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Abstract

Minimum execution time scheduling of task systems with resources has been the subject of several
papers over the past few years. The model used for much of this work assumes that the resources in the
system are continuous. That is, there is one unit of each resource, and a task may require any portion of
that unit during its execution. While this is a reasonable assumption for certain bin packing applications,
it is intuitively unreasonable for certain other applications. In particular, the resources associated with
computer systems - readers, printers, disk drives - are not "continuous" resources. We present an
alternative model of task systems with resources in which the resources are discrete. That is, there are a
specific number of indivisible units of each resource and a task may require only integral numbers of
those units. Several results involving the worst case performance of list scheduling and critical path
scheduling with respect to this model are given. A new result on critical path scheduling of task systems
with continuous resources is also given. Finally, a comparison will be made between corresponding
bounds for the continuous and discrete models.
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Title: Associate Professor of Computer Science and Engineering



-3-

Acknowledgements

My advisor, Ron Rivest, is to be thanked for his guidance and support thoughout my graduate
career. His suggestions and questions have greatly improved both the accuracy and the presentation of
this thesis. His patience in listening to initial versions of many of these results is especially appreciated.
Adi Shamir and Christos Papadimitriou provided a number of suggestions and comments which helped
to make this thesis a more cohesive and uniform document.

Special thanks go to two people who helped to shape my career: my father, because he first
introduced me to computers when I took a programming course from him while in high school, and
Donald Johnson of Penn State, who first introduced me to tile notions of algorithmic complexity. They
are also the finest two teachers that I know - I hope that in my teaching career, I can approach their level
of excellence.

Next, I would like to thank my friends at MIT and elsewhere for their encouragement and
friendship. In particular, my fellow graduate students Paul Bayer, Peter Bloniarz, Andrea LaPaugh, Bill
Masek and Ron Pinter, have made MIT a good place to live and study over tie past five years.

Most importantly, I would like to thank my family for their support and love: my brother, Russell,
with whom I've enjoyed many years of friendly competition; my parents, I shall be forever thankful for
them; my wife Isabel, with whom I've shared the past nine years at Penn State and MIT - together we
look forward to whatever the future brings.

This work was partially supported by the National Science Foundation under Grant MCS78-05849.



-4-

Table of Contents

Title Page 1

Abstract 2

Acknowledgements 3

Table of Contents 4

List of Figures 7

Chapter 1 - Task Systems 9

1.1 The basic task system model 10

1.2 Common submodels 12

1.3 Scheduling algorithms 12

1.3.1 List schedules 12

1.3.2 Critical path schedules 15

1.3.3 Coffman-Graham scheduling 15

1.4 A survey of major results 17

1.4.1 NP concepts 17

1.4.2 NP results 19

1.4.3 Performance results 19

1.5 Extensions 21

Chapter 2 - Task Systems with Resources 23

2.1 Task systems with continuous resources 24

2.1.1 The model 24

2.1.2 Shortcomings 26

2.2 Task systems with discrete resources 28

2.2.1 The model 28

2.2.2 Discussion 31

2.3 Why study heuristics? 31

2.4 The processors question 32

2.5 The problems to be studied 34



-5-

Chapter 3 - List Scheduling 35

3.1 Continuous resources 35

3.2 Discrete resources 36

3.2.1 Two results 36

3.2.2 The upper bounds 37

3.2.3 The lower bounds 40

Chapter 4 - Critical Path Scheduling, Continuous Resources 44

4.1 No processor constraint 44

4.2 A processor constraint 44

4.2.1 An interpretation 45

4.2.2 A comparison 48

4.2.3 The upper bound 50

4.2.3.1 Preliminaries 50

4.2.3.2 Proof outline 50

4.2.3.3 Two important properties 51

4.2.3.4 The weighting functions 52

4.2.3.4.1 The first weighting function 53

4.2.3.4.2 The second weighting function 55

4.2.3.4.3 The third weighting function 62

4.2.3.5 The main result 62

4.2.4 The lower bound 67

4.2.4.1 A general task system structure 67

4.2.4.2 The simple cases 71

4.2.4.3 A useful set of independent tasks 78

4.2.4.4 The remaining cases 80

Chapter 5 - Critical Path Scheduling, Discrete Resources 88

5.1 Coffinan-Graham scheduling ofsystems with 0-1 resources 88

5.1.1 The upper bounds 89

5.1.1.1 Proofoutline 90

5.1.1.2 Segments 90



-6-

5.1.1.3 The individual bounds 94

5.1.1.3.1 The case s = m - 1 95

5.1.1.3.2 The case s < m - 2 98

5.1.2 The lower bounds 101

5.2 The implication for critical path schedules 111

Chapter 6 - Overview: UET Results 114

6.1 Summary 114

6.2 Open problems 116

Chapter 7 - Non-UET Results 118

7.1 Continuous resources 118

7.2 Discrete resources 118

7.2.1 Discussion 119

7.2.2 Upper bounds 119

7.2.3 Loser bounds 125

Chapter 8 - Concurrent Task Systems 128

8.1 The model 128

8.2 The complexity of concurrent UET scheduling 131

8.2.1 Arbitrary concurrency, no precedence constraints 131

8.2.2 Bounded concurrency, arbitrary precedence constraints 132

8.3 Worst case bounds 134

8.3.1 An upper bound 136

8.3.2 A lower bound 136

8.4 A restricted problem 142

References 144

Biographical Note 146



-7-

List of Figures

1.1 Task systems 11

1.2 Valid schedules 11

1.3 A list schedule for the task system in Figure 1.lb 14

1.4 List schedules are not best for non-UET systems 14

1.5 Critical path schedules 16

1.6 Coffman-Graham schedules 16

2.1 Example of task system with continuous resources 27

2.2 Example of task system with discrete resources 30

3.1 The task system used in Lemma 3.3 41

3.2 An optimal schedule 41

3.3 A "bad" list schedule 41

4.1 Graph of the upper bound as a function of s 47

4.2 Partitioning the resources 58

4.3 MACSYMA program used to verify the values in Table 4.2 61

4.4 Example of the sets Al and Ll, and task Tl 64

4.5 The general task system structure used for the lower bounds 69

4.6 Two schedules for the general task system structure 70

4.7 The schedules used in Lemma 4.11 73

4.8 The schedules used in Lemma 4.12 76

4.9 The schedule used for G(A1) in Lemma 4.13 83

4.10 Tlhe task system used in Lemma 4.14 85

5.1 Example of the division of a Coffman-Graham schedule into blocks 92

5.2 Example of the division of a Coffinman-Graham schedule into segments 92

5.3 Two useful structures 102

5.4 Precedence relations between the structures 104

5.5 Bad CG labelings 104

5.6 The task system S* 106

5.7 The Coffman-Gralamn schedule - execution of RES' and PRECiy after C' has executed 106
xzy 1



-8-

5.8 Execution of the tasks - Lemma 5.9 109

5.9 Execution of the tasks - Lemma 5.10 109

5.10 A "good" schedule for the task system 109

6.1 Summary of the known results for UET task systems with resources 115

7.1 An observation 120

7.2 Resource usages in a list schedule 123

7.3 The bound is achievable 126

8.1 Example of a task system with concurrency 130

8.2 The schedule produced by the contour tasks and deadline 2dm 135

8.3 Sets of tasks used to construct concurrent task systems 138

8.4 A task system and two schedules - case 1 139

8.5 A task system and two schedules - case 2 141



-9-

Chapter 1 - Task Systems

Over the past fifteen years one of the most active areas of computer science and industrial

engineering research has been the scheduling of large systems. This research has been motivated both by

the existence of large industrial scheduling problems and by the existence of high speed digital

computers to solve those problems. Moreover, the models used to study these scheduling problems have

attracted great theoretical interest, and as a result, an immense quantity of research has been done on

them.

In general, a scheduling problem is of the following form: Given a set of tasks which need to be

completed, produce a schedule of minimum length for completing those tasks. Often, there are a

number of constraints placed upon the form that the schedule may take. For example, some tasks may

need to be completed before others can be started, or there may be a limit on the number of tasks that

can be "in progress" at any given time, or some tasks may require longer to complete than others. Many

types of constraints are possible.

It should be apparent, even from the informal description given above, that the scheduling of

systems of tasks is not trivial, and that ad-hoc methods have almost no chance of producing even near

optimal schedules, much less optimal schedules. The obvious approach then is to formulate a standard

set of rules (hopefully, a good set) for producing schedules. Indeed, the design and analysis of algorithms

for scheduling has been the primary area of research concentration. For some classes of task systems, fast

algorithms have been developed which produce optimal schedules for those systems. For other classes of

task systems, it has been shown that finding algorithms which produce optimal schedules in a reasonable

amount of time is unlikely. For these classes of task systems, the research has focused on producing

good, polynomial time, heuristic algorithms. That is, algorithms which, in a reasonable amount of time,

produce good, though not necessarily optimal, schedules. In conjunction with this, the performance of
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various simple and/or fast scheduling algorithms has been analyzed, so as to provide a performance

"benchmark" that more complicated algorithms can be compared to.

In this chapter we define the notions of a task system, of a schedule, and of a number of related

concepts that we will use throughout this thesis. We also give a summary of the major results pertaining

to the basic task system model which we describe here.

1.1 The basic task system model

A task system is a system S = <T, <, m> where:

1. T = {T1, ... , Tn} is a set of tasks - associated with Ti is a positive integral execution time i.

2. < is a partial order specifying precedence constraints between the tasks.

3. There are m identical processors.

With respect to the precedence constraints, we have the following definitions: If Ti < Tj, then Tj is a

successor of Ti and Ti is a predecessor of Tj. We will represent the partial order by a directed acyclic

graph (dag) with one node for each task and one arc for each relation in the partial order. We assume that

there are no transitive edges in the dag. Two examples of task systems are given in Figure 1.1 -- one is a

fully general task system and the other is a task system in which all of the tasks have an execution time of

one.

A valid schedule for a task system S, is a mapping I: T - (N - {0}) such that:

1. For all IE (N - {0}), m 2 {Ti E T: (Ti) < I < (T i) + ' i 1}

2. IfTi < T, then a(Ti) + i - 1 < (Tj).

'I'hese two conditions correspond to our intuitive notion of what constitutes a schedule: that the tasks be

executed on m processors subject to the precedence constraints. More specifically, the first condition

ensures that at most m processors are in use at any given time. The second condition ensures that the

precedence constraints are not violated. That is, if Ti < Tj, then Ti must have completed execution before

Tj can begin execution.
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Figure 1.1: Basic task systems

3A 1

1i// \ 
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a) A task system with 3 processors and 7 tasks.
the dag.

A R

C I

I

F G H

I K

m = 3 processors

The task execution times are given beside the tasks in

m = 2 processors

L M

b) A task system with 2 processors and 13 tasks. Each task has an execution time of one.

Figure 1.2: Valid schedules

Schedule:

Time unit:

A AA C EGG EG E

D F F F 
1 2 3 4 5 6 7 8

a) A valid schedule for the task system given in Figure
processors. The mapping o is not given explicitly.

1.la. Cross-hatching is used to indicate idle

Schedule: A E C F G I K

Time unit: 1 2 3 4 7 8

b) A valid schedule for the task sytem given in Figure 1.lb.
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Given a valid schedule, we define for each i C (N - {O}), the set Bi = {Tj E T: u(Tj) < i < a(Tj) +

-j - 1}. Also, let co = min{i: (Nj > i)[Bj = 0]}. The schedule has length w, and consists of the X time

units B 1, ... , Bt,. For each time unit Bi , if IBil < m, then Bi has m - BiJ idle processors. Intuitively, we

assume that the processors are numbered from 1 to m, and that processors 1 through IBi have tasks

executing on them and that processors Bil + 1 through m are idle. Examples of valid schedules for the

task systems in Figure 1.1 are given in Figure 1.2.

Finally, we note that there are a number of criterion for determining the "goodness" of a schedule.

The most widely used, and in many senses the most natural, is that of minimizing the schedule length.

This criterion is refered to as the minimum execution time or latest finishing time criterion. This is the

measure of optimality that we use throughout this thesis.

1.2 Common submodels

The model of task systems presented above provides a starting point for virtually all theoretical

scheduling research. This model has proven however, to be extremely difficult to deal with in its full

generality. Moreover, many practical applications are most effectively analyzed using various

submodels of the model given above. Most of the research has focused on two particular submodels of

the basic task system model. These submodels are:

1. Task systems where < is empty. That is, there are no precedence constraints in the system.

2. Task systems where all of the task execution times are identical. In this case we assume without

loss of generality that each Ti = 1. These are unit execution time (UET) task systems.

With the exception of Chapter 7, we will deal exclusively with UET task systems in this thesis.

1.3 Scheduling algorithms

In this section we describe the three types of schedules which we will utilize.

1.3.1 ist schedules

List schedules are the most basic of the schedules which we will examine. They are of particular
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interest not only because of their simplicity, but also because most interesting scheduling algorithms

produce schedules which form a subclass of the list schedules. Intuitively, a list schedule is formed as

follows: Consider any (ordered) list L, of the tasks in T. The tasks are scheduled as follows: Whenever a

processor becomes idle, the list L is instantaneously scanned from its beginning until a task T (if any) is

found all of whose predecessors have completed execution. Task T is assigned to the idle processor and is

removed from L.

More formally, a task Ti is ready at time if for every Tj such that Tj < Ti , a(Tj) + j - 1 < . A list

schedule is a valid schedule which is generated as follows:

1. Initially, L is an (ordered) list of the tasks in Tand I is 1.

2. While L is nonempty perform this step

a. Let k = Ti L: (Ti) < 1 <o(Ti) + i- 1} 

b. For each of the first m - k (or less, if there aren't m - k) ready tasks Ti, on L at time 1, let

a(Ti) = I and remove Ti from L.

c. Let I = 1 + min {(Ti) + T-i 1 :Ti L and a(Ti) + i 1}.

Figure 1.3 shows an example of a list schedule for the UET task system given in Figure 1.lb.

List schedules are particularly attractive when dealing with UET task systems. In this case the

restriction that only list schedules (and subclasses of list schedules) be considered as possible schedules for

the task system causes no loss of generality. To see this, consider any schedule for a UET task system,

and assume that schedule consists of time units 131, ... , 1,. A schedule with length no more than 

results from the list consisting of the tasks in 131, followed by the tasks in B2, followed by the tasks in B3 ,

and so on, ending with the tasks in B. Figure 1.4 shows that it is not generally true for non-UE' task

systems that there is always a list schedule of minimum length among all schedules for the system.

Finally, for list schedules, note that given a list L, the corresponding schedule (i.e. the mapping a) is

uniquely determined. For this reason, it is common practice when dealing with list schedules to simply
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Figure 1.3: A list schedule for the task system in Figure 1.lb.

List: (M L K J I A B C D E F G H)

Schedule: M B L D F H K I

Time unit: 1 2 3 4 5 6 7 8

Figure 1.4: List schedules are not best for non-UET systems.

1

'C

1

A

1D

E

I

1 F 2B

Task execution times are given beside the tasks.

An optimal schedule: B B

Time unit: E 
Time unit: 1 2 3 4

A list schedule:

List: (A B C D E F)

Schedule: A C D E F

Time units: 1 2 3 4 5

In fact, a(B) = 1 in every list schedule for this system.
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give the list L, along with an informal description of the underlying schedule. The mapping a is not

formally specified, because it tends to obscure, rather than illuminate, the nature of the schedule.

Throughout this thesis we will follow the practice of specifying only the list and not the mapping a.

1.3.2 Critical path schedules

Critical path schedules are one of the most widely studied subclasses of list schedules. Intuitively,

these are schedules in which the tasks are ordered within the list according to their distance from a leaf of

the dag which represents the precedence structure (a leaf is a node with no successors). The idea is that

tasks far from the leaves should be executed first.

More formally, the level of a task in the precedence structure may be defined as follows: If Ti has

no successors, then level(Ti) = 1; otherwise, level(Ti) = 1 + max{level(Tj): Ti < Tj}. A critical path

schedule is a list schedule derived from a list having the property that for any two tasks T and S, if

level(T) > level(S), then T precedes S on the list. Because the list contains the tasks ordered according to

their levels, these schedules are also called level schedules. An example of a critical path schedule is given

in Figure 1.5.

As noted above, critical path schedules have been studied extensively. They are of substantial

practical and theoretical interest for three reasons: First, the method is intuitively appealing. Second,

the method is applicable to any system having precedence constraints. Third, these schedules are easy to

construct - using breadth first search the list can be constructed in time linear with the number of edges in

the dag representing the precedence constraints.

1.3.3 Coffman-Graham scheduling

Coffnman-Graham schedules are the third class of schedules we utilize. These schedules are a

subclass of critical path schedules in which the tasks of each level are ordered in a particular way.

Specifically, Coffinan-Gralham schedules are a class of list schedules for which the list is formed according

to the following rules: Each task is assigned a label as follows:
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Figure 1.5: Critical path schedules

A4 4B

I

C3 Di E

2

m = 2 processors

L1 M1

The numbers beside the tasks are the levels of the tasks.

Critical path list: (A B C E D F G

Schedule: A C D F H I K

B E L G M J 
Time unit: 1 2 3 4 5 6 7

Figure 1.6: Coffman-Graham schedules

A 12 B 13

C9 Di E 1

I I I

F6 G7 H8

5 J4 K 3 L 2

m = 2 processors

M1

The numbers beside the tasks are the Coffman-Graham labels of the tasks.

Coffman-Graham list:

Schedule:

(B A D E C H G F I J K L M)

Time unit:

H I J K L M)

B D C GI KM
A E H F JL _
1 2 3 4 5 6 7
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1. Select a task which has no successors and assign label 1 to that task.

2. Assume that labels 1, ... , i - 1, have already been assigned. For each unlabeled task T, all of

whose successors have been labeled, form a list (in decreasing order) of the labels of T's

immediate successors. Assign label i to the task whose list is lexicographically the smallest

The list used to do the scheduling contains the tasks in decreasing order of their labels. An example of a

Coffman-Graham labeling and tile corresponding schedule are given in Figure 1.6.

These schedules were first investigated by Coffman and Graham [CG] in conjunction with UET

task systems where m = 2. As we note in the next section, Coffman-Graham schedules are guaranteed to

be optimal in this limited case, while list and critical path schedules are not. Since the initial work of

Coffinan and Graham, these schedules have been investigated by several other researchers, including

Lam and Sethi, Goyal, Leung and Jaffe LS, Go, Le, Ja]. In general, the mathematical properties of

Coffman-Graham schedules make them easier to analyze than the more general case of critical nath

schedules. However, because Coffman-Graham schedules are a subclass of critical path schedules, certain

results about Coffman-Graham schedules - in particular, lower bounds on worst case performance - can

be applied to critical path schedules as well. We will make use of this relationship in Chapter 5.

1.4 A survey of mnaor results

In the remainder of this chapter we survey the major results pertaining to the minimum execution

time scheduling problem for the basic task system model and to the three types of schedules which we

utilize. These results are basically of two kinds: either they are NP-completeness results, therefore

implying that finding algorithms which produce optimal schedules in a reasonable amount of time is

unlikely; or they are bounds on the worst case performance of list, critical path or Coffinan-Graham

scheduling. We first briefly review the notions of NP-completeness.

1.4.1 NP concepts

Throughout this thesis a recurrent concept is the notion of a problem being N1P-complete or
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NP-hard. In this section we give a brief description of these ideas. The reader is refered to the book by

Garey and Johnson [GJ79] for a detailed discussion.

The set NP consists of all languages which can be recognized by a nondeterministic Turing machine

in polynomial time. Similarly, the set P consists of all languages which can be recognized by a

deterministic Turing machine in polynomial time. It is not known whether P is properly contained in NP.

A language Lo in NP is NP-complete is the following condition is satisfied:

Given a deterministic algorithm of time complexity T(n) > n for recognizing Lo , for each

language L in NP, there is an effective way to find a deterministic algorithm of time complexity

T(p(n)) for recognizing L, where p is a polynomial depending on L.

Clearly, if any NP-complete language is in P, then P = NP. The usual method of showing that a

language Lo is NP-complete is to show that:

1. Lo is in NP

2. There exists an NP-complete language L, which is reducible to I. o in deterministic polynomial

time.

A language for which the second condition can be shown, but not the first is NP-hard. The recognition of

such languages is at least as hard as the recognition of NP-complete languages.

Finally, we note that it is widely believed that P * NP. This belief springs from the fact that there

has been an immense amount of time and energy devoted to finding a polynomial time algorithm for

NP-complete problems. Moreover, it is generally acknowledged that obtaining lower bounds on time

complexity are among the hardest types of results to obtain. Thllis may help to explain why no one has

been able to show P NP, even though most researchers believe that is the case. Thus, there is strong

evidence that polynomial time algorithms for obtaining solutions to NP-complete problems do not exist.

Thlis leaves us to concentrate on the performance of heuristic algorithms for these problems.
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1.4.2 NP results

There are two important NP-completeness results pertaining to finding minimum length schedules

for task systems.

For UET task systems with m processors, Ullman [U73, U75, U76] has shown that finding

minimum length schedules is NP-complete. Lenstra and Kan ILK] have shown the same result using a

different construction. A major open problem is whether this result is true for any fixed m > 3. That is,

whether, for any fixed number of processors m > 3, finding minimum length schedules for UET task

systems with m processors is NP-complete. As mentioned earlier, when m = 2, there is a polynomial

time algorithm for finding minimum length schedules. Also, if the precedence constraints are restricted

to a forest, then there is a polynomial time scheduling algorithm. Both of these results are given in the

next section.

For task systems with unrestricted task execution times and no precedence constraints, Bruno,

Coffman and Sethi [BCS] have shown that finding minimum length schedules is NP-hard even for

systems with just two processors.

Finally, both Ullman [U73, U75, U76] and Lenstra and Kan [LK] have shown the following: That

finding minimum execution time schedules for task systems with two processors, precedence constraints,

and task execution times restricted to be either 1 or 2, is NP-complete.

1.4.3 Performance results

As evidenced by the NP-completeness results given in the previous section, for most interesting

scheduling problems it is unlikely that polynomial time algorithms exist which produce optimal

schedules. For this reason, most of the research attention has been on analyzing the performance of

various heuristic scheduling methods. Almost all of these results involve worst case performance. That is,

an upper bound is given for the ratio of the length of a schedule of a particular type (for instance, a list

schedule) to the length of an optimal schedule for the same task system. In this survey we restrict our
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attention to the worst case performance of list, critical path and Coffinan-Graham schedules. Again we

note that most useful scheduling algorithms can be formulated as algorithms which produce schedules

which are a subclass of the list schedules, and that critical path and Coffman-Graham schedules have

properties which make them particularly attractive, both theoretically and practically.

Many of the results which we cite are also the best possible results. This means that the result is

both an upper and lower bound on the worst case ratio between the length of a schedule of the particular

type and the length of an optimal schedule. That is, there exists a task system, a schedule of the particular

type and an optimal schedule for that task system, such that the ratio of the schedule lengths is arbitrarily

close to the upper bound.

Throughout this thesis, given a task system S, we use the following four values when citing various

results:

OPT is the length of an optimal schedule for S

LIST is the maximum length of any list schedule for S

CPATH is the maximum length of any critical path schedule for S

CG is the maximum length of any Coffinan-Graham schedule for S

Before actually giving any results, we note that there are two excellent references for the interested

reader. Most of the major results cited in this and the previous section are given a full treatment,

including proofs, in the book by Coffinan [C]. Secondly, a near exhaustive listing of scheduling results

for many kinds of task systems and scheduling algorithms is given in [GLLK].

The most extensive research with regard to the schedules that we are considering has been done for

UET task systems. Some of the earliest work was done by Graham [G661 who showed that LIST/OPT

< 2 - /m, and that this is the best possible result. Chen [Ch] has shown that Cl'ATH/OPT < 4/3 if m

= 2 and that CPATH/OPT < 2 - 1/(m - 1) if m > 3. Each portion of this bound is the best possible.

This result shows that critical path schedules have slightly better worst case behavior than do list
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schedules in the general UET case. If the precedence structure is restricted to a tree, Hu [HI shows that

critical path schedules are optimal.

With regard to Coffman-Graham schedules and the UET case, there are two major results. Ifm =

2, then Coffman and Graham [CG] have shown that these schedules are optimal. If m > 2, then Lam

and Sethi [LS] have shown that CG/OPT < 2 - 2/m, and that this is the best possible result. An

alternative method of producing optimal schedules when m = 2 is given by Fujii, Kasami and Ninomiya

[FKN]. This method is based on maximal matchings and has not been generalized for systems with more

than two processors.

With respect to task systems with no precedence constraints and arbitrary execution times, there are

several interesting results pertaining to list scheduling. Graham [G66] has shown that in this instance,

LIST/OPT < 2 - 1/m, and that this is the best possible result. This is exactly the same bound as was

given for LIST/OPT in the UET case. In fact, Graham [G66] has shown that this same bound holds,

even for task systems with both precedence constraints and unrestricted task execution times. Graham

[G69] has also shown the following result which explicitly incorporates the task execution times:

LIST/OPT < 1 + (m - 1)[max{ri: T E Ti 7/(ZT E T Ti). Note that both Coffminan-Graham and critical

path schedules are equivalent to list schedules in this context because there are no precedence constraints.

There are, however, a number of other types of schedules which have been studied for this submodel.

Most of these are subclasses of list schedules in which the tasks are ordered in the list based on the task

execution times. Again the reader is refered to [C] and GLLK] for a thorough treatment.

1.5 Extensions

For many practical applications the basic task system model presented here has proven to be

insufficient. For this reason, and out of theoretical curiosity, a number of extensions to the basic task

system model have been investigated.

One major area of research in this regard has been the study of preemptive scheduling. In this
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extension, a task may be interrupted during its execution and then continued later in the schedule. For

UET systems, this produces no new results, however for systems where task execution times are not

restricted, this is an interesting and powerful extension. A large number of results have been obtained on

preemptive scheduling, many of them analogous to the results cited in the previous section. Most of these

results may be found in [C] and [GLLK].

Other extensions to the basic model include the following: Liu and Liu [Li] and Jaffe [Ja] have

investigated task systems with processors of different types - each task specifies the type of processor that

it must execute on. barra and Kim [IK], Kafura and Shen [KS] and Jaffe [Ja] have investigated task

systems where the processors have different speeds. Lloyd has studied UET task systems where each task

may require more than one processor during its execution. These results are presented in Chapter 8.

Finally, a number of researchers have investigated task systems with resources. These systems are the

main focus of this thesis.
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Chapter 2- Task Systems With Resources

For many practical scheduling problems the basic task system model presented in Chapter 1 is

inadequate. For these problems, the performance bounds for the basic model are neither accurate nor

informative. Intuitively, the basic model does not take enough of the parameters of these problems into

consideration to provide good bounds. For instance, consider the following three scheduling problems:

1. A computer system has associated with it, in addition to processors, several types of resources,

including memory, disk drives and printers. In general, there is a set of jobs to be executed on the

system, and, depending on the circumstances, there may or may not be precedence constraints

associated with these jobs. Each job has certain requirements with respect to the resources of the

system. For example, a job may require 20K of memory, two disk drives and a printer. The

problem is to produce a schedule for executing this set of jobs in a minimum amount of time.

Clearly, for such a schedule to be valid, the demand of the jobs executing at any given time, for

each resource, should not exceed the available quantity of the resource.

2. A large construction company possesses a certain amount of equipment: bulldozers, trucks, cranes,

etc. In addition, the company has a number of employees. Together the equipment and the

employees constitute the resources of the company. In general, there is a set of construction

projects for the company to complete. Each project requires certain pieces of equipment and

numbers of people. Here again, tile problem is to produce a schedule for completing tile projects

in a minimum period of time, given the resources of the company.

3. An idealized bin packing problem is the following: Given a set of items and a set of bins, pack the

items into a minimum number of bins. he items are of identical size and shape, although they

may vary in other parameters - for instance, in weight and cost. The bins are identical in all

respects. In addition to having a fixed size and shape, the bins have fixed capacities with respect to
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the other parameters of the items. For example, there may be limits on the total weight and total

cost of thie items packed into any single bin. In addition, there may or may not be a limit on the

total number of items that can be packed into any single bin. The problem is to pack the items

into a minimum number of bins without violating the capacity constraints of the bins.

The outstanding feature of each of these problems is the presence of a resource constraint. These

constraints are sufficiently powerful, that it is unreasonable to expect that using the basic task system

model for analyzing the performance of scheduling alogrithms for these problems will provide useful

results. The power of these constraints can, however, be captured by extending the basic task system

model to include a set of resources. Each task may require some or all of the resources during its

execution. Such a task system with resources can be used to effectively model each of the three problems

outlined above, although for problem 2 and possibly for problem 3, there is no processor constraint. We

will return to the question of processor constraints in a later section.

In the remainder of this thesis we deal exclusively with task systems with resources. Depending on

the exact nature of the problem under consideration, there are two alternative formal models of task

systems with resources that may be utilized. In the next two sections we examine those two models.

2.1 Task systems with continuous resources

In this section we examine task systems with continuous resources. This model has been used to

obtain almost all performance bounds for the scheduling of task systems with resources to date.

2.1.1 Thl'e model

A EIT task systemn with continuous resources is a system S = <T, <, m, s> where:

1. T = {T1 , ... , Tn} is a set of tasks - associated with Ti is a positive integral execution time i.

2. <( is a partial order specifying precedence constraints between the tasks.

3. There are m identical processors.

4. s is the number of different resources. It is assulned that s > 1, that there is exactly one unit of
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each resource, and that each task may require any portion of that one unit for each resource.

For each task Ti and each resource v, Rv(Ti) E [0, 1] specifies the portion of resource v required by task

Ti during its execution. Because a task may require any portion of each resource (all, none, 1/2, or

.000001, for instance) we say that the resources are continuous.

A valid schedule for a task system with continuous resources S, is a mapping a: T - (N - {0}) such

that:

1. For all IE (N - {0}), m > {Ti E T: a(Ti) < < a(T i) + i' 1}l.

2. If Ti < Tj, then (Ti) + i 1 < a(Tj).

3. For all 1 E (N - {0}), and v, 1 < v < s, 1 Rv(Ti) summing over all Ti such that

a(Ti) < I < a(Ti) + ri -L

This definition is identical to the one for basic task systems, except for condition 3. This last condition

insures that at any given time unit, the currently executing tasks do not require more than one unit of

each resource.

Intuitively, a list schedule for a task system with continuous resources may be constructed as

follows: Initially, let L be any (ordered) list of the tasks in T. The tasks are scheduled as follows:

Whenever a processor becomes idle, the list L is instantaneously scanned from its beginning and the first

task T (if any) which meets the following criteria is removed from L and assigned to the idle processor: 1.

Each task Tj such that Tj < T, has completed execution and 2. If[rl ... rs] represents the total resource

requirements of all currently executing tasks, then for each resource v, rv + Rv(T) < 1. This last

requirement guarantees that the currently executing tasks do not require more than a total of one unit for

any resource. More formally, a list schedule for a task system with continuous resources is a valid

schedule which is generated as follows:



- 26 -
1. Initially, L is an (ordered) list of the tasks in Tand I is 1.

2. While L is nonempty perform this step

a. Let k = I T i L: o(Ti) I < a(Ti) + i -1} -

b. For each v, 1 < v < s, let rv = : Rv(Ti) summing over all Ti such that

a(Ti) < I a(Ti) + i -1

c. Let L' be a list of the ready tasks on L at time 1, the tasks in the same order on L' as on L

d. While L' is nonempty and k < m perform this step

i. Let T be the first task on L'

ii. If for each v, 1 < v < s, rv + RV(T) < 1,

then let u(T) = 1, let k = k+ 1, for each v, let rv = r v + RV(T), and remove T from L

iii. Remove T from L'

e. Let I = 1 + min {a(Ti) + 'i- l:T i L and (Ti) + i-1 1

An example of a task system with continuous resources and a list schedule for that system is given in

Figure 2.1.

We note that critical path and Coffminan-Graham schedules retain their original definitions of being

particular subclasses of list schedules.

2.1.2 Shortcomings

There are two major shortcomings of the task system with continuous resources model.

First, the assumption that the resources are "continuous" is not an accurate reflection of either

existing computer systems or of many industrial scheduling problems. In those instances, resources are

much more "discrete" in nature than they are "continuous". For instance, computing resources such as

tape drives and line printers are generally available only in small quantities and a task can require only

whole units of them. Moreover, while memory may be thought of as being continuous due to its large

size, it is debatable whether memory should even be viewed as a limiting resource in terms of practical
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Figure 2.1: Example of a task system with continuous resources
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computation.

Second, the performance bounds that have been obtained for various heuristics with respect to the

continuous resources model, depend on the number of different resources, but not on the actual number

of discrete units of each resource. For systems in which the available quantities of the resources are small,

the actual worst case performance of various heuristics may be much better than these bounds indicate.

2.2 Task systems with discrete resources

To try to overcome the perceived shortcomings of the task systems with continuous resources model,

we consider a model of task systems with discrete resources - there is a fixed number of indivisible units

of each resource which tasks may require during execution.

2.2.1 The model

A task system with discrete resources is a system S = (T, <, m, s> where:

1. T = {T1 , .. , Tn} is a set of tasks - associated with Ti is a positive integral execution time i.

2. < is a partial order specifying precedence constraints between the tasks.

3. There are m identical processors.

4. s is the number of different resources. It is assumed that s > 1, that there are ri indivisible units of

resource i, and that a task may require only integral numbers of these units for each resource.

For each task T i and each resource v, Rv(Ti) specifies the number of units of resource v required by task

Ti during its execution. Because a task may require only integral numbers of units of each resource, we

say that the resources are discrete.

A valid schedule for a task system with discrete resources S, is a mapping a:T - (N - O0) such

that:

1. For all I E (N - O}), m > IT i E T: o(Ti) < I < I(T i) + 'i -

2. lfT < Tj, then (Ti) + i -1 < a(Tj).

3. For all l E (N - {0}), and v, l < v < s, rv > Rv(Ti) summing over all Ti such that
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a(Ti) < I < a(Ti) + i' 1.

This definition is identical to the one for basic task systems, except for condition 3. This last condition

insures that at any given time unit, the currently executing tasks do not require more than tile existing

number of units of each resource.

Intuitively, a list schedule for a task system with discrete resources may be constructed as follows:

Initially, let L be any (ordered) list of the tasks in T. The tasks are scheduled as follows: Whenever a

processor becomes idle, the list L is instantaneously scanned from its beginning and the first task T (if

any) which meets the following criteria is removed from L and assigned to the idle processor: 1. Each

task Tj such that Tj < T, has completed execution and 2. If [r, .... rsl represents the total resource

requirements of all currently executing tasks, then for each resource v, r + Rv(T) < rv. More

formally, a list schedule for a task system with discrete resources is a valid schedule which is generated as

follows:

1. Initially, L is an (ordered) list of the tasks in Tand I is 1.

2. While L is nonempty perform this step

a. Let k = {Ti L : a(Ti) < 1 < a(T i) + i 1} 

b. For each v, 1 < v < s, let r = X: Rv(Ti) summing over all Ti such that

a(Ti) < I < a(Ti) + ri 1

c. Let L' be a list of the ready tasks on L at time 1, the tasks in tfe same order on L' as on L.

d. While L' is nonempty and k < m perform this step

i. Let 1 be the first task on L'

ii. If for each v, 1 < v < s, r + Rv(T) rv,

then let a(T) = , let k = k + 1, for each v, let r = rv + Rv(T) and remove T from L

iii. Remove T from L'

e. Let I = 1 + min {a(Ti) + 'i - 1 : Ti L and a( i) + Ti - 1 }
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Figure 2.2: Example of a task system with discrete resources
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An example of a task system with discrete resources and a list schedule for that system is given in Figure

2.2.

We note that critical path and Coffman-Graham schedules retain their original definitions of being

particular subclasses of list schedules.

2.2.2 Discussion

We are not the first to consider task systems with discrete resources. The original formulation of

task systems with resources by Garey and Graham [GG73, GG75] involved discrete resources. Moreover,

an NP-completeness result of Ullman [U76] involves discrete resources. However, as far as performance

bounds are concerned, almost all of the previous work has been done for systems with continuous

resources. The only results pertaining to the discrete model are some limited results of Goyal [Go] and

Lcung [Le] involving systems with 0-1 resources. These are systems with exactly one indivisible unit of

each resource. A task either requires all of a resource or none of it.

As noted earlier, the discrete resources approach is designed to overcome the perceived

shortcomings of the continuous resources approach. The performance bounds for systems with discrete

resources will incorporate the values rl, ... , rs (these are the number of units of each resource). This

means that the performance bounds will distinguish between task systems with different numbers of the

same resource, unlike in the continuous resources case. They will also be able to indicate the effect on

performance, if additional units of an existing resource are added to the system.

In the remainder of this chapter, we survey the NP-completeness results involving task systems with

resources (discrete and continuous) and discuss tle role of processors in this model.

2.3 Why stuldy heuristics?

In our discussion of basic task systems in tile previous chapter we mentioned several

NP-completeness results regarding the minimum execution time scheduling of those systems. As might

be expected, much the same results exist for task systems with resources. In this case however, the results
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are more definitive than for basic task systems. Ullman [U76] has shown that finding minimum

execution time schedules for UET task systems with discrete resources is NP-complete, even for systems

with only two processors, one discrete resource with one unit (and arbitrary precedence constraints). For

continuous resources, Garey and Johnson [GJ741 show that finding minimum execution time schedules is

NP-complete for UET task systems with three processors, one continuous resource, and no precedence

contraints. They also show [GJ74] that finding minimum execution time schedules is an NP-complete

problem for UET task systems with two processors, one continuous resource and precedence constraints

restricted to a forest

From the above results we can conclude that for virtually all interesting scheduling problems for

task systems with resources, it is unlikely that polynomial time alogrithms exist which produce optimal

schedules. This leaves the study of heuristic algorithms for scheduling. In this thesis we examine list and

critical path schedules. As noted in Chapter 1, these are the two simplest and most intuitive scheduling

heuristics for UET systems. We will not be particularly concerned with Coffman-Graham scheduling,

except in one instance where we use it to get a lower bound on the worst case performance of critical

path scheduling. The reason for this lack of intense interest in Coffman-Graham scheduling is that,

particularly when dealing with extensions of the basic task system model, experience has shown that the

difference in the worst case performance of critical path and Coffman-Graham scheduling is very small

relative to the worst case bound. Because this difference is so small, the analysis of the performance of

both critical path schedules and Coffmainn-Graham schedules is of little or no practical interest.

2.4 The processors question

In both of the models of task systems with resources we study, there is a set of m processors. The

role that these processors should play in this model is a serious question, both theoretically and

practically. There are two distinct schools of thought on this issue.

One approach is- to assume that the processors play no role in constraining the schedule. In this
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case, it is assumed that the number of processors is at least as large as the number of tasks in the system

(i.e. m 2> n = I17). This assumption means that given any time units B i, Bj with j > i, and any task T E Bj,

the reason that T did not execute in Bi is due to either a resource constraint or a precedence constraint. It

is not the case that Bi was "full", which would mean that there was "no room" for T in Bi . As far as

performance bounds are concerned under this assumption, it is as if processors never appeared in the

model at all. The quantity m plays no role in the bounds for task systems with no processor constraint.

For certain applications, this is a reasonable assumption - for instance, applications 2 and 3 that were

discussed at the beginning of this chapter: In the scheduling problem for a construction company given

there, there was nothing corresponding to a processor constraint. In the bin packing problem it was noted

that there may or may not be a limit on tile number of items placed into any single bin (such a limit

corresponds to a processor constraint). Much of the previous work on performance bounds for task

systems with resources has been on systems without a processor constraint.

The second approach to the role of processors in the task system with resources model is that the

processors are vital in determining worst case performance, and that many applications demand a model

involving processors. Even so, it can be argued that no generality is lost by using a "no processor

constraint" approach, since processors can be treated as just another resource. That is, given a

performance bound for systems with no processor constraint, and a task system with s resources and a

processor constraint, simply apply the bound as if the system had s+l1 resources. However, from an

intuitive viewpoint, this approach is suspect, since processors are not "just another resource". The

processor resource possesses certain characteristics that are not shared by resources in general. In

particular, every task requires exactly one unit of the processor resource - no more and no less.

Furthermore, with respect to task systems with continuous resources, tile processor resource is unique in

that a task may not require just any portion of the resource, as was assumed for continuous resources in

general. At least intuitively, there is no reason to believe that treating the processors as an additional
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kind of resource will result in meaningful worst case bounds.

2.5 The problems to be studied

In this thesis we study minimum execution time scheduling of UET task systems with resources. We

examine the following four models:

UET task systems with continuous resources and no processor constraint

UET task systems with continuous resources and a processor constraint

UET task systems with discrete resources and no processor constraint

UET task systems with discrete resources and a processor constraint

We investigate the worst case performance of list and critical path scheduling for each of these models.

We also compare the bounds for the four models and try to delineate the relationships between those

bounds.
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Chapter 3 - List Scheduling

In this chapter we study the list scheduling of UET task systems with resources. As noted in the last

chapter, list schedules are the fundamental type of schedule which we consider, and most scheduling

algorithms produce classes of schedules which are subclasses of the list schedules. Moreover, no

generality is lost by restricting our attention to list schedules when dealing with UET task systems,

because there is always a list schedule of optimal length.

For comparison purposes, we again mention the following two results on the worst case performance

of list scheduling for basic UET task systems (i.e. systems without any resources). If there is no processor

constraint (m > n) then all list schedules are optimal. That is, LIST/OPT = 1. If there is a processor

constraint (m 2 2) then LIST/OPT < 2 - 1/m, and this is the best possible result [G66].

3.1 Continuous resources

The major work on list scheduling for UET task systems with continuous resources is by Garey,

et.al. [GGJY]. They show for a system with no processor constraint (m 2 n), that LIST/OPT < s'OPT/2

+ s/2 + 1, and that systems exist for which LIST/OPT > s'OPT/2 + s/2 + 1 - 2s/OPT. This upper

bound can be compared to the corresponding result for UET task systems with no resources. That

comparison shows that adding even a single continuous resource to a UET task system results in a

tremendous degradation of the worst case behavior of list scheduling. That is, for a UET task system

without resources, list schedules are always optimal, whereas the addition of a single continuous resource

can result in list schedules having length quadratic in the length of an optimal schedule. Tlhis comparison

confinrms our earlier comments that performance bounds based on the basic model are probably not good

indicators of performance for problems involving resources.

For UET task systems with continuous resources and a processor constraint, there are no tight upper

bounds. There are, however, two partial results. First, is the result of Garcy, ct.al. [GGJY] cited above,
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using s+l resources instead of s - the extra resource accounting for the existence of the processor

constraint. This yields LIST/OPT < (s+l)OPT/2 + s/2 + 3/2. Second, Yao [Y] has shown that

LIST/OPT < min{m, (m-1)s'OPT/(2m) + 7(m-1)s/(2m) + 11. As mentioned above, neither of these

results is best possible.

3.2 Discrete resources

In this section we state and prove worst case performance bounds for the list scheduling of UET

task systems with discrete resources. The only previous work for these systems is by Goyal [Go] and

Leung [Le]. Goyal investigated UET task systems with one discrete resource, where r = 1 (there is

exactly one unit of that one resource, so each task either requires all of the resource or none of it). He

shows for systems with no processor constraint (m > n), that LIST/OPT < 2, and for systems with

processor constraints (m > 2), that LIST/OPT < 3 - 2/m. Moreover, both of these results are the best

possible. Comparing these bounds to those for UET task systems without resources, we note that the

addition of one unit of one discrete resource caused the worst case ratio of LIST to OPT to increase by 1

in the no processor constraint case, and by 1 - 1/m for systems with a processor constraint. Leung

investigated UET task systems with discrete resources in which each ri = 1, under the restriction that each

task may require at most one unit of resource (i.e. for each task T, Z i =1 Ri(T) < 1). He showed that

LIST/OPT < min[m, (2-1/m) + s(1-1/m)}, and that this is the best possible result. Our results

generalize the results of Goyal and Leung.

3.2.1 Two results

We prove the following two results about the worst case performance of list scheduling for UEI' task

systems with discrete resources:

Thecorem 3.1: If m > n (no processor constraint), then L1ST/OPT < 1 + r, where r = '=l ri.

Moreover, this bound is the best possible.
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Theorem 3.2: If m > 2 (a processor constraint), then LIST/OPT < min[m, (2-1/m) + r(1-1/m)},

where r = . 1 ri. Moreover, this bound is the best possible.

These results are proven in the next two sections. Before doing so, however, there are several remarks to

be made about these two theorems.

First, note the surprising role played by the resources in determining the worst case bound. The

relevant quantity is not the number of different resources, but rather is the sum total of all the units of all

the resources in the system. The number of different resources and the distribution of the r units of

resource among those different resources is no factor. This means that the worst case bound for

LIST/OPT is the same for a system with 1000 units of one resource as it is for a system with one unit of

each of 1000 resources. This contrasts sharply with the results for UET task systems with continuous

resources, where the key parameter is s, the number of different resources.

Second, these bounds indicate that for each unit of (any) resource added to a UET task system, the

worst case ratio of LIST to OPT increases by 1 in the no processor constraint case, and by 1 - 1/m in the

processor constraint case. This follows, because for r = 0, our results are identical to those cited in the

introduction to this chapter as the best possible bounds for LlS'T/OPT for basic UET task systems (i.e.

without resources). These results provide a clear indication of the role of the resources in determining

worst case behavior.

Third, unlike the situation for UET task systems with continuous resources, there is a tight upper

bound for UET task systems with discrete resources and a processor constraint. For that result, we note

that the bound of m holds for every r > m - 1. This indicates the point at which the processor constraint

dominates the resource constraint with respect to the worst case performance of list scheduling.

3.2.2 The upper bounds

In this section and the next we prove Theorems 3.1 and 3.2 - the upper bounds in this section and

the lower bounds in the next. In both sections we concentrate on the proof of Theorem 3.2 - the result for
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systems with a processor constraint. We do this because those results are slightly more complicated (due

to the presence of the processor constraint) than those for Theorem 3.1. At the end of each section we

briefly indicate how to modify those results to obtain the results for the no processor constraint case.

I emma 3.1: If m > 2 (a processor constraint), then LIST/OPT < min{m, (2-1/m) + r(1-1/m)}, where

r= ri.r = i=l

Proof

Assume that a UET task system with discrete resources is given. We prove the result by obtaining a

lower bound on OPT, and an upper bound on LIST. Combining these bounds gives an upper bound

for LIST/OPT.

We make use of the following notation throughout the proof: Let k be the length of a critical

path in a directed acyclic graph representing the precedence constraints, and for each resource i, let xi

= I: Ri(Tj) slimming over all Tj E T. That is, xi is the total demand for resource i among all of the

tasks in the system.

Consider an optimal schedule for the system. Three observations can be made: First, an

optimal schedule can be no shorter than k, the length of a critical path. Second, an optimal schedule

can do no better than to have tasks executing on each of the processors during each time unit. Third,

for each resource, an optimal schedule can do no better than to have all units of that resource utilized

during each time unit. Thus, OPT > max{k, n/m, xl/r 1, ... ,Xs/rs}.

Now consider an arbitrary list schedule for the system. Such a schedule consists of two types of

time units: Those in which all processors have tasks executing on them, and those in which at least one

processor is idle. The number of ime units with idle processors may be bounded above as follows:

Whenever a processor is idle during a time unit, each unexecuted task, T, is prevented from executing

on that processor for one of two reasons: Either a predecessor of T has not yet executed, or, for some

resource j, the demand for resource j by tasks executing during that time unit, together with the
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demand for resource j by task T, exceeds rj. It is well known that there can be at most k time units in

which only the first constraint prevents tasks from executing. Moreover, at each time unit where the

second constraint prevents some task from executing, at least one unit of some resource must be

required by some task executing in that time unit. Hence, there are at most Zs= 1 Xi time units in

which there is an idle processor due, in part, to the second constraint. Thus,

LIST < k + I Xi + (n-k-YX= 1 xi)/m = n/m + (1-l/m)k + (l-l/m): s= xi.

LIST/OPT < [n/m + (l-1/m)k + (1-1/m)Zs = 1 xi] / max{k, n/m, xl/rl, ..., s/rs}

< (2-1/m) + (1-1/m)ZS= 1 ri

= (2-1/m) + r(l-l/m)

Finally, note that for all m, LIST/OPT < m, since

1. A list schedule cannot have a time unit in which all processors are idle unless the schedule has

completed.

2. There are at most m'OPT tasks in the entire task system.

LIST/OPT < min[m, (2-1/m) + r(l-l/m)} 0

Lemma 3.2: If m > n (no processor constraint), then LIST/OPT < 1 + r, where r = i 1 ri.

Proof

First note that since m > n, each time unit of any schedule can be treated as having at least one idle

processor. Then, analogously to the proof of Lemma 3.1, we can show that

OPT > max{k, xl/rl, ..., xS/rs} and LIST < k + i = 1 i

.LIST/OPT < [k + i = 1 xi] / max k, xl/rl, ..., xs/rs}

< 1 + z ri

=I+r. []
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3.2.3 The lower bounds

In this section we prove that the upper bounds for LIST/OPT given in the previous section are the

best possible upper bounds for the worst case performance of list scheduling for UET task systems with

discrete resources.

Lemma 3.3: If m > 2 (a processor constraint), then LIST/OPT < min{m, (2-1/m) + r(1-1/m)}, where

r = Z=1 ri, is the best possible bound.

Proof

We show that for any number of processors m, and any distribution of r units of resource, that

the ratio LIST/OPT can be arbitrarily close to minm, (2-1/m) + r(1-1/m)}. We let r = = 1 r1 ,

where ri is the number of units of resource i. We assume that each ri is nonzero, and that r does not

exceed m - 1. Now, let z be a multiple of m and consider a task system consisting of the following

tasks:

1. Tasks A1 , ... A(m-rl.)z where each Ai requires no resources.

2. Tasks B1 ,..., Bz where Bi Bi+ 1 for 1 < i < z - 1 and where each Bi requires one unit of

resource s and 0 units of all other resources.

3. For each resource v, 1 < v < s, there are tasks D... , each of which requires all the units1 rv
of all resources, and tasks Cij for 1 < i < rv and 1 < j < z, each of which requires one unit of

resource v and 0 units of all other resources. The exception is that tasks Cs Cs

require no resources. Furthermore, for each v and i, 1 < i < rv , D < C < C < ... < C

Such a sequence of tasks will be referred to as the D i chain.

An example of such a task system for the case of s = 1 is shown in Figure 3.1.

An optimal schedule for this UET task system with discrete resources has length OPT = z + r.

In this schedule the D)-tasks execute in the first r time units, and the C-tasks, B-tasks and A-tasks

execute in the next z time units. During each of these z time units, r C-tasks, one B-task and m-r-1
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Figure 3.1: Task system used in Lemma 3.3.

Assume that s = 1, hence r = rl. There are
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Cr,z o A1 0 . A(m.r.-l)z 0

The resource requirements are given beside each task.

Figure 3.2: An optimal schedule

Schedule:

Time units: r z

Length = r + z

Figure 3.3: A "bad" list schedule

Schedule:

Time units:

A-tasks B1i .I" Bz I D1 -chain I D2 -chain . .. ID-chain

(m-r-1)z I zl1 I z+l I z+l
m

Length = [2- l/m + r(l -1/m)]z + r
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A-tasks execute. Moreover, all units of each resource are used during each of these z time units.

Figure 3.2 shows an optimal schedule for the task system given in Figure 3.1. Note that an optimal

schedule can be generated from the list (D-tasks, C-tasks, B-tasks, A-tasks). Such a list schedule will

be identical to the one described here except that some of the A-tasks will execute with the D-tasks

instead of with the B-tasks and C-tasks.

Now consider the list (A-tasks, B-tasks, Dl-chain, ... chain, D-chain , D -chain). In this

schedule, the A-tasks execute in the first (m-r-1)z/m time units. All m processors are utilized during

these time units. The B-tasks execute in the next z time units. Since each D-task requires all the units

of each resource, none of the D-tasks or C-tasks execute with the B-tasks. Finally, the DY-chains

execute, one chain at a time. The execution of each chain requires z+l time units. Thus, this

schedule has length LIST = (m-r-1)z/m + z + (z+1)r = (2-1/m + r(1-1/m))z + r. Figure 3.3

shows such a list schedule for the task system given in Figure 3.1.

.'. LIST/OPT = [(2-1/m + r(1-1/m))z + r] / (z + r)

. limitz _ 0oo LIST/OPT = (2-1/m) + r(1-1/m).

Finally, if r > m - 1 then the bound of m for LIST/OPT can be approached by considering a system

with the same set of tasks as if r = m - 1, with the same resource requirements as if r = m - 1. ]

Lemma 3.4: If m > n (no processor constraint), then LIST/OPT < 1 + r, where r = is ri, is the

best possible bound.

Proof

We show that for any distribution of r units of resources that the ratio LIST/OPT can be

arbitrarily close to 1 + r, assuming that there is no processor constraint. We let r = Xi = 1 ri, where

ri is the number of units of resource i. We assume that each ri is nonzero. Now, let z be an arbitrary

integer and consider a task system consisting of the following tasks:
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1. Tasks B1,..., Bz where Bi < Bi + 1 for 1 < i < z - 1 and where each BI3i requires one unit of

resource s and 0 units of all other resources.

2. For each resource v, 1 < v < s, there are tasks D, ... v, each of which requires all the units

of all resources, and tasks CVj for 1 i r and 1 < j < z, each of which requires one unit of

resource v and 0 units of all other resources. The exception is that tasks Cs Cs

require no resources. Furthermore, for each v and i, 1 < i < rv, D < Ci < C2 <... < Cz.

This task system is identical to the task system described in the proof of Lemma 3.3, except that there

are no A-tasks. Similarly to that result, an optimal schedule for this UET task system with discrete

resources can be generated from the list (D-tasks, C-tasks, B-tasks). This schedule has length OPT =

z + r. Also similarly to the proof of Lemma 3.3, consider the list (B-tasks, DI-chain,..., DR 1-chain,

D-chain, ... , Ds -chain). The schedule generated from this list has length LIST = z + (z + 1)r =
s

(1 + r)z + r.

.'. LIST/OPT = [(1 + r)z + r]/(z + r)

limitz , 00 LIST/OPT = 1 + r.
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Chapter 4 - Critical Path Scheduling - Continuous Resources

In this chapter we study critical path scheduling of UET task systems with continuous resources. As

noted earlier, critical path schedules are a widely studied subclass of list schedules. For comparison

purposes we again mention the following two results on the worst case performance of critical path

scheduling for basic UET task systems (i.e. systems without any resources). If there is no processor

constraint (m > n) then critical path schedules are optimal. That is CPATH/OPT = 1. If there is a

processor constraint (m > 2) then CPATH/OPT < 4/3 if m = 2, and CPATH/OPT < 2 - 1/(m-1) if m

> 3. These are the best possible bounds [Ch].

4.1 No processor constraint

The major work to date on critical path scheduling for UET task systems with continuous resources

is by Garey, et.al. [GGJY]. They show for a system with no processor constraints, that CPATH/OPT < 1

+ 17s/10, and that this is the best possible result. This result can be compared to the corresponding

result for UET task systems with no resources (that result is CPATH/OPT = 1). That comparison shows

that for every continuous resource added to a UET task system, the worst case bound for CPATH/OPT

increases by 17/10. This result can also be compared to that for list scheduling of UET task systems with

continuous resources and no processor constraint. That comparison shows that the worst case behavior of

critical path schedules is far better than that of list schedules for these systems - in the worst case,

CPATH grows linearly with OPT, while LIST grows quadratically with OM'. This contrasts sharply with

the relationship between LIS'I' and CPATH for UEF task systems without resources and no processor

constraints, where both types of schedules are always optimal.

4.2 A processor constraint

For critical path scheduling of UET task systems with continuous resources and a processor

constraint, there are only two limited results (aside from our work). First, Yao [Y] has shown that
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CPATH/OPT < min{ m, 2 + 2s - (2s+ 1)/m }. Second, the result of Garey, et.al. [GGJY] given in the

previous section can be applied using s+1 resources (the extra resource accounting for the processor

constraint) yielding CPATH/OPT < 27/10 + 17s/10. In general, neither of these results is the best

possible. In the remainder of this section we prove the following result about critical path scheduling of

UET task systems with continuous resources:

Theorem 4.1: If m > 2 (a processor constraint), then

CPATH/OPT < m if 2 < rn < s + 1

(s+m+1)/2 if s + 1 < m < 2s + 1

(4s + m + 3)/4 if 2s + 1 < m < 8s/3 + 1

(14s+m+9)/10 if 8s/3 + 1 < m < 3s + 1

2+17s/10-(3s+ 1)/m if 3s + 1 < mandm > 10

2+ 5s/3-(8s/3+ 1)/m if 3s + 1 < m and m < 10

Moreover, each portion of this bound is the best possible.

4.2.1 An interpretation

Because the bound given in Theorem 4.1 is somewhat imposing, it is useful to obtain an intuition

about the nature of that bound. In this section we try to provide this intuition from the point of view of

the "lower bound". That is, we discuss the principles behind the construction of task systems for which

critical schedules exist which achieve various portions of the bound. We will concentrate on the middle

four portions of the bound. The other two portions arise mainly from "boundary" constraints. In

particular, the first portion (2 < m < s + 1) is the situation where the processor constraint dominates

worst case behavior. The final portion (3s+1 < m < 10) arises because s and m are both small. We

ignore these two protions of the bound in the rest of this discussion.

The key to understanding the middle four portions of the bound is the following: When

constructing a task system for which a "bad" critical path schedule exists, there are three kinds of
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constraints to deal with: precedence constraints, processor constraints and resource constraints.

Moreover, there are actually s kinds of resource constraints - one constraint for each continuous resource.

A task system with a "bad" critical path schedule (presumably) exploits each of these constraints to the

fullest. Now consider the bound 2 + 17s/10 - (3s+1)/m. The various terms of that bound can be

interpreted as follows: The term 17s/10 arises fiom the exploitation of the resource constraints. There

are 3sOPT tasks involved in this. A term of 1 arises from the exploitation of the precedence constraints.

There are OPT tasks involved in this. Finally, the term 1 - (3s+ 1)/m arises from the exploitation of the

processor constraints. All of the remaining tasks in the system are involved in this. Similar

interpretations exist for the other three portions of the bound. However, in those cases, only the resource

and precedence constraints are exploited and not the processor constraints. Only when m > 3s+ 1 is it

"profitable" to exploit the processor constraints.

This interpretation can be seen more clearly, if we assume that s is fixed, and that m and

CPATH/OPT are expressed as functions of s (Figure 4.1 shows the plot of such a function). Initially,

assume that m =s+ 1 and that we have a UET task system with continuous resources S, such that a critical

path schedule exists for S, with CPATH/OPT arbitrarily close to s+ 1. In S. there are OPT tasks devoted

to exploiting the precedence constraints, and for each continuous resource, there are OPT tasks devoted

to exploiting the constraint imposed by that resource. The processor constraints are not being exploited

at all. Now consider how S is modified as m is increased, one processor at a time, from s+l1 to 2s+ 1.

Each time m is increased, several tasks are added to S. The purpose of adding these tasks is to more fully

exploit the resource constraints. Each timne m increases by one processorl, the worst case bound increases

by a constant amount (namely, 1/2) due to the addition of those tasks. At m = 2s+ 1, there are OPT tasks

devoted to exploiting the precedence constraints, and for Cach continuous resource, there are 2'OPT tasks

devoted to exploiting the constraint imposed by that resource. Now consider the (similar) situation as m

is increased, one processor at a time from 2s+l to 8s/3+1. Again tasks are added to S each time m
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Figure 4.1: Graph of the upper bound as a function of s
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increases. Now, however, the worst case bound increases by only 1/4 each time m increases. For a third

time, consider the (similar) situation as m is increased one processor at a time, from 8s/3+1 to 3s+1.

Again tasks are added to S each time m increases. In this instance, the worst case bound increases by only

1/10 each time m increases. At m=3s+l, there are OPT tasks devoted to exploiting the precedence

constraints, and 3s'OPT tasks devoted to exploiting the resource constraints - for each continuous

resource, there are 3OPT tasks exploiting the constraint imposed by that resource. At this point, the

precedence and resource constraints are fully exploited. Finally, as m is increased beyond 3s+1, yet

more tasks are added to S. These tasks exploit the processor constraint. Note however, that the bound

increases only so slightly in this range, and that in fact, it converges to 2 + 17s/10 as m approaches

infinity.

4.2.2 A comparison

Although Theorem 4.1 provides (in contrast to previous results) a tight upper bound for the worst

case performance of critical path scheduling of UET task systems with continuous resources and a

processor constraint, there is a question of how much that result really improves over previous results.

That is, consider the bounds (cited earlier) of Yao [Y] and Garey, et.al. [GGJY] as they apply to UET

task systems with continuous resources and a processor constraint. Those results can be combined to

yield the following composite bound:

CPATH/OPT < mint m, 2 + 2s- (2s+ 1)/m, 27/10 + 17s/10}

The question which arises, is whether this composite bound is much worse than the best possible

bound (our Theorem 4.1). The answer to this question is yes. For instance, if s > 6 and m = 1.8s + 2,

the composite bound indicates that CPATIJ/OPT < 17s/10 + 27/10. Tihe bound that we give shows

that CPAT'H/OPT < 14s/10 + 3/2. The difference between the two bounds is 3s/10 + 6/5 -- a value

which grows linearly with s. In percentages, the composite bound in this case is too large by over 21

percent. Fable 4.1 shows both the composite bound and our best possible bound for several specific
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Table 4.1

A comparison between the composite bound [Yao,GGJY] and the best possible bound

s m composite best error in composite

2 4 4 3.5 14%
5 5 4 25%
6 5.17 4.25 22%
7 5.29 4.43 19%
8 5.37 4.54 18%
00 6 5.4 11%

8 10 10 9.5 5%
15 15 12 25%
20 16.3 13.75 19%
25 16.3 14.6 12%
30 16.3 14.77 10%
o00 16.3 15.6 4%

15 20 20 18 11%
25 25 20.5 22%
30 28.2 23 23%
35 28.2 24.5 15%
40 28.2 25.75 10%
45 28.2 26.4 7%
50 28.2 26.58 6%
00 28.2 27.5 3%

The above values have been rounded to two decimal places.
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combinations of s and m. That table also shows the percentage error in the composite bound relative to

the best possible bound for each such combination of s and m.

Note from Table 4.1 that although our results improve upon the composite result whenever m >

s+ 1, the improvement is usually most significant when the number of processors is small relative to the

number of continuous resources.

4.2.3 The upper bound

In the next two sections we prove Theorem 4.1. The upper bound is given in this section and the

lower bound is given in the section 4.2.4.

4.2.3.1 Preliminaries

Before beginning the proof of the upper bound, we require several definitions.

With respect to the usage of the resources in the system, we have the following definitions:

Rmax(T) = max {Rv(T): 1<v<s}. Given task T, Rv(T) is the Rv-value of T and Rmax(T) is the

Rmax-value of T. This notation is extended to a set of tasks B, with Rv(B) = : Rv(T) over all T E B and

Rmax(B) = Rmax(T) over all T E B. For completeness, if B is empty, let Rmax(B) = 0. Finally, a set

of tasks B, is a legal set of tasks if for each resource v, Rv(B) < 1.

With respect to the precedence constraints, we remind the reader of the definition of the level of a

task: If Ti has no successors then level(T i) = 1; otherwise, level(T i) = 1 + max{level(Tj): T i < Tj}.

This notion can be extended to a set of tasks B, by letting level(B) = max{level(Ti): Ti E B}.

4.2.3.2 Proof outline

Consider any critical path schedule for a task system S. The time units of that schedule may be

divided into three sets: those time units where the final task of each level executes, those where all of the

processors are utilized and those where at least one processor is idle due solely to resource constraints.

Call these path, fill and resource time units respectively. The proof follows by bounding the number of

time units of each type. The number of path time units is bounded by the length of an optimal schedule.
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The number of full time units can be bounded using the length of an optimal schedule and the number

of tasks executed in resource and path time units. The number of resource time units can bounded by

the use of a "weighting function".

A weighting function W, is a mapping from the interval [0, 1] to an interval [0, x], where the x

depends on the particular weighting function. We extend the functional notation to tasks and let W(T)

= W(Rmax(T)). Moreover, if B is a set of tasks, then W(B) = Z W(T) over all T E B. (Our use of

weighting functions is motivated by, and draws upon, the work of Garey, et.al. [GGJY]). Given a

particular weighting function and a set of resource time units, the average weight associated with each of

those time units can be bounded below (this lower bound will be 1). Moreover, by examining an optimal

schedule, the total weight associated with all tasks executing in resource time units can be bounded above.

Combining these two bounds gives an upper bound on the number of resource time units. The result

then follows from the upper bounds on the numbers of path, full and resource time units.

4.2.3.3 Two important properties

In this section we introduce two properties of weighting functions.

Definition: Weighting function W has Property A, if:

Given a task T' and a nonempty set of tasks B such that:

Rmax(T) 2 Rma(T') for each T E B and Rma(T') > 1 - Rmax(B),

then W(B) 1.

Definition: Weighting function W has Property B, if:

Given a set of time units {B1 ..., Bt} with t > 1 and Y = Ut= 1 Bi' such that:

For every task T' E Bi , 1 < i < t, and every j, 1 < j < i, Rnax(T) > 1 - Rmax(Bj),

then tlhIere exists a task T* E Y, such that W(Y - {T*) > t-1.

Intuitively, Property A states that given a set of n tasks in which the total resource requirements of the

tasks exceeds one, then the total weight of the largest n-I tasks is at least one. Property 1B will be used to
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obtain a lower bound on the average weight associated with a resource time unit

Lemma 4.1: If W is a weighting function which has Property A, then W also has Property B.

Proof

Assume that W is a weighting function which has Property A, and let {B1, ... , Bt} be a set of time

units with Y = Ut=l Bi such that for every task T E Bi, 1 i < t, and every j, 1 < j < i, Rmax(T) > 1 -

Rmax(Bj). We want to show that there exists a task T* E Y such that W(Y-{T*}) 2 t-1. Without loss

of generality, assume that W(Bi) < 1 for each time unit Bi, 1 < i < t. The proof is by induction on t.

If t = 1 the lemma is immediate, so suppose that t > 2. Consider time units Bt.l and B. Let X

be any task in Bt. Then Rmax(X) > 1 - Rmax(Btl). Moreover, for any task T E (Bt. 1 U {X}),

Rmax(T) > 1 - Rmax(Bt 1 U {X} - {T}). In particular, let Z be a task in (Btl 1 U {X}) with a minimal

Rmax-value. From Property A, it follows that W(Btl 1 U {X} - {Z}) > 1.

Now consider the set of time units {B1, ... Bt 1} , where Bi = Bi for 1 < i < t-2, and Bt i
=

{Z}. LetY - t- Y1 Bi. By induction, there exists a T* E Y', such that W(Y'-{T*}) > t-2.

Thus, W(Y - {T*}) > W(Y' - {T*}) + W(Bt 1 U {X} - {Z}) > t-2 + 1 = t-1. 0

4.2.3.4 The weighting functions

Three weighting functions are used in the proof of the main theorem. Three functions are used, as

opposed to just one, due to varying requirements with respect to the weights assigned in various parts of

that proof. Weighting function W1 has the property that if a1 + a 2 < 1, then Wl(a) + Wl(a 2) <

1.5. Moreover, values of a1 and a 2 exist such that Wl(al) + Wl(a 2) = 1.5. A similar statement can be

made about weighting function W 2 and the value 1.6. Weighting function W3 has the property that if a 1

+ ... + an < 1, then W3(a1 ) + ... + W3(an) < 1.7. lliese properties play a critical role in

establishing various segments of the upper bound.

For each of the three weighting functions which we introduce, we give two major results. First, we

give an upper bound on the weight of a legal set of tasks. As a corollary to this result we give an upper
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bound on the weight of any set of tasks drawn from the task system which we are considering. Both of

these bounds depend upon the cardinality of the set of tasks being considered. These results will allow us

to bound the total weight of the tasks executing in resource time units. Secondly, we show that the

weighting function has Property B.

4.2.3.4.1 The first weighting function

Definition:Wl(a) = 0 if a = 0

1/4 if a E (0, 1/4]

1/2 if a E (1/4, 1/2]

1 if a E (1/2, 11 u.br ILemma 4.2: If B is a legal set of tasks, then W1(B) <

min{ (IBl+s)/2, (Bl+4s)/4 }.

Proof

Recall that B is a legal set of tasks if for each resource v, the total usage of v by the tasks in B does not

exceed one.

Part 1: Let X = {T E B: Rmax(T) > 1/2) and let x = Xl. Since for each resource v, there is at most

one T e B, such that RV(T) > 1/2, it must be that x < s. Moreover, if Rmax(T) > 1/2 then W1(T)

= 1. Each task T E (B - X) has Rmax(T) < 1/2, hence Wi(T) < 1/2. Thus, W1(B) is bounded

above by max[x + (IBI-x)/2] such that x < s. This maximum occurs at x = s. Therefore, W1(B)

< s + (IBI-s)/2 = (IBI+s)/2.

Part 2: Let X = {T E B: Rmax(T) > 1/2}, let x = JXJ, let Y = {T E B: 1/4 < Rmax(T) < 1/2) and let

y = IYI. Similarly to Case 1, we deduce that x < s and y < 3s - 2x. Moreover, if Rmax(T) > 1/2

then Wi(T) = 1 and if 1/4 < Rmax(T) < 1/2 then Wi(T) = 1/2. Each task T E (B - X - Y) has

Rmax(T') < 1/4 and W1(T) < 1/4. Thus, Wl(B)) is bounded above by max[x + y/2 +

((13-x-y)/4] such that x < s and y < 3s - 2x. This maximum occurs at x = y = s, so W 1(B) s

+ s/2 + (11I3-2s)/4 = (1 +4s)/4. 0

Corollary 4.1: Given a set of tasks Y C T, then W 1(Y) < min{ (IYI +sOPT1)/2, (IYI +4sOI'I)/4 }.
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Proof

Let B1, ... Bopr be the time units of an optimal schedule restricted to the tasks in Y. Then, Y =

Ui P Bi and W(Y) = ° PT W(Bji)

Part 1: By Lemma 4.2, each Wi(Bi) < (Bil+s)/2. Thus, W1(Y) < Q° T1 (lBil+s)/2 = sOPT/2

+ zX P T IBil/2 = (IYI +sOPT)/2.

Part 2: By Lemma 4.2, each W1(Bi ) < (Bi1+4s)/4. Thus, W1(Y) < jT (lBi+4s)/4 

(IYI +4sOPT)/4. 0

I.emma 4.3: Weighting function W1 has Property B.

Proof

By Lemma 4.1, it is sufficient to show that W1 has Property A. Consider a task T' and a nonempty

set of tasks B, such that Rmax(T) > Rmax(T') for each T E B and Rmax(T') > 1 - Rmax(B). We

want to show that W1 (B) > 1.

If Rmax(T) > 1/2 for any T E B, then the lemma is immediate, so suppose Rmax(T) < 1/2 for

each T E B. If Rmax(T') = 0 then Rmax(B) > 1, hence W1 (B) > 1, so suppose Rmax(T') > 0.

Case 1: Rmax(T') E (0, 1/4]

Then Rmax(B) > 3/4. Since for each T E B, 0 < Rmax(T) < 1/2, we have that B] > 2. Moreover,

for T E B, W2 (T) is either 1/4 or 1/2. If IBI > 4, then the lemma is immediate. If IBI31 = 3 then at

least one of the tasks has an Rmax-value exceeding 1/4, hence it has a weight of 1/2. The other

two tasks have weights of at least 1/4. Thus, W 1(B) > 1. If IBI = 2, then both of tile tasks in B

must have Rmax-values exceeding 1/4, hence they have weights of 1/2, and W1 (B) = 1.

Case 2: Rmax( T') E (1/4, 1/2]

Then Rmax(B) > 1/2. Hence 1131 > 2, since Rinax(T) < 1/2 for each T E B. Since for each T E B,

Rmax(T) > Rmax(T' ), we have: Rmax(T) E (1/4, 1/2] and W1 (T) = 1/2 for T E B. Thus, W1 (B)

= 1111/2 > 1. [
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4.2.3.4.2 The second weighting function

Definition: W2 (a) = 0 if a = 0

10/100 if a E (0, .092]

15/100 if a E (.092,.136]

20/100 if a E (.136, .182]

25/100 if a E (.182, .2041

30/100 if a E (.204, .250]

40/100 if a E (.250, .296]

45/100 if a E (.296, .318]

50/100 if a E (.318, .364]

55/100 if a (.364,.408]

60/100 if a E (.408, .500]

1 if a E (.500,1]

We have the following facts which follow from the definition of W2:

Fact 1: If a E (.092, .500], then W 2 (a) < (1.64)a.

Fact 2: If BI3 = 3 and Rv(B) < 1, then W2 (Rv(B)) < 17/10.

Fact 3: If IBI = 2 and Rv(B) < 1, then W 2(Rv(B)) < 16/10.

Fact 4: If IBI = 2 and Rv(B) < .500, then W2(Rv(D)) < 7/10.

The following claim is useful in proving Lemma 4.4:

Claim A: If B is a set of tasks such that Rv(B) < 1 and IBI > 2 then W2 (Rv(B)) (IB + 14)/10.

Proof

If IBI < 3 then the claim follows from Facts 2 and 3, so, assume that 1BI > 4. Define the following

two sets of tasks:

Y = {T E B: Rv(T) > .500}

X = {TE B: .092 (< v(T) < .500}

Clearly, W2 (Rlv(B)) = W2 (Rv(Y)) + W2 (Rv(X)) + W2 (Rv(B-X-Y)). Note that if T E Y, then

W2 (Rv(T)) = 1 and if T E B-X-Y then W2 (Rv(I')) < 10/100. Thus,

W2(Rv,(B)) < lYI + W2(Rv(X)) + (1131 - lxi - IYl)/10.
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Case 1: Y = 0

Then, W2 (Rv(B)) = W2 (Rv(X)) + (IB - IX )/10.

If IXI < 2, then since for each T E X, W2 (Rv(T)) < 60/100, we have W2 (Rv(B)) < (60/100)IXI +

(IBl-IXl)/10 = 51Xl/10 + 1nl/10 < (Bl + 14)/10.

If XI > 2, then by Fact 1, W2 (Rv(X)) < 1.64, hence W2 (Rv(B)) < 1.64 + (111 - IXI)/10 <

1.64 + [IBI - 3]/10 < (1131 + 14)/10.

Case 2: IYI = 1

Note that Rv(X) < .500 and

W2(Rv(B)) < 1 + W2(Rv(X)) + BI31-Xl-11/10 (I)

If IXI = 0, then from (I), W2 (Rv(B)) 1 + (131-1)/10 < (Inl+ 14)/10.

If XI = 1, then W2(Rv(X)) < 60/100, so from (I), W2(Rv(B)) 1 + 60/100 + (IBI-2)/10 =

(IBl + 14)/10.

If lIX = 2, then by Fact 4, W2 (Rv(X)) < 7/10, so from (I),

W2(Rv(B)) < 1 + 7/10 + (113-3)/10 = (IBI + 14)/10.

If lXI = 3, then let maxv(X) = max{Rv(T): T E X}.

If maxv(X) > .318 then the other two tasks in X have Rv-values totaling less than .182, since

Rv(X) < .500. Then at least one of these other two tasks must have an Rv-value less than .091.

But, by definition, each task in X has an Rv-value exceeding .092. 'Thus, maxv(X) < .318.

If maxv(X) E (.250, .318], then W2 (maxv(X)) < 45/100. The other two tasks in X have

Rv-valucs not exceeding .136 and .182 respectively, hence they have a total weight not

exceeding 35/100. Thus, W2(R(X)) < 80/100.

If maxv(X) E (.092, .2501, then W 2 (maxv(X)) < 30/100. The other two tasks in X have

Rv-values not exceeding .204, hence they have a total weight not exceeding 50/100. Thus,

W2(Rv(X)) < 80/100.
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Thus, if XI = 3 then W2(RV(X)) < 80/100, hence W2(Rv(B)) < 1 + 80/100 + [Bj-4]/10 =

(IBI + 14)/10.

If IXl > 4, then from Fact 1, W2(Rv(X)) < 1.64R,(X) < .82. Then from (I), W2 (Rv(B)) 1 +

.82 + [IBl-IXl-1J/10 < 1.82 + [IB1-5]/10 < (IB + 14)/10. 0

Lemma 4.4: If B is a legal set of tasks, then W2(B) < (BIj + 14s)/10.

Proof

Partition the tasks in B into s sets D1, ... , Ds , where T E Dv if and only if v is the minimum index such

that R(T) = Rma(T). Clearly, W2(B) = Z=1 W2 (Rv(Dv)). Now partition the resources into

sets Z0, ... Zn, according to the sizes of the respective D v sets. That is, resource v is placed into set

ZiDvI (Figure 4.2). Thus, W2(B) = Xj = ( :vEZj W2(Rv(Dv)) ). Clearly, for each v E Z,

W2 (Rv(Dv)) = 0 and from the definition of W2 it follows that for each v E Z1, W 2 (Rv(Dv)) < 1.

Moreover, from Claim A, it follows that for each j > 2, and each v E Zj, W 2(Rv(Dv)) < a + 14)/10

and ZvEZ W2 (Rv(Dv)) = [(j+14)/10]17jl. Thus, W2(B) < 1Z11 + j = 2 1( + 14)/101IZjl =

j =1 liji/10 + nj=1 141Zjl/10 - Z11/2. But, the Zi's are a partition of the resources, so j =

IZj < s. Moreover, that partition is based on a partition of the tasks such that L j =1 lZjI 1 I.

Also, Z11j> 0.

.'. W2(B) < IBI/l10 + 14s/10 - 0/10 = (IBI + 14s)/10 0

Corollary 4.2: Given a set of tasks Y C T, then W 2 (Y) < (IYI + 14sOPT)/10.

Let B1, ... , BoPT be the time units of an optimal schedule restricted to the tasks in Y. By Lemma 4.4,

each W2(Bi) < (Bil + 14s)/10. lhus, W2(Y) = PT W2 (i I PT [=lBi + 14s/10 =

14sOYT/10 + Z. PTI iil/1 0 = (IYI + I4s-OFr)/10. o

I.cmma 4.5: Weighting function W2 has Property B.

Proof

By Lemma 4.1 it is sufficient to show that W2 has Property A. Consider a task T' and a
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Figure 4.2: Partitioning the resources.
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nonempty set of tasks B such that Rmax(T) 2 Rma(T') for T E B, and Rmax(T' ) > 1 - Rmax(B).

We want to show that W2 (B) > 1.

If BI = 1, the result follows immediately from the definition of W2 , so assume that IBI 2 2. Let

min(B) = min{Rmax(T): T E B. If there is only one resource in the task system, then min(B) is the

smallest resource requirement of any task in B. Given a time unit B, it is possible to compute a lower

bound for W2(B) based on IBI, min(B) and Rmax(B). In particular, Table 4.2 gives various

combinations of IBI, min(B) and Rmax(B), each of which implies that W2(B ) 1. These values were

verified using the MACSYMA system of the MIT Laboratory for Computer Science. The program

used to do the verification is shown in Figure 4.3.

Now consider the possible values of W2(T'). If W2 (T')2 50/100, then for each T E B, W2 (T)

> 50/100. Since IBI > 2, we have W2(B) 1. If W2 (T') = 10/100, then 0 ( Rmax(T') < .092.

But this implies that Rmax(B) > .908 and min(B) > 0 hence from Table 4.2, W 2 (B) 2 1. If Rma:(T)

= 0, then Rmax(B) > 1, hence W2 (B) > 1.

There are six remaining possibilities for W2 (T'): 15/100, 20/100, 25/100, 30/100, 40/100, and

45/100. Associated with each of these weights there is a range (al, a2 ] in which Rmax(T') must lie.

Moreover, in each instance it follows that min(B) > a 1 and that Rmax(B) > 1 - a 2. For each (a 1 , a 2 ]

pair, an examination of the "relevant" entries in Table 4.2, shows that W2 (B) 2 1 in all instances. A

guide to the "relevant" entries of Table 4.2 is given in Table 4.3. In Table 4.3, for each of the six

possible values of W2 (T'), we give the values a1 , a 2 , the subsequent lower bounds on min(B) and

Rmax(B) and the entries of Table 4.2 that need to be examined. Note that entries are not listed for

each size of IlI in every case. In particular, for each W2 (T') possibility, only one entry of the form

(1131, min(B), 0) is given. Such an entry implies that W2(13) > 113 W2 (min(B)) > 1. Thus, for any

larger 1131, we also have W2(B) > 1.

For example, when W 2(T') = 25/100, Rmax(T') E (.182, .204]. Thus, min(B) > .182 and
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Table 4.2

IBI min(B) Rma,,x(B) IBI min(B) Rma,,x(B) IBI min(B) Rmax(B )

2 0 .750 4 0 .820 7 0 .868
2 .250 .704 4 .136 .818 7 .092 0
2 .296 .682 4 .182 0

8 0 .870
3 0 .818 5 0 .864 8 .092 0
3 .182 .750 5 .136 0
3 .250 0 9 0 .872

6 0 .866 9 .092 0
6 .092 .862
6 .136 0 10 0 0

An entry (i, x, y) in this table is interpreted as follows: If B is a set of tasks such that
IBI = i, min(B) > x, and Rmax(B) > y, then W 2 (B ) > 1.

min(B)>

.092

.136

.182

.204

.250

.296

Tabl

Rmax(B)>

.864

.818

.796

.750

.704

.682

e 4.3

Relevant Entries

(2, 0, .750), (3, 0, .818), (4, 0, .820), (5, 0, .864),
(6, .092, .862), (7, .092, 0)

(2, 0, .750), (3, 0, .818), (4, .136, .818), (5, .136, 0)

(2,0, .750), (3, .182, .750), (4, .182, 0)

(2, 0, .750), (3, .182, .750), (4, .182, 0)

(2, .250, .704), (3, .250, 0)

(2, .296, .682), (3, .250, 0)

W2(T')

15/100

20/100

25/100

30/100

40/100

45/100

(a 19a2 )

(.092, .136]

(.136, .182]

(.182, .204]

(.204, .2501

(.250, .2961

(.296, .318]



- 61 -

Figure 4.3: MACSYMA program used to verify the values in Table 4.2.

The function CALC takes three inputs: B, MINB, and RMAXB, and computes the minimum total
weight of the tasks in a time unit where:

B is the number of tasks in the time unit

MINB is a lower bound on the resource requirement of each task in the time unit.
That is, for each task T, Rmax(T) > MINB.

RMAXB is alower bound on the total resource requirement of all the tasks in the
time unit. That is, Rmax(B) > RMAXB.

CALC finds the minimum total weight by doing an exhaustive search of the possible values for the
resource requirements of the tasks in the time unit. For convenience, weights are multiplied by 100 and
resource requirements are multiplied by 1000.

Sample ouput of the program is: CALC(2, 296, 682)$ (input to MACSYMA)

2 296 682 100 (MACSYMA output - the fourth
value is the minimum weight)

CALC(B, MINB, RMAXB): =(MINWT: 100,
FOR J FROM 0 THRU 9 DO

(IF MINB = RESj THEN BOT: J+ 1),
HELPCALC(B, 0, 0),
PRINT(B, MINB, RMAXB, MINWT))

HELPCALC(COUNT, CURWT, CURRES) :=
IF COUNT = 0

THEN (IF CURWT < MINWT AND CURRES > RMAXB
THEN MINWT: CURWT),

ELSE (IF CURWT + WTSBoT * COUNT < MINWT
THEN FOR I FROM BOT THRU 10 DO

HELPCALC(COUNT- 1, CURWT + WTSI,

The values of the WTS and RES arrays are as follows:

0 1 2 3 4 5 6 7 8

CURRRES +RESI))

9 10

0 10 15 20 25 30 40 45 50 55 60

0 92 136 182 204 250 296 318 364 408 500

WTS

RES

I



- 62-

Rmax(B) > 1 - .204 = .796. If IBI > 4, it follows from IBI and min(B) > .182 that W2 (B) 4

W2 (min(B)) > 4 (25/100) = 1. If IBI < 4, the entries (2, 0, .750) and (3, .182, .750) in Table 4.2

indicate that W2(B) 2 1. 0

4.2.3.4.3 The third weighting function

Definition: W3(a) = (6/5)a if a E [0, 1/6]

(9/5)a - 1/10 if a E (1/6,1/3]

(6/5)a + 1/10 if a E (1/3,1/2]

(6/5)a + 4/10 if a E (1/2, 1]

This is the weighting function defined in Garcy, etal.[GGJY]. In that paper the following corollary and

lemma about W3 are proven.

Corollary 4.3: Given a set of tasks Y C T, then W3(Y) < 17s'OPT/10.

Lemma 4.6: Given 0 < a < 1/2, and a set of tasks B = {T1, ... , Tn} with n 2> 2, such that Rmax(TI) >

Rmax(T2) > a and a 1 - Rmax(B), then W3(B) > 1.

A straight-forward consequence of Lemma 4.6 and the definition of W 3 (used to handle BI = 1 and

Rmax(T' ) > 1/2) is that W3 has Property A, hence:

Lemma 4.7: Weighting function W 3 has Property B.

4.2.3.5 The main result

In this section we complete the proof of the upper bound. Assume that a UET task system with

continuous resources S = (T, <, m, s> is given. Let CPATH be a set containing the time units of a critical

path schedule and let OPT be a set containing the time units of an optimal schedule for this system. As

usual, we also let CPATH and OPT be the lengths of these schedules when appropriate. The time units

in CPATH are partitioned into tihe following three sets:

P = {B1i E CPATH: (Vj > i)[level(Bi) > level(Bj)]}

F = {Bi E CPATI : IBil = m and Bi P}

H = {Bi E CPATH: Bil < imand Bi P}
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The time units in P are path time units, those in F arc full time units, and those in H are resource time

units. Clearly, CPATH = IPJ + IFI + IHI.

Let Q = {T E T: T E Bi and Bi E H} (i.e. Q consists of all tasks executing in resource time units of

CPATH). Clearly, PI < OPT and IF < OPT - IPl/m - IQl/m. The number of resource time units IHI,

can be bounded by use of the following lemma (adapted from a lemma given by Garey, et.al.[GGJYJ).

Lemma 4.8: If W is a weighting function which has Property B, then there exists a set of tasks Q' C T

with IQ'I = IQI such that IHI < W(Q ').

Proof

Assume that W is a weighting function which has Property B. Let k be the maximum level of any task

in T. For each level 1, 1 < I < k, there is one time unit Bi E P with level(BI) = L Let T, be any task

in B1 with level(TI) = L Moreover, for each level 1, 1 < I < k, define the following two sets:

AI = {Bi E H: level(Bi) = }

LI = {T: level(T) = I and (3B i E A)[T E Bi]} U {TI}.

Thus, Al contains all of the resource time units where the highest level of any task executing in the

time unit is L Likewise, L contains task TI and all level I tasks executing in a resource time unit

where tile highest level of any task executing in the time unit is 1. Figure 4.4 shows the

correspondence between L.l , T1 and At

Consider any set AP We claim that there exists a task XIE I such that W(LI - {Xi}) >2 A{.

If A/ = 0 then the result is immediate, so assume that IA/[ > 1. Iet B .... lA be the time

units in Al. For each Bi E A, let B i = Bi n -1 . There is one Bi for each Bi, and each B i

IAl+l 
contains at least one task. Also, let 1B A+l = {TI}. Notethat Ui= 1 Bi = L. Moreover,

each B i contains only level I tasks.

Now consider any Bj and B i, with j < i. Let T be any task in B i. When T was scheduled, all

tasks with levels larger than I must have already been scheduled in time units prior to B.
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Figure 4.4: An example of the sets Al and L, and the task T

Assume that B8 has a level of I and is a path time unit. This means that the task in B8 of the highest
level has level 1, and that all tasks executing in time units after B8 have levels less than I.

Some number of time units immediately preceding B8 also have a level of I. Assume that these are time
units B4, B5, B6, and B7. The set Alconsists of these 4 time units. The set Llconsists of all of the level I
tasks which execute in these 4 time units, along with task T1.

AI = {B4, B5, B6, B7} level(B i) = I for i = 4, 5, 6, 7, 8

B8 is B l in this instance

*jB4

/ 
-~' tasks of levels other than I

B4, B5, B6 and B7 are resource time units and B8 is a path time unit

Ll = {T: level(T) = I and T is in a time unit in Al} U TI}

The tasks in the non-shaded portions of B4 , Bs, B6, B7 and B8 are the tasks in Li.
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Moreover, the only tasks already scheduled in time unit Bj were level I tasks. Thus, T was not

scheduled to execute in B due solely to resource constraints imposed by the level I tasks in B.

This means that for T E Bi , Rmax(T) > 1- Rmax(Bj ) for all j < i. Thus, the Bj s form a set of

time units for which the conditions given in the definition of Property B hold. Then, since

weighting function W has Property B, there exists a task XI E Ll (since Ll = U i = 1 B i ) such

that W(LI - {X})! 2 IA/, and the claim is proved. 0

Finally, let Q' = (Q U {T1 : 1 < I < k}) -{X: 1 <I < k}. Clearly, IQ'I = IQI.

' I = .=1 iIA <ZI= 1W(Li- {X}) < W(Q'), since U= 1 (Li- {X })CQ'. 

From Lemma 4.8, it follows that given a particular weighting function W* which has Property B, there

exists a set of tasks Q' C Tsuch that IQ' I = IQI and HI < W*(Q' ).

Thus, CPATH = IPi + IFI + HI < IPI + (OPT-IPI/m-lQl/m) + W*(Q'), and with a reordering of

terms,

CPATH < OPT + IPi(l-l/m) - IQI/m + W*(Q'). (II)

There are six cases to consider based on the relative values of s and m.

Case 1:2 < m < s + 1

Then CPATH < m OPT since at least one task must execute during each time unit of CPATH.

Case 2: s+ 1 < m < 2s+ 1

Iet W1 be the weighting function W*. By Corollary 4.1, W 1 (Q') < [IQ'I+sOPT/2 =

[IQI+sOPT]/2. Thus from (11), CPATH < OPT + IPI(1-1/m)- IQI/m + [IQI+s-OPli/2 = (1 +

s/2)OPT + IPj(1-1/m) + JQi[1/2 - /m]. But, 1/2 - l/m > 0 and IQI < mOPT- - jPI Hence,

CPATH < (+s/2)-oiPr + I(l-l/m) + (OPT- IPI)[1/2 - I/m] = [(s+m)/2)0PO + IPI/2 <

[(s +m + 1)/2]'OP1T, since IPI < oPT.

.'. CPATH/OPT < (s+ m + 1)/2.
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Case3:2s+1 <m<8s/3 + 1

First assume that m > 4. Let W1 be the weighting function W*. Then by Corollary 4.1, W1(Q') <

[IQ' I +4s'OPT]/4. Similarly to Case 2, we derive from (II) that CPATH/OPT < (4s + m + 3)/4.

Now assume that m < 4. The only combination of s and m to lie in this range is s = 1 and m = 3. But,

from Case 2 (since the assumption that m < 2s+1 was not used in that proof), CPATH/OPT <

(s+m+1)/2 = (4s+m+3)/4 when s=1 andm=3.

Case 4:8s/3 + 1 < m < 3s+ 1

First assume that m > 10. Let W2 be the weighting fuinction W*. Then by Corollary 4.2, W2(Q') <

[IQ'I + 14sOPTJ/10. Similarly to Case 2 we derive from (Il) that CPATH/OPT < (14s + m + 9)/10.

Now assume that m < 10. The only combination of s and m to lie in this range is s = 3 and m = 9. But,

from Case 3, CPATH/OPT < (4s+m+ 3)/4 = (14s+m+9)/10 when s= 3 and m=9.

Case 5: 3s+1 < and m > 10

First assume that IQI > 3s'OPT. Let W 3 be the weighting function W*. Then by Corollary 4.3,

W3(Q') < 17sOPT/10. Thus, from (II), CPATH < OPT + IPI(1 - 1/m) - IQl/m + 17sOPT/10.

But -IQI < -3s'OPT and IPI < OPT, so CPATH < OPT + OPT'(1-1/m) - 3s'OPT/m + 17s'OPT/10

= OPTr [ 2 + 17s/10 - (3s + 1)/m].

Now assume that IQI < 3sOPT. Let W2 be the weighting function W*. Then by Corollary 4.2,

W2(Q') < [IQ' +14sOPI/10 = IQI+14sOPT]/10. Thus from (II), CPATH < OPT +

IPI(1-1/m)- IQI/m + [IQ+ 14sOPl'/10 = OPT'[ 1+14s/10] + IPI(1-l/m) + IQI[1/10 - 1/mi. But

1/10 - l/m > 0, IQI < 3s'OPT and IPI < OPT. Hence, CPATH < OPT'Jl + 14s/10] + OPT'(1-1/m)

+ 3sOPTF[1/10 -l/m = OPT-J2 + 17s/10 - (3s+l)/m]. Tus, CPATH/OP' < 2 + 17s/10 -

(3s+ 1)/m.

Case 6: 3s+1 < m and m < 10

First assume that IQI > (8s/3)'OPT. Let W2 be the weighting function W*. hllen, by Corollary 4.2,
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W 2 (Q') < [IQ I + 14sOPT]/10. Similarly to Case 5, we derive from (11) that CPATH/OPT < 2 +

5s/3 - (8s/3 + 1)/m.

Now assume that IQI < (8s/3)OPT. Let W1 be the weighting function W*. Then by Corollary 4.1,

W(Q') < [IQ ' + 4sOPT]/4. Similarly to Case 5, we derive from (II) that CPATH/OPT < 2 +

5s/3 - (8s/3 + 1)/m.

This completes the proof of the upper bound for Theorem 4.1. 0

4.2.4 The lower bound

In this section we prove that the upper bound for CPATH/OPT given in Theorem 4.1 is the best

possible upper bound, completing the proof of that result.

For each possible combination of s and m, we exhibit a UET task system with continuous resources,

S = (T, <, m, s>, a critical path schedule for that system, and an optimal schedule for that system such

that the ratio CPATH/OPT is arbitrarily close to the appropriate upper bound. As in the proof of the

upper bound, there are six cases to consider based on the relationship between s and m. The

constructions that we use in the six cases are similar, but not identical. They make use of task systems

which differ primarily in the resource usages of certain tasks in the system. The overall precedence

structures of these systems are the same, as are the resource usages of several of the tasks. Thus, before

proving each of the lemmas, this general task system structure is introduced. The aspects of the system

which arc the same in all cases are specified. We indicate which parameters will be specified within the

proofs of the individual lemmas. We also sketch optimal and critical path schedules for this general

system. The exact nature of these schedules will, of course, depend upon the values assigned to the

unspecified parameters within the proofs of tile individual lemmas.

4.2.4.1 A general task system structure

Assume that s > 1 and m > 2, with m > s+ 1, are given (in the next section we will indicate how to

handle the case of m < s). Integers x and z are to be specified later, as is e, a positive constant. Consider
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a task system S* with the following tasks:

1. Di for 1 < i < x, such that R1(Di) = e and Rv(Di) = 0 for v 1.

2. B such that R1(B) = 1 and Rv(B) = 0 for v 1.

3. Bi for 1 < i < s, such that Ri(B i) = 1 and Rv(Bi) = O for v iL

4. Ci for 1 < i < s. These tasks require no resources.

5. Aj for 1 < i < s and 1 j z. For v i, R(A) = 0. The usage of resource i by each task

Aj (its Ri-value) will be specified later (it will be a non-zero requirement). Tasks Al, ...

are called Ai-tasks.

This task system has the following precedence constraints:

1. For <i< x-l, Di < Di+ 1. Moreover, Dx < C 1.

2. ForO<i<s-l,Bi<Bi+andB i< Aj+lforl<j.z.

3. For 1< i <s-1 and 1<j < z, A < C i

4. Forli<i s-l, Ci<Ci+l .

The precedence structure of this system is shown in Figure 4.5.

Assuming that the constants x, z and e have been specified, consider the following schedule for S*

(Figure 4.6a): In the first s+l time units execute the B-tasks. In the next x time units execute the

D-tasks on processor m, and execute all of the A-tasks on the other m-1 processors. In the final s time

units execute the C-tasks. Such a schedule has length x + 2s + 1. The assumption that the A-tasks can

all be executed in time units s+2 through x+s+l depends only on the number of A-tasks (which is sz)

and on the resource requirements of the A-tasks - no precedence constraints are involved since after task

Bs executes in time unit s+ 1, all of the A-tasks are available for execution. In each of the results using

this general task system, the value z and the resource requirements of the A-tasks are specified so the

A-tasks can indeed be executed in just x time units on m-1 processors and so the total requirement for

resource 1 during each of those x time units does not exceed 1 - e. This last condition is needed since
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Figure 4.5: The general task system structure used for the lower bounds.

l A 1.A1
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Figure 4.6: Two schedules for the general task system structure
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each of the D-tasks requires e of resource 1.

Now consider the critical path schedule for S* generated from the following list: (D-tasks, Bo, C 1,

Al-tasks, B1, C2, A2 -tasks, ... , Bs 1, C s, A-tasks, Bs). In this schedule, (Figure 4.6b) the D-tasks

execute in the first x time units, then B0 and C 1 execute in the next time unit, followed by the execution

of the Al-tasks. After those tasks have executed, B1 and C2 execute, followed by the execution of the

A2 -tasks, and so on. Eventually, Bs-1 and Cs execute, followed by the execution of the A-tasks. In the

final time unit Bs executes. Assuming that the Ai-tasks are assigned the same resource requirements for

resource i, as the Al-tasks are assigned for resource 1 and that they are scheduled identically to the

Al-tasks, this schedule has length CPATH = x + s + 1 + sG(Al), where G(A 1 ) is the length of the

schedule for the Al-tasks.

In the individual proofs which follow, several things are done. First, the values of x, z and e are

specified, and the remaining resource requirements for the A-tasks are given. We then show that the

A-tasks can be executed on m-1 processors in x time units with the total requirement for resource 1 by

the A-tasks, in each of those x time units, not exceeding 1 - . This establishes that OPT < x + 2s + 1.

The value of G(A 1 ) is then derived by analyzing a particular list schedule for the Al-tasks, establishing

that CPATH > x + s + 1 + sG(Al). The lower bound for the worst case of CPATH/OPT is then

obtained by combining the bounds for OPT and CPATH.

4.2.4.2 The Simple Cases

lIemma 4.9: If 2 < m < s + 1, then CPAITH/OPT can be arbitrarily close to m.

Proof

Assume that there are only m-1 resources. 'lhat is, assume s = m-1. (i.e. in the task system used to

show that the upper bound of m may be approached arbitrarily closely, the tasks require only the first

m-1 resources). The next lemma shows tflhat in this case (i.e. m > s+ 1), that CPATi'-/OPT can be

arbitrarily close to (s+ m + 1)/2. But, ifmrn = s+l, then (s+ m+ 1)/2 = m. 0
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Lemma 4.10: Ifs + 1 < m < 2s + 1 then CPATH/OPT can be arbitrarily close to (s+m+ 1)/2.

Proof

Let c = (m-s-1)/s. Let x be a positive integer such that x = 0 mod 2s, let z = [1 +clx and let e <

1/12. Now consider the task system S* as specified in the previous section, using these values of x, z

and e. The remaining resource requirements of the A-tasks are:

For each i, 1 < i < s,

x of the Ai-tasks have an Ri-value of 1/2 + e

cx of the Ai-tasks have an Ri-value of 1/2 - 2e.

Note that for each i, we have specified resource requirements for exactly x + cx = [1+c]x = z

A'-tasks. As desired, in total there are zs = (m-1)x A-tasks.

As noted in the previous section, OPT < x + 2s + 1 provided all of the A-tasks can be

executed on m-1 processors in just x time units, with the total requirement for resource 1 by the

A-tasks in each time unit not exceeding 1 - e. This can be done by executing the following tasks at

each of those x time units (Figure 4.7a): For each i 1 < i < s, an Ai-task with an Ri-value of 1/2 +

e executes. This utilizes s processors at each time unit. Moreover, for cs = m-s-1 values of i, an

A'-task with an Ri-value of 1/2 - 2e executes. Since m-1 A-tasks execute per time unit, all of the

A-tasks can be executed in x time units. Note that for each i, there are (1-c)x time units in which one

Ai-task executes and there are cx time units in which two Ai-tasks execute. Moreover, the total

requirement for each resource during each time unit does not exceed 1 - e. Therefore, OPT < x + 2s

+ 1.

Also as noted in the previous section, for critical path schedules, CPATH > x + s + 1 +

sG(A), where G(A 1 ) is the length of a particular list schedule (which we are about to specify) for the

Al-tasks. Consider the following schedule for the A1 -tasks (Figure 4.7b): In tile first cx/2 time units

two Al-tasks with R1-values of 1/2 - 2e execute. These time units are followed by x time units in
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Figure 4.7: The schedules used in Lemma 4.11.

1 Al-task

(1+e

(l-c)x

2 Al-tasks

h -2e

cx

a) An optimal schedule -- for each other resource v, AV-tasks execute (in a similar manner) with these
Al-tasks.

2 Al-tasks

h- 2e

h -2e

cx/2

1 Al-task

+e

x

b) The schedule used for G(A 1 ) -- these tasks execute alone.

In each of the above figures, the values inside of the boxes indicate the R1 -values of the the tasks
executing in those time units. The values under the boxes indicate the number of time units where tasks
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which one Al-task with an Rl-value of 1/2 + e executes per time unit. Note that in each of the first

cx/2 tme units the total requirement for resource 1 is 2(1/2 - 2e) = 1 - 4e. During the execution of

these time units the smallest resource requirement of any unexecuted Al-task is 1/2 - 2E, a value

which exceeds 4e. This means that none of the Al-tasks which execute later in the schedule can

execute in these time units. This assures that the schedule we have described here is a valid list

schedule. Thus, G(A1) = cx/2 + x, and CPATH > x + s + 1 + s[cx/2 + x] > x(m+s+ 1)/2.

.'. CPATH/OPT > (x(m +s+ 1)/2)/(x + 2s+ 1)

limitx oo0 CPATH/OPT = (m+s+ 1)/2. 0

LTemma 4.11: If 2s + 1 < m < 8s/3 + 1, then CPATH/OPT can be arbitrarily close to (4s+m+3)/4.

Proof

Let c = (m-2s-1)/s. Note that 0 < c < 2/3. Also, let q = 0 if c < 1/2 and let q = Flog [(1-c)/(2-3c)]1

if c > 1/2. Let x be an integer such that x = 0 mod s2q , let z = [2+c]x, and let Y = 3c- +

(1-c)/2 q -1 . (The origin of Y will be explained a little later in the proof). Let e = E = 1/10q+2

Also, for 1 < k < q, let ek = 10ek_1. Now consider the task system S* using these values of x, z and

e. The remaining resource requirements of the A-tasks are:

For each i, 1 < i < s:

1. (1-c)x of the Ai-tasks have an Ri-valuc of 1/2 + e0

(1-c)x of the Al-tasks have an Ri-value of 1/2 - 2e0 .

2. For 0 < k < q-1,

(1-c)x/2 k of the Ai-tasks have an Ri-value of 1/2 + ek.

(1-c)x/2k of the Ai-tasks have an Ri-value of 1/4 + 2 ek.

(1-c)x/2k of the Ai-tasks have an Ri-value of 1/4 - 4 Ek.

3. Yx of the Ai-tasks have an Ri-value of 1/2 + eq.

Yx of the Ai-tasks have an Ri-value of 1/4 + 2ei-vale of1/4 2q,
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Yx of the Ai-tasks have an Ri-value of 1/4 - 4q.

There are two cases to be considered here:

1. If q = 0, then no tasks are assigned resource requirements in part 2 of the above specifications. In

this instance Y = c.

2. If q > 0, then some tasks are assigned resource requirements in part 2 of the specifications. Note

that Y > 0, since q < 1 + log [(1-c)/(2-3c).

In both cases, resource requirements are specified for exactly z Ai-tasks. The constant Y was chosen

so that this was the case. Intuitively, in part 2 of the specifications, we assign Ri-values to the tasks in

a series of sets of tasks. The number of tasks in each set is one half the number of tasks in the

preceding set. Since there are only [2+c]x = z Ai-tasks, the series must be terminated at an

appropriate point. In this instance, that is after q sets. The value 3Yx is the number of A-tasks

whose R-valu- has not been specified when the series is terminated. These 3Yx tasks are the tasks

assigned Ri-values in part 3 of the specifications.

As before, OPT < x + 2s + 1 provided all of the A-tasks can be executed in x time units with

the total requirement for resource 1 by the A-tasks in each time unit not exceeding 1 - e. This can be

done by executing the following tasks at each of those x time units (Figure 4.8a): For each i, 1 < i <

s, either 2 or 3 A'-tasks execute at each of the x time units. More specifically, for (1-c)s = 3s-m+1

values of i, two Al-tasks execute. They have Ri-values of 1/2 + Eo and 1/2 - 2e 0 . For the other cs

= m-2s-1 values of i three Ai-tasks execute. They have Ri-valuecs of 1/2 + k, 1/4 + 2 k and 1/4 -

4e k , for some k, 0 < k < q. Since at each time unit 2(1-c)s + 3cs = m-1 tasks execute, all of the

A-tasks can be executed in x time units. Note that for each i, there are (1-c)x time units in which two

Ai-tasks execute and there are cx time units in which three Ai-tasks execute. Moreover, since k

e0 = e for 0 < k < q, the total requirement for any resource during each time unit does not exceed

1 - e. Thus, the A-tasks can be executed in just x time units, and O'r < x + 2s + 1.



-76-

Figure 4.8: The schedules used in Lemma 4.12.

2 Al-tasks 3 Al-tasks 3 Al-tasks

(1-c)x (1-c)x/2k Yx
0 < k < q-1

a) An optimal schedule -- for each other resource v, AV-tasks execute (in a similar manner) with these
Al-tasks.

4 Al-tasks 2 Al-tasks

1/4 - 4eo

A - 4

1/4 - 4eo

%A -4o

cx/4 cx

b) The schedule used for G(A 1 ) when q = 0.

4 Al-tasks 4 Al-tasks 3 Al-tasks

h -4eq 1/ -44Eq.1 ' -4e.i

1/4- 4 eq /4 -4eq. 1' -4eq-1

/ -4 eq 1 -4eq 1

Yx (l1-c)/2q1 - 2Y]x/4 Yx

c) The schedule used for G(AI) when q > 0.

(1-2c)x/2

These tasks execute

3 Al-tasks

'h + 2ek

l/ - 4ek. 1

1/4 - 4ek_-1'AE-

(l-c)x/2k (l-c)x

These tasks execute alone.

1 Al-tasks2 Al-tasks

h - 2e0'h - 2%o

x

alone.

2 Al-tasks 1 Al-task

x

Ih + eo

Ii

,�

_



-77 -

For critical path schedules, CPATH > x + s + 1 + sG(A1). There are two cases to consider

based on the value of q (i.e. q = 0 and q > 0).

If q = 0, consider the following schedule for the Al-tasks (Figure 4.8b): In the first cx/4 time

units, four Al-tasks with R 1-values of 1/4 - 4eo execute in each time unit. Next there are cx time

units in which two Al-tasks execute during each time unit. These tasks have Ri-values of 1/2 - 2eo

and 1/4 + 2EO. Thirdly, there are (1-2c)x/2 time units in which two Al-tasks, each with an Ri-value

of 1/2 - 2eo, execute. Finally, there are x time units in which one Al-task with an Ri-value of 1/2 +

e0 executes per time unit. Note that in each of the first cx/4 time units the total requirement for

resource 1 is 4(1/4 - 4e0) = 1 - 16o0 . During the execution of these time units the smallest resource

requirement of any unexecuted Ai-task is 1/4 - 4eo, a value which exceeds 16e. This means that

none of the Al-tasks which execute later in the schedule can execute in these time units. Similar

remarks can be made about each of the other time units in this schedule. This assures that the

schedule we have described here is a valid list schedule. Thus, G(A1 ) = cx/4 + cx + (1-2c)x/2 + x

= [3/2 + c/4]x.

If q > 0, consider the following schedule for the Al-tasks (Figure 4.8c): In the first Yx/4 time

units four Al-tasks with R 1-values of 1/4 - 4q execute in each time unit. Next, there are [(1-c)/2q-1

- 2Y]x/4 time units in which four Al-tasks with R-values of 1/4 - 4 Eq1 execute per time unit (since

q > og[(1-c)/(2-3c)] this quantity is non-negative). In the next Yx time units, three Al-tasks execute

per time unit: these tasks have R1-values of 1/4 + 2q, 1/4 - 4eq 1, and 1/4 - 4q- 1. Similarly, in the

next (1-c)x/2q-1 time units three Al-tasks execute per time unit. These tasks have R1 -values of 1/4

+ 2eq.1, 1/4 - 4 eq.2, and 1/4 - 4 eq-2 Generally, for k, q-1 > k > 1, there are (1-c)x/2k time units

with three Al-tasks executing per time unit. These tasks have R1-valucs of 1/4 + 2 ek, 1/4 - 4 Ek 1,

and 1/4 - 4 k-_1. Following these time units there are (1-c)x time units with two Al-tasks executing

per time unit: These tasks have R 1-values of 1/2 - 2eo and 1/4 + 2o. Finally, there are x time units
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in which one Al-task executes per time unit. Each of these tasks has an R1 -value exceeding 1/2.

Note that in each of the first Yx/4 time units the total requirement for resource 1 is 4(1/4 - 4 Eq) = 1 -

16eq. During the execution of these time units the smallest resource requirement of any unexecuted

Al-task is 1/4 - 4eq, a value which exceeds 16Eq This means that none of the Al-tasks which execute

later in the schedule can execute in these time units. Similar remarks can be made about each of the

other time units in this schedule. This assures that the schedule we have described here is a valid list

schedule. Thus, G(A1) = [Y/4 + ((1-c)/2q-1 - 2Y)/4 + Y + Y + (1-c)/2 k + (1-c) + lx = [3/2

+ c/4]x.

.. In both cases, G(A1 ) = [3/2 + c/4]x and CPATH > x + s + 1 + s[3/2 + c/4]x >

x(4s + m + 3)/4.

.CPATH/OPT > (x[4s + m + 3]/4)/(x + 2s + 1)

limitx oo0 CPATH/OPT = (4s+m+3)/4. O

4.2.4.3 A useful set of independent tasks

In the next two lemmas, we make use of a set of tasks originally described by Johnson,

et.al.[JDUGG]. We have modified this set of tasks slightly to better suit our purposes.

Given some resource (say, resource 1) and an integer y, we will describe a set of 3y - 1 independent

tasks. Each task requires some non-zero portion of the resource. These tasks can be grouped into three

sets of tasks: In the first set all of the tasks have Rl-values of approximately 1/6; in the second set the

tasks have R 1 -values of approximately 1/3; and in the third set the tasks have Rl-values exceeding 1/2.

Within each set the tasks differ slightly in their resource requirements. For instance, in the first set some

of the tasks have resource requirements exceeding 1/6 and some have requirements less than 1/6. There

are y tasks in each of the first two sets and y - 1 tasks in the third.

More formally, assume that an integer y, with y = 0 mod 10 is given. Let 8 be such that 0 < 6 ((

18-Y/10 . Also, let Si = 6 1 8 Y/ 10 - i for 1 < i < y/10. Consider tile following three sets of tasks:



-79 -

1. The first set contains y tasks, Ti. for 0 < j < 9 and 1 < i < y/10. These tasks have the following

resource requirements for 1 < i < y/10:

RI(Ti) = 1/6 + 338i

Ri(T1i) = 1/6- 38i

Rl(Ti) = R(Ti) = 1/6-78i

R(T1i ) = 1/6- 138i

Rl(Ti) = 1/6 + 98i

R 6(T6i) = R(Ti) = R(T8i) = R(Ti ) = 1/6- 2 i

2. The second set contains y tasks, T2 i for 0 j < 9 and 1 < i < y/10. These tasks have the

following resource requirements for 1 < i < y/10:

Rl(T2i) = 1/3 + 468i

R1(T2i) = 1/3- 348i

Rl(2i )R1 (1 (T3i) = 1/3 + 6 i

Ri(T4 i) = 1/3 + 128i

R1(T i) = 1/3 - 108i

Ri(T)i ) = R(Ti) = 1/3 + i

3. The third set contains y - 1 tasks, T3 for 1 < i < y-l. Each task requires 1/2 + 8 of resource 1.

An optimal schedule for these 3y-1 tasks has length y. It consists of time units with the following tasks:

1. For 2 <j < 9 and 1 < i < y/10, a T3-task and Ti and T2

2. For 1 < i < y/10, a T3-task and TIi and 12i

3. For 1 <i (y/10, a 1'3 -task and T1i and Toi + 1

1 24. Tly/10 and T1

Now consider the list (l1 ,9 To, ,T92 /lo T2 y/

T~~/ This lis rui... . .. .tn 10, y/10 . Tlis follows asily from/...T3,y/10 , T...3_j). This list results in a schedule with lngth 17y/10 - 1. This follows easily from
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the results in [JDUGG]. We give an informal description of the schedule here. The schedule has y/5

time units in which 5 tasks from the first set execute per time unit and in which the total resource

requirement in each of the time units exceeds 5/6; y/2 time units in which 2 tasks from the second set

execute per time unit and in which the total resource requirement in each of the time units exceeds 2/3;

and, y - 1 time units in which one task from the third set executes per time unit.

Now assume that y is fixed. Since each task in the system requires a non-zero portion of the

resource, and since (in both of the schedules given above) each time unit has 5 or fewer executing tasks,

there exists a y > 0, such that the resource requirement of every task can be reduced by fly without

changing either of the two schedules. Moreover, this implies that the total resource usage during any

single time unit in these two schedules does not exceed 1 - By.

In the next result, some Ai-tasks are assigned Ri-values in a manner similar to those assigned in

previous lemmas, and some are assigned Ri-values similar to the resource requirements of the J-tasks.

4.2.4.4 The remaining cases

ILemma 4.12: If 8s/3 + 1 < m < 3s + 1, then CPATH/OPT can be arbitrarily close to (14s+m+9)/10.

Proof

Let c = (m-2s-1)/s and let q > 0 be an arbitrary integer. Note that 2/3 < c < 1. Let x = 20s2q1, let z

= [2+c]x - 1 and let Y = 3c-2 + (1-c)/2 q-1. The value Y will serve a purpose in this result similar to

what it served in the previous result. Also similarly to the previous result, let E = << min{ fYx'

1/10 q + 2 } and for 1 < k < q, let k = l0ek_1. Now consider the task system S* using these values

of x, z, and . The remaining resource requirements of the A-tasks are as follows:

For each i, 1 < i < s,

1. (1-c)x of the Ai-tasks have an Ri-value of 1/2 + Eo.

(1-c)x of the Ai-tasks have an Ri-value of 1/2 - 2e 0.

2. For 0 < k q-1,
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(1-c)x/2k of the Ai-tasks have an Ri-value of 1/2 + ek.

(l-c)x/ 2k of the Ai-tasks have an Ri-value of 1/4 + 2 ek .

(1-c)x/2k of the Ai-tasks have an Ri-value of 1/4 - 4ek.

3. 3Yx - 1 of the Ai-tasks are assigned Ri-values equal to the R 1 -values of the tasks in a set of 3Yx - 1

J-tasks. These Ai-tasks will be called type J Ai-tasks.

An optimal schedule for this task system has a similar form for the execution of the A-tasks as

the optimal schedules in the previous lemma. As before, OPT < x + 2s + 1 provided all of the

A-tasks can be executed in x time units on m-1 processors. This can be done by executing the

following tasks at each of those x time units: For (1-c)s = 3s-m + 1 values of i two Ai-tasks execute:

these tasks have Ri-values of 1/2 + e0 and 1/2 - 2eo. For the other cs = m-2s-1 values of i, either:

1. Three Ai-tasks execute having Ri-values of 1/2 + ek, 1/4 + 2ek, and 1/4 - 4ek for some k, 0 < k

<q-1,or

2. Two or three type J tasks execute (as noted in section 4.3, three type J tasks execute in all but one of

these time units).

Note that at each time unit no more than 2(1-c)s + 3cs = m-1 tasks execute. Also, for each i, there

are cx time units in which three Ai-tasks execute and there are (1-c)x time units in which two Ai-tasks

execute. Thus, the A-tasks can be executed in just x time units and the total requirement for any

single resource during each time unit does not exceed 1 - e. Thus, OPT < x + 2s + 1.

The execution of the Al -tasks is also similar to that in the previous lemma. In that lemma (for q

> 0), there were essentially four types of time units: those with 4, 3, 2 or 1 tasks. Let T4, T3, T2 and

T1 designate all of the time units of each type. Each of these types of time units will also occur here.

In addition, in this proof, we have time units where only type J A1 -tasks execute. As indicated in our

discussion in the previous section, there will be three types of time units where type J Al-tasks

execute. These time units contain 5, 2 and 1 tasks, and will be referred to as J5, J2 and J1,
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respectively. The schedule used to derive G(A 1 ) consists all of these time units in the following order:

T4, J5, T3, T2, J2, J1 and T1. That is, first all of the T4 time units execute, then all of the J5 time

units execute, and so on.

More formally, consider the following schedule for the Al-tasks (Figure 4.9): In the first

[(1-c)x/2q-1]/4 time units four Al-tasks, each with an R 1-value of 1/4 - 4 eq-1, execute in each time

unit. Next, there are Yx/5 time units in which five type J tasks execute - as noted in the previous

section, each of these tasks has an R1 -value of approximately 1/6. Next, similarly to the critical path

schedule described in Lemma 4.11, for q-1 k 1, there are (1-c)x/2 k time units with three tasks

executing per time unit. These tasks have R1 -values of 1/4 + 2 ek, 1/4 - 4 Ek.-1 and 1/4 - 4 ek.1.

Following these time units there are (1-c)x time units with two Al-tasks executing per time unit.

These tasks have Rl-values of 1/2 - 2e0 and 1/4 + 2e0 . Next, there are Yx/2 time units with two

type J tasks executing per time unit - as noted in the previous section, these tasks have R1-values of

approximately 1/3. Finally, there are x-l time units in which one Al-task executes per time unit.

Each of these tasks has an R 1-value exceeding 1/2. Note that in each of the first [(1-c)/2q'1]x/4 time

units the total requirement for resource 1 is 4(1/4 - 4q-1) = 1 - 16eq.1. During the execution of

these time units the smallest resource requirement of any unexecuted Ai-task is approximately 1/6

(actually, just a little less than 1/6). But, eq-1 was chosen such that 1/6 >> 1 6 eq_1. This means that

none of the Al-tasks which execute later in the schedule can execute in these time units. Similar

remarks can be made about each of the other time units in this schedule. This assures that the

schedule we have described here is a valid list schedule. Thus, G(A 1 ) = ([(1-c)/2q-1]/4 + Y/5 +

q 1 (1-c)/2k + (1-c) + Y/2 + )x - 1 = [(16+c)/10 - (1-c)/(20 2q-1lx - 1. Hence, CPATH 2> x

+ s + 1 + sx[(16+c)/10 - (1-c)/(20 2 q1)] - s. But, x = 20s2 q-1, so CPATII > x[s(16+c)/10 + 1] -

s2 .

. . CPATH/OPT > (x[s(16+c)/10 + 1] - s2 )/(x + 2s+ 1)
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Figure 4.9: The schedule used for G(A 1 ) in Lemma 4.13.
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limitx oo0 CPATH/OPT > (14s+m+9)/10. 0

Lemma 4.13: If 3s + 1 < m and m > 10, then CPATH/OPT can be arbitrarily close to

2 + 17s/10 - (3s+ 1)/m.

Proof

Let x = 0 mod 10m, let z = 3x - 1 and let e = ix. Consider the task system S* using these

values of x, z and e. For each i 1 < i < s, the Ai-tasks are assigned Ri-values equal to the R 1-values

of the tasks in a set of z J-tasks. In addition to the usual tasks in S* the following tasks are added to

S*:

1. G, a task which requires no resources.

2. Fj for 1 < j < (m-3s-1)x. These tasks require no resources.

3. E with Ri(E) = 1 for 1 <i < s.

The following precedence constraints are also added to the system:

1. For 1 < j < z, A < G.

2. Bs < G, and C s < G.

3. For 1 j < (m-3s-1)x, E < F.

The precedence structure of this task system is shown in Figure 4.10.

An optimal schedule for this system is: In the first s+2 time units execute the B-tasks and task

E. In the next x time units the A-tasks, D-tasks and F-tasks are executed (1 D-task, m-3s-1 F-tasks

and no more than 3s A-tasks per time unit). For each i, there are x-1 time units where three Ai-tasks

execute and there is one time unit where two Ai-tasks execute. In the final s+l time units execute the

C-tasks followed by task G. Thus OPT < s + 2 + x + s + 1 = x + 2s + 3.

Now consider the following critical path schedule: Execute the l)-tasks and tasks B0 and C 1 in

the first x+1 time units. In the next 17x/10 - 1 time units execute the Al-tasks. Then, execute B1

and C2, followed by the A2-tasks in the next 17x/10 - 1 time units, and so on, until Bs executes. Then
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Figure 4.10: The task system used in Lemma 4.14.
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execute E and G. In the final (m-3s-1)x/m time units execute the F-tasks. Thus, CPATH > x + 1 +

17xs/10 + 1 + (m-3s-1)x/m > x[2 + 17s/10 - (3s+ 1)/m].

.'.CPATH/OPT > x[2 + 17s/10 - (3s+ 1)/m]/(x + 2s + 3)

limitx , oo CPATH/OPT = 2 + 17s/10 - (3s+ 1)/m. O

Lemma 4.14: If 3s + 1 < m and m < 10, then CPATH/OPT can be arbitrarily close to

2 + 5s/3 - (8s/3 + 1)/m.

Proof

The task system we describe here combines various aspects of the systems used in Lemmas 4.11

and 4.13. We use the task system structure from Lemma 4.13 (i.e. with the added tasks) and we assign

the A-tasks resource requirements as was done in Lemma 4.11.

More formally, assume s and m are given. Let c E (1/2, 2/3) and let q = rlog[(1-c)/(2-3c)]1.

Let x be an integer such that x = 0 mod sm2q , let z = [2+c]x and let Y = 3c-2 + (1-c)/ 2
q 1. T.et e

= 0 = 1q+2. Also, for 1 < k < q, let ek = l10ekl. Consider the task system S* using these

values of x, z and e.

For each i, 1 < i < s:

1. (1-c)x of the Ai-tasks have an Ri-value of 1/2 + o

(1-c)x of the Ai-tasks have an Ri-value of 1/2 - 2e0 .

2. For 0 < k < q-1,

(1-c)x/2k of the Ai-tasks have an Ri-value of 1/2 + ek.

(1-c)x/ 2 k of the Ai-tasks have an Ri-value of 1/4 + 2 ek.

(1-c)x/2 k of the Ai-tasks have an Ri-value of 1/4 - 4ek.

3. Yx of the Ai-tasks have an Ri-value of 1/2 + e

Yx of the Ai-tasks have an Ri-valuc of 1/4 + 2 eq.

Yx of dle Ai-tasks have an Ri-value of 1/4 - 4eq.
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These are exactly the same specifications for the Ri-values of the Ai-tasks as given in Lemma 4.12.

In addition to the usual tasks in S*, the following tasks are added to S*:

1. G, a task which requires no resources.

2. Fj for 1 < j < (m-[2 +c]s-l)x. These tasks require no resources.

3. E with Ri(E) = 1 for 1 < i < s.

The following precedence constraints are also added to the system:

1. For 1lj <z,A < G.

2. Bs < G, andCs < G.

3. For 1 < j < (m-3s-1)x, E < F.

An optimal schedule for this system is similar to that for the system used in the proof of the

previous lemma. The B-tasks and task E are executed in the first s+2 time units. In the next x time

units the A-tasks, D-tasks and F-tasks are executed. In each of those x time units, [2+c]s A-tasks, 1

D-task and (m-[2+cl-1) F-tasks execute. For each i, there are (1-c)x time units where two Ai-tasks

execute and there are cx time units where three Ai-tasks execute. In the final s time units the C-tasks

are executed. Thus, OPT < x + 2s + 2.

Now consider the following critical path schedule: Execute the D-tasks and tasks Bo and C 1 in

the first x + 1 time units. In the next [3/2 + c/4]x time units execute the Al-tasks (this follows from

the proof of Lemma 4.13, where G(A1) = [3/2 + c/41x). Then execute B1 and C2, followed by the

A2 -tasks in the next [3/2 + c/4]x time units, and so on, until Bs executes. Next execute E and G.

Finally, execute the F-tasks in the final (m-12+cs-1)x/m time units. Thus, CPATH > x + 1 + ([3/2

+ c/4]x + 1)s + 1 + (m-[2+c]s-1)x/m > x[2 + 3s/2 - (2s+ l)/m + cs(1/4 - 1/min)].

.'. CPATH/OyPT 2 x[2 + 3s/2 - (2s+ 1)/m + cs(1/4 - 1/m)/(x + 2s + 2)

limitc - 2/3 CPATH/OYT > x[2 + 5s/3 - (8s/3 + l)/mJ/(x + 2s + 2)

limitx , 0 0 CPATIH/OPT = 2 + 5s/3 - (8s/3 + 1)/m O
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Chapter 5- Critical Path Scheduling- Discrete Resources

In this chapter we study critical path scheduling of UET task systems with discrete resources - both

with and without processor constraints. Unfortunately, there are no results for this problem per se. It is

possible, however, to make some conclusions about this problem based on results for Coffman-Graham

scheduling of UET task systems with 0-1 resources. These are UET task systems with discrete resources

in which each ri = 1 -- that is, there is exactly one unit of each resource, hence a task either requires all of a

resource or none of it. Because Coffinan-Graham schedules are a subclass of the critical path schedules,

any lower bound on CG/OPT for UET task systems with 0-1 resources, is also a lower bound on

CPATH/OPT for UET task systems with discrete resources. This follows because systems with 0-1

resources are a subclass of the systems with discrete resources. Although at first glance, it appears that

any lower bound on CPATH/OPT obtained in this manner would be fairly weak, we will, in fact. (in

section 5.2) be able to use such a lower bound to make some fairly strong statements about critical path

scheduling of UET task systems with discrete resources. Before doing so, however, we present two results

on Coffinan-Graham scheduling of UET task systems with 0-1 resources.

5.1 Coffman-Graham scheduling of systems with 0-1 resources

Coffman-Graham scheduling of UET task systems with 0-1 resources has been studied by Goyal

[Go] for the limited case of one resource. He shows that for m = 2, CG/OPT < 3/2, and that this is the

best possible result. This type of scheduling is also mentioned by Leung [ e]. He conjectures that for

UET task systems with 0-1 resources, Coffman-Graham schedules provide substantially better

performance than do list schedules.

For purposes of comparison, we note that the results of Chapter 3 can be applied to UET task

systems with 0-1 resources giving tile results I.IST/OPT < 1 + s if there is no processor constraint, and

LIST/OPT < minim, (2-1/mn) + s(l-1/m)} if there is a processor constraint. Moreover, both of these
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results are the best possible bounds.

In this section we prove the following two results on Coffman-Graham scheduling of UET task

systems with s 0-1 resources when s > 0:

Theorem 5.1: If m > n (no processor constraint) then CG/OPT < 1 + s. Moreover, this is the best

possible result.

Theorem 5.2: If m > 2 (a processor constraint) then

CG/OPT < m if s> m

m-1/2 if s=m-1

(2-2/m) + s(1-1/m) if s < m- 2

Moreover, this is the best possible result.

These results show that Leung's conjecture about the relationship between Coffman-Graham scheduling

and list scheduling is wrong: Coffmnan-Graham scheduling does not provide substantially better worst

case performance than list scheduling for UET task systems with 0-1 resources. In fact, for systems with

no processor constraints, Coffman-Graham scheduling has exactly the same worst case performance as list

scheduling. We will prove these two theorems, and then, in section 5.2, we will discuss how these results

apply to critical path scheduling of UET task systems with discrete resources.

5.1.1 The upper bounds

I emma 5.1: If m > n (no processor constraint), then CG/OPT < 1 + s.

Proof

This result is trivial because Coffian-Graham schedules are a subclass of list schedules and as noted

above, it follows from 'heorem 3.1, for UE' task systems with 0-1 resources and no processor

constraint that LIST/OPT < 1 + s. 0
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Lemma 5.2: If m > 2 (a processor constraint), then

CG/OPT < m if s>m

m-1/2 if s=m-1

(2-2/m) + s(1-1/m) if s< m-2

5.1.1.1 ProofOutline

We prove the upper bound in two stages. Initially, we show that, given a Coffman-Graham

schedule, some of the tasks can be placed into sets W0, ... , W (called segments) such that given tasks T E

Wi and S E Wi + 1' it must be that T < + S, where < + is the transitive closure of the precedence relation.

This property implies that all the tasks in segment Wi must execute before any of the tasks in Wi+l

execute. This allows us to examine each segment individually, and obtain a worst case bound for the

length of the portion of the Coffinan-Graham schedule where the tasks in the segment execute, to the

length of an optimal schedule for the tasks in the segment. This we do in the second stage of the proof. A

portion of this proof is largely a modification (to accomodate resource tasks) of a proof by Lam and Sethi

[ILS]. In particular, most of the first stage of the proof and the second half of the second stage of the proof

are drawn from their work.

5.1.1.2 Segments

Before beginning, we make the following assumption about how tasks are assigned to processors

when using list schedules (our formal definition did not mention which tasks execute on which

processors). Since we are dealing with UET task systems, this assignment is relatively simple: IfT 1 ....

Tx , with x < m, are the tasks executing in a particular time unit, with LABEl .(T 1 ) > LABE3IT 2 ) > ... >

LABE.L('x), then task Ti executes on processor i. Here LABEl3(Ti) refers to the label assigned to Ti

using the Coffman-Graham labeling algorithm. Note that in the list used to do the scheduling, T 1

appears before T2, which appears before T3, and so on.

Finally, a task T with Rmax(T) = 0 is a non-resource task, and a task T with Rmax(T) > 0 is a
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resource task.

Now consider any Coffman-Graham schedule. As usual, we let CG refer to both the set of time

units comprising the Coffman-Graham schedule and the length of that schedule. As noted above, we will

form sets of tasks called segments. This is done in two stages. First, we form blocks of tasks, and then

combine those blocks to form segments. Blocks are formed from the Coffinan-Graham schedule as

follows:

Definiton: Form blocks Xq, Xq ... X 0 , for some q > 0, as follows:

1. U0 is the task executed on processor one in time unit BCG.

2. For i 2 1, Ui is the task executed on processor one in the maximal time unit B where:

a. A non-resource task executes on processor one in BX.

b. (VT • Ui)[T B = LABEL(T) (< LABEL(Ui 1)l.

3. For q > i 2> 1, Xi. 1 = {T: a(Ui) ( o(T) < (Ui-i) and LABEL(T) > LABEL(Uil.)}

Xq = {T: u(T) < a(Uq) and LAB3EL(T) LABEL(Uq)}

An example is shown in Figure 5.1. Note that not every task belongs to a block - such a task is called an

extra task. The last time unit of each block either contains an extra task or it has an idle processor. Also,

for block X., (Xj) = min{f(T): r e Xj}. That is, (Xj) is the earliest time at which a task of block Xj

executes.

The following lemma about blocks is useful:

Lemma 5.3: For q 2 i > 0, task Ui is a predecessor of each task in block Xi.

Proof

Consider any Ui and block Xi- 1. Three things should be noted:

1. Ui is a non-resource task.

2. Each task in Xil 1 has a label at least as large as LABEIl(Ui.l) .

3. Each task executed in the same time unit as Ui has a label smaller than LABEL(Ui.l).
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Figure 5.1: Example of the division of a Coffman-Grahain schedule into blocks.

Consider a task system with 3 processors and one 0-1 resource. The precedence stnructure is given
below. The numbers are the Coffmnan-Graham labels of the tasks. These numbers will be used to refer
to the tasks. Circled tasks require the resource.
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Schedule: 16 14 ; 13 1 10·
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Blocks are outlined in the above schedule.

Figure 5.2: Example of the division of a Coffman-Graham schedule into segments.

The task system given in Figure 5.1 is used.

Schedule: 16 i 14 13 10 8 5 3-- - - --- --
15 9: 12 1 2

m -i 6 4, 7Time units 5'6 '7 (

Time units I 2 3 4 6 7 8

Segments are outlined in the above schedule.
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Now consider any task T E Xil which has no predecessors in Xi. 1 . Why didn't T execute in the same

time unit as Ui? Because LABEL(T) exceeds the label of each task executing with Ui, and Ui is a

non-resource task, it follows that Ui < T. Thus, Ui is a predecessor of every task in Xil . []

Segments are composed of blocks and a few extra tasks. Specifically, segments W, ... , Wp, for some p 

0, are formed as follows:

1. Initially, let WO = Xq, let i = 0 and letj = q - 1.

2. While j 2 0 do

if (VT E Wi)(VT' e Xj)[T < + T']

then W i is complete

let Wi +l = Xj, let i = i + 1, and letj = j - 1

else let G = {E 4 W i : LABEL(E)> LABEL(Uj) and (3T E Wi)[T < + E}

letW i = Wi U Xj U G and letj = j - 1

3. Let p = i, and Wp is complete.

An example showing segments is given in Figure 5.2. Intuitively, segments are formed from left to right

by combining successive blocks until a block is encountered, all of whose tasks are successors of all the

tasks already in the segment. At this point the segment is complete and a new segment is started. Extra

tasks are added to the segment for accounting purposes which arise in the second stage of the proof.

Extra tasks which are placed into a segment are called latecomers.

Lemma 5.4: ForO < i ( p, ifT Wi and T' E Wi+l then T < + T'.

Proof

Consider any Wi and Wi + 1 for some i, 0 i < p. Assume that segment Wi+ 1 consists of blocks Xc ,

... , Xc k , for some k > 0, along with some latecomers. It follows from the construction of segments,

for each T e Wi and T' Xc, that T < + T'. If k = 0, it also follows that there are no latecomers in

Wi+ 1' so the lemma holds. 'nThus, assume k > 0. From Le.mma 5.3, for all j, c > j > c-k, task Uj



- 94 -

precedes each task in Xj I. Then by transitivity, each task T E Wi, precedes each task in Xc U Xc 1 U

... U Xck. The only other tasks in Wi+ 1 arc latecomers. The first latecomer added to Wi+ is, by

definition, a successor of a task in Xc. Fach subsequent latecomer to Wi + 1 is a successor of either a

task in some block of Wi + or of a latecomer already in W i+ 1. In either case, by transitivity, each T

E W i precedes each latecomer in Wi + 1' O

Because of the preceding lemma, we are free to treat each segment individually with respect to obtaining

an upper bound. That is, because each task in segment W i must execute before any task in Wi+l can

p
execute, we have that OFPT > i =O 0PTi, where OPT is the length of an optimal schedule for the entire

task system, and OPTi is the length of an optimal schedule for a task system consisting of the tasks in Wi,

(and the precedence constraints restricted to those tasks). Moreover, CG = Z:i =o CGi, where CG is the

length of a Coffman-Graham schedule for the entire task system, and CGi is the length of the portion of

the Coffinan-Graham schedule under consideration restricted to the tasks in Wi. The equality follows

because at least one task from each time unit belongs to some segment. In the next section we show that

for each i, 0 < i < p, CGi/OPTi < b, where b depends on the relationship of s and m. It follows that,

given a particular relationship between s and m, CG/OP1' < b. Thus, in the remainder of the proof we

assume that the Coffman-Graham schedule consists of a single segment W. That segment consists of

blocks Xq, ... X0 , and some number of latecomers. We let OPT be an optimal schedule for the tasks in

W.

5.1.1.3 The individual bounds

In this section we complete the proof of the upper bound. As noted previously, m is a trivial upper

bound on CG/Olr. This handles the case of s > m. Moreover, Goyal [Go] has shown that CG/OPT <

3/2 if s= 1 and m = 2, and it has been shown [CG,IS] that CG/OPT' < 2 - 2/m if s=0 and m > 2. Thus,

we assume that s > 1 and m > 3 in the remainder of this proof.

The following lemma about segments is useful:
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Icmma 5.5: If W contains blocks Xq, ... , X0, then there arc at least q latecomers in W.

Proof

We consider the procedure by which segments are formed, and show that each time the

else-clause in step 2 of that procedure is executed, at least one latecomer is added to W. Since the

else-clause is executed for each block added to W (except the first block), the lemma follows.

Assume that blocks Xq, ... , Xj+1 are already in W (along with latecomers) and that there are

tasks T E W and T' Xj such that T < + T' is false. Choose T so that it has no successors in W and

T' so that it has no predecessors in Xj. Let I = IT e Xj: T has no predecessors in Xj}. Clearly, T' E

I. Now consider Uj + 1 By definition Uj + 1 E W. From Lemma 5.3, Uj + 1 is a predecessor of each

task in Xj. It follows from there being no transitive edges in the dag for <, that when labeling Uj + 1

the largest III labels of its successors are the labels of the tasks in I. Now consider task T. By

definition, LABEL(T) > LABEI.(U + 1). Since T has no successors in W, and T < + T' is fals, it

follows that there is a task E W such that LABEL(E) > LABEL(Uj) and (E)< a(Xj). Intuitively,

the first condition holds because LABEL(E) must exceed the label of some task in I, since LABEL(T)

> LABEL(Uj+l). The second condition holds since E is not in Xj. Therefore, each time the

else-clause is executed in the procedure defining segments, at least one latecomer is added to W. 0

5.1.1.3.1 The case s = m - 1

Given a segment W, let a be the number of resource tasks in W and let d be the number of time

units in thie Coffman-Graham schedule having a resource task executing on processor one.

Lemma 5.6: CG < (m OPT + a + 1)/2

Proof

From the constructions of blocks and segments it follows that for each time unit B E CG, not having a

resource task executing on processor one, that one of the following holds:
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1. B is the last time unit in W.

2. B is not the final time unit of any block. This means that there are at least two tasks of W which

are not latecomers and execute in B.

3. B is the final time unit of block Xi, for some i • 0 (i.e. not the last block). This means that at

least one latecomer was placed into W when block Xi 1 was added to W.

Note that there are CG - d time units not having a resource task executing on processor one, and for

only one of these time units can item 1 (above) hold. Thus, d + 2[CG - d - 11 + 1 = 2 CG - d - 1 is a

lower bound on the number of tasks in W. Since m OPT is an upper bound on the number of tasks in

W, we have m OPT > 2 CG - d- 1.

Clearly d = a -k for some k > 0, hence, m OPT > 2 CG - [a - k] - 1.

.. CG < (m OPT + a + 1)/2 - k/2

< (m OPT + a + 1)/2 O

Three corollaries follow directly from the proof of the above lemma:

Corollary 5.1: If a resource task executes on any processor other than processor one, then

CG < (m OPT + a)/2.

Corollary 5.2: If m OPT > 2 CG - d, then CG < (m OPT + a)/2.

Corollary 5.3: If any time unit with a resource task executing on processor one, has a task T E W,

executing on processor two, and T is not a latecomer, then CG < (m OPT + a)/2.

To complete the proof for s = m - 1 there are three cases to consider:

Case 1: A resource task executes on a processor other than processor one.

From Corollary 5.1, it follows that CG/OPT < (m OPTI + a)/(2 OPTr). But a < (m - )OPT', since

there are only m - 1 units of resource available at each time unit of OPT.

CG/OPT < (m OPT + (m - 1) OPT)/(2 OPT)

= m-1/2
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Case 2: Each resource task executes on processor one and a < (m - 1) OPT - 1.

From Lemma 5.6, CG/OPT < (m OPT + a + 1)/(2 OPT)

< (m OPT + (m - 1) OPT)/(2 OPT)

= m- 1/2

Case 3: Each resource task executes on processor one and a = (m - 1) OPT.

These conditions mean that in each time unit of OPT, m - 1 tasks require a resource, and that each

resource task requires exactly one unit of one resource. In particular, consider the first time unit of

OPT. Since m > 3, (hence s > 2), there are at least two resource tasks executing in that time unit.

Let T1 and T2 be two such tasks. In the Coffman-Graham schedule, T1 and T 2 both execute on

processor one. Without loss of generality, assume that T1 executes before T2. There are only three

possible reasons why T2 did not execute with T1 in the Coffman-Graham schedule:

1. Due to processor constraints. That is, when T2 was scheduled, the only reason that it was not

scheduled to execute with T1 , was that the time unit where T1 executes already contained m

tasks. Let T3 be the task which executes on processor two. It follows that LABEL(T 1 ) >

LABEL(T3) > LABEL(T2), and that a(T1) < a(T3) (< (T2). From Lemma 5.3, since T 1 and

T2 have no predecessors in W, it follows that T1 and T2 are in block Xq. Then, from the

definition of blocks, T 3 E Xq, hence T3 E W. Thus, the time unit where T 1 executes has a

resource task executing on processor one and a task T3 e W on processor two. Since T3 is not a

latecomer, from Corollary 5.3, CG < (m OPT + a)/2. As in Case 1, CG/OPT < m -1/2.

2. Due to precedence constraints. That is, some task 1'3 < 1'2 had not executed prior to time unit

a(T 1 ) in the Coffinan-Graham schedule. It follows that LABEL(T 1) > LABE31L('3) >

LAB3EI(T2) and that a(T 1) < o(T 3) < a(T 2 ). As above, it follows that T 3 is in W. But this is

a contradiction, since T3 must execute before T2 in OPT and T2 executes in the first time unit

of OPT.
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3. Due to resource constraints. That is, some task T3 executes in the same time unit of the

Coffman-Graham schedule as T1 and requires the same resource as T2. It follows that

LABEL(T 1) > LABEL(T 3) > LABEL(T 2 ) and that o(T 1) < a(T 3) < a(T 2 ). As above, it

follows that T3 is in W. But this is a contradiction since T3 is a resource task, and it doesn't

execute on processor one.

This completes the proof for the case s = m-1. a

5.1.1.3.2 The case s < m - 2

Given a segment W, the time units of the Coffman-Graham schedule can be partitioned into the

following three sets:

F = {B E CG: IBI = m and (VT E B)[T E W and T is not a latecomers}

H = {B E CG: B ( F and (3T E B)[T e W and T is not a latecomer and T is a resource taskJ}

P = CG-F-H

It follows that for each B E P, either B has an idle processor or there is an extra task in B (this extra task

may or may not be a latecomer). The time units in F are full time units, those in H are resource time units

and those in P are partial time units.

Lemma 5.7: If the first time unit of CG is either a full or resource time unit, then OPT > P + 1.

Proof

Consider the partial time units of W and number them (left to right) from 1 to IPI. For 1 < i < IPI, let

Vi be the task executed on processor one in the time unit immediately following partial time unit i.

I et T* be the task executed on processor one in partial time unit 1. There are two observations to be

made:

1. T1'* < V1. To see that this is so, consider the time unit where T* executes. Since this is a partial

time unit, any extra tasks in this time unit have a label smaller than LABEIL(Vi). Since V1

executes after time unit a(T*), for some task T executing in that time unit, T < V1. Suppose T
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• T*. Since LABEL(T*) > LABEL(), and V1 is the task with the highest label that either T

or T* can precede, it must be that T* V1.,

2. For 1 < j < P - 1, every T E W, such that LABEL(T) > LABEL(Vj), precedes a task R E W,

such that LABEL(R) 2 LABEL(Vj+ ). To see that this is so, consider any task T with

LABEL(T) 2 LABEL(Vj). If T Vj + 1' the claim holds, so assume not. Let T' be the task

executed on processor one in partial time unitj + 1. Similarly to the previous observation, T' <

Vj+ . It follows from LABEL(T) > LABEL(Vj) and LABEL(Vj) > LABEL(T'), that

LABEL(T) > LABEL(T'). Since T' < Vj + 1 and T doesn't, T must precede some task R with

LABEL(R) > LABEL(Vj+ ). All that remains is to show that R E W. If R is in some block

then it is in W, so assume that R is an extra task. If a(R) < (XO), then R is a latecomer to W

(it is added no later than when block X0 is added to W). If a(R) 2 a(Xo) then R E X0, since

Vj + 1 X and LABEL(R) > LABEL(Vj + 1). This is a contradiction since R is an extra task.

Thus, R E W.

From the above two observations, it follows that task T* and every task T E W with LABEL(T) >

LABEL(T*), precedes a chain of at least IPI - 1 tasks (with each task of that chain a member of W).

Now consider the first time unit B1 of W. There are two cases:

Case 1: B1 is a resource time unit.

If some task T E (Bl w ) precedes task T* then T precedes a chain of at least JIP tasks, each

of which is in W, hence OPTr IPI + 1. Thus suppose that there is no such task T. Since

there is either an idle processor or an extra task in B13 (which must have a lower label than T*),

when T* was scheduled there was still room in B1 for it. Since T* couldn't have been

prevented from executing there due to resource constraints (T* requires no resources), there

must exist a task Q such that Q < T*. Moreover, Q E W since T* E W and '1'* is in the first

partial time unit of W (i.e. Q cannot be an extra task). Hence, Q precedes a chain of at least IPI
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tasks, each of which is in W, hence OPT IjPJ + 1.

Case 2: B1 is a full time unit.

Let A1, ... , Am be the tasks executing in B1 . If each Ai has a label exceeding LABEL(T*) then

there are at least m + 1 tasks in W, each preceding a chain of at least PI tasks, each of which is

in W. It follows that OPT 2 JPl+1. Thus assume that for some Ai, LABEL(Ai) (

LABEL(T*). Then, identically to Case 1, there exists a task Q E W, such that Q < T*, hence

OPT > IPI + 1. O

Now we complete the proof of the upper bound for s < m - 2. Note that it follows from previous

arguments, that there are at least m FI + HI + 2 P - 1 tasks in W. Again there are two cases to consider

based on time unit B1 of the Coffman-Graham schedule:

Case 1: B1 is a full or resource time unit.

First note that OPT 2 Hl/s, m OPT > m IFI + HI + 2 PI - 1 and that OPT IPI + 1 (from

Lemma 5.7). Moreover, CG = FI + HI + IPI, so

m CG = [m Fi + IHI + 2 IPI -11 + [(m - 2)(IPI + 1)] + [(m - 1)IHI - m + 3

< m OPT + (m - 2) OPT + (m - )s OPT- (m - 3)

= [2m- 2 + s(m - 1)] OPT - (m - 3)

< 2m - 2 + s(m - 1)] OPT, since m > 3.

.'. CG/OPT < (2 - 2/m) + s(1 - l/m).

Case 2: B1 is a partial time unit.

Since 1 is the first time unit of the schedule, there are no latccomers in B1. Moreover, because it

is a partial time unit, there must either be an extra task or an idle processor in B1, hence JB1 fn W

< m - 1. Since none of the tasks in B131 n W requires a resource, it follows that each task in Xq -

B1 has a predecessor in B1 n W. From Lemma 5.3 and the manner in which latecomers are added

to W, it follows that each task in W - Xq has a predecessor in Xq. Then by transitivity, each task in
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W - B1 has a predecessor in B1 n W. Now consider an optimal schedule for W. Such a schedule

must have an idle processor in its first time unit, since dithe only tasks that can execute there are

those in B1 n W. Thus, m OPT > m jIF + IHI + 2 IPI. From the proof of Lemma 5.7, it follows

that OPT > Pj. Moreover, OPT > IHl/s. Thus,

m CG = m IFI + IHI + 2 IPl] + [(m - 1) IH] + [(m - 2) IPI]

< m OPT + (m - )s OPT + (m - 2) OPT

= [2m- 2 + s(m - 1)] OPT

CG/OPT < (2 - 2/m) + s(1 -1/m) 0

This completes the proof of the upper bound. O

5.1.2 The lower bounds

In this section we prove that the upper bounds given in Theorems 5.1 and 5.2 are the best possible

bounds. We concentrate on proving that tile bound given in Theorem 5.2 - the processor constraint case -

is the best possible result. At the end of the section we indicate how to modify that proof to show that the

upper bound given in Theorem 5.1 - the no processor constraint case - is the best possible result.

Lemma 5.8: If m > 2 (a processor constraint), the upper bound given in Theorem 5.2 is the best possible

result.

The task systems we will use to prove this lower bound will consist of various combinations of the

following two sets of tasks (Figure 5.3):

Definition: An RESz-structure consists of:

1. The following tasks:

Av for 1 < v < s, where Av requires only resource v

Bvj for 1 < v < s, 1 < j < z, where Bvj requires only resource v

Cv for 1 < v < s, where C v requires only resource v
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Figure 5.3: Two useful structures
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2. The following precedence constraints:

Av < Av +i and Cv < C +1 for 1 < v < s-1

Av < B +lj for 1 < v < s-1 and 1 j < z

Bvj < Cv + 1 for 1 < v < s-1 and 1 < j < z

Definition: A PRECxy-structure consists of:

1. The following tasks:

Dj for 1 < j < x, where D. requires no resources
J J

Ejk for x-y < j < x-l, 1 < k < m, where Ejk requires no resources

Fj for 1 < j < x, where Fj requires no resources

2. The following precedence constraints:

Dj < Dj+ 1 andFj < Fj+ 1 for1 <j <x-1

Dj < Ej.lk forx-y-l <j < x-2 and 1< k < m

Ejk <Fj+lfor x-y j < x-l and 1 < k < m

For 1 < v < s, we will refer to tasks B, ... Bvz as By-tasks, and for x-y j < x-1 we will refer to tasks

Ejl ... Ejm as Ej-tasks.

These two structures can be combined by the use of the following precedence relations:

1. RES z < PRECX , means that As < D1

Bsk <Fl forl<k <z

Cs < F1

2. PRECX,y < RESz means that D < A1

Dx < Blk forl < k < z

Fx < C 1

These precedence relations are shown in Figure 5.4.

Now consider possible Coffman-Grahllam labelings of these structures:
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Figure 5.4: Precedence relations between the structures
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Definition:

1. A Coffinan-Graham labeling of a RESz-structure is a bad CG labeling if:

label(Bvk) > label(Av) for 1 < v < s and 1 < k < z

label(Cv) > label(Av) for 1 < v < s

label(Cv) > label(Bvk) for i < v < s and 1 < k < z

2. A Coffman-Graham labeling of a PREC ,y-structure is a bad CG labeling if:

label(Ejk) > label (Dj) for x-y _ j < x-1 and 1 < k < m

label(Fj) > label(Dj) for 1 j < x

label(Fj) > label(Ejk) for x-y < j < x-1 and 1 < k < m

Figure 5.5 shows examples of bad CG labelings.

Proof of Iemma 5.8

Assume that s 1 and m > 2 are given. Let q, x, y and z be integers to be specified later. Consider a

task system S* consisting of q+l RESz-structures: RES, ... , RESq+, and q PRECXy-structures:

PRECX,1 ... , PRECqy Intuitively, we arrange these structures in a stack, alternating

RESz-structures and PRECxy-structures, with a RESz-structure on the top and on the bottom of the

stack (Figure 5.6). Formally, RES < PRECi for 1 < i < q and PREC' < RESi +1 for < i < q.z x,y x,y z

Now consider a Coffman-Graham labeling of S* in which each RESz-structure and each

PRECx,y-structure has a bad CG labeling. To see that such a labeling exists, consider tie point in the

labeling process when labels have been assigned to the tasks in RESi + 1. Assume that this is a bad

CG labeling. Now, PRECi y can have a bad CG labeling only if the labeling algoritlm assigns ax,y

smaller label to Di than it does to Fx But, this is precisely what the labeling algorithm does since

RESi + 1 has a bad CG labeling, hence label(Cj + 1)> label(A + 1) and label(C +1)> labcl(B1 k 1)

for 1 < k < z. A similar observation can be made about a bad CG labeling of RES i, given that

PREC y has already been assigned a bad CG labeling. Thus, a Coffinan-Graham labeling of S* in
x,y
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Figure 5.6: The task system S*
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Figure 5.7: The Coffman-Graham schedule - execution of RESiz and PRECix,y after Cil has executed.
The superscript i is omitted from the tasks.
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which each of the structures has a bad CG labeling does exist.

The initial portion of the list (used to schedule S*) which is formed as a result of this labeling is:

I I 1 4 11 1(CI, BI-tasks, A , C , B-tasks, A, ... , C , B -tasks, A, F Dl, F D F D l F11 1 1· 22"'s 2'"' x-y-l' x-y-l' -y'
El -tasks, ... 1, F F D1 , C2 , ...). Beginning with C 2 the pattern repeats

for RES2 and PREC2 y, then for RES3 and PREC3 y, and so on.z xy) z x,y,

The Coffman-Graham schedule produced from this list is as follows: Execute task C in the

first time unit, followed by the remainder of RESI and task F in the next (z+ 1)s time units (each

Bvk executes alone, since label(Bk) ) label(A) and Al precedes all of the tasks that might execute

1 2with Bvk). In the next x + y time units execute the remainder of PREC1,y and task C1. This consists

of x time units in which two tasks execute per time unit and y time units in which m of the El-tasks

execute per time unit. In the next (z+ 1)s time units execute the remainder of RES2 and task F2. And

so on. The pattern repeats (Figure 5.7) until RESq+ 1 executes in the final (z+ 1)s time units. This

Coffman-Graham schedule has length

CG = 1 + ((z+1)s + x + y)q+ (z+1)s. (I)

Now we want to get an upper bound on the length of an optimal schedule for this system.

There are three cases to consider based on the three parts of the lower bound given in the statement

of Theorem 5.2.

Case 1: s> m

Without loss of generality assume s = m. Let z be an arbitrary integer and let x = y = q = 0. The

task system S* consists just of RESF. From (I), CG = 1 + (z + 1)s = sz + s + 1.

Consider the following schedule for this task system: In the first s time units execute the Al-tasks. In

the next z time units, execute all of the Bl1 -tasks, with s tasks executing per time unit - one task

requiring each resource. Finally, execute the Cl-tasks in the last s time units. This schedule has

length z + 2s, hence OPT < z + 2s.
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.. CG/OPT > (sz + s + 1)/(z + 2s)

limitz 00 CG/OPT 2> s = m.

Cases 2 and 3: s < m-1

Consider the following condition:

Condition 1: For 2 < i < q, if the Di'l-tasks, the Ai-tasks and the tasks in RES' 1 have executed,

then all of the following tasks can be executed in the next z time units: the Bi-tasks, the Di-tasks,

the Ei-l-tasks and the Fi-l-tasks.

Whether or not this condition holds depends upon the relative values of s, m, x, y and z. Also, if the

condition holds nonvacuously (i.e. q > 2), then the following also hold:

1. If the Al-tasks have been executed, then the B1-tasks and Dl-tasks can be executed in just z

time units.

2. If the Dq-tasks, the Aq + '-tasks and the tasks in RESq have been executed, then all of the

following tasks can be executed in the next z time units: the Bq + -tasks, the Eq-tasks and the

Fq-tasks.

Lemma 5.9: Ifs = m-1 and x > 2, with q = x, z = 2x and y = 0, then Condition 1 holds.

Proof

First observe that y = 0 means that there are no Ei-l-tasks for any i-i. The Bi-tasks, Di-tasks and

Fil-tasks can be executed in just z time units as follows (Figure 5.8): In time unit k, execute

tasks Blk., ** B.sk. Since s = m-l, this utilizes m-1 processors in each of the z time units. The

Di-tasks and Fi'l-tasks execute on the unused processor: the Di-tasks executing in the first z/2

(=x) time units and the Fi-l-tasks executing in the second z/2 (=x) time units. 0

I.emma 5.10: Ifs < m-2 and x is an integer such that x > 2 and (x-l) = 0 mod m, with z = x, q = x

and y = (m-s-2)(x-)/m, then Condition 1 holds.
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Figure 5.8: Execution of the tasks - Lemma 5.9.
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Proof

First observe that y is an integer and that there are (m-s-2)(x-1) of the Ei-l-tasks. The Bi-tasks,

Di-tasks, Ei-l-tasks and Fi'l-tasks, can be executed in just z time units as follows (Figure 5.9): In

time unit k, execute tasks Bik,..., Bsk, Dk and Fk. This utilizes s+2 processors, leaving m-s-2

processors at each time unit to execute the Ei'l-tasks on. These tasks are executed in time units 1

thru z-1 (= x-l), with m-s-2 of the Ei'l-tasks executing per time unit. 0

To complete the proof of the lower bound we assume that q, x, y and z are chosen such that

Condition 1 holds. Consider the following schedule for the task system (Figure 5.10): In the first s

time units execute the Al-tasks. Execute the Bl-tasks and D1-tasks in the next z time units. This is

possible since Condition 1 holds. In the next s+ 1 time units execute the Cl-tasks and the A2-tasks.

Now execute the B2-tasks, D2 -tasks, El-tasks and Fl-tasks in the next z time units. This is possible

since Condition 1 holds. In the next s+l1 time units execute the C 2 -tasks and the A3 -tasks. Now

execute the B3 -tasks, D3 -tasks, E2 -tasks and F2 -tasks in the next z time units. And so on. This

pattern continues until the Cq-tasks and Aq+l-tasks execute. Then execute the Bq+l-tasks,

Eq-tasks and Fq-tasks in the next z time units. Again, this is possible since Condition 1 holds.

Finally, execute the Cq+l-tasks in the last s time units. This schedule has length (s+z+l)q + z +

2s. Thus, given s and m, provided q, x, z and y are specified so Condition 1 holds, we have:

OPT < (s+z+1)q + z + 2s. (II)

Case 2- completion: s = m - 1

Let x be an arbitrary integer with q = x, z = 2x and y = 0. By Lemma 5.9, Condition 1 holds,

and from (II), OP' < (s+2x+l)x + 2x + 2s = 2x2 + (s+3)x + 2s. From (I), CG = 1 +

((2x+l)s + x)x + (2x+l)s = (2s+1)x2 + 3sx + s + 1.

.'. limitx X oo CG/OPT = (2s + 1)/2 = s + 1/2 = (m-l) + 1/2 = m- 1/2.
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Case 3 - completion: s < m - 2

Let x be an integer such that x > s and (x-1) = 0 mod m, with z = x, q = x, and y =

(m-s-2)(x-1)/m. By Lemma 5.10, Condition 1 holds, and from (II), OPT < (s + x + 1)x + x + 2s

= 2 + (s+2)x + 2s. From (I), CG = 1 + ((x+l)s + x + (m-s-2)(x-1)/m)x + (x+l)s =

((2-2/m) + s(1-1/m))x2 + (2s - (m-s-2)/m)x + s + 1.

. . limitx ,o CG/OPT > (2 - 2/m) + s(1 -1/m)

This concludes the proof of Lemma 5.8, showing that the bound given in Theorem 5.2 is the best

possible bound. 0

Lemma 5.11: If m > n (no processor constraint) then the upper bound given in Theorem 5.1 is the best

possible upper bound.

Proof

Consider a task system S* as described in the previous proof, with x an integer, x > 2, z=x, q=x and

y=O. It follows from that proof (equation I) that there exists a Coffman-Graham schedule for S* of

length

CG = 1 + ((x + 1)s + x)x + (x + l)s = (s+1)x 2 + 2sx + s + 1.

From the proof of Lemma 5.10, it follows that Condition 1 holds given these values of x, z, q and y.

This in turn implies that equation II given there holds, hence there exists a (optimal) schedule for S*

of length

OPT < (s+x+l)x + x + 2s = x2 + (s+2)x + 2s.

CG/OPT < [(s+ 1)x2 + 2sx + s + 1]/[x2 + (s+2)x + 2s]

limitx --, co CG/OPT = 1 + s 

5.2 The implication for critical path scheduling

Now we consider the implication of the above results for critical path scheduling of UET task

systems with discrete resources. Because Coffinan-Graham scheduling is a subclass of critical path
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scheduling and UET task systems with 0-1 resources are a subclass of UET task systems with discrete

resources, we have the following two lower bound results for UET task systems with discrete resources:

Theorem 5.3: If m > n (no processor constraint) then, in the worst case, CPATH/OPT can be arbitrarily

close to 1 + s.

Theorem 5.4: If m > 2 (a processor constraint) then, in the worst case, CPATH/OPT can be arbitrarily

close to m if s> m

m-1/2 if s=m-1

(2-2/m) + s(1-1/m) if s < m-2

In the remainder of this section we concentrate on critical path scheduling of systems without processor

constraints. Similar remarks apply for critical path scheduling of systems with processor constraints,

except that they are complicated by the fact that the lower bound has three portions.

The result in Theorem 5.3 can be compared to the result of Garey, et.al. [GGJY], for critical path

scheduling of UET task systems with continuous resources. That result is CPATH/OPT < 1 + 17s/10.

If we let f(s, rl, ... , rs) be the best possible worst case bound for critical path scheduling of UET task

systems with discrete resources, we have:

1 + s < fs,rl...,rs) < 1 + 17s/10 (III)

Several remarks can be made about equation III.

First, regardless of the actual values of rl, ... , rs , the function f is essentially a linear function in s.

The values of r1, ... , rs (i.e. the distribution of units of resource among the various resources) are

relatively unimportant in determining the worst case bound on CPATH/OPT. This is in sharp contrast to

the situation for list scheduling of UET task systems with discrete resources. In that instance, the bound

was LIST/OPT < 1 + r where r = S= 1 ri. There, the number of different resources didn't matter at

all - only the total number of units of resource of any kind in the task system.

Second, relatively little additional information about the worst case performance of critical path
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scheduling for UET task systems with resources is to be gained by explicitly obtaining the function f.

That is, the results on the worst case performance of critical path scheduling provided by the continuous

model are going to be relatively close to those provided by the discrete model. These bounds are related

by a constant - both are bounded by linear functions of s. Again this contrasts sharply with the results of

Chapter 3 on list scheduling. In that chapter, we saw that the list scheduling results based on the discrete

model had a much higher information content than those based on the continuous model. Here, they do

not.
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Chalter 6- Overview: UET Results

6.1 Summary

In the past several chapters, we have studied list and critical path scheduling of UET task systems

with resources. The formal model of task systems with resources used in most previous work involving

the analysis of scheduling heuristics for these types of systems, involves continuous resources. That is,

there is one unit of each resource and a task may require any portion of that one unit. We noted that

there are some serious questions about the appropriateness of that model in regard to certain applications.

In particular, the assumption that resources are continuous seems inappropriate for applications where

the available quantities of each resource are small. To try to overcome these perceived shortcomings of

the model with continuous resources, we introduced UET task systems with discrete resources. In that

model, there are a specific number of units of each resource, and a task may require only integral

numbers of those units. Our hope was that performance bounds based on this model with discrete

resources would provide substantially more information than bounds based on the model with

continuous resources. In particular, information about the affect on performance of increasing or

decreasing the available units of resource in the system. Moreover, we noted that depending upon the

particular application, the presence of processor constraints was or was not appropriate. Thus, we

investigated the worst case performance of list and critical path scheduling for four models: those with

discrete or continuous resources and with or without processor constraints. A summary of the major

results now known about these problems is given in Table 6.1. Of the results given there, we note that the

two results for UET task systems with continuous resources and no processor constraints are due to

Garey, t.al. [GGJY], and that the rest of the results are given in this thesis.

Finally, to reiterate the remarks made in the last chapter about the relationship between the models

with discrete and continuous resources, we found that our expectation that bounds based on the model
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Figure 6.1: Summary of the results for UET task systems with resources

T TIT/nPT "PA TT- /nlT

Continuous No [GGJY] [GGIY]
processor
constraint sOPT/2 + s/2 + 1 1+ 17s/10

"almost" best possible best possible

Processor [GGY]
constraint m if 2m<(s+l

min{m, (s + 1)OPT/2+s/2+ 3/2} (s + m + 1)/2 if s+ 1 m <2s+1
(4s + m + 3)/4 if 2s+ 1 m 8s/3 +1

[Yao] (14s + m + 9)/10 if 8s/3 + 1 m 3s+ 1
min{m, 2+ 17s/10-(3s+ )/m if 3s+ 1 m, m 10
(m-1)sOPT/(2m)+ 7(m-1)s/(2m)+ 1) 2+ s/3-(8s/3 + 1)/m if 3s+ 1 r m, m ( 10

best possible

Discrete No l+r >1+s
processor bestpossible
constraint

Processor (2-1/m) + r(1-1/m) 2m if sjm
constraint best possible >m-1/2 ifs = m-1

>(2-27m) + s(1l-/m) ifs K m-2

Unless otherwise noted, each of the above results is an upper bound.
Except where notel, all of these results are given in this thesis.
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with discrete resources would have a much higher information content than bounds based on the model

with continuous resources, was both right and wrong. For list scheduling, this was certainly the case - the

results were particularly strong for the model with discrete resources and were particularly weak for the

model with continuous resources. For critical path scheduling, we found that while bounds based on the

model with discrete resources should have a slightly higher information content than bounds based on the

model with continuous resources, the additional useful information is not nearly as great as for list

scheduling. For this reason, obtaining tight bounds for critical path scheduling of UET task systems with

discrete resources does not appear to be a particularly important problem.

6.2 Open Problems

There are obviously a large number of questions which remain unanswered as a result of this

research. We mention only a few of the problems which we feel are the most important here.

First, is to analyze the worst case performance of other scheduling algorithms with respect to the

task system model with discrete resources. In particular, the performance of the resource decrcasing

algorithm. This is a list scheduling algorithm in which the tasks are ordered in the list according to their

Rmax-values -- tasks with the largest Rmax-values coming first in the list. This algorithm has been

analyzed by Garey, etal. [GGJYJ for UET task systems with continuous resources and no processor

constraints. For that model they show that RDEC/OPT < 1 + 17s/10, and that task systems and

resource decreasing schedules for those systems exist, such that RDEC/OPT > 1 + 1.69s (where

RDEC/OPT is the worst case ratio of the length of a resource decreasing schedule for a task system to the

length of an optimal schedule for that task system). Note that this is the same upper bound as that for

CPA'ITH/Ol ' . An interesting question which might be answered via the model with discrete resources, is

whether or not resource decreasing schedules and critical path schedules are as comparable as they appear

based on the worst case performance bounds for UET task systems with continuous resources and no

processor constraints.
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Second, is to find algorithms which have a worst case performance bound substantially better than

O(s). Consider, for instance, the scheduling of UET task systems with 0-1 resources and no processor

constraints. All of the scheduling alogrithms that we have examined - list, critcal path, Coffman-Graham

- as well as the resource decreasing algorithm (and simple variations of it), have a worst case performance

bound of 1 + s when applied to these systems. An algorithm which had any kind of sublincar (in s) worst

case performance would be a significant advance. Presumably, such an algorithm for UET task systems

with 0-1 resources could be extended to provide a sublinear algorithm for more general UE task systems

with resources - either continuous or discrete.

Third, is the analysis of scheduling algorithms with respect to the model with discrete resources in

other contexts. For instance, in a model with no precedence constraints, but where task execution times

are not restricted. In Chapter 7 we give two results on the worst case performance of list scheduling for

that particular model.
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Chapter 7- Non-UET results

In this chapter we investigate list scheduling of task systems with resources where no precedence

constraints exist and where task execution times are not restricted. As noted previously, this submodel is

one of the two major submodels used to investigate scheduling algorithms. Also as mentioned earlier, we

note that there is not always a list schedule of optimal length for such task systems. Despite that, because

list schedules are intuitively simple and are easy to construct, they provide the basis for most scheduling

algorithms for task systems of the type we study here. In this chapter we deal exclusively with list

scheduling. For comparison purposes, we note that Graham [G66] has shown that if m 2> 2 (a processor

constraint), then LIST/OPT < 2 - 1/m, and that this is the best possible result. We also note that if m >

n (no processor constraint), then LIST/OPT = 1.

7.1 Continuous resources

The only two significant results for list scheduling of task systems with continuous resources and no

precedence constraints, are by Garey and Graham. They show [GG73, GG751 that if m > n (no

processor constraint), then LIST/OPT < 1 + s and, [GG75], if m > 2 (a processor constraint), then

LIST/OPT < min{(m + 1)/2, s+2 - (2s+ 1)/m}. Moreover, they show that both of these bounds are the

best possible.

7.2 Discrete resources

There are no previous results about the scheduling of task systems with discrete resources and no

precedence constraints. In this section we prove the following two results about such systems:

Theorem 7.1: Ifm > n and s= 1, then LIST/OPT < 2 - 1/r 1 . Moreover, this result is the best possible.

Theorem 7.2: If m 2> n, s= 2, and r2 = 1, then LIST/Orl' < 2 - 1/r 1. Moreover, this result is the best

possible.
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7.2.1 Discussion

There are three things to be noted about these results.

First, and most obvious, is that given a system with a single type of resource, the addition of a single

unit of a second type of resource has no affect on the worst case performance of list scheduling. This is

somewhat surprising, and the question arises whether this is a general phenomenon. That is, can single

units of a third resource, a fourth resource, and so on, be added to the system without affecting the worst

case performance of list scheduling? Not surprisingly, the answer is no. Figure 7.1 shows an example of a

system where the addition of a single unit of a third type of resource results in a worst case bound

exceeding 2 - 1/r1.

Second, it is interesting to note that for the special case of r1 = r2 = 1, list schedules are optimal.

As the example in Figure 7.1 shows, this phenomenon does not generalize.

Third, we can compare these results to those for task systems with continuous resources. For

systems with s = 1, the results for continuous resources indicate that LIST/OPT < 2. Our results show

that LIST/OPT < 2 - /r 1. Obviously, for systems with a small number of units of resource, our result

provides a somewhat better indication of the worst case performance of list scheduling. For systems with

s = 2, our results show how significant the difference can be between the discrete and continuous bounds

when small quantities of resources are involved. For example, if r1 = 2 and r2 = 1, our bound shows that

LIST/OPT < 3/2. The bound based on systems with continuous resources is LIST/OPT < 3.

Moreover, if r1 = r2 = 1, then our bound indicates that list scheduling is optimal. Again the bound

based on systems with continuous resources is LIST/OPT < 3.

7.2.2 Upper bounds

In this section we prove the two upper bounds associated with Theorems 7.1 and 7.2. In the next

section we show that those two bounds are the best possible upper bounds.

Note that we can prove both of the upper bounds, merely by proving the upper bound for the case
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Figure 7.1: An observation

Consider a task sytem with 4 tasks and 3 resources:
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of s = 2 and r2 = 1 (Theorem 7.2). From such a proof it follows immediately that the same bound holds

for s = 1 (Theorem 7.1). Similarly, if we show that the upper bound is achievable for the case of s = 1

(Theorem 7.1), then the bound is achievable for the case of s = 2 and r2 = 1 (Theorem 7.2). Before

proving these results, we have the following mathematical fact:

Claim 7.1: If X < D, and B > AC, with A, B, C, D, X all non-negative, then

(X + A)/(CX + B) < (D + A)/(CD + B)

Proof

Assume X < D and B 2> AC. Then B - AC 0, so

(B - AC)X < (B - AC)D

=* BX + ACD < BD + ACX

= CDX + BX + ACD + AB < CDX + BD + ACX + AB

=> (CD + B)(X + A) < (CX + B)(XD + A)

=~ (X + A)/CX B)(D+A)/(CD + B) (D + A)/(CD + B) 

ILemma 7.1: Ifm > n, s=2 and r2 = 1, then LIST/OPT < 2 - 1/r1 .

Proof

Consider any task system with two discrete resources, where r > 1 and r2 =1. Let LIST be any list

schedule for that system. Similarly to an earlier proof, for each time unit B of LIST, we let Ri(B) = I:

Ri(T) summed over all TEB, and Ri(LIST ) = : Ri(B) summed over all time units B in LIST. There

are several cases to consider based on the resource usage in various time units of LIST.

Case 1: In each time unit B of LIST, R 2(B) = 1.

Since r2 = 1, this means that LIST = OPT, hence LIST/OPT = 1 < 2 - 1/r 1.

Case 2: In each time unit B of ILIST, R1 (B) > r1 /2.

Since Ri(B) > r/2, we have R1(B) > (r1 + 1)/2. Illen R1(IST) > (rl + 1)IST/2. But, OPT

> R(LIS')/rl. It follows that OI > [(r1 + 1)IIS'1/21/r1 .
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. LIST/OPT < 2rl/(r1 + 1) = 2 - 2/(r1 + 1) < 2 - /r1 .

Case 3: In some time unit B of LIST, R1 (B) < r1 /2 and R2 (B) = 0.

Let F = {B E LIST: R1(B) < r/2 and R2(B) = 0 and let B* E F, be a time unit such that

RI(B*) = min{R1 (B): B e F}. Let s = max{o(T): T E B*} and let f = max{o(T) + T - 1: T E

B*}. That is, s is the latest starting time of any task in B* and f is the latest finishing time of any

task in B*. Note that at least one task in B* has an execution time at least as large as f - s + 1 (in

particular, each task which finishs at time unit f).

Now consider any time unit Bi , 1 < i < s. There is at least one task T* in B* which did not

execute in Bi (in particular, a task starting at time unit s). Task T* must have been prevented from

executing in Bi by the resource constraints. In particular, since R 2 (T*) = 0, it was prevented from

doing so by the constraint imposed by resource 1. Thus, R 1(Bi) + RI(T*) > rl, hence, R1 (Bi ) +

R 1 (B*) > r1 .

Similarly, consider any time unit Bi, f < i < LIST and any task T E Bi. Task T did not

execute in time unit B1* due to the constraint imposed by resource 1. Thus, R1 (T) + R 1(B*) > rl,

hence, Ri(Bi) + Ri(B*) > r1.

Finally, let d = Ri(B*)

e = min{R1(Bi): 1 < i < s or f( <i < LIST}

x = f-s+ 1

y = LIST-x

As noted earlier, at least one task executes for at least x time units. For each of the x time units, Bi,

s < f, Rl(Bi) > R1 (B*). Also, y = (s - 1) + (LIST -f) and LIST = x + y. Moreover, from

the arguments given above c 2 r - d + 1. he situation is shown in Figure 7.2a.

.'. OPT > maxix, [dx + cy]/rl}

> max{x, [dx + (r1 -d + )y]/rl}.



- 123-

Figure 7.2: Resource usages in a list schedule

Schematic: x time units

R1 (B) > d

(3T)TT 2 x]

a) The situation in case 3.

Schematic:

R(B) > rl - d + 1

x time units

Ri(B) > d
R2(B) = 1

b) The situation in case 4.
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Intuitively, OPT is at least as long as the time it takes to execute any task (and some task has an

execution time of at least x), and is at least as long as a schedule in which resource 1 is fully utilized

at each time unit. There are two subcases to consider:

Subcase 1: x > [dx + (r1 -d + 1)yl/r1

It follows that x > (r - d + )y/(r -d) and that LIST/OPT < (x + y)/x = 1 + y/x. Ifd =

0, then y = 0, hence LIST/OPT = 1, so assume that d > 0. Then, substituting for x,

LIST/OPT < 1 + (rl -d)/(r - d + 1)

= 2 -1/(r 1 - d + 1)

< 2 - 1/r1 since d > 0.

Subcase 2: x < [dx + (r 1 - d + 1)y]/r 1

It follows that x < (r1 - d + 1)y/(r - d) and that LIST/OPT < (x + y)/[dx/r 1 + (r1 - d +

1)y/rl Moreover, since d < r/2, it follows that (r1 -d + 1)/r1 > d/r 1 .

Using Claim 7.1, with A = y, C = d/r 1, B = (r1 - d + 1)y/r1, and D = (r1 - d + 1)y/(r1 - d)

we have

LIST/OPT < [(r - d + 1)y/(r1 - d) + y]/[(d/rl)(r - d + 1)y/(r1 - d) + (r - d + 1)y/r1J

= 2-1/(r1 - d + 1)

< 2 - 1/r 1 since d> 0.

Case 4: In each time unit B of LIST, either R 1(B) > r 1/2 or R2 (B) = 1.

Let F = {B E LIST: R 2 (B) = 1}. Also, let B* E F, be a time unit such that R1 (B*) = min{R 1(B):

B E Fl. Note that Ri(B*) < r/2, since otherwise every B E LIST has R1(B) > r1/2. This was

handled in case 2.

Now consider any time unit Bi preceding B* in LIST such that R2(Bi) = 0. Since R2 (B*) =

1, there is at least one task T* in B* which does not execute in Bi. The reason that it does not

execute in Bi is because of the constraint imposed by resource 1. Thus, R1(Bi) + R 1(T*) > rl,
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hence Ri(B i) + R1(B*) > r1 .

Similarly, consider any time unit Bi following B* such that R2 (Bi) = 0. There must be a task

T in Bi which does not execute in B*. This follows because R1 (B*) < r/2 and r/2 < R(Bi).

The constraint imposed by resource 1 is the reason that T does not execute in B*. Thus, R(IT) +

R1(B*) > rl, so Rl(B i) + Ri(B*) > r1 .

Finally, let d = R1 (B*)

e = min R1(B) : R2(B) = 0}

x = I{B E LIST: R2 (B) = 1}1

y = LIST - x

Note that y = I{B: R2(B) = 0}I and that LIST = x + y. Moreover, by the argument given above,

e > r1 -d + 1. The situation is shown in Figure 7.2b.

.'. OPT 2> max{x, [dx + eyJ/rl}

> max{x, [dx +(rl-d+ 1)yJ/rl}

As in Case 3, it follows that LIST/OPT < 2 - 1/rl. O

7.2.3 Lower bounds

In this section we show:

Lemma 7.2: Ifm > n and s= 1, then the bound LIST/OPT < 2 - 1/rl, is the best possible bound.

Proof

Consider a task system consisting of the following tasks:

1. A, with TA = rl and R1(A) = 1.

2. Bi for 1 < i < rl(r I -1), with TB = and R(Bi) = 1.

There are, of course, no precedence constraints. The system is shown in Figure 7.3a. Consider a

schedule for this system generated from the list: ( B, ... , Brl(rl - 1) A). Such a schedule (Figure

7.3b) consists of r - 1 time units with r B-tasks executing in each time unit, followed by the
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Figure 7.3: The bound is achievable

A: A = rl B 1 · Brl(r-1): T'Bi = 1
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An optimal schedule:

Time units:

c) An optimal schedule
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r length = r
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execution of task A. This requires an additional r time units. Thus, LIST = (r1 - 1) + r = 2r1 - 1.

Now consider a schedule for this task system generated from the list: (A, B1, B2 , ... , Br1(r - )). Such

a schedule (Figure 7.3c) consists of r1 time units. In each time unit, task A is executing on the first

processor, and r - 1 B-tasks are executing on the other processors. Thus, OPT = rl.

.'. LIST/OPT = (2r1 - 1)/r1 = 2 - l/r. 0
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Chapler 8- Concurrent Task Systems

In this chapter we investigate an extension of the basic task system model that was discussed in

Chapter 1. This extension allows tasks to require more than one processor at each step of their execution.

8.1 The model

A task system with concurrency is a system S = <T, <, m, C) where:

1. T = {T1 ... , Tn} is a set of tasks - associated with Ti is a positive integral execution time ri.

2. < is a partial order specifying precedence constraints between the tasks.

3. There are m identical processors.

4. C C {1, 2, ... , m}. The elements of C are degrees of concurrency.

Associated with each task Ti, is a degree of concurrency qi E C. Intuitively, task Ti must execute for Ti

time units, and requires qi processors for each of those time units. Task Ti is said to require Tiqi

processor units to execute. When convenient, we let qX represent the degree of concurrency of task X.

A valid schedule for a task system with concurrency S is a mapping a:T-* (N - {O}) such that:

1. For all I E (N - O0), Q1 < m, where Q = : qi summing over all Ti such that o(Ti) < 1 <

a(Ti) + Ti- 1.

2. If Ti < Tj, then a(Ti) + i - 1 < a(Tj).

As far as performance bounds are concerned, we restrict our attention to list schedules. Intuitively, for

task systems with concurrency, a list schedule is one where, if m - k processors are available, the first

unexecuted task on the list, all of whose predecessors have completed and whose degree of concurrency

does not exceed m - k, is executed. More formally, a task Tj is ready at time I if for every T i such that Ti

<'rT, ('l' i) + Ti -1 < L A list schedule is a valid schedule which is generated as follows:

1. Initially, L is an (ordered) list of the tasks in Tand I is 1.

2. While L is nonempty perform this step
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a. Let k = X qi summed over all Ti ¢ L such that a(Ti) < I < a(Ti) +i ' 1.

b. Let L' be a list of the ready tasks on L at time 1, the tasks in the same order on L' as on L.

c. While L' is nonempty and k < m perform this step

i LetT be the first task on L'.

ii. If qT m - k,

then let a(lT) = , let k = k + qT and remove T from L.

iii. Remove T from L'.

d. Let I = 1 + min {a(Ti) + i - 1 :T i L and a(Ti ) + Ti' 1 }.

Examples of a concurrent task system and a list schedule for that system are given in Figure 8.1.

A task system with concurrency in which all tasks have the same execution time (which is assumed

to be one) is a concurrent UET task system. All of our results are about concurrent UET task systems.

As with the basic UET task system model, no generality is lost by restricting our attention to list

schedules when dealing with concurrent UET task systems, since there is always a list schedule which is

an optimal schedule.

The task systems with concurrency model arises from several sources. A situation where one

processor is to monitor another processor on a particular set of jobs is an example of a task explicitly

requiring more than one processor. Moreover, with the current interest in parallel processing, the

development of algorithms which require several processors to be simultaneously devoted to a single task

seems inevitable. Apart from computer applications, task systems with concurrency model certain

practical situations more precisely than standard task systems. For example, a construction company may

want to allocate its supply of men to complete some system of jobs. 'llThey know the number of men and

the number of hours required to complete each job and are interested in completing the system of jobs as

soon as possible. This problem is naturally modeled as a scheduling problem for a task system with

concurrency.
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Figure 8.1: An example of a task system with concurrency
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As is the case with several other extensions of the standard model a task system with concurrency

can be viewed as a restricted type of task system with resources. That is, given a task system with

concurrency S, consider a task system with one discrete resource and no processor constraint.

Furthermore, suppose there are m (the number of processors in S) units of that resource available and

each task requires a units of the resource where a E C. This restricted type of task system with discrete

resources is equivalent to a task system with concurrency. In as much as this relationship exists, our

results can be viewed as results for this restricted type of task system with resources. However, we feel

that the approach through tile resource model is an unnatural one for the problems we have described

and that the task systems with concurrency approach is more instructive. We know of no results about

task systems with concurrency other than those presented here.

8.2 The complexity of concurrent UET scheduling

In this section we give two NP-completeness results involving concurrent UET task systems. In

subsequent sections other aspects of the problem are examined, based on the probable non-existence of

polynomial time algorithms for finding optimal schedules for such systems.

8.2.1 Arbitrary concurrency, no precedence constraints

Consider the following decision problem:

CONCURRENCY: Given a deadline d', and a concurrent UET task system in which m is arbitrary,

< is empty (i.e. there are no precedence constraints) and C = {1, ... , m}, does there exist a schedule

for the system with length not exceeding d' ?

CONCURRENCY is stated as a decision problem, rather than as an optimization problem, so that it is

easily seen to be in NP. Note that any degree of concurrency up to the number of processors is allowed.

Theorem 8.1: CONCURRENCY is NP-complete.

Proof

Garey and Johnson [GJ79] have noted that the problem of scheduling task systems with arbitrary
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execution times and no precedence constraints to meet a deadline d on p processors is NP-complete.

That problem reduces to CONCURRENCY by exchanging each execution time for an equal degree

of concurrency and letting d' = p and m = d. 0

8.2.2 Bounded concurrency, arbitrary precedence constraints

Consider the following decision problem:

12CONCURRENCY: Given a deadline d', and a concurrent UET task system in which there are 3

processors, <' is arbitrary and C = {1,2}, does there exist a schedule for the system with length not

exceeding d'?

It has been shown by Ullman [U75] that the following problem is NP-complete:

NOIDLE: Given a deadline d, such that n = dm and a UET task system <T, , m> in which m and <

are arbitrary, and T = {T1, ... , Tn}, does there exist a schedule for the system with length not

exceeding d?

Intuitively, NOIDLE asks if the specified task system can be scheduled so that no idle time exists in the

schedule. The remainder of this section is devoted to showing that 12CONCURRENCY is

NP-complete. The reduction given here is an adaptation of a construction developed by Ullman [U76].

Theorem 8.2: 12CONCURRENCY is NP-complete.

Proof

Let a UET task system S = <T, <, m> and a deadline d, such that n = dm, be an instance of

NOIDLE. Consider the following instance of 12CONCURRENCY:

1. Letd' = 2md, andletS' = <T', <',3, {1,2}>.

2. For each task T'i T, there are two tasks T i and T in T'. Each has an execution time of one. Let

qi = 2, q = 1, and T! ' Ti . Moreover, if the relation V < Ti exists in S, then the relation V '

T i is in S'. Call tasks Ti and T reular tasks.

3. There are 2md tasks Xi, for 1 < i < 2md. For each i, 1 < i < 2md - 1, the precedence constraint
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Xi <' Xi+l is in S'. Furthermore, if 0 < (i - 1 mod 2m) < m - 1 then qX = 2, otherwiseqX 

= 1. Call each Xi a contour task.

Note that a schedule for S' meeting the deadline d', can have no idle time, since the schedule for S

meeting deadline d is to have no idle time.

Claim: If a schedule of length d exists for S, then a schedule of length d' exists for S'.

Proof

Consider a schedule of length d for S. Consider any time unit I in that schedule, and let Tl, ....

Tm be the tasks executed in that time unit. Then, in the schedule for S', in time unit 2m(l- 1)+i

execute tasks X2m(l - 1)+i and T, and in time unit 2m(l - 1) +m +i execute tasks X2m( -
I i

1)+m +i and Ti for I < i < m. This produces a schedule for S' in which no idle time exists. All

that remains is to verify that no precedence constraints are violated. Clearly none of the

constraints between the contour tasks are violated and none of the constraints of the form T' < ' T

are violated. Consider any constraint of the form V <' T'. This means that V < T in S, so V is

executed before T in the schedule for S. Then in our constructed schedule for S', V executes

before both T' and T. Hence, none of the precedence constraints is violated and a valid schedule

of length d' exists for S'. 0

Claim: If a schedule of length d' exists for S', then a schedule of length d exists for S.

Proof

Consider a schedule of length d' for S'. Since d' = 2dm, contour task Xi must execute in time

unit i of the schedule. The regular tasks must then execute in the processor units not being used

by the contour tasks. These remaining processor units have a very particular distribution. The

first m time units of the schedule each has one processor unit available for regular tasks, the

second m time units each has two processor units available for regular tasks, the third m time units

each has one processor unit available for regular tasks, and so on. The pattern of m time units
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with one processor unit available and then m time units with two processor units available repeats

itself d times. We will call the ith set of m time units band i. This pattern and the no idle time

observation combine to force the "primed" regular tasks to execute only during time units when

one processor unit is available, and the "unprimed" regular tasks to execute only during time

units when two processor units are available. This is shown in Figure 8.2.

Therefore, the schedule for S is as follows: In time unit I of the schedule, execute the tasks

corresponding to the m (unprimed) regular tasks executed in band 21 of the schedule for S'. This

schedule clearly meets the deadline of d and since each task in Tcorresponds to an unprimed task

in T', each task in T is executed at some time unit of the schedule. All that remains is to verify

that the precedence constraints are not violated. Consider any precedence relation V < T in S.

The relations V < ' T' and T' <' T are in S'. Suppose V and Tr were executed in the same band in

the schedule for S'. Then T' would also be executed in that band. But primed regular tasks

must be executed in bands with only one processor unit available per time unit. Contradiction.

Thus, in the schedule for S', V is executed in some band before the band that T is executed in,

hence V is executed before T in the schedule for S. Therefore, a valid schedule exists for S. 0

Finally, we note that 12CONCURRENCY is obviously in NP, hence it is NP-complete. 0

We conclude this section by noting that by using a straight-forward modification of the contour tasks, it

can be shown that 12CONCURRENCY is NP-complete for any fixed number of processors m > 3.

8.3 Worst case bounds

In this section we show that for concurrent UEr task systems, the ratio of the length of an arbitrary

list schedule for the system to the length of an optimal schedule is bounded above by (2m-r)/(m-r+1),

where r is the maximum degree of concurrency. As noted earlier, when r = 1 these systems become

basic UET task systems. In this instance, our bound becomes 2 - 1/m, which is ile corresponding bound

for basic systems as given by Graham [G66]. In this section we also show that concurrent UET task
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Figure 8.2: The schedule produced by the contour tasks and deadline 2dm.
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systems exist for which the ratio of the length of a list schedule for this system to the length of an optimal

schedule is L(2m-r)/(m-r+ 1)J.

8.3.1 An upper bound

Theorem 8.3: Let S = <T, <, m, C> be a concurrent UET task system where r is the maximum degree of

concurrency in C. Then LIST/OPT < (2m-r)/(m-r+ 1).

Proof

Let OPT be the length of an optimal schedule for S and let LIST be the length of an arbitrary list

schedule for S. First we give a lower bound on the length of an optimal schedule. Let h be the length

of a critical path in the dag for <, and let a = qi such that Ti E T. This is the total number of

processor units required for the actual execution of tasks in T. An optimal schedule must be at least as

long as the length of a critical path for the system and must be at least as long as a schedule with no

idle time for a task system requiring a processor units. Thus, OPT 2> max(h, a/m).

Next we give an upper bound on the length of an arbitrary list schedule. Consider any time unit I

of the schedule which has more than r - 1 idle processors. Because there are at least r idle processors in

that time unit, all unexecuted tasks must be successors of tile tasks executing in that time unit. Let k be

the highest level which has a task executing in time unit I. Since a task is only a predecessor of tasks at

lower levels then the task's own level, time unit I must be the last time unit during which tasks at level

k are executed. Therefore, there are at most h time units in which more than r - 1 processors are idle.

At all other time units at least m-r+l1 processors must be executing tasks. Hence, LIST <

h +(a-h)/(m-r + 1).

. -. IS/OPT < Ih + (a-h)/(m-r+ 1)]/max(h,a/m), which, by a simple case analysis, reduces to

1,ST/OPT' (2m-r)/(m-r+ 1). 0

8.3.2 A lower bound

The remainder of this section is devoted to showing that concurrent UET task systems exist for
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which there are list schedules such that the ratio of the length of the schedule to the length of an optimal

schedule asymptotically approaches L(2m-r)/(m-r+ 1)J. While this is not exactly the bound derived

above, the difference is less than one.

Assume that m, the number of processors, and r, the maximum degree of concurrency are given.

Let n be any positive integer. The following three sets of tasks will be used to construct the desired task

systems:

An A-structure consists of: Tasks Aij for 1 < i < m-r+ 1 and 1 <j < n, whereqA = 1.

A i< j+l for 1<j < n-1 and 1 < i < m-r+l,

A B-structure consists of: An A-structure.

Tasks Bi, for 1 < i < Lm/rJ, with qB= r.

Bi < A 1j for 1 < i < Lm/ri and 1 < j m-r+1.

A C-structure consists of: Tasks Ci , for 1 < i < Lm/rJ, with qCi = r.

Tasks Dj for 1 < j < n, with qD = 1.

C i < D1 for 1 i < Lm/rJ.

These three structures are shown in Figure 8.3.

Next we give the specifications for a task system for which a list schedule with the desired length

relative to an optimal schedule exists. We let b = Lm/(m-r+ 1)J. There are two cases to consider.

Case 1: m/(m-r+ 1) is an integer, hence b = m/(m-r+ 1).

Consider the following task system S = <T, <, m, C, where r is the maximum degree of

concurrency in C. T and < consist of the tasks and associated precedence constraints from one

A-stncture and b-I B-structures. 'Ihis system is shown in Figure 8.4a. The system consists of (b-i)

Lm/rJ independent tasks each with concurrency r, and n(m-r+l)b = nm tasks each with

concurrency 1. Note that these tasks with concurrency 1 form m independent chains of n tasks each,

and that an optimal schedule requires at least n time units after the last task with concurrency r is
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Figure 8.3: Sets of tasks used to construct task systems

1,1

1,2

I

2,2

A2 ,.

A 2,n

Am-r+ 1,1

Am-r+1,2

Am-r+ i,n

a) An A-structure - all of these tasks have concurrency 1

B1iB2 BLm/rJ

A1i 1 Am-r+l. 

I. * 

Am-r+ i,n

b) A B-structure - the B-tasks have concurrency r, and the A-tasks have concurrency 1

C, C2 CLm/rJ

Di

I

I

c) A C-structure - tile C-tasks have concurrency r, and the D-tasks have concurrency 1

I

Al,n



- 139 -

Figure 8.4: A task system and two schedules - case 1
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executed.

The following is an optimal schedule: In the first b-1 time units execute all of the tasks with

concurrency r by executing Lm/rJ tasks with concurrency r at each time unit (and allowing any

processor units not used by those tasks to be used to execute any available tasks with concurrency 1).

Complete the schedule by executing the remaining tasks with concurrency 1 in the final n time units.

The schedule is shown in Figure 8.4b. An optimal schedule thus has length b+n-1. Call this value

OPT.

Now consider the following schedule. In the first n time units execute the tasks in the

A-structure. Then execute the tasks with concurrency r from one of the B-structures, followed by the

tasks in the A-structure associated with that B-structure. This requires n + 1 time units. Continue by

executing the other B-structures, one at a time in the same manner, until all tasks are executed. The

schedule is shown in Figure 8.4c. The length of the schedule is n+(b-1)(n+ 1) = bn+b-1. Call this

value LIST.

.'. LIST/OPT = (bn+b-1)/(n+b-1) and limitn oo0 LIST/OPT = b. Furthermore,

b = m/(m-r+ 1) which is an integer. Thus, b = m/(m-r+ 1)+ L(m-r)/(m-r+ 1)J =

L(m+(m-r))/(m-r+ 1)J = L(2m-r)/(m-r+1)l.

l.. limitn -- 0 LIST/OPT = L(2m-r)/(m-r+ 1)J.

Case 2: m/(m-r+ 1) is not an integer.

Consider the following task system S = <T, <, m, 0C, where r is the maximum degree of concurrency

in C. Tand < consist of the tasks and associated constraints from one A-structurc, b - 1 B-structures

and one C-structure. This is shown in Figure 8.5a. Similarly to Case 1, an optimal schedule first

executes the tasks with concurrency r and then completes the execution of the tasks with concurrency

1. This is shown in Figure 8.5b. An optimal schedule has length OPT = b+n. Also, there is a list

schedule which first executes the tasks in the A-structure, then executes the tasks in each of the
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Figure 8.5: A task system and two schedules - case 2
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B-structures, and finally executes the tasks in the C-structure. This schedule is shown in Figure 8.5c.

It has length LIST = n+b(n+ 1) = n(b+ 1) + b.

.'. LIST/OPT = (n(b+ 1)+b)/(b+n) and limitn , oo LIST/OPT = b+1. But m/(m-r+ 1) is not

an integer. Thus, b+1 = Lm/(m-r+ 1) + = L(m-1)/(m-r+ 1) + 1 =

L((m-l)+(m-r+ I))/(m-r+ l)J = L(2m-r)/(m-r+ 1)J.

'. limitn --, 0 LIST/OPT = L(2m-r)/(m-r+ 1)J. 

8.4 A restricted problem

We examine concurrent UET task systems in which C = {1,2}. As shown earlier, for any fixed

number of processors exceeding 2, the scheduling of such systems is NP-complete. In this section we

give a polynomial time algorithm which produces optimal schedules on two processors. This algorithm is

a modification of the algorithm given by Coffman and Graham [CG] which produces optimal schedules

for basic UET task systems on two processors.

Assume that S = <T, <, m, {1,2}> is a concurrent UET task system. The algorithm is as follows:

1. Add all transitive edges to the dag representing <.

2. Remove all tasks with concurrency two from this system along with any precedence constraints

directly involving them. This yields a basic UET task system (i.e. without concurrency) S' =

<T', <', m>. Call this the underlying system.

3. Remove all transitive edges from the dag representing '.

4. Use the Coffinan-Graham algorithm to produce a list which can be used to schedule S'.

5. Append (in any order) the tasks with concurrency two to the front of the list. This new list can be

used to schedule S.

Essentially, the tasks with concurrency two are removed from the original system, a schedule is found for

the underlying system and then each task with concurrency two is fit into that schedule as soon as all of its

predecessors have been executed.
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Theorem 8.4: The algorithm given above produces optimal schedules for concurrent UET task systems

(in which each task has concurrency 1 or 2) on two processors.

Proof

Suppose the schedule produced by this algorithm is not optimal. Let OPT be an optimal schedule.

Because there are only two processors, if a task with concurrency two is executed at some time unit,

then no other task can be executed at that time unit. This means that the tasks with concurrency two

can be removed from OPT, and the schedule compressed to get a schedule for tfile underlying system.

Two things should be noted about this schedule for the underlying system:

1. It is a valid schedule, since V < ' T in S' if and only if there exists a (possibly empty) sequence

of tasks P1, ..., Pk, such that V < P1 < ... < Pk < T in S,

2. It is necessarily shorter than the schedule produced for the underlying system in step 4 of the

algorithm.

But an optimal schedule for the underlying system results from the list which was produced in step 4,

hence a contradiction. 0
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