COMPUTERIZED SCHEDULING OF INTRAMURAL SPORTS

by

PAUL ALAN ROUSH
#
'

Submitted in Partial Fulfillment
of the Requirements for the
Degree of Bachelor of Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
July, 1982
Signature of Author . . .+ rv o o o o o

Department of Computer Science, July 30, 1982

Certified by . c e ge e e e e e
j . Thesis Supervisor

Accepted by, ors - - < e e e
Chairman, Departmental Committee on Theses

Erchives

§

MASSACHUSETTS s TiTL:

OF TECHNDLOCY

NCY 11982
LIBRARIES

13

TABLE OF CONTENTS

INTRODUCTION

BACKGROUND

PROBLEM STATEMENT

A,
B.
C.
D,

Flexibility Needed
Control Over Scheduling Desired
Managers Not Computer Oriented

Modifiability

GENERAL ALGORITHM

A.l
B.
C.

Mandatory Constraints
Preferential Constraints

Search Strategy

CODE DESCRIPTION

A.
Be

Data Structures
Routines

i) MAIN
ii) COURT_AVAIL

iii) CREATE_SEASON

iv) SCHEDULE
v) DIV_SCHED
vi) TEAM_PAIR

vii) RELAX
viii) PRINTOUT

RESULTS

SUGGESTIONS FOR IMPROVEMENTS

REFERENCES

APPENDICES

Weighting Functions and

Evaluatimn of Optimal Time-Slot

Program Listing
User's Handbook

Saimnple Runs

10

10
11
12
13

14

16
18
19

23

24
29
29
31
33
34
34
40
41
42

44

52

54

55
59
91
99

INTRODUCTION

M.I.T. has a reputation for having one of the nation's finest intra-
mural sports programs. Those who have participated in the program pro-
bably need no convincing on this point., To those who have not, I would
suggest that this well-deserved reputation stems from the fact that any
student can play any sport at any level of competitiveness he desires.
This requires first of all that programs be organized in all sports ge-
nerating sufficient interest, and secondly that therebSrovision made for
an unlimited number of teams in each sport.

Each sport is organized by a student who volunteers to be its manager.
His first task is to draw up a schedule. In the more popular sports this
can involve spreading upwards of 1000 games over many courts and a several
month long season. At best this task is tedious and very time-consuming,
and the prospect of having to deal with it scares away many potential
managers, This has sometimes led to sports being cancelled for lack of
a manager. In other cases, some hearty soul has undertaken the task only
to find that the resulting schedule has enough mistakes in it to necessi-
tate totally redoing it.

This thesis is an attempt to eliminate this major problem in an other-
wise outstanding intramural program, The prospect of having a computer
program to do the tedious part of the scheduling task, should encourage
students to volunteer to be managers. Furthermore, this program is de-
signed to produce a solution of higher quality than could generally be
expected from hand scheduling. Some of the good features of this com-
puter-generated solution include: games played by a single team are

equally spaced throughout the season; each team plays the same number of

games; each team plays a variety of other teams throughout the season
(i.e. there are no situations where two teams play each other over and
over),

Additionally, this program allows the manager considerable power to
"shape" the resulting schedule. It allows him to specify courts that
must be used for certain leagues, or preferentially order the courts; to
specify certain days of the week, or times of day that each league's
games should be played on; and to specify certain days or certain times
at which individual teams are unable to play. This last feature can be
useful in avoiding conflicts between a house picnic and intramurals
played by a team in that house, or it can also be used to avoid conflicts
between games played by the same team in two different sports. Finally,
the program is designed to allow the manager, if he so chooses, to "seed"
the teams in each division. This could be done based on the previous
season's records or however else the manager chooses, The seeding then
results in the strongest teams playing each other toward the end of the
season, with number 1 and 2 squaring off in the final week.

One additional feature that would be nice to add to the program
would be the capability to reschedule rained-out games, leaving the rest
of the schedule fixed. For the time being, though, the manager should
be able to do this by hand without too much trouble. This point aside,

the program should do most of what any manager would want it to, and be

a valuable addition to the intramural program,

BACKGROUND

My interest in this project grew out of four years of very active
participation in the intramural program, I played a number of sports
each year (among them basketball, soccer, football, volleyball, water
pplo, ultimate frisbee, and softball) and drew from this experience a
great respect for the diversity of the intramural program, numerous
hours of enjoyment, and a good understanding of the strengths and weak-
nesses of the program. My knowledge of these strengths and weaknesses
was furthered by serving two terms as my fraternity's athletic chairman,
during which time I attended all of the Intramural Council meetings.

The three major problems I noticed were difficulties in finding managers
and referees for each sport and problems with the schedules that necessi-
tated constant revising during the course of the season., This revising
of schedules resulted in the further problem of teams showing up for
games that didn't exist and failing to show up for games that did, be-
cause thay looked at an outdated schedule, Furthermore, the difficulty -
in finding managers stemmed largely from the fact that potential volun-
teers were scared off by the tedious nature of the scheduling task.
Therefore, I felt that it would be a great boon to the intramural program
to have a computerized scheduling routine that would make the manager's
life easier and get the schedule right the first time.

The major problems I had seen with hand-scheduled seasons were in
the form of teams left off the schedule entirely by the manager's over-
sight, teams who were only scheduled to play a few games (four for in-
stance, when the rest of the teams were playing eight), and pairs of

teams who wound up playing each other repeatedly rather than getting a

chance to play other teams in their division. The typical result of all
of these problems was that the team(s) who had been slighted read over
their copy of the schedule when they got it, noticed the problem (some=
times not until 2 or 3 weeks later), and notified the manager who then
had to overhaul the schedule and send out new, revised copies. Since
these revised schedules sometimes did not solve all the problems or

else created new ones, more revisions were made and mass confusion gene-
rated. It was clear to me that a first schedule lacking these problems
would be greatly appreciated by everyone involved in the sport. Another
problem of a less serious, though still annoying.nature often croppedign
these schedules also. Quite often, teams would play 2 or 3 games in a
week and then not play again for a month or two. I felt that a compu=-
terized scheduling routine could solve all of these problems and remove
the major obstacle to finding volunteers to manage sports. Additiomally,
by making the initial scheduling task less time consuming and eliminating
the need for constant revisions, it would free the manager up to spend
more time looking for referees.

As 1 was thinking about undertaking the generation of such a program
as the basis for my thesis, it came to my attention that Steve Pettinato
had attacked the same project in 1980 for his bachelor's thesis, "A Sport
Scheduling System", I read through his thesis and found that he had dome
a good job of stating the problem and the necessary features a program
must have to produce a reasonable schedule, This high-level analysis
proved useful to me as I decided on the constraints my algorithm should
include and the basic manner in which it should function. If Steve
Pettinato had been able to successfully implement his design, the need

for my work in this area would have been minimal, though my algorithm

e

does expand on his in two significant respects (the capability to specify
days and times that individual teams cannot play, and the capability to
seed the teams). Unfortunately, Pettinato's code lacked many of the fea-
tures that were deemed important in his high-level design. Among these
shortcomings are the following.

First of all, the human interface was weak., This included both unclear
prompt statements and tedious input of data, This second problem was quite
serious since in several places the user was asked to supply a very large
amount of redundant data., As a case in point, the manager is asked to give
the times at which each time-slot starts once for each day of the season,
Since these times should be the same for each day, the user is asked to do
150 times as much typing as necessary for a 150 day season. (i.e. if there
are 8 time slots the user is asked to type in 1200 times rather than the 8
that ate necessary.) Another problem along this line occurred when the code
was unable to successfully schedule a division. 1In this case, all success-
ful scheduling of previous divisions was lost, and the manager had to start
over at square one, beginning with the re-typing of all the court availabilities.

Secondly, the data structures included in the program were insufficient
to adequately describe the season. There was no facility included for chang-
ing court availabilities on the time-slot level, only on the day level. Thus
if a varsity meet was to occupy one of the courts for only one hour, the mana-
ger would have to specify that court as being unavailable that entire day.
Even more important than this, though, was the fact that time=slots available
on a court on a given day were originally specified as a single contiguous
block (i.e. the first and last slot numbers available on that day are request-
ed). This leaves no provision for dealing with a court that is typically open

in the morning, reserved for gym classes in the afternoon, and open again in

the evening.

Finally, and most importantly, there is no provision made for shap-
ing the resulting schedule through manager-defined constraints . The
manager is not allowed to specify preferred days of the week or preferred
times for scheduling games. While the manager may specify preferred
courts, there is no weighting done ~= he simply gives an order in which
to search through the courts. This is somewhat helpful, but the code is
structured so that finding the earliest available time slot is given
higher priority. Thus, if all of the courts but the worst one were
filled at 10:00, and all of the courts were empty for the rest of the
day, the program would schedule the game at 10:00 on the worst court
rather than at 11:00 on the best one., When a manager specifies court
preferences this is not the sort of response he would generally desire.
Additionally, the constraints of when each team is able to play are not
addressed, The days and times during which each team is unable to play
must be avoided when scheduling that team's games. Otherwise, the re-
sulting schedule will be unusable until the manager does major revisions

by hand.

10

PROBLEM STATEMENT

Flexibility Needed

In order for a computerized scheduling routine to be truly useful to
the intramural program, it first of all must have a high degree of flexi~-
bility built in, It must be able to deal with sports like football that
have four or five different levels of competition (A-league for near-
varsity level play, D-league for those who don't even know the rules,
B-league and C-league in between, and sometimes even E-league), less
popular sports such as badminton and table tennis that have perhaps two
or three leagues and 30-40 teams, and sports like basketball that have
150 teams wanting to play. Along with allowing for different numbers
of leagues, it must allow for different numbers of divisions (each team
plays others within its division during the regular season, and division
winners meet in the playoffs) within each league and different numbers
of teams in each division. The season may span many months or just one,
Provision must be made for teams playing more games each in one sport
than ;n another, and furthermore for the fact that often A-league teams
will play more games than B~ or C-league teams will in the same sport,
There may be many courts or fields available or just a few, and these
may each be available at different times of day and different days of.the
week, Further, the games may be scheduled only on weekends, only on week-
days, or throughout the week. Different times may be available for
scheduling games from one sport to the next and even from one day to the
next, and the number of games that can be squeezed into a given time
period varies from one sport to the next as the lengths of the games are
different. Allowance for specifying the values of all of these variables

must be made if the routine is to be useful,

11

Control Over Scheduling_pesired

Generally speaking, it is not sufficient to simply schedule enough
games for each team om various courts at times those courts are availa-
ble., There are normally a large number of criteria by which a manager
judges one day and court and time-slot combination to be more suitable
than another for scheduling a particular game., For instance, there are
usually some courts or fields that are preferable to others and often
only one of them is suitable for A-league play. Two cases in point are
that all A-league basketball games are played in the Rockwell Cage and
all A-league football games are played on the Rugby field. Sometimes
the manager.wants to schedule one league's game on a particular day of
the week and/or a particular time, such as the traditional Sunday evening
A-league basketball games,

The manager also takes into consideration days when a team is unable
to play due to some outside conflict. This conflict might be in the form
of a house picnic for the dormitory or fraternity the team is from or
might be a game in a different sport that many of the team members will
be participating in. As a logical extension of this concept I decided
teams should be allowed to specify times on particular days that they
can't play also, since they might, for instance, have an afternoon picnic
and still be willing to play in the morning.

The manager also likes to have some control over the spacing between
consecutive games of the same team. Generally speaking, it is desirable
to have this spacing be uniform, and as large as possible given the
restriction of fitting all of the team's games into the confines of the

season (for a team playing G games in a season D days long, we would like

12

this spacing to approach g days). As I noted in the background section,
this is one area in which hand-made schedules are usually lacking, but
that is no reason why a computerized system should not tackle the problem,
Another form of control not included when scheduling by hand that I
felt would make a nice addition to this routine is the capability to
seed teams within each division. Quite often, there are teams that are
perennially strong in a given sport and the manager may have a feeling
for the relative strength of various teams prior to the season's start.
In this case, he might desire to input the seedings for these teams and
have the schedule designed so that the strongest teams don't meet until
the end of the season, A program giving the manager all of these forms

of control over the way the games are scheduled would be a very useful

tool,

Managers Not Computer-Oriented

While some intramural managers have considerable experience working
with computers, others have never done any programming, and one cannot
assume that such a manager will be overjoyed at the prospect of using a
computerized scheduling routine. Therefore, if such a program is to be
of any use it must be as "friendly" as possible to the user. This user
friendliness clearly has to be the main goal in the construction of the
program--- if the manager refuses to use the routine it is of no value
at all, To achieve this aim, one thing that is clearly necessary is to
provide very clear prompt statements that explicitly state:the required
input format. Additionally, each required data item should be prompted
for separately rather than asking for a batch of data and expecting the

manager to enter the right number of items in the right order.

RS

13

One would also expect that any manager, whether he feels comfortable
around computers or not, would not be particularly fond of the idea of
spending numerous hours in front of a terminal entering data. Thus, it
is important to write the code so that it requires as little input from
the user as possible, and so that the amount of typing to enter any
particular input is minimized. Finally, it is desirable to give the
manager as good an overview of how to use the program as possible before
he sits down at the terminal. This hopefully will put him more at ease,
and through a little advanced planning allow him to minimize his data
entry mistakes. To help in this respect a user's manual has been in-

cluded as Appendix C.

Modifiability

One final facet of this problem is the need for a modular structure
that will lend itself to future modifications. The previously stated
needs for code that is flexible and offers the manager a great deal of
control over the scheduling constraints necessitate a long program,

Basic principles of good programming call for any large program to be
developed modularly, and without this modular structure the initial
debugging task might have been virtually impossible. In this case, there
are also other good reasons for insisting on a modular structure, Since
the final goal is to provide a service to the intramural program, the
design of the code should take into account the likelihood that someone
will in the future wish to either tinker with the constraints used or

add new ones to expand on the routine's usefulness. In order to make such

modifications possible it is necessary to write the code in a highly

modular fashion,

14

GENERAL ALGORITHM

The first step in deciding on the basic design of the algorithm was
determining what portion of the scheduling problem it should attack. At
one extreme, it could take on every conceivable scheduling scenario and
require the manager only to enter the initial constraint input and any
subsequent considerations that arise and call for modifications, such as
rained out games that need to be rescheduled. On the other extreme it
could be a very simple routine that ignores many of the more subtle
constraints and produces a first-draft schedule that the manager must then
heavily modify., This would presumably still be easier than starting from
scratch, but as long as we're going to use a computer why not have it do
as much of the work as possible? 1 therefore decided to include in my
algorithm the ability to provide all of the flexibility and control
described in the first two parts of the Problem Statement section,

There were two features which I considered including but decided
against. The first was allowing for the scheduling of several sports at
once, and cross-checking to avoid conflicts such as teams from the same
house having football and soccer games scheduled at the same time. This
is traditionally a problem, but I did not feel that parallel scheduling
of several sports was the best answer for the following reasons, First,
it would require a great deal of coordination between the managers of the
sports involved, since the scheduling would need be done at the same time
for each sport (currently, sports played in the same season are scheduled
at times weeks apart from one another =-- the particular time depends on
the manager's whimsy) and in order to cross~check for conflicts the team

listings would have to reflect which house the team is from and what other

15

teams in other sports also contain members of that team, This necessity
of coordinating with other managers would add to each manager's headaches,
when the purpose of this program is to make their lives easier. Secondly,
these additional headaches would be bought at the expense of code that is
more complicated, and therefore more difficult to modify and more expen-
sive to run. Finally, and most importantly, there is a simpler solution.
Since provision is made for each team to specify days and times on which
they cannot play, they simply note those times they are scheduled for
games in one sport, and request not to be scheduled at those times in the
next sport. This has the pleasant quality of diverting some of the re-
sposibility for developing schedule constraints from the manager to the
individual teams, thereby spreading out the work load.

The second feature I decided against including was a capability to
reschedule rained out games without modifying the rest of the schedule.
This would be a valuable feature and probably should be added at some

First of all, it would add some complications
point, My decision to leave this out was based on two observation&AFo
an already complex task, For this reason, I felt a more suitable approach
would be to first get a .basic scheduling routine working, and then add in
rain game rescheduling at a late point., Such adding on of features often
causes problems as the additional code does not mesh well with the original
algorithm, 1In this case, however, the feature to be tacked on is suffi-
ciently disjoint from the main algorithm that there is little need for
smooth integration. Secondly, my feeling was that leaving this feature
out would not greatly lessen the usefulness of the routine, While the
initial scheduling task is tremendously difficult to do by hand, given -

an initial computer-generated schedule, the manager should have no trouble

rescheduling a few individual rained-out games,

16

After deciding on the scope of the algorithm, the next step was to
determine just how to give the user the sort of control discussed in the
problem statement section. To govern the scheduling of each individual
game, a set of constraints were developed. I decided that some of these
constraints should be mandatory and the others should be weighted accord-
ing to their degree of desirability. I will give an overview here of
what sorts of mandatory and preferential constraints were included, For
a more detailed description of how the constraints were implemented, how
the preferential constraints were weighted, and how the set of constraints
were combined to choose the best spot in the schedule to place each game,

see Appendix A,

Mandatory Constraints

The first set of mandatory constraints are simply the days and times
on which each court is available, To minimize the amount of input the
manager must provide, these are entered in the following manner., First
the manager specifies the number of courts and whether the sport will
have games scheduled on weekends, weekdays, or the full week., He then
specifies what time-slots are typically available for each court on each
day of the week. This sample week is then replicated through the length
of the season. The bounds of the season are specified by typing in the
months that it spans, the number of days in each and what day of the
week each month starts on. To deal with the fact that the first and
last months are probably not fully included in the season, the season's
first and last dates are also asked for. Once this basic calendar has
been created, the manager is asked for exceptions to it in the form of

full days that are unavailable (to take care of holidays and such), and

17

times that are unavailable on particular days (this might result from a
varsity contest being played on that court that evening). Provision

is also made for the addition of extra time slots that are not typically
available.

In addition to the court availability constraints, there are also
mandatory timing constraints on a team by team basis., As each division
is scheduled, the manager is asked for full days and blocks of time slots
on particular days on which any of the teams in that division cannot play,

The final mandatory constraint provides for the specification of a
court or set of courts that must be used for games played in a particular
league (this generally is only used for A-league games).

The actual scheduling is done on a division basis. That is to say,
all of the games to be played by teams in one division are scheduled and
then the program moves on to the next division. All of the divisions in
one league will be scheduled and then the routine will move on to the next
league and loop through its divisions, scheduling each of them, The man~
datory court constraints are entered at the league level, and than all
of the divisions within that league are scheduled using those constraints,
The team by team time constraints are entered at the division level and
are reset as the program moves on to the next division. The court avail~-
ability constraints are entered outside of the league loop, as they per-

tain to the entire schedule,

As the program attempts to schedule each game it looks first at those

mandatory constraints to determine what time slots on each court on each
day are feasible places to position that game. (In actuality it is much
more selective than this -- it does not examine all combinations, A

description of which slots are checked for feasibility is given in the

18

"Search" section later in this chapter.) Once the program has come up
with a group of feasible time slots it examines each of them to determine
how well they meet the various preferential constraints and chooses the

one with the best overall "figure of merit."

Preferential Constraints

To allow for subtle shaping of the schedule, there are three areas in
which the manager may specify preferential constraints., These are preferred
courts, preferred days of the week, and preferred time-slots. These items
were designated as desirable rather than mandatory since, generally speak-
ing, it is not as crucial to satisfy them as to satisfy the constraints
that were designated mandatory. There is, nevertheless, provision made
for turning any of these constraints into what are essentially mandatory
requirements by simply giving them a high enough weight. These constraints
will now be discussed one by one with a more detailed description appear=-
ing in Appendix A.

When the manager first enters the court names he is asked to give them
in their default preferential order. No explicit weighting is given at
this point, but this gives the program the order in which to search the
courts in the absence of tighter constraints. Should the manager wish to
change this default ordering for a particular league or heavily favor one
or more of the courts over the others, he can do this when he is specify-
ing constraints for the league, Setting the weights extremely low will
have the effect of simply changing the default preference order, Setting
a court's weight very high will essentialigogizeeﬁgl;:igg{oigfgi 3obetter
idea. The reason that explicitly designating the court as mandatory is

better is that in that case if there is no opening on the given court the

19

manager will be notified of the problem. This preferential court order~-
ing is only foolowed, of course, if no mandatory courts are specified for
the league being scheduled.

Occasionally the manager will want to schedule games in one league
on a particular day of the week, such as the Sunday night A-league bas-
ketball games I mentioned before, To allow for this he is given the
options of specifying both preferred days of the week and preferred time-
slots for each league, The weighting given toc%ﬁ2;5%3¥grences is in the
form of the number of days the manager is willing to postpone the sche-
duling of a game in order to satisfy the given criterion. The result,
then, of specifying a weight of 10 for scheduling on a Sunday, is that

if an open slot is found on Friday the 15th the program will continue - -

searching until the 25th in hopes of finding an open slot that falls on

a Sunday instead.

Search Strategy

As I have previously stated, the scheduling is done on a division by
division basis. The first thing that is done for each division is the
generation of an array of team pairings. Basically this pairings array
can be thought of as containing N blocks, where N is the number of games
that each team is to play. Within a block each team in the division plays
one and only one game, (Actually this is slightly oversimplified -~ for
a fuller description see the write-up on the TEAM_PAIR module in the
"Code Structure" section.) Since the team pairing arrays are designed
to have teams play a different opponent each week, a given team may play

at the end of one block and the start of the next, This being the case,

to meet the goal of equal spacing between a particular team's games it

20

is necessary that the blocks be packed tightly, and that the spacing
between blocks be as wide as possible, As an example of what might happen
otherwise, consider a 3 game season with 2 week long blocks that have no
space between them, In this case, one team might play at the end of the
first and third blocks and start of the second. This team's schedule
would then consist of games on back-to-back days followed by a month
long layoff prior to their final game., Providing widely separated, tight-
ly packed blocks of games is therefore a primary goal in searching for
appropriate times to schedule each game,

One of my concerns in writing this program was to design it in such
a way that it would not cost too much to run. In a sport like basketball
there can be as many as 150 teams playing 8 games each, giving a total
of 600 games to be scheduled. 1In general, there are more time slots made
available than the number of games called for. This padding is necessary
to allow for rescheduling rained out games, and without it the last few
divisions to be scheduled would probably wind up a mess since there would
be essentially no choices about where to schedule games. Even if there
were only as many time slots as games, though, in a 600 game season
there would be 600!, or upwards of 101500, possible schedules., By break-
ing the teams up into 4 to 8 team divisions and scheduling on a division
by division basis, the number of possible arrangements is greatly de-
creased, but is still on the order of 1050. Clearly then, it is not
feasible to search through all possible schedules for the best one, The
routine must methodically eliminate all but a very small fraction of the
possibilities and then evaluate the merit of just these few., It is clear-
ly quite possible that the optimal solution will be among the 99+4% that

were never even evaluated. By being very intelligent about which few

21

combinations it decides to look at, the program can nevertheless be
relatively certain of finding a solution that is quite good. The bottom
line is that the algorithm is déﬁgned so that it settles for a very good
solution rather than looking for a perfect one.

In an attempt to minimize the number of days searched while producing
a schedule having widely separated, tightly packed blocks, I decided on
the following approach. The manager would designate a minimum spacing
between blocks, and then to schedule each block of games in the division,
the program would search only those days which were at least that many
days past the last game in the previous block., While in some cases this
might result in overlooking an excellent choice only one or two days
earlier, it does allow for a significant reduction in searching and in-
sures that blocks do not get too narrow a spacing between them,
From this starting point, the routine searches forward only, and generally
searches for a very limited distance., This is clearly good from the
standpoint of minimizing execution cost, but one might have doubts about
how good a solution such a limited search could make. However, from the
standpoint of providing equal spacing between a team's games the ideal
positioning for the game is right at the point where that search starts
so there is no point in checking days far removed from that spot. In
the absence of preferential constraints the program will in fact choose
the first open slot it finds and schedule the game there. When preferen-
tial constraints are present, the program will search farther in an attempt
to satisfy the given constraints. How much farther is determined by how
heavy a weight the constraints are given. When this longer preference-
seeking search is taking place there is clearly no need to look for open

slots on a day that does not satisfy the constraints in question. There~

22

fore, a preliminary scan of each day is made to determine whether it
even has the potential to improve on the best-fit found prior to that
day. A flowchart diagramming this search process can be found in the
next chapter, in the section discussing the DIV_SCHED routine. For a
more detailed description of how the preferential constraint weights

alter the length of the search, see Appendix A.

23

CODE DESCRIPTION

In this chapter-I will discuss the actual code I wrote to implement
the algorithm described previously, The program was written in PL/1 and
run on M,I.T.'s Multics system. PL/1 was chosen because it is the language
I was most familiar with that had the necessary flexibility of data struc-
turing and bit~handling capabilities. It was important to be able to de-
scribe available time-slots on the court and team levels with single bits
in order to keep the memory requirement reasonable, As a side note, it
should be mentioned that 1 refreshed my memory of PL/1 by taking a look

through Appendix B of Introduction to Structured Programming Using PL/1

and SP/k by Conway, Gries and Wortman. This appendix summarizes PL/1 and
might be helpful to any reader wanting to brush up on the language.

One of the goals mentioned on the Problem Statement chapter was to
keep the code highly modularized, To this end, the code was broken up
into ten modules -~ eight subroutines and two functions. The functioning
of each of these modules will be described later in this chapter. An
overview of the interaction between them, in terms of flow of control and
Passing of data arrays, can be seen from the figure at the start of that
section (Routines seétion). I will now discuss the major data structures
used in the program., Some data structures that are important to the func-
tioning of specific routines but which are not crucial to an understanding
of the program as a whele will be covered in the section discussing the

appropriate routine,

24

Data Structures

The format and function of each of the major data items follows.
Several of these are PL/1 structures with formats too involved to repro-
duce here. In those cases, a mention is made of what portion of the code
the reader can find the appropriate declaration in. Since the data dis-
cussed in this section is that which is most important to the functioning
of the overall code, most of the items are accessible throughout the pro-
gram, For those items whose scope is not the entire program, explicit
mention is given of the outermost block in their scope.

Just as I felt it inappropriate to include complex structure declara-
tions in this section, I also did not desire to write these declaratiomns
over in each routine that was to access them, I especially did not want
to include their format in the argument declarations for the subroutines
they were to be passed to. For this reason, structures that needed to be
widely accessed were declared in "include" files and were allocated space
based on pointers. These pointers were then passed in argument lists
rather than passing the structure itself,

MISC is a structure whose declaration can be found in the STRUCTURES,
INCL include file. It contains a variety of miscellaneous data such as
sport-name, number of leagues, the names of each league and the number of
divisions in each, the number of courts and their names, and the names of
and number of days in each month. Most of this data is entered in the
MAIN routine, with the exception of the court data which is entered in
the COURT_AVAIL routine.

SEASON is another structure whose declaration can be found in the
STRUCTURES include file, It is filled in the CREATE SEASON routine, holds

the number of days in the season, and correlates each season day to the

25

actual calendar. This correlation includes the day of the week, month and
date of each day in the season. The day of the week is stored as a num-
ber (Sunday='1, Saturday= 7, etc.) both because this saves space, and be-
cause this format is more easily used in most parts of the program. Thus
if we wanted to know whether the 12th day of the season fell on a Tuesday,
we would check to see if SEASON,DAY(12). DAY OF WK was equal to 3. The
REL_DATE entry gives the number of actual calendar days from the start of
the season to the day in question. This is used in the search portion of
the scheduling process to give a measure of the actual number of days from
the start of the block to the day being currently checked. The DATE entry
could be used for this were it not for the fact that searches across month
boundaries would then require much unnecessary calculation. The need for
the AVAIL entry can be seen in the discussion of the CREATE_SEASON routine
--basically it notes days that would normally be part of the season but
are unavailable (holidays for instance) by setting this bit to #.

FACAVAIL is a 150 x 10 array of 15-bit entries., The first index
specifies a day by giving its index in the SEASON array. The second index
specifies the court number, The bit string for any day & court combination
gives its availability during each of the time slots. Thus, a 1 in the
3rd bit of FACAVAIL(110, 5) means that the 5th court is available during
the 3rd time slot on the 110th day of the season.

DIVISION is a structure whose declaration can be found in the DIV_DCL
include file, 1Its scope is bounded by the DIV_SCHED routine, and on each
call to DIV_SCHED is filled with data pertaining to that particular divi-
sion. This data includes the number of terms in the division, the number
of games each will play, and a team-number that is unique to that team

through the life of the run. This team number is used to uniquely identify

26

each team in the overall schedule listing by its position in the scheduling
order (i.e. the 34th team scheduled is 34).

PAIRINGS is a 14 x 4 x 2 array of FIXED values whose scope is bound-
ed by the DIV_SCHED routine. It is filled in the TEAM_PAIR routine with
the teams that will meet in each game scheduled for that division., The
first two indices correspond to block number, (if each team plays 6 games
there will be 6 blocks), and game number within that block, respectively,
The third index is either 1 or 2 depending on whether you want to access
the first or second of the teams paired off in that game., The value of each
entry is the team number, This team number is not the same as that contained
within DIVISION, however, this one running from 1 to 8 in an 8 team division.
PAIRINGS(4,3,1) and PAIRINGS(4,3,2) contain the team numbers of the two
teams meeting in game 3 of the 4th block of games, These team numbers
represent the index of the team within the division, From this division-
oriented team number (call it TN) we can obtain the sport-wide number for
the time by taking DIVISION,TEAM NUMBER(TN).

TEAM is a structure whose declaration can be found in DIV_SCHED and
whose scope is bounded by the same, It is filled at the beginning of the
DIV_SCHED routine with the time constraints for each team in that division.
For each day in the season and each team in the division, TEAM contains
a single bit telling whether that team can play on that day, and a bit-
string telling which of the time slots on that day are acceptable to the
team, By putting TEAM in this bit-matrix format (as opposed to a list of
problem times) it became possible to overlay sections of FACAVAIL and TEAM

to quickly determine (using bit-wise ands) just which slots were available

to schedule a particular game,

27

LEAGUE is a structure containing constraints that apply to the league
being schedule at that time, Its 'declaration' can be found in LEAGUE_DCL.
INCL and it is filled with data in the SCHEDULE routine as processing starts
for each new league. It contains information on the mandatory or preferen-
tial courts designated for the league, preferred days of the week and time-
slots, and the minimum number of search-days called for by the weighting
of the given constraints (this is explained in Appendix A). The preferred
time slots are recorded as a list of contiguous blocks of slots each asso-
ciated with a particular day of the week, This allows, for example, the
specifying of Sunday evening (from 6-10 pm. perhaps) times as being pre-
ferable for A-league basketball games.

SCHED is the structure that keeps track of the games that have been
scheduled =-- the teams playing, and the day, court, and time-slot asso-
ciated with the game, 1Its declaration can be found in STRUCTURES.INCL
and it is filled in the DIV SCHED routine, Its format is that of an array
indexed by (day-of=-the-season, court-number, time-slot-number), Each
element thus indexed is a pair of fixed values giving the team numbers of
the combatants scheduled in that slot, or zeroes if the slot is still
empty (The team-numbers used are the sport-wide ones mentioned ir the dis-
cussion of TEAM on the previous page). An alternative format was consider-
ed that would list games in the order scheduled and would contain day, court,
time, and team numbers in each entry. Since this array has the potential
to grow very large, it would be nice to minimize its size to whatever ex-
tent is feasible. A list of games could require considerably less storage
(depending on the percentage of time-slots that will eventually be filled)
since it does not have to store zeroes for every slot that could have been

used but wasn't, The chosen format, however, is preferable for two reasons.

s

28

First, it is desirable to have those zeroes, since they allow the manager

to look at the schedule printout, and at a glance tell where there are empty
slots still available, (These can then be used if he needs to reschedule

a rained out game.) Secondly, the printout of the schedule needs to be

done in chronological order to be of any use, and that is not the order in
which the games are scheduled (i.,e. the program moves through the season
scheduling division 1, then returns to the start of the season to begin
scheduling division 2, etc.) Thus, if a list format were used, each time

a printing was to be done this list would need to be sorted by day, court,
and time., It seemed to make more sense to put it in this format to begin
with, However, the maximum number of season-days, courts, and time-slots
that I wanted to make allowance for were 150, 10, and 15 respectively,

Since two fixed numbers comprised each entry this called for a 45K array,
which was much larger than I wanted to have to allocate space for, 1In
almost all cases, however, the actual number of days, courts, and time-slots
will be well below these maximun values. 1 therefore decided that the array
should be dynamically allocated at just the right size after these actual
values were known. There was initially a problem with this approach since

I had planned to have the MAIN routine call DIV_SCHED directly, The SCHED
array could not be declared in the MAIN routine since the needed values
were not known on its entry. The array could not be declared inside DIV_
SCHED or it would lose track of the data for the past division each time the
Toutine was called to schedule the next one. I thus decided that the best
solution was to add a shell routine around DIV_SCHED called SCHEDULE whose
only purposes would be to initialize the SCHED array, input constraints

for each league and call DIV_SCHED for each division,

29

Routines

This completes the discussion of data structures that: are used widely
throughout the program, I will now discuss the subroutines that comprise
the program, with the exception of MAX VAL and EVAL which are discussed in
Appendix A. For each routine, I will discuss its function in broad terms,
how it achieves its purpose, subroutines it accesses, data flow to and from
it, and data structures that are important to its functioning but were not
used widely enough to be mentioned in the previous section. An overview
of the manner in which these routines interact, in terms of both data flow
and flow of control, can be seen in the figure on the following page. List-

ings of the actual code can be found in Appendix B,
MAIN

The MAIN routine is the starting point for the program., 1Its task is
limited to requesting the input of a variety of information that will be
needed throughout the entire program, and calling two subroutines that then
see that all the actual work gets done., There is no computation done in
this routine. The two subroutines-called are COURT_AVAIL, which deter-
mines the availabilities of the various facilities throughout the season,
and SCHEDULE, which loops through the leagues and divisions and sees that
each one is scheduled in turn. These subroutines access a number of other
subroutines to help with various parts of their tasks,

The first task of the routine is to input the information that is
needed to fill the MISC data structure. Since each input has been prompt-
ed clearly in the interests of making the program as easy to use as possible,
the functioning of this poction of code should be easily understandable by

looking at the listing., The three terms used to describe the sport-week

INTERARCTION ©OF MODULES

i

- MAIN I
TN ut S £ & ! I o
P)6<:\<C Foformaiia - lcovapmuaie |
Fill amls : I"“'{?'L:" ’/: :L_.npu_i' Court Avelamlihes rdﬂwfeﬂs[; ‘ {“’
L(_a\,\ﬂ uC/\-‘ ,z,T__“qn\L)r ‘ ! {;‘ AR Q&ﬂTEJﬁ&:H$UN }-r—""h fsi’“-s“ 7; ;;:5(;4545/@
e _4_,_._-..-..,._...\ i -~ s
/C‘L' SCHEDMLE :’5“4‘5%,@ CE FRCAVAIL e [THTEERRS
e e e e : i ® | :
%e% Etur) (SEASLY, FRCAVAILY) ?
. \4(({(_ —

e ﬁ‘—‘féQ_Mu..E L
! Lpop Mdﬂueb

: Tp wt Lecu!p\,(C.ur;.STr¢1w§+$
Fal LExaGcUE

Loecp D‘V\S«J,'}_’) T

Catl mv 5 Ju)j

. (Dw SCHED] : o
"R Dvision i TEan-pPrIR]

N sy e
(Lol TERM PARY w0 ‘.‘"’,.ff_f'f,fi?. PRRWNGS | F'“ THI“NG‘D
- Topat Taum (onsto awts S
| TOLTERM : - ! M“X el .
1’ Lx\’ ,IPF\M-- -t De‘fff”’\\n{, V/LL\VLU,—' (.."‘: !
i [Locp "ﬁ;q; T po! Xay's Best Possible Fit [
| e NBLUE . e
X Foo) A wn.z_)»/ MAX 1M LU e
G veepGewrtsand Tenes | gy menmpn, o, W6 A eway |
. ((/‘x‘\ EvA "‘.fTM'”M#J';’ ‘ Ve Verenrmine. Moot of
i . Thid s O
borg m.her:“*“”ﬁ Sucessful | i I p— | this St
(Call OR:MTDLF{‘! ' s
o ‘_136 ?TCHED, Diy.. DLHED i PRINT iL‘b{’ﬂ SO
: (’Lall ‘%r.uﬂx ?nn% scr\edulmgo-? Dw\stoﬂx

sz: LAX | S
r\e\oqt Co«‘fhcun% g

31

(misc, sport_wk.SWwl. and SW2, and SW3) represent the first day in the week,
the last day, and the incremert between consecutive days for this sport,
Thus, these terms can be used as the "from", '"to", and "by" indices of a
do_loop designed to step through the days in a single week of the season.
The barest minimum of data regarding the days spanned by the season is re-
quested =-- namely the number of months, number of days in each, and the
day of the week that each starts on. From this information combined with
the sport-week data, a full season calendar can be constructed by the
CREATE_SEASON routine. This is one example of the efforts made to keep
user input to the absolute minimum required.

Once the MISC structure has been filled with the necessary data, that
data is passed to the COURT_AVAIL routine which determines what times each
court is available on each day of the season and returns this information
in the FACAVAIL array., In addition, COURT_AVAIL calls CREATE_ SEASON to
produce the season's calendar as mentioned above, and then returns this
information to the main routine in the SEASON data structure.

SCHEDULE is now called with pointers to the MISC and SEASON structures,

and using this data, the routine sees to the actual scheduling.

COURT_AVAIL

COURT_AVAIL is a subroutine called by MAIN to determine the times at
which each facility is open on each day in the season. The routihe is passed
the data in the MISC array and returns the availability information in the
FACAVAIL array. Additionally, the routine calls CREATE_SEASON to expand
the limited season-size information in MISC out into a full calendar which

is then used in the filling of FACAVAIL and subsequently passed back to the

MAIN routine,

32

The routine starts off by requesting the number of courts and the
names of each, It then determines from the time-slot data in MISC (start=
ing time of first slot, length of slots, and number of slots) the time
each of the slots starts and prints these times so that the user can in the
future refer to time-slots by their index (i.e. first slot has index 1).
The manager is then asked to input the times each court is available during
a typical week, To minimize typing this data is entered in the form of
n-bit strings (where n is the total number of slots in a day) with 1's
corresponding to available slots and O's to unavailable ones. Once the
sample week is complete, the user is asked to verify that the input was
correctly entered (since entering a number of bit-strings can easily result
in typos). If the input is verified, the sample week is replicated through
the season and the result is the FACAVAIL array. If not, the user can -
specify which bit-strings were incorrectly entered and change them. When
he is satisfied that they are all correct the replication is done,

Once the sample week has been replicated, exceptions to this "ideal"
season are entered. The user is asked for the court whose availability is
to be changed and then the month and date to be modified. The new avail-
ability string is then entered and the user is asked if there are more changes
to be made. When no more exceptions exist, the FACAVAIL array contains the
precise court availabilities for the entire season, and this data is re-
tuened to the MAIN routine so that scheduling can begin,

Throughout this routine, count is kept of the total number of slots
available during the season on each court. The number of slots open on
court I is MISC.COURT(I).TOTAL_SLOTS. This information is updated accord-
ingly as scheduling proceeds, so that when a division cannot be success-

fully scheduled, the user can check to see whether the problem was a lack

LN

33

of open slots on a mandated court, or lack of slots overall, or whether

this had nothing to do with the trouble.

€REATE_SEASON

CREATE_SEASON is called by COURT_AVAIL to generate the season's calen-
dar. It is passed’ the data in MISC and returns the completed calendar in
the SEASON array. This "calendar” is actually in the form of a list of days
in the season. Each of these entries is comprised of the day of the week
on which the day falls, its month, its date, and its "rel date" which is
a measure of the number of real (rather than seasonal) days between the
start of the season and the day in question. This last quantity is used
to determine whether a search to satisfy a preferential constraint should
be carried farther than the season day currently being looked at (see
Appendix A for more details of how this is used).

The routine creates the season by replicating the sport_week (the
days SW1 to SW2 by SW3) found in MISC through all of the months in the
season, from the FIRST DATE to the END_DATE. The first step in scheduling
each month is to determine the correspondence between dates and days of
the week, This is accomplished by using the day of the week the month .
starts on to determine the date of the Sunday that starts that month's first
week (SUNDATE). This SUNDATE is generally negative since the 1st might
fall on a Wednesday for instance, and the Sunday beginning that week is
3 days earlier, The "date" at the start of this week now kmown, the
routine loops through the sport-week incrementing the date as needed until
the first day of the month is found (or in the case of the first month,
the FIRST DATE in the season). Following this point, the day-of-week, month

14

date, and rel_date are recorded for each day. For the rest of the weeks

34

in the month, each day in the sport-week is entered into SEASON until the
end of the month (MISC,MONTH(I).LAST DATE) is encountered. At this point
the process repeats for each month until the full season is created. The
days at the end of the last month that fall past END_DATE are then trimmed
off. Since provision needs to be made for dates on which major activities
or holidays will cause a day in the sport-week to be removed from the
schedule, there follows a section to input exceptions. The days to be .

stricken from theseason are noted by setting their AVAIL bit to "0,
SCHEDULE

SCHEDULE is called by MAIN with the MISC and SEASON structures and
FACAVAIL as input. SCHEDULE allocates sufficient space for the SCHED
structure (which will hold the actual schedule) based on the number of
days in the season, the number of courts, and the number of time-slots.

The fact that this structure is dynamically allocated with these actual
values is impostant since simply declaring it with all three indices set to
their maximum size would result in a huge array. SCHED is then zeroed out
and the leagues and divisions are looped through, calling DIV_SCHED to
schedule each division. At the start of the league loop, however, the man-
datory and preferential constraints for that league are entered and these

are placed in LEAGUE,

DIV_SCHEDi. -

et —————

DIV_SCHED is the longest of all the routines and the true heart of
the program. It sees to the actual scheduling of each division, allows fa
appropriate corrective measures to be taken when a division cannot be

scheduled, and provides printout of the results when they can. In performing

35

these tasks it calls on two functions; MAX VAL and EVAL, and three sub-
routines; TEAM PAIR, RELAX, and PRINTOUT. It receives the data in MISC,

and SEASON, and the constraints in LEAGUE and FACAVAIL as input, and updates
SCHED as each new division is scheduled., There are two data structures not
previously described that figure importantly in this routine -- DIVSCHED
and CHANGE. The declaration of DIVSCHED can be found in the DIV_DCL include
file, that of CHANGE at the start of this routine,

DIVSCHED is a list used to keep track of the games that have been
scheduled for the current division. It is used by the PRINTOUT routine
when it is desired to see the schedule for just the division most recently
completed. When the user wants to see the full schedule, the PRINTOUT
routine uses the SCHED array instead.

CHANGE is a list of changes that have been made to the SCHED array
during the current call to DIV_SCHED. This is used to restore SCHED to
its previous state in those cases where the division has been partially
scheduled (and the SCHED array therefore modified) but cannot be success-
fully completed. If the user decides to give up in such a case there is
no problem. If he wishes, however, to relax some constraints and then try
again to schedule the division, SCHED must first be restored to the way it
looked on entry,

On the next two pages can be found flow charts diagramming the basic
scheduling procedure and the method used to select the optimal time slot
for the placement of a particular game., Referring to these may be helpful
in understanding the explanation that follows, as this routine is complex,

The routine begins by inputting the number of teams in the division,
the names of each, and the number of games that each team should play. The

total number of games that will need to be scheduled for the division is

36
WERYIEW OF JACHEDULING PROCESS

|
\
; Dedermine Court Availavilinie? :
> {
/ Loop Leagues /
A /

5 FINISHED

. \V‘:’;f}ié o S

1 Yes

TInput Constriun
’ Fu L,ﬁaguv 7

A

A /L,QOP ‘D\Viﬁtﬂﬂﬁ /

/
, NO ‘{“’9 |
'J/ yes P
Dn.’feiﬂ‘mmi “T€am ?a\rmg"> :
_ Fox DwWiSion §

i

. {
‘J:npwr Team ;
Constraamntd

1L

LOOP T\“.(‘OJQSV\TEQ{Y\ T A
Yo m%; Prf\'w—&‘rov Dw SN th

/tf{ow’ ‘ Du« u«+ Shedule _3
{ames?y= - MO For Pwision !

e

| ‘L yes

T Find O"){nn‘\m Time Siot
| for Game and Scheduie y‘r
i

J

A
t

-

A

§

’ ?cﬂf«mm& EY
&r\cl Nume

37
CHOCSING OPTIMAL TIME

Startindtnis 3iock LDu) t
Y Search 'Lqﬁ {(30)

D = Fv’\d_u.lsi- Biﬂ‘-K-%Mif\wﬁP:w

£
'
i

4D = Max(?rdezrmhm (enFraint wexgms) |

b

o o et e 1 £ . e e

%" ‘“lncrema\Jr @tﬁ%/ Dn EifhquﬂmS7

et

..,“ S S—— —]

SLOT

1% Fit = o}
o.q >Do 159 L |
. B
o jﬁ
\
S~ ves ..
N, --P\Q.‘ List2 g \’
f Record Sa\eduu»ru% of
‘Lﬂo { (ame. on Gw«w’r v
“~ ¢ Do, (ourt, and Time,
Doy Aure Do ¢
fgs(ﬁﬁtq i‘m?rq?a - yes| Move N :
on Best_fit? “ﬁ;,. | o i %eusoﬂ
(Ca.!! Mm-wt)/ \\ - Go 10
= / \"/ Me_x.‘. %m&
] \165 ’r_.,_m ‘L NO

[iocr s

T

‘ qc,‘a

l Pexes mine Jalné of Trio O’\u.c&(

(aju Eval) |

l LS
K- No A mematﬁ b

B
ES

Record New Best_fit)
Note Daj,(owc¥ ond Tim

¥

‘K‘INO | Relax Gonstraints|
2

RESTHET XHEDUUNE
oF Divisior/

38

then calculated (DIVSCHED.N_GAMES). 1In the case where the division has an
even number of teams this is trivial == it is simply (# of teams) x (# of
games per team)/2, However, in divisions with an odd number of teams it is
more difficult to determine just how many games must be scheduled to insure
that everyone plays at least the minimum number specified,

The TEAM PAIR routine is then called with the number of teams and the
number of games each will play and returns the PAIRINGS array filled in a
seeded fashion (teams 1 and 2 always play on the last week, for instance).
The constraints for each team as to what days and times they cannot play
are then entered, and these values are placed in TEAM.

The next order of business is to create a list of courts (COURT_LIST)
designating those that will be searched as this division is scheduled. 1In
the case where the current division is in a league with one or more courts
that have been designated as mandatory, these will be the only courts on
the list, 1In the case where no mandatory courts are specified, the preferen-
tial court ordering for that league (if any was given) will be used, or as
a final option the order in which the court names were entered will be used
as the default ordering.

At this point the actual scheduling is ready to begin, and the mini-
mum spacing (MIN_SPACE) between blocks of games is asked for. 1In a division
containing 6 teams, a block would consist of 3 games (at the end of the
block each team has played once). The blocks are looped through, and
within that loop the games within the block are looped. The teams to meet
in each game are found by observing the entry in PATRINGS specified by the
current block and game numbers,

With a particular game to schedule, the routine now moves through the

days of the season looking for open time-slot & court pairs on that day that

39

satisfy as many preferential constraints as possible. As each new day is
examined, it is first checked to insure that the end of the season has not
been reached, If it has, and an opening has been located then the game is
scheduled in that opening. If no opening has been found, the routine prints
an error message, allows the user to incrementally request possibly useful
diagnostic information, and then, if he desires, relax some of the constraints
and try once more to schedule the division., This diagnosis and constraint
relaxing is done by the RELAX routine.

I1f the new day being examined is part of the season, a check is then
made to see whether it is at least SEARCH DAYS past the start of the block.
If it is, the routine can be assured that if any opening has been found
it is, in fact, the best-fit (for an explanation of this see Appendix A),
and it schedules the current best-fit. 1In the case where no opening at all
has been located the program will continue searching until an opening has
been found or the end of the season reached.

If the routine is still interested in exploring the curremnt day after
these preliminary checks, it calls MAX VAL to determine whether there is
any hope that the day might improve on the current best-fit. Essentially,
MAX_VAL determines the best value of any of the slots on that day without
worrying about whether the slot is open.,

If MAX VAL indicates the search should proceed further, the courts in
COURT_LIST are looped through., If there are preferred time slots these are
looped through before the rest of the slots, but in any case, all slots
will be examined (at least until an open one is found). The availability
of the time-slot being examined is determined by the "anding" of both team's
availabilities on that date with the FACAVAIL entry corresponding to that

court and date. When an open time slot is seen, EVAL is called to deter-

40

mine how many preferential constraints it satisfies and how important they
are., If the "value" of this slot, court, and date combination is higher
than the best-fit previously found, this new best-fit is recorded. Since
the preferred tine-slots are searched first, there is no chance that another
time found on that day will produce a higher value, so the routine moves

on to the next day in the season.

TEAM_PAIR

TEAM_PAIR is called by DIV_SCHED with the number of teams in the divi-
sion and the minimum number of games each is to play. It them fills the
PATIRINGS array with the necessary number of games and passes it back to
DIV_SCHED. The match-ups it creates are deésigned such that the variety
of opponents for each team is maximized and the strongest teams (if the
teams are entered in seeded order) will meet at the end of the season. For
example, in a 4, 6, 8-team division, teams 1 and 2 will meet in the last
week, as will teams 3 and 4, and teams 1 and 3 will square off during the
next to last week.,

The basic data used in the creation of the PAIRINGS array consists of
a set of 5 arrays -- one for use with 4~team divisions, one for use with
5-team divisions, etc. Each of these arrays has just enough blocks of
games in it so that each team will play every other team in the division
exactly once. The matchups included in these arrays were designed to allow
for seeding, with the stipulation that the last block in the data array
should always be used to fill the last block to be included in the PAIRINGS
array. To accomplish this, the number of games desired per team is first
used to calculate the number of blocks needed (for a division having an

even number of teams there is a one-to-one correspondence; for a division

41

having an odd number of teams one to two additional blocks are required).
The number of blocks needed (n) is then compared to the number of blocks
in the basic data array (m) and one of the following is done., If m= n,
then the first block of the data array is placed in the first block of the
pairings array, the second in the second, etc. If mdn, (m= n + i), then
the first i lines of the data array are unused, the (i + 1)st is placed in
the first block of PAIRINGS, etc. 1If ndm, then enough lines of the data
array are skipped so that after the remaining ones are used, there will be
just as many blocks left to fill in the PAIRINGS array as there are entries
in the data array (i.e. if n=m + i, [m - i] lines will be skipped, the
last i blocks in the data array will be used to fill the first i blocks in
PAIRINGS, and then all m blocks in the data array will be used to fill the

last m blocks in PATRINGS).

RELAX

The RELAX subroutine is called by DIV_SCHED when it is unable to sche=-
dule a division and the user wants to relax some of the constraints and try
again, The routine is passed the MISC and LEAGUE data structures, as well
as the COURT_LIST array used to specify the courts to be searched and the
order in which they will be scanned. Currently, the routine has a limited
range of options, but the module could easily be expanded to do more. Part
of the reason for its current limited scope is that in the vast majority of
the cases, the only constraint that the manager will want to relax will be
the minimum spacing between blocks. Since this constraint is set in
DIV_SCHED right at the point where the control is returned to when xe-

scheduling begins, there is little reason to include in RELAX the capabil-

ity to modify it,

42

The routine as it is currently structured allows the user to either
eliminate the mandatory courts for the league being scheduled, or add to
the number of mandatory courts. Either approach will improve the chances
of successfully scheduling the division, but neither one will necessarily
do the trick if, for instance, the real problem stems from too large a
value for MIN_SPACE. 1If the user chooses to eliminate the mandatory court
list, he is then given the opportunity to replace this with a preferential
court list, giving a weight to each of the courts. The COURT_LIST array
is appropriately updated and returned to DIV_SCHED since the courts ac-

tually searched through are determined by its contents.,
PRINTOUT

The PRINTOUT procedure is called by DIV_SCHED following the success-
full scheduling of a division. It is passed the MISC, SEASON, and DIVISION
structures to provide it with the information it will need for printing
clear output (such as month names, court names, etc.). SCHED and DIVSCHED
are passed in to provide the actual scheduling data for the sport as a
whole, and for the division that was just processed. Finally, the league
and division indices for the just completed division are passed in to
allow the proper information to be accessed out of MISC.

The routine starts by printing the names of each team in the division
and their sport-wide identifying numbers. Next, a chronological listing
of the games scheduled for this division is printed. This listing pro-
vides the team~-numbers of the combatants; the time, day of week, month,
and date that the game is scheduled for; and the court on which the game
will be played.

The routine then asks the manager if he would like to have schedule

43

listings printed by team. If he asks for this, a listing is printed for
each team, that is headlined by the team's name and sport-wide team num~-
ber. A line is then printed for each game the team will play, giving the
opponent, and the time, day of week, month, date, and court that it is
scheduled on.

Finally, the routine asks whether the manager would like a listing of
the full schedule printed. Generally, he will only request this after the
last division has been scheduled, but the option is always open., The data
providing the basis for this listing comes from the SCHED array, in con~-
trast to the first two listings which are takem out of DIVSCHED. The format
of the listing has the courts listed across the top and the days, and time=-
slots in each, listed chronologically down the left-hand side., If a game
has been scheduled at a particular time on a given court, the teams playing
in that game will be listed (as a pair of sport-wide team numbers) in that
row and column, If no game is scheduled in that slot, the pair "0 - 0"

will appear instead.

4t

RESULTS

A number of goals were presented in the Problem Statement section
of this thesis., With the possible exception of modifiability all of
these goals were realized in the code produced, This code provides all
of the flexibility needed to handle every sport and gives the manager
all of the schedule-shaping power that was deemed desirable in the
Problem Statement. In addition, the program keeps required input to a
minimum and clearly prompts for each item so that it is easy for anyone
to use this program. Substantial efforts were made to produce modifiable
code =~ in particular the code was broken down into 10 modules. However,
it is always difficult to follow the functioning of code written by another
person, and the length of this program exacerbates this problem., My
feeling is that modifying this code would not be trivial, but has been
easier through the efforts made to modularize it.

To demonstrate the extent to which various goals have been met, a
set of test runs has been included in Appendix D. Important features of
these runs are pointed out in the following paragraphs. The data pro-
vided for these test cases was designed to highlight various features of
the program one-by-one, For this reason, most of the test cases fail to
take advantage of all but one or two of the available constraints, pro-
viding results that don't correlate very well with actual scheduling
tasks, but are much easier to follow,

The primary goal mentioned in the outlining of the task was to pro-
vide a high degree of "user friendliness'. Several examples of how well
this goal was realized can be found on the first page of output included
in Appendix D. First, note the clarity of the prompt statements used,

and particularly the use of sample answers to exemplify what sort of

45

input is being requested. Secondly, the minimal amount of input required
by the program can be seen by observing how calendar and facilityfavail-
ability information is entered. To specify the season's calendar the
user is asked for the type of sport week, the number of months in the
season, and the first day and last date in each month, When it is given
the start and end dates for the season, it has all the information it needs
to produce an internal calendar. The specification of the time-slot
availabilities for each court can be found on the second page of output.
To minimize input, the user is asked only to specify a sample week of
availabilities that will then be replicated through the season. These
availabilities are entered as bit-strings to provide full flexibility

of input in a compact form. Since it is easy to wind up with a typo in
the courseof entering a series of bit-strings, the program checks at the
end for the correctness of all the entries, allowing the user to re-enter
as many as he wishes, Note how this facility was advantageous in the
entering of this data on the second page of output. After this sample
week has been verified and replicated, the program allows the user to
specify any-full days to be removed from the schedule and any days which
will have a modified set of time-slot availabilities on any court. These
tasks of calendar creation and facility availability specification could
not be implemented in such a way to provide the same flexibility of data
creation with less required input,

A whole set of goals was presented in the Problem Statement under
the topic of Control Over Scheduling Desired. Among the capabilities
deemed desirable (all of which were implemented) were the specification
of mandatory and preferentially weighted courts, the specification of

preferentially weighted days of the week and times for scheduling of a

46

particular league's games, and the specification of days or parts of
days in the season on which each was unable to play due to external
conflicts,

The first test run schedules a 3 month-long weekend season for a
sport containing 2 leagues of 2 divisions each., There are four time slots,
and to keep things simple each of the 3 courts is available during all
4 slots on both Saturdays ané Sundays. The first A-league division is
scheduled and printing is then done of the schedule for that division
and the schedule for each team within the division. Following that,
the second A-league division is scheduled, and the division and full-
sport (currently just A-league as that's all that's been scheduled)
schedules are printed. This full-sport schedule provides graphic out-
put that clearly shows how the resulting scheduling was shaped by spe-
cified constraints.

By looking at this full schedule (for A-league) and observing the
positioning of teams 1 through 6 (the first division scheduled) we can
see the effects of specifying mandatory courts, and day of week and time-
slot preferences., Court 1 was specified as mandatory for A-league and
no games in either division 1 or 2 were scheduled on the other two courts.
Sunday was designated as a preferable day, and time-slots 3 and 4 on
Sundays were also designated as preferable., Both of these preferential
constraints were given a weight of 5, implying that if the first open
slot foung fails to satisfy one or both of these constraints it will
search 5 calendar days further in attempt to find a slot that does sa-
tisfy them, The result of this is that the 3 games in the first block
for division 1 are scheduled on Sunday, June 13 in time-slots 3, 4, and

1 respectively., When each of these three games is scheduled, the pro-

47

gram looks only for openings in the Cage and in each case the first
open slot found is Slot 1 on June 12. This slot satisfies neither
preferential constraint, and since each has a weight of 5 the program
is willing to search through June 17 for a better fit., The program next
notes an opening in Slot 1 on June 13 satisfying the day preference but
not the time preference. 1In scheduling the first two games, this
slot is not chosen since later in the same day a preferred slot is
avail able, When the third game is to be scheduled, no slot satisfying
both constraints can be found in the June 12 to June 17 interval, so
the best fit found is settled for. This happens to be Slot 1 on June 13
since it satisfies the preferred day constraint. This process then repeats
through the season with a spacing of 10 days kept between the end of one
block and start of the next, until all 5 blocks of games have been sche-
duled. ©Note also that the last block of games contains pairings of team
1 versus team 2 and team 3 versus team 4 in order to provide for seeding.
When the second A-league division (teams 7-10) is scheduled with the
same constraints, much the same process occurs. In this case, however,
most of the choice slcts are already taken and the program has to settle
for less highly preferred ones., Since each block contains 2 games (4
teams/2), and there is only one slot available in the 5 day span that
satisfies either constraint (Slot 2 on June 13 in the first block), the
first game is scheduled in that slot, and the second game is scheduled

in the first open slot that was found (Slot 1 of june 12 for the first

block) .
This first test run then schedules 2 B-league divisions., No manda-
tory court is specified for B-league, but court 1 is still most preferred

(with a weight of 5 compared to 1 each for courts 2 and 3). Sunday is

48

again preferred, but this time has a weight of only 2. Since this weight
is lower than the weight for the court preference, given a choice between
satisfying either the court preference or the day preference it will choose
the former., The first division contains 7 teams (teams 11-17) each re-
quired to play at least 5 games, The fact that there are an odd number

of teams in the division results in one team being left out in each block
of games, and necessitates the adding of an additional block to the sche-
dule (Thus, there are 6 blocks for a 5 game season.,) The result is that
18 games are scheduled, with 6 of the teams playing 5:games, and 1 of them
playing 6. Prior to scheduling the division, the user states that team 1
in the division (team number 11 overall) cannot play on either June 12

or June 13, and that the minimum spacing between blocks should be 5 days
(this value for MIN_SPACE insures that a team will not play twice on the
same weekend, but still allows consecutive games to be scheduled on a
Sunday and the following Saturday).

The scheduling of division 1 of B-league now proceeds with the most
important preference being placement of games on court 1 and a secondary
preference being the scheduling of games on Sunday. Since every slot on
court 1 on every other Sunday has been filled with A-league games, the
day preference is hard to meet without sacrificing the preferred court.
Since the court preférence has been deemed more important, most of the
games for this division are scheduled on Saturdays, with all of them taking
place on court 1. What happens with the first block of games is parti-
cularly interesting. Two of the three games are scheduled on Saturday,
June 12 since open slots are available then on court 1, and th_ough they
do not satisfy the day preference there are no slots within the 5-day

search interval that satisfy both constraints, While there is still one

49

more open slot on Court 1 on June 12, the game pitting teams 1 and 6 is
not placed there. This is due to the fact that Team 1 specified June 12
and June 13 as days it could not play. Therefore, the first open slot
its game.could be scheduled in was on Saturday, June 19 and since slots
were open on the very next day which satisfied both preferential con-
straints, it was scheduled on that Sunday.

Division 2 of B-league contains 6 teams (numbers 18-23) each of whom
plays 3 games. Once again, Court 1 is given a weight of 5 and Sunday is
given a weight of 2 (since this is still B-league). Time-constraints
specified for this division consist of the first team's (team number 18
overall) inability to play on either June 12 or June 13 during time-slots
1 through 3, To demonstrate the program's ability to recover from an
unsuccessfully scheduled division, it was originally given a MIN_SPACE
of 87 days between blocks == a restriction it clearly could not meet., The
program then allowed for printing of constraint data and relaxing of con-
straints (neither of which was desired in this case) and then tried again
after being given a new MIN SPACE. This time 4 was chosen and the sche-
duling was successful. As with the scheduling of B-league division 1,
the court preference still takes priority over the day preference. However,
by this point Court 1 was so full that it was frequently impossible to
find an open slot for it within the confines of the 5 day search limit.
For this reason, many of the games for this division were scheduled on
Court 2 on Sundays. The second block was even able to be scheduled on
a Sunday on Court 1, since that was one of the Sundays skipped by the
A-league teams in their every-other-weekend scheduling. What happened
with the first block of this division is also interesting. Game 1
(22 vs. 23) was scheduled in the last remaining slot on Court 1 on Satur-

day, June 12. At this point no openings remained in the Cage (Court 1)

50

on that first weekend. The second and third games in the block (19 vs.
20 and 18 vs. 21 respectively) therefore had to be scheduled on one of
the other courts, and the only preference that could be satisfied for
them was the day of week preference. Therefore, Game 2 was scheduled in
the first open slot on Court 2 on Sunday, June 13. Normally, Game 3
would have been scheduled in the following slot on the same day. !ow-
ever, Team 18 was playing in Game 3 and was unable to play in slots 1 to
3 on that date. Game 3 was therefore pushed back to slot 4 on that day
and court,

The functioning of all of the desired control features was seen in
this first test run. The second test run is included not to demonstrate
further features, but simply to make a little clearer the way in which
multiple constraints interact,

In this second run, 2 leagues of 1 division each were scheduled in
a one month long weekend sport. Each of the 4 courts was available during
all 4 time-slots with the exception of Court 1. Court 1 was available
during only the first three slots on Sundays, and only the first two slots
on Sunday, December 7.

The first league (Z-league) specified that Court 1 was to be weighted
by 5 with the other courts receiving weights of 1,and that time-slots 3
and 4 on Sundays would get a weight of 3. The single division in this
league contained 8 teams playing 3 games each, and was scheduled using
a MIN_SPACE of 5. These constraints then favored first the scheduling
of games on Court 1 and secondarily the scheduling of games in one of
the last two time slots on Sundays. The general behavior these preferences

resulted in was that the program would attempt first to schedule the

first two time slots in each block in the last two slots on Court 1 on a

.

51

Sunday. Since Court 1 is not available during slot &4 on Sundays, only
slot 3 can thus be filled. Since the weight for the preferred times is
less than that for the preferred court and not sufficiently high to cause
the search to proceed to the next weekend, the remaining 3 games are
scheduled in the first 3 slots on the previous Saturday. Note that
Sunday as a whole is not preferentially weighted, only its last two time
slots. 1In the case of the first block all four games are scheduled

on Court 1 on Saturday, December 6 since the normally available preferen-
tial slot on the following Sunday is cancelled for that week.

The second league (Q- league) specified a weight of 3 for Court 1
and 0 for the other courts; a preferential weighting of 2 for Saturdays
as a whole; and a weighting of 5 for slots 2 and 3 on Saturdays. There
were again 8 teams to schedule with 3 games each and a MIN_SPACE of 5.

In this case the driving force is geared toward using slots 2 and 3 on
Saturdays, regardless of what court is available (though Court 1 is pre-
ferable). As a result, each block of games for this division was sche-
duled on Courts 2 and 3, during time=~slots 2 and 3 on Saturdays.

The resulting season schedule is printed at the end of the run. The
important thing to note is that both divisions were scheduled in a fashion
that seemingly ignored one of the preferential constraints, The reason
in both cases was that the ignored constraint could not be satisfied at
the same time as another more important constraint, and the higher prior-
ity won out. 1In the case of the first division, the preference for late
Sunday time-slots was overruled to allow for the placement of all games
on Court 1., 1In division 2, the desire to play games on Court 1 was sup-

pressed to allow the scheduling of games during slots 2 and 3 on Saturdays.

52

SUGGESTIONS FOR TIMPROVEMENT

There are three areas in which I feel valuable improvements could
be made. The first would be the addition of a capability to revise the
original schedule to take care of games that have been rained out. The
second improvement would be the use of a more sophisticated weighting
function that would not overlook potentially good solutions, The third
would be to have the program provide more help to the user in determining
problems that cause a particular division to be unsuccessfully scheduled,
Each of these will now be discussed more fully,

As I mentioned in my description of the algorithm, the inclusion of
re-scheduling capabilities for rained-out games is not that crucial to the
program's usefulness. It is, however, a feature that would be nice to have
in some cases. When only a few games need to be rescheduled, the manager
would probably find it much less bothersome to do this by hand than to go
run the program. In cases where a large number of games were rained out,
though, it might be easier to have the program do the work, and might also
result in a better quality result through the satisfaction of preferential
constraints.

A major improvement would be the:replacement of the current weighting
functions with bell-shaped functions. This would result in the search for
a given game's placement not being strictly limited to the days following
some arbitrary cutoff (i.e. currently blocks begin at MIN_SPACE days past
the end of the last block). The apex of the function could be placed at
the same position the start of the blocks currently are, providing the same
optimal scheduling position in the absence of preferential constraints. By

having this function rise sharply on the left and trail off more slowly on

the right, a nice spacing between blocks could still be kept without ruling
out from consideration slots that occur just one or two days earlier than
the ideal positioning. 1In other words, it is generally better to have a
little extra spacing between games than a little less, but in some cases
a preferential constraint might be satisfied one day earlier and not again
until many days later,

The program could be much more helpful to the user in those cases where
a division is not successfully scheduled., Cureently, the raw data that go-
verns whether or not the scheduling will be successful is available for his
perusal, but this is not going to be of much use without an understanding
of the internal workings of the program, Instead, the current emphasis is
on just reducing the minimum spacing requirement and trying again., This
should solve the problem in most cases and has the advantage that the mana-
ger does not have to think too hard about where the problems might lay.
However, if the program was capable of giving a clear analysis of just where
the problem was and suggesting which constraint or constraints should be

relaxed this would be clearly preferable,

54

REFERENCES

1. Richard Conway, David Gries, and David Wortmanj; Introduction to
Programming Using PL/1 and SP/k; Winthrop Publishers. 1977

2. Steve Pettinato; "A Sports Scheduling System'; M.I.T. Bachelor's
Thesis, Department of Electrical Engineering and Computer
Science, 1980

55

APPENDIX A

Weighting Functions and Evaluation of Optimal Time-Slot

Each of the preferential constraints used in this program is given a
weight so that the importance of satisfying them can be determined. Since
an effort is made to schedule each game as early as possible (as close to
the start of the given block of games as possible), the degree of impor-
tance of satisfying a particular constraint can be naturally expressed as
the number of days that the user is willing to postpone scheduling of a
game in order to satisfy that constraint. Thus, if a constraint is given
a weight of 10, the program will search through the days of the season
until an open slot is found, and if the given slot does not satisfy that
preferential constraint, the program will search up to 10 days farther in
an attempt to find an open slot that does satisfy it,

An appropriate set of weighting functions must, therefore, result in
the preferred slot being valued more highly up to the point where it is
WEIGHT days past the non-preferred slot, and less highly after that. Such
a set of functions is diagrammed on the following page. As one moves far-
ther on in the season, the weight associated with the closeness to the
start of the block decreases by one each day. It is set up, though, so
that by the time the last day in the season is reached, this function still
has a value of one. Thus, even if no preferential constraints are satis-
fied, there is still some reward given for finding any open slot that the
game can be scheduled in.

Each preferential constraint has a weighting function that is '"square",

having a constant value of WEIGHT + 1 over an interval of WEIGHT + 1 days.

WEIGHTING FUNCTIONS For PREFERUNTIAL CONSTRAINTD

-
Z
v"‘\ - . D)
(' (o D
Funcnen Yoo tretevved (;‘:‘L_\»S

*l Tirnes

o

l,
|
|

o |
Ds Pt T+

VALUE OF SHNSFYNG (o

'D'ﬁ\’ oOF SedAsew
Do = Stort of Block

WA u)e}:;jmf aés\s-ﬂe:d 1o fonstrant

Funetion for Goseness 1o otout ofF B lote

Pl

g ES-Dutl N .

3 L

3 .

a

B

?
< N

3 S Veadue at tnd _
U o \/ Ch SOUSCYY !
3
T e o ,*_,.._,{,...A:,.._._ -
e Po Enet of

- %
Pl E"?

FULL EYALUWATIoN FumcTion FOR one PREFERENTIRL CENSTEAINT

ES-D twt+ 3> §

~ volULg winen s
AN — = — - cheite sahckies Lenstant
.,
ES-De+l R e nu 2, whan Choic e DS
Net érmé(:x{ Consiyas Ny
‘ ¢ - S
Dc, D +WT ES

Dﬁ\[OF SEASON
BES: Cnd of Season

Thus, any time a preferential constraint is satisfied, its value is added
to the value of the closeness to the start of the block function. This
second function is, therefore, skewed upward by a value of WEIGHT + 1,
and since that function decreases by 1 with each day, the value skewed
upward by satisfying the given constraint is thus highter than any nor-
mal (non-preference satisfying) value on the function as many as WEIGHT
days prior,

The EVAL function used to determine the desirability of each slot
examined simply adds the values of any satisfied preferential constraints
to the closeness-to-start-of-block function. MAX VAL adds the highest
weights set for each of the different types of constraints that are ap-
plicable to the day passed to:it. The resulting value is the value of the
best slot on the best court on that day. No guarantee is made that this
slot will be open -- MAX VAL is simply determining the best value that
could conceivably be achieved on that day without going through work of
checking all of the court and team time availability data,

There are two considerations the program takes onto account when try-
ing to determine how many days the search for a given slot should continue.
The primary concern is simply that an available slot be found at some
point that satisfies all of the mandatory constraints. This consideration
is overriding until either a slot is found or the end of the season reached,
The second consideration is really a combination of two things =-- the de=-
sires to satisfy as many preferential constraints as possible and the de-
sire to schedule the game in the earliest possible slot. This second
consideration provides'a limit on the length of the search done is situa=-
tions not governed by the first concern. This limit is the quantity

SEARCH_DAYS that is calculated at the end of the SCHEDULE routine and

£

58

placed in LEAGUE constraint structure. As explained above, in the case

of a single preferential constraint, SEARCH DAYS takes on a value one
greater than the WEIGHT given to that constraint, When a set of preferen-
tial constraints are present, the number of days that will be searched is
limited by the most heavily weighted one of the set (i.e. SEARCH_DAYS takes

on the value MAX(WT1 + WT, + WT, +eee) + 1).

2 3

59

APPENDIX B

PROGRAM LISTING

STRUCTURES. INCL.PL/1 60

declare (misc_ptr, season_ptr) pointer;
declare 1 misc based(misc_ptr).,
2 sport_name char(16) varying.,
2 num_Lleagues fixed,
2 league(5).,
3 name char(1).,
3 num_divs fixed,
2 sport_wke
3 swl fixed,
3 swe fixeds
3 sw3 fixed,
num_courts fixed.,
2 court(10).,
3 name char(8) varyings
3 total_slots »
4 used fixeds
4 Lleft fixed,
num_months fixed.,
first_date fixed.,
end_date fixed.,
month(5),
3 name char(9) varying.,
3 first_day fixed.,
. 3 last_date fixeds
‘ 3 seases /* d1 and d2 contain indices of *x/
4 d1 fixed, /* first and last days of month x/
4 d2 fixed, /* (for use with SEASON array) =/
2 time_slots,
3 Llength fixed decimal(3,1),
3 num fixeds
3 start fixed decimal(3,1)7

i
o

N NN

declare 1 season based(season_ptr).,
2 num_days fixed,
2 day(150).,
day_of_wk fixed,
month fixeds
date fixed,
rel _date fixed,
avail bit(1);

N NN W W

£

o

e,

LEAGUE_DCL.INCL.PL1

declare league_ptr pointer:

declare 1 league based(league_ptr).,

2

[aY]

courte
3 mandatorye.
4 num fixed,
& ct(10) fixed.,
3 pref,
4 yes bit(1),
4 ct(10) fixed,
4 wt(10) fixed,
day«
3 num fixed,
3 pref(S5) fixeds
3 wt(5) fixed.,
time_num fixed.,
time(5).,
3 day fixed.
3 start_slt fixed,
3 end_slt fixed.,
2 wt fixed.,
search_days fixed’

61

DIV_DCL, INCL.PL1 62

declare (div_ptr, div_s_ptr) pointer,

declare 1 division based(div_ptr).,
. 2 num_teams fixed,
2 num_games fixed,
2 team_name(8) char(10) varyinges
2 team_numper(8) fixed,

declare 1 divsched based(div_s_ptr).,
2 n_games fixed,
2 game(56),

t11 fixed,

t22 fixed,

day fixed,

ct fixeds

time fixed,

N W WWW

SCHED_DCL.INCL.PLl 63

declare sched_ptr pointers

declare 1 sched(num_dayses,num_courtss,time_slots.num) based(sched_ptr).,
e 2 t11 fixeds
2 t22 fixed:s

o,

mai

dec

dec

64
n: procedure options{main);

lare court_avail entry (pointer, pointer.,
(156,70) %it(15) varying):/
lare schedule entry (pointers,pointer,(150,10) bit(15) varying)-

%include structures’

dec
dec

lare sysin file stream input;
lare sysprint file stream output-’

declare facavail(150,10) bit(15) varying,

dec
dec
dec

dec
all
all

put
put

put

put
put

get
if

put
put

put
put
get
put
get
put
put
put
put

do

put
get
if

the

els

tare answer char(10) varying.,
lare (i, jo» ks iars, lyg, div, max, teams_scheduled) fixed-,
lare time fixed decimal (3,1);

lare struct_stor area automatic-
ocate misc in(struct_stor) set{misc_ptr)~/
ocate season in(struct_stor) set(season_ptr)’,

skip list("Welcome to the intramural sports scheduling systean.");
skip edit("Useds, properly this program should be of great assistanc"
#"e but you may™) (2 a)s’
skip edit("run into problems if you have not first looked over the',
" user's manual.") (2 a);
skip List("If you have not yet done so, you are advised to stop")’
skip edit("here and do some reading, Do you wish to continue?",
" (y/n) ") (2 a)s
list(answer);
answer = "n" then stop:/
skip List ("Please be careful to always enter data in the format”);
skip edit("specified by the question, Ffor instance, when responses"
+" are given") (2 a);
skip List("in brackets at the end of the gquestion, choose one of").,
skip list("them. What is the sport name ? '),
list(misc.sport_name);,
skip list ("How many leagues (i.e. Ar,B,Csr etc.) will there be 2?2 ");
list (misc.num_Lleagues)’
skip Llist ("You will now be asked for the name of each lLeague andi")’
skip list("the number of divisions in each. Please input the "),
skip list("leagues 1n the order you want them scheduled in. Also,")’
skip list("remember that divisions must have 4 to 8 teams in thea")’

i=1 to misc.num_Lleagues;,

put skip list ("What is the name of league ", i," 2?2 "),
get Llist (misc.league(i).name)’;

put skip list ("How many divisions in league ", i, " 2 ")
get list (misc.league(i).num_divs):

end.s

skip edit ("Is sport a weekend(1), weekday(2), or full-week(3)",
" sport? ") (2 ad);

list (ians);
ians=1
n dos
miscesport_wke.sw?
MisSCeSpOrt_wkaesw?d
misce.Sport_wk.sw3
end,
e if ians=2

then dos

non
o~ -
Ne Ne N

65

misc.sport_wk.swl = 2;
misc.sport_wka.sw2 = 67
miscesSport_wk.sw3 = 1;
ends

else do’
misc.sport_wk.swl = 1;
misc.sport_wk.swe2 = 7,
miscesport_wk.sw3 = 1;

end,

put skip list ("How many months does the regular season span ? "):

get list (misc.num_months)/;

do i=1 to misc.num_months,
put skip edit ("what is the name of month", i,
get list (misc,month(i).name)’

?2.") (ar, £(2,0),

put skip list ("Wwhat day of the week does this month start on? ")/
put skip list("Please give a number, i.e. Sunday=1, Friday=6, etc.

get list (misc.month(i).first_day):’

put skip list ("How many days in this month ? i,
get list (misc.month(i).last_date)’;

end,

e. 28,29,30,0r 31

put skip edit("what date will season start on? (i.e. the first day"”.,

” 114

in "smonth(1).name," that's i
get Llist (misc.first_date).
put skip edit ("Wwhat date will season end on ? (no

n season) ") (4 a)

month,",

" just date)") (2 a):

get list (misc.end_date)-

put skip list ("How many courts are available ? ")
get list (misc.num_courts);
put skip edit ("How long are the time-slots for eac

h game? Please re

+"ond with a fraction”™) (2 a):

put skip edit("representing the number of hours. (i
" 1.5 ™) (2 al),
get List (misc.time_slots.length);

.. 90 minutes =",

a),

"),

"):

.
’

Sp"

put skip Llist ("When does the earliest time slot (on any day) start?");

put skip edit (" ","[9:30 a.m. = 9.5, 1:00 pem. =

get list (misc.time_slots.start);

put skip List ("Wwhen does the latest time-slot (on

get List (time):

misc.time_slots.num = (time - misc.time_slots.start
misc.time_slots.lengt

/* given the above info. we can now determine what
/* the season and what courts will be available on
/* info. will be stored in 'season' and 'facavail’®
call court_avail (misc_ptrs, season_ptr, facavail)’;

call schedule (misc_ptr, season_ptr, facavail);

free misc,
free seasons

end; /* main x/

13.01 ™) [(a(6),
any day) end? "):

) |/
h 7

days will be in */
each day. This =/
respectively */

a),

66
court_avail: procedure (misc_ptrs season_ptr, facavail);

declare create_season entry (pointer, pointer).;
%“include structures,

declare sysin file stream input’

declare sysprint file stream output,

declare facavail (150, 10) bit(15) varying’
declare 1 court (10).,
2 day(7),
3 day_avail bit(1),
3 time_slot bit(15) varying,
declare (hour, imon, idate, iday, old_num_slots, new_num_slots) fixed,
declare (i, icts last_slot, mins, d_o_w) fixeds
declare time fixed decimal(3,1)~
declare (time_slot_strings, new_slot_string, old_slot_strings, nil_string)
bit(15) varying-
declare ans char(10) varying:
declare min char(2)’
declare day_name(?7) char(9) varying initial(”"Sunday","Monday".
"Tuesday”."Wednesday","Thursday","Friday”.,"Saturday"):

do i = 1 to num_courts/

court(i).total_slots.used = 0/
court(i).total_slots.left = 0’

end’;

last_slot = misc.time_slots.num;
nil_string = ""b’
do i = 1 to last_slot?’
nil_string = nil_string Il "0"b’
end;

/* input names of facilities in default order of preference */

put skip(2) Llist ("Please enter the names of the courts in their");

put skip list ("default order of preference.”")’

do i = 1 to misc.num_courts;,
put skip list ("what is the name of facility ",i,"? (8 chars max)");
get list (misco.court(i).name)’;
end:

/* output time-sloté so user will know index num. of each */

time = misc.time_slots.start’
do i = 1 to last_slot~?
hour = floor (time),
mins = (time - floor(time)) * 60,0:
if mins = 0 then min = "00",
else min = "3(0",
if hour > 12 then put skip edit("Time-slet ",i," is ",hour-12, ":",
mins, " p.m.”) (2 (ar f(2,0)), 3 ad);
else if hour = 12
then put skip edit("Time-slot ",i," is ",hour,":",
mins" pemo™) (2 (arf(2,0)), 3 a)-
else put skip edit("Time-slot ",i," is ",hour, ":",
mines " a.m.") (2 (a, f(2,00), 3 a);
time = time + misc.time_slots.length’
end;

67

/* create sample-week of time-slot availabilities for each court */
put skip edit ("You will be asked to enter the availabilities of ",
"each of the courts”) (2 a)’;
put skip edit ("for the 'typical' days in the season. Please enter",
" these availabilities as ") (2 a)’
put skip edit (tast_slots, "-bit numbers with a 1 for each available"”,
"time-slot") (f(2,0), 2 a):
put skip Llist ("and a O for each unavailable slot ")/
do 1day = misc.sport_wk.swl to misc.sport_wk.sw2 by misc.sport_wka.sw3’
do ict = 1 to misc.num_courts;
put skip edit ("Please enter the availability of court '",
misc.court{(ict).namer "' on a typical ", day_name(iday))
(ar as» ar al:
get list (court(ict).day(iday).time_slot)’;
end; /* do ict */
end. /* do iday */

put skip list ("Were all strings entered correctly ? (y/n)"):;
get list (ans)’
do while (ans = "n");
put skip Llist ("Enter day of week to be changed as a number ")’
get Llist (iday):
put skip list ("Enter court number to be changed ")/
get list (ict),
put skip list ("What is the correct availability string 2?2 "),
get list (court(ict).day(iday).time_slot)’,
put skip list ("Is everything correct now ? "),
get list (ans);
end’;

/* determine available days in full season */
call create_season (misc_ptr, season_ptr);

/* apply sample week to season to get approximate time-slot */
/* availability for each court */

do iday = 1 to season.num_days-
if season.day(iday).avail = "1"b
then do-
d_o_w = season.day(iday).day_of_wk~
do ict = 1 to misce.num_courts’,
time_slot_string = court(ict).day(d_o_w).time_slot/
facavail(iday, ict) = time_slot_string’
do i = 1 to last_slot’
if substr(time_slot_string, i, 1) = "1"b
then court(ict).total_slots.left
= court(ict).total_slots.left + 1;

end, /* do i */
end, /* do ict =/
end, /* then do (if season.,.) */
else do ict = 1 to misc.num_courts, /* day's availability is nil =/
facavail (iday, ict) = nil_strings
end’ /* else do ict */
end. /* do iday */

/* now input exceptions to generalized court availabilities */

put skip(2) list ("Are there any days on which more or fewer time");
put skip Llist ("slots than usual will be open ? (y/n)")’

68

get List (ans);

do while (ans = "y");
put skip Llist ("Input the name of the court whose availability)7
put skip list ("is to be changed.");
get list (ans);
do 1 =1 to 10,
1f misc.court(i).name = ans then ict = 1i;
end’
put skip list ("Input the number of the month, and the date to be'",
" modified.")’,
get ltist (imon, idate)’

do iday = month(imon).seas.dl to month(imon).seas.d2-
if season.day(iday).date = idate
then do-
old_slot_string = facavail (iday, ict);
old_num_slots = 0/

do 1 = 1 to last_slot’
if substr(old_slot_string, i, 1) = "1"p
then old_num_slots = old_num_slots + 1;
end; /* do 1 */

put skip edit ("Please enter the availability of court ",

misco.court(ict).name, " on ", month(imon).name, idate)
(ar, ar a» ar, f(3,0));

put skip edit ("as a ", last_slots, "=-bit number with a 1",
"for each available time_slot and a 0") (a,f(2,0),2 a):

put skip list ("for each unavailable slot")’

get list (new_slot_string),

new_num_slots = 0,

do i = 1 to last_slot,

if substr (new_slot_string, i, 1) = "1"p
then new_num_slots = new_num_slots + 1/
endg-s /* do i1 */

facavail (idays, ict) = new_slot_string’
misc.court{ict),total_slots.left = court(ict).total_slots.left
+ new_num_slots - old_num_slots~

/* desired change made; exit day loop and check for */
/* further changes */

iday = 2007
end, /* if season.day(iday)es.. */
end; /* do iday x/

put skip list ("Are there other days that have fewer or more');
put skip List ("time slots than normal ? (y/n)");

get list (ans)s

ends /* do while (ans = "y") x/

return;
end’ /* court_avail =*/

69
create_season: procedure (misc_ptrs, season_ptr),
%Zinclude structures;,

declare sysin file stream input’

declare sysprint file stream output.,

declare (swlsswl2eseswirdatel,imons,iwksidatersidayrsincr) fixed:
declare (i,sundaterdow_lastsrel_datesday_of_wk) fixed:
declare ans char(1);

season.,num_days =
imon, idate, iday
rel_date = 0,
datel = misco.first_date:

day_of_wk = misc.month(1),first_day-
swl = misco.sport_wk.swl:

swZ2 = misce.sport_wk.swls

sw3 = misc.sport_wk.sw3;

0s
= 1;

/* Find date of Sunday starting first week of season */

do sundate = (2-day_of_wk) to 31 by 7,
if (sundate+7) > misc.first_date then go to sundate_found/
end~’

sundate_found:
/* fill out (possibly partial) first week of month =*/

dow_Llast = 1.
idate = sundate’
misc.month(imon).seas.dl = iday-,
do day_of_wk = swl to sw2 by sw3’;
incr = day_of_wk - dow_last’
rel_date = rel_date + incr;
idate = idate + incr;
if (idate > misc.month(imon).last_date) then go to end_month’
if idate >= datel
then do.
season.day(iday).day_of_wk = day_of_wk’
season,day(iday).month = imon;
season.,day(iday).date = i1date,
season.,day(iday).avail = "1"b;
season.,day(iday).rel_date = rel_date’
iday = iday + 1,
end’ /* if didate */
dow_Llast = day_of_wk~
end; /* do day_of_wk */
dow_Llast = dow_last - 77

/* fill out remaining weeks of month */

do iwk = 2 to 57
do day_of_wk = swl to swd by sw3’

incr = day_of_wk - dow_last’
idate = idate + incr;
rel_date = rel_date + incr,

if (idate > misc.month(imon).last_date) then go to end_month’,
season.day(iday).day_of_wk = day_of_wk~,
season.day(iday).month = imon.,

RN

70

season.day(iday).date = idate-,
season.day(iday).avail = "1"b;
season.day(iday).rel_date = rel_date,

iday = iday + 1,
dow_Llast = day_of_wk~

ends /* do day_of_wk */
dow_Llast = dow_last - 7,
end’s /* do iwk *x/

end_month:

misc.month{(imon).seas.d2 = iday -1,
imon = imon + 1,
if imon > misc.num_months then go to end_season/

datel = 1;
/* find date of Sunday starting week containing first of next month x/
sundate = 2 - (misc.month(imon).first_day)’;

rel_date = rel_date + (misc.month(imon-1),last_date+sundate) - idate;
go to sundate_found:’

end_season:
/* remove days that are past last_date in season */

do i = (iday-1) to (iday=-33) by -1;
if season.day(i).date <= misc.end_date then go to exceptions;
else season.,day(i).avail = "0"b,
end-s

exceptions:

season.num_days = 1,
put skip(2) list ("You will now be asked for dates (e.g. Holidays)")’
put skip list ("which fall on days normally part of the season, but"):’
put skip Llist ("on which no games will be played. Note that this"),
put skip list ("does not include days on which only some of the");
put skip list ("courts are unavailable.,”"):
do imon = 1 to misc.num_months,
put skip list ("Are there any unavailable days in ",
misc.month{(imon).name, " ?2");
get List (ans)’;
do while (ans = "y");
put skip list ("what is the date ?");
get List (idate)’
do i1iday = month(imon).seas.dl to month(imon).seas.d?:
if idate = season.day(iday).date
then season,day(iday).avail = "0"b;
end;
put skip list ("Any more unavailable days in ",
misc.month(imon).name, " 2?2 (y/n)");
get List (ans)’
end’ /* do while */
ends /* do imon */

end’; /* create_season */

.

71

schedule: procedure(misc_ptr, season_ptr, facavail),

declare div_sched entry (pointerspointer,pointer,pointer,fixed,fixed,
fixed, (150,10) bit(15) varying);

4include structures:

%Zinclude league_dcl;

Zinclude sched_dcl;

declare sysin file stream input’,
declare sysprint file stream output’,

declare facavail(150,10) bit(15) varying’,

declare answer char(10) varying:

declare (i, j» ks Llygs dive maxs, teams_scheduled) fixed;
declare storagge area automatic-

allocate league in(storagge) set(league_ptrl;

allocate sched in(storagge) set{(sched_ptr)’;

do 1 = 1 to season.num_days-
do j = 1 to misc.num_courts/
do k = 1 to misc.time_slots.num;
sched (i,jok).t11 = 07
sched (i,jrk).t22 = 07/
end;
end’

end;
teams_scheduled = 0/

do Llg=1 to misc.num_Lleagues’
put skip(2) edit ("We are now ready to schedule ",
misc.league(lg).name, "~league”) (3 a)’;
put skip edit ("Is there a mandatory court (or courts) for this",
* league? (y/n) ") (2 a);
get Llist (answer):
if answer = "y"
then do’
put skip list ("How many ? ");
get list (league.court.mandatory.num)’;
put skip edit ("Please input the numbers of these courts in".,
" preferential order”) (2 aj.,
do i=1 to league.court.mandatory.num;
put skip edit("Court ", i, " 2?2 ") (a, f(2,0), a):
get Llist (league.court.mandatory.ct(i));
end’
end; /* then do */
else do-
league.court.mandatory.num = 0;

put skip edit ("Are there preferred courts for this league? (If",

nots, the order in which the") (2 a);’

put skip edit("court names were originally entered will be used”,

" as the default.) ") (2 a):
get list (answer):
if answer = "y"
then dos
put skip edit ("Enter the court numbers in order of desira”,
"bility., Along with each”) (2 a)s
put skip edit("court number please enter a weighting factor"”,
" reflecting how desirable”) (2 a);
put skip edit("that court is. The weight represents the'",
" number of days that") (2 a):

72

put skio edit("you are willing to push a game back in the',
" schedule in order to have') (2 a)s
put skip List("it scheduled on that court.”):
do i=1 to misc.num_courts,
out skip edit ("Court ", i, " 2 ") Car (2,0}, a):
get list (league.court.pref.ct(id));
put skip list ("what is the weight for this court ? ")?
get list (league.court.pref.wt(id)’
end; /* do 1 */
league.court.pref.yes = "1"b’/
end; /* then do */
else league.court.pref.yes = "0"b/
ends /* else do (if mand.courts...) */

put skip edit ("Are there any preferred days of the week for schedul"
+"ing",misc.league(lg).name,"~-league games ? (y/n) ") (4 a);
get list (answer):
if answer = "y"
then do:
put skip list ("How many preferred days are there ? ")
get list (league.day.num).
put skip edit ("Please enter these preferred days in order of".,
" desirability. Along with') (2 a),;
put skip edit("each day enter a weighting factor corresponding to"
+" the number of days you") (2 a)s
put skip edit("would be willing to delay the scheduling of a",
" particular game to make") (2 ad;
put skip List("it fall on that day. ")
do 1=1 to league.day.num-,
put skip edit ("Day ", i, " ?2 ") (a, f(2,0), a)-;
get list (league.day.pref(il)),
put skip list ("Weighting factor ? "),
get list (league.day.wt(id));

ends /* do i */
end’ /* then do */
else league.day.num = 07

put skip edit ("Are there any times that are preferred for schedul",
"ing"s, misc.league(lg).name, "-{league games ? ") (4 a);
get list (answer);
if answer = "y"
then do-
put skip edit("Preferred times consist of a block of time-slots”,
" on a particular day of'") (2 al):
put skip edit("the week. You may specify up to 5 such blocks by".»
" giving the day, starting") (2 a);
put skip edit("slot and ending slot of each prefered block. You',
" will also be asked to give") (2 a):;
put skip edit("a weight to eacn block corresponding to the num'",
"ber of days a game's") (2 a),
put skip edit("scheduling may be delayed in order to fall into",
" that block.™) (2 al)s
put skip list ("How many such blocks do you wish to specify 2?2 ")/
get list (league.time_num);
do i=1 to league.time_num,
put skip edit ("Enter the number corresponding to the day on",
" which™) (2 a)s
put skip edit("block ", i, "(in preferential order) occurs. ™)
Cas f(2,0), al;
get list (league.time(i).day)~/

73

put skip edit ("Enter the number of the time-slot which ",
"begins this block.”) (2 a)s

get list (league.time(id.start_slt),

put skip edit ("Enter the number of the last time-slot in",
" blockes") (2 a)s

get list (league.time(id.end_slt)’;

put skip List ("weight for this block 2 "),

get list (league.time(i).wt)/

end, /* do 1 */
end’ /* then do */
else league.time_num = 0’

/* Use weights entered above to determine the number of schedule */
/* days that will be searched in lLooking for each game"s most */
/* appropriate time-slot (best-fit) */

max = 0
if Lleague.court.pref.yes = "1"b
then do i=1 to misc.num_courts,
if league.court.pref.wt(i) > max
then max = league.court.pref.wt(i);
end’
if league.day.num > (O
then do i=1 to league.day.num-
if league.day.wt(i) > max then max = league.day.wt(i)~/
end,
if league.time_num > 0
then do i=1 to league.time_num;
if league.time(i).wt > max then max = league.time(i).wt’
end;
{eague.search_days = max + 1,

/* now that parameters for league are specified, loop through all =*/
/* the divisions in this league and schedule each one. */

do div=1 to misc.league(lg).num_divs-,
call div_sched{misc_ptrs season_ptr, league_ptr, sched_ptr, Lg»
dive teams_scheduled, facavail);
end; /* do div */
end’, I+ do Lg */

free League;
free sched’;

end; /* schedule */

div_sche

declare
declare

declare
declare
declare

%Zinclude
%include
Zinclude
%Zinclude
declare
declare

declare

declare

declare

declare
allocate

74

d: procedure (misc_ptr, season_ptr, league_ptr, sched_ptre.
lgs divs teams_scheduled, facavail):

team_pair entry (fixed, fixed, (14, 4, 2) fixed).
eval entry (fixeds, fixeds, fixed, fixed, pointer, pointer, fixed)
returns (fixed)’
max_val entry (fixed, fixed, pointer, pointer) returns(fixed)’
relax entry (pointer, pointer)’
printout entry {(pointer,pointers,pointer,pointers,pointer,
fixeds, fixed)s

league_dcl~/

structures.,

div_dcl’;

sched_dcl;

sysin file stream inputs,
sysprint file stream output’,

1 team(8),
2 date(season.num_days)e.
3 play_day bit(1),
3 play_time bit(15) varying;

1 change(56).,
2 day fixed,
2 ¢t fixeds
2 time fixed’

1 start_weeks
2 mon fixed.,
2 rel_date fixed’

stowe area automatic:
division in(stowe) set(div_ptr);

allocate divsched in(stowe) set(div_s_ptr):

declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare

nil_stri
do i =1

num_changes fixed initial (1)’

(lge dive sit1, slt2, num_weeks, icts, value, best_fit) fixed’;
(best_fit_days, best_fit_time, best_fit_cts, i, t, tl1, t2) fixed’
(ts1, tsls current_days, d, imon, idate, weeks, gmsnum_cts) fixeds
(games_per_week, len, ts, start_days,teams_scheduled) fixed;
(jekeidayrsdaylsmin_space, end_Llast_week, end_this_week) fixed:
(court_Llist(10), divgame, high) fixed’

pairings{(14,4,2) fixed,

(facavail(150,10), one_string, nit_string) bit(15) varying’
availability bit(15);

ans char(1)>

ng, one_string = ""b,
to misc.time_slots.num’

nil_string = nil_string |1 "0"b:

one_string

end;

one_string I "1"b,

divsched.n_games = 0;

do i = 1

divsched.game(i) . t11
divsched.game(i).t22

end’;

to 56,
0,
0.

put skip(2) list("We are now ready to schedule division number ",div)’;

E2

i,

75

put skip edit (" of ", misc.leaguel(ly).name, "-league
put skip Llist (How many teams in this division? (must be 4 t
get list (division.num_teams)’
put skip List("How many games will each team play? "),
get list (division.num_games),
do i=1 to division.num_teams,
put skip edit ("what is the name of team ", i, " 7?2 ") (a.,
get list (division.team_name(i));

end.,
divsched.n_games = (num_games * num_teams) / 2/
if num_teams = 5 then divsched.n_games = (num_games + 1) * 2;
if num_teams = 7 then divsched.n_games = (num_games + 1) * 3;

/* set up team_pairings array for this division, given number
/* teams and number of games each will play =*/

call team_pair (division.num_teams, division.num_games, pairi
/* input time constraints for each team in division */

do t=1 to num_teams.
division.team_number(t) = t + teams_scheduled’
do d=1 to num_days-
team(t).date(d).play_day = "1"b;
team(t).date(d).play_time = one_string-
end,
end;
put skip list ("Are there any days in the season on which one
put skip list ("the teams in this division cannot play? (y/n)
get List (ans).,
do while (ans = "y");
put skip List ("what team? (enter its number) ");
get Llist (t)/
put skip Llist ("What month and date is ", team_name(t)),

put skip lList (" not able to play on? (enter as numb
get list (imon, idate)’
do i = month(imon).seas.dl to month(imon).seas.d2-
if season.day(i).date = idate
then do-
iday = 1,
i = 150, /* exit loop */
end’
end’,

team(t).date(iday).play_day = "0"b;
team(t).date(iday).play_time = nil_string-

put skip List ("Are there more days on which teams in this
put skip List (" division cannot play? (y/n) "™):
get list (ans)’;

end’ /* do while */

") (3 a)
o 8) "):

(1,00,

of */

ngs) ./

of"):

")s

ers) ")

¥

put skip(2) List ("Are there any time_slots (or blocks of slots)")’
put skip List (" on which teams in this division cannot play? ");

get list (ans).

do while C(ans = "y");
put skip Llist ("what team? (enter number) ")’
get list (t)~;

put skip Llist ("what month and date? (enter month as number) "):

yet list (imon, idate);
do i = misc.month(imon).seas.d1l to month(imon).,seas.d?2,

.
’

a)s

76

if season.day(i).date = idate
then do-
iday = 1i;
i = 1507 /* exit loop */
end’; /* then do */
end; /* do 1 =/
put skip Llist ("Now enter the numbers corresponding to the first"
put skip Llist (" and last time-stots in the unavailable block

get Llist (sltl1, slt2);
do i = slt1 to slt2’
substr(team(t).date(iday).play_time, i, 1) = "0"b’

)

) s

ends
put skip list("Are there more blocks of time slots on which teams")/
put skip Llist (" in this division cannot play? (y/n) "),
get list (ans);
end; /* do while x/

/* Create court_Llist for division, Will include mandatory courts if */

/* such exists, and preferential ordering of all courts otherwise */

if league.court.mandatory,num > 0
then do-
num_cts = league.court.mandatory.num;/
do i = 1 to num_cts.
court_Llist(i) = league,court.mandatory.ct(i),
end’;
end’;
else do-
num_cts = misc.num_courts,
if league.court.pref.yes = "1"t
then do 1 = 1 to num_cts,
court_Llist(i) = league.court.pref.ct(i)d;
end,
else do i = 1 to num_cts’
court_List(i) = i,
end,
end’ /* else do */

schedule:
/* schedule season for this division one 'week' at a time */

put skip list ("How many days would you like to leave between"):;

put skip List (" consecutive games for each team in this division ")/

get list (min_space),
if (division.num_teams = 5) | (division.num_teams = 7)
then do-
num_weeks = division.num_games + 1;
if division.num_games >= division.num_teams
then num_weeks = num_weeks + 1;
games_per_week = (division.num_teams - 1) [/ 2;
end:
else do~
num_weeks = division.num_games;,
games_per_week = division.,num_teams / 27
ends

end_Llast_week = season.day(1).rel_date - min_space-’
start_week.mon = 1;

do week
end_t

do 1
if
th

en
/* Lo

do gm
t1
t2
cu
/] *
I/ *
] *
da
be

new_day:

/* 1f
/* th
/* fi
/* wi

if (¢
(d

then
if
el

77
= 1 to num_weeks,
his_weeks start_week.rel_date = end_last_week + min_space;
= misc.montn{(start_week.mon).seas.dl to 150~

season.day(i).rel_date >= start_week.rel_date
en dos
start_day = i~

if 1 > misc.month(start_week.mon).seas.dZ then
start_week.mon = start_week.mon + 1;
i = 1507
end:
ds /* do i */

op through games to be scheduled in this week (block) =*/

1 to games_per_week;

= pairings (weeks, gms, 1),

= pairings (week, gms 2),;

rrent_day = start_day.
DAY1 records first slot found for scheduling current game. */
Until one is found, it is set at end_of_season since search */
is cut off at (DAY1 + SEARCH_DAYS */

yl = season.num_days~

st_fit = 0,

we have reached end_of_season or have gone SEARCH_DAYS past */

e first open slot found, we should schedule game in the pbest */
tting position found (unless BEST_FIT = 0, ==> end_of_season */
th no slot found. In that case, scheduling bombed.,) =*/

urrent_day > season.num_days) |
ay(current_day).rel_date - day(dayl).rel_date > search_days)
dos
best_fit = 0 then go to bomb/
se dos
[% & k% ok k ok Record game in best slot **xxsxx&*x/

substr(facavail(best_fit_daysbest_fit_ct)obest_fit_time,1)="J3"b/
sched (pest_fit_day, best_fit_ct, best_fit_time).t11 =
division.team_number(t1)’;
sched (best_fit_day, best_fit_ct, best_fit_time).t22 =
division.team_number(t2)’
divgame = (week-1)*games_per_week + gm;,
divsched.game(divgame) ., t11 t1;
divsched.game(divgame),t22 te’
divsched.game(divgame) .day best_fit_day~s
divsched.game(divgame).ct = best_fit_ct’
divsched.game(divgame).time = best_fit_time,

/* must keep track of changes made to court availabilities in x/
/* case division must be rescheduled (so they can be undone) */

change(num_changes).day = best_fit_day-
change{num_changes).ct = best_fit_ct~
change(num_changes).time = best_fit_time-

num_changes = num_changes + 1/,

court(best_fit_ct).total_slots.left =
court(best_fit_ct).total_slots.left - 1,

court(best_fit_ct).total_slots.used =
court(best_fit_ct).total_slots.used + 17

i

,,,,,

e,

78

if season.day(pest_fit_day).rel_date > end_this_week

then end_this_week = season.day(best_fit_day).rel_date,

go to new_game.,
/***x*x Finished Recording *x*xxxx/

end;, /* else do (if best_fit = 0) =»/

end’ /* then do (if day(current_day).rel_date)... */
if (team(tl1).date(current_day).play_day = "C"b) |

(team(t2).date(current_dayl).play_day = "0"bp)
then do-

current_day = current_day + 1;

go to new_day:-

ends

/* check to see if game scheduled on this day could possibly %/
/* improve on current best_fit */

high = max_val((current_day, dayl, season_ptr, league_ptr);
if best_fit > high
then dos

current_day = current_day + 1

go to new_days

end;,

/* Examine court and time-slot combnations for this day =*/

do ict = 1 to num_cts/
/* Look for acceptable time-slot on this day and court. */
/* Look first for preferred slots =*/
availability = team(tl1).date(current_day).play_time &
team(t2).date(current_day).play_time &
facavail(current_days, court_Llist(ict));
if league.time_num > 0
then do i = 1 to league.time_num-
if season.day(current_day).day_of_wk = league.time(i).day
then do-/
ts1 = league.time(i).start_slts,
ts2 = league.time(i).,end_slt’;
do ts = ts1 to ts2:/
if substr(availability, ts, 1)
then do-

ll‘!llb

value = eval (ts, current_days, daylscourt_List(ict),
season_ptresleague_ptromisco.num_courts),

if value > best_fit
then do-s

/* if this is first open slot found for this */

/* game, record day in DAYT1 =*/
if best_fit = 0 then dayl = current_day:
best_fit = value;

best_fit_day = current_day.,
best_fit_time = ts;
best_fit_ct = ict;
end.,

go to day_done,

end; /* then do (if substr) =*/

end- /* do ts *x/
end; /* then do (if seasonN...) */

end;’ /* do 1 */

79

/* either no success with preferred slots or no */
/* preferred slots exist - loop all slots */

do ts = 1 to misc.time_slots.num’
if substr(availability, ts, 1) = "1"p
then dos
value = eval(tss,current_dayesdaylecourt_Llist(ict),
season_ptr, league_ptrs, misc.num_courts);
if value > best_fit
then do,
/* if this is first open slot found for this =*/
/* game, record day in DAY1 =/
if pest_fit = 0 then day?l = current_day’
best_fit = value’
best_fit_day = current_day-’
best_fit_time = ts/
best_fit_ct = icts

end,
if value = high /* max_val for day has been obtained */
then go to day_done;
else go to new_court’; /* Look for pref, time x/
end; /* then do (if substr) x/
end’ /* do ts */

new_court:
/* try a new court on this day. Look first for a prefered */
/* time-slot on that day -- if that fails, look for any slot =/
/* open on that court =-- if that fails, go to new court again., */
end, /* do ict */
day_done:
/* have gone through all appropriate courts and time-slots */
/* on this day’, try new day =*/
current_day = current_day + 1;
go to new_day.,
new_game:
/* jump to here after a game has been scheduled */
end’; /* do gm */

end_last_week = end_this_week/
end’ /*do week *x/

/* all scheduling for this division has been completed */

call printout (misc_ptrs, season_ptr, div_ptr, div_s_ptr, sched_ptr.,
lgr, div),

teams_scheduled = teams_scheduled + division.num_teams.,

free division’
free divsched:

return;

80
/*************k*****************t**************‘k****l

bomb:
/* if control passes here, division scheduling could not be completed /
/* try new smaller min-space between blocks (weeks) of games */

put skip Llist (" Scheduling of division was unsuccessful with a")’;
put skip edit ("min-space of ", min_space, "Would you like more info? ")
(ar fC2.,0), a)s
get list (ans);
if ans = "y"
then do-s
put skip data (weeks, start_week, end_last_week, end_this_week)’
put skip Llist ("More info ? (facility availabilities) ")’
get list (ans).
if ans = "y"
then do’
put skip data (start_days, current_day, court(*).total_slots),
do i = start_day to current_day-’
put skip data (facavail (i,*));
end,
end; /* then do */
end; /* then do */
put skip list ("Would you like to rerun with a new min-space? (y/n) ");
get list (ans)’/

if ans = "y

then do- /* re~open slots that were used during bomb run *x/
call relax (misc_ptr, league_ptr);
do i =1 to (num_changes -~ 1),
substr(facavail(change(i).day, change(i).ct), change(i).time, 1)
= 0'1"b;

sched(change(i).daysr,change(i).ctrchange(id.time).t11 = 0/

sched(change(i).,dayschange(id.ctrchange(id).time) . .t22 =

divsched.game(i).t11 = 0,

divsched.game(i).t22 = 0~

court(change(i).,ct) total_slots.left =
court(change(i).ct).total_slots.left + 1/

court{(change(id.ct).total_slots.used =
court(change(i).ct).total_slots.used - 17/

ends; /* do i */
num_changes = 1;
go to schedule,
end, /* then do */

end; /* div_sched */

81

team_pair: procedure (num_teams, num_games, pairings)s:

declare sysprint file stream output:

declare (num_teams, num_games, games_per_week, i, week, game)

declare (array_lines, first_line, n_games) fixed’
declare pairings (14,4,2) fixed;

declare index (14) fixed:,

declare array (7,4,2) fixed:

declare t(5) label;

if num_teams < 4 | num_teams > 8 then go to bad:
else go to t(num_teams - 3);

t(1): call four(array_Llines, games_per_weeks, array., i),
go to good-

t(2): call five(array_lines, games_per_weeks, array, i),
go to good,

t(3): call six(array_Llines, games_per_weeks, array, i)’
go to good-

t(4): call seven(array_Llines, games_per_week, array, i)
go to goods

t(5): call eight(array_Llines, games_per_week, array, i),
go to good:s

bad: put skip List ("Too many or too few teams");
return;

good:

fixeds

/* determine first-line of (raw data) 'array' to use such that */

/* Last line will be placed in last week in 'pairings'.
/* necessary to utilize seeding capability of scheduling

n_games = num_games + i,

This

*x/

is */

first_Lline = mod (array_lines-mod(n_gamessarray_Lines),array_LlLines):

if first_line = 0 then first_line = array_Llines’;

/* fill 'index' array with the line numbers of ‘array' to be */

/* used in filling 'pairings' array */

do i = 1 to n_games’
index(i) = mod (first_Lline + i, array_Llines);
if index(i) = 0 then index(i) = array_Llines’
end;

/* now fill 'pairings' */
do week = 1 to n_games;
do game = 1 to games_per_week,
pairings(weeks, games, 1) = array(index(week), game,
pairings(weeks, game, 2) = array(index{(week), game,
ends
end’

return;

Jhhkhkhkhkhhhkkhkhkhhkhhhhhkhkhhhkkhkkkkk kA Xk kk ok /

four: procedure(array_Llines, games_per_weeks, array., i);

tin

s,

82

declare (array_LlLines, yames_per_week, i) fixed,

declare array (7,4,2) fixed,

declare a_ray(7,4,2) fixed initial (2,3,1,4,0,0,0,0,
2’4'1'3’0’0’0’0' 3'4'1’2’0’0’0'0’ O’OIO’UIOIOIDIO’
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,G,G, 0,0,0,0,0,0,0,0);

array = a_ray.,
array_Llines = 3;
games_per_week = 27/
i = 07

return,

ends

Jodhhkhkhhkhkhkdkhkhkhkhkhkhkhkhkhkhkhkkk kA Ak khkkkhkkkn/

five: procedure(array_Llines, games_per_week, array, i)s;

declare (array_Llines, games_per_week, i) fixed:

declare array (7,4,2) fixed:

declare a_ray (7,4,2) fixed initial (2,4,1,5,0,0,0,0,
2’3’1"0’0’0'0’0’ 4’5’1'3'3'0'0’0' 3'5’1IZIOIOIOIOI
2+46+2,50,0,0,0,0, C,0,0,0,0,0,0,0C. 0,0,0,0,0,0,0,0);

array = a_ray.,

array_Llines = 5;

games_per_week =

i =1,

27

return;,
end’

/***************************************/

six: procedure(array_lines, games_per_week, array, 1)

declare (array_Llines, yames_per_week, 1) fixed,

declare array (7,4,2) fixed’

declare a_ray (7,4,2) fixed initial (3,4,2,5,1,6,0,0,
3+6+,2+s6+15,5,0,0, 5+6+,2+,3,1,4,0,0, 4,5+02+,6¢1,3,0,0,
305040601,2+,0,0, 0,06,0,0,0,0,0,0, 0,0,0,0,0,0,0,0)7

array = a_ray,

array_Llines = 5;

games_per_week = 3;

i = 0/

return;
end,

/************i*********t**************/

seven: procedure(array_Llines, games_per_weekes array, i).

declare (array_Llines, games_per_weeks, 1) fixed,

declare array (7,4,2) fixed’

declare a_ray (7,4,2) fixed initial (3,5,2+6,1,7,0,0,
3"”2’5'1’6'0'0' 6I7I2l411I5'O’OI SI?I2I3I1I‘DIO’OI
4+7+45+6,1,3,0.,C, b26+3,7+,1+,2,0,0, L445+,306,2,7,0,0)7

array = a_ray:-

array_Llines = 7;

games_per_week 33

bl

i

St

‘‘‘‘‘‘

srmtices

83

return,
end,

/***************************************/
eight: procedure(array_lines, games_per_week, array, i)’

declare (array_Llines, games_per_week, 1) fixed,

declare array (7,4,2) fixed:

declare a_ray (7,4,2) fixed initial (4,5,3,6,2,7,1,8,
L49B+3,5+s2+6,1.7, Lbo7¢3,8+2+5,146, 608+3+74+2+4,1,5,
SsB82607+2+3+,1,4, Lbs6+507+2,8,14+3, 5+066,3,4+7,8+1,2):

array = a_ray;

array_Llines = 7;

games_per_week = &4;

i =07

return;
end’

[ok ek khkkhhhhkhkhkkhhkkkkkhkkhk kX kA khk k& /

end’ /* team_pair */

e

84

max_vals: procedure (iday, dayl, season_ptrs, league_ptr)
returns (fixed),

Zinclude structures’
Zinclude league_dcl;

declare (idays, rel_datel, best_value, i, days_from_start) fixed’
declare (max_weight, rel_date_nows dayl, end_season) fixed:

/* Determine closeness of current day to start of block. Value =*/
/* decreases linearly with distance, reaching 0 at end of season. */
/* This rewards any possible scheduling and favors tight packing. */

rel_datel = season.day(dayl1).rel_date’

rel_date_now = season.day(iday).rel_date’;
days_from_start = rel_date_now - rel_datel - 1;
end_season = season.day(season.num_days).rel_date’,
best_value end_season - season.,day(iday).rel_date + 1;

/* determine maximum possible value of satisfying court preference */

if (league.court.mandatory.num = 0) & (league.court.pref.yes = "1"p)
then do,
max_weight = league.court.pref.wt(1);
if max_weight > days_from_start
then best_value = best_value + max_weight + 1;
end’

/* determine max, possible value of satisfying day preference */

do 1+ = 1 to league.day.num’;
if Lleague.day.pref(i) = season,day(iday).day_of_wk
then do-s
max_weight = league.day.wt{(i)’;
if max_weight > days_from_start
then best_value = best_value + max_weighkt + 1,
i = 67 /* exit from Lloop */
end’,
ends

/* determine max. possible value of satisfying time_slot preference */

do i = 1 to league.time_num;
if league.,time(i),day = season.day(iday).day_of_wk
then do-
max_weight = league.time(i).wt?
if max_weight > days_from_start
then best_value = best_value + max_weight + 1;
i = 67 /* exit from lLoop */
end’
end,

return (best_value)’

end’ /* max_val */

.

85

eval: procedure (ts, idays. dayl, ict, season_ptr, league_ptr, num_cts)

returns (fixed);

%include structures;
%include league_dcls

declare (ts, iday., dayl, icts, i1, days_from_start, rel_datel) fixed’,
declare (rel_date_now, end_season, value, weight, num_cts) fixeds’

/* Determine closeness of current_day to start of block. Value */
/* decreases linearly with distance, reaching 0O at end of season. */
/* This rewards any possible scheduling and favors tight packing. */

rel_datel = season.day(dayl).rel_date’

rel_date_now = season.day(iday).rel_date~
days_from_start = rel_date_now - rel_datel - 1
end_season = season.day(season.num_days).rel_date’,
value = end_season - season.day(iday).rel_date + 1;

/* if this is a preferred day add in corresponding weight */

do i = 1 to league.day.num’
if league.day.pref(i) = season.day{(iday).day_of_wk
then do-;
weight = league.day.wt(i);
if weight > days_from_start
then value = value + weight + 1,
i = 900,
end;
end’;

/* if this is preferred court add in the corresponding weight x/

if league.court.pref.yes = "1"p
then do 1 = 1 to num_cts/
if league.court.pref.ct(i) = ict
then do-
weight = league.court.pref,wt(i);
if weight > days_from_start
then value = value + weight + 1;
i = 900,
end;
end’;

/* if this is preferred time-slot, add in corresponding weight */

do i = 1 to lLleague.time_num; »
if (league.time(i).day = season.day(iday).day_of_wk)
& (league.time(id.start_slt <= ts)
8 (league.time(i).end_slt >= ts)

then do’;
weight = league.time(i).wt/,
if weight > days_from_start
then value = value + weight + 1,
i = 900’
end’
ends

return (value).

eud;

86
relax: procedure (misc_ptr, league_ptr, court_Llist)’

%Zinclude structures:

%Zinclude league_dcl.

declare sysin file stream input;
declare sysprint file stream output’

declare ans char (1)
declare (i, icts court_List(10)) fixed’

if court.mandatory.num > 0
then do;
put skip edit ("There are currently ", court.mandatory.num.,
" mandatory courts., They are:") (a, fC1,0), ad;
put skip edit (" ", "COURT", "SLOTS USED", "SLOTS LEFT"™)
(a(5), a(8), 2 a(13));
do i = 1 to mandatory.num.,
ict = mandatory.ct(i);
put skip edit (" ", court(ict).names, court(ict).total_slots.used.,
court(ict).total_slots.left) (a4), a(10), 2 fC13,0)),
end;

put skip edit ("Do you wish to yet rid of the mandatory court reqg”.
"uirements for this league ? (y/n)") (2 a);
get list (ans);
if ans = "Y"
then do-s
court.mandatory.num = 0/
put skip Llist ("Do you want to specify preferred courts ? "):
get list (ans),
if ans = "y"
then do-
put skip edit ("Enter the court numbers in order of desirabi'".,
"Lity. Also please give each a") (2 a);
put skip edit ("weight corresponding to the number of days".,
" you would be willing to'") (2 a):
put skip edit ("postpone the scheduling of a game to have it".,
" put on this court.”) (2 a)-
do 1 = 1 to num_courtss
put skip Llist ("court ", i, "2 ");
get list (league.court.pref.ct(i))’;
court_List(i) = league.court.pref,ct(id’,
put skip list ("weight for this court ? ");
get List (league.court.pref.wt(id))s?

end’ /* do i *x/
end., /* then do */
else do.
do 1 = 1 to num_courts.,
court_List(i) = i,
end;
end. /* else do */
end, /* then do (get rid of mand. courts) =/
else do- /* no desire to get rid of mandatory courts */

"

put skip edit ("would you like to add to the list of mandatory ",
"courts ? (y/n) ") (2 a);
get list (ans);
do while Cans = "y")?;
put skip edit ("There are now ", court.mandatory.num,
" mandatory courts. They are:") Car, f(2,06), ad;

.

87

do i = 1 to court.mandatory.num,

put skip Llist ("
end,
put skip Llist ("What

s court.mandatory.ct(id));

court number would you like to add ?

mandatory.num = mandatory.num + 1;
get list (court.mandatory.ct(mandatory.num))’,
put skip Llist ("Do you want to add more ? (y/n) ");

get list (ans)’;

end- /* do while =*/
end; /* else do */
end; /* then do (if mand.num > 0) */
else do- /* no mandatory courts */

put skip list ("Change weights for preferred courts ? (y/n) ");

get list (ans)’

if ans = "y"

then do 1 = 1 to num_courts/
put skip edit ("Enter the

"

i.de. number of court number ",i.,

in preferential order ") Car, f(2,0), a)s

get list (league.court.pref.ct(i));

court_Llist(i) = league.court.pref.ct(i)d;

put skip List ("what is the weight for this court ? ");
get list (league.court.pref.wt(i))’;

end’ /* then do i1 */
end’ /* else do (no mandatory courts) x/
end, /* relax */

")

Py

88

printout: procedure (misc_ptrs, season_ptr, div_ptr, div_s_ptr,
sched_ptr, lgs, div).

%Zinclude structures’

%Zinclude div_dcl,

%include sched_dcl-

declare sysin file stream input’,
declare sysprint file stream output:

declare 1 team_sched(8,14),
2 opponent fixed,
2 d_o_w char(9) varying,
2 mon char(9) varying.,
2 idate fixed.,
2 ct_name char(8) varying.,
2 time fixed’

declare 1 ts_string(15),
2 hr fixed.,
2 mins char{é&);

declare (i, idays, lLgs, dive t1, t2, count(8), hr, t, cts) fixed’

declare min char{4);

declare time fixed decimal(3,1);

declare ans char(1);

declare day_name(?) char(9) varying initial("Sunday", "Monday".
"Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")’;

/* set up time-slot array for output =/

time = misc.time_slots.start’

do i = 1 to misc.time_slots.num/
ts_string(i).hr = floor(time)’
if time - floor(time) = 0,0
then ts_string(i).mins = ":00 .
else ts_string(i).mins = ":30 ";
time = time + misc.time_slots.length’
end’,

PUL SKip LisSt ("hkkkhkkhhhhhhkhhhhhhhhh bkt kA hhkhhhkkhh kot hkkkhark "),
put skip edit ("Schedule for ",misc.league(lg).name,"-Lleague division
div) (3 a, f(2,0));
put skip List ("Teams are:")’
do i = 1 to division.num_teams’;
put skip edit (division.team_number (i), " ", team_name(i))
(f(8,0), 2 a):
end,
put skip’?

do i = 1 to 8,
count(i) = 0,
end’

do i = 1 to divsched.n_games~
t1 = divsched.game(i).t11;
t2 = divsched.game(i).t22;
count(t1) = count(tl1) + 1;
count (t2) = count(t2) + 1;
iday = divsched.yame(i).day.
team_sched(tl,count(tl1)).opponent
team_sched(t2s,count(t2)).opponent

team_number(t2)’;
team_number(t1);

’

89

team_sched(tls,count(tl1)).d_o_w=day_name(season.day(iday).day_of_wk)’
team_sched(t2,count(t2)).d_o_w=day_name(season.day(iday).day_of_wk):
team_sched(tlscount(t?)).mon=misc.month(season.day(iday).month).name’
team_sched(t2,count(t2)).mon=misc.month(season.day(iday).month).name’
team_sched(tlis,count(tl)).idate = season.day(iday).date’
team_sched(t2,count(t2)).idate = season.day(iday).date;
team_sched(tls,count(t?)).ct_name = court(divsched.game(i).ct).name,
team_sched(t2,count(t2)).ct_name = court(divsched.game(i).ct).name’;
team_sched(tl,count(t1)).time = divsched.game(i).time’,
team_sched(t2,count(t2)).time = divsched.game(i).time;
hr = ts_string(divsched.game(i).time).hr;
min = ts_string(divsched.game(i).timed).mins’,
put skip edit(division.team_number(t1),"” plays ",
division.team_number(t2), hr, min, team_sched(tl,count(t1)),
d_o_ws "» "steam_sched(tlrcount(tl1)).mon,
team_sched(tl,count(t1)),idate,” on ",
team_sched(t1,count(tl1)).ct_name)
(£(3,0), ar 2 t(3,0), 4 a, (3,00, 2 a);
end; /* do 1 %/

put skip Llist ("Would you Llike schedule listings by team? (y/n)");
get list (ans)/
if ans = nyu
then do t = 1 to division.num_teams/
put skip edit ("Schedule of team ",team_number(t),"” : ",
team_name(t)) (a, f(3,0), 2 a);
do i =1 to count(t);
t1 = team_sched(t,i).time’;
put skip edit (" Plays ",team_sched(t,i).opponent,
ts_string(t1).hrots_string(tl).minsrsteam_sched(ts,i).d_o_ws
", ",steam_sched(t,i).monsteam_sched(tr,i).idate, " on ",
team_sched(tesid.ct_name) (ar2 f(3,0),4 a,f(3,0),2 ad:
end; /* do i */
ends /* do t */

cts = misc.num_courts,

put skip list("Would you like to see the full schedule? (y/n)");
get Llist (ans);

if ans = "n" then return;

put skip edit (" ", court(1).name) (a(19), aC10)),
do i = 2 to cts/

put edit (court(i).name) (a(10))

ends
put skip-/

do iday = 1 to season.num_days,
put skip edit(day_name(season.day(iday).day_of_wk), ts_string(1).hr,
ts_string(1).mins) (a(12), f(3,0), a);
do i =1 to cts~ .
put edit (sched(idaysir1).t11, "=", sched(idayr,ir1).t22, "")
(fC4,0), a, (3,0, a(2)):
end’; /* do 1 */
put skip edit (misc.month(season.day(iday).month).name,
season.day(iday).date, ts_string(2).hr, ts_string(2).mins)
(a(9), 2 f(3,0), a)’;
do i =1 to cts»
put edit (sched(iday,i»,2).t11, "=", sched(idayr,ir,2).t22, "")
(fC¢4,0), a, f(3,0), a(2)>;
end’; /* do 1 */

A

do t =
out

do 1

end,

put ski
end’

return;
end;

90

3 to misc.time_slots.num;
ts_string(t).hr,

skip edit("

= 1 to cts»

re
’

(a(12),

put edit (sched(iday,i,t).t11,

ends /* do i
/* do t

ps
/* do i1day */

/* printout

*/

*/
*/

(f(6,0),

ar

"

ts_string(t).mins)
f(3,0).,

-", sched(idayrirst).t22,

f(3,0).,

a(2));

a),

"")

INTRAMURAL SPORTS SCHEDULING PROGRAM

USER'S HANDBOOK

92

INTRODUCTION

Every effort has been made to make this program as powerful and easy

to use as possible. It should greatly simplify the scheduling task for

managers who understand how to use it to its fullest capabilities.

However, without a careful reading of this handbook and a certain amount

of advanced preparation prior to sitting down at the terminal, the mana-

ger may find himself facing an array of puzzling problems. To insure a

quick and successful terminal session the user should do the following:

1.

2.

3.

Read the rest of this manual carefully,

Do the advanced preparation suggested in the following paragraphs.
Be very careful to input all data correctly when at the terminal.
Be very careful to follow the specified format for inputting each

data item.

This last item refers to such issues as whether the program wants a

number to be input as an integer (11 for instance) or a fraction (11.0).

In most cases the program specifies the format needed, but in general the

following rules apply.

A,

B.

c.

If a number is requested enter it as an integer unless the number
represents a time of day.

All times are to be entered as decimal fractions representing

the number of hours on a 24~hour clock, (Thus 9 a.m. = 9.0,

4:30 p.m. = 16,5, noon = 12,0, midnight = 0,0)

When a day of the week is to be entered, an integer representing
that day's position in the week should be used. (i.e. Sunday=1,
Tuesday = 3, Friday = 6, etc.)

When a month is asked for, an integer should.be entered that

represents that month's position in the list of months comprising

93

the season. (i.e. if a 4 month season starts in May, June = 2

not 6)

SPECIAL FEATURES

A number of optional features have been included in this program
P forms
to give the manager varioushpf control over the "shape" of the resulting
schedule., The manager can seed the teams within each division causing
the best teams to meet in the last week of the season; provide specific
days and/or times on specific days that particular teams cannot play;
specify a set of mandatory courts for a league; specify a weighted pref-
erential order for choosing courts to use for a league; and specify a
preferential order for choosing courts to use for a league; and specify
a preferential weighting of days of the week and times of day to be used.
Lach of these capabilities is described seperately in the paragraphs that
follow. The manager should determine which of these capabilities he
desires to use and do any advanced preparation suggested in that sectiom.
SEEDING = The program is designed to schedule each division so that
teams 1 and 2 play in the last week, 1 and 3 play the week before, and
so on. This provides the ability to have the strongest teams meet toward
the end of the regular season.if that is desired. If so, the manager
should simply enter the teams in order of strength, with the strongest
entered first. If seeding is not desired, the teams can be entered in
some random order, How strength of teams is determined is up to the man-

ager =-- presumably he has some hunches along that line.

94

TEAM TIME-CONSTRAINTS - Often, teams will be unable to play on

certain dates in the season and specify this on their entry card. When
each division is about to be scheduled, the manager will be asked to enter
the teams in that division and dates on which any of them cannot play.
The manager should include on his list of teams, a list beside each team
of dates that team cannot play. These dates should include the month
index discussed in part D of the Introduction.

Occasionally, a team will be unable to play on only a portion of
some particular date. 1In that case the manager can specify the month
index and date involved and the indices of the first and last time-slots
in the unavailable portion of that day. This information should be written
down on the team list before sitting down to the terminal.

LEAGUE-WIDE CONSTRAINTS = The following constraints are entered

once for each league and are applied to all of the divisions within that

league,

A. Mandatory Courts - If some of the courts are unsuitable for

A-league (or even B) play, the manager can specify one or more courts that

must be used when scheduling the league at hand.

B. Preferred Courts - If the manager does not want to absolutely

require the league's games to be scheduled on a particular court(s) but

still would prefer to see some courts used more often than others, he

can list the courts in preferential order and give a weight to each one.

The higher the weight, the harder the program tries to satisfy that preference.
The functioning of these weights is basically as follows. In general

the program schedules each game in the first open slot it finds that

satisfies the mandatory constraints (court open, both teams can play then,

mandatory court (if any) is satisfied) and provides the requested minimum

spacing between a team's consecutive games. If a preferential constraint

has been specified, and the first open slot found does not satisfy that

95

preference, the program will search through the season in an attempt to
find a slot that does. The number of days it will search is the number
specified by the weight. It is important not to set these weights too
high (8 is a good limit to keep, 15 is probably an absolute maximum),
because if they are set too high the individual blocks of games within

a division may become so spread.out that all of the blocks cannot be fit
into the season while still preserving the requested minimum spacing
between blocks. (A division of 6 teams playing 5 games each will have

5 "blocks" of games scheduled, each block containing 3 games, so that
each team plays once in each block) 1In addition to limiting the preference
seeking search, the weights' values also rate the relative importance of
different preferential constraints. Often, it may be possible to satisfy
either of a pair of preferential constraints, but not both. 1In that case,
the program will satisfy the one weighted more highly,

C. Preferred Day of Week - The user may want to schedule

games for a league on a particular day of the week whenever possible,

To facilitate this, he may list up to 5 preferred days and weight each
one. It is important that the most highly preferred day be entered first.
The user should draw up this list of days (day .numbers) and associated
weights ahead of time.

D. Preferred Time-Slots - If the user wishes to specify a

particular block of time slots on a certain day of the week as preferred
he may do this also. He c#n list up to 5 such blocks, and should list

the most preferred first. For each group of times he will need to specify
the index for the day of the week this preferred group of slots falls on,

the indices of the first and last time-slots in this block, and the weight

96

for the block.

GENERAL PREPARATION

The following items should be prepared before sitting down at the
terminal, re§ardless of what optional features are to be used. The time
spent creating the lists suggested will be regained through a much shorter
and less frustating session at the terminal,

1. Calendar - The user first needs to determine what days will be
included in the season. To communicate this information to the computer
he will provide information about the months that the season spans and
tell. it whether all of the days in that period should be included, or
just the weekends or weekdays. This provides the basic calendar, but does
not take into account exceptions such as holidays which should be removed
from the calendar. To provide for this, the program asks for days that
would normally be part of the season (i.e. Saturdays and Sundays if it
is a weekend sport) but are to be removed. The user should list these ahead
of time by month index and date. (i.e. for a September to November sport,
October 12 = 2, 12)

2, Time-Slots - One set of time slots is input that will be used for
every day in the season. Thus, the user must figure out the earliest time
that a game will start on any day in the season, and the latest time for
any day in the season and enter these limits. What the program actually
asks for is the start of the earliest slot, the end of the latest slot,
and the length of each slot, While the user only needs to enter these

limiting values, he should list all of the slots' starting times both to

97

check this against the list the computer produces and to aid in determining
the time-slots that each facility is available.

3. Facility Availabilities = To determine the slots available in the

season the program asks for a sample week of availabilities and replicates
this through the season using its internal calendar. Exceptions to these
typical availabilities can then be entered to take care of days on which
varsity meets will be occupying one of the courts and so on.

The sample week should contain the most typical availabilities, as
time slots can be added or subtracted from this for dates that are entered
as exceptions. For each court the user should determine what time slots
will ®ypically be available on each day of the week. A string of N digits
should then be generated, where N is the number of time slots known to the
program. The first of these digits will represent the first time slot and
80 on., For each time-slot that is available on that court on that day the
user should put a 1 as the corresponding digit. For each unavailable slot
he should put a 0, This N-digit "bit-string'" will then contain as many
ones as there are available slots on that court on that day, and their
positioning tells which slots are the open ones.

Specific dates in the season on which one of the courts has more or
fewer open slots than usual are then entered as exceptions, The user
should list ahead of time the exceptions that will need to be entered,

providing for each the month index, date, court index, and the new bit-

string to be used.

5. Division Data - For each of the divisions the manager will need
to determine the minimum number of games that each team will play, and the

minimum number of days to be skipped between the end of one block of games

.....

98

and the start of the next. This minimum spacing ensures that consecutive
games of any team in the division %1l be seperated by at least that many
days., It is nice to keep this space large so that a team's games are
spread evenly over the course of the entire season, but if it is made
too large, the program will be unable to schedule the division. If this
happens, however, the program will allow the user to specify a new, smaller ’
spacing and try again to schedule the division., Thus, the user may want
to try requesting a large spacing first and then back down on it until
the scheduling is successful.

With this preparation done ahead of time you should find that the
program will save time in scheduling and provide a schedule that meets with

all of your wishes,

APPENDIX D

SAMPLE RUNS

100

Welcome to the intramural srorts scheduling sustem.

Usedy prorerly this rrodram should be of dreat assistance but gou maw
run into rroblems if wou have not first looked over the user’s manual.
If vou have not uwet done sos wou are advised to stor

here and do some readind. Do wou wish to contirnue? (u/n) u

Please be careful to alwaus enter datas in the format

srecified by the cuestion. For instancer when resronses are given
~in brackets at the end of the auestiony choose one of
them.. What is the srort name 7 Rasketball

How mans leasues (i.e. ArBEyCy etc.) will there bhe 7 2

You will now be asked for the nzme of each lessue and
the number of divisions in each. Please inrut the

leadgues in the order wou want them scheduled in., Alsoy
remember that divisions must have 4 to 8 teams in them

What is the name of leadue 1 7T A
Qow many divisions in leadue 1 T2
What is the name of league 2 7 R
How manw divisions in lezsdgue 2 T 2

Is srort 3 weekend(l)s weekdaw(2)y or full-week(3) srort? 1
How manwy months does the regular season seranm T 3
What is the name of month 1 7 June

What day of the weelk daes this month start on?
Please dive 3 numbery i.e. Sundsu=1ly Fridau=éy etec. 3

How manyw daws in this month 7 i.e. 28:29y30v0r 31 30
What is the name of month 2 7 Julw

What daw of the week does this month start on?
Flease dgive 3 numbery i.e. Sundau=l, Fridaw=éy etc. H

How many davs in this month ? i.e. 28+29+s30s0r 31 21
What is the name of month 3 7 Audust

What daw of the week does this month start on?
Please dgive 3 numbery i.e0. Sundau=ly Fridau=6y etc. 1

How mang daws in this month 7 i.e. 28+29,30y0r 31 31

What date will season start on? (i.e. the first daw in June that‘s in season)
What date will season end on ? (no monthy Just date)22

How manw courts are available ? 3

How long are the time-slots for each dgame? Please resrond with a8 fraction
resresenting the number of hourse (ise. 20 minutes = 1.5 1.5

When does the earliest time slot (on anu dag) start?
[.9:30 BeMoe = P, 5y 1:00 FsMe = 13001 1i1.0

.

101
Whern does the latest time-—-slot (on znvy daw) end? 17.0

Flease enter the names of the courts in their
default order of rreference.

What is the name of facility 1 T (8 chars mayx) Cade
What is the name of facilitwy 2 T (8 chars max) Durontl
What is the mname of facilitw 3 7 (8 chars max) Duront?

Time-slot 1 is 11:{00 a.m.

Time-gslot 2 is 12130 rem.

Time-slot 3 is 2100 r.m.

Time~alot 4 is 3330 =.m.

You will be asked to enter the avaesilabilities of each of the courts

for the ‘turical’ daws in the season. Please enter these availsbilities as
4-pit numbers with a 1 for each availabletime-slot

and 3 0 for each unavailable slot

Flease enter the availabilitwy of court ‘Cadge’ on & turical Sundaw 1111

Flease enter the availability of court ‘Durontl’ on a turical Sundaw 1111
Please enter the availazbilitw of court ‘Duront2’ on a3 turicsl Sundaw 1111

Flease enter the availabilituy of court ‘CadHe’ on a turical Ssturdaw 1000
Flesse enter the availabilitwy of court ‘Durontl’ on a turical Saturdaw 1111

Flease enter the availability of court ‘Duront2’ on 3 turicsl Ssturdaw 1111

Were all strings entered correctls ? (/M) n

Enter day of week to be chanded as a3 number 7

Enter court number to be chandged 1

What is the correct availazbilitw string P 1111

Is everuthing correct now 7 4

You will now be asked for dates (e."g, Holidaus)

which fall on daus normaslly rart of the seasonsy but

on which no dgames will be slaved, Note that this

does not include daws on which only some of the

courts are unavasilable.

Are there any unavailable daus in June P n

Are there anwy unavailsble daws in July Ty
What is the date 7 4

Anw more unavailable daws in Julw P e/ n

Are there anw unavailable daws in Ausgiust T n

Are there any daws on which more or fewer time
slots tham ususl will be oren * (W/N) n

We are now ready to schedule A-league
Is there 2 mandatory court (or courts) for this lesgsue? (4W/nM) w

How mang 7 1 102

Flease inrut the numbers of these courts in rreferential order
LCourt 1 7 1

Are there any rreferred davs of the week for schedulingA-leadue dames T (2/n) -
How manw rreferred davws are there 7 1

Flease enter these rreferred davs in order of desirabilitw. Along with
each dav enter 3 weidhting factor corresronding to the number of daus wou
would be willing to delaw the scheduling of a3 rarticular dame to make

it fz31]l on that daw.

Naw 1 7 .1

Weighting factor 7 §

Are there any times that are rreferred for schedulingA-leadue dHames 7 o

Freferred times consist of 2 block of time-slots on a rarticular daw of

the week: You mavw srecifw uer to 5 such blocks by giving the davwy starting
slot and ending slot of each rrefered block. You will also be asked to dgive
a2 weight to each block corresronding to the number of daus a dame’s
scheduling maw be delavwed in order to fall into that block.

How many such blocks do wou wish to srecifu 7 1

Enter the number corresronding to the daw on which
block 1¢in erreferential order) occurs. 1

Enter the number of the time—-slot which bedins this block.3

Enter the number of the last time-slot in block. 4

Weight for this block 7 &

We are now reasdy to schedule division number 1
of A-leasue

How manw teams in this division? (must be 4 to 8) 6

How manw dames will each team rlaw? H

What is the name of team 1 7 sru.dod

rJ

What is the name of team T bob.

What is the name of team * ‘los

B ¢

What is the rmame of team 7?7 maria

o

What is the mame of team ? reter

What is the name of team 6 7 eric

Are there a3nvy davws in the season on which one of
the tezms in this division cannot rlaw? (w/n) n
Are there any time.slots (or blocks of slots)

on which teams in this division cannot rlau? n

How many daus would wou like to leave between
consecutive sames for each team in this division 10

e

A 2K 4 ok ok ok o 0 oKk 2K ok oK 3K 3K K 2K K 2K K 3K K 3K ok 2K oK oK 8 3K K K K 0K KKK KR KKK KOk K Kk
Schedule for A-leadgue division 1

Teams are!

1
o

3
4
]
&

rlawvs
rlaus
rlaus
rlags
rlaus
rlaus
rlaug
rlaus
rlaus
rlaus
rlaus
rlags
rlaus
rlaus
rlaus

D ORI B R Y U e 2 O e D

P ados
hob
‘los
maria
reter
eric

14:0

15:3
1410
1410
15:3
1430

1513
1120

NN UIDLNOOUNDOAD

0 Sundavsy June

15130 Sundswry June
1100 Sundawy June
143100 Sundas4s June

0 Sunda4r June

11:00 Sundawy June

0 Sundawy Julw

15130 Sundawyr Julw
11300 Sundayy Julw

0 Sundavy Julwy
0 Sundayy Julwy

11100 Sundawy Julwy

0 Sundady Ausus
0 Sundavs Ausius
0 Sundayvys Augus

13 on Cade
13 on Cade
13 on Cade
27 on Cade
27 on Cade
27 on Case
11 on Case
11 on Cade
11 on Case
25 on Casde
25 on Case
25 on Cade
t 8 on Cade
t 8 on Cade
t 8 on Cage

Would wou like schedule listings by team? (w/n) w

Schedule of

Flaus
Flaus
Flaus
Plaus
Flaus

Schedule o

Flaus
Flaus
Flaus
Flaus
Flaus

Schedule o

Flaus
FPlaws
Flaus
Flaus
Plaus

Schedule o

Flaus
Plaus
Flaus
Flaus
Flaus

Schedule o

Flaus
Flaus
Plaus
Flaus
Flaus

Schedule o

Flaus
Plaus
Flaus
Plaus
Flaus

S TSI

SRUGESWDION= A U=RNNSU=RD =00

team

11:00
11100
11100
11:00
11:00
team

15330
15130
15:30
153130
11:00
team

14:00
14:00
15130
11:00
14:00
team

143100
15130
11300
14100
15130
team

15:30
11:00
14100
14:00
14100
team

11:00
14100
14100
15130
15330

Would wou like to

1 ¢ rru.dod

Sundayy
Sundawy
Sundayy
Sundays
Sundawy

2 ¢ bob

Sundayy
Sundauy
Sundaywy
Sundays
Sundaywy

June 13
June 27
Julw 11
Julay 25
Audgust

June 13
June 27
Julw 11
Juls 25
August

3 ¢ ‘los

Sundayy
Sundayy
Sundawy
Sundady
Sundayy

June 13
June 27
July 11
Julwy 25
August

4 ¢! mariz

Sunday
Sundayy
Sundayy
Sundayy
Sundaus

June 13
June 227
Julw 11
Jule 25
August

5 § reter

Sundays
Sundayy
Sundays
Sundawy
Sundayy

June 13
June 27
Julw 11
July 25
August

& t eric

Sundayy
Sundawy
Sundaye
Sundaws
Sundayy
see the

June 13
June 27
Julw 11
Jula 25
August

full schedule? (w/n)

on Cadge
on Cade
orn Cade
on Cade
8 on Cade

on Cade
on Cade
on Casde
on Cade
8 on Cade

on Cade
on (ade
on Caste
on Cade
8 on Cade

on Cade
on Casde
on Cade
on Cade
8 on Casde

on Case
on Cade
on Cade
on Cade
8 on Cade

on Cade
on Cade
on Cade
on Cade
8 on Casde

103

i,

We are now ready to schedule division number

of A-leadue
How many teams in

How many siames will

What is the
What is the
What is the

What is the

name of

name of

riame of

rname of

each team rlau? 6
team 1 7 mary

team 2 7 .odw

team 3 7 brenda

team 4 7 mark

this division? (must be 4 to 8)

Are there anw daus in the season on which one of
the teams in this division cannot rlauw? (w/n)

Are £here ane time.slots (or blocks of slots)

on which teams in

How manw dads would wou like to lesve between
consecutive dames for each team in this division

n

this division cannot rlau?

30008 2K B K 58 2 3 oK A K KK K K K K K K K K K K KB K KK K K K KK KR K Kk K KK K
Schedule for A-leadgue division 2

Teams arel
7
8
%
10

rlavs
rlaus
rlaus
rlaus
rlavs
rlavs
rlaus
rlaus
rlaus
rlaus
rlaus
rlavs
Would wou

NONONONONENND

Would wou

Saturday
June

Sundaw
June

Saturdaw
June

ma
J0
br
ma

9
10
10

9
10

8

K4
10
10

K4
10

8

v
du
enda
rk

12130
11:00
123130
11:00
12130
112300
12130
11:00
12130
11300
14:00
15130

Sundayy June 13 on Cade
Saturdaye, June 12 on Cade
Sundawy June 27 on Cade
Saturdawy June 26 on Cade
Sundaywy Julw 11 on Cade
Saturdawy Julw 10 on Cade
Sundaywy Julw 25 on Cade
Saturdawy Julw 24 on Cade
Sundayy August 8 on Cade

Saturdsayy August 7 on Cade

Sundaygy August 22 on Cade
Sundaygy Audgust 22 on Cade

like schedule listings bw team? (w/n) n

like to see the full schedule? (w/n) 4

12

13

19

Cade Iurontl Duront2
11:¢00 7~ 10 0~ 0 O~
12130 0- 0 0- 0 Q-
14:00 0~ 0 0- 0 Q-
15:30 0~ 0 0- 0 0
11:00 1- 6 0o~ 0 0~
12130 g- 9 0~ 0 O~
14100 3- 4 0o- 0 O~
15130 2= 3 0o~ 0 0~
11300 0- 0 O~ 0 Q-
12130 0~ 0 0~ 0O -
14200 0- 0 0o~ 0 0~
15230 0- 0 0- 0 O

COCCO COCo Qoo

X]

10 .

DRIy a
Jurie

Saturdaw
SJune

Sundaw
June

Saturdaw
July

Sundaw
July

Saturdaw
Julw

Sundaw
Julwy

Saturdaw
Julw

Sunday
July

Saturday
July

Sundaw
Julwy

Saturdaw
Julw

Sunday
Audust

Saturdasw

20

26

10

11

17

18

24

ALY
13830
14300
15130

11200
12130
14:00
15330

11:00
12330
14100
15230

11:00
12130
14100
15:30

11100
12330
143100
15330

11300
122130
143100
15330

11300
12:30
14100
15130

11300
12130
14:00
15:30

11200
12330
14:00
1530

11200
12330
14100
15330

11300
12330
14:00
15130

11300
12130
14:00
15830

11300
12230
14100
15230

113100

- 1

S SO

(o RoJlo i)

SO C SO 200U

SOoOoo {22 B s a4 S o

OO C

SO COO T

SCOT o oo

CCO8 o R oo Re)

SO o Rolele] SOCo

OO OO0

SO O SO0

0

SCCOC

SO

SCOOo SO ScCoOoCo SSOC OO (o R ol oRe

OO0 SOoOOo OO

ool

-~
N

105

ALISLST £ L e HQ ¥ v LV Al ¥} LV g v
14300 0o~ 0 0~ 0 0~ 0O 106

15130 0o~ 0 O~ 0 O~ O

----- Sundaw 11300 i- 2 0- 0 0~ 0

August g8 12:30 8- 10 0- 0 O~ 0

14100 3= G O~ 0 0~ 0

o~ 15130 f- & O~ 0 0~ 0

Saturdaw 11300 0- 0 0~ 0 0- 0

August 14 12130 0~ 0 0~ 0 O~ 0

14:00 0- 0O O~ O 0~ 0

15130 O~ 0O 0~ 0 0~ O

Sunday 11:00 O~ 0O G- QO O~ 0

Ausust 18 12130 0o- Q 0~ 0 O~ 0

- 14100 0~ 0 0~ 0 0~ 0

15130 0- 0 Oo- 0 0o- 0

Saturday 11:00 0o~ 0 0- 0 0~ 0

August 21 12130 0- 0 0~ 0 0- 0

14:00 0~ 0 0o~ 0O 0~ 0

- 15130 0~ 0 0- 0 g~ O

Sundaw 11:00 0o~ 0 0~ 0 0~ ¢

August 22 12130 o- 0 0o- 0 0~ O

14:00 9- 10 0~ 0 0~ 0

15130 7~ 8 0~ 0O o~ 0

We are now readwy to schedule B-leadue
- Is there 3 mandatory court (or courts) for this leadgue? (vw/M) n ..

Are there rreferred courts for this leasdgue? (If noty the order in which the
- court names were oridginally entered will be used as the default.,) w

Enter the court numbers in order of desirabilitw. Alondg with each
- court number rlease enter 3 weidghting factor reflecting how desirable
that court is. The weidght rerresents the number of daus that
wou are willing to rush a3 dgame back in the schedule in order to have
- it scheduled on that court.
Court 1 7 1 .
What is the weight for this court 7 §
Court 2 7 2
What is the weight for this court 7 1
- Court 3 7 3
What is the weight for this court 7 1
Are there any sreferred daus of the week for schedulinsiB-league dames T (w/n)
How manw erreferred davs are there 7 1
Flease enter these rreferred daws in order of desirabilitw, Along with
- each daw enter a3 weidhting factor corresronding to the number of daws wou
would be willing to delay the scheduling of 8 rarticulsr dgame to make
it fall on that daw.

- Naw 1 % 1

Weidhting factor * 2

sty

107

Are there anw times that are rreferred for schedulinsR-leadue dgames

We are now reads to schedule division number
of B-leadgue
How many teams in this division? (must be 4 to 8) 7
How manu dgames will each team rlauw? O
What is the name of team 1 7 tana
What is the name of team 2 7 is
What is the name of team 3 7 crazv
What is the name of team 4 7 hore
What is the name of team § 7 izzs
What is the name of team &6 7 sHrare

What is the name of team 7 7 iiad.ibvh

Are there anw dads in the season on which one of
the teams in this division cannot rlaw? (uw/n)

What team? (enter its number) 1

What month and date is tana
not able to rlaw on? (enter as numbers) 1 12

Are there more dads on which teams in this
division cannot rlaw? (Ww/n) 4

What team? (enter its number) 1

What month and date is tana
not able to rlayw on? (enter as numbers) 1 13

Are there more daus on which teams in this
division cannot rlag? (v/n) n

Are there any time.slots (or blocks of slots)
on which teams in this division cannot rlau? n

How many davs would wou like to leave betuween
consecutive dames for esch team in this division

K AR KK K KK KK KRR OROR KRR K KKK KRR KK KKK KKK KKK KKK
Schedule for B-leadgue division 1
Teams are?!

11 tana
12 is

13 crasy
14 hore
15 iz=za

16 grare
17 iiad.ibvh

13 rlaws 14 12130 Saturdawy June 12 on Cade
12 rlaws 15 14100 Saturdawr June 12 on Cade
11 rlavws 16 11100 Sundawy June 20 on Cade

!? "

LG LMD L R X~ LV
12 rlaws 14 14:00
11 rlaws 15 153130
1% eplaws 17 11:00
12 rlaws 13 12130
11 rlauws 14 143100
14 rlaws 17 12130
1% rlaws 16 14100
11 elaws 13 15130
14 rlaws 16 11100
13 rlaws 17 12130
11 rlaws 12 14100
14 rlaws 15 12130
13 rlauws 16 14100
12 rlaws 17 15130

Would wou like schedule listings by team? (u/mM) n

Would wou like to see the full schedule? (w/n) n

S LUty
Saturdauy
Saturdauy
Saturdawsy
Saturdayy
Saturdayy
Saturdayy
Saturdagy
Saturdayy

Slitie?
June
June
SJulw
Julw
July
July
Julw
July

P |
o)

2
3
3

3

10

10

10

(=10
Qn
an
an
an
an
on
on
an

L6
Cade
Cage
Cade
Cadge
Cade
Cadge
Cade
Cade

Sundavs Julw 18 on Cade
Sundagy Julw 18 on Cade
Sundawy Julw 18 on Cade

Saturdauy
Saturdays

Saturday,

SJuly

24

on

Cade

July 24 on Cade
Julw 24 on Cadge

We are now readue to schedule division number

of B-leadue

How many teams in this division? (must be 4 to &)

How many dames will esch tesm rlau?

What is the name of
What is the name of
What is the name of
What is the name of
What is the name of

What is the name of

Are there anw daws in the season on which ore of

team 1 7

team ?

1] r
-3

team

o>
-3

team

team i

e

tesm ?

WJerry
bob
#hil
bill

mickew

brent

the teams in this division cannot rlau? (u/n)

Are there anw time.slots (or blocks of slots)
on which teams in this division

What team? (enter number) .1

cannot rlau?

What month and date? (enter month as number)

Now enter the numbers corresronding to the first
and last time~slots in the umavailable block

Are there more blocks of time slots on which teams

in this division casnnot plauw? (v/ny

What team? (enter rumber) 1

What morth and date? (enter month as number)

Now enter the numbers corresronding to the first
andg last time~slots in the umasvailable block

Are there more blocks of time slots on which teams
in this division cannot

How many dsuss would wou like to leave between

rlaw?® (w/n)

X

1]

108

cOnsSecutive #Zames Tor each team 1n Lhis chivision -~ #/ 109

Scheduling of division was unsuccessful with 2
min-srace of 87Would wou like more info? n

Would wou like to rerun with 2 new min-serace? (v/n) o
Chandge weishts for rreferred courts ? (w/n) n

How many daws would wou like to leave between
consecutive dames for each team in this division 4

300K K 3 OK K K K K K K K KKK 3K K K KKK K ok ok K K K K ok K KK ok K K K
Schedule for B-leadue division 2
Teams are!l

18 Jerry

19 tbob

20 ehil
21 bill
22 mickew
23 brent

22 rlaws 23 15130 Saturdaswr June 12 on Cade

19 rlauws 20 11:00 Sundavy June 13 on Durontil

18 rlaws 21 15130 Sundawy June 13 on Durontl

21 rlauws 22 12130 Sundaws Jurne 20 on Cade

19 rlave 23 14:100 Sundawy June 20 on Cade

18 rlavs 20 15130 Sundavr June 20 on Cade

20 rlaws 22 11100 Sundavyr June 27 on Durontl

21 rlaws 23 12130 Sundawr June 27 on Duronti

18 rlavws 19 14100 Sundawy June 27 on Durontil
Would wou like schedule listings by team? (w/m) n

Would wou like to see the full schedule? (w/n) w

Cade Durontl [luront?
Saturday 11:00 7= 10 0- 0 0- 0
Jurie 12 12:30 13~ 14 0o- 0 0~ 0
14:00 12~ 15 o- 0 0- 0
15:30 22— 23 0- 0 0- 0
Sundaw 11300 1- 6 19~ 20 0~ 0
June 13 12:30 8- 9 0~ 0 0~ 0
14:00 I~ 4 - 0O 0- O
15330 2= 5 18- 21 0~ 0
Saturdaw 11500 0~ 0 0~ 0 0- O
June 19 12:30 0- 0 0~ 0 0- 0
14:00 0o~ 0 0- 0 0- 0
15:30 0~ 0 0~ O 0~ 0
Sunday 11300 11~ 16 0o- 0 0- 0
June 20 12130 21~ 22 0o- 0 0~ 0
14:00 19~ 23 0~ 0 0~ 0
15130 18- 20 0- 0 0- 0
Saturdaw 11:00 7- 9 0- 0 0~ 0
June 26 12330 16~ 17 0~ 0 0- 0
14:00 i2~ 14 0- 0 0- 0
15¢30 11~ 1S 0- 0 0~ 0
Sunday 11:00 i- 5 20~ 22 0- 0
June 27 12130 8- 10 21— 23 0o~ 0
14100 - b 18~ 19 0o~ 0
15:30 2~ 4 0- 0 0- 0

Saturday
Julw

Sundaw
Julw

Saturdaw
Julwy

Sundaw
Julw

Saturday
July

Sundaw
July

Saturdaw
Julu

Sundaw
July

Saturdayw
Julw

Sundaw
August

Saturdaw
August

Sundaw
Audgust

Saturday
August

10

11

18

-
25

31

14

11:00
12330
14:00
15230

11:00
12830
14:00
15130

11300
12130
14:00
15:30

11200

2130
14300
15:30

11200
12130
14:00
16130

11200
123130
14200
i5:30

11200
12330
143200
15330

11:00
12130
14:00
15130

113100

2:30
14:00
15330

11:00
12330
14300
15330

113100
12130
14:00
15:30

11100
12130
14100
15130

11:00

23130
14:00
15130

o R o RN el s S 4 A s T

SOCC

SO O

oo R ol oo o RoNolle) SO0 SOOC SO0 O (oo Rol el OO

SO O OO0 SO OO SO O

SO O

OO [oR e Rl ol SCoOo

(o Ro o Rel

COoC COOCO OO

SO CC OO0 SOOC

SO CTC SOoCO CoC O

110

TNy R £oLoanry
August 15 12130
143100

15330

Saturdau 113100
Audust 21 12130
14300

15330

Sundaw 113100
Augusat 22 12130
14:00

15330

r 04302 10,091 138

fary
SO o foReRalle) O OO

SLOo SOCT OO

-
=

SOoo Coo

SOOL

111

112
RUN 2

Welcome to the intramural srorts scheduling sustem.

Useds rrorerls this rrodgram should be of dgreat assistance but wou maw
run into eroblems if wou have not first looked over the user’s mamial.
If wou have not uvet dome sor wou are asdvised to stos

here and do some reading. Do wou wish to continue? (w/m) v

Please be careful to aluaus enter data in the format

srecified bw the cuestion. For instancer when resronses are given
in brackets at the end of the auestions choose one of

them. What is the srort name 7 foosball

How many lesdsues (i.e. A»BsyCy etcs) will there be 7 2

You will row be ssked for the name of each leadue and
the number of divisions in each. Flease inrut the

lesgues in the order wou want them scheduled in. Alsos
remember that divisions must have 4 to 8 teams in them

What is the name of leadue i ? Z
How manw divisions in leadue 1 A |
What is the name of leadue 2 T oQ
How many divisions in league 2 ? o1

Is srort 8 weekend(l)r weelkdaw(2)r» or full-week(3) srort? 1
How many months does the redgular season sran P 1
What is the name of month 1 7 lecember .

Whast dag of the week does this month start on?
Please dive 3 numbersy i.e. Sundaw=ly Fridaw=és etc. 2

How many daws in this month 7 i.e. 28+:29930v0r 31 31

Uhat date will season start on? (i.e. the first daw in December that’s in seaso
n). é

What date will season end on T (no monthy Just date)28
How manw courts are available ? 4

How long are the time—-slots for each dgame? FPlease resrond with 2 fraction
rerresenting the number of hours. (i.e:. 90 minutes = 1,5 3

Whern does the earliest time slot (on anw daw) start?
[P9130 a.me = Q.5 1100 pame = 13,01 1005

Wher does the latest time-slot (on anw daw) end? 22.5

Flease enter the names of the courts in their
default order of erreference.

What is the name of facilitw i T (8 chars max) ska
What is the name of facilitw 2 T (8 chars max) teb
What is the name of facilitw 3 T (8 chars max) . osrd.
.ﬁhat is the name of facilitu 4 ? (8 chars max) ing

LI A | LRl 0 R ¢y W I LG LV IV Sse
Time~-slot 2 .dis 1130 P.m. 113
Time-slot 3 is 4330 =.m.
Time-slot 4 is 7130 r.m,

You will be asked to enter the availabilities of each of the courts

for the ‘turical’ daus in the season. FPlease enter these availabilities as
4-pit rnumbers with a 1 for each availabletime-slot

arnd a8 0 for each unavsilable slot

Flease enter the availabilitw of court ‘ska’ on 8 turical Sundaw. 1119

Flease enter the availasbility of court ‘teb’ on a turiczl Sundaw 1111
Please enter the availabilitw of court ‘oard’ on a3 turical Sundawg. 1111
Flease enter the asvailability of court ‘insg’ on 8 turical Sunmdaw 1111
Please enter the availabilitw of court ‘ska’ on a8 turical Saturday 1111
Flease enter the availability of court ‘teb’ on 8 turical Saturdaw 1111
Flease enter the availability of court ‘oard’ on a8 turical Saturdas 1111
iPlease enter the availasbility of court ‘indg’ on a3 turical Saturdaw 1111
Were a2ll strinsis entered correctly 7 (9/n). v .-

You will rnow be asked for dates (e.g. Holidaus)

which fall on dauws normally rart of the seasony but

on which no dames will be rlaved. Note that this

does not include daus on which only some of the

courts are unavailable.
Are there anw unavailable daws in lNecember 7 n

Are there any davs on which more or fewer time
slots than usual will be oren ? (w/n) 4

Ineut the name of the court whose availasbilitw
is to be chandged. l#ska.

Inrut the number of the monthy and the date to be modified., 1 7.

Please enter the availabilituy of court ska on December 7
as a8 4-bit rnumber with a 1for each svailable time_slot and 3 0
for each unavailable slot .1100.

Are there other daus that have fewer or more
time slots than normal 7 (v/N) n

We are now readuy to schedule Z-~leasue
Is there 3 mandatory court (or courts) for this leadgue? (v/n) n

Are there rreferred courts for this league? (If nots the order in which the
court names were originally entered will be used as the default.) w

Enter the court numbers in order of desirabilite, Along with each
court number rlease enter a3 weishting factor reflecting how desirable
that court is. The weidght rerresents the number of daws that

vou are willing to rush a dsame back in the schedule in order to have
it scheduled on that court. '

Court 1 7 1

What is the weisht for this court 7 §

¥

N« LA AL AR A
114
What is the weight fTor this court * 1

Court 3 7 3
What is the weidht for this court 7 1
Court 4 7 4
What is the weight for this court 7 1
Are there any rreferred daws of the week for schedulindZ-leasiue dames 7 (9/M) n
Are there any times that are rreferred for schedulingZ-leadue dames T u
o Freferred times consist of a2 block of time-slots on 3 rarticular dauw of
the week., You may srecifw ur to 5 such blocks bw diving the dayy starting
alot and ending slot of each rrefered block. You will also be asked to give
- a8 weidht to each bhlock corresronding to the mnumber of davwes a dame’s
scheduling mavw be delawed in order to fall into that block.

How manw such blocks do wou wish to specifw 7 1

Enter the number corresrondinsg to the daw on which
block 1{(in erreferentisal order) occurs. 1

h Ernter the number of the time-slot which bedins this block.3
v Enter the number of the last time-slot in block .4

Weight for this block ¥ 3 .%

We are now readw to schedule division number 1
. of Z—~leadue

How marw teams in this division? (must be 4 to 8) 8

o How many dames will each team =lauw? 3

What is the name of team 1 7 21 ..

What is the name of team 2 7 =2
o What is the name of team 3 7 =3
What is the name of team 4 7 =4
h What is the name of team 5 7 25
What is the name of team 6 7 =zé
What is the name of team 7 7 27
What is the name of team 8 7 =8

Are there any davs in the season on which one of
the teams in this division cannot rlau? (/M) n

Are there any time_slots (or blocks of slots)
on which teams in this division cannot plaw? n

. How manw davs would wou like to leave between
consecutive sames Tor each team in this division & i

30K K KK 0K K R K 3K R KKK KK KK KK OK KK K oK KKK 30K K 3K 3K K 30K K Kok ok 3k K

o

LoMNeaQunLe

T
Teams arel

oMM

M

Mo

ONSRD LR -~
9] M

RTINS BHUND XN U D P -

85 rlaus 10230
6 rlaus 13130
2 rlavs 16130
1 rlaus 19130
4 rlaus 16830
5 rlaus 10130
2 rlaus 13130
1 rlaus 16130
5 rlaus 16130
- 3 rlaus 10130
7 rlaus 13130
1 rlaus 163130

Oor L-1lea3aug OLVISELONn A

on shka
orn shka

Ilecember
Dhecember
lecember on ska
Saturdawr December on shka
Sundayy DNecember 14 on ska

Saturdaywr lDecember 13 on shka
Saturdawr December 13 on ska
Saturdawr December 13 on. ska
Sundayy December 21 on ska

Saturday» December 20 on ska
Ssturdavwr December 20 on ska
Saturdayy DNecember 20 on shka

Saturdau»
Saturdaywy
Saturdawy

2 0 A s

115

Would wou like schedule listings bu team? (u/n) . n 3

Would wou like to see the full schedule? (9w/n) n

We are now readu to

schedule Q-leadgue

Is there 2 mandatorw court (or courts) for this lesgue? (Ww/n) n

Are there rreferred

courts for this leadgue?

(If nots

the order in which the

court names were origdginally entered will be used as the default.) w

Enﬁer the court numbers in order of desirability.

Along with each

court number rlease enter 3 weighting factor reflecting how desirable

that court is.

The weight rerresents the number of dauws that

you are willing to rush a3 d€ame back in the schedule in order to have
it scheduled on that court. :

Court 1 7 1

What is the weight for this court 7 I

Court 2 % 2

What is the weight for this court 7 0O

Caourt 3 7 3

What is the weidght for this court 7 0O

Court 4 7 4

What is the weight for this court 7 0

Are there zny preferred daus of the week for schedulingQ-leadue games 7 (2/n)

How many sreferred davws are there 7 1

Flease enter these rreferred dsus in order of desirabilitu.

Along with

each dav enter 3 weighting factor corresronding to the number of dawus wou
would be willing to delaw the scheduling of a rarticular sgame to make

it fall on that daw.
Naw 1 7 7

Weighting factor 7

2

*

e

Are there any times that are rreferred for schedulingf-leadsue dames 7 u

Freferred times consist of 2 block of time-slots on 3 rarticular daw of

the week., You maw srecifye ur to 5 such blocks by giving the dawy starting
slot and ending slot of each rrefered bhlock. You will also be asked to give
3 weight to each block corresronding to the number of days a dame’s
scheduling maw be delaved in order to fa3ll into that block.

How many such blocks do wou wish to serecify ? 1

Enter the number corresronding to the day omn which
block 1(in rreferential order) occurs, 7

Enter the mumber of the time—-slot which bedgins this block.?2
Enter the number of the last time-slot in block.3

Weight for this block 7 5

We are now readwy to schedule division number 1
af R-leadgue
How many teams in this division? (must be 4 to 8) 8

How mang dgames will each team rlaw? 3
What is the name of team 1 ? &l
What is the name of team 2 T a2
What is the name of team 3 ? @3
What is the name of team 4 7 c4

What is the name of tezm ? b

? Q7

3

What is the name of team 6 7 @6
What is the name of team 7
8

What is the mame of team T a8
Are there anw daws in the season on which one of
the teams in this division carmnot rlau? (vw/n) n

Are there any time_slots (or blocks of slots)
o which teams in this division cannot elauw? n

How manw daus would wou like to leave between
consecutive dgames for each team inm this division 5§

a3k 3 o o 3Kk o ok ok ook 2k 3K 36 o 8K K 2K K K 3 K 0K K 8 KRR K K ok o ok oK R oK kK K
Schedule for Q—-leadue division 1
Teams are!l

9@ al
10 Qa2
11 a3
12 a4
13 Q5
14 Qb
15 a7
16 a8

13 rlaus 16 13:30 Saturdagyr December 6 on teb
14 rlavws 15 16130 Saturdaws December 6 on teb

.

FeS

1 !N,

9
12
13
10

9
13
i1
15

9

Would

Would

FlLans
rlags
rlaus
rlaus
rlaus
rlaus
rlavs
elaus
rlaus
rlaus
wou

2BOu

Saturday
December

Sundaw
lecember

Saturday
llecember

Sundayw
Necember

Saturdaw
December

Sundaw
December

Saturday
Ilecember

Sunday
December

L1
12
14
15
16
i1
14
12
16
10

Laiau
16130
13:30
16130
13:30
16130
13:30
163130
13130
16130

LETLTGS
Saturdays
Saturdawy
Saturdaws
Saturdaus
Saturdayy
Saturdauy
Saturdaws
Saturdayy

Saturdawy

necemner
lecember
December
ecember
lecember
Iecember
DNecember
December
December
Nlecembher

o

b
13
13
13
13
20
20
20
20

like schedule listinsgs by team?

[uln]
an
on
on
at
on
an
on
on
on

oara
oard
teh
teb
oard
oard
teb
teh
oard
oard

(w/n) . n

like to see the full schedule? (w/n) w

13

14

21

27

28

10130
13130
16230
19130

10:30
13330
16130
19230

10130
13130
16:30
192330

10130
13:30
16230
19330

10:30
13830
163130
192130

10230
13130
16130
19130

10230
133130
16130
193130

10130
132330
16130
19130

r 041346 4,555 129

sha

o]
1
COCCO CLN OSOCO HOIND

<
i
SO ORNOD

<
i
SOS T

<
!
COOC

teb

[y
E-3
i
| el el

= -

L ha

H §

(R -
SRHO SCC OO cUd o SCOoTO (o R4 W)

e
CCOC COOO00 COOC

oa

rd

0~
10~

| ol

g
SO0 SOCo SOo O o R el el SOCO (ol o3 e OO O

e

ing

SOCO OO0 OOTO COOCOC

COCO COCOO COCO

SOOCo

117

