Scheduling Task Systems With Resources
by

Errol Lynn yoyd

B.S., The Pennsylvania State University
(1975)

B.S., The Pennsylvania State University
(1975)

S.M., Massachusetts Institute of Technology
1977)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1980

© Massachusetts Institute of Technology

Signature of Author........ veesnrereastiee e tetrreseneatsens e nesseans PO p—

Decpartment of Electrical Engineering and Computer Scicnce
April 24,1980
Certificd by eeeeetseeseebetereseeteseteteaetaatsae st e et et aR e ressaa R e st o nenRenar st eas
‘ Ronald L.. Rivest
T T . -, Thesis Supervisor

Accepted Q’)'/_.,..‘.-:;".'.‘;...‘.—.-..' eeeerrreraeeenenseeaees BN e A - 2o o P R—
] ‘ Arthur C. Sinith
ARCHIVES Chairman, Committee on Graduate Studcnfs
MASSACHUSETTS INSITUTE ’ ‘
OF TECFHINOLOGY

JUN 20 1980
LIBRARIES

e

-2-
Scheduling Task Systems With Resources
by

Errol Lynn Lloyd

Submitted to the Department of Electrical Engincering and Computer Science
on April 24, 1980 in partial fulfillment of the requircments
for the degree of Doctor of Philosophy

Abstract

Minimum cxecution time scheduling of task systems with resources has been the subject of several
papers over the past few years. The model used for much of this work assumes that the resources in the
system are continuous. That is, there is one unit of each resource, and a task may require any portion of
that unit during its cxecution. While this is a reasonablc assumption for certain bin packing applications,
it is intuitively unreasonable for certain other applications. In particular, the resources associated *vith
computer systems - rcaders, printers, disk drives - are not "continuous” resources. We present an
alternative modcl of task systems with resources in which the resources are discrete. That is, there arc a
specific number of indivisible units of each resource and a task may require only integral numbers of
those units. Several results involving the worst case performance of list scheduling and critical path
scheduling with respect to this model are given. A new result on critical path scheduling of task systems
with continuous resources is also given. Finally, a comparison will be made between corresponding
bounds for the continuous and discrete models.

Thesis Supcrvisor; Ronald 1.. Rivest
Title: Associate Professor of Computer Science and Engincering

" 3 -
Acknowledgements

My advisor, Ron Rivest, is to be thanked for his guidance and support thoughout my graduate
career. His suggestions and questions have greatly improved both the accuracy and the presentation of
this thesis. His patience in listening to initial versions of many of these results is especially appreciated.
Adi Shamir and Christos Papadimitriou provided a number of suggestions and comments which helped
to make this thesis a more cohesive and uniform document.

Special thanks go to two pcople who helped to shape my career: my father, because he first
introduced me to computers when 1 took a programming course from him while in high school, and
Donald Johnson of Penn State, who first introduced me to the notions of algorithmic complexity. They
arc also the finest two teachers that I know - I hope that in my teaching carcer, I can approach their level
of excellence.

Next, I would like to thank my friends at MIT and eclsewhere for their encouragement and
friendship. In particular, my fellow graduate students Paul Bayer, Peter Bloniarz, Andrea LaPaugh, Bill
Masck and Ron Pinter, have made MIT a good place to live and study over the past five years.

Most importantly, I would like to thank my family for their support and love: my brother, Russell,
with whom I've enjoyed many years of friendly competition; my parents, I shall be forever thankful for
them; my wife Isabel, with whom I've sharcd the past nine ycars at Penn State and MIT - together we
look forward to whatever the future brings.

This work was partially supported by the National Science Foundation under Grant MCS78-05849.

Table of Contents

Title Pagef

Abstract
Acknowledgements
Table of Contents

List of Figures

Chapter 1 - Task Systems

1.1 The basic task system model
1.2 Common submodels
1.3 Scheduling algorithms
1.3.1 List schedules
1.3.2 Critical path schedules
1.3.3 Coffman-Graham scheduling
1.4 A survey of major results
1.41 NP concepts
1.4.2 NP results
1.4.3 Performance results

1.5 Extensions
Chapter 2 - Task Systems with Resources

2.1 Task systecms with continuous resources
2.1.1 The model
2.1.2 Shortcomings

2.2 Task systems with discrete resources
2.2.1 The model
2.2.2 Discussion

2.3 Why study heuristics?

2.4 The processors question

2.5 The problems to be studied

-4-

10
12
12
12
15
15
17
17
19
19
21

23

24
24
26
28
28
31
31
32
34

Chapter 3 - List Scheduling

3.1 Continuous resources
3.2 Discrete resources
3.2.1 Two results
3.2.2 The upper bounds
3.2.3 The lower bounds

Chapter 4 - Critical Path Scheduling, Continuous Resources

4.1 No processor constraint
4.2 A processor constraint
421 An interpretation
o 42.2 A comparison
4.2.3 The upper bound
4.2.3.1 Preliminaries
4.2.3.2 Proof outline
4.2.3.3 Two important properties
4.2.3.4 The weighting functions
4.2.3.4.1 The first weighting function
4.2.3.4.2 The sccond weighting function
4.2.3.4.3 Thc third weighting function
4.2.3.5 The main result
4.2.4 The lower bound
- 42.4.1 A general task system structure
42.4.2 The simple cases
42.4.3 A uscful sct of independent tasks

4.2.4.4 The remaining cases

Chapter § - Critical Path Scheduling, Discrete Resources

5.1 Coffiman-Graham scheduling of systems with 0-1 resources

5.1.1 The upper bounds
5.1.1.1 Proofoutline

5.1.1.2 Scgments

35

35
36
36
37

S

45
48
50
50
50
51
52
53
55
62
62
67
67
1
18
80

88

88
89

90

5.1.1.3 The individual bounds
5.1.1.3.1 Thecases =m-1
5.11.3.2 Thecases <m-2
5.1.2 The lower bounds

5.2 The implication for critical path schedules

Chapter 6 - Overview: UET Results

6.1 Summary
6.2 Open problems

Chapter 7 - Non-UET Results

7.1 Continuous resources

1.2 Discrete resources
7.2.1 Discussion
7.2.2 Upper bounds
7.2.3 Lower bounds

Chapter 8 - Concurrent Task Systems

8.1 The model
8.2 The complexity of concurrent UET scheduling

8.2.1 Arbitrary concurrency, no precedence constraints

8.2.2 Bounded concurrency, arbitrary precedence constraints
8.3 Worst case bounds

8.3.1 An upper bound

8.3.2 Alower bound

8.4 A restricted problem
References

Biographical Note

94
95
98
101
111

114

114
116

118

118
118
119
119
125

128

128
131
131
132
134
136
136
142

144

146

- 7 -
List of Figures

1.1 Task systems

1.2 Valid schedules

1.3 A list schedule for the task system in Figure 1.1b
1.4 List schedules are not best for non-UET systems
1.5 Critical path schedules

1.6 Coffman-Graham schedules

2.1 Example of task system with continuous resources

2.2 Example of task system with discrete resources

3.1 The task system used in Lemma 3.3
3.2 An optimal schedule
3.3 A "bad" list schedule

4.1 Graph of the upper bound as a function of s

4.2 Partitioning the resources

4.3 MACSYMA program uscd to verify the values in Table 4.2
4.4 Example of the scts Ajand Ly and task T,

4.5 The general task system structure used for the lower bounds
4.6 Two schedules for the general task system structure

4.7 The schedules used in Lemma 4.11

4.8 The schedules uscd in Lemma 4.12

4.9 The schedule used for G(Al) in Lemma 4.13

4.10 The task system used in Lemma 4.14

5.1 Example of the division of a Coffman-Graham schedule into blocks

5.2 Example of the division of a Coffman-Graham schedule into segments

5.3 Two uscful structures

5.4 Precedence relations between the structures

5.5 Bad CG labelings

5.6 The task system S*

5.7 The Coffman-Graham schedule - execution of RESi and PR ECi’y after C{ has exccuted

11
11
14
14
16
16

27
30

41
41
41

47
58
61

69
70
73
76
83
85

92

92
102
104
104
106
106

5.8 Execution of the tasks - Lemma 5.9
5.9 Exccution of the tasks - Lemma 5.10
5.10 A "good" schedule for the task system

6.1 Summary of the known rcsults for UET task systems with resources

7.1 An observation
7.2 Resource usages in a list schedule

7.3 The bound is achievable

8.1 Example of a task system with concurrency

8.2 The schedule produced by the contour tasks and deadline 2dm
8.3 Sets of tasks used to construct concurrent task systems

8.4 A task system and two schedules - case 1

8.5 A task system and two schedules - case 2

109
109
109

115

120
123
126

130
135
138
139
141

-9-

Chapter 1 - Task Systems

Over the past fifteen years one of the most active areas of computer science and industrial
engineering research has been the scheduling of large systems. This research has been motivated both by
the existence of large industrial scheduling problems and by the existence of high spced digital
computers to solve those problems. Morcover, the models uscd to study these scheduling problems have
attracted great theoretical interest, and as a result, an immense quantity of rescarch has been done on
them.

In general, a scheduling problem is of the following form: Given a set of tasks which need to be
completed, produce a schedule of minimum length for completing those tasks. Often, there are a
number of constraints placed upon the form that the schedule may take. For example, some tasks may
necd to be completed before others can be started, or there may be a limit on the number of tasks that
can be "in progress” at any given time, or some tasks may require longer to complete than others, Many
types of constraints are possible.

It should be apparent, even from the informal description given above, that the scheduling of
systems of tasks is not trivial, and that ad-hoc methods have almost no chance of producing even near
optimal schedules, much less optimal schedules. The obvious approach then is to formulate a standard
sct of rules (hopcfully, a good sct) for producing schedules. Indeed, the design and analysis of algorithms
for scheduling has been the primary arca of rescarch concentration. For some classes of task systems, fast
algorithms have been developed which produce optimal schedules for those systems. For other classes of
task systems, it has been shown that finding algorithms which produce optimal schedules in a reasonable
amount of time is unlikely. For these classes of task systems, the rescarch has focused on producing
good, polynomial time, heuristic algorithms. That is, algorithms which, in a reasonable amount of time,

produce good, though not nccessarily optimal, schedules. In conjunction with this, the performance of

- 10 -
various simple and/or fast scheduling algorithms has been analyzed, so as to provide a performance
"benchmark” that more complicated algorithms can be compared to.
In this chapter we define the notions of a task system, of a schedule, and of a number of related
concepts that we will use throughout this thesis. We also give a summary of the major results pertaining
to the basic task system model which we describe here.

1.1 The basic task system model

A task system is a system S = <7, £, m> where:
L T={Ty,.., Tn} is a set of tasks - associated with T; is a positive integral cxecution time 7.

- 2. {is a partial order specifying precedence constraints between the tasks.

3. There are m identical processors.
With respect to the precedence constraints, we have the following definitions: If T; < Tj, then Tj isa
successor of Ti’ and Ti is a predecessor of Tj. We will represent the partial order by a directed acyclic
graph (dag) with one nodc for each task and one arc for each relation in the partial order. We assume that
there are no transitive edges in the dag. Two examples of task systcms are given in Figure 1.1 -- oneis a
fully gencral task system and the other is a task system in which all of the tasks have an execution time of

one.

A valid schedule for a task system S, is a mapping o:7 — (N - {0}) such that:

L Forall/e(N-{0}),m> I{Ti €Tao(T) <I< a(Ti) + - 1}.

LIUT< Tj, then o(T) + 7;- 1< o(T; j)'
These two conditions correspond to our intuitive notion of what constitutes a schedule: that the tasks be
cxccuted on m processors subject to the precedence constraints. More specifically, the first condition
cnsures that at most m processors are in use at any given time. The second condition cnsurcs that the

precedence constraints are not violated. That is, if T; < Tj, then T, must have completed exccution before

Tj can begin exccution.,

-11-
Figure 1.1: Basic task systems

3 1

4E/\3F/ 1G

a) A task system with 3 processors and 7 tasks. The task execution times are given beside the tasks in
the dag.

O—w

m = 3 processors

m = 2 processors

Y
YA

L M

b) A task system with 2 processors and 13 tasks. Each task has an execution time of one.

Figure 1.2: Valid schedules

Schedule: AJA|A|ICIEJE|E|E
B|G|G|G|G|G|GI|G
/AD| DYV /AF|F|F U/

Time unit: 1121314151617 84'

a) A valid schedule for the task system given in Figure 1.1a. Cross-hatching is used to indicate idle
processors. The mapping ¢ is not given explicitly.

Schedule: A|IBJEJC|F]G]|I {K
M DIH|LEA T
Time unit: 112131415161 718

b) A valid schedule for the task sytem given in Figure 1.1b.

-12 -

Given a valid schedule, we define for each i € (N - {0}), the setB; = {Tj €T: a(Tj) <i<L ofT j) +
T 1}. Also, let w = min{i: (Nj> i)[Bj = @]}. The schedule has length w, and consists of the w time
units By, ..., B .. For each time unit By, if [B;] <m, then B, has m - |By| idle processors. Intuitively, we
assume that the processors are numbered from 1 to m, and that processors 1 through lBiI have tasks
exccuting on them and that processors [B;| + 1 through m are idle. Examples of valid schedules for the
task systems in Figure 1.1 arc given in Figure 1.2.

Finally, we note that there are a number of criterion for determining the "goodness” of a schedule.
The most widely used, and in many scnscs the most natural, is that of minimizing the schedule length.

This criterion is refercd to as the minimum execution time or latest finishing time criterion. This is the

measure of optimality that we use throughout this thesis.

1.2 Common submodels

The model of task systems presented above provides a starting point for virtually all theoretical
scheduling research. This modcl has proven however, to be extremely difficult to deal with in its full
generality. Morcover, many practical applications are most effectively analyzed using various
submodecls of the model given above. Most of the rescarch has focused on two particular submodels of
the basic task system model. These submodels are:

1. Task systems where < is cmpty. That is, there are no precedence constraints in the system.

2. Task systems where all of the task exccution times arc identical. In this case we assume without

loss of generality that cach T = 1. Thesc are unit exccution time (UET) task systems.
With the exception of Chapter 7, we will deal exclusively with UET task systems in this thesis.

1.3 Scheduling algorithms

In this scction we describe the three types of schedules which we will utilize,

1.3.1 List schedules

List schedules are the most basic of the schedules which we will examine. They are of particular

-13 -
interest not only because of their simplicity, but also because most intercesting scheduling algorithms
produce schedules which form a subclass of the list schedules. Intuitively, a list schedule is formed as
follows: Consider any (ordered) list L, of the tasks in 7. The tasks are scheduled as follows: Whenever a
processor becomes idle, the list L is instantancously scanned from its beginning until a task T (if any) is
found all of whose predecessors have completed exccution. Task T is assigned to the idle processor and is
removed from L.

More formally, a task T is ready at time 7if for every Tj such that Tj {T, o(Tj) + T 1< 1 A list
schedule is a valid schedule which is generated as follows:

1. Initially, L is an (ordcred) list of the tasks in 7"and /is 1.
2. While L is nonempty perform this step
a. Letk = [{T;j¢L:o(T) <I< o(T) + 7;-1} |
b. For each of the first m - k (or less, if there aren’t m - k) ready tasks Ti’ on L at time / let
o(T;) = /and remove T; from L.
c. Let/i=1+ min{o(Ti) + 'ri-lzTiQ Lando(Ti) +7-12> i
Figure 1.3 shows an example of a list schedule for the UET task system given in Figure 1.1b.

List schedules are particularly attractive when dealing with UET task systems. In this case the
restriction that only list schedules (and subclasses of list schedules) be considered as possible schedules for
the task system causcs no loss of gencrality. To sce this, consider any schedule for a UET task system,
and assume that schedule consists of time units Bl, ., B o A schedule with length no more than w
results from the list consisting of the tasks in By. followed by the tasks in B,, followed by the tasks in B3,
and so on, ending with the tasks in B o Figure 14 shows that it is not generally true for non-UET task
systems that there is always a list schedule of minimum length among all schedules for the system.

Finally, for list schedules, note that given a list L, the corresponding schedule (i.c. the mapping o) is

uniquely determined. For this reason, it is common practice when dealing with list schedules to simply

-14 -

Figure 1.3: A list schedule for the task system in Figure 1.1b.

List:

Schedule:

Time unit:

ML KJ I ABCDETF GH)
MIBIL|D[F [H[K]|I
AVAClIelc Vs V)

1 2l3T4lstglyty

Figure 1.4: List schedules are not best for non-UET systems.

e
\1

1F

A

N\
e

1

D

2B

Task execution times are given beside the tasks.

An optimal schedule: A|C |B|B
AD |E | F
Time unit: 1'21'3 "4
A list schedule:
Lstt: A B C D E F)
Schedule: JA|CIDIE|F
BBV A ¥/
Time units: 1'2°3 '4°5

In fact, o(B) = 1 in every list schedule for this system.

- 15 -
give the list L, along with an informal description of the underlying schedule. The mapping o is not
formally specified, because it tends to obscure, rather than illuminate, the nature of the schedule.
Throughout this thesis we will follow the practice of specifying only the list and not the mapping o.

1.3.2 Ciritical path schedules

Critical path schedules are one of the most widely studicd subclasses of list schedules. Intuitively,
these are schedules in which the tasks are ordered within the list according to their distance from a leaf of
the dag which represents the precedence structure (a leaf is a node with no successors). The idea is that
tasks far from the leaves should be executed first.

More formally, the level of a task in the precedence structure may be defined as follows: If Ti has
no successors, then level(T;) = 1; otherwise, leve](Ti) =1+ max{levc](Tj): T; < Tj}. A critical path
schedule is a list schedule derived from a list having the property that for any two tasks T and S, if
level(T) > level(S), then T precedes S on the list. Because the list contains the tasks ordered according to
their levels, these schedules are also called level schedules. An example of a critical path schedule is given
in Figure 1.5.

As noted above, critical ‘path schedules have been studied extensively. They are of substantial
practical and thcoretical interest for three reasons: First, the method is intuitively appcaling. Second,
the method is applicable to any system having precedence constraints. Third, these schedules are easy to
construct - using breadth first search the list can be constructed in time lincar with the number of cdges in
the dag representing the precedence constraints.

1.3.3 Coffiman-Graham scheduling

Coffman-Graham schedules arc the third class of schedules we utilize. These schedules are a
subclass of critical path schedules in which the tasks of cach level are ordered in a particular way.

Specifically, Coffman-Graham schedules are a class of list schedules for which the list is formed according

to the following rules: Each task is assigned a label as follows:

- 16 -
Figure 1.5: Critical path schedules

B
f 3 / ll) 3 L 3 m = 2 processors
F2 G 2\1{ 2
%
Il 1 Il K{ L1 M1
The numbers beside the tasks are the levels of the tasks.

Criticalpathlistt. (A B C E D F G HI J KL M

Schedule: AICID|F{H}I |K
B |E|L|G|M[I S
Time unit; 1 '2'3'4°'5%6 "7

Figure 1.6: Coffman-Graham schedules

1 m = 2 processors

/ 8
5/!?%1(3 L2 M1

The numbers beside the tasks are the Coffman-Graham labels of the tasks.

Coffman-Grahamlistt. (B A D E C H G F I J KL M

Schedule: BIDIC|GI|I |K|M
AlEIH|F]|1 |LE
Time unit; 1121314 '5%¢6'7

- 17 -
1. Select a task which has no successors and assign label 1 to that task.
2. Assume that labels 1, ..., i - 1, have already been assigned. For each unlabeled task T, all of
whose successors have been labeled, form a list (in decrecasing order) of the labcels of T's
immediate successors. Assign label i to the task whose list is lexicographically the smallest.
The list used to do the scheduling contains the tasks in decreasing order of their labels. An example of a
Coffman-Graham labeling and the corresponding schedule are given in Figure 1.6.

These schedules were first investigated by Coffinan and Graham [CG] in conjunction with UET
task systems where m=2. As we note in the next scction, Coffman-Graham schedules are guaranteed to
be optimal in this limited case, while list and critical path schedules are not. Since the initial work of
Coffman and Graham, these schedules have been investigated by several other researchers, including
Lam and Sethi, Goyal, Leung and Jaffe [LS, Go, Le, Ja]. In general, the mathematical properties of
Coffman-Graham schedules make them easier to analyze than the more gencral case of critical nath
schedules. However, because Coffman-Graham schedules are a subclass of critical path schedules, certain
results about Coffman-Graham schedules - in particular, lower bounds on worst case performance - can
be applicd to critical path schedules as well. We will make use of this relationship in Chapter S.

1.4 A survey of major results

In the remainder of this chapter we survey the major results pertaining to the minimum cxecution
time scheduling problem for the basic task system model and to the three types of schedules which we
utilize. These results are basically of two kinds: cither they are NP-completeness results, therefore
implying that finding algorithms which produce optimal schedules in a rcasonable amount of time is
unlikely; or they are bounds on the worst case performance of list, critical path or Coffinan-Graham
scheduling. We first bricfly review the notions of NP-completeness.

1.4.1 NP concepts

Throughout this thesis a recurrent concept is the notion of a problem being NP-complete or

-18 -
NP-hard. In this section we give a bricf description of these ideas. The reader is refered to the book by
Garey and Johnson [GJ79] for a detailed discussion.
The set NP, consists of all languages which can be recognized by a nondeterministic Turing machine
in polynomial time. Similarly, the set P consists of all languages which can be rccognized by a
deterministic Turing machine in polynomial time. It is not known whether P is properly contained in NP.
A language L in NP is NP-complete is the following condition is satisfied:
Given a deterministic algorithm of time complexity T(n) > n for recognizing L, for each
language L in NP, there is an cffectiye way to find a deterministic algorithm of time complexity
T(p(n)) for recognizing L, where p is a polynomial depending on L.
Clearly, if any NP-compl_ctc language is in P, then P = NP. The usual method of showing that a
language L, is NP-complete is to show that:
L L,isin NP
2. There exists an NP-complete language L, which is reducible to Lo in deterministic polynomial
time.

A language for which the second condition can be shown, but not the first is NP-hard. The recognition of

such languages is at least as hard as the recognition of NP-complete languages.

Finally, we note that it is widcly believed that P # NP. This belicf springs from the fact that there
has been an immense amount of time and energy devoted to finding a polynomial time algorithm for
NP-complete problems. Morcover, it is generally acknowledged that obtaining lower bounds on time
complexity arc among the hardest types of results to obtain. This may help to cxplain why no one has
been able to show P # NP, even though most rescarchers believe that is the case. Thus, there is strong
evidence that polynomial time algorithms for obtaining solutions to NP-complete problems do not exist.

This leaves us to concentrate on the performance of heuristic algorithms for these problems.

-19-

1.4.2 NP results

There are two important NP-completeness results pertaining to finding minimum length schedules
for task systems.

For UET task systems with m processors, Ullman [U73, U75, U76] has shown that finding
minimum length schedules is NP-complete. Lenstra and Kan [LK] have shown the same result using a
different construction. A major opcn problem is whether this result is true for any fixed m > 3. That is,
whether, for any fixed number of processors m > 3, finding minimum length schedules for UET task
systems with m processors is NP-complete. As mentioned earlier, when m = 2, there is a polynomial
time algorithm for finding minimum length schedules. Also, if the precedence constraints are restricted
to a forest, then there is a polynomial time scheduling algorithm. Both of these results are given in the
next section.

For task systems with unrestricted task exccution times and no precedence constraints, Bruno,
Coffman and Scthi [BCS] have shown that finding minimum length schedules is NP-hard even for
systems with just two processors.

Finally, both Ullman [U73, U75, U76] and Lenstra and Kan [LK] have shown the following: That
finding minimum exccution time schedules for task systems with two processors, prececdence constraints,
and task exccution times restricted to be cither 1 or 2, is NP-complete.

1.4.3 Performance results

As cvidenced by the NP-completeness results given in the previous section, for most intercsting
scheduling problems it is unlikcly that polynomial time algorithms exist which produce optimal
schedules. For this rcason, most of the rescarch attention has been on analyzing the performance of
various heuristic scheduling methods. Almost all of these results involve worst case performance. That is,
an upper bound is given for the ratio of the Iength of a schedule of a particular type (for instance, a list

schedule) to the length of an optimal schedule for the same task system. In this survey we restrict our

- 20 -
attention to the worst case performance of list, critical path and Coffman-Graham schedules. Again we
note that most useful scheduling algorithms can be formulated as algorithms which produce schedules
which are a subclass of the list schedules, and that critical path and Coffman-Graham schedules have
properties which make them particularly attractive, both theoretically and practically.

Many of the results which we cite are also the best possible results. This means that the result is
both an upper and lower bound on the worst case ratio between the length of a schedule of the particular
type and the length of an optimal schedule. That is, there exists a task system, a schedule of the particular »
type and an optimal schedule for that task system, such that the ratio of the schedule lengths is arbitrarily
close to the upper bound.

Throughout this thesis, given a task system S, we use the following four values when citing various
results:

OPT is the length of an optimal schedule for §

LIST is the maximum length of any list schedule for S

CPATH is the maximum length of any critical path schedule for §

CG is the maximum length of any Coffman-Graham schedule for §
Before actually giving any results, we note that there are two excellent references for the interested
rcader. Most of the major results cited in this and the previous section are given a full treatment,
including proofs, in the book by Coffiman [C]. Sccondly, a ncar exhaustive listing of scheduling results
for many kinds of task systems and scheduling algorithms is given in [GLLK].

The most extensive rescarch with regard to the schedules that we are considering has been done for
UET task systems. Some of the carliest work was done by Graham [G66] who showed that LIST/OPT
< 2-1/m, and that this is the best possible result. Chen [Ch] has shown that CPATH/OPT < 4/3ifm
= 2 and that CPATH/OPT < 2 - 1/(m - 1) if m > 3. Each portion of this bound is the best possible.

This result shows that critical path schedules have slightly better worst case bchavior than do list

- 21 -
schedules in the gencral UET case. If the precedence structure is restricted to a tree, Hu [H] shows that
critical path schedules are optimal.

With regard to Coffman-Graham schedules and the UET case, there are two major results. If m =
2, then Coffman and Graham [CG] have shown that these schedules are optimal. If m > 2, then Lam
and Scthi [LS] have shown that CG/OPT < 2 - 2/m, and that this is the best possible result. An
alternative method of producing optimal schedules when m = 2 is given by Fujii, Kasami and Ninomiya
[FKN]. This method is based on maximal matchings and has not been generalized for systems with more
than two processors.

With respect to task systems with no precedence constraints and arbitrary execution times, there are
several interesting results pertaining to list scheduling. Graham [G66] has shown that in this instance,
LIST/0PT < 2- 1/m, and that this is the best possible result. This is exactly the same bound as was
given for LIST/OPT in the UET case. In fact, Graham [G66] has shown that this same bound holds,
even for task systems with both preccdence constraints and unrestricted task execution times. Graham
[G69] has also shown the following result which explicitly incorporates the task execution times:
LIST/OPT < 1 + (m - D)[max{r; : T; € T}]/(‘z".Ti ¢ 77 Note that both Coffman-Graham and critical
path schedules are equivalent to list schedules in this context because there are no precedence constraints,
There are, however, a number of other types of schedules which have been studicd for this submodel.
Most of these are subclasses of list schedules in which the tasks are ordered in the list bascd on the task
execution times. Again the reader is refered to [C] and [GLLK] for a thorough treatment.

1.5 Extensions

For many practical applications the basic task system model presented here has proven to be
insufficient. For this rcason, and out of theoretical curiosity, a numbecr of cextensions to the basic task
system model have been investigated.

One major arca of rescarch in this regard has been the study of preemptive scheduling. In this

-22-
extension, a task may be intcrrupted during its execution and then continued later in the schedule. For
UET systems, this produces no new results, however for systems where task execution times are not
restricted, this is an interesting and powerful extension. A large number of results have been obtained on
preemptive scheduling, many of them analogous to the results cited in the previous section. Most of these
results may be found in [C] and [GLLK].

Other extensions to the basic model include the following: Liu and Liu [Li] and Jaffe {Ja] have
investigated task systems with processors of different types - each task specifies the type of processor that
it must execute on. Ibarra and Kim [IK], Kafura and Shen {KS] and Jaffe [Ja] have investigated task
systems where the processors have different speeds. Lloyd has studied UET task systems where cach task
may require more than one processor during its execution. Thesc results are presented in Chapter 8.
Finally, a number of researchers have investigated task systems with resources. These systems are the

main focus of this thesis.

_23-

Chapter 2 - Task Systems With Resources

For many practical scheduling problems the basic task system model presented in Chapter 1 is
inadequate. For these problems, the performance bounds for the basic model are neither accurate nor
informative. Intuitively, the basic model does not take enough of the parameters of these problems into
consideration to provide good bounds. For instance, consider the folloﬁing three scheduling problems:

1. A computer system has associated with it, in addition to processors, several types of resources,
including memory, disk drives and printers. In general, there is a sct of jobs to be executed on the
system, and, depending on the circumstances, there may or may not be precedence constraints
associated with these jobs. Each job has certain requircments with respect to the resources of the
system. For cxample, a job may require 20K of memory, two disk drives and a printer. The
problem is to produce a schedule for cxccuting this set of jobs in a minimum amount of time.
Clearly, for such a schedule to be valid, the demand of the jobs executing at any given time, for
cach resource, should not exceed the available quantity of the resource.

2. A large construction company possesses a certain amount of equipment: bulldozers, trucks, cranes,
etc. In addition, the company has a number of employees. Together the equipment and the
employees constitute the resources of the company. In general, there is a set of construction
projects for the company to complete. Each project requires certain picces of equipment and
numbers of pecople. Here again, the problem is to produce a schedule for completing the projects
in a minimum period of time, given the resources of the company.

3. Anidcalized bin packing problem is the following: Given a sct of items and a set of bins, pack the

items into a minimum number of bins. The itcms are of identical size and shape, although they
may vary in other paramcters - for instance, in weight and cost. The bins are identical in all

respects. In addition to having a fixed size and shape, the bins have fixed capacitics with respect to

-24 -

the other parameters of the items. For example, there may be limits on the total weight and total

cost of the items packed into any single bin. In addition, there may or may not be a limit on the

total number of items that can be packed into any single bin. The problem is to pack the items

into a minimum number of bins without violating the capacity constraints of the bins.
The outstanding feature of cach of these problems is the presence of a resource constraint. These
constraints are sufficiently powerful, that it is unrcasonable to expect that using the basic task system
model for analyzing the performance of scheduling alogrithms for these problems will provide useful
results. The power of these constraints can, however, be captured by extending the basic task system
model to include a set of resources. Each task may require some or all of the resources during its
exccution. Such a task system with resources can be used to effectively model each of the three problems
outlined above, although for problem 2 and possibly for problem 3, there is no processor constraint. We
will return to the question of processor constraints in a later section.

In the remainder of this thesis we deal exclusively with task systems with resources. Depending on

the exact naturc of the problem under consideration, there are two alternative formal models of task
systems with resources that may be utilized. In the next two sections we examine those two models.

2.1 Task systems with continuous resources

In this scction we examine task systems with continuous resources. This model has been used to
obtain almost all performance bounds for the scheduling of task systems with resources to date.

.1.1 The model

A UET task system with continuous resources is a system S = <7, £, m, s> where:

1. T= {Tl, s Tn} is a sct of tasks - associated with T; is a positive integral execution time i
2. < is a partial order specifying precedence constraints between the tasks.

3. There arc i identical processors.

4. s is the number of different resources. Tt is assumed that s > 1, that there is cxactly onc unit of

N 25 .

each resource, and that each task may require any portion of that one unit for each resource.
For each task T; and each resource v, R (T}) € [0, 1] specifies the portion of resource v required by task
T, during its exccution. Because a task may rcquire any portion of each resource (all, none, 172, or
.000001, for instance) we say that the resources arc continuous.

A valid schedule for a task system with continuous resources S, is a mapping o:7 — (N - {0}) such

that:

1. Forall/le (N-{0}),m > [{T;€ T: o(T)) <I<o(T)) + 7;-13}1-

2. IfFTy< Tj, then o(T)) + 7;-1<o(T j)‘

3. Forallle (N-{0}),andv,1 <v <s,12> IR (T}) summing over all T; such that

o(T) << o(T) + 74~ 1

This definition is identical to the one for basic task systems, except for condition 3. This last condition
insures that at any given time unit, the currently executing tasks do not requirc more than one unit of

cach resource.

Intuitively, a list schedule for a task system with continuous recsources may be constructed as

| follows: Initially, let L be any (ordered) list of the tasks in 7. The tasks are scheduled as follows:
Whenever a processor becomes idle, the list L is instantaneously scanned from its beginning and the first
task T (if any) which mcets the following criteria is removed from L and assigned to the idle processor: 1.
Each task Tj such that Tj < T, has completed execution and 2. If [rl, s rs] represents the total resource
requircments of all currently exccuting tasks, then for each rcsource v, r, + RV(T) < 1. This last
requircment guarantees that the currently executing tasks do not require more than a total of onc unit for

any resource. More formally, a list schedule for a task system with continuous resources is a valid

schedule which is gencrated as follows:

- 26 -
1. Initially, L is an (ordcred) list of the tasks in T and /is 1.
2. While L is nonempty perform this step
a. Letk = [{T;¢L:o(T) <!<o(T) + vri-1}|
b. Foreachv,1< v <, letry, = X R(T;) sunmming over all T; such that
oT) <I< o(Ti) +7i-1
c. Let L' be a list of the ready tasks on L at time /, the tasks in the same orderon L' ason L
d. While L' is noncmpty and k < m perform this step
i. Let T be the first task on L’
ii. Ifforeachv,1 <v<s, rv+Rv(T) <1
then let o(T) = [letk = k+1, for each v, let =1, + RV(T), and remove T from L
iii. Remove T from L'
e. Let/=1+ min {o(Ti) +71-1:T;¢ Lando(Ti) + 'ri-IZI}
An example of a task system with continuous resources and a list schedule for that system is given in
Figure 2.1.
We note that critical path and Cofﬁngn—Graham schedules retain their original dcfinitions of being
particular subclasses of list schedules.

2.1.2 Shortcomings

There are two major shortcomings of the task system with continuous resources model.

First, the assumption that the resources are "continuous™ is not an accurate reflection of either
existing computer systems or of many industrial scheduling problems. In thosc instances, resources are
much more "discrete™ in nature than they are "continuous”. For instance, computing resources such as
tape drives and line printers are gencrally available only in small quantitics and a task can require only
whole units of them. Morcover, while memory may be thought of as being continuous due to its large

size, it is debatable whether memory should even be viewed as a limiting resource in terins of practical

-27-

Figure 2.1: Example of a task system with continuous resources

The resource requirements of the tasks are given in a vector beside the task.

T [5,.1 I|3 [1,0] T [3,.8]
D M\E [0, 0] F 1.9

N

G o,

|

H .y

Fach task has an execution time of one.

List (AB C D E F G H)
Schedule: A|B|D|F|G|H
cCY e v
N
Time unit: 1'213141516

m =3 processors

2 continuous resources

- 28 -
computation.

Second, the performance bounds that have been obtained for various heuristics with respect to the
continuous resources model, depend on the number of different resources, but not on the actual number
of discrete units of each resource. For systems in which the available quantities of the resources are small,
the actual worst casc performance of various heuristics may be much better than these bounds indicate.

2.2 Task systems with discrete resources

To try to overcome the perceived shortcomings of the task systems with continuous resources model,

we consider a model of task systems with discrete resources - there is a fixed number of indivisible units

of each resource which tasks may require during execution.

2.2.1 The model

A task system with discrete resources is a system S = <7, £, m, s> where:

1. T= {Tl, . Tn} is a set of tasks - associated with T is a positive integral execution time Tje
2. < is a partial order specifying precedence constraints between the tasks.
3. There are m identical processors.
4. s is the number of different resources. It is assumed that s > 1, that there are I indivisible units of
resource i, and that a task may require only integral numbers of these units for cach resource.
For cach task T, and cach resource v, Rv(Ti) specifics the number of units of resource v required by task
Ti during its exccution. Becausc a task may require only integral numbers of units of each resource, we

say that the resources are discrete.

A valid schedule for a task system with discrete resources S, is a mapping ¢:7 — (N - {0}) such

that;
1. Forall/e (N-{0}).m > I{Ti eT: "(Ti) <I<L "(Ti) + 7" 1}
2. lfTi { Tj, then "(Ti) +7-1< o(Tj).

3. Forallle (N-{0}),and v, 1 < v <5, ry 2 b Rv(Ti) summing over all Ti such that

- 29 -
o(T) <1< o(T) + ;- L
This definition is identical to the one for basic task systems, except for condition 3. This last condition
insures that at any given time unit, the currently executing tasks do not requirc more than the existing
number of units of each resource.

Intuitively, a list schedule for a task system with discrete resources may be constructed as follows:

Initially, lct L be any (ordered) list of the tasks in 7. The tasks are scheduled as follows: Whenever a
processor becomes idle, the list L is instantancously scanned from its beginning and the first task T (if
any) which meets the following criteria is removed from L and assigned to the idle processor: 1. Each
task Tj such that Tj { T, has completed execution and 2. If [ri, s r'] represents the total resource

.
requirements of all currently executing tasks, then for each resource v, r, + R (T) < r,. More
q v W sty

formally, a list schedule for a task system with discrete resources is a valid schedule which is generated as

follows:
1. Initially, L is an (ordercd) list of the tasks in 7"and /is 1.
2. While L is nonempty perform this step
a Letk = [{T;¢L: o(T})) <I/<o(T) + 7;-1}|
b. Foreachv,1 < v <s,let r", =2 Rv(Ti) summing over all Ti such that
o(T) <1< o(T) + 7;-1
¢. Let L' be alist of the ready tasks on L at time /, the tasks in the same orderon L' ason L.
d. While L' is nonempty and k < m perform this step
i. LetT be the firsttask on L'
ii. If foreach v, 1 < v <51y + R(T) <1,
then Iet 6(T) = [, letk = k+1, for cach v, lct r:, = r\', + RV(T) and remove T from L
iii. Remove T from L*

e. letli=1 +min{a(Ti)+1-i-]:TiQ L and o(T)) +7i'121}

-30-

Figure 2.2: Example of a task system with discrete resources

A ,0 By C .y m = 3 processors
D 3.2 E 12 F [0,0] 2 discrete resources
i I I n=3

r, =2
G121 H {0,0] 13,0

Each task has an execution time of one.

Lst @¢{ HGF E D C B A)

Schedule: CIFID|I |G
B|EP A H
A A VA
Time unit; 1'2°3°'4°5

- 31 -
An example of a task system with discrete resources and a list schedule for that system is given in Figure
22,

We note that critical path and Coffman-Graham schedules retain their original definitions of being
particular subclasses of list schedules.
2.2.2 Discussion

We are not the first to consider task systems with discrete resources. The original formulation of
task systems with resources by Garey and Graham [GG73, GG75] involved discrete resources. Morcover,
an NP-completeness result of Ullman [U76] involves discrete resources. However, as far as performance
bounds are concerned, almost all of the previous work has been done for systems with continuous
resources. The only results pertaining to the discrete model are some limited results of Goyal [Go] and
Leung [Le] involving systems with 0-1 resources. These are systems with exactly one indivisible unit of
each resource. A task cither requires all of a resource or none of it.

As noted earlier, the discrete resources approach is designed to overcome the perccived
shortéomings of the continuous resources approach. The performance bounds for systems with discrete
resources will incorporate the values ry, ..., Ig (thesc arc the number of units of each resource). lThis
means that the performance bounds will distinguish between task systems with different numbers of the
same resource, unlike in the continuous resources case. They will also be able to indicate the effect on
performance, if additional units of an cxisting resource are added to the system,

In the remainder of this chapter, we survey the NP-completeness results involving task systems with
resources (discrete and continuous) and discuss the role of processors in this model.

2.3 Why study heuristics?

In our discussion of basic task systems in the previous chapter we mentioned scveral
NP-completeness results regarding the minimum execution time scheduling of those systems. As might

be expected, much the same results exist for task systems with resources. In this case however, the results

- 32 -

are more definitive than for basic task systems. Ullman [U76] has shown that finding minimum
execution time schedules for UET task systems with discrete resources is NP-complete, even for systems
with only two processors, one discrete resource with one unit (and arbitrary precedence constraints). For
continuous resources, Garey and Johnson [GJ74] show that finding minimum exccution time schedules is
NP-complete for UET task systems with threc processors, one continuous resource, and no precedence
contraints. They also show [GJ74] that finding minimum execution time schedules is an NP-complete
problem for UET task systems with two processors, onc continuous resource and precedence constraints
restricted to a forest.

From the above results we can conclude that for virtually all interesting scheduling problems for
task systems with resources, it is unlikely that polynomial time‘alogrithms exist which produce optimal
schedules. This leaves the study of heuristic algorithms for scheduling. In this thesis we examine list and
critical path schcdulés. As noted in Chapter 1, these are the two simplest and most intuitive scheduling
heuristics for UET systems. We will not be particularly concerned with Coffman-Graham scheduling,
except in one instance where we use it to get a lower bound on the worst case performance of critical
path scheduling. The reason for this lack of intensc interest in Coffman-Graham scheduling is that,
particularly when dealing with cxtensions of the basic task system model, experience has shown that the
difference in the worst case performance of critical path and Coffman-Graham scheduling is very small
rclative to the worst case bound. Because this diffcrence is so small, the analysis of the performance of
both critical path schedules and Coffman-Graham schedules is of little or no practical interest.

2.4 The processors question

In both of the models of task systems with resources we study, there is a sct of m processors. The
role that these processors should play in this modcl is a scrious question, both theorctically and
practically. There arc two distinct schools of thought on this issue.

One approach is to assumc that the processors play no role in constraining the schedule. In this

- 33 -

case, it is assumed that the number of processors is at lcast as large as the number of tasks in the system
(ie. m 2 n = |7]). This assumption means that given any time units B;, Bj with j > i, and any task T € B;,
the reason that T did not execute in B; is due to either a resource constraint or a precedence constraint. It
is not the case that Bi was "full", which would mean that there was "no room” for T in Bi' As far as
performance bounds are concerned under this assumption, it is as if processors never appeared in the
model at all. The quantity m plays no role in the bounds for task systcms with no processor constraint.
For certain applications, this is a reasonable assumption - for instance, applications 2 and 3 that were
discussed at the beginning of this chapter: In the scheduling problem for a construction company given
there, therc was nothing corresponding to a processor constraint. In the bin packing problem it was noted
that there may or may not be a limit on the number of items placed into any single bin (such a limit
corresponds to a processor constraint). Much of the previous work on performance bounds for task
systems with resources has been on systems without a processor constraint.

The second approach to the role of processors in the task system with resources model is that the
processors are vital in determining worst case performance, and that many applications demand a model
involving processors. Even so, it can be argued that no generality is lost by using a "no processor
constraint” approach, since processors can be treated as just another resource. That is, given a
performance bound for systems with no processor constraint, and a task system with s resources and a
processor constraint, simply apply the bound as if the system had s+1 resources. However, from an
intuitive vicwpoint, this approach is suspect, since processors are not "just another resource”. The
processor resource possesses certain characteristics that are not shared by resources in general. In |
particular, every task requires exactly onc unit of the processor resource - no more and no less.
Furthermore, with respect to task systems with continuous resources, the processor resource is unique in
that a task may not require just any portion of the resource, as was assumed for continuous resources in

general. At least intuitively, there is no reason to believe that treating the processors as an additional

-34 -
kind of resource will result in meaningful worst case bounds.

2.5 The problems to be studied

In this thesis we study minimum execution time scheduling of UET task systems with resources, We
examine the following four models:

UET task systems with continuous resources and no processor constraint

UET task systems with continuous resources and a processor constraint

UET task systems with discrete resources and no processor constraint

UET task systems with discrete resources and a processor constraint
We investigate the worst case performance of list and critical path scheduling for each of these models.
We also compare the bounds for the four models and try to delincate the relationships between those

bounds.

-35-

Chapter 3 - List Scheduling

In this chapter we study the list scheduling of UET task systems with resources. As noted in the last
chapter, list schedules are the fundamental type of schedule which we consider, and most scheduling
algorithms produce classes of schedules which are subclasses of the list schedules. Moreover, no
generality is lost by restricting our attention to list schedules when dealing with UET task systems,
because there is always a list schedule of optimal length.

For comparison purposes, we again mention the following two results on the worst case performance
of list scheduling for basic UET task systems (i.e. systems without any resources). If there is no processor
constraint (m 2> n) then all list schedules are optimal. That is, LIST/OPT = 1. If there is a processor
constraint (m > 2) then LIST/OPT < 2 - 1/m, and this is the best possible result [G66).

3.1 Continuous resources

The major work on list scheduling for UET task systems with continuous resources is by Garey,
etal. [GGJY]. They show for a system with no processor constraint (m > n), that LIST/OPT < s"OPT/2
+ s/2 + 1, and that systems exist for which LIST/OPT > sOPT/2 + s/2 + 1 - 2s/OPT. This upper
bound can be compared to the corresponding result for UET task systems with no resources. That
comparison shows that adding even a single continuous resource to a UET task system rcsulfs in a
tremendous degradation of the worst case behavior of list scheduling. That is, for a UET task system
without resources, list schedules are always optimal, whercas the addition of a single continuous resource
can result in list schedules having length quadratic in the length of an optimal schedule. This comparison
confirms our carlier comments that performance bounds based on the basic model are probably not good
indicators of performance for problems involving resources.

For UET task systems with continuous resources and a processor constraint, there are no tight upper

bounds. There are, however, two partial results. First, is the result of Garey, ct.al. [GGJY] cited above,

- 36 -

using s+1 resources instead of s - the extra resource accounting for the existence of the processor
constraint. This yields LIST/OPT < (s+1)OPT/2 + s/2 + 3/2. Second, Yao [Y] has shown that
LIST/OPT < min{m, (m-1)s’OPT/(2m) + 7(m-1)s/(2m) + 1}. As mentioned above, necither of these
results is best possible.
3.2 Discrete resources

In this section we state and prove worst case performance bounds for the list scheduling of UET
task systems with discrete resources. The only previous work for these systems is by Goyal [Go] and
Leung [Le). Goyal investigated UET task systems with one discrete resource, where = 1 (there is
exactly one unit of that one resource, so each task cither requires all of the resource or none ofit). He
shows for systems with no processor constraint (m > n), that LIST/OPT < 2, and for systems with
processor constraints (m > 2), that LISTIOI’I‘ < 3 -2/m. Moreover, both of these results are the best
possi-ble. Comparing these bounds to those for UET task systems without resources, we note that the
addition of one unit of one discrete resource caused the worst case ratio of LIST to OPT to increase by 1
in the no processor constraint case, and by 1 - 1/m for systems with a processor constraint. Leung
investigated UET task systems with discrete resources in which cach r;=1, under the restriction that each
task may require at most one unit of resource (i.e. for each task T, 2?___ 1 Ri(T) < 1). He showed that
LIST/OPT < min{m, (2-1/m) + s(1-1/m)}, and that this is the best possiblc result. Our results
generalize the results of Goyal and Leung,

3.2.1 Two results

We prove the following two results about the worst casc performance of list scheduling for UET task
systems with discrete resources:
Theorem 3.1: If m > n (no processor constraint), then LIST/OPT < 1 + r, wherer = 2?___1 L.

Morcover, this bound is the best possible.

- 37 -
Theorem 3.2: If m > 2 (a processor constraint), then LIST/OPT < min{m, (2-1/m) + r(1-1/m)},
wherer = Z?___l r; Morcover, this bound is the best possible.
These results are proven in the next two sections. Before doing so, however, there are several remarks to
be made about these two theorems.

First, note the surprising role played by the resources in determining the worst case bound. The
relevant quantity is not the number of different resources, but rather is the sum total of all the units of all
the resources in the system. The number of different resources and the distribution of the r units of
resource among those different resources is no factor. This mecans that the worst casc bound for
LIST/OPT is the same for a system with 1000 units of one resource as it is for a system with one unit of
each of 1000 resources. This contrasts sharply with the results for UET task systems with continuous
resources, where the key parameter is s, the number of different resources.

Second, these bounds indicate that for each unit of (any) resource added to a UET task system, the
worst case ratio of LIST to OPT increases by 1 in the no processor constraint case, and by 1 - 1/m in the
processor constraint casc. This follows, because for r = 0, our results are identical to those cited in the
introduction to this chapter as the best possible bounds for LIST/OPT for basic UET task systems (i.e.
without resources). These results provide a clear indication of the role of the resources in determining
worst case bchavior.

Third, unlike the situation for UET task systems with continuous resourccs, there is a tight upper
bound for UET task systems with discrete resources and a processor constraint. For that result, we note
that the bound of m holds for every r > m - 1. This indicates the point at which the processor constraint
dominates the resource constraint with respect to the worst case performance of list scheduling.

3.2.2 The upper bounds

In this section and the next we prove Theorems 3.1 and 3.2 - the upper bounds in this section and

the lower bounds in the next. In both sections we concentrate on the proof of Theorem 3.2 - the result for

- 38 -
systems with a processor constraint. We do this because those results are slightly more complicated (due
to the presence of the processor constraint) than those for Theorem 3.1. At the end of each section we

bricfly indicate how to modify those results to obtain the results for the no processor constraint case.

Lemma 3.1: If m > 2 (a processor constraint), then LIST/OPT < min{m, (2-1/m) + r(1-1/m)}, where

r=32_yr,
Proof
Assume that a UET task system with discrete resources is given. We prove the result by obtaining a
lower bound on OPT, and an upper bound on LIST. Combining these bounds gives an upper bound
for LIST/OPT.

We make use of the following notation throughout the proof: Let k be the length of a critical
path in a directed acyclic graph representing the precedence constraints, and for cach resource i, let X
=2 Ri(Tj) summing over all Tj € T. Thatis, x; is the total demand for resource i among all of the
tasks in the system.

Consider an optimal schedule for the system. Three observations can be made: First, an
optimal schedule can be no shorter than k, the length of a critical path. Second, an optimal schedule
can do no better than to have tasks executing on cach of the processors during each time unit. Third,
for cach resource, an optimal schedule can do no better than to have all units of that resource utilized
during cach time unit. Thus, OPT > max{k, n/m, X171y, - ,xs/rs}.

Now consider an arbitrary list schedule for the system. Such a schedule consists of two types of
time units: Those in which all processors have tasks exccuting on them, and those in which at least one
processor is idle. The number of time units with idle processors may be bounded above as follows:
Whenever a processor is idle during a time unit, cach unexccuted task, T,is prevented from exccuting

on that processor for one of two reasons: Either a predecessor of T has not yet exccuted, or, for some

resource j, the demand for resource j by tasks exccuting during that time unit, together with the

-39-
demand for resource j by task T, exceeds rj. It is well known that there can be at most k time units in
which only the first constraint prevents tasks from executing. Moreover, at each time unit where the
second constraint prevents some task from executing, at least one unit of some resource must be
required by some task exccﬁting in that time unit. Hence, there are at most 2§= 1 X; time units in
which there is an idle processor due, in part, to the second constraint. Thus,
LIST <k + 2¥_; % + (vk-23_ x/m = n/m + (I-/m)k + (-/m)Z5_ 4 x,
.". LIST/OPT < [n/m + (1-1/m)k + (1-1/m)2$=1 x;1/ max{k, n/m, x;/ry, ..., xS/rs}
<@Vm) + (-V/mE5_;
= (2-1/m) + r(1-1/m)
Finally, note that for all m, LIST/OPT < m, since
1. A list schedule cannot have a time unit in which all processors are idlc unless the schedule has
completed.
2. There are at most m"OPT tasks in the entire task system.
.". LIST/OPT < min{m, (2-1/m) + r(1-1/m)} O

Lemma 3.2: If m > n (no processor constraint), then LIST/OPT <1 + r, wherer = Esi"= 1%

Proof

First note that since m 2> n, each timc unit of any schedule can be treated as having at least one idle
processor. Then, analogously to the proof of Lemma 3.1, we can show that
OPT > max{k, xy/ry, ..., x/r} and LIST < k + 2%
". LIST/OPT < [k + Z¥_ 1 x;] 7 max{k, xy/ry, ... xg/1}
<1+ 3 5y

=1+4r. a

-40-

3.2.3 The lower bounds

In this section we prove that the upper bounds for LIST/OPT given in the previous scction are the
best possfble upper bounds for the worst case performance of list scheduling for UET task systems with
discrete resources.

Lemma 3.3: If m > 2 (a processor constraint), then LIST/OPT < min{m, (2-1/m) + r(1-1/m)}, where

r= 3%_ 1, is the best possible bound.

We show that for any number of processors m, and any distribution of r units of resource, that
the ratio LIST/OPT can be arbitrarily close to min{m, (2-1/m) + r(1-1/m)}. Weletr = Z?zl ¢S
where 1 is the number of units of resource i. We assume that each r; is nonzero, and that r does not
exceed m - 1. Now, let z be a multiple of m and consider a task system consisting of the following
tasks:

1. Tasks Al) *A(m-r-l)z where each Ai requires no resources.

2. Tasks By, .., B, where B; < B, , ; for1 <i < z-1 and where each B, requires one unit of
resource s and 0 units of all other resources.

3. For cach resource v, 1 < v < s, there are tasks DY, ... , D‘r’v, each of which requires all the units
of all resources, and tasks C‘i’j for1<i<r,and1<j <z each of which requircs one unit of
resource v and 0 units of all other resources. The exception is that tasks Cf.s'l, N C?s,z
require no resources. Furthermore, for cachvandi, 1 <i < r,, D‘i' { C‘i’l { C‘iIZ {.. ¥ C‘i'z.
Such a sequence of tasks will be referred to as the D‘i’ chain,

An cxample of such a task system for the case of s = 1 is shown in Figure 3.1.

An optimal schedule for this UET task system with discrete resources has length OPT = z + r.

In this schedule the D-tasks cxecute in the first r time units, and the C-tasks, B-tasks and A-tasks

exccute in the next z time units. During each of these z time units, r C-tasks, one B-task and m-r-1

-4} -
Figure 3.1: Task system used in Lemma 3.3,

Assume thats = 1, hence r = r;. There are no processor constraints.

Dyr Dz r Dy D r
B G2 G1t Cr111 Cry 0
Bz 1 C1,2 1 Cz’z 1 Cl"l 2 1 Cl‘,2 0
|
B, 1 Gzl SPR! Cr1z2! Crz 0 A1 0t Ay 0
The resource requirements are given beside each task.
Figure 3.2: An optimal schedule
Schedule: Dl D2) Dl' Cl,l C1,2 CI,Z
7/ 7] G| G2 Gz
Cr,l Ct,2 Cr,z
By By B,
// A-tasks
Time units: r z
Length=r+1z
Figure 3.3: A "bad" list schedule
Schedule: A-tasks .es Dl-cham D,-chain} «.. D,-chain
/////////// ////// I,
Time units: (m-1-1)z z+1 ' z+1 ! Uz+l
m

Length=[2-1/m + r(1-1/m)lz + r

-4)-
A-tasks execute. Morcover, all units of each resource are used during each of these z time units.
Figure 3.2 shows an optimal schedule for the task system given in Figure 3.1. Note that an optimal
schedule can be generated from the list (D-tasks, C-tasks, B-tasks, A-tasks). Such a list schedule will
be identical to the one described here except that some of the A-tasks will execute with the D-tasks
instead of with the B-tasks and C-tasks.

Now consider the list (A-tasks, B-tasks, D}-chain, - D&l-chain, D%-chain, s Dﬁs-chain). In this
schedule, the A-tasks exccute in the first (m-r-1)z/m time units. All m processors are utilized during
these time units. The B-tasks execute in the next z time units. Since cach D-task requires all the units
of each resource, none of the D-tasks or C-tasks executc with the B-tasks. Finally, the D‘i'-chains
execute, one chain at a time. The execution of ecach chain requires z+1 time units. Thus, this
schedule has length LIST = (m-r-1)z/m + z + (z+1r = (2-1/m + r(1-1/m))z + r. Figure 3.3
shows such a list schedule for the task system given in Figure 3.1.

.. LIST/OPT = [(2-1/m + r(}-1/m))z + 1]/ (z + 1)

.. limit, _, oo LIST/OPT = (2-1/m) + r{1-1/m).
Finally, if r > m - 1 then the bound of m for LIST/OPT can be approached by copsidering a system
with the same sct of tasks as if r = m - 1, with the same resource requirements as if r = m- 1. O

Lemma 3.4: If m > n (no processor constraint), then LIST/OPT <1 + r, wherer = z?:l L is the

best possible bound.

Proof

We show that for any distribution of r units of resources that the ratio LIST/OPT can be
arbitrarily close to 1 + r, assuming that there is no processor constraint. Weletr = Efz 1T where
T is the number of units of resource i. We assume that each T is nonzero. Now, let z be an arbitrary

integer and consider a task system consisting of the following tasks:

-43 -

1. Tasks By, .., B, where B; < B; . ; for1 <i < z-1and where each B; requires one unit of
resource s and 0 units of all other resources.

2. For each resource v, 1 < v < s, there are tasks DY, ... , D‘lfv, each of which requires all the units

of all resources, and tasks Cj; for1 i< and1 <j <z, each of which requires one unit of

v
ij

resource v and 0 units of all other resources. The exception is that tasks C? Lo c

- T2

require no resources. Furthermore, foreachvandi,1 <i< r,, D‘{ { C‘ill { C‘i'z (..« C‘i,z'
This task system is identical to the task system described in the proof of Lemma 3.3, except that there
are no A-tasks. Similarly to that result, an optimal schedule for this UET task system with discrete
resources can be generated from the list (D-tasks, C-tasks, B-tasks). This schedule has length OPT =
z + r. Also similarly to the proof of Lemma 3.3, consider the list (B-tasks, D%-chain, . D&l-chain,
D%—chain, vy Dﬁs-chain). The schedule generated from this list has length LIST = z + (z +)r =
l+z+r
SL.LIST/OPT={(1+)z + 1]/ +1)

limit, _, oo LIST/OPT =1 + . u|

-44-

Chapter 4 - Critical Path Scheduling - Continuous Resources

In this chapter we study critical path scheduling of UET task systems with continuous resources. As

noted earlier, critical path schedules are a widely studied subclass of list schedules. For comparison
purposes we again mention the following two results on the worst case performance of critical patﬁ
scheduling for basic UET task systems (i.e. systems without any resources). If there is no processor
constraint (m > n) then critical path schedules are optimal. That is CPATH/OPT = 1. If there is a
processor constraint (m > 2) then CPATH/OPT < 4/3 if m = 2, and CPATH/OPT < 2- 1/(m-1) if m
> 3. These are the best possible bounds [Ch].
4.1 No processor constraint

The major work to date on critical path scheduling for UET task systems with continuous resources
is by Garey, et.al. [GGJY]. They show for a system with no processor constraints, that CPATH/OPT < 1
+ 17s/10, and that this is the best possible result. This result can be compared to the corresponding
result for UET task systems with no resources (that result is CPATH/OPT = 1). That comparison shows
that for every continuous resource added to a UET task system, the worst case bound for CPATH/OPT
increascs by 17/10. This result can also be compared to that for list scheduling of UET task systems with
continuous resources and no processor constraint. That comparison shows that the worst casc behavior of
critical path schedules is far better than that of list schedules for these systems - in the worst case,
CPATH grows lincarly with OPT, while LIST grows quadratically with OPT. This contrasts sharply with
the relationship between LIST and CPATH for UET task systcms without resources and no processor
constraints, where both types of schedules are always optimal,

4.2 A processor constraint

For critical path scheduling of UET task systems with continuous resources and a processor

constraint, there arc only two limited results (aside from our work). First, Yao [Y] has shown that

-45 -
CPATH/OPT < min{ m, 2 + 2s - (2s+1)/m }. Sccond, the result of Garey, et.al. [GGJY] given in the
previous section can be applied using s+ 1 resources (the extra resource accounting for the processor
constraint) yielding CPATH/OPT < 27/10 + 17s/10. In general, ncither of thesc results is the best
possible. In the remainder of this section we prove the following result about critical path scheduling of
UET task systems with continuous resources:

Theorem 4.1: If m > 2 (a processor constraint), then

CPATH/OPT £ m if 2<m<s+1
(s+m+1)/2 if s+1<m<2+1
(4s+m+3)/4 if 23+1<m«<8/3+1
(14s+m+9)/10 if8/3+1<m<3¥s+1
24+17s/10-(3s+1)/m if 3s + 1 <mandm 2> 10
2+5s/3-(8s/3+1)/m if 3s + 1 <mandm<10
Morcover, each portion of this bound is the best possible.
4.2.1 An interpretation
Because the bound given in Theorem 4.1 is somewhat imposing, it is uscful to obtain an intuition
about the nature of that bound. In this section we try to provide this intuition from the point of view of
the "lower bound”. That is, we discuss the principles bchind the construction of task systems for which
critical schedules exist which achicve various portions of the bound. We will concentrate on the middle
four portions of the bound. The other two portions arise mainly from "boundary” constraints. In
particular, the first portion (2 < m <s + 1) is the situation where the processor constraint dominates
worst case behavior. The final portion (3s+1 < m < 10) ariscs because s and m are both small. We
ignore these two protions of the bound in the rest of this discussion.
The key to understanding the middle four portions of the bound is the following: When

constructing a task system for which a "bad" critical path schedule cxists, there are three kinds of

- 46 -

constraints to decal with: precedence constraints, processor constraints and rcsource constraints.
Morcover, there are actually s kinds of resource constraints - onc constraint for each continuous resource.
A task system with a "bad™ critical path schedule (presumably) exploits each of these constraints to the
fullest. Now consider the bound 2 + 17s/10 - (3s+1)/m. The various tcrms of that bound can be
interpreted as follows: The term 17s/10 arises from the cxploitation of the resource constraints. There
are 3s’OPT tasks involved in this. A term of 1 arises from the exploitation of the precedence constraints.
There are OPT tasks involved in this. Finally, the term 1 - (3s+1)/m ariscs from the exploitation of the
processor constraints. All of the remaining tasks in the system are involved in this. Similar
interpretations exist for the other three portions of the bound. However, in those cases, only the resource
and precedence constraints are cxploited and not the processor constraints. Only whenm > 3s+1is it
"profitable” to exploit the processor constraints.

This interprctation can be scen more clearly, if we assume that s is fixed, and that m and
CPATH/OPT are expressed as functions of s (Figure 4.1 shows the plot of such a function). Initially,
assume that m=s+1 and that we have a UET task system with continuous resources S, such that a critical
path schedule exists for S, with CPATH/OPT arbitrarily closc to s+ 1. In S, there are OPT tasks devoted
to exploiting the precedence constraints, and for each continuous resource, there are OPT tasks devoted
to exploiting the constraint imposcd by that resource. The processor constraints are not being exploited
at all. Now consider how S is modified as m is increased, onc processor at a time, from s+1 to 2s+ 1.
Each time m is increased, several tasks are added to S. The purpose of adding these tasks is to more fully
exploit the resource constraints. Fach time m increases by one processor, the worst case bound increases
by a constant amount (namecly, 1/2) due to the addition of those tasks. At m=2s+1, there are OPT tasks
devoted to exploiting the precedence constraints, and for cach continuous resource, there are 2°0OPT tasks
devoted to exploiting the constraint imposed by that resource. Now consider the (similar) situation as m

is increased, one processor at a time from 2s+1 to 8s/3+1. Again tasks are added to S cach time m

-47-

Figure 4.1: Graph of the upper bound as a function of s

CPATH/OPT (as a function of §)

2+17s/10-(3s+1)/10
2+1758/10 p=
1+17s/10 p~
1+58/3 = '\
(14s+m+9)710
4s+m+3)/4
1+3s72 P
S+m+1)/2
148§ ~
1 | |]
S+1 28+1 88/3+1 3s+1

m as a function of s, m > 10

-48 -

increases. Now, however, the worst case bound increases by only 1/4 each time m increases. For a third
time, consider the (similar) situation as m is increased one processor at a time, from 8s/341 to 3s+1.
Again tasks are added to S each time m increases. In this instance, the worst case bound increascs by only
1/10 cach time m increases. At m=3s+1, therc are OPT tasks devoted to exploiting the precedence
constraints, and 3s'OPT tasks devoted to exploiting the resource constraints - for ecach continuous
resource, there are 3'OPT tasks cxploiting the constraint imposed by that resource. At this point, the
precedence and resource constraints are fully exploited. Finally, as m is increased beyond 3s+1, yet
more tasks are added to S. Thesc tasks exploit the processor constraint. Note however, that the bound
increases only so slightly in this range, and that in fact, it converges to 2 + 17s/10 as m approaches
infinity.

4.2.2 A comparison

Although Theorem 4.1 provides (in contrast to previous results) a tight upper bound for the worst
casc performance of critical path scheduling of UET task systems with continuous resources and a
processor constraint, there is a question of how much that result rcally improves over previous results.
That is, consider the bounds (cited earlicr) of Yao [Y] and Garey, ct.al. [GGJY] as they apply to UET
task systems with continuous resources and a processor constraint. Those results can be combined to
yield the following composite bound:

CPATH/OPT < min{m, 2 + 2s-(2s+1)/m, 27/10 + 17s/10}

The question which arises, is whether this composite bound is much worse than the best possible
bound (our Theorem 4.1). The answer to this question is yes. For instance, if s> 6 and m = 1.8s + 2,
the composite bound indicates that CPATH/OPT < 175710 + 27/10. The bound that we give shows
that CPATH/0OPT < 14s/10 + 3/2. The difference between the two bounds is 3s/10 + 6/5 -- a value
which grows lincarly with s. In percentages, the composite bound in this case is too large by over 21

percent. Table 4.1 shows both the composite bound and our best possible bound for several specific

-49-

Table4.1

A comparison between the composite bound [Ya0,GGJY] and the best possible bound

S m composite best error in composite
2 4 4 35 14%
5 5 4 25%
6 517 425 2%
7 5.29 443 19%
8 5.37 4.54 18%
00 6 54 11%
8 10 10 9.5 5%
15 15 12 25%
20 16.3 13.75 19%
25 16.3 14.6 12%
30 16.3 14.77 10%
00 - 163 15.6 4%
15 20 20 18 11%
25 25 20.5 22%
30 28.2 23 23%
35 28.2 24.5 15%
40 282 25.75 10%
45 28.2 264 1%
50 282 26.58 6%
00 28.2 21.5 3%

The above values have been rounded to two decimal places.

-50 -
combinations of s and m. That table also shows the percentage crror in the composite bound relative to
the best possible bound for each such combination of s and m.

Note from Table 4.1 that although our results improve upon the composite result whenever m >
s+1, the improvement is usually most significant when the number of processors is small relative to the
number of continuous resources.

4.2.3 The upper bound

In the next two sections we prove Theorem 4.1. The upper bound is given in this section and the
lower bound is given in the scction 4.2.4.
4.2.3.1 Preliminaries
Before beginning the proof of the upper bound, we require scveral definitions.

With respect to the usage of the resources in the system, we have the following definitions:
R (D) = max {R(T): 1<v<s}. Given task T, R(T) is the Ry-value of T and R, (T) is the
R, a"value of T. This notation is extended to a set of tasks B, with RV(B) =2 RV(T) overall T € Band
Rmax(B) = Z Rmax(T) over all T € B. For completeness, if B is empty, let Rmax(B) = 0. Finally, aset
of tasks B, is alcgal set of tasks if for each resource v, RV(B) <L

With respect to the precedence constraints, we remind the reader of the definition of the level of a
task: If Ti has no successors then level(T i) = 1; otherwise, level(T i) = 1 + max{level(T. j): Ti { Tj}.

This notion can be extended to a sct of tasks B, by letting level(B) = max{level(T. i) Ty € B}.

4.2.3.2 Proof outline

Consider any critical path schedule for a task system S. The time units of that schedule may be
divided into three sets: those time units where the final task of each level exccutes, those where all of the
processors arc utilized and those where at least one processor is idle due solely to resource constraints.

Call these path, full and resource time units respectively. The proof follows by bounding the number of

time units of cach typc. The number of path time units is bounded by the length of an optimal schedule.

- 51 -
The number of full time units can be bounded using the length of an optimal schedule and the number
of tasks executed in resource and path time units. The number of resource time units can bounded by
the use of a "weighting function”.

A weighting function W, is a mapping from the interval [0, 1] to an interval [0, x], where the x

depends on the particular weighting function. We cextend the functional notation to tasks and let W(T)
= W(R ., (T)). Moreover, if B is a set of tasks, then W(B) = Z W(T)overall T € B. (Our use of
weighting functions is motivated by, and draws upon, the work of Garey, etal. [GGIY]). Given a
particular weighting function and a sct of resource time units, the average weight associated with each of
those time units can be bounded below (this lower bound will be 1). Morcover, by examining an optimal
schedule, the total weight associated with all tasks executing in resource time units can be bounded above.
Combining these two bounds gives an upper bound on the number of resource time units. The result
then follows from the upper bounds on the numbers of path, full and resource time units.

4.2.3.3 Two important properties

In this scction we introduce two propertics of weighting functions.

Definition: Weighting function W has Property A, if:

Given atask T' and a noncmpty sct of tasks B such that:

Rinax(T 2 Ry, (T) foreach T € Band Rmax('l") >1-Rpa(B)

then W(B) > L.
Definition: Weighting function W has Property B, if:

Given a sct of time units {B}, ..., B} with t> 1and Y = U!_; B;, such that:
(ND>1-R

Forevery task T€ B, 1<i <t, and every j, 1 <j<i R B.),

max(i

max

then there cxists a task T* € Y, such that W(Y - {T*}) > t-1.
Intuitively, Property A states that given a sct of n tasks in which the total resource requirements of the

tasks excceds one, then the total weight of the largest n-1 tasks is at lcast one. Property B will be used to

-52-
obtain a lower bound on the average weight associated with a resource time unit.
Lemma 4.1: If W is a weighting function which has Property A, then W also has Property B.
Proof
Assume that W is a weighting function which has Property A, and let {Bl' - Bt} be a sct of time
units with Y = U_; B; such that for every task T € B;, 1<i < t, and every j, 1 < j<i, Ry, (T)>1-
Rmax(Bj)' We want to show that there exists a task T* € Y such that W(Y-{T*}) > t-1. Without loss
of generality, assume that W(B,) <1 for cach time unit B;, 1 <i < t. The proofis by induction on t.
Ift = 1 the lemma is immediate, so supposc that t > 2. Consider time units B,_; and B,. LetX
be any task in Bt' Then Rmax(x) >1- Rmax(Bt-l)' Morcover, for any task T € (Bt-l U {X}.

Rmax(T) >1-R qUY {X} - {T}). In particular, let Z be a task in (Bt-l U {X}) with a minimal

max(Bt

Rmax-value. From Property A, it follows that W(Bt-l Uu{xXi-{zh > 1
Now consider the set of time units {Bi, s B;_l}, where B; = Bi for1<i<t2 and B;-l =

{z3. Lt Y* = Ui} B

i By induction, there exists a T* € Y', such that W(Y'-{T*}) > t-2.

Thus, W(Y -{T*H) > W(Y' - {T*}) + WB_; U{X}-{Zh>t2+1=tL O
4.2.3.4 The weighting functions
Three weighting functions are used in the proof of the main theorem. Three functions are used, as
opposed to just one, duc to varying requircments with respect to the weights assigned in various parts of
that proof. Weighting function Wy has the property that if) + ay <1, then Wy(ay) + Wy(ap) <
1.5. Morcover, values of aj and ay cxist such that Wi(a P+ Wl(“z) = 1.5. A similar statcment can be
made about weighting function W, and the value 1.6. Weighting function W has the property that if a)
+ ..+ ay < 1, then W3(a 1) + .. + W3(an) < 1.7. These propertics play a critical role in
cstablishing various segments of the upper bound.
For cach of the three weighting functions which we introduce, we give two major results. First, we

give an upper bound on the weight of a legal set of tasks. As a corollary to this result we give an upper

- 53 -

. bound on the weight of any set of tasks drawn from the task system which we are considering. Both of
thesc bounds depend upon the cardinality of the set of tasks being considered. These results will allow us
to bound the total wecight of the tasks executing in resource time units. Sccondly, we show that the
weighting function has Property B.

4.2.34.1 The first weighting function

Definition: Wi(@) = 0 if a=0
174 if a€(0,1/74]
172 if a€(1/4,1/2]
1 if a€(1/2,1]ubrlemma4.2: IfBis alegal setof tasks, then W;(B) <

min{ (|B]+s)/2, (|B|+4s)/4}.

Proof
Recall that B is a Jegal sct of tasks if for each resource v, the total usage of v by the tasks in B does not
excecd one.

Partl: LetX = {TeB:R_, (T)>1/2}and letx = |X|. Since for cach resource v, there is at most

max
one T € B, such that RV(T) > 172, it must be that x <'s. Morecover, if Rmax(T) > 1/2 then Wl(T)
= 1. Each task T € (B - X) has Rmax(T) < 172, hence WI(T) < 172. Thus, WI(B) is bounded
above by max[x + (|B}-x)/2] such that x <'s. This maximum occurs at x = s. Therefore, W,(B)
< s + (|B]-s)72 = (|B]+s)/2.

Part2:LetX = {TeB:R . (T)>1/2}, letx = [X],let Y = {T € B: 1/4<R,.(T) < 1/2} and let

y = |Y]. Similarly to Case 1, we deduce thatx < sandy < 3s - 2x. Morcover,ifR__ (T)> 172

max
then W(T) = 1 and if 1/4 <R 0 (T) < 172 then W(T) = 1/2. Each task T € (B - X - Y) has
Rmax(T) < 174 and WI(T) < 1/4. Thus, WI(B) is bounded above by max[x + y/2 +
(IB|-x-y)/4] such that x < sandy < 3s - 2x. This maximum occursatx = y = s, so WiB) <s
+ /2 + (|B}-25)/4 = (|B|+4s)/4. O

Corollary 4.1: Given asct of tasks Y C 7, then Wi < min{ (JY]+sOPT1)/2, (|Y|+4sOPT)/4 }.

-54 -
Proof
Let Bl, BOPT be the time units of an optimal schedule restricted to the tasks in Y. Then, Y =
UQPTB anawy() = 592 Tw;B).
Part 1: By Lemma 4.2, each Wy(B) < (IBJ+s)/2. Thus, Wy(Y) < =QPT (Bj+s)72 = sop1n2
+39PTB1/2 = (v]+s0PTI2.
Part 2: By Lemma 42, cach Wy(B) < (Bjl+4s/4. Thus, Wy(v) < 2QBT (Bjl+49/4 =
(IY|+4sOPT)/4. O
Lemma 4.3: Weighting function Wj has Property B.

Proof

By Lemma 4.1, it is sufficient to show that Wy has Property A. Consider a task T' and a nonempty

(B). We

set of tasks B, such that R .. (T) > Rpax(T') foreach T€ Band R . (T")>1- R0

want to show that WI(B) 2 L
IR ax(T) > 172 for any T € B, then the lemma is immediate, so suppose R, (T) < 172 for
each TeB. IfR . (T') = Othen Rmax(B) 2 1, hence W{(B) > 1, sosuppose R, (T')>0.
Case 1R . (T") €(0,1/4]
Then Rmax(B) > 3/4. Since foreach T € B, 0< Rmax('[) < 172, we have that |B] > 2. Morcover,
for T € B, Wy(T) is either 1/4 or 172. If|B| 2> 4, then the lemma is immediate. If|B| = 3 then at
least one of the tasks has an R, .. -value exceeding 174, hence it has a weight of 1/2. The other
two tasks have weights of at lcast 1/4. Thus, Wl(B) > L If|B] =2, then both of the tasks in B
must have R .. -values exceeding 1/4, hence they have weights of 1/2, and WI(B) =1

Case2: R

max(T) € (174, 172]

Then R (B) > 172, Hence IB} > 2, since R

Rmax(T) > R ax(T'), we have: R

max(T) < 172 for cach T € B. Since for cach T € B,

max(T) € (174,172] and W(T) = 1/2 for T € B. Thus, W(B)

= B/2> 1 O

-55 -

4.2.3.4.2 The second weighting function

Definition: Wo(a) = 0 if a=0
10/100 if « €(0,.092]
157100 if « €(.092,.136]
20/100 if «€(.136,.182]
25/100 if a €(.182,.204]
30/100 if « €(.204, .250]
40/100 if a €(.250,.296]
45/100 if «€(.296,.318]
507100 if a € (318, .364]
55/100 if « € (.364, .408]
60/100 if a € (.408,.500]

1 if a€(500,1]
We have the following facts which follow from the definition of W5:

Fact 1: If a € (.092, .500], then Wo(a) < (1.64)a.
Fact 2: If |B| = 3 and R(B) < 1, then W(R\(B)) < 17/10.
Fact 3: If|B] = 2 and R (B) < 1, then W5(R(B)) < 16/10.
Fact 4: If|B| = 2 and R (B) < .500, then WH(R,(B) L7/ 10.
The following claim is uscful in proving Lemma 4.4:
Claim A: If B is a set of tasks such that R (B) < 1and IB] > 2then W5(R\(B)) < (IB]+14)/10.
Proof
If |B] < 3 then the claim follows from Facts 2 and 3, so, assume that IB] > 4. Dcfine the following
two scts of tasks:
Y = {Te B: R (T)>.500}
X = {T'€ B: .092< R (T) < .500}
Clearly, Wo(R\(B)) = W,(Ry(Y)) + Wo(R (X)) + Wy(R(B-X-Y)). Note that if T € Y, then
Wo(R(T)) = 1andif T € B-X-Y then WH(R,(T)) < 10/100. Thus,

W (R (B) < [Y] + Wo(Ry(X)) + (Bl - XI - [YD/10.

-56 -
Case1:]Y] =0
Then, Wy(R,(B)) = W,(R (X)) + (IB] - {X[)/10.
IfX| < 2, then since for each T € X, W,(R (1)) < 60/100, we have Wo(R(B)) < (60/ 100)|X] +
(BI-IX1)710 = 5[X|/10 + |B}/10< (|B]+14)/10.
If[X]> 2, then by Fact 1, Wy(R (X)) < 1.64, hence WH(R\(B)) < 1.64 + (IB] - [X])/10 <
1.64 + [|B] - 3}/10 < (|B] +14)/10.
Case 2:1Y] =1
Note that R (X) < .500 and
W,(R (B)) < 1 + W,(R,(0) + [BI-XI-1//10)
If[X] = 0, then from (1), Wo(R(B)) < 1 + (|B}-1)/10< (|B]+14)/10.
If[X] = 1, then Wy(R(X)) < 607100, so from (I), Wo(R(B)) <1 + 607100 + ({B]-2)/10 =
(B} +14)/10.
If[X| = 2, then by Fact 4, Wy(R (X)) < 7/10, so from M,
W,(R,(B)) <1+ 7/10 + (IB|-3)/10 = (|B|+14)/10.
If|X] = 3, then let max,(X) = max{R (T): T € X}.

If max (X) > .318 then the other two tasks in X have R,-values totaling less than .182, since
R,(X) <.500. Then at lcast onc of these other two tasks must have an R -value less than .091.
But, by dcfinition, ecach task in X has an Rv—valuc exceeding .092. Thus, maxv(X) < .318.

If max (X) € (250, .318], then Wy(max (X)) < 45/100. The other two tasks in X have
R,-valucs not cxceeding .136 and 182 respectively, hence they have a total weight not
excecding 35/100. Thus, WZ(RV(X» < 80/100.

If max(X) € (092, 250}, then Wo(max (X)) < 30/100. The other two tasks in X have
Rv-valucs not cxceeding .204, hence they have a total weight not exceeding 50/100. Thus,

W)(R,(X)) < 80/100.

- S’I -
Thus, if |X] = 3 then Wy(R (X)) < 80/100, hence W)(R,(B)) < 1 + 80/100 + [IB}-4)/10 =
(I1B]+14)/10.
If[X] 2 4, then from Fact 1, Wo(R (X)) < 1.64R (X) < .82. Then from (I), W,R,B) <1+
.82 + [IB}-IX]-1)/10 < 1.82 + [|B}-5)/10 < (|B] +14)/10. 0
Lemma 4.4: If B s a legal set of tasks, then Wo(B) < (IB] + 14s)/10.
Proof
Partition the tasks in B into s sets Dl’ s Ds, where T € Dv if and only if v is the minimum index such
that R (T) = R, .. (T). Clearly, W(B) = Zws/=1 WH(R\(D,)). Now partition the rcsources into
sets Z()' ey Zn’ according to the sizes of the respective Dv sets. That is, resource v is placed into set
ZIDVI (Figure 4.2). Thus, Wy(B) = E'j‘zo (ZVEZ]- W,(R(D,))). Clearly, for each v € Z,
w2(Rv(Dv» = 0 and from the definition of W, it follows that for each v € Z;, W2(RV(DV)) <1l
Moreover, from Claim A, it follows that for each j > 2, and each v € Zj, Wz(Rv(Dv)) <(+14)/10
and EVEZj WyR,(D,)) = [(j+14)/10]|7,j|. Thus, W,H(B) < |Z] + 2?22 G + 14)/10]|Zj| =
Z?___l jIZjl/IO + 2%, 14|Zj|/ 10 - [Z;}/2. But, the Z;'s are a partition of the resources, so 23 _;
IZjI <'s. Morcover, that part'ition is based on a partition of the tasks such that Zr-‘zl j IZjl < |BlL
Also, |le 2> 0.
.. Wo(B) < |B}/10 + 14s/10 - 0710 = (|B] + 145)/10 0
Corollary 4.2: Given asetof tasks Y C 7, then Wo(Y) < ([Y]+14sOPT)/10.
Let Bl, s BOP'I‘ be the time units of an optimal schedule restricted to the tasks in Y. By Lemma 4.4,
cach W,(B)) < (IB;] + 14s/10. Thus, Wy(Y) = 29PT wyB) < =QPT B + 14910 =
14s0P1/10 + 9P TB4/10 = (Y| + 14sOPTY/10. u|
Lemma 4.5: Weighting function W2 has Property B.
Proof

By Lemma 4.1 it is sufficicnt to show that W, has Property A. Consider a task T' and a

-58-

Figure 4.2: Partitioning the resources.

]
]
]
]
]
- -]
]
]
]
]
]

Wol- - o - @ - -

These are the resource requirements for the tasks in a system with 11 tasks and 7 resources. A zero
requirement is shown as a dash. The largest requirement of each task is circled.

B = {T,, T, T5, T, T, T, Ty, Tg, Tg, Ty Typ}

D, =@ » Z, = {6}
D1 = Z1 ={1,3,7}
D, = {T
D:; = {T;}/
D, = {T,T. = {2,4}
S a——

Z,= 2

ZS = <. =Zu = Q

Task partition Resource partition

- 59 -
nonempty set of tasks B such that Rmax(T) > Rmax(T') forTeB,andR . (T')> 1-R . .(B).
We want to show that W,(B) > 1.

If|B| = 1, the result follows immediately from the definition of W,, so assume that |B] > 2. Let
min(B) = min{R . (T): T € B}. If there is only one resource in the task system, then min(B) is the
smallest resource requirement of any task in B. Given a time unit B, it is possible to compute a lower
bound for W,(B) based on IB], min(B) and R ax(B)- In particular, Table 4.2 gives various
combinations of | B}, min(B) and R nax(B). each of which implies that W,(B) > 1. These values were
veriﬁéd using the MACSYMA system of the MIT Laboratory for Computer Science. The program
used to do the verification is shown in Figure 4.3.

Now consider the possible values of Wo(T"). If Wo(T*)> 507100, then for each T € B, Wy(T)
2 507100. Since |B] > 2, we have W(B) > 1. If Wo(T") = 107100, then 0 < Rpax(T') < .092.
But this implies that Rmax(B) > 908 and min(B) > 0 hence from Table 4.2, WZ(B) >LIf Rma:.(T)
= 0, then Rmax(B) 2> 1, hence WZ(B) 2L

There are six remaining possibilities for WZ(T'): 157100, 20/100, 257100, 30/100, 407100, and
45/100. Associated with cach of these weights there is a range («xl, a2] in which Rmax(T') must lie.
Morcover, in each instance it follows that min(B) > a 1 and that Rmax(B) >1- ay. For each (al, a2]
pair, an examination of the "relevant™ entries in Table 4.2, shows that W2(B) 2> linall instanc_cs. A
guide to the "rclevant” entrics of Table 4.2 is given in Table 4.3. In Table 4.3, for cach of the six
possible values of W2(T'), we give the values aj, as, the subsequent lower bounds on min(B) and
Rmax(B) and the cntrics of Table 4.2 that nced to be examined. Note that entries are not listed for
cach size of |B] in every case. In particular, for cach W?_(T') possibility, only one entry of the form
(IB], min(B), 0) is given. Such an cntry implics that Wy(B) > |B] Wy(min(B)) 2 1. Thus, for any
larger |B], we also have Wz(B) > L

For example, when Wz(' I') = 25/100, R (T*) € (.182, .204]. Thus, min(B) > .182 and

max

Wy(T")

15/100

20/100
25/100
30/100
40/100
45/100

[B] min(B)

0
250
296

0
182
250

W ww NN

750
J04
682

818

150
0

R nax(B)

ooy wnwn hh

- 60-

Table 4.2

0
136
182

0
136

0
092
136

Bl min(B) Rp,.(B) Bl min(B) Rp..(B)

.820 7 0 868
818 7 092 0
0
8 0 870
864 8§ 092 0
0
9 0 872
866 9 092 0
362
0 10 0 0

An entry (i, x, y) in this table is interpreted as follows: If B is a sct of tasks such that
[Bl=i, min(B) > x, and R, . (B) > y, then Wo(B) > L.

(a 1,(!2)
(092, .136]

(136, 182}
(182, 204]
(204, 250]
(:250, 296}
(:296, 318}

min(B)>

092

136
182
204
250
296

Table 4.3
Rpax(BP Relevant Entries
864 (2,0,.750), (3,0, .818), (4, 0, .820), (5, 0, .864),
(6,.092, .862), (7, .092,0)
818 (2,0,.750), (3,0, .818), (4, .136, .818), (5, .136, 0)
796 (2,0,.750), (3, .182,.750), (4, .182, 0)
750 (2,0,.750), (3, .182, .750), (4, .182, 0)
704 (2, .250,.704), (3, .250, 0)
682 (2, 296, .682), (3, .250, 0)

- 61 -
Figure 4.3: MACSYMA program used to verify the values in Table 4.2.

The function CALC takes three inputs: B, MINB, and RMAXB, and computes the minimum total
weight of the tasks in a time unit where:

B is the number of tasks in the time unit

MINB is a lower bound on the resource requirement of each task in the time unit.
That is, for each task T, R, (T) > MINB.

RMAXB is alower bound on the total resource requirement of all the tasks in the
time unit. That is, R, (B) > RMAXB.,

CALC finds the minimum total weight by doing an exhaustive search of the possible values for the
resource requirements of the tasks in the time unit. For convenicnce, weights are multiplied by 100 and
resource requirements are multiplied by 1000.

Sample ouput of the program is: CALC(2, 296, 682)$ (input to MACSYMA)

2 296 682 100 (MACSYMA output - the fourth
value is the minimum weight)

CALC(B, MINB, RMAXB) : =(MINWT : 100,
FOR] FROM 0 THRU 9 DO
(IF MINB = RES; THEN BOT : J+1),

HELPCALC(B, 0, 0),
PRINT(B, MINB, RMAXB, MINWT))

HELPCALC(COUNT, CURWT, CURRES) :=
IFCOUNT =0
THEN (IF CURWT < MINWT AND CURRES > RMAXB
THEN MINWT : CURWT),
ELSE (IF CURWT + WTSpq * COUNT < MINWT

THEN FOR I FROM BOT THRU 10 DO
- HELPCALC(COUNT -1, CURWT + WTS;, CURRRES +RESp)

The values of the WTS and RES arrays are as follows:
0 1 2 3 4 S 6 7 8 9 10

WIS | 0 10 15 20 25 30 40 45 50 55 60
RES | 0 92 136 182 204 250 296 318 364 408 500

-62-
Ry (B) > 1 - 204 = 79. If [B| > 4, it follows from [B] and min(B) > .182 that W(B) > 4
W,(min(B)) > 4 (25/100) = 1. If [B| < 4, the cntries (2, 0, .750) and (3, .182, .750) in Table 4.2
indicate that Wy(B) > 1. a

4.2.34.3 The third weighting function

Definition: W3(a) = (6/5)a if a €[0,1/6]
(9/5)a-1/710 if a€(1/6,1/3]
6/5)a + 1710 if a€(1/3,1/2]
6/5)a +4/10 if a€(1/2,1]
This is the weighting function dcfined in Garey, et.al[GGJY]. In that paper the following corollary and

lemma about W3 arc proven.
Corollary 4.3: Given a set of tasks Y C 7, then W3(Y) < 17s'0OPT/10.
Lemma 4.6: Given0 < a<1/2,and asetof tasks B = {T}, ..., T} with n > 2, such that R ... (T}) >
Rmax(TZ) >aanda>1- Rmax(B)’ then W3(B) 2L
A straight-forward consequence of Lemma 4.6 and the definition of Wy (uscd to handle IB] = 1 and
Rmax(T ') 2 172) is that W3 has Property A, hence:
Lemma 4.7: Weighting function W3 has Property B.
4.2.3.5 The main result
In this section we complcte the proof of the upper bound. Assume that a UET task system with
continuous resources S = <7, €, m, s> is given. Let CPATH be a sct containing the time units of a critical
path schedule and let OPT be a sct containing the time units of an optimal schedule for this system. As
usual, we also let CPATH and OPT be the lengths of these schedules when appropriate. The time units
in CPATH are partitioned into the following three sets:
P = {B; € CPATH: (Vj > i)[level(B;) > lcvcl(Bj)]}
F={B, ¢ CPATH: [B| = mand B; ¢ P}

H = {B, € CPATH: B <mand B; ¢ P}

-63-

The time units in P are path time units, those in F are full time units, and those in H are resource time

units. Clearly, CPATH = |P| + |F] + [H].

LetQ = {T€ 7: Te B;and B; € H} (i.e. Q consists of all tasks exccuting in resource time units of
CPATH). Clearly, |P] < OPT and |F| < OPT - |P}/m - |Q]/m. The number of resource time units [Hj,
can be bounded by use of the following lemma (adaptcd- from a lemma given by Garey, et.al.[GGJIY])).
Lemma 4.8: If W is a weighting function which has Property B, then there exists a set of tasks Q' C T
with [Q'| = |Q] such that [H| < W(Q"').

Proof
Assume that W is a weighting function which has Property B. Let k be the maximum level of any task
in T. Foreach level /,1 </ <k, there is one time unit B 1€ P with level(B I) =1 Let TI be any task
in B; with level(T I) = I. Moreover, for each level [, 1 <7<k, define the following two sets: |
A= {B; € H:level(B;) = i3
L; = {T:level(T) = /and(3B; € AY[T€ B} U {T}.
Thus, A, contains all of the resource time units where the highest level of any task cxccuting in the
time unit is I Likewise, L;contains task T;and all level / tasks exccuting in a resource time unit
where the highest level of any task executing in the time unit is I Figure 4.4 shows the
correspondence between L b TI and A F
Consider any set A; We claim that there cxists a task X; € 1.;such that W(L,;- {X 1}) > 1A I{
If]JAj = 0 then the result is immediate, so assume that A 2> 1. LetBy, .., BI Af be the time
units in Ay For cach B; € A, let B} = B; N L, Therc is one B; for cach B;, and cach B;
contains at lcast one task. Also, lct Bi Aj+1 = {T. Note that U! i {|+1 B; = L; Morcover,
each B; contains only level / tasks.
Now consider any B; and B;, with j<i. Let T be any task in B;. When T was scheduled, all

tasks with levels larger than / must have alrcady been scheduled in time units prior to Bj.

- 64 -
Figure 4.4: An example of the sets Ajand L, and the task T,

Assume that By has a level of / and is a path time unit. This means that the task in By of the highest
level has level /, and that all tasks executing in time units after Bg have levels less than L

Some number of time units immediately preceding By also have a level of /. Assume that these are time
units B,, B, B¢, and B;. The set Ajconsists of these 4 time units. The set L;consists of all of the level /
tasks which execute in these 4 time units, along with task T,

Ap = {B,, BS, Bﬁ, B,} level(Bi) =] fori=4,56,738
Bs isB I in this instance
level Itasks
L T
1
B, By Bg B, By

NN

N
NE

&, 2

I /
\\ tasks of levels other than / /

B, BS, B6 and B7 are resource time units and B8 is a path time unit

L;={T:level(T) = /and Tisinatime unitinAg} U {Tp}

The tasks in the non-shaded portions of B, By, B¢, B; and Bg are the tasks in LI'

- 65 -
Moreover, the only tasks already scheduled in time unit Bj were level] tasks. Thus, T was not
scheduled to execute in Bj due solely to resource constraints imposed by the level / tasks in Bj.
This means that for T € Bj, Ry, (T)> 1+ Ry, (B;) forall j<i. Thus, the B; s form a set of

time units for which the conditions given in the definition of Property B hold. Then, since
weighting function W has Property B, therc exists a task X 1€ L 1 (since LI = U!i{” ! B;) such
that W(LI - {XI}) >|A 1| and the claim is proved. O
Finally,letQ' = (QU {Tl: 1<I1SkP)-{X,:1L1L k}. Clearly, |Q*| = |QI.
coH =SS g <k wag- i) < W@, sinee UK @ XpC Q. 0
From Lcmma 4.3, it follows that given a particular weighting function W* which has Property B, there
exists a set of tasks Q' C T'such that |Q'] = |Q] and [H] < W*Q*).
Thus, CPATH = |P| + |F| + JH| < [P} + (OPT-|P}/m-]Q]/m) + W*(Q'), and with a rcordering of
terms,
CPATH < OPT +[P|(1-1/m) - |Q//m + W*Q"). (I
There are six cases to consider based on the relative values of s and m.
Casel:2 < m<s+1
Then CPATH < m OPT since at least one task must execute during each time unit of CPATH.
Case2:s+1 <m<2s+1
Let W) be the weighting function W*. By Corollary 4.1, W;(Q') < [IQ'[+sOPT)2 =
[IQl+sOPT)/2. Thus from (If), CPATH < OPT + |P|(1-1/m) - |Q)/m + [|Q]+sOPT)/2 = (1 +
s/2yOPT + |P|(1-1/m) + |Q|[1/2 - 1/m]. But, 1/2 - I/m > 0 and |Q] < mOPT - |P|. Hence,
CPATH < (1+4s/2)0OPT + |P|(1-1/m) + (mOPT - |PP[1/2 - 1/m] = [(s+m)/2)OPT + |P|/2 <
[(s+m+1)/2}OPT, since |P| < OPT.

.".CPATH/OPT < (s+m+1)72.

- 66 -

Case3:2s+1<m<8/3 +1
First assume that m > 4. Let W be the weighting function W*. Then by Corollary 41, Wl(Q 1<
[1Q']|+4s'OPT})/4. Similarly to Case 2, we derive from (II) that CPATH/OPT < (4s+m+3)/4.
Now assume that m € 4. The only combination of s and m to lie in this range is s=1 and m=3. But,
from Case 2 (since the assumption that m < 2s+1 was not used in that proof), CPATH/OPT <
(s+m+1)/2 = (4s+m+3)/4 whens=1and m=3.

Case4:8s/3 + 1 <m<{3s+1
First assume that m > 10. Let W, be the weighting function W*. Then by Corollary 4.2, WZ(Q 1<
[IQ']+14s'OPT}/10. Similarly to Case 2 we derive from (II) that CPATH/OPT < (14s+m+9)/10.
Now assume that m < 10. The only combination of s and m to lie in this range is s=3 and m=9. But,
from Case 3, CPATH/OPT < (4s+m+3)/4 = (14s+m+9)/10 when s=3 and m=9.

Case5:3s+1<mandm > 10
First assume that |Q| > 3s‘OPT. Let W3 be the weighting function W*. Then by Co;ollary 43,
W3(Q') < 17sOPT/10. Thus, from (II), CPATH < OPT + [P|(1 - 1/m) - |Q|/m + 17s'OPT/10.
But -|JQ| < -3s'OPT and |P| < OPT, so CPATH < OPT + OPT-(1-1/m) - 3s*OPT/m + 17s°OPT/10
= OPT[2 + 17s/10 - (3s+1)/m].
Now assume that |Q] < 35OPT. Let W, be the weighting function W*. Then by Corollary 4.2,
WyQ') £ [IQ'|+14sOPT)/10 = [|IQ|+14sOPT)/10. Thus from (I}, CPATH < OPT +
[Pl(1-1/m) - |Q)/m + [|Q]+14s'OPT}/10 = OPT+{1+14s/10] + |P|(1-1/m) + |Q|[1/10 - 1/m]. But
1710 - I/m > 0, Q] < 3sOPT and [P} < OPT. Hence, CPATH < OPT'[1 +14s/10] + OPT(1-1/m)
+ 3s0PT{1/10 -1/m} = OPT{2 + 17s/10 - (3s+1)/m]. Thus, CPATH/OPT < 2 + 17s/10 -
(3s+1)/m.

Case6:3s+1 <mandm< 10

First assume that [Q] > (8s/3)'OPT. Let W, be the weighting function W*. Then, by Corollary 4.2,

-67 -

WH(Q') <[IQ'| + 14sOPT)/10. Similarly to Case 5, we derive from (II) that CPATH/OPT <2 +
5s/3 - (8s/3+1)/m.
Now assume that |Q| < (8s/3yOPT. Let Wy be the weighting function W*. Then by Corollary 4.1,
W1(Q") < 1IQ'|+4sOPT}/4. Similarly to Case 5, we derive from (II) that CPATH/OPT < 2 +
5s/3-(8s/3 + 1)/m.

This completes the proof of the upper bouﬁd for Theorem 4.1. a

4.2.4 The lower bound

In this section we prove that the upper bound for CPATH/OPT given in Theorem 4.1 is the best
possible upper bbund, completing the proof of that result.

For each possible combination of s and m, we exhibit a UET task system with continuous resources,
S = <T, £, m, s>, a critical path schedule for that system, and an optimal schedule for that system such
that the ratio CPATH/OPT is arbitrarily close to the appropriate upper bound. As in the proof of the
upper bound, there arc six cases to consider based on the relationship between s and m. The
constructions that we use in the six cases are similar, but not identical. They make use of task systems
which differ primarily in the resource usages of certain tasks in the system. The overall precedence
structures of these systems are the same, as are the resource usages of several of the tasks. Thus, before
proving each of the lemmas, this gencral task system structure is introduced. The aspccts of the system
which are the same in all cases are specified. We indicate which paramcters will be specified within the
proofs of the individual lemmas. We also sketch optimal and critical path schedules for this general
system. The exact nature of these schedules will, of course, depend upon the valucs assigned to the
unspccificd parameters within the proofs of the individual lemmas,

4.2.4.1 A general task system structure

Assumc that s > 1 and m > 2, with m > s+1, are given (in the next section we will indicate how to

handle the casc of m < s). Integers x and z are to be specified later, as is ¢, a positive constant. Consider

- 68 -
a task system S* with the following tasks:
1. Di for 1 < i < x, such that Rl(Di) = gand Rv(Di) =0forv=1
2. By such that RI(BO) = land RV(BO) =0forv#1
3. B;for1 <i<s, such that Ri(Bi) = land Rv(Bi) =0forv#i
4. G for1 <i<'s. These tasks require no resources.
5. A} forl<i<sand1<j<z For v#i, RV(A}) = 0. The usage of resource i by each task
A; (its R;-value) will be specified later (it will be a non-zero requircment). Tasks A{, .A;

are called Ai-tasks.

This task system has the following precedence constraints:
1. Forl1 <i<x-l, Di { Di +1° Moreover, Dx < Cl'
2. For0<i<s1B;<B; andB;< AjH'lforl <j<ez
3. ForlSi53-1and15j$z,A}<Ci+1.
4. For1 <i<s1,G<Cyy.
The precedence structure of this system is shown in Figure 4.5.

Assuming that the constants x, z and ¢ have been specified, consider the following schedule for $*
(Figure 4.6a). In the first s+1 time units cxccute the B-tasks. In the next x time units exccute the
D-tasks on processor m, and exccute all of the A-tasks on the other m-1 processors. In the final s time
units exccute the C-tasks. Such a schedule has length x + 2s + 1. The assumption that the A-tasks can
all be exccuted in time units s+2 through x+s+41 depends only on the number of A-tasks (which is sz)
and on the resource requirements of the A-tasks - no precedence constraints are involved since after task
B exccutes in time unit s+1, all of the A-tasks arc available for exccution. In cach of the results using
this gencral task system, the value z and the resource requirements of the A-tasks are specified so the

A-tasks can indeed be exccuted in just x time units on m-1 processors and so the total requirement for

resource 1 during each of those x time units does not exceed 1 - €. This last condition is nceded since

-69 -

Figure 4.5: The general task system structure used for the lower bounds.

B,
B, A A A
| = N

\Als\ Azs \ Azs

The non-zero resource requirements of these tasks are:
Each D-task requires ¢ of resource 1

By, requires all of resource 1

B; requires all of resource i, i> 0

Each A'-task requires a non-zero portion of resource i

- 70 -
Figure 4.6: Two schedules for the general task system structure

. BS The A-tasks execute on

Time units s+1

Byf - -
/// processors 1 thrum- 1

i-1 Ai-tasks

A
\
Nrs
ENE

N\

G(AY)
Time units

b) A critical path schedule -- length = x +s+ 145 G(AD)

NN

-71-
each of the D-tasks requires ¢ of resource 1.

Now consider the critical path schedule for $* gencrated from the following list: (D-tasks, By, Cy
Al-tasks, By, C2, Az-tasks, s Bs-l’ CS, AS-tasks, Bs)' In this schedule, (Figure 4.6b) the D-tasks
execute in the first x time units, then By and Cl execute in the next time unit, followed by the execution
of the Al-tasks. After those tasks have exccuted, Bl and 02 execute, followed by the execution of the
A2-Lasks, and so on. Eventually, Bs-l and CS cxccute, followed by the exccution of the AS-tasks. In the
final timc unit BS exccutes. Assuming that the Ai-tasks are assigned the same resource requirements for
resource i, as the Al-tasks are assigned for resource 1 and that they are scheduled identically to the
Al-tasks, this schedule has length CPATH = x + s + 1 + sG(A]), where G(Al) is the length of the
schedule for the Al-tasks,

In the individual proofs which follow, several things are done. First, the values of x, z and € are
specified, and the remaining resource requirements for the A-tasks are given. We then show that the
A-tasks can be executed on m-1 processors in x time units with the total requirement for resource 1 by
the A-tasks, in each of those x time units, not excecding 1 - £. This establishes that OPT < x + 2s + 1.
The value of G(Al) is then derived by analyzing a particular list schedule for the Al-tasks, establishing
that CPATH > x +s + 1 + sG(Al). The lower bound for the worst case of CPATH/OPT is then
obtained by combining the bounds for OPT and CPATH.

4.2.4.2 The Simplec Cases

Lemmad.9:1f2 < m<s + 1, then CPATH/OPT can be arbitrarily close to m.

Proof

Assume that there are only m-1 resources. That is, assume s = m-1. (i.c. in the task system used to
show that the upper bound of m may be approached arbitrarily closcly, the tasks require only the first
m-1 resources). The next lemma shows that in this case (i.c. m > s+1), that CPATH/OPT can be

arbitrarily close to (s+m+1)/2. But, if m = s+1, then (s+m+1)/2 = m. 0O

- 72 -
Lemma4.10: Ifs+ 1 <m<2s + 1 then CPATH/OPT can be arbitrarily close to (s+m+1)/2.
Proof
Let ¢ = (m-s-1)/s. Let x be a positive intcger such that x = 0 mod 2s, let z = [1+c]x and let € <
1712. Now consider the task system S* as specified in the previous section, using these values of x, z
and ¢. The rcmaining resource requirements of the A-tasks are:
Foreachi, 1 <i<s,
x of the Al-tasks have an R;-value of 172 + ¢
cx of the Al-tasks have an R;-value of 1/2 - 2e.
Note that for each i, we have specified resource requircments for exactly x + cx = [1+cjx = z
Ai-tasks. As desired, in total there are zs = (m-1)x A-tasks.

As noted in the previous section, OPT < x + 2s + 1 provided all of the A-tasks can be
executed on m-1 processors in just x time units, with the total requirement for resource 1 by the
A-tasks in each time unit not cxceeding 1 - €. This can be done by exccuting the following tasks at
each of those x time units (Figure 4.7a): Forcachi, 1 <i<s,an Al-task with an R;valucof 172 +
¢ cxecutes. This utilizes s processors at cach time unit. Moreover, for cs = m-s-1 values of i, an
Ai-task with an Ri-value of 1/2 - 2¢ executes. Since m-1 A-tasks execute per time unit, all of the
A-tasks can be executed in x time units. Note that for each i, there are (1-c)x time units in which one
Al-task executes and there are cx time units in which two Al-tasks execute. Moreover, the total
requirement for cach resource during each time unit docs not cxceed 1 - €. Therefore, OPT < x + 2s
+ L

Also as noted in the previous scction, for critical path schedules, CPATH > x + s + 1 +
sG(Al), where G(Al) is the Iength of a particular list schedule (which we are about to specify) for the
Al-tasks. Consider the following schedule for the Al-tasks (Figure 4.7b): In the first cx/2 time units

two Al-tasks with Rl-valucs of 1/2 - 2¢ exccute. These time units are followed by x time units in

- 73 -
Figure 4.7: The schedules used in Lecmma 4.11.

1 Al-task 2 Al-tasks
% +e % +e

1% -2e
(1-ox cx

a) An optimal schedule -- for each other resource v, AV-tasks execute (in a similar manner) with these
Al-tasks.

2 Al-tasks 1 Al-task
% -2¢ “+e

1% - 2¢

cx/2 X

b) The schedule used for G(AL) -- these tasks exccute alone.

In each of the above figures, the values inside of the boxes indicate the R;-values of the the tasks

cxccuting in those time units. The values under the boxes indicate the number of time units where tasks
with those particular R,-values cxecute.

-74 -

which one Al-task with an R;-value of 1/2 + e executes per time unit. Note that in each of the first
cx/2 tme units the total requirement for resource 1is 2(1/2 - 2¢) = 1 - 4¢. During the execution of
thesc time units the smallest resource requirement of any unexecuted A]-task is 1/2 - 2¢, a value
which exceeds 4e. This means that none of the Al-tasks which exccute later in the schedule can
exccute in these time units. This assures that the schedule we have described here is a valid list
schedule. Thus, G(A]) = cx/2 + x,and CPATH > x + s + 1 + sfex/2 + x] > x(m+s+1)/2.

.". CPATH/OPT > (x(m+s+1)/2)/(x+2s+1)

limit, _, o CPATH/OPT = (m+s+1)72. O

——

emmad.ll: If2s + 1 < m< 8s/3 + 1, then CPATH/OPT can be arbitrarily close to (4s+m+3)/4.

Proof

Letc = (m-2s-1)/s. Note that 0 <c<2/3. Also, letq = 0ifc < 1/2 and let q = INog [(1-c)/(2-3c)]1
if ¢ > 1/2. Let x be an integer such that x = 0 mod 29, let z = [2+c)x,and let Y = 3¢c-2 +
(1-c)/2q'1. (The origin of Y will be explained a little later in the proof). Let e = g = U 10(‘1+2.
Also, for1 <k <q,lete, = 10¢;_;. Now consider the task system S$* using these values of x, z and
€. The remaining resource requirements of the A-tasks are;
Foreachi, 1 <i<s:
1. (1-¢)x of the Al-tasks have an R;-value of 1/2 + g
(1-c)x of the Al-tasks have an Ry-valuc of 1/2 - 2¢g,
2.For0<k<ql,
(l-c)x/Zk of the Al-tasks have an R;-value of1/2 + &y
(1-c)x/2k of the Ai-tasks have an Ri-valuc of 1/4 + 2ek.
(1-c)x/2k of the Al-tasks have an Ri-valuc of 1/4 - 4¢,..
3. Yx of the Al-tasks have an R;-value of 172 + 2

Yx of the Ai-tasks have an Ri-va]uc of 1/4 + qu.

-75-

Yx of the Al-tasks have an R;-value of 1/4 - 4cq.
There are two cases to be considered here:
1. If q = 0, then no tasks are assigned resource requirements in part 2 of the above specifications. In
this instance Y = c.
2. If g > 0, then some tasks are assigned resource requirements in part 2 of the specifications. Note
that Y > 0, sincc q <1 + log [(1-c)/(2-3c)].
In both cases, resource requirements are specified for exactly z Al-tasks. The constant Y was chosen
so that this was the case. Intuitively, in part 2 of the spccifications, we assign Ri-values to the tasks in
a series of scts of tasks. The number of tasks in each set is one half the number of tasks in the
preceding set. Since there are only 24clx = z Ai-Lasks, the series must be terminated at an
appropriate point. In this instance, that is after q sets. The valuc 3Yx is the number of Ai-tasks
whose Ri-valu'- has not been specified when the series is terminated. These 3Yx tasks are the tasks
assigned R;-values in part 3 of the specifications.

As before, OPT < x + 2s + 1 provided all of the A-tasks can be executed in x time units with
the total requirement for resource 1 by the A-tasks in each time unit not exceeding 1 - €. This can be
done by executing the following tasks at each of those x time units (Figure 4.8a): For cachi, 1 <i <
s, cither 2 or 3 Al-tasks execute at each of the x time units. More specifically, for (1-c)s = 3ssm+1
values of i, two Ai-tasks exccute. They have Ri-valucs of 172 +) and 172 - 230. For the other cs
= m-2s-1 values of i, thrce Ai-tasks cxecute. They have R;-values of 172 + g, 174 + 2ey and 174 -
4¢y, for some k, 0 <k < q. Since at cach time unit 2(1-c)s + 3cs = m-1 tasks exccute, all of the
A-tasks can be exccuted in x time units. Note that for cach i, there are (1-c)x time units in which two
Al-tasks cxecute and there are cx time units in which three Al-tasks exccute. Morecover, since) >
gg=¢ for 0 < k < q, the total requirement for any resource during cach time unit does not exceed

1- &. Thus, the A-tasks can be cxecuted in just x time units, and OPT < x + 2s + L.

- 76 -
Figure 4.8: The schedules used in Lemma 4.12.

2 Al-tasks 3 Al-tasks 3 Al-tasks

% + & % + &y % + &g

% - 2¢, U+ 2ey 1+ 2eq
% - 4ak - 4eq

(1-cxx (1-c)x/2k Yx
0<k<qgl

a) An optimal schedule -- for each other resource v, AV-tasks exccute (in a similar manner) with these
Al-tasks.

4 Al-tasks 2 Al-tasks 2 Altasks 1 Al-tasks
% -4e, % - 2¢, % - 2¢, %+ ¢
Y% -4 % + 2, % - 2¢,

%- 4e

Y -4,

cx/4 cx (1-2c)x/2 X

b) The schedule used for G(AL) when g = 0. Thesc tasks execute alone.

4 Al-tasks 4 Al-tasks 3 Al-tasks 3 Al-tasks 2 Al-tasks 1 Al-task

- 4eq - 4eq-y U+ 2eq % + 2¢y % - 2¢, >%
% - 4£q Y - 4eq_1 Y - 4eq.1 Y- 4ey %+ 2,
%-deg U-deqy | [%-deqy| |%-dey
Y-deg % -deq
Yx [(1c)/2971 - 2Y]x/4 Yx (1-cpr2K (1cx X

¢) The schedule used for G(A!) when q > 0. These tasks execute alone.

-77 -

For critical path schedules, CPATH > x + s+ 1 + SG(Al). There are two cases to consider
based on the value of q (i.e. q = 0 and q > 0).

Ifq = 0, consider the following schedule for the Al-tasks (Figure 4.8b): In the first cx/4 time
units, four Al-tasks with Rl-values of 174 - 430 execute in each time unit. Next there are cx time
units in which two Al-tasks execute during each time unit. These tasks have Ri-values of 172 - 2e0
and 174 + 260. Thirdly, there are (1-2¢c)x/2 time units in which two Al-tasks, each with an Ry-value
of 172 - 250, execute. Finally, there are x time units in which one Al-task with an Ri-value of 172 +V
g executes per time unit. Note that in each of the first cx/4 time units the total requirement for
resource 1 is 4(1/4 - 4ep) = 1-16¢(. During the execution of these time units the smallest resource
requircment of any unexecuted Ai-task is 1/4 - 450, a value which cxceeds 1680. This means that
none of the Al-tasks which execute later in the schedule can execute in these time units. Similar
remarks can be made about cach of the other time uriits in this schedule. This assures that the
scheduie we have described here is a valid list schedule. Thus, G(A1) =cx/4 + cx + (1-2c)x/2 + x
= [3/2 + c/4)x.

If q > 0, consider the following schedule for the Al-tasks (Figure 4.8¢c): In the first Yx/4 time

units four Al-tasks with R-values of 1/4 - 4¢_, exccute in cach time unit. Next, there are [(1-c)/2q'1

q

- 2Y]x/4 time units in which four Al-tasks with Rl-valucs of 174 - 4eq_1 exccute per time unit (since
q > log[(1-c)/(2-3c)] this quantity is non-ncgative). In the next Yx time units, three Al-tasks execute

per time unit: these tasks have Ry-values of 174 + 2¢ . 1/4 - 4e

q ql and 174 - 4eq_1. Similarly, in the

next (l-c)xlzq'1 time units three Al-tasks exccute per time unit. These tasks have Rl-valucs of 174

+ 2¢ 174 - 4¢ and 174 - 4eq_2. Generally, for k, g-1 > k > 1, there are (1-c)x/2k time units

ql q-2

with three Al-tasks exccuting per time unit. These tasks have Ry-values of 1/4 + 2¢,, 1/4 - 4¢; 1.
and 174 - 4gy 5. Following thesc time units there are (1-c)x time units with two Al-tasks exccuting

per time unit: These tasks have R-values of 172 - 2eq and 174 + 2¢,. Finally, there are x time units

-78-

in which one Al-task exccutes per time unit. Each of these tasks has an Rl-value exceeding 172,
Note that in each of the first Yx/4 time units the total requirement for resource 1 is 4(1/4 - 4eq) =1-
16¢ q During the execution of these time units the smallest resource requirement of any unexccuted

A]-task is1/74 - 4¢ o a value which excecds 16¢ q This means that none of the Al-tasks which execute
later in the schedule can execute in these time units. Similar remarks can be made about each of the
other time units in this schedule. This assures that the schedule we have described here is a valid list
schedule. Thus, GAY) = [Y/4 + (-o29 - 2vyd + Y + 3021 o2k + (o) + 1k = 372
+ c/4)x.

.". In both cases, G(Al) = [3/2 + c¢/4)x and CPATH 2> x + s + 1 + s[3/72 + c¢/4]x >
x(4s+m+3)/4.

.".CPATH/OPT 2> (x[4s+m+3)/4)/(x + 2s + 1)

fimit, _, oo CPATH/OPT = (4s+m+3)/4. O

4.2.4.3 A uscful sct of independent tasks

In the next two lemmas, we make usc of a set of tasks originally described by Johnson,
et.al.[JDUGG]. We have modified this set of tasks slightly to better suit our purposes..

Given some resource (say, resource 1) and an integer y, we will describe a set of 3y - 1 independent
tasks. Each task requires some non-zero portion of the resource. These tasks can be grouped into three
scts of tasks: In the first set all of the tasks have Ry-values of approximately 1/6; in the sccond set the
tasks have Rl-va]ucs of approximatcly 1/3; and in the third set the tasks have Rl-valucs exceeding 172,
Within each set the tasks differ slightly in their resource requirements. For instance, in the first sct some
of the tasks have resource requirements exceeding 176 and some have requirements less than 1/76. There
are y tasks in cach of the first two scts and y - 1 tasks in the third.

More formally, assume that an intcger y, with y = 0 mod 10 is given. Let § be such that 0 < § <<

18'5'/10. Also, let 8i =96 18y/10 - for 1 <i <y/10. Consider the following three sets of tasks:

-79 -

1. The first set contains y tasks, T}i for0<j<9 and1 <i<y/10. These tasks have the following
resource requirements for1 <i < y/10:
Ry (T = 1/6 + 335,
Ry(T}p = 1/6 -3,
Ry(TY) = Ry(T}) = /6-75;
Ry(T}) = 1/6 - 138,
Ry(TL) = 176 + 98
Ry(T) = Ry(TH) = RY(TE) = Ry(TY) = 1/6 - 28
2. The second set contains y tasks, T%i for0 < j<9and1 < i <y/10. These tasks have the
following resource requirements for 1 < i < y/10:
Ry(T3) = 1/3 + 468;
Ry(T3) = 1/3 - 345,
Ry(T%) = Ry(T}) = 173 + 65,
Ry(T2) = 1/3 + 125,
Ry(TZ) = 173- 105,
Ry(Tg) = Ry(T7) = RyTg) = RY(T) = V3 +5;
3. The third sct contains y - 1 tasks, T:;’ for 1 <i < y-1. Each task requires 1/2 + 8 of resource 1.
An optimal schedule for these 3y-1 tasks has length y. It consists of time units with the following tasks:
1. For2 <j<9and1< i< y/10,a T>-task and T};and szi
2. For1 <i < y/10,aT-task and T§; and T%;
3. For1 <i<y/10,aT>-task and T}; and T , |
4 T} y/100d Ty
Now consider the list (Tgy, .., T3, T, v Togy o T8y /100 =+ T8 /100 T2 = T - Ty 110

v \T§ 4 /100 T} -+ Ty.)- Thislist results in a schedule with length 17y/10 - 1. “This follows casily from

-80-
the results in [JDUGG]. We give an informal description of the schedule here. The schedule has y/5
time units in which 5 tasks from the first set execute per time unit and in which the total resource
requirement in each of the time units exceeds 5/6; y/2 timc units in which 2 tasks from the second set
execute per time unit and in which the total resource requirement in each of the time units exceeds 2/3;
and, y - 1 time units in which one task from the third sct executes per time unit.

Now assume that y is fixed. Since cach task in the system requires a non-zero portion of the
resource, and since (in both of the schedules given above) each time unit has 5 or fewer executing tasks,
there exists a By > 0, such that the resource requircment of every task can be reduced by By without
changing either of the two schedules. Moreover, this implies that the total resource usage during any
single time unit in these two schedules does not exceed 1 - By.

In the next result, some Al-tasks are assigned Ri-values in a manner similar to those assigned in
previous lemmas, and some are assigned Ri-values similar to the resource requircments of the J-tasks.
4.2.44 The remaining cases

Lemma4.12: If8s/3 + 1 <m< 3s + 1, then CPATH/OPT can be arbitrarily close to (14s+m+9)/10.

Eg)__t_'
Letc = (m-2s-1)/s and let @ > 0 be an arbitrary integer. Note that 2/3 < c< 1. Letx = 20$2q'1, letz
=[2+c]x-1landletY = 3c-2 + (1-c)/2q'l. The value Y will serve a purpose in this result similar to
what it served in the previous result. Also similarly to the previous result, lete =) < min{ BYx’
1710912 }and for 1 <k < q,let ey = 10¢;_;. Now consider the task system S* using thesc values
of x, z, and e. The remaining resource requirements of the A-tasks arc as follows:
Forcachi,1<i<s5,
1. (1-)x of the Al-tasks have an R;-value of 1/2 + ¢

(1-c)x of the Al-tasks have an R;-value of 1/2 - 2¢;.

2. For0<k<ql,

-81-

(1-«:))(/2k of the Al-tasks have an R;-value of 172 + ¢.
(1-c)x/2k of the Al-tasks have an Ri-;/alue of 1/4 + 2ey.
(l-c)xlzk of the Al-tasks have an Rj-value of 1/4 - 4ey..
3.3Yx - 1 of the Al-tasks are assigned R;-values equal to the R-values of the tasks in a set of 3Yx -1
J-tasks. These Al-tasks will be called type J Al-tasks.

An optimal schedule for this task system has a similar form for the execution of the A-tasks as
the optimal schedules in the previous lemma. As before, OPT < x + 2s + 1 provided all of the
A-tasks can be executed in x time units on m-1 processors. This can be done by exccuting the
following tasks at each of those x time units: For (1-c)s = 3s-m+1 values of i, two Ai-tasks execute:

these tasks have Ri-valucs of 172 + £q and 1/2 - 2e0. For the other cs = m-2s-1 values of i, either:

1. Three Al-tasks execute having R;-values of 1/2 + ¢}, 174 + 2ey, and 1/4 - 4¢ for some k, 0 <k
<gl,or

2. Two or three type J tasks exccute (as noted in section 4.3, three type J tasks execute in all but one of
these time units).

Note that at cach time unit no more than 2(1-c)s + 3cs = m-1 tasks exccute. Also, for each i, there

are cx time units in which three Ai-tasks execute and there are (1-¢)x time units in which two Ai-tasks

cxecute. Thus, the A-tasks can be executed in just x time units and the total requirement for any

single resource during each time unit does not cxceed 1 - €. Thus, OPT <x + 2s + 1.

The exccution of the A]-tasks is also similar to that in the previous lemma. In that lemma (for q
> 0), there were essentially four types of time units: those with 4, 3, 2 or 1 tasks. Let T4, T3, T2 and -
T1 designate all of the time units of cach type. Each of these types of time units will also occur here.
In addition, in this proof, we have time units where only type J Al-tasks exccute. As indicated in our
discussion in the previous scction, there will be three types of ﬁmc units where type J Al-tasks

execute. These time units contain S, 2 and 1 tasks, and will be referred to as IS5, J2 and J1,

-82-

respectively. The schedule used to derive G(Al) consists all of these time units in the following order:
T4, 15, T3, T2, J2, J1 and T1. That is, first all of the T4 time units exccute, then all of the J5 time
units execute, and so on.

More formally, consider the following schedule for the Al-tasks (Figure 4.9): In the first

[(1—c)x/2q']]/4 time units four Al-tasks, cach with an R;-value of 174 - 4¢ execute in cach time

qQl
unit. Next, there are Yx/5 time units in which five type J tasks execute - as noted in the previous
section, cach of these tasks has an Rl-value of approximately 1/6. Next, similarly to the critical path
schedule described in Lemma 4.11, for g-1 > k > 1, there arc (1—c)x/2k time units with three tasks
executing per time unit. These tasks have Rj-values of 174 + 2ey, 1/4 - 4¢y 4, and 174 - 4ey .
Following these time units there are (1-c)x time units with two Al-tasks exccuting per time unit.
These tasks have Ry-values of 1/2 - 2¢(and 1/4 + 2g(. Next, there are Yx/2 time units with two
type J tasks exccuting per time unit - as noted in the previous section, these tasks have Ry-values of
approximately 1/3. Finally, there are x-1 time units in which one Al-task executes per time unit.
Each of these tasks has an Ry-value excceding 1/2. Note that in each of the first [(1—c)/2q'1]x/4 time

units the total requirement for resource 1 is 4(1/4 - 4£q_1) =1-16¢ 1 During the exccution of

q

these time units the smallest resource requirement of any uncxecuted A'-task is approximately 1/6

(actually, just a little less than 1/6). But, €q-1 Was chosen such that 176 >> 16¢ This mcans that

q-l
none of the Al-tasks which execute later in the schedule can execute in thesc time units. Similar
remarks can be made about each of the other time units in this schedule. This assures that the
schedule we have described here is a valid list schedule. Thus, G(Al) = ([(1-c)/2q'1]/4 + Y/5 +
29 102" + (-9 + Y72 + Dx- 1 = [(16+¢)/10 - (1-)/(20 29 1Jx - 1. Hence, CPATH > x
+ s+ 1+ sx[(164+¢)/10 - (1-¢)/(20 2q-1)] -s. But,x = 2Os2q'1, so CPATH > x[s(16+c)/10 + 1} -
2

s”.

" CPATH/OPT > (x[s(16+¢)/10 + 1] - sD/(x+2s+1)

Figure 4.9: The schedule used for G(AY) in Lemma 4.13.

4 Al-tasks 5 Al-tasks 3 Al-tasks 2 Al-tasks 2 Al-tasks 1 Al-task
Y% - 4eq_1 Eachisa U+ Zek % - 2¢, Eachisa >
type J task type J task
Y -4eq-1 with an Y- 41‘:1(.1 4 +2(e0 with an
Rl—value Rl-value
% - 4eq-1 of about Y - 43k-1 of about
' 1/6 1/3
% - 4eq-1)
[(-ox/29Y4 Yx/5 (1c)72k (1-ox Yx/2 x-1
gl1>k>1

These tasks execute alone

-84 -
limit, _, oo CPATH/OPT 2> (14s+m+9)/10. a

Lemma4.13: If3s + 1 < mand m > 10, then CPATH/OPT can be arbitrarily close to

2 + 17s/10 - (3s+1)/m.

Letx =0mod 10m, letz = 3x -land let e = Bx. Consider the task systcm S* using these
values of x, zand e. Foreachi, 1 <i<s,the Al-tasks are assigned R;-values cqual to the Ry-values
of the tasks in a set of z J-tasks. In addition to the usual tasks in S* the following tasks are added to
S*:

1. G, a task which requires no resources.

2. Fj for 1 <j < (m-3s-1)x. These tasks require no resources.

3.EwithRy(E) =1for1 <i<s.
The following precedence constraints are also added to the system:

1.For1<j 5z,A§!<G.

2.B;<G,andC < G.

3.Forl 5 j < (m-3s-1)x, E< Fj.
The precedence structure of this task system is shown in Figure 4.10.

An optimal schedule for this system is: In the first s+2 time units exccute the B-tasks and task
E. In the next x time units the A-tasks, D-tasks and F-tasks arc exccuted (1 D-task, m-3s-1 F-tasks
and no more than 3s A-tasks per time unit). For cach i, there are x-1 time units where three Al-tasks
cxecute and there is one time unit where two Al-tasks execute. In the final s+1 time units exccute the
C-tasks followed by task G. ThusOPT <s+2+x+s+1=x+2s+ 3.

Now consider the following critical path schedule: Exccute the D-tasks and tasks Bo and Cl in

the first x+1 time units. In the next 17x/10 - 1 time units exccute the Al-tasks. Then, exccute Bl

and C2, followed by the Az-wsks in the next 17x/10 - 1 time units, and so on, until Bs exccutes. Then

-85 -
Figure 4.10: The task system used in Lemma 4.14.

B0

Bl\ Al At oAl

B, \ A} Al Az3\
I T > N

B \Als \A5>A5 | \\

T

The non-zero resource requirements of these tasks are:
Each D-task requires & of resource 1

B, requires all of resource 1
B; requires all of resource i, >0
Each A'-task requircs a non-zero portion of resource i

E requires all of the resources

G, the C-tasks and the F-tasks require no resources

ase

- 86 -
exccute E and G. In the final (n-3s-1)x/m time units execute the F-tasks. Thus, CPATH 2> x + 1 +
17xs/10 + 1 + (m-3s-1x/m > x[2 + 175/10 - 3s+1)/m].
.".CPATH/OPT > x[2 + 17s/10 - (3s+1)/m)/(x + 2s + 3)
limi(x — oo CPATH/OPT = 2 + 17s/10 - (3s+1)/m. O

Lemma 4.14: If 3s + 1 < mand m < 10, then CPATH/OPT can be arbitrarily close to

2 + 5s/3 - (8s/3 + 1)/m.

The task system we describe here combines various aspects of the systems used in Lemmas 4.11
and 4.13. We use the task system structure from Lemma 4.13 (i.e. with the added tasks) and we assign
the A-tasks resource requirements as was done in Lemma 4.11.

More formally, assume s and m are given. Let ¢ € (1/2, 2/3) and let g = Tlog[(1-¢)/(2-3c)]1.
Let x be an integer such that x = 0 mod sm29, letz = 2+cjx andlet Y = 3¢-2 + (1-c)/2q'l. Tete
= ¢ = 1IIOQ+2. Also, for 1 <k < q,let ey = IOek_l. Consider the task system S* using these
values of x, zand ¢. |
Foreachi, 1 <i<s:

1. (I-c)x of the Ai-tasks have an Ri-value of172 + £
(1-c)x of the Altasks have an R;-value of 1/2 - 2,
2. For0<k<ql,
(1-c)x/2k of the Al-tasks have an R;-value of 172 + &y
(1-{:))(/2k of the Al-tasks have an Rj-valuc of 174 + 2¢,.
(1-c)x/2X of the Al-tasks have an R;-value of 1/4 - 4¢,.
3. Yx of the Al-tasks have an R;-value of 172 + &g
Yx of the Al-tasks have an R;-valucof 1/4 + 2eq.

Yx of the Ai-tasks have an Ri—value of 174 - 4eq.

-87-

These are exactly the same specifications for the Ri-values of the Ai-tasks as given in Lemma 4.12,
In addition to the usual tasks in $*, the following tasks are added to S*:

1. G, a task which requires no resources.

2. Fj for1 < j < (m-2+4c]s-1)x. These tasks require no resources.

3.EwithRy(E) =1for1 <i<s.
The following precedence constraints are also added to the system:

LForl1<j gz,AJSm.

2. Bs {G, and Cs {G.

3. Forl1 <j<(m-3s-1)x,E< Fj.

An optimal schedule for this system is similar to that for the system used in the proof of the
previous lcmma. The B-tasks and task E are executed in the first s+2 time units. In the next x time
units the A-ta-ks, D-tasks and F-tasks are executed. In each of those x time units, [2+c]s A-tasks, 1
D-task and (m-[2+c]-1) F-tasks execute. For cach i, there are (1-c)x time units where two Ai-tasks
execute and there are cx time units where three Al-tasks exccute. In the final s time units the C-tasks
are exccuted. Thus, OPT < x + 2s + 2.

Now consider the following critical path schedule: Exccute the D-tasks and tasks By and C; in
the first x+1 time units. In the next [3/2 + c/4)x time units exccute the Al-tasks (this follows.from
the proof of Lemma 4.13, where G(Al) = [372 + c/4]x). Then execute B, and C,, followed by the
A2-tasks in the next [3/2 + c/4)x timc units, and so on, until B; cxecutes. Next cxccute E and G.
Finally, exccute the F-tasks in the final (m-[2+c]s-1)x/m time units. Thus, CPATH > x + 1 + ({372
+ c/4x + Ds + 1 + (m-[2+c)s-1)x/m > x[2 + 3s/2- (2s+1)/m + cs{(1/4 - 1/m)].

.".CPATH/OPT 2> x|2 + 3s/2- (2s+1)/m + cs(1/4-1/m)}/(x + 25 + 2)

limit, _, 5,3 CPATH/OPT > x[2 + 5s/3- (8s/3 + 1)/m}/(x + 25 + 2)

limit, _, oo CPATH/OPT =2 + 5s/3 - (8s/3 + 1)/m a

- 88 -

Chapter 5 - Critical Path Scheduling - Discrete Resources

In this chapter we study critical path scheduling of UET task systems with discrete resources - both
with and without processor constraints. Unfortunately, there are no results for this problem per se. It is
possible, however, to make some conclusions about this problem based on results for Coffman-Graham
scheduling of UET task systems with 0-1 resources. These are UET task systems with discrete resources
in which cach r; =1 -- that is, there is exactly one unit of each resource, hence a task either requires allofa
resource or none of it. Because Coffman-Graham schedules are a subclass of the critical path schedules,
any lower bound on CG/OPT for UET task systems with 0-1 resources, is also a lower bound on
CPATH/OPT for UET task systems with discrete resources. This follows because systems with 0-1
resources arc a subclass of the systems with discrete resources. Although at first glance, it appears that
any lower bound on CPATH/OPT obtained in this manner would be fairly weak, we will, in fact. (in
scction 5.2) be able to use such a lower bound to make some fairly strong statements about critical path
scheduling of UET task systems with discrete resources. Before doing so, however, we present two results
on Coffman-Graham scheduling of UET task systems with 0-1 resources.

5.1 Coffman-Graham scheduling of systems with 0-1 resources

Coffman-Graham scheduling of UET task systems with 0-1 resources has been studicd by Goyal
[Go] for the limited case of one resource. He shows that for m = 2, CG/OPT < 3/2, and that this is the
best possible result. This type of scheduling is also mentioned by Leung [Le]. He conjectures that for
UET task systems with 0-1 resources, Coffman-Graham schedules provide substantially better
performance than do list schedules.

For purposes of comparison, we note that the results of Chapter 3 can be applied to UET task
systems with 0-1 resources giving the results LIST/OPT < 1 + s if there is no processor constraint, and

LIST/OPT < min{m, (2-1/m) + s(1-1/m)} if there is a processor constraint. Morcover, both of these

- 89 -
results are the best possible bounds.
In this section we prove the following two results on Coffman-Graham scheduling of UET task
systems with s 0-1 resources when s > 0:
Theorem 5.1: If m > n (no processor constraint) then CG/OPT < 1 + s. Morcover, this is the best
possible result.
Theorem 5.2: If m > 2 (a processor constraint) then
CG/OPT < m if s>m
m-1/2 if s=m-1
(22/m) + s(1-1/m) if s<m-2
Moreover, this is the best possible result.
These results show that Leung’s conjecture about the relationship between Coffman-Graham scheduling
and list scheduling is wrong: Coffman-Graham scheduling does not provide substantially better worst
case pcrformance than list scheduling for UET task systems with 0-1 resources. In fact, for systems with
no processor constraints, Coffman-Graham scheduling has exactly the same worst case performance as list
scheduling. We will prove these two thcorems, and then, in section 5.2, we will discuss how these results
apply to critical path scheduling of UET task systems with discrete resources.

5.1.1 Thc upper bounds

Lemma 5.1: If m > n (no processor constraint), then CG/OPT <1 + s.

Proof

This result is trivial because Coffman-Graham schedules are a subclass of list schedules and as noted
above, it follows from Theorem 3.1, for UET task systems with 0-1 resources and no processor

constraint that I.IST/OPT <1 + s. 0

-90 -

Lemma 5.2: If m 2> 2 (a processor constraint), then

CG/OPT < m if s>2m
m-1/2 if s=m-1
(2-2/m) + s(1-1/m) if s<m-2

5.1.1.1 Proof Qutline

We prove the upper bound in two stages. Initially, we show that, given a Coffman-Graham
schedule, some of the tasks can be placed into scts WO, s Wp (called scgments) such that given tasks T €
Wi andS € Wi +1 it must be that T < T S, where < * is the transitive closure of the precedence relation.
This property implies that all the tasks in scgment Wi must cxecute before any of the tasks in Wi +1
execute. This allows us to examine each segment individually, and obtain a worst case bound for the
length of the portion of the Coffiman-Graham schedule where the tasks in the scgment cxecute, to the
length of an optimal schedule for the tasks in the segment. This we do in the second stage of the proof. A
portion of this proof is largely a modification (to accomodate rcsource tasks) of a proof by Lam and Sethi
[LS]. In particular, most of the first stage of the proof and the sccond half of the second stage of the proof
are drawn from their work.

5.1.1.2 Segments

Before beginning, we make the following assumption about how tasks are assigned to processors
when using list schedules (our formal definition did not mention which tasks exccute on which
processors). Since we are dealing with UET task systems, this assignment is relatively simple: If Ty, ...,
Tx, with x < m, arc the tasks cxccuting in a particular time unit, with LABEI {T))> LABEL(Tz) >
LABEL(TX), then task Ti executes on processor i. Here LA BEL('l‘i) refers to the label assigned to Ti
us‘ng the Coffman-Graham labeling algorithm. Note that in the list used to do the scheduling, Ty
appcars before Tz, which appcars before T3, and soon.

Finally, a task T with R___ (T) = 0 is a non-resource task, and a task T with Rmax(T) >0isa

max

- 91 -
resource task.
Now consider any Coffman-Graham schedule. As usual, we let CG refer to both the set of time
units comprising the Coffman-Graham schedule and the length of that schedule. As noted above, we will

form sets of tasks called segments. This is done in two stages. First, we form blocks of tasks, and then

combine thosc blocks to form scgments. Blocks are formed from the Coffinan-Graham schedule as
follows:

Definiton: Form blocks X ., X

g Xq1 XO, for some q > 0, as follows:

1 UO is the task exccutced on processor one in time unit BCG'
2. Fori>], Ui is the task exccuted on processor one in the maximal time unit B)\ where:
a. A non-resource task executes on processor one in B}c
b. (VT # U)[T € By = LABEL(T) < LABEL(U;)}
3. Forq 2i21,X;.; = {T:a(U)<a(l) < o(Uj.}) and LABEL(T) > LABEL(U;_)}
Xq ={T:o(N < o(Uq) and LABEL(T) > LABEL(Uq)}
An example is shown in Figure 5.1. Note that not cvery task belongs to a block - such a task is called an
extra task. The last time unit of each block cither contains an extra task or it has an idle processor. Also,
for block Xj, o(Xj) = min{o(T): T € Xj}‘ That is, a(Xj) is the carliest time at which a task of block Xj
executes.
The following lemma about blocks is uscful:
Lemma5.3: Forq > i> 0, task Uj is a predecessor of cach task in block Xi-l'
Proof
Consider any U; and block Xi- - Three things should be noted:
L. Uj is a non-resource task.

2. Each task in Xi-l has a label at least as large as LABEI ‘(Ui-l)'

3. Each task cxecuted in the same time unit as Ui has a label smaller than LABEL(Ui_l).

-9)-
Figure 5.1: Example of the division of a Coffman-Graham schedule into blocks.
Consider a task system with 3 processors and one 0-1 resource. The precedence structure is given
below. The numbers are the Coffiman-Graham labels of the tasks. These numbers will be used to refer

to the tasks. Circled tasks require the resource.

15 16

Schedule: [16_{ 14 : 13 1 10]

Time units t1 v 20 3o

Blocks are outlined in the above schedule.

Figure 5.2: Examplc of the division of a Coffman-Graham schedule into segments,

The task system given in Figure 5.1 is used.

Schedule: |16+ 14 + 13 ! 10
(1S 7 9 1 I2
Ay

Time units 1y 2* 3 '4

Segments are outlined in the above schedule,

- 93 -

Now consider any task T € Xi—l which has no predecessors in Xi-l' Why didn’t T exccute in the same

time unit as U;? Because LABEL(T) excecds the label of each task exccuting with Uj, and Ujisa

non-resource task, it follows that Ui {T. Thus, Ui is a predecessor of every task in Xi-l' O
Segments are composed of blocks and a few extra tasks. Spccifically, segments WO, s Wp, for some p 2>
0, arc formed as follows:

1 Initially, let Wy = Xq, leti=0andletj=q-1

2. Whilej > 0do

if (VT € WVT' € X)[T <t T
then W; is complete
lctWH_l = Xj,lcti =i+ l,andletj=j-1
else letG = {E ¢ W;: LABEL(E) > LABEL(U;) and (3T € W[T < * EJ}
]r’tWi =W;U Xj UGandletj=j-1

3. Letp =1, and Wp is complete.
An cxample showing scgments is given in Figure 5.2. Intuitively, scgments are formed from left to right
by combining successive blocks until a block is encountered, all of whose tasks arc successors of all the
tasks already in the segment. At this point the scgment is complcte and a new segment is started. Extra
tasks are added to the scgment for accounting purposes which arise in the second stage of the proof.
Extra tasks which are placed into a scgment are called latccomers.
Lemma 5.4: For0 <i<p,ifTe Wjand T' € W, . then T<T T,

Proof

Consider any W; and Wi+1 for some i, 0 < i <p. Assume that scgment Wi+ 1 consists of blocks Xc'
s Xeogo for some k > 0, along with some latccomers. It follows from the construction of scgments,
forcachT € Wyand T" € X that T <H T IFk = 0, it also follows that there are no latecomers in

W, 1- so the lemma holds. Thus, assume k > 0. From Lemma 5.3, for all j, ¢ > j > ¢k, task Uj

-94 -

precedes each task in Xj-l' Then by transitivity, each task T € W;, precedes cach task in X, U X, U
.U Xk The only other tasks in W; 4are latecomers. The first latecomer added to W; +1 is, by
definition, a successor of a task in X . Each subsequent latccomer to W; 41 is @ successor of either a
task in some block of Wi 410" of a latccomer already in Wi +1 In cither case, by transitivity, each T

€ W; precedes each latecomer in W; 1. a
Because of the preceding lemma, we are free to treat each segment individually with respect to obtaining
an upper bound. That is, because each task in segment Wi must exccute before any task in Wi 4] can
execute, we have that OPT > Zli) =0 OPT i where OPT is the length of an optimal schedule for the entire
task system, and OPTi is the length of an optimal schedule for a task system consisting of the tasks in Wi,
(and the precedence constraints restricted to thosce tasks). Morcover, CG = 2? -0 CG;, where CG is the
length of a Coffman—Grah;lm schedule for the entire task system, and CG; is the length of the portion of
the Coffman-Graham schedule under consideration restricted to the tasks in W.. The equality follows
because at least one task from each time unit belongs to some segment. In the next section we show that
for each i, 0 < i < p, CG;/OPT; < b, where b depends on the relationship of s and m. It follows that,
given a particular rclationship between s and m, CG/OPT < b. Thus, in the remainder of the proof we
assume that the Coffman-Graham schedule consists of a single segment W. That scgment consists of

blocks Xq, - XO, and some number of lateccomers. We let OPT be an optimal schedule for the tasks in

Ww.

N

.1.1.3 The individual bounds

In this section we complete the proof of the upper bound. As noted previously, m is a trivial upper
bound on CG/OPT. This handles the case of s > m. Morcover, Goyal [Go] has shown that CG/OPT <
3/72if s=1 and m=2, and it has been shown [CG,LS] that CG/OPT < 2 -2/mif s=0and m > 2. Thus,
we assume that s > 1 and m > 3 in the remainder of this proof.

The following lemma about scgments is uscful:

-9§-

Lemma 5.5: If W contains blocks X, ..., XO, then there arc at least q latecomers in W.

Q-
Proof
We consider the procedure by which scgments are formed, and show that each time the
else-clause in step 2 of that procedure is executed, at least one latccomer is added to W. Since the
else-clause is exccuted for each block added to W (except the first block), the lemma follows.
Assume that blocks Xq, s Xj 4] are alrcady in W (along with latccomers) and that there are

tasksTeWand T € Xj such that T < T is false. Choose T so that it has no successors in W and

T* so that it has no predeccssors in Xj. Letl = {T¢ Xj: T has no predecessors in Xj}. Clearly, T' €
I. Now consider Uj +1° By definition Uj +1€ W. From Lemma 5.3, Uj +1 is a predecessor of each
task in Xj. It follows from there being no transitive edges in the dag for <, that when labeling Uj +1
the largest |I] labels of its successors are the labels of the tasks in I. Now consider task T. By
definition, LABEL(T) > LABEI.(Uj +l)' Since T has no successors in W, and T <Y T s false, it
follows that there is a task E ¢ W such that LABEL(E) > LABEL(UJ-) and o(E) < or(Xj). Intuitively,
the first condition holds because LABEL(E) must exceed the label of some task in I, since LABEL(T)
> LABEL(Uj +1). The sccond condition holds since E is not in Xj' Therefore, each time the

elsc-clause is executed in the procedure defining segments, at least one latecomeris added to W, 0O

Given a segment W, let a be the number of resource tasks in W and let d be the number of time
units in the Coffman-Graham schedule having a resource task executing on processor one.

Lemma5.6: CG <(mOPT + a + 1)72

Proof
From the constructions of blocks and secgments it follows that for cach time unit B € CG, not having a

resource task cxecuting on processor one, that onc of the following holds:

- 96 -
1. Bis the last time unitin W.
2. B is not the final time unit of any block. This means that there are at least two tasks of W which
are not latecomers and exccute in B.
3. B is the final time unit of block Xi, for some i # 0 (i.e. not the last block). This means that at
least one latecomer was placed into W when block X; _ | was added to W.
Note that there are CG - d time units not having a resource task executing on processor one, and for
only one of these time units can item 1 (above) hold. Thus,d + 2[CG-d-1]+1=2CG-d-lisa
lower bound on the number of tasks in W. Since m OPT is an upper bound on the number of tasks in
W, wehavemOPT >2CG-d- 1L
Clearlyd = a-k forsome k 2> 0, hence, mOPT > 2CG-[a-X]- L
S.CG<L<(MmOPT + a+ 1)/2-k/2
<(MOPT + a + 1)/2 O
Three corollarics follow dircctly from the proof of the above lemma:
Corollary 5.1: If a resource task executes on any processor other than processor one, then
CG < (mOPT + a)/2.
Corollary 5.2: If m OPT 2> 2 CG - d, then CG < (m OPT + a)/2.
Corollary 5.3: If any time unit with a resource task executing on processor one, has a task T € W,
exccuting on processor two, and T is not a latecomer, then CG < (m OPT + a)/2.
To complete the proof for s = m - 1 there are three cascs to consider:
Case 1: A resource task executes on a processor other than processor one.
. From Corollary 5.1, it follows that CG/OPT < (m OPT + a)/(2 OPT). But a < (m - 1)OPT, since
there are only m - 1 units of resource available at cach time unit of OPT.
.". CG/OPT < (mOPT + (m - 1) OPT)/(2 OPT)

=m-1/2

-97-
Case 2: Each resource task executes on processorone and a < (m-1) OPT - L.
From Lemma 5.6, CG/OPT < (m OPT + a + 1)/(2 OPT)
< (m OPT + (m- 1) OPT)/(2 OPT)
=m-1/2
Case 3: Each resource task executes on processor onc and a = (m - 1) OPT.
These conditions mean that in each time unit of OPT, m - 1 tasks require a rcsource, and that each
resource task requires exactly one unit of onc resource. In particular, consider the first time unit of
OPT. Since m > 3, (hence s > 2), there arc at lcast two resource tasks executing in that time unit.
Let T} and T, be two such tasks. In the Coffman-Graham schedule, Ty and T, both execute on
processor one. Without loss of generality, assume that Ty executes before T,. There are only three
possible reasons why T, did not execute with Ty in the Coffman-Graham schedule:

1. Due to processor constraints. That is, when T, was scheduled, the only reason that it was not
scheduled to execute with Tl’ was that the time unit where Tl exccutes already contained m
tasks. Let T3 be; the task which executes on processor two. It follows that LABEL(T 15 >
LABEL(T 3) > LABEL(T,), and that o(T 1) < a(T3) <o(T 2). From Lemma 5.3, since Tl and
TZ have no predecessors in W, it follows that Tl and T2 are in block X_.. Then, from the

q

definition of blocks, T3 € X ., hence T3 € W. Thus, the time unit where Tl exccutes has a

q
resource task cxecuting on processor one and a task T3 € W on processor two. Since T3 isnot a
latecomer, from Corollary 5.3, CG < (m OPT + a)/2. Asin Casc 1, CG/OPT < m-1/2.

2. Duc to precedence constraints. That is, some task T3 <'T, had not cxecuted prior to time unit
o(Ty) in the Coffman-Graham schedule. It follows that LABEL(Ty) > LABEL(T;) >
LABEL(T,) and that 6(T}) < 0o(T3) < o(T;). Asabove, it follows that T is in W. But this is

a contradiction, since T3 must exccute before T2 in OPT and T2 cxecutes in the first time unit

of OPT.

= 98 -

3. Due to resource constraints. That is, some task T3 executes in the same time unit of the
Coffman-Graham schedule as Ty and requires the same resource as Ty, It follows that
LABEL(T}) > LABEL(T3) > LABEI(T,) and that ¢(T}) < a(T3) < a(Ty). As above, it
follows that T; is in W. But this is a contradiction since T3 is a resource task, and it doesn’t
execute on processor one.

This completes the proof for the case s = m-1. a
5.1.13.2 Thecases <m-2

Given a segment W, the time units of the Coffman-Graham schedule can be partitioned into the
following three sets:

F = {BeCG:|B| = mand (VT € B)[T € Wand T is not a latccomer]}

H = {BeCG: B¢ Fand (3T € B)[T € W and T is not a latecomer and T is a resource task]}

P=CG-F-H

It follows that for each B € P, either B has an idle processor or there is an extra task in B (this extra task

may or may not be a latecomer). The time units in F are full time units, those in H are resource time units

and those in P are partial time units.

Lemma 5.7: If the first time unit of CG is either a full or resource time unit, then OPT > |P} + 1.

Proof

Consider the partial time units of W and number them (left to right) from 1 to |P). For1 < i< |P], let
Vi be the task exccuted on processor onc in the time unit immediately following partial time unit i.
let T* be the task exccuted on processor one in partial time unit 1. There arc two obscrvations to be

made:
1. T*L Vl. To see that this is so, consider the time unit where T* executes. Since this is a partial
time unit, any extra tasks in this timc unit have a label smaller than LABEI-(VI). Since Vl

cxecutes after time unit o(T*), for some task T cxecuting in that time unit, T £ V1. Suppose T

- 99 .
T*. Since LABEL(T*) > LABEL(T), and V; is the task with the highest label that either T
or T* can precede, it must be that T* < V.

2. For1 <j<|P|-1, every T € W, such that LABEL(T) > LABEL(Vj), precedes a task R € W,
such that LABEL(R) > LABEL(Vj +1). To see that this is so, consider any task T with
LABEI(T) > LABEuVj). IfT < Vj 41 the claim holds, so assume not. Let T' be the task
executed on processor one in partial time unit j+ 1. Similarly to the previous obscrvation, T*
Vj +1- It follows from LABEL(T) > LABEL(VJ-) and LABEL(VJ-) > LABEL(T'), that
LABEL(T) > LABEL(T"'). Since T*' £ Vj +1 and T doesn’t, T must precede some task R with
LABEL(R) > LABEL(Vj +1). All that remains is to show that R € W. If R is in some block
then it is in W, so assume that R is an extra task. If o(R) < c(XO), then R is a latecomer to W
(it is added no later than when block X is added to W). If 6(R) > o(X) then R € X, since

Vj +1 € Xpand LABEL(R) > LABEL(Vj +71)- This is a contradiction since R is an extra task.

Thus, R € W.

From the above two observations, it follows that task T* and every task T € W with LABEL(T) >

LABEL(Tf), precedes a chain of at least |P} - 1 tasks (with each task of that chain a member of W).

Now consider the first time unit By of W. There are two cases:

Casc1: Bl is a resource time unit.
If some task T € (B; N W) precedes task T* then T precedes a chain of at least |P| tasks, each
of which is in W, hence OPT > |P| + 1. Thus suppose that there is no such task T. Since
there is cither an idle processor or an cxtra task in By (which must have a lower label than T*),
when T* was scheduled there was still room in By for it. Since T* couldn’t have been
prevented from exccuting there due to resource constraints (T* requires no resourccs), there
must cxist a task Q such that Q < T*. Morcover, Q € W since T* € W and T* is in the first

partial time unit of W (i.c. Q cannot be an extra task). Hence, Q precedes a chain of at least |P)

- 100 -
tasks, each of which is in W, hence OPT > |P| + 1.
Case 2: Bl is a full time unit.
Let Aj, ..., A, be the tasks exccuting in By. If each A, has a label exceeding LABEL(T*) then
there are at least m+1 tasks in W, each preceding a chain of at least |P] tasks, each of which is
in W. It follows that OPT > |P|+1. Thus assume that for some A;, LABEL(A;) <
LABEL(T*). Then, identically to Case 1, there exists a task Q € W, such that Q { T*, hence
OPT 2> |P| + L. O
Now we complcte the proof of the upper bound for s < m - 2. Note that it follows from previous
arguments, that there are at least m |F| + JH| + 2 |P| - 1 tasks in W. Again there are two cases to consider
based on time unit B, of the Coffman-Graham schedule:
Case 1: Bl is a full or resource time unit.
First note that OP'_[‘ > [H}/s, m OPT > m |F| + |H| + 2 |P| - 1 and that OPT > |P| + 1 (from
Lemma 5.7). Morcover, CG = |F] + [H| + |P}, so
mCG =[m|F + [H + 2|P|-1] + [(m-2)(|P] + 1)] + [(m - D)|H|}-m + 3
<mOPT + (m-2)OPT + (m-1)s OPT - (m - 3)
=[2m-2 + s(m-1)] OPT - (m - 3)
<[2m-2 + s(m - 1)] OPT, since m > 3.
.".CG/OPT < (2-2/m) + s(1 - 1/m).
Casc 2: By is a partial time unit.
Since Bl is the first time unit of the schedule, there are no latecomers in Bl' Moreover, because it
is a partial time unit, there must either be an cextra task or an idle processor in By, hence IBI Nnwj
< m- 1 Since none of the tasks in B; M W requires a resource, it follows that cach task in Xq -
B, has a predecessorin By N W. From Lemma 5.3 and the manner in which latecomers are added

. Then by transitivity, each task in

to W, it follows that cach task in W - X _ has a predecessor in X

q q

-101-
W - B; has a predecessor in B; 1 W. Now consider an optimal schedule for W. Such a schedule
must have an idle processor in its first time unit, since the only tasks that can execute there are
those in By M W. Thus, m OPT > m |F| + [H| + 2 |P|. From the proof of Lemma 5.7, it follows
that OPT > |P|. Moreover, OPT > {H|/s. Thus,
mCG = [m[F| + [H| + 2P} + [(m - 1) [H]] + [(m - 2) [P]]
<mOPT + (n-1)s OPT + (m - 2) OPT
=[2m-2 + s(m - 1)] OPT
.. CG/OPT L (2-2/m) + s(1-1/m) a
This completes the proof of the upper bound. O

5.1.2 The lower bounds

In this section we prove that the upper bounds given in Theorems 5.1 and 5.2 are the best possible
bounds. We concentrate on proving that the bound given in Theorem 5.2 - the processor constraint case -
is the best possible result. At the end of the section we indicate how to modify that proof to show that the
upper bound given in Theorem 5.1 - the no processor constraint case - is the best possible result.

Lemma 5.8: If m > 2 (a processor constraint), the upper bound given in Theorem 5.2 is the best possible

result.
The task systems we will use to prove this lower bound will consist of various combinations of the
following two sets of tasks (Figure 5.3):
Definition: An RES, -structurc consists of:
1. The following tasks:
A, for1 < v <'s, where A, requires only resource v
Bifor1 <v<s, 1<j<z where ij requires only resource v

]

Cv for1 < v <s, where CV requircs only resource v

-102 -

Figure 5.3: Two useful structures

Al x Blz \ Cl
Ay By v T By Gy
H s [} .

Ag ™~ By +- By, s G

a) An RES, -structure.

(8] —
or) T

>
.
5
o
7
i
[

/%/

>
<
+
-
ﬁm
-
+
=
-
>;‘l'i
<
.+.
-
3
o)

X-y+1

/

>
[
[

e
>

bYA PRECx,y-structure.

-103 -
2. The following precedence constraints:
A, < Av+1andCV(Cv+1for1 <v<sl
Av<Bv+ljforlgv$s-landl <j<Lz
ij (Cv+1for1_<_vgs-1and1$j <z
. Definition: A PRECx’y-structure consists of:
1. The following tasks:
Dj for1 <j < x, where Dj requires no resources
Ejk forx-y <j<x-1,1<k < m,where Ejk requires no resources
Fj forl < j_ < x, where Fj requires no resources

2. The following precedence constraints:

D-<D-+1andFj<Fj+1forl <ji<xl

i
Dy<Ejpyforryl <j<x2andl <k <m

Ejk< Fj+1 fOYX'ys_i SX'I and 1 S k S m
For1l <v <'s, we will refer to tasks B, 4, ..., B, as Bv-tasks, and for x-y < j < x-1 we will refer to tasks
E-| 1 Ejm as Ej-tasks.
These two structures can be combined by the use of the following precedence relations:
1. RESZ { PRECX’y means that Ag < Dl
By <Fiforl<k <z

C < F)

2. PRECK,y < RES, means that D, <A;
D, <Bjfor1 <k <z
F, <G
These precedence relations are shown in Figure 5.4.

Now consider possible Coffman-Graham labelings of these structures:

-104 -

Figure 5.4: Precedence relations between the structures

Remainder of RESz

| I
N

LN
i i

Remainder of PRECx’y

a)RES, < PREC, ,

Figure 5.5: Bad CG labelings

a) Abad CG labeling of RES, when s = 3,

Remainder of PREC,"y
| l
D, \ Fy

D, 1 F, 2

b) A bad CG labeling of PREC“'2 whenm = 2,

Labels are given beside the tasks.

- 105 -

Definition;

1. A Coffman-Graham labeling of a RES -structure is a bad CG labeling if:
label(B, ;) > label(A,) for] Sv<sand1<k<z
label(C,) > label(A) for1 S v<'s
label(C,) > label(B,) forl Sv<sand1<k <z

2. A Coffman-Graham labcling of a PRECX,;-SUUcture isabad CG labeling if:
label(Ejk) > label (Dj) forx-y<j<xlandl1<k<m
label(Fj) > label(Dj) for1<j<x

label(Fj) > label(Ejk) forxy<j<xlandl<k<m

Figure 5.5 shows examples of bad CG labelings.

P

{=]

roof of .emma S.

Assume that s > 1 and m > 2 are given. Letq, x,y and zbe integers to be specified later. Consider a
task system S* consisting of q+1 RESstructures: RES!, .., RES‘ZH' 1 andgq PREC, ,-structures:
PREC,I‘,y, - PRECQ,),. Intuitively, we arrange these structures in a stack, alternating
RESz-structurcs and PRECx,y-structures, with a RESZ-struclure on the top and on the bottom of the
stack (Figure 5.6). Formally, RES] < PRECi,y for1 <i< qand PRECi’y <RESi*lfor1<i<a.
Now consider a Coffman-Graham labeling of S$* in which each RES, -structure and each
PRECx’y—structurc has a bad CG labeling. To sce that such a labeling cxists, consider the point in the
labeling process when labels have been assigned to the tasks in RES;'H. Assumec that this is a bad
CG labeling. Now, PRECi’y can have a bad CG labeling only if the labeling algorithm assigns a
smaller label to D)i(than it docs to F)i(. But, this is preciscly what the labeling algorithm doces since
RES! ! has a bad CG labeling, hence label(C} +1) > label(A] T1) and label(C} +1) > tabei(Bl 11

for 1 < k <z A similar obscrvation can be made about a bad CG labcling of RES;, given that

PRECi y has alrcady been assigned a bad CG labeling. Thus, a Coffman-Graham labeling of $* in

- 106 -
Figure 5.6: The task system S*
RES!

PREC!

| 7

RES2

PREC?

VY

Figure 5.7: The Coffman-Graham schedule - execution of RESiZ and PRECix’y after Cil has executed.
The superscript i is omitted from the tasks.

Bafee{Bu | A Ay Bsz|+|Bsi[As | Di| [Dxyn

: /BZZ‘"Bn G| .. P77 Fi| Fal [Fxy
////A//Cz// ///AZ /////’AVA 77

Ex-y,l Dx-y Ex-y +1,1 Dx-z Ex-l,l Dx-l Dx
L] . . i+ 1
S LS IR CXN o S U I i S

N
f*’
\

\

Ex-y,m Ex-y+ 1,m

-107 -
which cach of the structures has a bad CG labeling does exist.
The initial portion of the list (used to schedule $*) which is formed as a result of this labcling is:

pl . Fl

1 pl 11 Rl 1 1 pl 1 ¢l 1 11 1
(C s Bl-tasks, A R C2, Bz'taSkS, A2, . C B -tasks A Fl' Dl' Fz, D s ann F X'Y'l' x-y

-y-lt
E}.,-tasks, D], ..., F.1, By -tasks, D}, Fy, D, €}, ..). Beginning with Cf the patiern repeats
for RES2 and PREC2 2 y» then for RESJ and PREC] 5y and so on.

The Coffman-Graham schedule produced from this list is as follows: Execute task C% in the

first time unit, followed by thc remainder of RES% and task F{ in the next (z+1)s time units (each
Blk executes alone, since label(B k) > labcl(Al) and A1 precedes all of the tasks that might execute
with Blk) In the next x+y time units exccute the remainder of PRE,C1 and task C%. This consists
of x time units in which two tasks execute per time unit and y time units in which m of the El-tasks
execute per time unit. In the next (z+ 1)s time units execute the remainder of RES% and task F%. And
so on. The pattern repeats (Figure 5.7) until RES%"' 1 executes in the final (z+1)s time units. This
Coffman-Graham schedule has length
CG =1+ ((z+1)s + x + y)q+ (z+1)s. ()]

Now we want to gct an upper bound on the length of an optimal schedule for this system.
There are three cases to consider bascd on the three parts of the lower bound given in the statement
of Theorem 5.2.

Casel:s>m

Without loss of generality assume s = m. Let z be an arbitrary intcgerand letx =y = q = 0. The
task system S* consists just of RESl. From(I),CG =1+ @+1)s=sz+s+ L

Consider the following schedule for this task system: In the first s time units exccute the Al-tasks. In
the next z time units, excecute all of the Bl-tasks, with s tasks cxecuting per time unit - one task

requiring cach resource. Finally, exccute the Cl-tasks in the last s time units. This schedule has

length z + 2s, hence OPT <z + 2s.

-108 -
.CG/OPT 2 (sz +5 + 1)/(z + 2)
limit, _, oo CG/OPT 2> s =m.

Cases2and 3: s <m-1

Consider the following condition:

Condition 1: For 2 < i < g, if the Di"l-tasks, the Al-tasks and the tasks in RESI™ have exccuted,
then all of the following tasks can be executed in the next z time units: the Bi-tasks, the Di-tasks,
the EL-tasks and the Fi"l-tasks.

Whether or not this condition holds depends upon the relative values of s, m, x, y and z. Also, if the

condition holds nonvacuously (i.e. q > 2), then the following also hold:

1. If the Al-tasks have been exccuted, then the Bl-tasks and Dl-tasks can be executed in just z
time units.

2. If the NY-tasks, the A9t Ltasks and the tasks in RES‘Z1 have been cxccuted, then all of the
following tasks can be exccuted in the next z time units: the Bq"'l-tasks, the E9-tasks and the
FA-tasks.

Lemma 5.9: Ifs = m-1 and x > 2, withq = x,z = 2x and y = 0, then Condition 1 holds.

Proof
First observe that y = 0 mcans that there are no Ei'l-tasks for any i-1. The Bi-tasks, Di-tasks and
F"Ltasks can be exccuted in just z time units as follows (Figure 5.8): In time unit k, execute
tasks Bik. s ng. Since s = m-1, this utilizes m-1 processors in cach of the z time units. The
Di-tasks and Fi"l-tasks cxecute on the unused processor: the Di-tasks exccuting in the first z/2
(=x) time units and the F-ltasks cxecuting in the second z/2 (=x) time units. O

Lemma 5.10: If s < m-2 and x is an intcger such that x > 2 and (x-1) = O mod m, withz = x,q = x

and y = (m-s-2)(x-1)/m, then Condition 1 holds.

-109 -

Figure 5.8: Exccution of the tasks - Lemma 5.9.

i i i i i i
By | By By | Bix+1| Bix+2 By,
i i i i i i
B;l B§2 B'sx Bg,x+1 Bg,x+2 Bs}
i i “ee i i-1 -1 .o v 11
D, D, DYy F, F, Fy
Time unit; " 1 2 X x+1 x+2 z=2x

Figure 5.9: Execution of the tasks - Lemma 5.10

i i i i
B 11 B 12 B 1,x-1 B 1Lx
i i i i
B _sl B 52 B §,x-1 B s, X
i 1 1 1
D 1 D 2 T D x-1 D x
i-1 i-1 -1 -1
F 1 F, v Fx-l Fy
El'l-tasks 2
Time unit: ' 1 | 2 Fx-1 X
Figure 5.10: A "good" schedule.
Bi‘-tsks
. D'-tsks BAt+1Ltsks
Tasks Bl-tsks Cl'lsks | EMl-tsks CA-tsks E9-tsks
executed lAl-tsks D!-tsks|++- |Al-tsks Filiks| *** |A9+Ysks | Fl-tsks | CAFLtsks
Numberof| s z ’ s+1 l z I s s+1 z | S
time units 2<Li<q

-110-

Proof

First observe that y is an integer and that there are (m-s-2)(x-1) of the Ei'l-tasks. The Bi-tasks,

D'-tasks, Ei1-tasks and Fi"L-tasks, can be exccuted in just z time units as follows (Figure 5.9): In

time unit X, exccute tasks B}k, s B;k, Dli(and Fli('l. This utilizes s+2 processors, leaving m-s-2

processors at each time unit to exccute the Ei'l-tasks on. These tasks are executed in time units 1

thru z-1 (=x-1), with m-s-2 of the Eltasks executing per time unit. O
To complete the proof of the lower bound we assume that q, x, y and z are chosen such that
Condition 1 holds. Consider the following schedule for the task system (Figure 5.10): In the first s
time units execute the Al-tasks. Execute the Bl-tasks and D1-tasks in the next z time units. This is
possible since Condition 1 holds. In the next s+1 time units exccute the Cl-tasks and the A2-tasks.
Now execute the Bz-tasks, D2-tasks, El-tasks and Fl-tasks in the next z time units. This is possible
since Condition 1 holds. In the next s+1 time units execute the C2-tasks and the A3-tasks. Now
execute the B3-tasks, D3-tasks, E2-tasks and F2-tasks in the next z time units. .And so on. This
pattern continues until the CY-tasks and AQ+1-tasks execute. Then exccute the BQ+1-tasks,
EY9-tasks and F9-tasks in the next z time units. Again, this is possible since Condition 1 holds.
Finally, execute the C‘H'l-tasks in the last s time units. This schedule has length (s+z+1)q + z +
2s. Thus, given s and m, provided q, x, z and y are specified so Condition 1 holds, we have:

OPT <(s+z+1)q + z + 2s. (Im

Case 2 - completion: s =m-1

Let x be an arbitrary integer with q = x,z = 2x and y = 0. By L.emma 5.9, Condition 1 holds,

and from (II), OPT < (s+2x+1)x + 2x + 2s = 2+ (s+3)x + 2s. From(I),CG =1+

(Qx+1s + 0% + (x+1Ds = @s+1x2 + Isx + 5 + L.

Colimit, | 0o CG/OPT = 2s + 1)/2=5+1/2 =(m]) + /2 =m-1/2.

-111-

Case 3 - completion: s <m~-2

Let x be an integer such that x > s and (x-1) = 0 mod m, with z = x, @ = x,and y =
(m-s-2)(x-1)/m. By Lemma 5.10, Condition 1 holds, and from (II), OPT < (s+x+1)x + x + 2s
= x2 + (s+2)x + 2s. From (I), CG =1 + ((x+1)s + x + (m-s-2)(x-1)/m)x + (x+1)s =
(@2/m) + s(-1/m)x® + (s - (m-s-2)/m)x + 5 + L.
S dimit, oo CG/OPT > (2-2/m) + (1 - 1/m)
This concludes the proof of Lemma 5.8, showing that the bound given in Theorem 5.2 is the best
possible bound. O
Lemma 5.11: If m > n (no processor constraint) then the upper bound given in Theorem 5.1 is the best
possible upper bound.
Proof
Consider a task system S* as described in the previous proof, with x an integer, x > 2, z=x, ¢=x and
y=0. It follows from that proof (cquation I) that there exists a Coffman-Graham schedule for S* of
length
CG =1+ ((x+1)s + x)x + (x+1)s = (s+Dx% + 25x + 5 + L.
From the proof of Lemma 5.10, it follows that Condition 1 holds given these values of x, z, q and y.
This in turn implies that equation II given there holds, hence there exists a (optimal) schedule for S*
of length
OPT < (s+x+1)x + X + 25 = x2 + (s+2)x + 2s.
.. CG/OPT < [(s+1x2 + 25x + 5 + 1)/[x2 + (s+2)x + 2]
limit, _, o0 CG/OPT =1+ a

5.2 The implication for critical path scheduling

Now we consider the implication of the above results for critical path scheduling of UET task

systems with discrete resources. Because Coffman-Graham scheduling is a subclass of critical path

-112-
scheduling and UET task systems with 0-1 resources are a subclass of UET task systems with discrete
resources, we have the following two lower bound results for UET task systems with discrete resources:

Theorem 5.3: If m > n (no processor constraint) then, in the worst case, CPATH/OPT can be arbitrarily

closetol +s.
Theorem 5.4: If m > 2 (a processor constraint) then, in the worst case, CPATH/OPT can be arbitrarily

close to m if s>m

m-1/2 if s=m-1
(2-2/m) + s(1-1/m) if s<m-2

In the remainder of this section we concentrate on critical path scheduling of systems without processor
constraints. Similar remarks apply for critical path scheduling of systems with processor constraints,
except that they are complicated by the fact that the lower bound has three portions.

The result in Theorem 5.3 can be compared to the result of Garey, et.al. [GGJY], for critical path
scheduling of UET task systems with continuous resources. That result is CPATH/OPT <1 + 17s/10.
If we let fls, 1}, ... , rg) be the best possible worst case bound for critical path scheduling of UET task
systems with discrete resources, we have:

1+s < fis,1p,..,1) < 1+175/10 (11
Several remarks can be made about equation I11.

First, regardless of the actual values of I s I the function f is cssentially a linear function in s,
The values of s e s Ig (i.e. the distribution of units of resource among the various resources) are
relatively unimportant in determining the worst case bound on CPATH/OPT. This is in sharp contrast to
the situation for list scheduling of UET task systems with discrete resources. In that instance, the bound

was LIST/OPT < 1 + rwherer = 2 _ 1.

There, the number of diffcrent resources didn’t matter at
all - only the total number of units of resource of any kind in the task system.

Sccond, relatively little additional information about the worst case performance of critical path

-113-
scheduling for UET task systems with resources is to be gained by explicitly obtaining the function f.
That is, the results on the worst case performance of critical path scheduling provided by the continuous
model are going to be relatively closc to those provided by the discrete model. These bounds are related
by a constant - both are bounded by linear functions of s. Again this contrasts sharply with the results of
Chapter 3 on list scheduling. In that chapter, we saw that the list scheduling results based on the discrete
model had a much higher information content than those based on the continuous model. Hcrc,. they do

not.

-114-

Chapter 6 - Overview: UET Results

6.1 Summary

In the past several chapters, we have studied list and critical path scheduling of UET task systems
with resources. The formal model of task systems with resources used in most previous work involving
the analysis of scheduling heuristics for these types of systems, involves continuous resources. That is,
there is one unit of each resource and a task may require any portion of that one unit. We noted that
there are some serious questions about the appropriateness of that model in regard to certain applications.
In particular, the assumption that resources are continuous sccms inappropriate for applications where
the available quantities of each resource are small. To try to overcome these perceived shortcomings of
the model with continuous resources, we introduced UET task systems with discrete resources. In that
model, there are a specific number of units of cach resource, and a task may require only integral
numbers of those units. Our hope was that performance bounds based on this model with discrete
resources would provide substantially more information than bounds based on thc model with
continuous resources. In particular, information about the affect on performance of increasing or
decreasing the available units of resource in the system. Morcover, we noted that depending upon the
particular application, the presence of processor constraints was or was not appropriate. Thus, we
investigated the worst casc performance of list and critical path scheduling for four modcls: those with
discrete or continuous resources and with or without processor constraints. A summary of the major
results now known about these problems is given in Table 6.1. Of the results given there, we note that the
two results for UET task systems with continuous resources and no processor constraints arc due to
Garey, ct.al. [GGJY], and that the rest of the results are given in this thesis.

Finally, to reiterate the remarks made in the last chapter about the relationship between the models

with discrete and continuous resources, we found that our expectation that bounds based on the model

-115-

Figure 6.1: Summary of the results for UET task systems with rcsources

LIST/OPT CPATH/0OPT
Continuous { No [GGIY] [GGIY]
processor
constraint sOPT/2+s/2+1 1+17s/10
"almost” best possible best possible
Processor [GGIY]
constraint m if 2<{md{s+1
min{m, (s+ 1)OPT/2+5/2+3/2} (s+m+1)/72 ifs+1<{m<2s+1
(4s+m+3)/4 if2s+1{m<8s/3+1
[Yao) (14s+m+9)/10 if8s/3+1<{m<3s+1
min{m, 2+17s/10-(3s+ lg;m ifIs+1{mm210
(m-1)sOPT/(2m)+ 7(m-1)s/(2m)+1} 2+5s/3-(8s/3+1)/m if3s+1<{m,m<10
best possible
Discrete No 14r >1+s
processor best possible
constraint
Processor (2-1/m) + n(1-1/m) >m ifsgm
constraint best possible 2m-1/2 ifs=m-1
X2-2/m) + (1-I/m) ifs{m-2

Unless otherwise noted, each of the above results is an upper bound.

Except where note-1, all of these results are given in this thesis.

-116 -

with discrete resources would have a much higher information content than bounds based on the model
with continuous resources, was both right and wrong. For list scheduling, this was certainly the case - the
results were particﬁlarly strong for the model with discrete resources and were particularly weak for the
modcl with continuous resources. For critical path scheduling, we found that while bounds based on the
model with discrete resources should have a slightly higher information content than bounds based on the
model with continuous resources, the additional useful information is not nearly as great as for list
scheduling. For this reason, obtaining tight bounds for critical path scheduling of UET task systems with
discrete resources does not appear to be a particularly important problem.
6.2 Open Problems

There are obviously a large number of questions which remain unanswered as a result of this
rescarch. We mention only a few of the problems which we feel are the most important here.

First, is to aﬁalyze the worst case performance of other scheduling algorithms with respect to the

task system modecl with discrete resources. In particular, the performance of the resource decreasing

algorithm. This is a list scheduling algorithm in which the tasks are ordered in the list according to their
R hax-values - tasks with the largest R -values coming first in the list. This algorithm has been
analyzed by Garey, et.al. [GGJY] for UET task systems with continuous resources and no processor
constraints. For that model they show that RDEC/OPT < 1 + 17s/10, and that task systems and
resource decreasing schedules for those systems exist, such that RDEC/OPT > 1 + 1.69s (where
RDEC/OPT is the worst casc ratio of the length of a resource decreasing schedule for a task system to the
Iength of an optimal schedule for that task system). Note that this is the same upper bound as that for
CPATH/OPT. An interesting question which might be answered via the model with discrete resourccs, is
whether or not resource decreasing schedules and critical path schedules are as comparable as they appear

basced on the worst case performance bounds for UET task systems with continuous resources and no

Pprocessor constr. aints.

-117 -

Second, is to find algorithms which have a worst case performance bound substantially better than
O(s). Consider, for instance, the scheduling of UET task systems with 0-1 resources and no processor
constraints. All of the scheduling alogrithms that we have cxamined - list, critcal path, Coffman-Graham
- as well as the resource decreasing algorithm (and simple variations of it), have a worst casc performance

‘bound of 1 + s when applicd to thesc systems. An algorithm which had any kind of sublincar (in s) worst
casc performance would be a significant advance. Presumably, such an algorithm for UET task systems
with 0-1 resources could be extended to provide a sublinear algorithm for more general UET task systems
with resources - either continuous or discrete.

Third, is the analysis of scheduling algorithms with respect to the model with discrete resources in
other contexts. For instance, in a model with no precedence constraints, but where task éxccution times
are not restricted. In Chapter 7 we give two results on the worst case performance of list scheduling for

that particular model.

-118-

Chapter 7 - Non-UET results

In this chapter we investigate list scheduling of task systems with resources where no precedence
constraints exist and where task execution times are not restricted. As noted previously, this submodel is
one of the two major submodels uscd to investigate scheduling algorithms. Also as mentioned earlier, we
note that there is not always a list schedule of optimal length for such task systems. Despite that, because
list schedules are intuitively simple and are casy to construct, they provide the basis for most scheduling
algorithms for task éystcms of the type we study here. In this chapter we deal exclusively with list
scheduling. For comparison purposes, we note that Graham [G66] has shown that if m > 2 (a processor
constraint), then LIST/OPT < 2 - 1/m, and that this is the best possible result. We also note that if m >
n (no processor constraint), then LIST/OPT = L.

7.1 Continuous resources

The only two significant results for list scheduling of task systems with continuous resources and no
precedence constraints, are by Garecy and Graham. They show [GG73, GG75] that if m > n (no
processor constraint), then LIST/OPT < 1 + s and, [GGT75}, if m > 2 (a processor constraint), then
LIST/OPT < min{(m+1)/2, s+2 - (2s+1)/m}. Morcover, they show that both of these bounds are the
best possible.

1.2 Discrete resources

There are no previous results about the scheduling of task systems with discrete resources and no
precedence constraints. In this section we prove the following two results about such systems:

Theorem 7.1: If m > nand s=1, then LIST/OPT < 2 - 1/r;. Morcover, this result is the best possible.
Theorem 7.2: If m > n, s=2, and = 1, then LIST/0PT < 2 - 1/r;. Morcovcr, this result is the best

possible,

-119-
7.2.1 Discussion

There are three things to be noted about these results,

First, and most obvious, is that given a system with a single type of resource, the addition of a single
unit of a second type of resourcc has no affect on the worst case performance of list scheduling. This is
somewhat surprising, and the question arises whether this is a general phenomenon. That is, can single
units of a third resource, a fourth resource, and so on, be added to the system without affecting the worst
case performance of list scheduling? Not surprisingly, the answer is no. Figure 7.1 shows an example of a
system where the addition of a single unit of a third type of resource rcsults in a worst case bound
excceding2 - 1/ rn-

Second, it is interesting to note that for the special case of rj = ry = 1, list schedules are optimal.
As the example in Figure 7.1 shows, this phenomenon does not generalize.

Third, we can compare these results to those for task systems with continuous resources. For
systems with s = 1, the results for continuous resources indicate that LIST/OPT < 2. Our results show
that LIST/OPT < 2 - I/rl. Obviously, for systems with a small number of units of resource, our result
provides a somewhat better indication of the worst case performance of list scheduling. For systems with
s = 2, our results show how significant the difference can be between the discrete and continuous bounds
when small quantities of resources are involved. For example, if ry = 2 and ry =1, our bound shows that
LIST/OPT < 3/2. The bound based on systems with continuous resources is LIST/OPT < 3.
Morecover, if n=rn= 1, then our bound indicates that list scheduling is optimal. Again the boundr
based on systems with continuous resources is LIST/OPT < 3.

7.2.2 Upper bounds

In this scction we prove the two upper bounds associated with Theorems 7.1 and 7.2, In the next
scction we show that those two bounds are the best possible upper bounds.

Note that we can prove both of the upper bounds, merely by proving the upper bound for the case

-120-

Figure 7.1: An observation

Consider a task sytem with 4 tasks and 3 resources:

Task Execution Time Resource Requircments
A 2 [01 0]
B 1 [1 0 0]
C 2 [1 0 1]
D 2 [01 1]

Whererlz =1r; =1

An optimal schedule: AJA|B
C|CID|D
Time unit; 112143
A list schedule:
List (AC B D
Schedule: AlAY//D|D
B|c|cl/ AV,
Time unit: 112131415

LIST/OPT = 5/4>1 = 1-1/r;

-121-
ofs = 2andry = 1(Thcorem 7.2). From such a proof it follows immediately that the same bound holds
for s = 1 (Theorem 7.1). Similarly, if we show that the upper bound is achicvable for the case of s = 1
(Theorem 7.1), then the bound is achievable for the case of s = 2 and ry = 1 (Theorem 7.2). Before
proving these results, we have the following mathematical fact:
Claim7.1: If X < D, and B > AC, with A, B, C, D, X all non-negative, then
X + A)/(CX + B) < (D + A)/(CD + B)

Proof

Assume X < Dand B> AC. ThenB-AC > 0, so
(B-AOX L (B-AC)D
= BX + ACD < BD + ACX
= CDX + BX + ACD + AB < CDX + BD + ACX + AB
= (CD + BYX + A) <(CX + BYD + A)
= (X + A)/(CX + B) < (D + A)/(CD + B) a
LemmaZ.l: Ifm > n,s=2and)= 1, then LIST/OPT < 2 - llrl.
Proof
Consider any task system with two discrete resources, where n > land = 1. Let LIST be any list
schedule for that system. Similarly to an earlier proof, for each time unit B of LIST, we lct Ri(B) =2
Ri(T) summed over all T€B, and Ri(LlST) =2 Ri(B) summed over all time units B in LIST. There
are several cases to consider based on the resource usage in various time units of LIST.
Case 1: In each time unit B of LIST, Ry(B) = 1.
Since ry = 1, this means that LIST = OPT, hence LIST/OPT = 1< 2 - 1/r1.
Case 2: In cach time unit B of LIST, RI(B) >ry/2
Since Rl(B) > 11/2, we have RI(B) > (rl + 1)72. Then RI(LIST) > (rl+l)l,lST/2. But, OPT

> Ry(LIST)/r}. It follows that OPT > [(r; + I)LIST/2)/r,.

-122-
.~ LIST/OPT < 2ry/(rj+1) = 2-2/(ry+1) £ 2-1/1y.
Case 3: In some time unit B of LIST, RI(B) <r/2and RZ(B) =0,

Let F = {B € LIST: Rl(B) < r1/2 and Rz(B) = (0} and let B* € F, be a time unit such that
R;(B*) = min{R;(B): B€ F}. Lets = max{o(T): T € B*} and let f = max{o(T) + 7 -1: T€
B*}. That is, s is the latest starting time of any task in B* and f is the latest finishing time of any
task in B*. Note that at lcast one task in B* has an execution time at least as large as f- s + 1 (in
particular, each task which finishs at time unit f).

Now consider any time unit Bi’ 1 < i<s. There is at least one task T* in B* which did not
execute in B, (in particular, a task starting at time unit s). Task T* must have been prevented from
executing in B by the resource constraints. In particular, since RZ(T*) = 0, it was prevented from
doing so by the constraint imposed by resource 1. Thus, R{(B;) + R;(T*) > ry, hence, Ry(By) +
R {(B*)>1;.

Similarly, consider any time unit B;, f<i < LIST and any task T € Bi' Task T did not
exccute in time unit B* due to the constraint imposed by resource 1. Thus, Ry(T) + Rl(B*) >,
hence, Ry(By) + Ry(B*)>r}. |
Finally, letd = R(B*)

e= min{Rl(Bi): 1<i<sorf<i<LIST}
x=f-s4+1
y = LIST-x
As noted carlicr, at lcast onc task cxecutes for at least x time units. For cach of the x time units, Bi'
s <i < f Ry(B) 2> Ry(B*). Also,y = (s- 1) + (LIST -f) and LIST = x + y. Morcover, from
the arguments given above ¢ 2> 1y - d + 1. The situation is shown in Figure 7.2a.
.". OPT 2> max{x, [dx + cy}/r;}

2> max{x, [dx + (r; -d + Dy}/r;}.

-123-

Figure 7.2: Resource usages in a list schedule

Schematic: y time units ' X time units
RyB)>r-d + 1 R,(B) > d
GT)[TT >x]

a) The situation in case 3.

Schematic: y time units | X time units
RiB)>r-d+1 RB)>d
R,(B) =1

b) The situation in case 4.

-124 -
Intuitively, OPT is at least as long as the time it takes to execute any task (and some task has an
exccution time of at least x), and is at least as long as a schedule in which resource 1 is fully utilized
at cach time unit. There are two subcases to consider:

Subcase 1: x > [dx + (ry -d + Dyl/ry

It follows that x > (r] -d + 1)y/(r] - d) and that LIST/OPT < (x + y)/x = 1 + y/x. Ifd =
0, theny = 0, hence LIST/OPT = 1, so assumc that d > 0. Then, substituting for x,
LIST/OPT <1 + (ry -d)/(rp-d + 1)
= 2.- (r;-d+1)
<2-Vrysinced>0.
Subcase 2: x <[dx + (ry -d + Dyl/ry
It follows that x < (ry - d + 1)y/(ry - d) and that LIST/OPT < (x + y)/[dx/r| + (rl -d +
Dy/r{l. Moreover, since d < r;/2, it follows that (ry - d + 1)/r} > d/r;.
Using Claim 7.1, with A = y,C = d/r}, B = (r; -d + Dy/rj,and D = (ry -d + l)y/(ri -d)
we have
LIST/OPT < [(rl -d+ l)y/(rl -d) + y]/[(d/rl)(rl -d + l)y/(rl -d) + (rl -d+ 1)y/r1]
=2-U(ry-d+1)
<2-1/rysinced>0.
Case 4: In cach time unit B of LIST, either RI(B) > r1/2 or R2(B) =1L
LetF = {B € LIST: Ri(B) = 1}. Also, let B* € F, bc a time unit such that Ry (B¥) = min{R(B):
B € F}. Note that Ry(B*) < r;/2, since otherwise every B € LIST has Rl(B) > rp/2. This was
handled in case 2.
Now consider any time unit Bi preceding B* in LIST such that RZ(Bi) = 0. Since RZ(B*) =
1, there is at least onc task T* in B* which does not exccute in Bi' The reason that it does not

exccute in B, is because of the constraint imposed by resource 1. ‘Thus, Rl(Bi) + R l(T > I,

-125 -
hence Ry(B)) + R(B*) > ;.
Similarly, consider any time unit B; following B* such that Ry(B;) = 0. There must be a task

T in B; which does not executc in B*. This follows becausc Rl(B*) < r/2andr/2< R(B).
The constraint imposed by resource 1 is the reason that T does not execute in B*. Thus, Ry(T) +
RI(B*) >1y,50 Rl(Bi) + Rl(B*) > 1.
Finally, letd = RI(B*)

e = min {Rl(B) :Ry(B) = 0}

x = {B € LIST: Ry(B) = 1}

y =LIST-x
Note thaty = [{B: Ry(B) = 0}{ and that LIST = x + y. Morcover, by the argument given above,
e 2 ry -d + 1. Thesituation is shown in Figure 7.2b.

.". OPT > max{x, [dx + ey}/r{}

> max{x, [dx+(ry-d+ l)y]/rl}

Asin Case 3, it follows that LIST/OPT <2 - 1/1;. O

7.2.3 Lower bounds

In this section we show:

Lemma72: Ifm > nands=1, then the bound LIST/OPT < 2 - 1/1;, is the best possible bound.

—U

roof

Consider a task system consisting of the following tasks:

L A, withry =rjand RI(A) =1

2 B, forl <i <ry(ry - 1), with TBi = land Ry(B)) = 1.
There are, of course, no precedence constraints. The system is shown in Figure 7.3a. Consider a
schedule for this system gencrated from the list: (Bl, Bz, s Brl(rl -1y A). Such a schedule (Figure

7.3b) consists of r; - 1 time units with ry B-tasks executing in cach time unit, followed by the

-126 -
Figure 7.3: The bound is achievable

Al Tpa=1 By~ By

Ry(A) = 1

a) The task system with s = 1 and r, units of that resource.

'rBizl

Rl(Bl) =1

A list schedule:
Schedule: A
B-tasks 7,
yoertmewnit [
Time units; -l n —ﬂ

b) List schedule

An optimal schedule: A
B-tasks
r; - 1 per time unit
Time units: n

¢) An optimal schedule

length = 2r; - 1

length = r;

-127-
execution of task A. This requires an additional ry time units. Thus, LIST = (r; -1) + 1) = 2r; - L.

Now consider a schedule for this task system generated from the list: (A, Bl' Bz, 1)). Such

s Brl(rl .
a schedule (Figure 7.3c) consists of 5 time units. In each time unit, task A is executing on the first

processor, and ry - 1 B-tasks are executing on the other processors. Thus, OPT = ry.

", LIST/OPT = (2r; - /ry = 2- /1. u|

- 128 -

Chapter 8 - Concurrent Task Systems

In this chapter we investigate an extension of the basic task system model that was discussed in
Chapter 1. This extension allows tasks to require more than one processor at each step of their execution.

8.1 The model

A task system with concurrency is a system S = <7, £, m, (> where;

1. T= {Tl, s Tn} is a set of tasks - associated with T; is a positive integral execution time ;.
2. {is a partial order specifying precedence constraints between the tasks.
3. There are m identical processors.

4. CC{1,2,...,m}. The elements of C are degrees of concurrency.

Associated with each task Ti, is a degree of concurrency qg; € C. Intuitively, task Ti must exccute for i

time units, and requires q; processors for each of those time units. Task Ti is said to require Tiq3
processor units to execute. When convenient, we let qy represent the degree of concurrency of task X.
A valid schedule for a task system with concurrency Sis a mapping ¢:7 — (N - {0}) such that:
1. Foralll€ (N - {0}), Q; < m, where Q; = 2 q; summing over all T; such that o(T. i) <IL
or(Ti) +7-1

2.1f Ti { Tj’ then O’(Ti) +7- 1< O'(Tj).
As far as performance bounds are concerned, we restrict our attention to list schedules. Intuitively, for
task systems with concurrency, a list schedule is one where, if m - k processors are available, the first
unexecuted task on the list, all of whose predecessors have completed and whose degree of concurrency
docs not exceed m - k, is executed. More formally, a task Tj is ready at time 7if for every T; such that Ti
{ Tj, "(Ti) + 7i- 1< L Alist schedule is a valid schedule which is generated as follows:

1. Initially, L is an (ordered) list of the tasks in T'and /is 1.

2. While L is nonempty perform this step

-129 -

a. Letk = 2 q; summed over all T; ¢ L such that o(T) <1< o(Ty) + 7;- 1.
b. Let L' be alist of the ready tasks on L at time /, the tasks in the same orderon L' ason L.
c. While L' is nonempty and k < m perform this step

i. Let T be the first task on L.

ii. fqp <m-k,

thenleto(T) = Lletk =k + QT and remove T from L.

jiii. Remove T from L"'.

d. Let/=1+ min {e(T}) + 7;-1:T;¢ Land o(T)) + r;-12 }.
Examples of a concurrent task system and a list schedule for that system are given in Figure 8.1.

A task system with concurrency in which all tasks have the same execution time (which is assumed

to be one) is a concurrent UET task system. All of our results are about concurrent UET task systems.
As with the basic UET task system model, no generality is lost by restricting our attention to‘ list
schedules when dealing with concurrent UET task systems, since there is always a list schedule which is
an optimal schedule.

The task systems with concurrency model arises from scveral sources. A situation where one
processor is to monitor another processor on a particular sct of jobs is an example of a task explicitly
requiring more than one processor. Moreover, with the current interest in parallel processing, the
development of algorithms which require several processors to be simultancously devoted to a single task
secems inevitable. Apart from computer applications, task systems with concurrency model certain
practical situations more preciscly than standard task systems. For example, a construction company may
want to allocate its supply of men to complete some system of jobs. They know the number of men and
the number of hours rcquiréd fo éomplclc cééll job and arc interested in completing the system of jobs as

soon as possible. This problem is naturally modcled as a scheduling problem for a task systcxﬁ with

concurrency.

-130-

Figure 8.1: An example of a task system with concurrency

Al B2

Ci D1

| /l m = 3 processors

E2 F1 H2

\ / C=1{1,23}
G3 Il

The degree of concurrency of each task is given beside the task. Each task has an execution time of one.

A list schedule: _
Lst (HI G F E D C B A

Schedule:

QQ

& |t i)

™ oo o =
u%wu

Time unit:

-131-

As is the case with several other extensions of the standard model a task system with concurrency
can be viewed as a restricted type of task system with resources. That is, given a task system with
concurrency S, consider a task system with onc discrete resource and no processor constraint.
Furthermore, suppose there are m (the number of processors in S) units of that resource available and
each task requires a units of the resourcc where a € C. This restricted type of task system with discrete
resources is equivalent to a task system with concurrency. In as much as this relationship exists, our
results can be viewed as results for this restricted type of task system with resources. However, we feel
that the approach through the resource model is an unnatural onc for the problems we have described
and that the task systems with concurrency approach is more instructive. We know of no results about
task systems with concurrency other than those presented here.

8.2 The complexity of concurrent UET scheduling

In this section we give two NP-completeness results involving concurrent UET task systems. In
subscequent sections other aspects of the problem are examined, based on the probable non-existence of
polynomial time algorithms for finding optimal schedules for such systems.

8.2.1 Arbitrary concurrency, no precedence constraints

Consider the following decision problem:
CONCURRENCY: Given a deadline d’, and a concurrent UET task system in which m is arbitrary,
< is empty (i.e. there are no precedence constraints) and C = {1, ..., m}, docs there exist a schedule
for the system with length not excecding d*?

CONCURRENCY is stated as a decision problem, rather than as an optimization problem, so that it is

casily seen to be in NP. Note that any degree of concurrency up to the number of processors is allowed.

Theorem 8.1: CONCURRENCY is NP-complecte.

Proof

Garey and Johnson [GJ79] have noted that the problem of scheduling task systems with arbitrary

-132-
exccution times and no precedence constraints to meet a deadline d on p processors is NP-complete.
That problem reduces to CONCURRENCY by exchanging each execution time for an cqual degree
of concurrency and letting d' = pandm = d. O

8.2.2 Bounded concurrency, arbitrary precedence constraints

Consider the following decision problem:

12CONCURRENCY: Given a deadline d', and a concurrent UET task system in which there are 3

processors, <' is arbitrary and C = {1,2}, does there exist a schedule for the system with length not
exceeding d'?
It has been shown by Ullman [U75] that the following problem is NP-complete:
NOIDLE: Given a deadline d, such that n = dm and a UET task system <T, <, m> in which m and £
are arbitrary, and 7 = {Tl, vy Tn}, does there exist a schedule for the system with length not
exceeding d?
Intuitively, NOIDLE asks if the specified task system can be scheduled so that no idle time exists in the
schedule. The remainder of this section is devoted to showing that 122CONCURRENCY is
NP-complete. The reduction given here is an adaptation of a construction developed by Ullman [U76).

Theorem 8.2: 12CONCURRENCY is NP-complete.

Proof

Let a UET task system S = <7, {, m> and a deadline d, such that n = dm, be an instance of

NOIDLE. Consider the following instance of 12CONCURRENCY:

I Letd' =2md,andlet S* =<7, <, 3, {1.2P.

2. For cach task T; € 7, there arc two tasks T;and T; in 7. Each has an cxccution time of one. Let
q;=2q] =landT i Ti' Morcover, if the relation V < T; exists in S, then the relation V<!
T} isin S'. Call tasks T, and T} rcgular tasks.

3. There are 2ind tasks X;, for1 <i<2md. Foreachi, 1 <i< 2md - 1, the precedence constraint

-133 -
Xi ! Xi+1 isin S'. Furthermore, if 0 < (i- 1 mod 2m) < m - 1 then qxi = 2, otherwise qu
= 1. Call each Xiaggp_m_ggga_s_k_.
Note that a schedule for S* mecting the deadline d', can have no idle time, since the schedule for §
meeting deadline d is to have no idle time.
Claim: If a schedule of length d exists for S, then a schedule of length d* exists for S

Proof

Consider a schedule of length d for S. Consider any time unit / in that schedule, and let Tll, s

T I be the tasks executed in that time unit. Then, in the schedule for S, in time unit 2m(/- 1)+i

exccute tasks sz(l - 1)+i and T)i, and in time unit 2m({/ - 1)4+m+i execute tasks XZm(l .

D+m+i and Tli for 1 < i< m. This produces a schedule for S* in which no idle time exists. All
that remains is to verify that no precedence constraints are violated. Clearly none of the
constraints between the contour tasks are violated and none of the constraints of the form T* <' T
are violated. Consider any constraint of the form V €' T'. This means that V< T in S, so V is
exccuted before T in the schedule for S. Then in our constructed schedule for §', V executes
before both T' and T. Hence, none of the precedence constraints is violated and a valid schedule
of length d* exists for S O

Claim: Ifaschedule of length d* exists for S*, then a schedule of length d exists for S.

Proof
Consider a schedule of fength d* for S*. Since d' = 2dm, contour task X; must exccute in time
unit i of the schedule. The regular tasks must then exccute in the processor units not being used
by the contour tasks. These remaining processor units have a very particular distribution. The
first m time units of the schedule cach has one processor unit available for regular tasks, the

second m time units cach has two processor units available for regular tasks, the third m time units

each has onc processor unit available for regular tasks, and so on. The pattern of m time units

-134 -
with one processor unit available and then m time units with two processor units available repeats
itself d times. We will call the ith sct of m time units band i. This pattern and the no idle time
obscrvation combine to force the "primed” regular tasks to execute only during time units when
one processor unit is available, and the "unprimed” regular tasks to exccute only during time
units when two processor units arc available. This is shown in Figure 8.2.

Therefore, the schedule for S is as follows: In time unit / of the schedule, exccute the tasks
corresponding to the m (unprimed) regular tasks executed in band 2/ of the schedule for S*. This
schedule clearly meets the deadline of d and since each task in 7" corresponds to an unprimed task
in T, each task in T is executed at some time unit of the schedule. All that remains is to verify
that the precedence constraints are not violated.. Consider any precedence relation V€ T in S.
Therelations VL' T' andT"' €' Tarein S" Suppose V and T were executed in the same band in
the schedule for S'. Then T' would also be executed in that band. But primed regular tasks
must be exccuted in bands with only one processor unit available per time unit. Contradiction.
Thus, in the schedule for S', V is executed in some band before the band that T is executed in,
hence V is executed before T in the schedule for S. Thercfore, a valid schedule exists for S. ‘D

Finally, we note that I2CONCURRENCY is obviously in NP, hence it is NP-complete. (8]

We conclude this section by noting that by using a straight-forward modification of the contour tasks, it

- can be shown that 122CONCURRENCY is NP-complete for any fixed number of processors m > 3.

8.3 Worst case bounds

In this section we show that for concurrent UET task systems, the ratio of the length of an arbitrary
list schedule for the system to the length of an optimal schedule is bounded above by (2m-r)/(m-r+-1), -
where r is the maximum degree of concurrency. As noted carlier, when r = 1 these systems become
basic UET task systems. In this instance, our bound becomes 2 - 1/m, which is the corresponding bound

for basic systems as given by Graham [G66]. In this scction we also show that concurrent UET task

-135-
Figure 8.2: The schedule produced by the contour tasks and deadline 2dm.

]) Band ”
i X.l.._.:.._-.xm. Xm+1 Xom X2dm-m+1 Xodm
A /// ///?///
Z ////// //
m 2dm-m+1"’ 12dm
Time unit

Regular tasks must execute in the cross-hatched time units -- primed tasks in odd numbered bands and
unprimed tasks in ¢ven numbercd bands.

-136 -
systems exist for which the ratio of the length of a list schedule for this system to the length of an optimal
schedule is L(2m-r)/(m-r+1)d.

8.3.1 An upper bound

Theorem 8.3: Let S = <T, <, m, O be a concurrent UET task system where r is the maximum degree of
concurrency in C. Then LIST/OPT < (2m-r)/(m-r+1).

Proof

Let OPT be the length of an optimal schedule for S and let LIST be the length of an arbitrary list
schedule for S. First we give a lower bound on the length of an optimal schedule. Lc: h be the length
of a critical path in the dag for <, and let @ = % q; such that T; € 7. This is the total number of
processor units required for the actual exccution of tasks in 7. An optimal schedule must be at least as
long as the length of a critical path for the system and must be at least as long as a schedule with no
idle time for a task system requiring a processor units. Thus, OPT > max(h, a/m).

Next we give an upper bound on the length of an arbitrary list schedule. Consider any time unit /
of the schedule which has more than r - 1 idle processors. Because there are at least r idle processors in
that time unit, all unexccuted tasks must be successors of the tasks exccuting in that time unit. Letk be
the highest level which has a task executing in time unit /. Since a task is only a predecessor of tasks at
lower levels then the task’s own level, time unit / must be the last time unit during which tasks at level
k are executed. Therefore, there are at most h time units in which more than r - 1 processors are idle.
At all other time units at least m-r+1 processors must be executing tasks. Hence, LIST <
h+(a-h)/(m-r+1).

.. LIST/0PT < [h+(a-h)/(m-r+1)}/max(h,a/m), which, by a simple case analysis, reducces to
LIST/OPT < (2m-r)/(in-r+1). O

8.3.2 A lower bound

The remainder of this section is devoted to showing that concurrent UET task systems cxist for

-137 -
which there are list schedules such that the ratio of the length of the schedule to the length of an optimal
schedule asymptotically approaches L(2m-r)/(m-r+1)J. While this is not exactly the bound derived
above, the difference is less than one,
Assume that m, the number of processors, and r, the maximum degree of concurrency are given.
Let n be any positive integer. The following three sets of tasks will be used to construct the desired task
systems:

An A-structure consists of: Tasks Aij for1<i<mr+landl <j<n, whereqy 1

i
Aij<Ai,j+l forl<j<nlandl <i<mr+l,
A B-structure consists of: An A-structure,
Tasks B;, for1 <i<Lm/rd, with qBi =T
B; < Ajl forl] i< lm/rdand]l <j< mr+1.
A C-structure consists of: Tasks Ci' for1 <i< Lm/rd, with in =T
Tasks Dj forl < j <n, with qu =1
Ci<Djforl1 <i<Lm/rd
These three structures are shown in Figure 8.3.
Next we give the specifications for a task system for which a list schedule with the desired length
relative to an optimal schedule exists. We fetb = Lm/(m-r+1)Jd. There arc two cases to consider.
Casc 1: m/(m-r+ 1) is an integer, hence b = m/(m-r+1).

Consider the following task system S = <7, {, m, >, where r is the maximum degree of
concurrency in C. T and < consist of the tasks and associated precedence constraints from one
A-structure and b-1 B-structures. This system is shown in Figurc 8.4a. The system consists of (b-1)
Lm/rd independent tasks cach with concurrency r, and n{m-r+1)b = nm tasks each with

concurrency 1. Note that these tasks with concurrency 1 form m independent chains of n tasks each,

and that an optimal schedule requires at Icast n time units after the last task with concurrency ris

-138 -

Figure 8.3: Sets of tasks used to construct task systems

‘i\n Ayy Am-r+11
"\1,2 A,y Am-r+12
Ain Ayn Am-r4+1n

b) A B-structure - the B-tasks have concurrency r, and the A-tasks have concurrency 1

G G s CLm/rl
\\ ll)l /

D,

!
l
Dn

c) A C-structure - the C-tasks have concurrency r, and the D-tasks have concurrency 1

-139-

Figure 8.4: A task system and two schedules - case 1

)< Lm/rJ

0 0
‘l’* 11 ? mr+1,1 'i\m r+11
| l, ni |
Alln Amr+1n Aln Amr+1n
A-structure 1<i<bl
B-structures
a) The task system
1 2 -1:
B 1 B x Blb 1
: : U A-tasks
B! B2 Bb'
m/r m/r m/r
Time units; b-1 n

To simplify the figure it is assumed that m/r is an integer. The m chains, each with n tasks with
concurrency 1, execute in the final n timce units.

b) An optimal schedule

0
A% 61
A

m-r+11

Time units:

To simplify the figure it is assumed that m/r is an intcger.

c) A "bad"” schedule

- 140 -
executed.

The following is an optimal schedule: In the first b-1 time units execute all of the tasks with
concurrency r by exccuting Lm/rd tasks with concurrency r at cach time unit (and allowing any
processor units not used by those tasks to be used to exccute any available tasks with concurrency 1).
Complete the schedule by ‘executing the remaining tasks with concurrency 1 in the final n time units.
The schedule is shown in Figure 8.4b. An optimal schedule thus has length b+n-1. Call this value
OPT.

Now consider the following schedule. In the first n time units exccute the tasks in the
A-structure. Then executc the tasks with concurrency r from one of the B-structures, followed by the
tasks in the A-structure associated with that B-structure. This requires n+1 time units. Continue by
executing the other B-structures, one at a time in the same manner, until all tasks are executed. The
schedule is shown in Figure 8.4c. The length of the schedule is n+(b-1)(n+1) = bn+b-1. Call this
value LIST.

. LIST/OPT = (bn+b-1)/(n+b-1) and limit, _, oo LIST/OPT = b. Furthermore,
b = m/(m-r+1) which is an integer. Thus, b = m/(m-r+1)+L(m-r)/(m-r+1)1 =
L(m+(m-lr))/(m-r+ DJ = L2m-r)/(m-r+1)1.
. limity _y o LIST/OPT = L(2m-1)/(m-r+1)d.
Case 2: m/(m-r+1) is not an integer.
Consider the following task system S = <7, <,Am, O, where ris the maximum degree of concurrency
in C. T and < consist of the tasks and associated constraints from one A-structure, b - 1 B-structures
and onc C-structurc. This is shown in Figure 8.5a. Similarly to Case 1, an optimal schedule first
cxccutes the tasks with concurrency r and then completes the exccution of the tasks with concurrency
1. This is shown in Figure 8.5b. An optimal schedule has length OPT = b+n. Also, there is a list

schedule which first exccutes the tasks in the A-structure, then cxccutes the tasks in cach of the

-141-

Figure 8.5: A task system and two schedules - case 2

i i
/I><B\Lm/rJ Cy o Cor
\ , i i \
‘? 11 | m-r+1,1 : ?Ll ‘I\m-r+11 ']I)l
A0 Al Li b L
1n m-r4+1,n 1,n m-r+1n n
A-structure 1<i<bl C-structure
B-structures
a) The task system
1 . -1
BY le Blb 1G
. : . . A'taSks
-1
Blm/r B2m/r Brtr)llr Cm/r Dl s Dn
Time units: b n

To simplify the figure it is assumed that m/r is an integer. The m chains, each with n tasks with
concurrency 1, exccute in the final n time units. Depending on the relative valucs of m and r, some idle
time may exist in the final n time units.

b) An optimal schedule

A()1,1 ‘}ol,n By All,l Aa Cr Dy e« |Dn
‘ " . : . " ... AR X} : %
/ m-r+11 m-r+1n sve . mr+11 mr+1n . /
///////// W7 MM~
n+l n+1
1<i<bl

To simplify the figure it is assumed that m/r is an integer.

c) A "bad" schedule

-142 -

B-structures, and finally executes the tasks in the C-structure. This schedule is shown in Figure 8.5c.

It has length LIST = n+b(a+1) = n(b+1)+b,

.". LIST/OPT = (n(b+1)+b)/(b+n) and limit, _, o LIST/OPT = b+1. But m/(m-r+1) is not
aninteger. Thus, b+1 = Lm/(m-r+1)J+1 = L(m-1)/(m-r+1)1+1 =
L(m-1)+(m-r+1))/(m-r+1)J = L(2m-r)/(m-r-|.- D4

" limity _, oo LIST/OPT = L2m-1)/(m-r+1).. O

8.4 A restricted problem

We examine qoncurrent UET task systems in which C = {1,2}. As shown earlier, for any fixed
number of processors excceding 2, the scheduling of such systems is NP-complete. In this section we
give a polynomial time algorithm which produces optimal schedules on two processors. This algorithm is
a modification of the algorithm given by Coffman and Graham [CG] which produces optimal schedules
for basic UET task systems on two processors.

Assume that S = <7, {, m, {1,2}> is a concurrent UET task system. The algorithm is as follows:
1. Add all transitive edges to the dag representing <.
2. Remove all tasks with concurrency two from this system along with any precedence constraints
directly involving them. This yields a basic UET task system (i.e. without concurrency) S*' =
T, {',m>. Call this the undcrlying system.
3. Remove all transitive edges from the dag representing €°.
4. Use the Coffman-Graham algorithm to produce a list which can be uscd to schedule S'.
5. Append (in any order) the tasks with concurrency two to the front of the list. This ncw list can be
used to schedule S.
Essentially, the tasks with concurrency two are rcmoved from the original system, a schedule is found for

the underlying system and then cach task with concurrency two is fit into that schedule as soon as all of its

predecessors have been executed.

- 143 -
Theorem 8.4: The algorithm given above produces optimal schedules for concurrent UET task systems
(in which each task has concurrency 1 or 2) on two processors.
Proof
Suppose the schedule produced by this algorithm is not optimal. Let OPT be an optimal schedule.
Because there are only two processors, if a task with concurrency two is exccuted at some time unit,
then no other task can be executed at that time unit. This mcans that the tasks with concurrency two
can be removed from OPT, and the schedule compressed to get a schedule for the underlying system.
Two things should be noted about this schedule for the underlying system:
1. Itis a valid schedule, since V{' T in S' if and only if there exists a (possibly empty) sequence
of tasks Py, ..., Py, such that V< Py < ..< P < Tin S,
2. It is necessarily shorter than the §chedu1e produced for the underlying system in step 4 of the
algorithm,
But an optimal schedule for the underlying system results from the list which was produced in step 4,

hence a contradiction. - R

- 144 -
Relerences

[BCS] Bruno, J., Coffman, E.G. Jr,, and Sethi, R., "Scheduling indcpendent tasks to reduce mean
finishing time,” CACM 17(1974), 382-387.

[Ch] Chen, N.F., "An analysis of scheduling algorithms in multiprocessor computing systems”,
Technical Report UIUCDCS-R-75-724, Department of Computer Science, University of
Illinois at Urbana-Champaign.

[C] Coffinan, E.G., editor. Computer and job-shop scheduling theory. Wiley (1976), 299 pp.

[CG] Coffman, E.G. and Graham, R.L., "Optimal scheduling for two-processor systems”, Acta
Informatica 1(1972), 200-213.

[FKN] Fujii, M., Kasami, T. and Ninomiya, K., "Optimal secquencing of two cquivalent processors,”
SIAM Journal of Applicd Mathematics, 17(1969), 784-789; Erratum 20(1971), 141.

[GG73] - Garey, M.R. and Graham, R.L., "Bounds on scheduling with limited resources," Operating
Systems Review, 7(1973), 104-111.

[GG75] Garey, M.R. and Graham, R.L., "Bounds for multiprocessing scheduling with resource
constraints,” SIAM Journal on Computing, 4(1975), 187-200.

[GGIY] Garey, M.R., Graham, R.L., Johnson, D.S., and Yao, A.C., "Resource constrained
scheduling as generalized bin packing,” Journal of Combinatorial Theory, Series A. 21(1976),
257-298.

[G174] Garey, M.R. and Johnson, D.S., "Complexity results for multiprocessor scheduling under
resource constraints.” Proceedings of the 8th Annual Princeton Conference on Information
Sciences and Systems (1974) 168-172. '

[GI19] Garey, M.R. and Johnson, D.S., Computers and intractibility - A guide to the theory of
NP-Completencss, W.H. Freeman and Company (1979), 338pp.

[Go) Goyal, D.K., "Scheduling cqual exccution time tasks under unit resource restriction,”
CS-76-038, Computer Science Department, Washington State University.

[G66] Graham, R.L., "Bounds for certain multiprocessing anomalies," Bell System Technical
Journal, 45(1966), 1563-1581.

[G69] Graham, R.L., "Bounds on multiprocessing timing anomalics,” SIAM Journal of Applied
Mathcmatics, 17(1969), 416-429.

[G12] Graham, R.L., "Bounds on multiproccssing anomalics and related packing algorithms,”
Proccedings AFIPS Conference, 40(1972), 205-217.

[GLLK)

[H]
(K]

[a)
[’DUGG]

[KS]
[LS]
[LK]
[Le]

[Li]

[u73]
[u7s]

[U76]

]

- 145 -

Graham, R.L., Lawler, E.L., Lenstra, J.K., and Rinnooy Kan, A.H.G., "Optimization and
approximation in deterministic sequencing and scheduling: A survey”, BW 82/77,
Mathematisch Centrum, Amsterdam, The Netherlands.

Hu, T.C., "Parallel sequencing and assembly line problems,” Operations Research 9(1961),
841-848.

Ibarra, O.H. and Kim, C.E., "On two-processor scheduling of one- or two-unit time tasks with
precedence constraints,” Journal of Cybernetics, 5(1975), 87-109.

Jaffe, J., "Parallcl computation: Synchronization, scheduling and schemes,” PhD Thesis,
Department of Electrical Engincering and Computer Science, Massachusetts Institute of
Technology, 1979.

Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R. and Graham, R.L., "Worst-case
Performance Bounds for Simple One-dimensional Packing Algorithms,” SIAM Journal of
Computing 3(1974), 299-325.

Kafura, D.G. and Shen, V.Y., "Task scheduling on a multiprocessor system with independent
memories,” SIAM Journal of Computing, 6(1977), 167-187.

Lam, S. and Sethi, R., "Worst case analysis of two scheduling algorithms,"” SIAM Journal of
Computing, 6(1977), 518-536.

Lenstra, J.K. and Rinnooy Kan, A.H.G., "Complexity of scheduling under precedence
constraints,” Operations Rescarch, 26(1978), 22-35.

Leung, J. Y-T., "Bounds on list scheduling of UET tasks with restricted resource constraints,"”
Information Processing Letters, 9(1979), 167-170.

Lui, JJW.S. and Lui, C.L., "Bounds on scheduling algorithms for heterogencous computer
systems,” Technical Report UIUCDCS-R-74-632, Department of Computer Science,
University of Illinois at Urbana-Champaign, 1974.

Ullman, J.D., "Polynomial complete scheduling problems,” Opcrating Systems Review,
7(1973), 96-101. ‘

Ullman, J.D., "NP-complete scheduling problems,” Journal of Computer and Systems
Sciences, 10(1975) 384-393.

Ullman, J.D., "Complexity of Sequencing Problems,” in Computer and Job-Shop Scheduling
Theory, E.G. Coffman, cditor, Wiley (1976), 139-164.

Yao, A.C., "Scheduling unit-time tasks with limited resources,” Procecdings of the Sagamore

. Computer Conference, Springer-Verlag, (1974) 17-36.

- 146 -
Biographical Note

The author was born in Baltimore, Maryland on December 20, 1953 and was raised in Reisterstown,
Maryland. He attended Franklin Senior High School where he was valedictorian of his graduating class
and received a National Merit Letter of Commendation. He also earned varsity letters in indoor and
outdoor track while at Franklin. His other major activity in his high school years was his involvement
with Boy Scouts, where he earned the rank of Eagle Scout and reccived the God and Country Award.

The author attended college at Penn State and majored in both Computer Sciencc and Mathematics.
Whilc at Penn State he received several awards for academic achievement and graduated with a grade
point average of 3.98 out of 4.00. He was actively involved with academic governance both on the
university and departmental levels - he was the student scnator from the College of Science to the
University Faculty Senate, and was the chairman of the Computer Science Undergraduate Advising
Committee.

The author began graduate school at MIT in Scptember 1975. In June 1977 he received his S.M.
degree in Computer Science. While at MIT, in addition to his rescarch and classes, he taught recitation
scctions of courses 6.030 and 6.031. He was also active in intramural athletics - squash, softball,
badminton, bowling and basketball. In addition, he enjoys skiing and golf.

While at Penn State, the author met Isabel B. Knowlton, whom he married on August 10, 1975.
She will be receiving her PhD in June, 1980 from MIT in Ceramic Scicnce. The author has accepted an
assistant professcrship at the University of Pittsburgh beginning September 1980 and his wife a position
at the Westinghouse Research and Development Center in Pittsburgh.

