electrical charge - 2.5.

Einstein's equation has been extended for dispersed

particles which carry an electrical charge (Smoluchowski,

1921)

kn r 2

X · i r2 2 (IV)

X = specific conductivity

= dielectric constant of t

r = radius of the particles

= difference of potential

double layer

ns = viscosity coefficient of

persed system

no = viscosity coefficient of

surrounding liquid

v = shape factor constant

he system

in the

the dis-

the

When the dispersed particles are liquid, rather than

nS.- no
no

when
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solid as in Einstein's equation, the viscosity of the system

(n*) depends on the viscosity of the dispersed liquid (n'),

as well as on that of the continuous liquid (n ) (Taylor,

1932).

I1 ~ (2.5q' + ) 1* 0 Ll+ + 0) 4V)

when i = volume fraction

The shear deformation of a cycloHexanolphthalate (CHP)

drop in corn syrup is shown in Fig. 1.3 (Bartok, 1958), and

obeys Taylor's Equation (1934)

L-B _ Dano0 (19p-16)
L+B 2a (19p+16) (VI)

when L = length

B = breadth of the ellipsoid

a = interfacial tension

D = shear rate

p = viscosity ratio = n'/no
Pn = viscosity of continuous phase

1' = viscosity of dispersed phase.

An empirical relation between the relative viscosity and

the effective dispersed volume was proposed by Mooney (1946)

as

rel =+.5 exp 1.25 _ (VII)
rel 1- 1-..

where nrel = relative viscosity

= volume fraction
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This relationship of log nrel and is given in Fig. 1.4.

For a dilute suspension of uniform small Hookean elastic

solid spheres in Newtonian viscous liquid, the relationship

of the elastico-viscous properties of shear stress (T),

shear rate (D) and viscosity of the system (nO) is expressed

by (Frohlich and Sack, 1946)

T+X + + = (D+X2D+v2D+ )

(VIII)

when X1, v = relaxation time

X2 ' V2 = retardation time

The theory of viscosity for liquids was developed by

evaluation of the pressure tensor which gave an approximate

solution for viscosity (Born and Green, 1947). Theories of

the flow of liquids attempt to relate viscosity to the inter-

molecular potential. Starting from a very similar concept

and by using calculations of the viscosity of liquid argon,

an exact solution for the viscosity of simple fluids was de-

rived (Kirkwood et. al., 1949).

In protein chemistry, as in other fields, the relation-

ship between chemical structure and rheological properties

has been investigated (Tanford, 1956, 1961 and 1967; Mancuso,

1973; Hamed, 1975 and Robinson, 1975). Viscosity and/or

intrinsic viscosity of protein solutions have often been

studied, and the size and shape of proteins in solution are

rarely characterized without including a set of viscosity data
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(Bull, 1940; Buzzell, 1956; Yang, 1958; Dokic, 1975 and Puri,

1975). The study of viscosity would aid in understanding the

structure and chemistry of'proteins since viscometeric theory

was developed from both thermodynamic and hydrodynamic con-

ceptions of the problem, (Debye, 1948; Kirkwood & Riseman,

1948; Rao, 1976). Lately, the interpretations of viscosity

and intrinsic viscosity of protein solutions have undergone

a careful reevaluation (Palik, 1955; Tanford, 1967; Van Holde,

1971). Consideration of intrinsic viscosity, the limit of the

ratio of specific viscosity to concentration as concentration

approaches zero, eliminates the effects of interactions, since

it depends only on properties such as shape and specific vol-

ume of the isolated macromolecules (Van Holde, 1971). In

addition, the development of theories of non-Newtonian

viscosity has contributed more information concerning the shape

of polymers and resulted in a simplification of the velocity

gradient dependency of viscosity.

Shape factors of ellipsoidal molecules and different

proteins were calculated (Polson, 1939; Simha, 1940) (Table 1.1,

Table 1.2) by employing Jeffery's formula. The theoretical

treatment of this problem is an extension of Einstein (1906),

and was done using the rotary motion of ellipsoidal particles

subjected to a velocity gradient (Jeffery, 1922-23).

In this theory, the dissymmetry of protein molecules is

considered as an ellipsoid of revolution, characterized by
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Table 1.1

Relationship between shape factor (v) and the
axial ratio of the ellipsoid

2)

elongated flattened

2.60

2.63

2.91

3.68

4.66

5.81

7.10

10.10

13.63

17.76

21.80

2.50

2.62

2.85

3.43

4.06

4.71

5.36

6.70

8.04

9.39

11.42

Axial Z/
Ratio elongated

20.0

25.0

30.0

40.0

50.0

60.0

80.0

100.0

150.0

200.0

300.0

38.6

55.2

74.5

120.8

176.5

242.0

400.0

593.0

1,222.0

2,051.0

4,278.0

flattened

14.80

18.19

21.60

28.30

35.00

41.70

55.10

68.60

102.30

136.20

204.10

(Mehl, J.W., Oncley, J.L., and Simha, R.,j1940)

Axial
Ratio

1. 1

1. 1

2.0

3. 0

4. 0

5. 3

6. 3

8 .

10.13

12.13

15.13
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by the relative lengths of the semi-axis of revolution (a) and

the quatorial semi-axis (b). The values of a/b so obtained

are subject to some uncertainty, since the degree of hydra-

tion of the protein is unknown and the adequacy of the sim-

plified ellipsoidal model to represent a protein is not estab-

lished. The measurements involve the rotation and partial or-

ientation of protein molecules in an external field of force.

In viscous flow, rotation is produced by shearing forces a-

rising from velocity gradients in the streaming liquid. The

orientation achieved is only partial, since it is opposed by

the disorienting action of Brownian movement of the molecule.

The intensity of the orienting forces relative to that of the

rotary Brownian movement may be characterized in terms of a

rotary diffusion constant (measuring the mobility of the par-

ticle in its rotation about an axis perpendicular to the prin-

ciple axis). The rotary diffusion constant is inversely pro-

porticonal to the relaxation time (time required for the mol-

ecules to revert to a random distribution) when an orienting

force has been applied to the system and is then suddenly re-

moved,. Rotary diffusion constants and relaxation time are

a function of molecular size and shape, and of the temperature

and viscosity of the solvent medium. From Jeffery (1922-23),

an elongated ellipsoid (Fig. 1.5A) usually has the "a" axis

parallel or nearly parallel to the stream lines. Conversely,

a disc-shaped ellipsoid (Fig. 1.5B) usually has the "b" axis

parallel to the stream lines.
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The relationship of apparent viscosity to a non-Newtonian

suspension to the shape of particles or viscosity increment

has also been investigated, (Edsall, 1965). At very low vel-

ocity gradients, the rod shaped molecules are oriented at

randora and their resistance to the viscous flow of the liquid

is high. Therefore, under these conditions, the viscosity

increment () is high. But at higher gradients the molecules

deviate appreciably from the state of purely random distri-

bution, and at very high velocity gradients they are predom-

inantly oriented parallel to the stream lines. In this position their

influence to increase the viscosity of the solution is at

a minimum, and the viscosity increment tends toward a lower

limiting value for the infinite velocity gradient (v ). The

more the ellipsoidal molecule deviates from the spherical

shape, the greater the difference betweenv, andv . The smal-

ler the rotary diffusion constant of the molecule, the lower

will be the velocity gradient at which the viscosity increment

becomes effectively equal to . IfV is plotted against the

volume fraction and then extrapolated, the value of is ob-

tained for zero concentration of myosin, (Edsall, 1940). The

higher values of obtained at finite concentration are due4

not only to the interaction of the flowing solvent with the

individual myosin molecules, but also the interaction of the

myosin molecules with one another, which involves ne myosin

molecule interfering with the rotation of the others.

Such concentration effects must be sharply distinguished

from the effects which remain operative even at infinite di-
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lution of the solute. The latter are a function of the shape

and hydration of the solute molecule. The effects of concen-

tration are likely to be particularly apparent in solutions of

very long molecules, which may interfere or become entangled

during flow. Such interference increases the measured viscos-

ity, and also magnifies the change in viscosity with the vel-

ocity gradient. Neither of these concentration effects has

yet been interpreted quantitatively in theoretical terms.

It is therefore important to make the measurement at low

protein concentration, if viscosity measurements are to be

used t:o determine shape factors. Since the viscosity increment

vo for random distribution is more readily interpreted than

vM, it is also desirable to work at low velocity gradients.

The theoretical determination, as described above, can

be applied to protein solution since a number of proteins in

solution have been found to show a non-Newtonian type of flow

such that viscosity decreases with an increasing velocity

gradient. Protein molecules are very large in comparison

with the molecules of the solvent. If very large solute mol-

ecules are introduced into the solvent, it is invariably found

that the viscosity of the solution is greater than that of

the pure solvent, and obeys Einstein's equation (Equation III).

A mathematical expression for flow behavior and its re-

lation to size and shape of the molecule were determined

(Einstein, 1906, and 1911; Born, 1947: Kirkwood, 1949; etc.).

In addition, rheological properties relating to properties
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such as molecular size, shape and weight. have been studied

(Tanford, 1967; Purl, 1974; Dokic, 1975; Huang, 1971; Tanford,

1958; Maruyama, 1974; Mancuso, 1973; Granato, Corigliano,

1973; Silverto, 1973 and Libondi, 1974).

Native protein molecules are known to be folded, and

for the most protein the structure is compact and globular

(Kendrew, 1961 and Blake, 1965). This structure is pro-

duced or maintained by hydrogen disulfide and ionic bonding,

hydrophobic interaction, and electrostatic forces. The

structural properties of the unfolded protein can be investi-

gated by viscosity studies in the presence of reducing agents.

For example, in a viscosity study of protein polypeptide chain

(from beef insulin, myoglobulin, -lactoglobulin, pepsinogen,

serum albumin) the presence of -mecaptoethanol, and ruptured

disulfide bonds, the chains were found to be true random coils

and the viscosity became higher than that of the native pro-

tein. ('Tanford, 1967).

The viscosity of bovine serum albumin in aqueous solu-

tion was measured as a function of concentration, and ionic

strength and then the viscosity and molecular size and shape

were determined (Tanford, 1956). The study was made with a

capillary viscometer at 250 C. The protein molecule behaved

like a. sphere at a pH near isoelectric point (pH 4.5) and

up to pH 10.5. This indicated that bovine serum albumin in

aqueous solution is a compact molecule. As the molecular

charge is increased, a small increase in intrinsic viscosity
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is observed. Relative viscosity may be expressed as

n - 1+ c n] + K [n]2 c 2 +...

where

n = viscosity of solution

no= viscosity of solvent

c = concentration of solution

[n]= intrinsic viscosity

K = constant = K + K1

Ko= function of non-electrostatic interaction between

dissolved particles which are independent of

charge and ionic strength

K= function of charge and ionic strength

(Gruth, 1936).

This expression.shows that the effect of concentration

involved the sum.of two separate effects. One is independent

of charge and ionic strength and is a constant universal to

all protein (Tanford, 1956; Polson, 1939). The other is an

electrostatic effect which for serum albumin is equal to

2 x 10-5 (charge)2

(ionic strength)3/2 

Colloidal characteristics of -lipoprotein of pig blood

that are of importance to viscous and rheological behavior

were studied using both capillary and rotational viscometers
o /

at 5 C (Dokic, 1975). It was found that the viscosity and

viscous behaviors of -lipoprotein solution depended on its

concentration. At concentration of 5gm/10Ocm3, the shear

stress shear rate relationship proved to be linear and
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-1Newtonian in the range of shear rate 50-6,000 sec . In the

-1
range of shear rate from 58.5 to 9480 sec and 12.1 - 60.5

weight % concentration of protein, the solution is a thio-

tropic weak gel structure.

A viscosity study of 1-/. vegetable protein solution was

made at 30 C for different pH values (Puri, 1974), in view

of the fact that viscosity studies of protein in alkaline

solutions can yield useful information regarding the degree

of hydration, shape of molecules and critical micell concen-

tration (Puri, 1972; Yang, 1961 and Mehl, 1940). The results

show that viscosity of protein solution reaches a maximum at

certain protein values.

These critical pH values vary with the type of vegetable

protein. In this study, axial ratios of protein molecules

were calculated from the slope of the plot of specific vis-

cosity and volume fraction of the solute particles. Critical

micelle concentration of those proteins was also determined

from the plot of concentration of various protein fractions a-

gainst viscosity at a given pH value. The concentration at

which the slope of the curve changes is considered to be the

critical micelle concentration.

It is well known that F-actin solution is thixotropic. A

concentrated F-actin solution becomes a gel upon standing,

particularly at low temperature, and turns to a solution when

shaken. Thus, F-actin in solution is an interesting subject

for a rheological study (Maruyama, 1974). The structural

viscosity of an F-actin solution of very low protein concentra-
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tion (0.015 - 0.033 mg/ml) was measured with a rotational

viscometer at pH 7.2 and 20 C and at velocity gradients

-1
ranging from 0.0005 to 5 sec . F-actin solution of 0.033 mg/

ml showed a viscosity value of 44,000 c.p.s. at 0.0005 sec

The viscosity decreased with an increase in shear rate, and

the relationship between logarithms of viscosity and rate

of shear. In viscosity-shearing time studies, viscosity in-

creased rapidly and then decreased before levelling off at

higher shear rate. However, at lower shear rate, viscosity

increased more slowly and then leveledoff during the ob-

servation period of up to 20 minutes. The viscosity of pro-

tein solution depended on concentration.

The effect of temperature on F-actin solution is that

as temperature increases the viscosity decreases. Actually

F-actin is not available as a pure component, but always con-

tains tropomyosin and troponin. The effect of these two com-

ponents on the heological properties of F-actin in solution

was investigated with a rotational viscometer (Maruyama, 1974).

It was found that tropomyosin reduced the rate of gelation of

F-actin, as measured in a very slowly rotating viscometer, al

though the viscosity of F-actin-tropomysion complex was higher.

The viscosity of the tropomyosin-F-actin complex was increased

by the addition of troponin.

It is known that in solution collagen will form a gel,

which depends on its concentration and temperature. There are
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some interesting studies of the rheological properties of

shear rate - shear stress and viscosity - shearing time

(at constant shear rate) (Mancuso, 1973, Silvestro, 1973

and D'Ambrosio, 1972), but additional work would aid further

in understanding the flow and structure properties of protein.

Using a Ferranti-Shirley cone and plate viscometer, rheolo-

gical properties of collagen in NaHCO3 solution at 20 C were

found to be thixotropic which is reversible during a resting

period (D'Ambrosio, 1973). This was confirmed by a study of

collagen in dimethyl-sulfoxide solution (Mancuso, 1973). But
o

at 120 C, collagen in NaHCO3 solution was found to be a plas-

-2 -1
tic structure over 400-500 dyne cm sec rate of shear

change (Silvestro, 1973).

On rheological analysis, it is found that myosin B of

skeletal muscle is different from that of the uterus since

uterus myosin B shows more plasticity and thixotropic phenom-

ena (Granato, Corigliano, 1973).
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Fig. 1.1 A schematic representation of a Newtonian
liquid between parallel lines.

Capillary Viscometer
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Fig. 1.3 Photomicrographs of the shear deformation
of a cyclo Hexanolphthalate (CHP) drop in
corn syrup.

1. Undeformed drop
2. D = 0.13 sec- 1

3. D = 0.83 sec
4. D = 1.40 sec

-15. D = 1.84 sec
6. D = 3.93 sec 1

a = 574 
D = shear rate

From Bartok, W. et. al., J. Col. Sci.,13,
293(1958)
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Fig. 1.4 Relationship between log of relative
viscosity and effective dispersed volume

(Mooney, 1946)
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2. MATERIALS AND METHODS

2.1 Viscometer

The apparent viscosity was measured with the Ferranti-

Shirley Viscometer.

2.1.1 Cone Plate Viscometer

The essential elements of the Ferranti-Shirley Viscom-

eter are shown in Figure 2.1 where (a) is a slightly conical

disk, the apex of which just touches the surface of the flat

plate (b). The sample fluid is contained in the narrow gap

between the Cone and Plate (the cone angle in radians is

exaggerated for clarity). The plate is rigidly constrained

and the sample is sheared by rotating the Cone.

The rate of shear at any radius , r, is given by the

ratio of the linear velocity wr (w = cone rotational velocity

in radians per second) to the gap width C. Since both these

quantities are proportioned to the radial distance, the shear

rate is constant throughout the entire measured sample.

For small Cone-Plate angles, t , the shear rate, D,

is:

D = wr which reduces to D = sec (1)
C 

The shear stress, T is given by

T = 3G dynes/cm 2 (2)

27rr3

where G is the Cone torque in dyne-centimeters.

r is the Cone radius in centimeters
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is the Cone angle in radians.

X is the Cone rotational velocity in radians

Apparent Viscosity, napp is
app

-a Shear Stress (3)
app = Shear rate

Therefore

napp = 3G
21Tr3

The Ferranti-Sherley viscometer provides meter readings

which are proportional to the torque G and the readings are

converted to shear stress units by using a shear stress

multiplier constant KT. Thus

Shear Stress = (KT) (Meter divisions) dyne/cm2

A shear rate multiplier constant Kd is used to convert

cone rotational speed to shear rate units. Thus

-1
Shear Rate = (Kd) (rpm) sec

2.1.2 System Components

The Ferranti-ShirleyViscometer equipment has the fol-

lowing components which are illustrated in Fig. 2.2.

2.1.2.1 Measuring Unit

This unit consists of important parts as follow

(Fig. 2.3)

1. Torque Dynamometer measures the viscous traction of the

cone. Troque Dynamometer consists of torque spring (4 in.

Fig. 213) and a potentiometer (6 in. Fig. 2.3)

2. PLate Height Adjustment (11 in. Fig. 2.3) allows the po-

sitioning of the apex of the cone to just touch the surface

of the plate.
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3. Plate Temperature Control (22 in. Fig. 2.3) is the means

of controlling temperature of the samples

4. Cone Speed Control The Cone speed range can be selected

from 0 to 100 rmp or 1000 rpm by selecting a gear train

(15 in. Fig. 2.3)

2.1.2.2 Amplifier Unit (b, Fig. 2.2)

This unit contains an amplifier which with the

driving motor and the generator in the measuring unit make

up the rotational velocity system used to control the cone

rotational speed.

2.1.2.3 Program and Control Unit (e in Fig. 2.2)

This unit consists of an indicating meter with

100 unit divided scale used for indicating torque, cone

speed or zero position of the torque dynamometer as selected

by the scale reading selector switch, scale reading switch

and cone speed RPM control. Switches for the scale reading

consist of a multiplier for the reading of the shear stress

range from xl to x5; an indicator for contacting between cone

and plate; and an indicator for the zero position of the torque

potentiometer.

2.1.2.4 Cone and Plate Setting Unit (d in Fig. 2.2)

2.1.2.5 Set of Cones (e in Fig. 2.2)

A standard set consists of three cones: a 7 cm diame-

ter with a 20' 57" cone angle, a 4 cm diameter with a 21' 8"

cone angle, and a 2 cm diameter with a 23' 43" cone angle.
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2.1.2.6 Temperature Controlled Circulating Bath, Thermo-

couple Potentiometer and X-Y Recorder

For this study, the X-Y recorder was not available.

The Temperature Bath and Thermocouple Potentiometer used

were from Neslab Instruments Inc. and Leeds Northrup Co.

(cat. No. 8692) respectively.

2.2 Calibration of the Viscometer

After changing the torque spring from 1200 gm-cm

(standard torque spring) to 100 gm-cm spring in order to

measure viscosity in the range of 1-300 cps for this study.

Approximately every three months the viscometer was

calibrated to insure the accuracy of the instrument. When-

ever the torque spring was changed to accommodate the vis-

cosity range, the instrument was calibrated. Standard viscosi-

ty solution (Cannon Instrument Co., State College, Pa.) was

used for the calibration.

2.2.1 Determination of the Torque Spring Constant

The Torque spring constant was determined as follows:

1. The same standard solution (Cannon Instrument Co.) and the

same cone size were used to get the shear stress reading from

1200 gm-cm spring which has a known torque spring constant

and the spring to be calibrated for a range of shear rate

selected.

2. The shear stress data was plotted against the shear rate

and the slope was determined for both the unknown and stan-

dard spring.
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3. From equation 4

'3n = A3
2w7r 

and G = (T) (A)

where T = Torque spring constant in dyne cms/division

on a 500 range.

A = Scale Reading

(3) (A) T

2wr3 

1:3) (A) ' is the constant, Cc, for a specific spring,

2!r3 

cone size, and rotational speed.

Since the same cone size was used, the term is depen-

dent on torque spring only. Therefore the subscripts std and

u denote standard and unknown respectively,

for standard spring, n = Cstd Tstd

for unknown spring, n = Cu Tu

Since Viscosity is constant

Cstd Tstd Cu u

Tu Cstd
T C

Tstd u

Therefore 2r A tTherefore 2 c . The slope of the curve of
3 c 

scale reading versus shear rate will give A . The slope

can be found for both standard and unknown spring. Now

u Slope of standard spring curve

std Slope of unknown spring curve
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and knowing Tstd is 2649 dyne cms/Div, Tu can be

calculated.

2.2.2 Determination of the Shear Stress Constant

The following method is used to determine the shear

stress constant.

1. The shear stress scale for the known viscosity sample

(standard solution) at the known shear rate is measured.

2. Shear stress was calculated from the known viscosity and

shear rate.

T= D
and T = KT x scale reading

KT = shear stress constant

D

T scale reading

2.2.3 Shear Rate Constant

Shear rate constant was provided by the manufacturer

of the equipment (Ferranti-Shirley Inc., Plainview, N.Y.}, as follows:

Large Cone = 17.14

Medium Cone = 17.005

Small Cone = 15.14

-1Shear Rate = Shear Rate Constant x RPM sec

2.3 Globular Protein Solution

- Lactoglobulin (Sigma Chemical Co., St. Louis, MO),

a globular protein with molecular weight17,500 used as a

medel protein. - Lactogloulin was dissolved in a phosphate

buffer (pH 7, ionic strength 0.04) to make 3%, 5%, 10%, 20%,

30% and 40% weight concentration.
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Phosphate buffer (pH 7, ionic strength 0.04) was pre-

pared from Potassium Monobasic, K HPO 4 (Baker Chemical

Co., Phillipsburg, N. J.) and Pottassium Dibasic, K2 H PO4

(Baker Chemical Co,, Phillipsburg, N. J.). The method

followed the nonograms given in Appendix A (Boyd, 1965).

Amount. of K H2 PO4 necessary was determined from desired pH

and ionic strength in molar concentration. Amount of K2 H PO4

was determined from

K2H PO4 = 1/3 (desired ionic strength - molar con-

centration of K H2 PO 4)

For the phosphate buffer at pH 7 and ionic strength 0.04, the

amount of K H2 P 4 and K2 H PO4 needed is 0.009 M and 0.0103

M respectively. Then the spectrophotometric absorption of

the solution was checked for the accordance of Lamberg-Beir's

Law.

2.4 Shear Stress - Shear Rate Relationship and Hysteresis

Effect

Protein solution (1.8 ml) was placed on the plate. The

gear train was plaec at the 1000 gear, then the distance be-

tween the cone and the plate was adjusted such that the cone

just touches the plate (Fig. 2.4). The cone speed control

knob was turned to the desired shear rate. The shear stress

reading was recorded manually. The temperature was set at
0o

25 C ± 0.5.,

For this study, the shear rate was increased and then
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decreased continuously for the range of shear rate (Table

2.1).

Viscosity was plotted against the shear rate.

2.5 Time dependence of viscosity (viscosity and shearing

time relationship)

The protein solution (1.8 ml) was placed on the plate.

The plate was raised until the cone touched the plate as

shown in Fig. 2.4. The experiment was carried out at 25 C

+ 0.5 . The cone speed knob was turned to a desired R.P.M.

and then stopped at that R.P.M. The shear stress reading

was recorded against the shearing time. The viscosity or

apparent viscosity was calculated from

(Apparent) viscosity = shear stress
shear rate

and then was plotted against shearing time.

Table 2.2 gives the ragnes of shear rates employed in

the study of the viscosity and shearing time relationship for

different concentrations of protein solutions.

2.6 The Effect of Evaporation

Since some of the measurements took up to 30 minutes and

only a small amount of sample solution (1.8 ml) was used,

there was a possibility that the solvent could evaporate

causing an appreciable change in the viscosity. In order to

verify this, a sucrose solution at 30% concentration was used.

Since sucrose is Newtonian, the viscosity should not change

with the shear time (Rha, 1975). The viscosity of the sucrose
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Table 2.1

Determination of Experimental
range of Shear Rate

% wt Concentration

3

5

10
20
30
40

Range of Shear Rate (sec )

6856 - 17140
6856 - 17140
1714 - 17140
857 - 17140
1700 - 17005
1514 - 15140
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Table 2.2

Determination of experimental range of
shear rate for time effect

% wt. Concentration

3

5

10

20

30

Shear rate (sec )

6856, 10284, 13712, 17140

6856, 10284, 13712, 17140

1714, 3428, 5142, 6856, 8570,
10284, 11998, 13712, 15426, 17140

1714, 3428, 5142, 6856, 8570,
10284, 11998, 13718, 15426, 17140

6856, 8570, 10284

3028, 4542, 605640
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solution was determined against the shearing time at a con-

stant shear rate, The method is the same as is described in

Section 2.5, however the time of studying is extended to

60 minutes.

Another method used to investigate the evaporation of

the sample was by attaching an outer jacket to the cover of

the viscometer to prevent evaporation (Fig. 25). A container in the

cover was designed to supply water vapor from the outer

jacket: to go into the cone and plate system, keeping the

humidity in the system as high as possible. With this jacket,

the 10% protein solution was studied to determine the rela-

tionship between the viscosity and the shearing time at con-

-1stant shear rates, 10284 and 13712 sec for 60 mins. The

result: was then compared with those from the experiment done

without the outer jacket.

2.7 Determination of Reversibility of Shear Deformation

Sheared -lactoglobulin solution was tested to determine

in the change in protein resulting from shearing may be re-

versible. The method is the same as in Section 2.5 except

that after 30 mins. of shearing the shearing was stopped for

30 minutes then the protein solution was sheared again.

2.8 Determination of the Conformational Change Due to

the Shearing of Protein

This study was designed to confirm the conformational
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change occurred in sheared -Lactoglobulin. The experiments

included UV absorbance and gel filtration chromatography.

Sheared and unsheared control protein solution was freeze-

dried for these experiments.

2.8.1 U.V. Absorbance

2 mg. of freeze-dried sample was dissolved in 3 ml phos-

phate buffer (pH 6.0, ionic strength 0.1), and the absorbance

from UV 310 nm. to 240 nm. was measured with a Beckman Spec-

trophotometer (Model 25).

2.8.2 Gel Filtration Chromatography

5 mg of the sample was dissolved in 2 ml of phosphate

buffer (pH 7.6) containing 0.05M NaCl and placed on the top

of the! Sephadex gel column (G-75) with a dimater of 2.5 m

and 26 cm length. This column was calibrated by using blue

dextran and N-2,4 Dinitrophenyl -alamine. The void volume

was 46 ml., and the terminal volume was 169 ml. The elution

buffer is standard phosphate buffer (pH 7.6) containing 0.05

M NaCl. 4.2 ml per fraction was collected and UV absorption

of the fraction at UV 220 nm was measured with a Beckman

Spectrophotometer (Model 25).
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Fig. 2.3 Measuring Unit

I
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Fig. 2.3

1 Cone Spindle

2 Cone

3 The driving spindle

4 The flat spiral torque spring

5 The bridge housing

6 A precision wound linear potentiometer

7 The wiper arm

8-9 The slip rings

10 The plate

11 Micrometer Screw

12 Three matched steel balls

13 A hardened flange

14 A DC motor

15 A gear train

16 Three thermocouples

17 A cooling jacket
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3. RESULTS

3.1 Determination of Torque Spring Constant.

Torque spring constant for 100gm-cm spring as determined

from the slope of scale reading and rate of shear is 230.6

dyne-cms/Division.

3.2 Apparent Viscosity as Affected by Protein Concentration.

In Fig. 3.1, average apparent viscosity was plotted as a

function of concentration for the range of shear rate between

-16,500 to 17,000 sec . At low concentration (up to 10 weight

%) the relationship between apparent viscosity and concentra-

tion is linear. The constant equivalent to Einstein's constant,

2.5, shape factor, used with a volume fraction was found to be

0.8 for weight % concentration of -lactoglobulin solution.

Thus the apparent viscosity of -lactoglobulin in terms of

weight % concentration can be calculated by

ns = n(l+0.8C)
where ns = apparent viscosity of solution

no = viscosity of phosphate buffer

= 1.0 c.p.s.

C = concentration in weight %

However above 10 weight % concentration apparent viscosity

increases more rapidly with concentration (Fig. 3.1). In

addition the apparent viscosity-shear rate relationship was

also affected by concentration (Fig. 3.2). Effects of shear

rate and shearing time are observed at concentration above

5% and become more prominent at higher protein concentration.
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For higher concentration (20 to 40 weight % concentration),

the relation between apparent viscosity and weight % concen-

tration of -lactoglobulin ion phosphate buffer solution

deviates from Einstein's Equation.

3.3 Apparent Viscosity as Affected by Shear Rate.

The result of this study is presented in Fig. 3.2. In

the range of 6,850 to 17,000 sec , apparent viscosity of

3% and 5% solution is independent of shear rate. At higher

concentration apparent viscosity decreases as shear rate

increases. The decrease is rapid at lower shear rate and

-1
higher concentration, in the range of 850 to 17,000 sec 1

as shown in Table 3.1. This experiment was made in dupli-

cate with deviation in the range of ±0.05 C.P. or 3 - 10%,

+0.1 C.P. for 20% and ±0.5 C.P. for 30 - 40%.

3.4 Hysteresis Effect

Hysteresis loop was observed at B-lactoglobulin con-

centration higher than 5% weight. Hysteresis loop showed

that the solution of 10 to 30 weight % concentration be-

haves as a rheopectic solution while that of 40 weight %

concentration is thixotropic (Fig. 3.2). Time required

for complete hysteresis effect is 8 0.5 min. By consid-

ering each step (as in Fig. 3.7) and the average time spent

in each step, the hysteresis effect can be determined as

in Table 3.2. This experiment was duplicated, and re-

sults were reproducible within the range of

_�_�__
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+0.05C.P. for 3-10%, 0.1 C.P. for 20% and 0.5 C.P. for 30-40%.

3.5 Effect of Shearing Time on Apparent Viscosity.

Protein solutions (3 40%) were subjected to constant

rate of shear for up to 30 minutes. The results of this

experiment confirmed the hysteresis effect shown in the pre-

ceeding experiment.

For 3% and 5% weight concentration, apparent viscosity

remained constant, showing no time effect over the shear rate

range of 6,850 - 17,000 sec- . For 10% weight concentration,

apparent viscosity is a function of shearing time at shear

-1 -1
rate higher than 5,142 sec . For 6,850 - 17,140 sec ,

apparent viscosity increases with shearing time with all cases

being similar (Fig. 3.3). For 20% and 30% weight concentra-

tion, apparent viscosity increases with shearing time for all

shear rates. The effect of shearing time is higher at higher

shear rate (Fig. 3.3 and Fig. 3.4). As distinct from the

rheopectic properties determined for 10, 20 and 30% solutions,

40% weight concentration -lactoglobulin solution shows thixo-

tropic behavior, with a decrease in apparent viscosity with

shearing time at constant shear rate,(Fig. 3.4). The rate of

increase in apparent viscosity is presented in Table 3.3.

This experiment was reproducible within the range of ±0.05 C.P.

for 3 - 10%, ±0.1 C.P. for 20 - 30 % and ±0.3 C.P. for 40%.

3.6 Evaporation Effect.

Evaporation effect was negligible for the duration of

the experiments.
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3.7 Reversibility of Protein Deformation.

Observation of apparent viscosity made after resting for

30 minutes indicated that protein deformation caused by shear-

ing is irreversible (Table 6.9 and 6.12).

3.8 Conformation Change Study.

Gel filtration chromatography showed that the elution

volume of sheared -lactoglobulin is 72±0.5 ml. while the elu-

tion volume of native 3-lactoglobulin is 80±1 ml. (Fig. 3.5).

(The experiment was made in triplicate.) This indicates that

the size of sheared -lactoglobulin is larger than that of the

native one.

U.V. absorption of sheared protein using the native

protein as reference is given in ig. 3.6. The result shows

the peaks at 287-288 nm and 293 n. The results of four

experiments were within the range of 0.001 of absorbancy.

This indicates that shear -lactoglobulin is different

from the native -lactoglobulin.
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Table 3.1

Rate of decreasing in apparent Viscosity
with Shear Rate

Concentration

3

5

Shear Rate
Range

(sec -1)

6,850-17,000

6,850 - 17,000

Rate of Decrease in Apparent

Viscosity (C.P.S.-sec)

0.0

0.0

1,700 - 6,850
6,850 - 17,000

850 - 1,700
1,700 - 8,500
8,500 - 17,000

1,700 - 3,400
3,400 - 8,500
8,500 - 17,000

1,700 - 5,200
5,200 - 15,000

8.0
0.0

-5± 0.05 x 10

47.0 + 0.05 x 10 5
0.1 + 0.05 x 10- 5

0.0

59.8 + 0.05 x 10- 
7.8 + 0.05 x 10- 5

0.0

817.1 + 0.05 x 10 -5

422.4 + 0.05 x 10-5

10

20

30

40
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Table 3.3

Shearing Time Effect in Apparent Viscosity
of -Lactoglobulin Solution

Rate of Change
Apparent

Time Range Shear Rate Viscosity
(min) Concentration (sec-1) (c.p.s./sec)

1-30 3% 6,856-17,140 0

1-30 5% 6,856-17,140 0

1-30 10% 1,714-5,142 0

1-30 10% 6,856-17,140 2.0±0.5 x 10-2

1-30 20% 1,714 5.0±0.5 x 10-2

1-30 20% 3,428 7.0±0.5 x 10-2

0- 6 20% 5,142 7.0±0.5 x 10-2
6-15 18.0±0.5 x 10-2

15-25 21.0±0.5 x 10-2
25-30 43.0±0.5 x 10-2

0- 5 20% 6,856 6.0±0.5 x 10-2
5-10 14.0±0.5 x 10-2

10.-15 34.0±0.5 x 10-2
15-20 46.0±0.5 x 10-2
20-30 57.0±0.5 x 10-2

0- 5 20% 8,540 18.0±0.5 x 10-2
5-10 30.0±0.5 x 10-2

10,-15 42.0±0.5 x 10-2
15-20 54.0±0.5 x 10-2
20-25 60.0±0.5 x 10-2

0- 5 20% 10,284 22.0±0.5 x 10-2
5- 7 25.0±0.5 x 10-2
7-10 37.0±0.5 x 10-2

10-15 46.0±0.5 x 10-2
15-20 66.0±0.5 x 10-2

0-10 20% 11,998 14.0±0.5 x 10-2
10-30 7.0±0.5 x 10-2
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Table 3.3 (continued)

Rate of Change
Apparent

Time Range Shear Rate Viscosity
(min) Concentration (sec- 1) (c.p.s./sec.)

0- 5 20% 13,712 24.0+0.5 x 10 - 2

5-10 34.0±0.5 x 10 -2

10-15 48.0+0.5 x 10 -2

0- 5 20% 15,426 24.0+0.5 x 10-2

5- 7 35.0+0.5 x 10 -2

7-10 37.0±0.5 x 10 -2

10-12 110.0+0.5 x 10-2

0- 5 20% 17,140 26.0+0.5 x 10-2
5- 7 36.0+0.5 x 10-2

7- 9 55.0+0.5 x 10-2

0-10 30% 6,856 8.0+0.5 x 10 - 2

10-25 13.0±0.5 x 10 -2

25-30 20.0+0.5 x 10-2

0- 4 30% 8,570 50.0+0.5 x 10-2
4- 6 80.0+0.5 x 10-2
6- 8.5 96.0+0.5 x 10-2

8.5-17 137.0+0.5 x 10-2

0- 3 30% 10,284 67.0+0.5 x 10-2
3- 6 120.0+0.5 x 10-2

0- 2 40% 3,028 -550.0+0.5 x 10-2
2- 5 -333.0+0.5 x 10-2
5-.15 - 50.0+0.5 x 10-2
15-25 - 10.0+0.5 x 10-2

0- 5 40% 4,542 -260.0±0.5 x 10-2
5--15 - 90.0+0.5 x 10-2

15- 30 - 27.0±0.5 x 10-2

0- 5 40% 6,052 -120.0+0.5 x 10-2
5-.15 - 90.0+0.5 x 10-2

15-25 - 30.0+0.5 x 10-2
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4. DISCUSSION AND CONCLUSIONS

In view of the fact that the concentration of protein used

for each process is different, and that the viscosity of a

suspension is affected by concentration (Philppoff, 1942),

viscosity of protein at different concentrations was studied.

The result of this study confirms the concentration depen-

dence of the viscosity of protein solution. The effect of

concentration may be represented by three separate regions

(Frisch, 1956). In the first region, at extremely low con-

centration (up to 10 weight %), the solution obeys Einstein's

equation (III). In the second regions, at higher concentration,

a deviation from Einstein's equation is observed. In this

region, a non-linear viscosity dependency of the particle

concentration must be considered. This non-linearity may

arise from the action of mutual hydrodynamic forces between

the solute particles. The third region represents the con-

centration at which the mutual hydrodynamic interactions of

the suspended particles reaches a maximum. The viscosity also

reaches a maximum in this region. After this point if con-

centration continues to increase, viscosity will decrease.

In general there are two types of concentration depen-

dent on viscosity of solution (Frisch, 1956). One is the

ideal solution in which viscosity continously and monotonically

increases with concentration. The other is anomalous solution

which exhibits inflection points in viscosity as functions of

the concentration. This study showed the -lactoglobulin
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solution to increase in apparent viscosity with the increase

in concentration. The first region, in which Einstein's

Equation applied, was at concentration 3 - 10% for the rate

of shear range of 6,500 - 17,000 sec 1 (Fig. 3.1). In

this region, the relationship of concentration and apparent

viscosity of -lactoglobulin can be expressed as

s = o (1 + 0.8C)

where the concentration is in weight % concentration. Based

on diffusion study, the Einstein's constant for -lactoglob-

ulin is 6.0, where concentration is expressed in fractional

volume (Mehl, 1940). For concentrations higher than 10%,

the deviation from Einstein's equation was observed as ex-

pected. For the dilute concentration, the interaction be-

tween solute particles is negligible. As concentration

increases, the volume of the dispersed phase and the inter-

action of solute particles increases. This causes the de-

viation from Einstein's equation. Based on this study,

10% weight concentration seems to be a critical concentra-

tion, since concentrations below it obey Einstein's equa-

tion, but concentrations above it will deviate from Ein-

stein's equation. However the third region of concentra-

tion was not observed for the range of concentration used

in this study. It should be noticed that viscosity at 20%

weight concentration is equal to double of that of 10%
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weight concentration. The effect of concentration increased

more rapidly as concentration increased above 10% weight as

shown in Fig. 3.1.

In addition to this, shear rate effect on apparent vis-

cosity is also affected by concentration effect (Balmaceda

and Rha, 1973). For 3% and 5% concentration over 6,850 -

17,140 sec-1, viscosity is not a function of shear rate. For

concentration above 5% over 850- 17,140 sec-1, viscosity de-

creases asymptotically with increasing shear rate and the

effect of shear rate on viscosity increases as concentration

increases (Table 3.1). This may be caused by:

a. molecules of -lactoglobulin changing under

shearing force,

b. the solute particle forming aggregates at higher

concentration. Under shearing, aggregates may break down

(Rha, 1975).

As in the case of other proteins such as myosin, whey

protein concentrate and single cell protein (Edsall, 1940;

Hermanson, 1975; Huang and Rha, 1971), the apparent viscosity at

a-lactoglobulin solution is not found to be a function of

shear rate at low concentration (3% and 5% weight concentra-

tion) and to be a pseudoplastic solution above 5% weight

concentration (Fig. 3.2). The decrease in viscosity with

shear rate can be caused by:

a. molecules of protein changing under shearing,

b. solute molecules being distributed at random with
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their resistance to flow being higher at lower shear rate,

whereas at higher shear rate they are more oriented and parallel

to the stream line. So viscosity of solution at higher shear

rate is lower than that at lower shear rate.

c. aggregates breaking apart under shearing.

Considering that the flow properties of many viscous

solutions can change with shearing time, and that shearing

force can deform a protein molecule (Taylor, 1934; Edsall

et. al., 1965; Polson, 1939; Rha, 1975), the study of the

viscosity-shearing time relationship is the main point of

interest in this study. Like concentration and shear rate

effect, effect of shearing time appears above 5 weight %

concentration. The apparent viscosity of 10 weight % con-

centration starts to increase with shearing time at 6,856

-1
sec . Thereafter this effect of time remains the same even

if the shear rate is increased (Fig. 3.3 and Table 3.3).

Apparent viscosity of 20 and 30 weight % concentration

generally increases with shearing time and the increase is

more rapid as shear rate increases (Fig. 3.3, Fig. 3.4, Table

3.3). The increase in apparent viscosity with shearing time

may be affected by the following:

a. aggregation during shear,

b. shear deformation of, -lactoglobulin molecules.

Under shearing, protein molecules can be uncoiled. The

uncoiled protein will change and increase the effective volume

of the solute in solution, so that apparent viscosity
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increases (Van Holde, 1971; Tanford, 1967). In addition

changes in size and shape of protein molecules affects appar-

ent viscosity, which increases with increase in size and shape

of the molecules (Edsall, 1965; Mehl, 1940). In order to

determine the cause of the change in flow behavior, gel fil-

tration chromatography and U.V. difference spectra absorption

were used. The gel filtration and U.V. difference absorbancy

indicate that sheared -lactoglobulin is different from

native -lactoglobulin (Fig. 3.5 and Fig. 3.6). Gel filtra-

tion chromatography also shows that sheared -lactoglobulin

is larger than the native one, since the elution volume of

sheared -lactoglobulin is less than that of native -lacto-

globulin. U.V. difference spectra showed that chromophores,

tryptophan and tryosine became exposed after the shearing by

the increase in absorption near nm 287 293 (Lehninger, 1975).

While 10 to 30% solution shows rheopectic properties, 40%

solution has thixotropic properties (Fig. 3.5). Thixotropy

of 40% solution may be caused by the breaking of aggregates,

since when the concentration of solution is high enough aggre-

gates are formed. Initially breaking of the aggregate by

shear force would require higher energy, but subsequently

only the energy for shear flow would be required (Charm, 1962;

Rha, 1975).

The hesteresis roop of the solution confirms the effect

of shearing time on apparent viscosity, since the rheopectic

roops were observed for 10 to 30 weight % concentration, and

thixotropic roop was observed for 40 weight % concentration,
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while 3 and 5 weight % concentration solution shows no hyster-

esis effect (Table 3.2). Changes in heological properties

was observed to be irreversible both for rheopectic and thixo-

tropic properties.

Since 10 weight % B-lactoglobulin solution obey Einstein's

equation, changes in axial ration of -lactoglobulin with the

shearing time is determined by the method of Mehl et. al.

(1940), while that of 20 - 40 weight % -lactoglobulin solution

cannot. The axial ratios determined for 10% -lactoglobulin

is given in Table 4.1. The increase in axial ratio of approxi-

mately 40% occured due to 30 minutes of shearing at constant

shear rate in the range of 6,856 - 17,140 sec. .

In summary -lactoglobulin solution shows the effect of

shear rate and time above 5 weight % concentration. -lacto-

globulin solution is a pseudoplastic solution for 10-40 weight

concentration. B-lactoglobulin solution shows a

rheoplectic property at 10-30 weight % concentration while 40%

concentration shows thixotropic property. Shearing force causes

permanent change in -lactoglobulin molecule. The denaturation

is characterized to be the increase in size, increase in axial

ratio. and increase in the chromophore exposed.
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Table 4.1

Changing in Axial Ration of 10 weight %
B-Lactoglobulin Solution Shared at Constant
Shear Rate in the Range 6,856-17,140 sec-1

Axial Ratio

Viscosity
Increment

6.0

6.3

6.7

7.4

7.8

8.1

Rod Shape

5.0

5.2

5.3

6.0

6.2

6.4

Disc Shape

7.2

7.4

7.5

8.5

9.0

9.8

8.9 7.0

Time
( nT )

0

5

10

15

20

25

qapp
(c.p.s.)

1.7

1.8

1.9

2.0

2.1

2.2

10.90 2. 4
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5. SUMMARY

The results of the study of heological properties

of solution in phosphate buffer (ph 7, ionic strength

0.04) are summarized as follows.

1. Apparent viscosity of -lactoglobulin solution

is concentration, shear rate and time dependent.

2. Apparent viscosity of -lactoglobulin solution

can be calculated by

ns = no(1 + 0.8C) for concentrations

less than 10%, where C is -lactoglobulin concentration.

3. B-lactoglobulin solution is pseudoplastic at

concentrations above 5%.

4. B-lactoglobulin solutions, at concentration of

10 to 30 weight %, showed rheopectic property while 40

weight % solution showed thixotropic property.

5. Mechanical shearing causes permanent deforma-

tion of -lactoglobulin in solution.

6. The shear deformation increases the size of the

molecule and the exposed tryptophan and tyrosine.
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6. FUTURE RESEARCH RECOMMENDATION

1. In this study, the increase in viscosity with shear-

ing time was not observed for concentrations of -Lactoglobulin

solution lower that 10%. Theoretically, the protein molecules

would be effected similarly by shear, and would similarly be

deformed even at lower concentrations. Therefore, change in

protein conformation should be determined by other methods

such as gel filtration chromatography and UV difference spectra

absorbancy for sheared -Lactoglobulin at low concentration.

2. Friction and interaction between the protein mole-

cules can be minimized with the use of a lower concentration

of -Lactoglobulin. It is then possible to determine which

is the more important cause of shear deformation: the drag

between the protein molecules or the drag of the solvent.

3. The effect of shearing time on apparent viscosity

-1
at high shear rate (up to 171,400 sec ) should be determined.

Disassociation of the -Lactoglobulin molecule may occur at a

-1
higher shear rate (above 171,400 sec. ), which would be ob-

served as the thixotropic property.

4. Flow properties can often be expressed by a power

law equation. The study of shear rate - shear stress rela-

tionship should be extended to lower shear rates to obtain

the power law constants for B-Lactoglobulin solution. This

was not feasible in this experiment since the readings at

-1shear rates less than 800 sec. were unreliable. In order
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to obtain readings at lower shear rates with the Cone-Plate

Viscometer used in this study it is necessary to make the

torque spring force lower than 100 gm-cm.

5. The heological properties of protein solution are

also dependent on pH, ionic strength, charge and temperature.

The effect of these parameters on apparent viscosity of

B-Lactoglobulin solution should be studied.

6. At present, proteins are manipulated by chemical and

heat-treatment. This study showed that conformation change

in protein can be induced by mechanical treatment and by

simple shearing. The combined effect of chemical and mechan-

ical treatment and/or heat and mechanical treatment should be

determined.
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Appendix B

Table 6.1 Hysteresis Effect

Apparent Viscosity and Shear Stress Versus Shear
Rate

3% -Lactoglobulin in Phosphate Buffer (pH 7,
ionic strength 0.04)

Cone = 7 cm. diameter, 20'57" angle
Spring = 100 gm. cm.
Temperature = 25.0 ± 0.5°C

Shear Rate
(sec-l)

6,856

8,570

10,284

11,,998

13,712

15,,426

17,140

Increasing Shear Rate

Shear Stress napp
(dyne/cm2) (c.p.s.)

80.0

104.4

129.7

152.2

180.4

204.8

231.1

1.2

1.3

1.3

1.3

1.3

1.4

1.4

Decreasing Shear Rate

Shear Stress napp
(dyne/cm2 ) (c.p.s.)

7.8

102.4

128.8

150.2

177.5

201.9

226.2

1.1

1.2

1.3

1.3

1.3

1.4

1.4
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Table 6.2 Hysteresis Effect

Apparent Viscosity and Shear Stress Versus Shear
Rate

5% -Lactoglobulin in Phosphate Buffer (pH 7,
ionic strength 0.04)

Cone = 7 cm. diameter, 20'57" angle
Spring = 100 gm. cm.
Temperature = 25.0 ± 0.5°C

Shear Rate
(sec-l)

6,856

8,570

10,,284

11,998

13,,712

15,,426

17,,140

Increasing Shear Rate

Shear Stress lapp
(dyne/cm2) (c.p.s.)

93.6

122.9

151.2

181.4

208.7

240.9

271.1

1.4

1.5

1.5

1.5

1.5

1.6

1.6

Decreasing Shear Rate

Shear Stress qapp
(dyne/cm2) (c.p.s.)

101.4

128.7

156.0

185.3

212.6

239.9

271.1

1.5

1.5

1.5

1.6

1.6

1.6

1.6
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Table 6.3 Hysteresis Effect

Apparent Viscosity and Shear Stress Versus Shear
Rate

10% -Lactoglobulin in Phosphate Buffer (pH 7,
ionic strength 0.04)

Cone = 7 cm. diameter, 20'57" angle
Spring = 100 gm. cm.
Temperature = 25.0 ± 0.5°C

Shear Rate
(sec- 1)

1,714

3,428

5 ,,142

6,856

8 ,, 570

10,284

11,998

13,,712

15 426

Increasing Shear Rate

Shear Stress
(dyne/cm2)

34.7

60.4

88.7

128.5

151.6

183.7

213.3

244.1

274.0

napp
(c.p.s.)

2.0

1.8

1.7

1.8

1.9

1.8

1.8

1.8

1.8

Decreasing Shear Rate

Shear Stress
(dyne/cm2)

41.1

73.2

104.1

133.6

156.7

185.0

215.8

249.2

274.9

303.2 1.8

fnapp
(c.p.s.)

2.4

2.1

2.0

1.9

1.8

1.8

1.8

1.8

1.8

17,,140 3 03 2 1. 8
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Table 6.4 Hysteresis Effect

Apparent Viscosity and Shear Stress Versus Shear
Rate

20% -Lactoglobulin in Phosphate Buffer (pH 7,
ionic strength 0.04)

Cone = 7 cm. diameter, 20'57" angle
Spring = 100 gm. cm.
Temperature = 25.0 ± 0.5°C

Shear Rate
(sec- )

Increasing Shear Rate

Shear Stress fnapp
(dyne/cm2 ) (c.p.s.)

Decreasing Shear Rate

Shear Stress nap
(dyne/cm2) (c.p.. )

857

1,285.5

1,714

4,285

8,570

12,855

17,140

39.8

52.7

66.8

165.7

334.0

524.2

678.3

4.4

4.0

3.9

3.8

3.9

4.0

3.9

44.6

64.3

72.7

180.0

359.7

524.2

678.3

5.2

5.0

4.3

4.2

4.2

4.0

4.0
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Table 6.5 Hysteresis Effect

Apparent Viscosity and Shear Stress Versus Shear
Rate

30% -Lactoglobulin in Phosphate Buffer (pH 7,
ionic strength 0.04)

Cone = 4 cm. diameter, 21'8" angle
Spring = 100 gm. cm.
Temperature = 25 ± 0.5°C

Shear Rate
(sec-l)

Increasing Shear Rate

Shear Stress napp
(dyne/cm2) (c.p.s.)

Decreasing Shear Rate

Shear Stress Happ
(dyne/cm2) (c.p.s.)

1,700.5

3,401

5,101.5

6,802

8, 502.5

10,203

11,903.5

13,604

15,304.5

17,005

234.6

434.7

634.8

825.2

1,021.2

1,242.0

1,435.2

1,642.2

1,849.2

2,070.0

262.2

483.0

690.0

910.8

1,104.0

1,324.8

1,518.0

1,711.2

1,904.4

2,070.0

13.5

12.5

12.2

11.9

11.7

11.9

11.8

11.8

11.8

11.9

15.1

13.9

13.3

13.1

12.8

12.8

12.5

12.3

12.2

11.9
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Table 6.6 Hysteresis Effect

Apparent Viscosity and Shear Stress Versus Shear
Rate

40% -Lactoglobulin in Phosphate Buffer (pH 7,
ionic strength 0.04)

Cone = 2 cm. diameter, 23'43" angle
Spring = 100 gm. cm.
Temperature = 25.0 0.5°C

Shear Rate
(sec-1 )

Increasing Shear Rate

Shear Stress napp
(dyne/cm 2) (c.p.s.)

Decreasing Shear Rate

Shear Stress lnapp
(dyne/cm2) (c.p.s.)

3,309.5

6,232.9

8,880.4

11,472.9

13,789.5

15,223.6

16,878.4

18,864.0

20,684.3

22,504.5

218.6

205.8

195.5

189.4

182.2

167.6

159.3

155.8

151.8

148.6

2,757.9

5,240.0

7,667.0

10,038.8

12,134.8

14,341.1

16,547.4

18,533.1

20,518.9

22,504.5

1,514

3,028

4,542

6,056

7,570

9,084

10,598

12,112

13,626

15,140

182.2

173.2

168.8

165.8

160.3

157.9

156.1

153.0

150.6

14S.6
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Table 6. 11
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Effect of Shearing Time on Apparent Viscosity

Apparent Viscosity Versus Time at Constant
Shear Rate

30% B-Lactoglobulin in Phosphate Buffer (pH 7,
ionic strength 0.04)

Cone = 7 cm. diameter, 20"57" angle
Spring = 100 gm. cm.
Temperature = 25.0 ± 0.5°C

Shear Rate
6,856 sec- 1

Shear
Stress
(dyne
cm2 )

815.9

858.0

865.8

943.8

1,014.0

998.4

napp
(c.p.s.)

11.9

12.5

12.6

13.7

14.8

14.6

1,068.6

Shear Rate
8,570 sec-'

Shear
Stress
(dyne
cm z )

1,011.3

1,345.5

1,716.0

1,872.0

napp
(c.p.s.)

11.8

15.7

20.0

22.8

Shear Rate
10,284 sec-1

Shear
Stress
(dyne
cmz)

1,213.5

1,3'45.5

1,443.0

1,647.8

1,813.8

rnapp
(c.p.s.)

11.8

13.0

14.0

16.0

17.6

Time
(mins)

0

2

3

5

6

10

12

15

20

25

-
| r

j .- .- . -.

30 15.6
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Table 65.12 Effect of Shearing Time on Apparent Viscosity

Apparent Viscosity Versus Time at Constant
Shear Rate

40% -Lactoglobulin in Phosphate Buffer (pH 7,
ionic strength 0.04)

Cone
Spring

= 2 cm. diameter, 23'43" angle
= 100 gm. cm.

Temperature = 25.0 ± 0.5°C

Shear Rate Shear Rate Shear Rate
3,028 sec 1 4,542 sec-1 6,056 sec- 1

Time
(mins) Shear Shear Shear

Stress Stress Stress
(appdyne ap (dne app (dyne napp
cm ) (c.p.s.) cm) (c.p.s.)) (

0 6,159.0 203.4 8,984.1 197.8 11,488.2 189.7

5 5,586.7 184.5 8,377.6 184.4 11,173.3 184.5

10 5,514.0 182.1 8,141.5 179.3 10,914.0 180.2

15 5,444.3 179.8 7,978.0 175.65 10,595.0 175.0

20 5,417.1 178.9 7,888.0 173.7 - -

25 5,402.5 178.5 7,816.8 172.1 10,464.0 172.8

30 - - 7,760.0 170.8 - -

stop
after 5,402.5 178.5 7,760.0 170.8 10,434.5 172.3
30 min



Table 6.13

Time
(mins)
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Effect of Evaporation

Apparent Viscosity Versus Time at Constant
Shear Rate 8,570 sec-1

30% Sucrose Solution in Phosphate Buffer (pH 7,
ionic strength 0.04)

Cone = 7 cm. diameter, 20'57" angle
Spring = 100 gm. cm.
Temperature = 25.0 ± 0.5°C

Shear Stress
(dyne/cm2)

0

5

10

15

20

25

30

35

40

45

50

55

60

303.2

308.3

310.0

310.0

205.77

308.3

308.3

303.2

323.0

331.5

331.5

331.4

334.0

Apparent Viscosity
(c.p.s.)

3.5

3.6

3.6

3.6

3.6

3.6

3.6

3.5

3.8

3.9

3.9

3.9

3.9
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