
COMPUTERIZED SCHEDULING OF INTRAMURAL

by

PAUL ALAN ROUSH

Submitted in Partial Fulfillment

of the Requirements for the

Degree of Bachelor of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

July, 1982

Signature of Author -. . . .
Department of Computer Science, July 30, 1982

Certified by .

.Suprvso
j Thesis Supervisor

Accepted by. - - - - - -
Chairman, Departmental Committee on Theses

iASSACEO ! 9
OF TC'NRnr

NOVr 1 1982

UBRATES

SPORTS

li*L

it

rr

i*-

iC1

WD.

ilV

;�bu

TABLE OF CONTENTS

INTRODUCTION

BACKGROUND

PROBLEM STATEMENT

A. Flexibility Needed

B. Control Over Scheduling Desired

C. Managers Not Computer Oriented

D. Modifiability

GENERAL ALGORITHM

A. Mandatory Constraints

B. Preferential Constraints

C. Search Strategy

CODE DESCRIPTION

A. Data Structures

B. Routines

i) MAIN

ii) COURT AVAIL

iii) CREATE SEASON

iv) SCHEDULE

v) DIV SCHED

vi) TEAM PAIR

vii) RELAX

viii) PRINTOUT

RESULTS

SUGGESTIONS FOR IPROVEMENTS

REFERENCES

APPENDICES

A. Weighting Functions and
Evaluatimn of Optimal Time-Slot

B. Program Listing

C. User's Handbook

D. Sample Runs

10

10

11

12

13

14

16

18

19

23

24

29

29

31

33

34

34

40

41

42

44

52

54

55

59

91

99

4

INTRODUCTION

M.I.T. has a reputation for having one of the nation's finest intra-

mural sports programs. Those who have participated in the program pro-

bably need no convincing on this point. To those who have not, I would

suggest that this well-deserved reputation stems from the fact that any

student can play any sport at any level of competitiveness he desires.

This requires first of all that programs be organized in all sports ge-

be
nerating sufficient interest, and secondly that there provision made for

an unlimited number of teams in each sport.

Each sport is organized by a student who volunteers to be its manager.

His first task is to draw up a schedule. In the more popular sports this

can involve spreading upwards of 1000 games over many courts and a several

month long season. At best this task is tedious and very time-consuming,

and the prospect of having to deal with it scares away many potential

managers. This has sometimes led to sports being cancelled for lack of

a manager. In other cases, some hearty soul has undertaken the task only

to find that the resulting schedule has enough mistakes in it to necessi-

tate totally redoing it.

This thesis is an attempt to eliminate this major problem in an other-

wise outstanding intramural program. The prospect of having a computer

program to do the tedious part of the scheduling task, should encourage

students to volunteer to be managers. Furthermore, this program is de-

signed to produce a solution of higher quality than could generally be

expected from hand scheduling. Some of the good features of this com-

puter-generated solution include: games played by a single team are

equally spaced throughout the season; each team plays the same number of

5

games; each team plays a variety of other teams throughout the season

(i.e. there are no situations where two teams play each other over and

over).

Additionally, this program allows the manager considerable power to

"shape" the resulting schedule. It allows him to specify courts that

must be used for certain leagues, or preferentially order the courts; to

specify certain days of the week, or times of day that each league's

games should be played on; and to specify certain days or certain times

at which individual teams are unable to play. This last feature can be

useful in avoiding conflicts between a house picnic and intramurals

played by a team in that house, or it can also be used to avoid conflicts

between games played by the same team in two different sports. Finally,

the program is designed to allow the manager, if he so chooses, to "seed"

the teams in each division. This could be done based on the previous

season's records or however else the manager chooses. The seeding then

results in the strongest teams playing each other toward the end of the

season, with number 1 and 2 squaring off in the final week.

One additional feature that would be nice to add to the program

would be the capability to reschedule rained-out games, leaving the rest

of the schedule fixed. For the time being, though, the manager should

be able to do this by hand without too much trouble. This point aside,

the program should do most of what any manager would want it to, and be

a valuable addition to the intramural program.

6

BACKGROUND

My interest in this project grew out of four years of very active

participation in the intramural program. I played a number of sports

each year (among them basketball, soccer, football, volleyball, water

pblo, ultimate frisbee, and softball) and drew from this experience a

great respect for the diversity of the intramural program, numerous

hours of enjoyment, and a good understanding of the strengths and weak-

nesses of the program. My knowledge of these strengths and weaknesses

was furthered by serving two terms as my fraternity's athletic chairman,

during which time I attended all of the Intramural Council meetings.

The three major problems I noticed were difficulties in finding managers

and referees for each sport and problems with the schedules that necessi-

tated constant revising during the course of the season. This revising

of schedules resulted in the further problem of teams showing up for

games that didn't exist and failing to show up for games that did, be-

cause thay looked at an outdated schedule. Furthermore, the difficulty

in finding managers stemmed largely from the fact that potential volun-

teers were scared off by the tedious nature of the scheduling task.

Therefore, I felt that it would be a great boon to the intramural program

to have a computerized scheduling routine that would make the manager's

life easier and get the schedule right the first time.

The major problems I had seen with hand-scheduled seasons were in

the form of teams left off the schedule entirely by the manager's over-

sight, teams who were only scheduled to play a few games (four for in-

stance, when the rest of the teams were playing eight), and pairs of

teams who wound up playing each other repeatedly rather than getting a

7

chance to play other teams in their division. The typical result of all

of these problems was that the team(s) who had been slighted read over

their copy of the schedule when they got it, noticed the problem (some-

times not until 2 or 3 weeks later), and notified the manager who then

had to overhaul the schedule and send out new, revised copies. Since

these revised schedules sometimes did not solve all the problems or

else created new ones, more revisions were made and mass confusion gene-

rated. It was clear to me that a first schedule lacking these problems

would be greatly appreciated by everyone involved in the sport. Another

up
problem of a less serious, though still annoyingnature often croppedAin

these schedules also. Quite often, teams would play 2 or 3 games in a

week and then not play again for a month or two. I felt that a compu-

terized scheduling routine could solve all of these problems and remove

the major obstacle to finding volunteers to manage sports. Additionally,

by making the initial scheduling task less time consuming and eliminating

the need for constant revisions, it would free the manager up to spend

more time looking for referees.

As I was thinking about undertaking the generation of such a program

as the basis for my thesis, it came to my attention that Steve Pettinato

had attacked the same project in 1980 for his bachelor's thesis, "A Sport

Scheduling System". I read through his thesis and found that he had done

a good job of stating the problem and the necessary features a program

must have to produce a reasonable schedule. This high-level analysis

proved useful to me as I decided on the constraints my algorithm should

include and the basic manner in which it should function. If Steve

Pettinato had been able to successfully implement his design, the need

for my work in this area would have been minimal, though my algorithm

8

does expand on his in two significant respects (the capability to specify

days and times that individual teams cannot play, and the capability to

seed the teams). Unfortunately, Pettinato's code lacked many of the fea-

tures that were deemed important in his high-level design. Among these

shortcomings are the following.

First of all, the human interface was weak. This included both unclear

prompt statements and tedious input of data. This second problem was quite

serious since in several places the user was asked to supply a very large

amount of redundant data. As a case in point, the manager is asked to give

the times at which each time-slot starts once for each day of the season.

Since these times should be the same for each day, the user is asked to do

150 times as much typing as necessary for a 150 day season. (i.e. if there

are 8 time slots the user is asked to type in 1200 times rather than the 8

that are necessary.) Another problem along this line occurred when the code

was unable to successfully schedule a division. In this case, all success-

ful scheduling of previous divisions was lost, and the manager had to start

over at square one, beginning with the re-typing of all the court availabilities.

Secondly, the data structures included in the program were insufficient

to adequately describe the season. There was no facility included for chang-

ing court availabilities on the time-slot level, only on the day level. Thus

if a varsity meet was to occupy one of the courts for only one hour, the mana-

ger would have to specify that court as being unavailable that entire day.

Even more important than this, though, was the fact that time-slots available

on a court on a given day were originally specified as a single contiguous

block (i.e. the first and last slot numbers available on that day are request-

ed). This leaves no provision for dealing with a court that is typically open

in the morning, reserved for gym classes in the afternoon, and open again in

the evening.

9

Finally, and most importantly, there is no provision made for shap-

ing the resulting schedule through manager-defined constraints . The

manager is not allowed to specify preferred days of the week or preferred

times for scheduling games. While the manager may specify preferred

courts, there is no weighting done -- he simply gives an order in whioh

to search through the courts. This is somewhat helpful, but the code is

structured so that finding the earliest available time slot is given

higher priority. Thus, if all of the courts but the worst one were

filled at 10:00, and all of the courts were empty for the rest of the

day, the program would schedule the game at 10:00 on the worst court

rather than at 11:00 on the best one. When a manager specifies court

preferences this is not the sort of response he would generally desire.

Additionally, the constraints of when each team is able to play are not

addressed. The days and times during which each team is unable to play

must be avoided when scheduling that team's games. Otherwise, the re-

sulting schedule will be unusable until the manager does major revisions

by hand.

10

PROBLEM STATEMENT

Flexibility Needed

In order for a computerized scheduling routine to be truly useful to

the intramural program, it first of all must have a high degree of flexi-

bility built in. It must be able to deal with sports like football that

have four or five different levels of competition (A-league for near-

varsity level play, D-league for those who don't even know the rules,

B-league and C-league in between, and sometimes even E-league), less

popular sports such as badminton and table tennis that have perhaps two

or three leagues and 30-40 teams, and sports like basketball that have

150 teams wanting to play. Along with allowing for different numbers

of leagues, it must allow for different numbers of divisions (each team

plays others within its division during the regular season, and division

winners meet in the playoffs) within each league and different numbers

of teams in each division. The season may span many months or just one.

Provision must be made for teams playing more games each in one sport

than in another, and furthermore for the fact that often A-league teams

will play more games than B- or C-league teams will in the same sport.

There may be many courts or fields available or just a few, and these

may each be available at different times of day and different days of the

week. Further, the games may be scheduled only on weekends, only on week-

days, or throughout the week. Different times may be available for

scheduling games from one sport to the next and even from one day to the

next, and the number of games that can be squeezed into a given time

period varies from one sport to the next as the lengths of the games are

different. Allowance for specifying the values of all of these variables

must be made if the routine is to be useful.

11

Control Over Scheduling Desired

Generally speaking, it is not sufficient to simply schedule enough

games for each team on various courts at times those courts are availa-

ble. There are normally a large number of criteria by which a manager

judges one day and court and time-slot combination to be more suitable

than another for scheduling a particular game. For instance, there are

usually some courts or fields that are preferable to others and often

only one of them is suitable for A-league play. Two cases in point are

that all A-league basketball games are played in the Rockwell Cage and

all A-league football games are played on the Rugby field. Sometimes

the managergwants to schedule one league's game on a particular day of

the week and/or a particular time, such as the traditional Sunday evening

A-league basketball games.

The manager also takes into consideration days when a team is unable

to play due to some outside conflict. This conflict might be in the form

of a house picnic for the dormitory or fraternity the team is from or

might be a game in a different sport that many of the team members will

be participating in. As a logical extension of this concept I decided

teams should be allowed to specify times on particular days that they

can't play also, since they might, for instance, have an afternoon picnic

and still be willing to play in the morning.

The manager also likes to have some control over the spacing between

consecutive games of the same team. Generally speaking, it is desirable

to have this spacing be uniform, and as large as possible given the

restriction of fitting all of the team's games into the confines of the

season (for a team playing G games in a season D days long, we would like

12

this spacing to approach G days). As I noted in the background section,

this is one area in which hand-made schedules are usually lacking, but

that is no reason why a computerized system should not tackle the problem.

Another form of control not included when scheduling by hand that I

felt would make a nice addition to this routine is the capability to

seed teams within each division. Quite often, there are teams that are

perennially strong in a given sport and the manager may have a feeling

for the relative strength of various teams prior to the season's start.

In this case, he might desire to input the seedings for these teams and

have the schedule designed so that the strongest teams don't meet until

the end of the season. A program giving the manager all of these forms

of control over the way the games are scheduled would be a very useful

tool.

Managers Not Computer-Oriented

While some intramural managers have considerable experience working

with computers, others have never done any programming, and one cannot

assume that such a manager will be overjoyed at the prospect of using a

computerized scheduling routine. Therefore, if such a program is to be

of any use it must be as "friendly" as possible to the user. This user

friendliness clearly has to be the main goal in the construction of the

program -- if the manager refuses to use the routine it is of no value

at all. To achieve this aim, one thing that is clearly necessary is to

provide very clear prompt statements that explicitly state the required

input format. Additionally, each required data item should be prompted

for separately rather than asking for a batch of data and expecting the

manager to enter the right number of items in the right order.

13

One would also expect that any manager, whether he feels comfortable

around computers or not, would not be particularly fond of the idea of

spending numerous hours in front of a terminal entering data. Thus, it

is important to write the code so that it requires as little input from

the user as possible, and so that the amount of typing to enter any

particular input is minimized. Finally, it is desirable to give the

manager as good an overview of how to use the program as possible before

he sits down at the terminal. This hopefully will put him more at ease,

and through a little advanced planning allow him to minimize his data

entry mistakes. To help in this respect a user's manual has been in-

cluded as Appendix C.

Modifiability

One final facet of this problem is the need for a modular structure

that will lend itself to future modifications. The previously stated

needs for code that is flexible and offers the manager a great deal of

control over the scheduling constraints necessitate a long program.

Basic principles of good programming call for any large program to be

developed modularly, and without this modular structure the initial

debugg'ing task might have been virtually impossible. In this case, there

are also other good reasons for insisting on a modular structure. Since

the final goal is to provide a service to the intramural program, the

design of the code should take into account the likelihood that someone

will in the future wish to either tinker with the constraints used or

add new ones to expand on the routine's usefulness. In order to make such

modifications possible it is necessary to write the code in a highly

modular fashion.

14

GENERAL ALGORITHM

The first step in deciding on the basic design of the algorithm was

determining what portion of the scheduling problem it should attack. At

one extreme, it could take on every conceivable scheduling scenario and

require the manager only to enter the initial constraint input and any

subsequent considerations that arise and call for modifications, such as

rained out games that need to be rescheduled. On the other extreme it

could be a very simple routine that ignores many of the more subtle

constraints and produces a first-draft schedule that the manager must then

heavily modify. This would presumably still be easier than starting from

scratch, but as long as we're going to use a computer why not have it do

as much of the work as possible? I therefore decided to include in my

algorithm the ability to provide all of the flexibility and control

described in the first two parts of the Problem Statement section.

There were two features which I considered including but decided

against. The first was allowing for the scheduling of several sports at

once, and cross-checking to avoid conflicts such as teams from the same

house having football and soccer games scheduled at the same time. This

is traditionally a problem, but I did not feel that parallel scheduling

of several sports was the best answer for the following reasons. First,

it would require a great deal of coordination between the managers of the

sports involved, since the scheduling would need be done at the same time

for each sport (currently, sports played in the same season are scheduled

at times weeks apart from one another -- the particular time depends on

the manager's whimsy) and in order to cross-check for conflicts the team

listings would have to reflect which house the team is from and what other

15

teams in other sports also contain members of that team. This necessity

of coordinating with other managers would add to each manager's headaches,

when the purpose of this program is to make their lives easier. Secondly,

these additional headaches would be bought at the expense of code that is

more complicated, and therefore more difficult to modify and more expen-

sive to run. Finally, and most importantly, there is a simpler solution.

Since provision is made for each team to specify days and times on which

they cannot play, they simply note those times they are scheduled for

games in one sport, and request not to be scheduled at those times in the

next sport. This has the pleasant quality of diverting some of the re-

sposibility for developing schedule constraints from the manager to the

individual teams, thereby spreading out the work load.

The second feature I decided against including was a capability to

reschedule rained out games without modifying the rest of the schedule.

This would be a valuable feature and probably should be added at some
First of all, it would add some complicationspoint. My decision to leave this out was based on two observations.Ato

an already complex task. For this reason, I felt a more suitable approach

would be to first get abasic scheduling routine working, and then add in

rain game rescheduling at a late point. Such adding on of features often

causes problems as the additional code does not mesh well with the original

algorithm. In this case, however, the feature to be tacked on is suffi-

ciently disjoint from the main algorithm that there is little need for

smooth integration. Secondly, my feeling was that leaving this feature

out would not greatly lessen the usefulness of the routine. While the

initial scheduling task is tremendously difficult to do by hand, given

an initial computer-generated schedule, the manager should have no trouble

rescheduling a few individual rained-out games.

16

After deciding on the scope of the algorithm, the next step was to

determine just how to give the user the sort of control discussed in the

problem statement section. To govern the scheduling of each individual

game, a set of constraints were developed. I decided that some of these

constraints should be mandatory and the others should be weighted accord-

ing to their degree of desirability. I will give an overview here of

what sorts of mandatory and preferential constraints were included. For

a more detailed description of how the constraints were implemented, how

the preferential constraints were weighted, and how the set of constraints

were combined to choose the best spot in the schedule to place each game,

see Appendix A.

Mandatory Constraints

The first set of mandatory constraints are simply the days and times

on which each court is available. To minimize the amount of input the

manager must provide, these are entered in the following manner. First

the manager specifies the number of courts and whether the sport will

have games scheduled on weekends, weekdays, or the full week. He then

specifies what time-slots are typically available for each court on each

day of the week. This sample week is then replicated through the length

of the season. The bounds of the season are specified by typing in the

months that it spans, the number of days in each and what day of the

week each month starts on. To deal with the fact that the first and

last months are probably not fully included in the season, the season's

first and last dates are also asked for. Once this basic calendar has

been created, the manager is asked for exceptions to it in the form of

full days that are unavailable (to take care of holidays and such), and

17

times that are unavailable on particular days (this might result from a

varsity contest being played on that court that evening). Provision

is also made for the addition of extra time slots that are not typically

available.

In addition to the court availability constraints, there are also

mandatory timing constraints on a team by team basis. As each division

is scheduled, the manager is asked for full days and blocks of time slots

on particular days on which any of the teams in that division cannot play.

The final mandatory constraint provides for the specification of a

court or set of courts that must be used for games played in a particular

league (this generally is only used for A-league games).

The actual scheduling is done on a division basis. That is to say,

all of the games to be played by teams in one division are scheduled and

then the program moves on to the next division. All of the divisions in

one league will be scheduled and then the routine will move on to the next

league and loop through its divisions, scheduling each of them. The man-

datory court constraints are entered at the league level, and than all

of the divisions within that league are scheduled using those constraints.

The team by team time constraints are entered at the division level and

are reset as the program moves on to the next division. The court avail-

ability constraints are entered outside of the league loop, as they per-

tain to the entire schedule.

As the program attempts to schedule each game it looks first at those

mandatory constraints to determine what time slots on each court on each

day are feasible places to position that game. (In actuality it is much

more selective than this -- it does not examine all combinations. A

description of which slots are checked for feasibility is given in the

18

"Search" section later in this chapter.) Once the program has come up

with a group of feasible time slots it examines each of them to determine

how well they meet the various preferential constraints and chooses the

one with the best overall "figure of merit."

Preferential Constraints

To allow for subtle shaping of the schedule, there are three areas in

which the manager may specify preferential constraints. These are preferred

courts, preferred days of the week, and preferred time-slots. These items

were designated as desirable rather than mandatory since, generally speak-

ing, it is not as crucial to satisfy them as to satisfy the constraints

that were designated mandatory. There is, nevertheless, provision made

for turning any of these constraints into what are essentially mandatory

requirements by simply giving them a high enough weight. These constraints

will now be discussed one by one with a more detailed description appear-

ing in Appendix A.

When the manager first enters the court names he is asked to give them

in their default preferential order. No explicit weighting is given at

this point, but this gives the program the order in which to search the

courts in the absence of tighter constraints. Should the manager wish to

change this default ordering for a particular league or heavily favor one

or more of the courts over the others, he can do this when he is specify-

ing constraints for the league. Setting the weights extremely low will

have the effect of simply changing the default preference order. Setting

though explicitly doing soa court's weight very high will essentially make it mandatoryAis a better

idea. The reason that explicitly designating the court as mandatory is

better is that in that case if there is no opening on the given court the

19

manager will be notified of the problem. This preferential court order-

ing is only foolowed, of course, if no mandatory courts are specified for

the league being scheduled.

Occasionally the manager will want to schedule games in one league

on a particular day of the week, such as the Sunday night A-league bas-

ketball games I mentioned before. To allow for this he is given the

options of specifying both preferred days of the week and preferred time-

constraint
slots for each league. The weighting given to the preferences is in the

form of the number of days the manager is willing to postpone the sche-

duling of a game in order to satisfy the given criterion. The result,

then, of specifying a weight of 10 for scheduling on a Sunday, is that

if an open slot is found on Friday the 15th the program will continue

searching until the 25th in hopes of finding an open slot that falls on

a Sunday instead.

Search Strategy

As I have previously stated, the scheduling is done on a division by

division basis. The first thing that is done for each division is the

generation of an array of team pairings. Basically this pairings array

can be thought of as containing N blocks, where N is the number of games

that each team is to play. Within a block each team in the division plays

one and only one game. (Actually this is slightly oversimplified -- for

a fuller description see the write-up on the TEAM PAIR module in the

"Code Structure" section.) Since the team pairing arrays are designed

to have teams play a different opponent each week, a given team may play

at the end of one block and the start of the next. This being the case,

to meet the goal of equal spacing between a particular team's games it

20

is necessary that the blocks be packed tightly, and that the spacing

between blocks be as wide as possible. As an example of what might happen

otherwise, consider a 3 game season with 2 week long blocks that have no

space between them. In this case, one team might play at the end of the

first and third blocks and start of the second. This team's schedule

would then consist of games on back-to-back days followed by a month

long layoff prior to their final game. Providing widely separated, tight-

ly packed blocks of games is therefore a primary goal in searching for

appropriate times to schedule each game.

One of my concerns in writing this program was to design it in such

a way that it would not cost too much to run. In a sport like basketball

there can be as many as 150 teams playing 8 games each, giving a total

of 600 games to be scheduled. In general, there are more time slots made

available than the number of games called for. This padding is necessary

to allow for rescheduling rained out games, and without it the last few

divisions to be scheduled would probably wind up a mess since there would

be essentially no choices about where to schedule games. Even if there

were only as many time slots as games, though, in a 600 game season

there would be 600!, or upwards of 101500, possible schedules. By break-

ing the teams up into 4 to 8 team divisions and scheduling on a division

by division basis, the number of possible arrangements is greatly de-

50creased, but is still on the order of 105. Clearly then, it is not

feasible to search through all possible schedules for the best one. The

routine must methodically eliminate all but a very small fraction of the

possibilities and then evaluate the merit of just these few. It is clear-

ly quite possible that the optimal solution will be among the 99+7. that

were never even evaluated. By being very intelligent about which few

21

combinations it decides to look at, the program can nevertheless be

relatively certain of finding a solution that is quite good. The bottom

line is that the algorithm is digned so that it settles for a very good

solution rather than looking for a perfect one.

In an attempt to minimize the number of days searched while producing

a schedule having widely separated, tightly packed blocks, I decided on

the following approach. The manager would designate a minimum spacing

between blocks, and then to schedule each block of games in the division,

the program would search only those days which were at least that many

days past the last game in the previous block. While in some cases this

might result in overlooking an excellent choice only one or two days

earlier, it does allow for a significant reduction in searching and in-

sures that blocks do not get too narrow a spacing between them.

From this starting point, the routine searches forward only, and generally

searches for a very limited distance. This is clearly good from the

standpoint of minimizing execution cost, but one might have doubts about

how good a solution such a limited search could make. However, from the

standpoint of providing equal spacing between a team's games the ideal

positioning for the game is right at the point where that search starts

so there is no point in checking days far removed from that spot. In

the absence of preferential constraints the program will in fact choose

the first open slot it finds and schedule the game there. When preferen-

tial constraints are present, the program will search farther in an attempt

to satisfy the given constraints. How much farther is determined by how

heavy a weight the constraints are given. When this longer preference-

seeking search is taking place there is clearly no need to look for open

slots on a day that does not satisfy the constraints in question. There-

22

fore, a preliminary scan of each day is made to determine whether it

eve1 has the potential to improve on the best-fit found prior to that

day. A flowchart diagramming this search process can be found in the

next chapter, in the section discussing the DIVSCHED routine. For a

more detailed description of how the preferential constraint weights

alter the length of the search, see Appendix A.

23

CODE DESCRIPTION

In this chapter-I will discuss the actual code I wrote to implement

the algorithm described previously. The program was written in PL/1 and

run on M.I.T.'s Multics system. PL/1 was chosen because it is the language

I was most familiar with that had the necessary flexibility of data struc-

turing and bit-handling capabilities. It was important to be able to de-

scribe available time-slots on the court and team levels with single bits

in order to keep the memory requirement reasonable. As a side note, it

should be mentioned that I refreshed my memory of PL/1 by taking a look

through Appendix B of Introduction to Structured Programming Using PL/1

and SP/k by Conway, Gries and Wortman. This appendix summarizes PL/1 and

might be helpful to any reader wanting to brush up on the language.

One of the goals mentioned on the Problem Statement chapter was to

keep the code highly modularized. To this end, the code was broken up

into ten modules -- eight subroutines and two functions. The functioning

of each of these modules will be described later in this chapter. An

overview of the interaction between them, in terms of flow of control and

passing of data arrays, can be seen from the figure at the start of that

section (Routines section). I will now discuss the major data structures

used in the program. Some data structures that are important to the func-

tioning of specific routines but which are not crucial to an understanding

of the program as a whole will be covered in the section discussing the

appropriate routine.

24

Data Structures

The format and function of each of the major data items follows.

Several of these are PL/1 structures with formats too involved to repro-

duce here. In those cases, a mention is made of what portion of the code

the reader can find the appropriate declaration in. Since the data dis-

cussed in this section is that which is most important to the functioning

of the overall code, most of the items are accessible throughout the pro-

gram. For those items whose scope is not the entire program, explicit

mention is given of the outermost block in their scope.

Just as I felt it inappropriate to include complex structure declara-

tions in this section, I also did not desire to write these declarations

over in each routine that was to access them. I especially did not want

to include their format in the argument declarations for the subroutines

they were to be passed to. For this reason, structures that needed to be

widely accessed were declared in "include" files and were allocated space

based on pointers. These pointers were then passed in argument lists

rather than passing the structure itself.

MISC is a structure whose declaration can be found in the STRUCTURES.

INCL include file. It contains a variety of miscellaneous data such as

sport-name, number of leagues, the names of each league and the number of

divisions in each, the number of courts and their names, and the names of

and number of days in each month. Most of this data is entered in the

MAIN routine, with the exception of the court data which is entered in

the COURT AVAIL routine.

SEASON is another structure whose declaration can be found in the

STRUCTURES include file. It is filled in the CREATE SEASON routine, holds

the number of days in the season, and corelates each season day to the

25

actual calendar. This correlation includes the day of the week, month and

date of each day in the season. The day of the week is stored as a num-

ber (Sunday=>P1, Saturday= 7, etc.) both because this saves space, and be-

cause this format is more easily used in most parts of the program. Thus

if we wanted to know whether the 12th day of the season fell on a Tuesday,

we would check to see if SEASON.DAY(12). DAY OF WK was equal to 3. The

RELDATE entry gives the number of actual calendar days from the start of

the season to the day in question. This is used in the search portion of

the scheduling process to give a measure of the actual number of days from

the start of the block to the day being currently checked. The DATE entry

could be used for this were it not for the fact that searches across month

boundaries would then require much unnecessary calculation. The need for

the AVAIL entry can be seen in the discussion of the CREATE SEASON routine

--basically it notes days that would normally be part of the season but

are unavailable (holidays for instance) by setting this bit to 0.

FACAVAIL is a 150 x 10 array of 15-bit entries. The first index

specifies a day by giving its index in the SEASON array. The second index

specifies the court number. The bit string for any day & court combination

gives its availability during each of the time slots. Thus, a in the

3rd bit of FACAVAIL(110, 5) means that the 5th court is available during

the 3rd time slot on the 110th day of the season.

DIVISION is a structure whose declaration can be found in the DIV DCL

include file. Its scope is bounded by the DIV_SCHED routine, and on each

call to DIV_SCHED is filled with data pertaining to that particular divi-

sion. This data includes the number of terms in the division, the number

of games each will play, and a team-number that is unique to that team

through the life of the run. This team number is used to uniquely identify

26

each team in the overall schedule listing by its position in the scheduling

order (i.e. the 34th team scheduled is 34).

PAIRINGS is a 14 x 4 x 2 array of FIXED values whose scope is bound-

ed by the DIV SCHED routine. It is filled in the TEA4 PAIR routine with

the teams that will meet in each game scheduled for that division. The

first two indices correspond to block number, (if each team plays 6 games

there will be 6 blocks), and game number within that block, respectively.

The third index is either 1 or 2 depending on whether you want to access

the first or second of the teams paired off in that game. The value of each

entry is the team number. This team number is not the same as that contained

within DIVISION, however, this one running from 1 to 8 in an 8 team division.

PAIRINGS(4,3,1) and PAIRINGS(4,3,2) contain the team numbers of the two

teams meeting in game 3 of the 4th block of games. These team numbers

represent the index of the team within the division. From this division-

oriented team number (call it TN) we can obtain the sport-wide number for

the time by taking DIVISION.TEAMNUMBER(TN).

TEAM is a structure whose declaration can be found in DIV SCHED and

whose scope is bounded by the same. It is filled at the beginning of the

DIV_SCHED routine with the time constraints for each team in that division.

For each day in the season and each team in the division, TEAM contains

a single bit telling whether that team can play on that day, and a bit-

string telling which of the time slots on that day are acceptable to the

team. By putting TEAM in this bit-matrix format (as opposed to a list of

problem times) it became possible to overlay sections of FACAVAIL and TEAM

to quickly determine (using bit-wise ands) just which slots were available

to schedule a particular game.

27

LEAGUE is a structure containing constraints that apply to the league

being schedule at that time. Its 'declaration' can be found in LEAGUE_DCL.

INCL and it is filled with data in the SCHEDULE routine as processing starts

for each new league. It contains information on the mandatory or preferen-

tial courts designated for the league, preferred days of the week and time-

slots, and the minimum number of search-days called for by the weighting

of the given constraints (this is explained in Appendix A). The preferred

time slots are recorded as a list of contiguous blocks of slots each asso-

ciated with a particular day of the week. This allows, for example, the

specifying of Sunday evening (from 6-10 pm. perhaps) times as being pre-

ferable for A-league basketball games.

SCHED is the structure that keeps track of the games that have been

scheduled -- the teams playing, and the day, court, and time-slot asso-

ciated with the game. Its declaration can be found in STRUCTURES.INCL

and it is filled in the DIV SCHED routine. Its format is that of an array

indexed by (day-of-the-season, court-number, time-slot-number). Each

element thus indexed is a pair of fixed values giving the team numbers of

the combatants scheduled in that slot, or zeroes if the slot is still

empty (The team-numbers used are the sport-wide ones mentioned ir the dis-

cussion of TEAM on the previous page). An alternative format was consider-

ed that would list games in the order scheduled and would contain day, court,

time, and team numbers in each entry. Since this array has the potential

to grow very large, it would be nice to minimize its size to whatever ex-

tent is feasible. A list of games could require considerably less storage

(depending on the percentage of time-slots that will eventually be filled)

since it does not have to store zeroes for every slot that could have been

used but wasn't. The chosen format, however, is preferable for two reasons.

28

First, it is desirable to have those zeroes, since they allow the manager

to look at the schedule printout, and at a glance tell where there are empty

slots still available. (These can then be used if he needs to reschedule

a rained out game.) Secondly, the printout of the schedule needs to be

done in chronological order to be of any use, and that is not the order in

which the games are scheduled (i.e. the program moves through the season

scheduling division 1, then returns to the start of the season to begin

scheduling division 2, etc.) Thus, if a list format were used, each time

a printing was to be done this list would need to be sorted by day, court,

and time. It seemed to make more sense to put it in this format to begin

with. However, the maximum number of season-days, courts, and time-slots

that I wanted to make allowance for were 150, 10, and 15 respectively.

Since two fixed numbers comprised each entry this called for a 45K array,

which was much larger than I wanted to have to allocate space for. In

almost all cases, however, the actual number of days, courts, and time-slots

will be well below these maximun values. I therefore decided that the array

should be dynamically allocated at just the right size after these actual

values were known. There was initially a problem with this approach since

I had planned to have the MAIN routine call DIV_SCHED directly. The SCHED

array could not be declared in the MAIN routine since the needed values

were not known on its entry. The array could not be declared inside DIV

SCHED or it would lose track of the data for the past division each time the

routine was called to schedule the next one. I thus decided that the best

solution was to add a shell routine around DIV SCHED called SCHEDULE whose

only purposes would be to initialize the SCHED array, input constraints

for each league and call DIV_SCHED for each division.

29

Routines

This completes the discussion of data structures that are used widely

throughout the program. I will now discuss the subroutines that comprise

the program, with the exception of MAXVAL and EVAL which are discussed in

Appendix A. For each routine, I will discuss its function in broad terms,

how it achieves its purpose, subroutines it accesses, data flow to and from

it, and data structures that are important to its functioning but were not

used widely enough to be mentioned in the previous section. An overview

of the manner in which these routines interact, in terms of both data flow

and flow of control, can be seen in the figure on the following page. List-

ings of the actual code can be found in Appendix B.

MAIN

The MAIN routine is the starting point for the program. Its task is

limited to requesting the input of a variety of information that will be

needed throughout the entire program, and calling two subroutines that then

see that all the actual work gets done. There is no computation done in

this routine. The two subroutines called are COURT AVAIL, which deter-

mines the availabilities of the various facilities throughout the season,

and SCHEDULE, which loops through the leagues and divisions and sees that

each one is scheduled in turn. These subroutines access a number of other

subroutines to help with various parts of their tasks.

The first task of the routine is to input the information that is

needed to fill the MISC data structure. Since each input has been prompt-

ed clearly in the interests of making the program as easy to use as possible,

the functioning of this portion of code should be easily understandable by

looking at the listing. The three terms used to describe the sport-week

_M IN;
i gputt G(j\eJenAc\ rwor-\Ctcku

tl) ZIsc AV

'tCXi:~ \ HEd L t

o'~~~~~~~C uq 7A0~l fl I L
ji'0u~~~~~avrtll ~ ~ il

(tXli CIL-*49~s~;---. Et'*so 9---- iv$;<~~~~~~~~~~~~~` 'Jnc .- \ --w § t111 645
t5~~, j F \8 Y ev I6

t;*2ez {?t·~ (2 gI: [Iv j1F:A 9tqtit f

,7'N Ld LctE C .-'Fo7StrS

; I -fE--:_!'(C ll b a- C '

F PhSw
- - --- -- -- _..... T iV;. , , - .. - .. .' -� --. - F. .I l -J

;np r I !TEr (i Y -C s-- r

j L -T-g '5 ; -........
4 ! w;._; ._e .. _ ___ _._. _

n~~~~~r ~ ~ ~ ~ ~ --. }tA:.~If
1N~~~----- . _.. I tle - ~ (r.. ~,42.. _ .

.t~~~~P""f~ Ths-t ~ A'A(;7 1J~~lti.

Lu DcL> A rn i. _~.~q ,~-S. -. t.fL I............

A/m-

(CAe -I> { j i v s In L' K -----
tlls-

.~-s~ : Re.ffi e~.tl.t,,<

.I v j

TNT['RtL~lC,; F fv(00%ACCG >

iI-'---L� I·1·-I�.�� _�_.�

-~`·c - __ rlr I

I'

f f

Call P kl w u3"r _t _ ~

I

h --- ----- .. -~

31

(misc. sport wk.SW1. and SW2, and SW3) represent the first day in the week,

the last day, and the incremert between consecutive days for this sport.

Thus, these terms can be used as the "from", "to", and "by" indices of a

doloop designed to step through the days in a single week of the season.

The barest minimum of data regarding the days spanned by the season is re-

quested -- namely the number of months, number of days in each, and the

day of the week that each starts on. From this information combined with

the sport-week data, a full season calendar can be constructed by the

CREATE SEASON routine. This is one example of the efforts made to keep

user input to the absolute minimum required.

Once the MISC structure has been filled with the necessary data, that

data is passed to the COURT AVAIL routine which determines what times each

court is available on each day of the season and returns this information

in the FACAVAIL array. In addition, COURT AVAIL calls CREATE SEASON to

produce the season's calendar as mentioned above, and then returns this

information to the main routine in the SEASON data structure.

SCHEDULE is now called with pointers to the MISC and SEASON structures,

and using this data, the routine sees to the actual scheduling.

COURT AVAIL

COURT AVAIL is a subroutine called by MAIN to determine the times at

which each facility is open on each day in the season. The routine is passed

the data in the MISC array and returns the availability information in the

FACAVAIL array. Additionally, the routine calls CREATESEASON to expand

the limited season-size information in MISC out into a full calendar which

is then used in the filling of FACAVAIL and subsequently passed back to the

MAIN routine.

32

The routine starts off by requesting the number of courts and the

names of each. It then determines from the time-slot data in MISC (start-

ing time of first slot, length of slots, and number of slots) the time

each of the slots starts and prints these times so that the user can in the

future refer to time-slots by their index (i.e. first slot has index 1).

The manager is then asked to input the times each court is available during

a typical week. To minimize typing this data is entered in the form of

n-bit strings (where n is the total number of slots in a day) with l's

corresponding to available slots and O's to unavailable ones. Once the

sample week is complete, the user is asked to verify that the input was

correctly entered (since entering a number of bit-string can easily result

in typos). If the input is verified, the sample week is replicated through

the season and the result is the FACAVAIL array. If not, the user can

specify which bit-strings were incorrectly entered and change them. When

he is satisfied that they are all correct the replication is done.

Once the sample week has been replicated, exceptions to this "ideal"

season are entered. The user is asked for the court whose availability is

to be changed and then the month and date to be modified. The new avail-

ability string is then entered and the user is asked if there are more changes

to be made. When no more exceptions exist, the FACAVAIL array contains the

precise court availabilities for the entire season, and this data is re-

turned to the MAIN routine so that scheduling can begin.

Throughout this routine, count is kept of the total number of slots

available during the season on each court. The number of slots open on

court I is MISC.COURT(I).TOTAL_SLOTS. This information is updated accord-

ingly as scheduling proceeds, so that when a division cannot be success-

fully scheduled, the user can check to see whether the problem was a lack

33

of open slots on a mandated court, or lack of slots overall, or whether

this had nothing to do with the trouble.

CREATE SEASON

CREATE SEASON is called by COURT_AVAIL to generate the season's calen-

dar. It is passed the data in MISC and returns the completed calendar in

the SEASON array. This "calendar" is actually in the form of a list of days

in the season. Each of these entries is comprised of the day of the week

on which the day falls, its month, its date, and its "rel date" which is

a measure of the number of real (rather than seasonal) days between the

start of the season and the day in question. This last quantity is used

to determine whether a search to satisfy a preferential constraint should

be carried farther than the season day currently being looked at (see

Appendix A for more details of how this is used).

The routine creates the season by replicating the sport week (the

days SW1 to SW2 by SW3) found in MISC through all of the months in the

season, from the FIRST_DATE to the END_DATE. The first step in scheduling

each month is to determine the correspondence between dates and days of

the week. This is accomplished by using the day of the week the month

starts on to determine the date of the Sunday that starts that month's first

week (SUNDATE). This SUNDATE is generally negative since the 1st might

fall on a Wednesday for instance, and the Sunday beginning that week is

3 days earlier. The "date" at the start of this week now known, the

routine loops through the sxott-week incrementing the date as needed until

the first day of the month is found (or in the case of the first month,

the FIRST_DATE in the season). Following this point, the day-of-week, month,

date, and reldate are recorded for each day. For the rest of the weeks

34

in the month, each day in the sport-week is entered into SEASON until the

end of the month (MISC.MONTH(I).LAST_DATE) is encountered. At this point

the process repeats for each month until the full season is created. The

days at the end of the last month that fall past ENDDATE are then trimmed

off. Since provision needs to be made for dates on which major activities

or holidays will cause a day in the sport-week to be removed from the

schedule, there follows a section to input exceptions. The days to be

stricken from the season are noted by setting their AVAIL bit to "0".

SCHEDULE

SCHEDULE is called by MAIN with the MISC and SEASON structures and

FACAVAIL as input. SCHEDULE allocates sufficient space for the SCHED

structure (which will hold the actual schedule) based on the number of

days in the season, the number of courts, and the number of time-slots.

The fact that this structure is dynamically allocated with these actual

values is important since simply declaring it with all three indices set to

their maximum size would result in a huge array. SCHED is then zeroed out

and the leagues and divisions are looped through, calling DIV SCHED to

schedule each division. At the start of the league loop, however, the man-

datory and preferential constraints for that league are entered and these

are placed in LEAGUE.

DIV SCHED; '-

DIV SCHED is the longest of all the routines and the true heart of

the program. It sees to the actual scheduling of each division, allows fr

appropriate corrective measures to be taken when a division cannot be

scheduled, and provides printout of the results when they can. In performing

35

these tasks it calls on two functions; MAX VAL and EVAL, and three sub-

routines; TEAM PAIR, RELAX, and PRINTOUT. It receives the data in MISC,

and SEASON, and the constraints in LEAGUE and FACAVAIL as input, and updates

SCHED as each new division is scheduled. There are two data structures not

previously described that figure importantly in this routine -- DIVSCHED

and CHANGE. The declaration of DIVSCHED can be found in the DIV_DCL include

file, that of CHANGE at the start of this routine.

DIVSCHED is a list used to keep track of the games that have been

scheduled for the current division. It is used by the PRINTOUT routine

when it is desired to see the schedule for just the division most recently

completed. When the user wants to see the full schedule, the PRINTOUT

routine uses the SCHED array instead.

CHANGE is a list of changes that have been made to the SCHED array

during the current call to DIV SCHED. This is used to restore SCHED to

its previous state in those cases where the division has been partially

scheduled (and the SCHED array therefore modified) but cannot be success-

fully completed. If the user decides to give up in such a case there is

no problem. If he wishes, however, to relax some constraints and then try

again to schedule the division, SCHED must first be restored to the way it

looked on entry.

On the next two pages can be found flow charts diagramming the basic

scheduling procedure and the method used to select the optimal time slot

for the placement of a particular game. Referring to these may be helpful

in understanding the explanation that follows, as this routine is complex.

The routine begins by inputting the number of teams in the division,

the names of each, and the number of games that each team should play. The

total number of games that will need to be scheduled for the division is

36

1jERYVIE\l OF -S~CtDWO 4r6u ?PKOMCi5

I1 _____

O Deyerntne
.~~~ -

iIDccfMr

J/ S

J·. _ _I hL3-c .ons....-Fcr' LeauI

.. . . I _ _

Kit)

Ic +e)nyl. l Q (n Clr(-n

.. F .. _. _
... _..._.....~._. I i

Tn pu-+ T-eanm
&a" 5i W&, 's J-...,

Loop 1¾ons~Teca-
/?,(Y,(\,G, (- AY'-Dtis'coy)

>t, ;/St ------->---- -- -- t Fof -, ttl
N /

Syes
_,. __; _ - v . _...

itnd Orratr.l Thl-e Siot I
iL -Xof G -ri -a-CAd 5C c A- +I

/

ki

/.k

/

__

I _

,_,�

. .. .

I

ii
I

I
k

.. . __, . ,.^. _,,_.,,_,

j

.I ... _ _

\J I o, a*? a+ I

i
is/

i

37
C{O4&t&IN& OPTi~veL TIME 51 i-T

Vc~~crvn'nt e~~~'c c ,

I -r M`
i~st~a;~1-- Kt3 I $

1_ŽtRt =ol

I ww

1- ncret Z.- -!q_ L'''''--
c xti-tU"i A4~n GemrtKm-

ra

I tC4LUl -

9LFtp tu 5

'I

i.-o o t e $t1 5/
-1~~~

$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- * V~~
i A{Ci.7 .,3

t , I I

oF P5tsiodfor-~dz c~k~Lr~
.-i rn

, pe| nnx 2 'tiof Th&o C-w n;Lt

1,

te ...o. , ? /

* - * -_ _ Do.j-&xjs#'a-drne

J

1"i

I.1

�I
1

38

then calculated (DIVSCHED.N GAMES). In the case where the division has an

even number of teams this is trivial -- it is simply (# of teams) x (# of

games per team)/2. However, in divisions with an odd number of teams it is

more difficult to determine just how many games must be scheduled to insure

that everyone plays at least the minimum number specified.

The TEAM PAIR routine is then called with the number of teams and the

number of games each will play and returns the PAIRINGS array filled in a

seeded fashion (teams 1 and 2 always play on the last week, for instance).

The constraints for each team as to what days and times they cannot play

are then entered, and these values are placed in TEAM.

The next order of business is to create a list of courts (COURTLIST)

designating those that will be searched as this division is scheduled. In

the case where the current division is in a league with one or more courts

that have been designated as mandatory, these will be the only courts on

the list. In the case where no mandatory courts are specified, the preferen-

tial court ordering for that league (if any was given) will be used, or as

a final option the order in which the court names were entered Will be used

as the default ordering.

At this point the actual scheduling is ready to begin, and the mini-

mum spacing (MINSPACE) between blocks of games is asked for. In a division

containing 6 teams, a block would consist of 3 games (at the end of the

block each team has played once). The blocks are looped through, and

within that loop the games within the block are looped. The teams to meet

in each game are found by observing the entry in PAIRINGS specified by the

current block and game numbers.

With a particular game to schedule, the routine now moves through the

days of the season looking for open time-slot & court pairs on that day that

39

satisfy as many preferential constraints as possible. As each new day is

examined, it is first checked to insure that the end of the season has not

been reached. If it has, and an opening has been located then the game is

scheduled in that opening. If no opening has been found, the routine prints

an error message, allows the user to incrementally request possibly useful

diagnostic information, and then, if he desires, relax some of the constraints

and try once more to schedule the division. This diagnosis and constraint

relaxing is done by the RELAX routine.

If the new day being examined is part of the season, a check is then

made to see whether it is at least SEARCH DAYS past the start of the block.

If it is, the routine can be assured that if any opening has been found

it is, in fact, the best-fit (for an explanation of this see Appendix A),

and it schedules the current best-fit. In the case where no opening at all

has been located the program will continue searching until an opening has

been found or the end of the season reached.

If the routine is still interested in exploring the current day after

these preliminary checks, it calls MX_ VAL to determine whether there is

any hope that the day might improve on the current best-fit. Essentially,

MAX_VAL determines the best value of any of the slots on that day without

worrying about whether the slot is open.

If MAX_VAL indicates the search should proceed further, the courts in

COURT_LIST are looped through. If there are preferred time slots these are

looped through before the rest of the slots, but in any case, all slots

will be examined (at least until an open one is found). The availability

of the time-slot being examined is determined by the "anding" of both team's

availabilities on that date with the FACAVAIL entry corresponding to that

court and date. When an open tiire slot is seen, EVAL is called to deter-

40

mine how many preferential constraints it satisfies and how important they

are. If the "value" of this slot, court, and date combination is higher

than the best-fit previously found, this new best-fit is recorded. Since

the preferred tine-slots are searched first, there is no chance that another

ti;:e found on that day will produce a higher value, so the routine moves

on to the next day in the season.

TEAM PAIR

TEAM PAIR is called by DIV SCHED with the number of teams in the divi-

sion and the minimum number of games each is to play. It then fills the

PAIRINGS array with the necessary number of games and passes it back to

DIV_SCHED. The match-ups it creates are designed such that the variety

of opponents for each team is maximized and the strongest teams (if the

teams are entered in seeded order) will meet at the end of the season. For

example, in a 4, 6, 8-team division, teams 1 and 2 will meet in the last

week, as will teams 3 and 4, and teams 1 and 3 will square off during the

next to last week.

The basic data used in the creation of the PAIRINGS array consists of

a set of 5 arrays -- one for use with 4-team divisions, one for use with

5-team divisions, etc. Each of these arrays has just enough blocks of

games in it so that each team will play every other team in the division

exactly once. The matchups included in these arrays were designed to allow

for seeding, with the stipulation that the last block in the data array

should always be used to fill the last block to be included in the PAIRINGS

array. To accomplish this, the number of games desired per team is first

used to calculate the number of blocks needed (for a division having an

e-ven number of teams there is a one-to-one correspondence; for a division

41

having an odd number of teams one to two additional blocks are required).

The number of blocks needed (n) is then compared to the number of blocks

in the basic data array (m) and one of the following is done. If m= n,

then the first block of the data array is placed in the first block of the

pairings array, the second in the second, etc. If mn, (m= n + i), then

the first i lines of the data array are unused, the (i + 1)st is placed in

the first block of PAIRINGS, etc. If n>m, then enough lines of the data

array are skipped so that after the remaining ones are used, there will be

just as many blocks left to fill in the PAIRINGS array as there are entries

in the data array (i.e. if n= m + i, m - i lines will be skipped, the

last i blocks in the data array will be used to fill the first i blocks in

PAIRINGS, and then all m blocks in the data array will be used to fill the

last m blocks in PAIRINGS).

RELAX

The RELAX subroutine is called by DIV SCHED when it is unable to sche-

dule a division and the user wants to relax some of the constraints and try

again. The routine is passed the MISC and LEAGUE data structures, as well

as the COURT_LIST array used to specify the courts to be searched and the

order in which they will be scanned. Currently, the routine has a limited

range of options, but the module could easily be expanded to do more. Part

of the reason for its current limited scope is that in the vast majority of

the cases, the only constraint that the manager will want to relax will be

the minimum spacing between blocks. Since this constraint is set in

DIV_SCHED right at the point where the control is returned to when ze-

scheduling begins, there is little reason to include in RELAX the capabil-

ity to modify it.

42

The routine as it is currently structured allows the user to either

eliminate the mandatory c6urts for the league being scheduled, or add to

the number of mandatory courts. Either approach will improve the chances

of successfully scheduling the division, but neither one will necessarily

do the trick if, for instance, the real problem stems from too large a

value for MIN_SPACE. If the user chooses to eliminate the mandatory court

list, he is then given the opportunity to replace this with a preferential

court list, giving a weight to each of the courts. The COURT_LIST array

is appropriately updated and returned to DIVSCHED since the courts ac-

tually searched through are determined by its contents.

PRINTOUT

The PRINTOUT procedure is called by DIV_SCHED following the success-

full scheduling of a division. It is passed the MISC, SEASON, and DIVISION

structures to provide it with the information it will need for printing

clear output (such as month names, court names, etc.). SCHED and DIVSCHED

are passed in to provide the actual scheduling data for the sport as a

whole, and for the division that was just processed. Finally, the league

and division indices for the just completed division are passed in to

allow the proper information to be accessed out of MISC.

The routine starts by printing the names of each team in the division

and their sport-wide identifying numbers. Next, a chronological listing

of the games scheduled for this division is printed. This listing pro-

vides the team-numbers of the combatants; the time, day of week, month,

and date that the game is scheduled for; and the court on which the game

will be played.

The routine then asks the manager if he would like to have schedule

43

listings printed by team. If he asks for this, a listing is printed for

each team, that is headlined by the team's name and sport-wide team num-

ber. A line is then printed for each game the team will play, giving the

opponent, and the time, day of week, month, date, and court that it is

scheduled on.

Finally, the routine asks whether the manager would like a listing of

the full schedule printed. Generally, he will only request this after the

last division has been scheduled, but the option is always open. The data

providing the basis for this listing comes from the SCHED array, in con-

trast to the first two listings which are taken out of DIVSCHED. The format

of the listing has the courts listed across the top and the days, and time-

slots in each, listed chronologically down the left-hand side. If a game

has been scheduled at a particular time on a given court, the teams playing

in that game will be listed (as a pair of sport-wide team numbers) in that

row and column. If no game is scheduled in that slot, the pair "O - 0"

will appear instead.

44

RESULTS

A number of goals were presented in the Problem Statement section

of this thesis. With the possible exception of modifiability all of

these goals were realized in the code produced. This code provides all

of the flexibility needed to handle every sport and gives the manager

all of the scheule-shaping power that was deemed desirable in the

Problem Statement. In addition, the program keeps required input to a

minimum and clearly prompts for each item so that it is easy for anyone

to use this program. Substantial-efforts were made to produce modifiable

code -- in particular the code was broken down into 10 modules. However,

it is always difficult to follow the functioning of code written by another

person, and the length of this program exacerbates this problem. My

feeling is that modifying this code would not be trivial, but has been

easier through the efforts made to modularize it.

To demonstrate the extent to which various goals have been met, a

set of test runs has been included in Appendix D. Important features of

these runs are pointed out in the following paragraphs. The data pro-

vided for these test cases was designed to highlight various features of

the program one-by-one. For this reason, most of the test cases fail to

take advantage of all but one or two of the available constraints, pro-

viding results that don't correlate very well with actual scheduling

tasks:, but are much easier to follow.

The primary goal mentioned in the outlining of the task was to pro-

vide a high degree of "user friendliness". Several examples of how well

this goal was realized can be found on the first page of output included

in Appendix D. First, note the clarity of the prompt statements used,

and particularly the use of sample answers to exemplify what sort of

45

input is being requested. Secondly, the minimal amount of input required

by the program can be seen by observing how calendar and facility-avail-

ability information is entered. To specify the season's calendar the

user is asked for the type of sport week, the number of months in the

season, and the first day and last date in each month. When it is given

the start and end dates for the season, it has all the information it needs

to produce an internal calendar. The specification of the time-slot

availabilities for each court can be found on the second page of output.

To minimize input, the user is asked only to specify a sample week of

availabilities that will then be replicated through the season. These

availabilities are entered as bit-strings to provide full flexibility

of input in a compact form. Since it is easy to wind up with a typo in

the course of entering a series of bit-strings, the program checks at the

end for the correctness of all the entries, allowing the user to re-enter

as many as he wishes. Note how this facility was advantageous in the

entering of this data on the second page of output. After this sample

week has been verified and replicated, the program allows the user to

specify any full days to be removed from the schedule and any days which

will have a modified set of time-slot availabilities on any court. These

tasks of calendar creation and facility availability specification could

not be implemented in such a way to provide the same flexibility of data

creation with less required input.

A whole set of goals was presented in the Problem Statement under

the topic of Control Over Scheduling Desired. Among the capabilities

deemed desirable (all of which were implemented) were the specification

of mandatory and preferentially weighted courts, the specification of

preferentially weighted days of the week and times for scheduling of a

46

particular league's games, and the specification of days or parts of

days in the season on which each was unable to play due to external

conflicts.

The first test run schedules a 3 month-long weekend season for a

sport containing 2 leagues of 2 divisions each. There are four time slots,

and to keep things simple each of the 3 courts is available during all

4 slots on both Saturdays and Sundays. The first A-league division is

scheduled and printing is then done of the schedule for that division

and the schedule for each team within the division. Following that,

th-e second A-league division is scheduled, and the division and full-

sport (currently just A-league as that's all that's been scheduled)

schedules are printed. This full-sport schedule provides graphic out-

put that clearly shows how the resulting scheduling was shaped by spe-

cified constraints.

By looking at this full schedule (for A-league) and observing the

positioning of teams 1 through 6 (the first division scheduled) we can

see the effects of specifying mandatory courts, and day of week and time-

slot preferences. Court 1 was specified as mandatory for A-league and

no games in either division 1 or 2 were scheduled on the other two courts.

Sunday was designated as a preferable day, and time-slots 3 and 4 on

Sundays were also designated as preferable. Both of these preferential

constraints were given a weight of 5, implying that if the first open

slot found fails to satisfy one or both of these constraints it will

search 5 calendar days further in attempt to find a slot that does sa-

tisfy them. The result of this is that the 3 games in the first block

for division 1 are scheduled on Sunday, June 13 in time-slots 3, 4, and

1 respectively. When each of these three games is scheduled, the pro-

47

gram looks only for openings in the Cage and in each case the first

open slot found is Slot 1 on June 12. This slot satisfies neither

preferential constraint, and since each has a weight of 5 the program

is willing to search through June 17 for a better fit. The program next

notes an opening in Slot 1 on June 13 satisfying the day preference but

not the time preference. In scheduling the first two games, this

slot is not chosen since later in the same day a preferred slot is

available. When the third game is to be scheduled, no slot satisfying

both constraints can be found in the June 12 to June 17 interval, so

the best fit found is settled for. This happens to be Slot 1 on June 13

since it satisfies the preferred day constraint. This process then repeats

through the season with a spacing of 10 days kept between the end of one

block and start of the next, until all 5 blocks of games have been sche-

duled. Note also that the last block of games contains pairings of team

1 versus team 2 and team 3 versus team 4 in order to provide for seeding.

When the second A-league division (teams 7-10) is scheduled with the

same constraints, much the same process occurs. In this case, however,

most of the choice slots are already taken and the program has to settle

for less highly preferred ones. Since each block contains 2 games (4

teams/2), and there is only one slot available in the 5 day span that

satisfies either constraint (Slot 2 on June 13 in the first block), the

first game is scheduled in that slot, and the second game is scheduled

in the first open slot that was found (Slot 1 of june 12 for the first

block).

This first test run then schedules 2 B-league divisions. No manda-

tory court is specified for B-league, but court 1 is still most preferred

(with a weight of 5 compared to 1 each for courts 2 and 3). Sunday is

48

again preferred, but this time has a weight of only 2. Since this weight

is lower than the weight for the court preference, given a choice between

satisfying either the court preference or the day preference it will choose

the former. The first division contains 7 teams (teams 11-17) each re-

quired to play at least 5 games. The fact that there are an odd number

of teams in the division results in one team being left out in each block

of games, and necessitates the adding of an additional block to the sche-

dule (Thus, there are 6 blocks for a 5 game season.) The result is that

18 games are scheduled, with 6 of the teams playing 5games, and 1 of them

playing 6. Prior to scheduling the division, the user states that team 1

in the division (team number 11 overall) cannot play on either June 12

or June 13, and that the minimum spacing between blocks should be 5 days

(this value for MIN SPACE insures that a team will not play tice on the

same weekend, but still allows consecutive games to be scheduled on a

Sunday and the following Saturday).

The scheduling of division 1 of B-league now proceeds with the most

important preference being placement of games on court 1 and a secondary

preference being the scheduling of games on Sunday. Since every slot on

court 1 on every other Sunday has been filled with A-league games, the

day preference is hard to meet without sacrificing the preferred court.

Since the court preference has been deemed more important, most of the

games for this division are scheduled on Saturdays, with all of them taking

place on court 1. What happens with the first block of games is parti-

cularly interesting. Two of the three games are scheduled on Saturday,

June 12 since open slots are available then on court 1, and though they

do not satisfy the day preference there are no slots within the 5-day

search interval that satisfy both constraints. While there is still one

49

more open slot on Court 1 on June 12, the game pitting teams 1 and 6 is

not placed there. This is due to the fact that Team 1 specified June 12

and June 13 as days it could not play. Therefore, the first open slot

its game.could be scheduled in was on Saturday, June 19 and since slots

were open on the very next day which satisfied both preferential con-

straints, it was scheduled on that Sunday.

Division 2 of B-league contains 6 teams (numbers 18-23) each of whom

plays 3 games. Once again, Court 1 is given a weight of 5 and Sunday is

given a weight of 2 (since this is still B-league). Time-constraints

specified for this division consist of the first team's (team number 18

overall) inability to play on either June 12 or June 13 during time-slots

1 through 3. To demonstrate the program's ability to recover from an

unsuccessfully scheduled division, it was originally given a MIN SPACE

of 87 days between blocks -- a restriction it clearly could not meet. The

program then allowed for printing of constraint data and relaxing of con-

straints (neither of which was desired in this case) and then tried again

after being given a new MIN SPACE. This time 4 was chosen and the sche-

duling was successful. As with the scheduling of B-league division 1,

the court preference still takes priority over the day preference. However,

by this point Court 1 was so full that it was frequently impossible to

find an open slot for it within the confines of the 5 day search limit.

For this reason, many of the games for this division were scheduled on

Court 2 on Sundays. The second block was even able to be scheduled on

a Sunday on Court 1, since that was one of the Sundays skipped by the

A-league teams in their every-other-weekend scheduling. What happened

with the first block of this division is also interesting. Game 1

(22 vs. 23) was scheduled in the last remaining slot on Court 1 on Satur-

day, June 12. At this point no openings remained in the Cage (Court 1)

50

on that first weekend. The second and third games in the block (19 vs.

20 and 18 vs. 21 respectively) therefore had to be scheduled on one of

the other courts, and the only preference that could be satisfied for

them was the day of week preference. Therefore, Game 2 was scheduled in

the first open slot on Court 2 on Sunday, June 13. Normally, Game 3

would have been scheduled in the following slot on the same day. low-

ever, Team 18 was playing in Game 3 and was unable to play in slots 1 to

3 on that date. Game 3 was therefore pushed back to slot 4 on that day

and court.

The functioning of all of the desired control features was seen in

this first test run. The second test run is included not to demonstrate

further features, but simply to make a little clearer the way in which

multiple constraints interact.

In this second run, 2 leagues of 1 division each were scheduled in

a one month long weekend sport. Each of the 4 courts was available during

all 4 time-slots with the exception of Court 1. Court 1 was available

during only the first three slots on Sundays, and only the first two slots

on Sunday, December 7.

The first league (Z-league) specified that Court 1 was to be weighted

by 5 with the other courts receiving weights of 1,and that time-slots 3

and 4 on Sundays would get a weight of 3. The single division in this

league contained 8 teams playing 3 games each, and was scheduled using

a IN SPACE of 5. These constraints then favored first the scheduling

of games on Court 1 and secondarily the scheduling of games in one of

the last two time slots on Sundays. The general behavior these preferences

resulted in was that the program would attempt first to schedule the

first two time slots in each block in the last two slots on Court 1 on a

51

Sunday. Since Court 1 is not available during slot 4 on Sundays, only

slot 3 can thus be filled. Since the weight for the preferred times is

less than that for the preferred court and not sufficiently high to cause

the search to proceed to the next weekend, the remaining 3 games are

scheduled in the first 3 slots on the previous Saturday. Note that

Sunday as a whole is not preferentially weighted, only its last two time

slots. In the case of the first block all four games are scheduled

on Court 1 on Saturday, December 6 since the normally available preferen-

tial slot on the following Sunday is cancelled for that week.

The second league (Q- league) specified a weight of 3 for Court 1

and 0 for the other courts; a preferential weighting of 2 for Saturdays

as a whole; and a weighting of 5 for slots 2 and 3 on Saturdays. There

were again 8 teams to schedule with 3 games each and a MIN_SPACE of 5.

In this case the driving force is geared toward using slots 2 and 3 on

Saturdays, regardless of what court is available (though Court 1 is pre-

ferable). As a result, each block of games for this division was sche-

duled on Courts 2 and 3, during time-slots 2 and 3 on Saturdays.

The resulting season schedule is printed at the end of the run. The

important thing to note is that both divisions were scheduled in a fashion

that seemingly ignored one of the preferential constraints. The reason

in both cases was that the ignored constraint could not be satisfied at

the same time as another more important constraint, and the higher prior-

ity won out. In the case of the first division, the preference for late

Sunday time-slots was overruled to allow for the placement of all games

on Court 1. In division 2, the desire to play games on Court 1 was sup-

pressed to allow the scheduling of games during slots 2 and 3 on Saturdays.

7b

52

SUGGESTIONS FOR IMPROVEMENT

There are three areas in which I feel valuable improvements could

be made. The first would be the addition of a capability to revise the

original schedule to take care of games that have been rained out. The

second improvement would be the use of a more sophisticated weighting

function that would not overlook potentially good solutions. The third

would be to have the program provide more help to the user in determining

problems that cause a particular division to be unsuccessfully scheduled.

Each of these will now be discussed more fully.

As I mentioned in my description of the algorithm, the inclusion of

re-scheduling capabilities for rained-out games is not that crucial to the

program's usefulness. It is, however, a feature that would be nice to have

in some cases. When only a few games need to be rescheduled, the manager

would probably find it much less bothersome to do this by hand than to go

run the program. In cases where a large number of games were rained out,

though, it might be easier to have the program do the work, and might also

result in a better quality result through the satisfaction of preferential

constraints.

A major improvement would be the.replacement of the current weighting

functions with bell-shaped functions. This would result in the search for

a given game's placement not being strictly limited to the days following

some arbitrary cutoff (i.e. currently blocks begin at MINSPACE days past

the end of the last block). The apex of the function could be placed at

the same position the start of the blocks currently are, providing the same

optimal scheduling position in the absence of preferential constraints. By

having this function rise sharply on the left and trail off more slowly on

T

53

the right, a nice spacing between blocks could still be kept without ruling

out from consideration slots that occur just one or two days earlier than

the ideal positioning. In other words, it is generally better to have a

little extra spacing between games than a little less, but in some cases

a preferential constraint might be satisfied one day earlier and not again

until many days later.

The program could be much more helpful to the user in those cases where

a division is not successfully scheduled. Cureently, the raw data that go-

verns whether or not the scheduling will be successful is available for his

perusal, but this is not going to be of much use without an understanding

of the internal workings of the program. Instead, the current emphasis is

on just reducing the minimum spacing requirement and trying again. This

should solve the problem in most cases and has the advantage that the mana-

ger does not have to think too hard about where the problems might lay.

However, if the program was capable of giving a clear analysis of just where

the problem was and suggesting which constraint or constraints should be

relaxed this would be clearly preferable.

,{!

54

REFERENCES

1. Richard Conway, David Gries, and David Wortman; Introduction to
Programming Using PL/1 and SP/k; Winthrop Publishers. 1977

2. Steve Pettinato; "A Sports Scheduling System"; M.I.T. Bachelor's
Thesis, Department of Electrical Engineering and Computer
Science. 1980

55

APPENDIX A

Weighting Functions and Evaluation of Optimal Time-Slot

Each of the preferential constraints used in this program is given a

weight so that the importance of satisfying them can be determined. Since

an effort is made to schedule each game as early as possible (as close to

the start of the given block of games as possible), the degree of impor-

tance of satisfying a particular constraint can be naturally expressed as

the number of days that the user is willing to postpone scheduling of a

game in order to satisfy that constraint. Thus, if a constraint is given

a weight of 10, the'program will search through the days of the season

until an open slot is found, and if the given slot does not satisfy that

preferential constraint, the program will search up to 10 days farther in

an attempt to find an open slot that does satisfy it.

An appropriate set of weighting functions must, therefore, result in

the preferred slot being valued more highly up to the point where it is

WEIGHT days past the non-preferred slot, and less highly after that. Such

a set of functions is diagrammed on the following page. As one moves far-

ther on in the season, the weight associated with the closeness to the

start of the block decreases by one each day. It is set up, though, so

that by the time the last day in the season is reached, this function still

has a value of one. Thus, even if no preferential constraints are satis-

fied, there is still some reward given for finding any open slot that the

game can be scheduled in.

Each preferential constraint has a weighting function that is "square",

having a constant value of WEIGHT + 1 over an interval of WEIGHT + 1 days.

T

k

'2 FUVLvA&-"c ii'.) kd--d¢lo.r1') (C)' tX5

.b 'l

.t
1-3- I wr

.i I

i

U. . 4 I ._
1-:3

sx DC, ,+iT., I

-D~y CgZ> Cotict
D "'. 6i " f - · ; I Oct

k-T "f efl tt cvasy eib -t 4' (674 t, t

jZ 1aAfc t 7 V- -x cy ie S - r, I- , -v 1 A LA iucr,

-

It

4̀ii

tj

:5

cr

I

.~~~~~~~~~~~~~~~~~~~~ .s

Po

e L- t-CnC _
c; - '((CcS.r. c i

E Atx c-_
Senct -,(,

FULL. EH LULTjOh

auC O-t' ' -AREIT r oS.CIiT

N %lt ' V14 'I, C eo)$-'f ,r'
Not SAT1: q (onS+(c;rt

Dv m ; v,,0i O EN
DH\ I OF S5Not

:tc i.rC -, AV o ,

WW'(C-r4-Tir4&G UtACIONS ~:Ck Oel-;fc 14 to T) j LI (j.S "'5t 944 1K 4 '6

Veu,,,L

__·-L__-- �__·_·-·-·---·------- -·- · ·�----·-.··-.---1·- ·-LYILI-·�-----:�h--�------.

57

Thus, any time a preferential constraint is satisfied, its value is added

to the value of the closeness to the start of the block function. This

second function is, therefore, skewed upward by a value of WEIGHT + 1,

and since that function decreases by 1 with each day, the value skewed

upward by satisfying the given constraint is thus highter than any nor-

mal (non-preference satisfying) value on the function as many as WEIGHT

days prior.

The EVAL function used to determine the desirability of each slot

examined simply adds the values of any satisfied preferential constraints

to the closeness-to-start-of-block function. MAX_VAL adds the highest

weights set for each of the different types of constraints that are ap-

plicable to the day passed to it. The resulting value is the value of the

best slot on the best court on that day. No guarantee is made that this

slot will be open -- MAXVAL is simply determining the best value that

could conceivably be achieved on that day without going through work of

checking all of the court and team time availability data.

There are two considerations the program takes onto account when try-

ing to determine how many days the search for a given slot should continue.

The primary concern is simply that an available slot be found at some

point that satisfies all of the mandatory constraints. This consideration

is overriding until either a slot is found or the end of the season reached.

The second consideration is really a combination of two things -- the de-

sires to satisfy as many preferential constraints as possible and the de-

sire to schedule the game in the earliest possible slot. This second

consideration provides a limit on the length of the search done is situa-

tions not governed by the first concern. This limit is the quantity

SEARCH DAYS that is calculated at the end of the SCHEDULE routine and
w

58

placed in LEAGUE constraint structure. As explained above, in the case

-1 of a single preferential constraint, SEARCH_DAYS takes on a value one

greater than the WEIGHT given to that constraint. When a set of preferen-

tial constraints are present, the number of days that will be searched is

limited by the most heavily weighted one of the set (i.e. SEARCH DAYS takes

on the value MAX(WT1 + WT2 + WT3 +...) + 1).

T

59

APPENDIX B

PROGRMAY LISTING

60
STRUCTURES. INCL. PL/ 1

declare (misc_ptr, season_ptr) point
declare 1 misc ased(misc_ptr),

2 sport_name char(16) vary
2 num_leagues fixed,
2 league(5),

3 name char(1),
3 numdivs fixed,

2 sport_wk,

3 swl fixed,

3 sw2 fixed,
3 sw3 fixed,

2 num-courts fixed,
2 court(1U),

3 name char(8) varying,
3 totalslots ,

4 used fixed,
4 left fixed,

2 nummonths fixed,
2 firstdate fixed,
2 end_date fixed,
2 month(5),

3 name char(9) varying,
3 first_day fixed,
3 lastdate fixed,
3 seas, /* dl

4 dl fixed, /* f

4 d2 fixed, /* (
2 timeslots,

3 length fixed decimal(
3 num fixed,
3 start fixed decimal(3

declare 1

er;

ing,

and
irs
for

d2 contain indices of */
t and last days of onth */
use with SEASON array) */

3 , 1) ,

,1) ;

season based(season_ptr),
2 num_days fixed,
2 day(150),

3 day_of_wk fixed,
3 month fixed,
3 date fixed,
3 rel_date fixed,
3 avail bit(1);

61LEAGUE DCL.INCL.PL1

declare league_ptr ointer;
declare 1 league based(league_ptr),

2 court,

3 mandatory,
4 nm fixed,
4 ct(10) fixed,

3 pref,
4 yes bit(1),
4 ct(10) fixed,
4 wt(10) fixed,

2 day,
3 num fixed,
3 pref(5) fixed,
3 t(5) fixed,

2 timenum fixed,
2 time(5),

3 day fixed,
3 start slt fixed,
3 endslt fixed,
3 wt fixed,

2 search_days fixed;

DIVDCL. INCL. PL1 62

declare (div_ptr, div_s_ptr) pointer;

declare 1 division based(div_ptr),
2 num_teams fixed,
2 num_games fixed,
2 team_name(8) char(10) varying,
2 team-_numrer(S) fixed;

declare 1 divsched based(div_s_ptr),
2 n_games fixed,
2 game(56),

3 tll fixed,
3 t22 fixed,
3 day fixed,
3 ct fixed,

3 time fixed;

SCHEDDCL.INCL. PL1 63

declare sched_ptr pinter;

declare 1 sched(num_days,num_courtstime_slots.nun,) based(sched_ptr),
2 tll fixed,
2 t22 fixed;

64

main: procedure options(main);

declare court_avail entry (pointer, pointer,
(150,10) it(15) varying);

schedule entry (pointer,pointer,(150,10) bit(15) varying);
e structures;
sysin file stream input;
sysprint file stream output;

declare facavail(150,10)
answe
(i, j
time

r char(10)

, k, iars,
fixed deci

varying;
lg, div, max, teams_scheduled) fixed;

mal (3,1);

area automat
ructstor) se
structstor)

("Welcomie
("Used, pr

("run intoe
("run into

to th
operl
but
prob

" user
put skip list("If you have
put skip edit("here and do

" (y/n
get
if

put
put

put
put
get
put
get
put
put
put
put

li

ans
sk

sk

st(an
wer =
ip Li

ip ed

skip
skip
list
skip
list
skip
skip
skip
skip

do i=1
put
get
put
get
end;

swer);
"n" then stop;
st ("Please be ca
it("specified by

," are
list("in bracke
list("them. Wh
(misc.sport_name
list ("How many
(misc.num_leaqu
list ("You will
list("the numbe
list("leagues i

list("remember

to mis
skip l

list (
skip l

list (

ts
at
) ;

e in

y th

you
lems

i c;
t(mi sc_ptr);
set(season_ptr);

tramura
is prog
may")
if you

I

ra

(2
h

's manual.")
not yet done
some reading.

) ") (2 a);

sports schedul
m should be of
a);

ave not first
a);
you are ad

o you wish

(2

so,
D

ing systen.");
great assistanc"

looked over the",

ised to stop");
o continue?",

reful to always enter data in the
the question. For instance, when
i ven") (2 a);

at the end of the
is the sport name

question, choose
? ");

format");
responses"

one of");

leagues (i.e. A,B,C, etc.) will there be ? ");
es) ;
now be asked for the name of each league anJ");

r of divisions in each. Please inout the ");
n the order you want them scheduled in. Also,");
that divisions must have 4 to teams in then");

c . num_ leagues;
ist ("What is the name of
misc. league(i).name);
ist ("How many divisions
misc.teague(i).num_divs);

put skip edit ("Is sport a weekend(l),
" sport?

get list (ians);
if ians=l
then do;

misc.sport_wk
misc.sport _wk
misc. sport_wk
end;

else if ians=2
then do;

.swl

.sw2

.sw3

1;
= 7;

= 6;

league ", i," ? ");

in eague ", i, " ? ");

weekday(2), or full-week(3)",
") (2 a);

declare
%includ
declare
declare

declare
declare
decladre

t_stor
in(st

on in(

declare struc
allocate misc
allocate seas

put skip list
put skip edit

put skip edit

bit (1 5 vary ng;

65

mi SC. spo

misc.spo
misc.SpO
end;

else do;
mi Sc ·spo
mi sc spo
misc. spo
end;

put skip
get list
do i=1 t

put s

get l

put s

put s

get t
put s

get l
end;

list
(misc

o misc
kip ed
ist (m
kip li
kip li

ist (m
kip li

ist (m

rt_wk.sw1
rtwk.sw2
rtwk.sw3

rt_wk.sw
rt_wk.sw2
rtwk.sw3

- 2;

- 6;
1;

= 1;

= 7;
= 1;

("How many months does the regular season span ? ");
.num_months);
.num_months;
it ("What is the name of month", i, " ? ") (a, f(2,0), a);
isc.month(i).name);
st ("What day of the week does this month start on? ");
st("Please give a number, i.e. Sunday=l, Friday=6, etc. ");
isc.month(i).first_day);
st ("How many days in this month ? i.e. 28,29,30,or 31 ");
isc.month(i).lastdate);

put skip edit("What date will season start
" in "month(1).name,"

get ist (misc.first_date);
put skip edit ("What date will season end

" just date
get list (misc.end_date);

on? (i.e.
that's in

the first day",
season) ") (4 a);

on ? (no month,",
)") (2 a);

skip list
list (mis
skip edit

put skip edit

list (misc
skip list
skip edit
list (misc
skip list
list (time
.time_slot

("How many courts are available ? ");
c.numcourts);
("How long are the time-slots for eac

,"ond with a fraction
("representing the number of hours. (i

h

")
.e

game?
(2 a)

. 90 mi

Please resp"

nutes =",
" 1.5 ") (2 a);

.time_slots. length);
("When does the earliest time slot (on any day) start?");
(" ","C9:30 a.m. = 9.5, 1:00 p.m. 13.0] ") (a(6), a);
.time_slots.start);
("When does the latest time-slot (on any day) end? ");

s.num = (time - misc.timeslots.start) /
misc.timeslots. length ;

/* given
/* the s
/* info.

the
eason
wi ll

abov
and
be

e info. we
what cour

stored in

can now determine what
ts will be available on
'season' and 'facavail'

days will be in
each day. This
respectively */

call courtavail (misc_ptr, season_ptr, facavail);

call schedule (miscptr, season_ptr, facavail);

free misc;
free season;

end; /* main */

put
get
put

get
put
put
get
put
get
misc

66

courtavail: procedure (misc_ptr, season_ptr, facavail);

declare create_season entry (ointer, pointer);
%include structures;
declare sysin file stream input;
declare sysprint file stream output;

declare facavail (150, 10) bit(15) varying;
declare 1 court (10),

2 day(7),
3 day_avail bit(1),
3 timeslot bit(15) varying;

declare (hour, imon, idate, iday, old_num_slots, new_num_slots) fixed;
declare (i, ict, lastslot, mins, dow) fixed;
declare time fixed decima(3,1);
declare (timeslot_string, new_slot_string, old_slot_string, nil_string)

bit(15) varying;
declare
declare
declare

do i = 1

court
court
end;

ans char(10) varying;
min char(2);
day_name(7) char(9) varying initial("Sunday","Monday",
"Tuesday","Wednesday" , "Thursday""Friday","Saturday");

to numcourts;
(i).totalslots.used
(i).total slots.left

= 0;

= 0;

lastslot = misc.timeslots.num;
nilstring = ""b;
do i = 1 to lastslot;

nil_string = nil_string II "O"b;
end;

/* input names of facilities in default order of preference */

put skip(2)
put skip li
do i = 1 to

put skip
get list
end;

list ("Please enter the names of the
st ("default order of preference.");
misc.numcourts;
list ("what is the name of facility
(misc.court(i) .name);

courts in their");

", i ,"? (8 chars max)");

/* output time-slots so user will know index num. of each */

time = misc.timeslots.start;
do i = 1 to last-slot;

hour = floor (time);
mins = (time - floor(time)) * 60.0;
if mins = 0 then min = "00";

else min = "30";
if hour > 12 then put skip edit("Time-slt ",i,"

min " p.m.") (2 (a, f(2,0)),
else if hour = 12

then put skip edit("Time-slot "
min" p.m.") (2 (a,f

else put skip edit("Time-slot "
min, " a.m.") (2 (a

time = time + misc.timeslots.length;
end;

is ",hour-12,
3 a);

,i," is
(2,0)),
,i," is
· f(2,0)

"·hour·":",
3 a);

",hour, ":",
), 3 a);

f : ,

67

/* create sample-week of time-slot availabilities for each court */
put skip edit ("You will be asked to enter the availabilities of ",

"each of the courts") (2 a);
put skip edit ("for the 'typical' days in the season. Please enter",

" these availabilities as ") (2 a);
put skip edit (last_slot, "-bit numbers with a 1 for each available",

"time-slot") (f(2,0), 2 a);
put skip list ("and a 0 for each unavailable slot ");
do iday = misc.sport_wk.swl to misc.sport_wk.sw2 by misc.sport_wk.sw3;

do ict = 1 to misc.num-courts;
put skip edit ("Please enter the availability of court "

misc.court(ict).name, "' on a typicdl ", day_name(iday))
(a, a, a, a);

get list (court(ict).day(iday).time_slot);
end; /* do ict */

end; /* do iday */

put skip
get list
do while

put s

get l

put s
get l

put s
get l

put s

get l
end;

list ("Were all strings entered correctly ? (y/n)");
(ans);
(ans = "n");

kip list ("Enter day of week to be changed as a numbe
ist (iday);
kip list ("Enter court number to be changed ");
ist (ict);
kip list ("What is the correct availability string ?
ist (court(ict).day(iday).time_slot);
kip list ("Is everything correct now ? ");
ist (ans);

r ");

") ;

/* determine available days in full season */

call createseason (misc_ptr, season_ptr);

/* apply sample week to season to get approximate time-slot */
/* availability for each court */

do iday = 1 to season.num_days;
if season.day(iday).avail = ""b
then do;

d_o_w = season.day(iday).day_of_wk;
do ict = 1 to misc.numcourts;

time_stot_string = court(ict).day(d_o_w).tim
facavail(iday, ict) = time_slot_string;
do i = 1 to lastslot;

if substr(timeslot_string, i, 1) = ""b
then court(ict).totalslots.left

= court(ict).totalslots.left
end; /* do i */

end; /* do ict */
end; /* then do (if season..) */

else do ict = 1 to misc.numcourts; /* day's avai
facavail (iday, ict) = nil_string;
end; /* else do ict */

end; /* do iay */

es lot;

+ 1;

lability is nil */

/* now input exceptions to generalized court availabilities */

put skip(2) list ("Are there any days
put skip list ("slots than usual will

on which more or fewer time");
be open ? (y/n)");

68

get list (ans);

do while (ans = "y"
put skip list ("
put skip list ("
get list (ans);
do i = 1 to 10;

if misc.court
end;

put skip ist ("

get list (imon,

Input
is to

the name of the court whose availability ");
be changed.");

(i).name = ans then ict = i;

Input the number of the month, and the date to be",
" modified.");

idate);

do iday = month(
if season.day
then do;

old_slot
old_num s
do i = 1

imon) .seas.dl
(iday).date =

to month(imon).seas.d2;
idate

string = facavail (iday, ict);
lots = 0;

to astslot;
if substr(old_slot.string, i, 1) = ""b

then oldnumslots = oldnumslots +
end; /* do i */

put skip edit ("Please enter the availability
misc.court(ict).name, " on ", month(im

(a, a, a, a, f(3,0));

put skip edit ("as a ", astslot, "-bit numbe
"for each avaiable timeslot and a 0")

put skip list ("for each unavailable slot");
get list (new_slot_string);
new_numslots = 0;
do i = 1 to aststlot;

if substr (new_sot_string, i, 1) = ""b

then newnum_slots = newnum_slots +
end; /* do i */

facavail (iday, ict) = new_slot_string;
misc.court(ict).totalslots.left = court(ict).

+ newnum_sLots - oldnum_slots;

1;

of court ",
on).name, idate)

r with a 1",

(a,f(2,0),2 a);

1;

total_slots. left

skip
skip
list

/* desired change made; exit day loop and check for */
/* further changes */

iday = 200;
end; /* if season.day(iday) */

/* do iday */

list ("Are there other days that have fewer or more");
list ("time slots than normal ? (y/n)");
(ans);

/* do while (ans = "y") */

/* courtavail */

end;

put
put
get
end;

return;
end;

69

createseason: procedure (misc_ptr, season_ptr);

%include st ructures;

declare sysin file stream input;
declare sysprint file stream output;
declare (swl,sw2,sw3,datel,imon,iwk,idate,iday,incr) fixed;
declare (i,sundate,dowlast,rel_date,day_of_wk) fixed;
declare ans char (1);

season.num_days = O;

imon, idate, iday = 1;
reldate = O;

datel = misc.firstJate;
day_of_wk = misc.month(1).first_day;
swl = misc.sport_wk.swl;
sw2 = misc.sport_wk.sw2;
sw3 = misc.sport_wk.sw3;

/* Find date of Sunday starting first week of

do sundate = (2-day_of_wk) to 31 by 7;
if (sundate+7) > misc.firstdate then go t
end;

season */

o sundate_found;

sundate_found:

/* fill out (possibly partial) first week of month */

dowlast = 1;
idate = sundate;
misc.month(imon).seas.dl = iday;
do day_ofwk = swl to sw2 by sw3;

incr = day_of_wk - dow_last;
rel_date = rel_date + incr;
idate = idate + incr;
if (idate > misc.month(imon).l
if idate >= datel
then do;

season.day(iday).day_of_wk
season.day(iday).month = im
season.day(iday).date = ida
season.day(iday).avail = "1
season.day(iday).rel_date =

iday = iday + 1;
end; /* if idate *

dow_last = day_of_wk;
end; /* do day_of_wk */

dowlast = dowlast - 7;

ast_date) then go to end_month;

- day_of_wk;
on;
te;
"b;

reldate;

/

/* fill out remaining weeks of month */

do iwk = 2 to 5;

do day_of_wk = swl
incr = day_of_wk
idate = idate +
reldate = rel_d
if (idate > misc
season. day (i day)
season.day(iday)

to sw2 by sw3;
- dowlast;

incr;
ate + incr;
.month(imon).last_date) then go to end_month;
.day_of_wk = day_of_wk;
.month = imon;

70

season.day(iday).date = idate;
season.day(iday).avail = ""b;
season.day(iday).rel_date = reldate;
iday = iday + 1;
dow_last = day_of_wk;
end; /* do day_of_wk */

dowlast = dowtast - 7;
end; /* do iwk */

end month:

misc.month(imon).seas.d2 = iday -1;
imon = imon + 1;
if imon > misc.num_months then go to end_season;
datel = 1;

/* find date of Sunday starting week containing first of next month */
sundate = 2 - (misc.month(imon).first_day);
rel_date = rel_date + (misc.month(imon-1).last_date+sundate) - idate;
go to sundate_found;

endseason:

/* remove days that are past last_date in season */

do i = (iday-1) to
if season.day(i)

end;

(iday-33) by -1;
.date <= misc.end_date then go to exceptions;

else season.day(i).avail = "O"b;

exceptions:

season.numdays = i;

put
put
put
put
put
do

ski
ski
ski
ski
ski

imon
put

p(2)
p i

p i

p i

p i

= 1

skip

get list

list ("You will now be asked for
st ("which fall on days normally
st ("on which no games will be pl
st ("does not include days on whi
st ("courts are unavailable.");
to misc.nummonths;
list ("Are there any unavailable
misc.month(imon).name, ?");

(ans);

dates (e.g.
part of the
ayed. Note
ch only some

Holidays)");
season, but");
that this");
of the");

days ii

(ans =

ip ist
st (ida
y = mon

i date

en seas
d;

I y");
("What is the date ?");

te);
th(imon).seas.dl to mont
= season.day(iday).date
on.day(iday).avail = "0"

put skip list ("Any more unavaitable
misc.month(imon).name,

get list (ans)
end;

end;

h(imon).

'b;

n ,s

seas .d2;

days in ",
" ? (y/n)");

/* do while */
/* do imon */

end; /* createseason */

do whi
put
get
do

le

sk
Li

ida
if
th
en

71

schedule: procedure(misc-ptr, season_ptr, facavail);

declare divsched entry (pointer,pointer,pointer,pointer,fixed,fixed,
fixed, (150,1U) bit(15) varying);

%include
%include
%include
declare
dec lare

declare
declare
declare
declare
allocate
allocate

structures;
leaguedcl;
scheddcl;
sysin file s
sysorint fit

facavai
answer
(i, j,
storagg
league
sched

tream input;
e stream output;

l(150,10) bit(15)
char(10) varying;
k, lg, div. max,
e area automatic;
in(storagge) set

in(storagge) set(

varying;

teamsscheduled) fixed;

(league_ptr);
sched_ptr);

do i = 1 to season.num_days;

do j = 1 to misc.num_courts;

do k = 1 to misc.timeslots.num;

sched (i,j,k).tll = 0;
sched (i,j,k).t22 = 0;
end;

end;
end;

teamsscheduled = O;

do lg=1 to misc.num_leagues;
put skip(2) edit ("We are now ready to schedule ",

misc.league(lg).name, "-league")
put skip edit ("Is there a mandatory court (or cour

" league? (y/n) ") (2 a
get list (
if answer
then do;

put ski
get lis
put ski

do i=1
put
get
end;

end;
else do;

answer);
= y ,

p list ("How many ? ");
t (league.court.mandatory.num);

p edit ("Please input the numbers of
" preferential orde

to league.court.mandatory.num;
skip edit("Court ", i, " ? ") (a, f
list (league.court.mandatory.ct(i));

(3 a);
ts) for this",
) ;

these courts in",
r") (2 a);

(2,0) a);

/* then do */

league.court.mandatory.num = 0;

put skip edit ("Are there preferred courts for
" not, the order in wh

put skip edit("court names were originally ent
" as the default.) ")

get list (answer);
if answer = "y"
then do;

put skip

put skip

put skip

thi
ich
ered

(2

s le

the"
wi
a);

edit ("Enter the court numbers in order of
"bility. Along with each") (

edit("court number please enter a weightin
" reflecting how desirable")

edit("that court is. The weight represent
" number of days that") (2 a)

ague? (If",
) (2 a);
l be used",

desira"
2 a);

g factor",
(2 a);

s the",

72

put skin eit("you are willing to push a gam
" schedule in order to

put skip list("it scheduled on that court.")
do i=1 to isc.num_courts;

out skip edit ("Court " i ? ") (a f
get list (league.court.pref.ct(i));
put skip list ("What is the weight for th
get list (league.court.pref.wt(i));
end; /* do i */

league.court.pref.yes
= "l"b;

end; /* then do */
else league.court.pref.yes = "O"b;
end; /* else do (if mand.courts...) */

e

ha
;

back in the",
ve") (2 a);

(2,0), a);

is court ? ");

put skip edit ("Are there any preferred days of the
,"ing",misc.league(lg).name,"-league games ?

get list (answer);
if answer = "y"
then do;

week for
(y/n) ")

put skip list ("How many preferred days are there ? ");
get list (league.day.num);
put skip edit ("Please enter these preferred days in or

" desirability. Along with")
put skip edit("each day enter a weighting factor corres

," the number of days you") (2
put skip edit("would be willing to delay the scheduling

" particular game to make") (2
put skil
do i=1

put
get
put
get
end;

end;
else leagu

to
sk
i
sk

i

list("i
league

ip edit
st (lea
ip List
st (lea

/*

e.day.num

t fall on that day. ");
.day. num;
("Day ", i, " ? ") (a, f(2,0), a);

gue.day.pref(i));
("Weighting factor ? ");

gue.day.wt(i));
do i */
then do */
= O;

schedul"
(4 a);

der of",
(2 a);

ponding
a);
of a",
a);

to"

put skip edit

get list (a
if answer =
then do;

put skip

put skip

put skip

put skip

put skip

("Are there any times
"ii ng",

nswer);
, y"

that are
misc.league(lg).name,

edit("Preferred times consist
" on a particul

edit("the week. You may speci
" giving the da

edit("slot and ending slot of
" will also be

edit("a weight to eacn block c
"ber of days a

edit("scheduling may be delaye
" that block.")

put skip list ("How many such blocks do

preferred for schedul",
"-league games ? ")

of a
ar da
fy up
y, st
each
asked
orres
game'
d in

(2

block of
y of") (
to 5 suc
artiny")
prefered
to give"

spondin t

s") (2 a

order to
a);

(4 a);

time-slots",
2 a);
h blocks by"
(2 a);

block. You"
) (2 a);
o the num",
);
fall into",

you wish to specify ?
get list (league.time_num);
do i=1 to league.time_num;

put skip edit ("Enter the number corresponding to the day on",
" which") (2 a);

put skip edit("block ", i, "(in preferential order) occurs. ")
(a, f(2,0), a);

yet ist (eague.time(i).day);

I

,I

73

put skip edit ("Enter the number of the time-slot which ",
"begins this block.") (2 a);

get list (league.time(i).startslt);
out skip edit ("Enter the number of the last time-slot in",

" block.") (2 a);
get list (leaque. time(i) .end_st);
put skip list ("Weight for this block ? ");
get list (league.time(i).wt);
end; /* do i */

end; /* then do */
else league.time_num = O;

/* Use weights entered above to determine the number of schedule */
/* days that will be searched in looking for each game"s most */
/* appropriate time-slot (best-fit) */

max = 0;

if league.court.pref.yes = ""b
then do i=1 to misc.numcourts;

if league.court.pref.wt(i) > max
then max = league.court.pref.wt(i);

end;
if league.day.num > 0

then do i=1 to eague.day.num;
if league.day.wt(i) > max
end;

if league.time_num > 0

then do i=1 to league.time_num;
if league.time(i).wt > max
end;

league.search_days = max + 1;

then max = league.day.wt(i);

then max = league.time(i).wt;

/* now that parameters for league are specified, loop through
/* the divisions in this league and schedule each one. */

all */

do div=l to misc.league(lg).num_divs;
call div_sched(miscptr, season_ptr, league_ptr, sched_ptr, lg,

div, teamsscheduled, facavail);
end; /* do div */

end; /* do lg */

free league;
free sched;

end; /* schedule */

74

div_sched: procedure (misc_ptr, season_ptr, league_ptr,
lg, div, teams_scheduled,

declare team_pair entry (fixed, fixed, (
declare eval entry (fixed, fixed, fixed,

returns (fixed);
declare maxval entry (fixed, fixed, poi
declare relax entry (pointer, pointer);
declare printout entry (pointer,pointer,

sched_ptr,
facavail);

14, 4, 2) fixed);
fixed, pointer, pointer, fixed)

nter, pointer) returns(fixed);

pointer, pointer, pointer,
fixed, fixed);

%include eague_dcl;
%include structures;
%include divdcl;
%include scheddcl;
declare sysin file stream input;
declare sysprint file stream output;

declare 1 team(8),
2 date(season.num_days)

3 play_day bit(1),
3 play_time bit(15)

declare 1

varying;

change(56),
2 day fixed,
2 ct fixed,

2 time fixed;

declare 1 startweek,
2 mon fixed,
2 reldate fixed;

declare stowe area
allocate division i
allocate divsched i

automati
n(stowe)
n(stowe)

c;

set(div_ptr);
set(div_s_ptr);

num_changes fixed initiat(1);
(lg, div, stl, st2, num_weeks, ict, value, best_fit)
(best_fit_day, best_fit_time, best_fit_ct, i, t, t, t

(tsl, ts2, current_day, d, imon, idate, week, gm,numc
(games_per_week, len, ts, start_day,teams_scheduled) f
(j,k,iday,dayl,min_space, end_last_week, end_this_week
(courtlist(10), divgame, high) fixed;
pairings(14,4,2) fixed;
(facavait(150,10), one_string, nil_string) bit(15) var
availability bit(15);
ans char(l);

nil_string, one_string
do i = 1 to misc.time!

nilstrin = nilst
one_string = one_st
end;

divsched.n_games = 0;

do i = 1 to 56;

divsched.game(i).tl
divsched.aame(i).t2
end;

fixed;
2) fixed;
ts) fixed;
ixed;
) fixed;

ying;

slots.num;
ring I I "O"b;

ring II "1"b;

1 = 0;
2 = 0;

put skip(2) list("We are now ready to

declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare

schedule division number "div);

75

put skip
put skip
get list
put skip
get list
do i=1 t

put s

get l
end;

edit
list
(div
list
(div

o div

kip e

ist (

(" of ", misc.league(lg).nalme, "-league ") (3 a);
("How many teams in this division? (must be 4 to 8) ");

ision.rnumt eams);
("How many games will each team play? ");
ision.num_games);
ision.num_teams;
dit ("What is the name of team '" i, " ? ") (a, f(1,0), a);
division. teamname(i));

divsched.n_games
if numteams = 5

if num_teams = 7

= (num_yames * num_teams
then divsched.n_games =
then divsched.n_games =

) / 2;
(num_games
(num_games

+ 1) * 2;
+ 1) * 3;

/* set up team_pairings array for
/* teams and number of games each

this division, given number
will play */

call team_pair (division.num_teams, division.num_games, pairings);

/* input time constraints for each team in division */

do t=l to num_teams;
division.team_number(t) = t + teams_scheduled;
do d=l to

team(t)
team(t)
end;

end;
put skip

num_days;
.date(d).play_day
.date(d).play_time

"ll"b;
= one_string;

list ("Are there any days in
put skip list ("the teams in
get ist (ans);
do while (ans = "y");

put skip list ("What team?
get list (t);
put skip list ("What month
put skip list (" not
get list (imon, idate);
do i = month(imon).seas.dl

if season.day(i).date
then do;

iday = i;
i = 150; /* ex
end;

this divi
the season on which one
sion cannot play? (y/n)

of");
");

(enter its number) ");

and date is ", team_name(t));
able to play on? (enter as numbers) ");

to month
idate

(imon).seas.d2;

it loop */

end;
team(t).date(iday).playday = "O"b;
team(t).date(iday).pay_time = nil_string;
put skip
put skip
get list
end;

list ("Are
list ("
(ans);

there more days on which teams in
division cannot play? (y/n)

this");
");

/* do while */

list ("Are there any time_slots (or blocks of slots)");
t (" on which teams in this division cannot play? ");
s);
s = "y");
list (",hat team? (enter number) ");
(t);
list ("What month and date? (enter month as number) ");
(imon, idate);
sc.month(imon).seas.dl to month(imon).seas.d2;

of */

put ski
put ski
get lis
do whil

put
get
put
yet
do i

p(2)
p lis

t (an

e (an

skip
list
skip
list

= mi

76

if season.day(i).date = idate
then do;

end;
put ski
put ski
get is
do i =

subs

iday = i;

i = 150; /* exit oo */
end; /* then do */

/* do i */
p ist ("Now enter the numbers corresponding to the
p list (" and last time-slots in the unavailable
t (sltl, st2);
sLtl to st2;
tr(team(t).date(iday).playtime, i, 1) = "O"b;

end;
put skip list("Are th
put skip list ("
get list (ans);
end; /* do while */

fi rs t");
block ");

ere more blocks of time slots on which teams");
in this division cannot play? (y/n) ");

/* Create court_list for division. Will include
/* such exist, and preferential ordering of all

mandatory courts if */
courts otherwise */

if eague.court.mandatory.num > 0
then do;

num-cts =
do i = 1 t

courtl
end;

end;
else do;

num_cts =
if league.
then do i

court_ l

league.court.mandatory.num;
o numcts;
ist(i) = league.court.manda tory.ct(i);

misc.numcourts;
court.pref.yes = "1"L
= 1 to numcts;

ist(i) = league.court.pref.ct(i);
end;

else do i = 1 to

courttist(i)
end;

end; /* els

numcts;
= i;

e do */

schedule:

/* schedule season for this division one 'week'

put skip
put skip
get list
if (divi
then do;

at a time */

list ("How many days would you like to leave between");
list (" consecutive games for each team in this division ");
(min_space);

sion.numteams = 5) I (division.numteams = 7)

numweeks = division.num_games + 1;
if division.num_games >= division.num_teams

then numweeks = numweeks
games_perweek = (division.num_teams - 1) / 2;
end;

else do;
numweeks = division.num_games;
games_per.week = division.num_teams
end;

+ 1;

/ 2;

endlastweek = season.day(l).rel_date - min_space;
startweek.mon = 1;

77

do week = 1 to numweeks;
end_this_week, start_week.rel_date = end_last_week + min_space;
do i = misc.montn(start_week.mon).seas.dl to 153;

if season.day(i).rel_date >= start_week.rel_date
then do;

start_day = i;
if i > misc.month(start_week.mon).seas.d2 then

start_week.mon = startweek.mon + 1;
i = 150;

end;
end; /* do i */

/* loop through games to be scheduled in this week (block) */

do gm = 1 to game
tl = pairings

t2 = pairings
currentday =
/* DAY1 recor
/* Until one
/* is cut off
dayl = season.
best_fit = 0;

s_per_wee
(week, 3m
(week, gm
start_day
ds first
is found,
at (DAY1

num_days;

k;

J.

1);
2);

slot found for scheduling current
it is set at endofseason since
+ SEARCH_DAYS */

game. */
search */

new_day:

/* If we
/* the f
/* fitti
/* with

have reached end_of_
irst open slot found,
ng position found (un
no stot tound. In tha

season or have gone
we should schedule
less BESTFIT = 0,
t case, scheduling

SEARCH_DAYS past
game in the est

==> endof_season
bombed.) */

if (current_day > season.num_days) I

(day(current_day).rel_date - day(dayl).rel_date > search_days)
then do;

if best_fit = 0 then go to bomb;
else do;

/******* Record game in best slot ******/

substr(facavail(best_fit_daybest_fitct),bestfitt
sched (estfit_day, best_fit_ct, best_fit_time).t11

division.team_number
sched (best_fit_day, best_fit_ct, best_fit_time).t22

division.team_number
divgame = (week-1)*games_per_week + gm;
Jivsched.gaine(divgame).t11 = t1;
divsched.game(divgame).t22 = t2;
divsched.game(divgame).day = best_fit_day;
divsched.game(divgame).ct = best_fit_ct;
divsched.game(divgame).time = best_fit_time;

/* must keep track of changes made to court a
/* case division must be rescheduled (so they

change(num_changes).day = bestfitday;
change(nurn_changes).ct = best_fit_ct;
change(nunm_changes).time = best_fit_time;
num_changes = num_changes + 1;
court(best_fitct).totalsots.left =

court(best_fit_ct).tota
court(bestfitct).total_slots.used =

court(best_fit_ct).tota

ime,1)="3"b;

(tl);

(t2);

vailabilities in */
can be undone) */

l_slots.left

t_slots.used + 1;

- 1;

78

if season.day(best_fit_day).rel_date > end_this_week
then endthis_week = season.day(best_fit_day).rel_date;

go to new_game;
/***** Finished Recording *******/

end;
end;

/* else do (if best_fit =) */
/* then do (if day(current_day).

if (team(tl).date(current_day).play_day
(team(t2).date(current_day).play_day

then do;
current_day = current_day + 1;
go to new_day;
end;

reldate)...

= "C"b) I

= "0")

/* check to see if game scheduled
/* improve on current best_fit */

high = maxval(current_day, day1,
if best_fit > high
then do;

current_day = current_day + 1;
go to new_day;
end;

on this day

season_ptr,

could possibly

league_ptr);

/* Examine court and time-slot combnations for this day */

do ict = 1 to numcts;
/* ook for acceptable time-slot on this
/* look first for preferred slots */
availability = team(tl).date(current_day

team(t2).date(current_day
facavail(current_day, cou

if league.time_num > 0
then do i = 1 to league.time_num;

if season.day(current_day).day_of_wk
then do;

tsl
ts2
do

day and

).play_t
) .play_t
rtlist(

court. */

ime &
ime &
ict));

lteague.time(i).Jay

= eague.time(i).start_slt;
= eague.time(i).end_slt;

ts = tsl to ts2;
if substr(availability, ts, 1) = "l"b
then do;

value = evat (ts, current_day, dayl,court_list(ict),
season_ptr,league_ptrmisc.num_courts);

if value > bestfit
then do;

/* if this is first open slot found for this */
/* game, record day in DAY1 */
if best_fit = 0 then dayl = current_day;
best_fit = value;
best_fit_day = current_day;
bestfittime = ts;
bestfitct = ict;
end;

end;
end;

end;

go to day_done;
end; /* then do (if substr) */

/* do ts */
/* then do (if season...) */

/* do i */

79

/* either no
/* preferred

success with preferred
slots exist - loop all

slots or no */
slots */

do ts = 1 to misc.time_slots.num;
if substr(availability, ts, 1) = ""b
then do;

value = eval(tscurrent_day,dayl,court_tist(ict),
season_ptr, league_ptr, misc.num_courts);

if value > bestfit
then do;

/* if this is first open slot found for this */
/* games record day in DAY1 */
if bestfit = 0 then dayl = current_day;
best_fit = value;
best_fit_day = current_day;
bestfittime = ts;
bestfitct = ict;
end;

if value = high /* max_val for day has been obtained */
then go to day_done;
else go to new_court; /* look for pref. time */

end; /* then do (if substr) */
end; /* do ts */

new-court:

/* try a new court on this day.
/* time-slot on that day -- if t
/* open on that court -- if that

end;

Look first for a prefered */
hat fails, ook for any slot */
fails, go to new court again.

/* do ict */

day_done:

/* have gone through all appropriate courts and time-slots */
/* on this day; try new day */
current_day = current_day + 1;
go to new_day;

new_game:
/* jump to

end;
here after a game

/* do gm
has been scheduled */
*/

endlastweek
end;

= endthisweek;
/*do week */

/* all scheduling for this division has been completed */

call printout (misc_ptr, season_ptr, div_ptr, div_s_ptr, schedptr,
Lg, div);

teamsscheduled = teamsscheduled + division.numteams;

free division;
free divsched;

return;

80

/ * ** *** * ** * ** * * * ** * *** * * * * ** ** * * * * * *** * *** ** ** ** * *** /

bomb:
/* if control passes here, division scheduling could not be completed
/* try new smaller min-space between blocks (weeks) of games */

put skip list (" Scheduling of division was unsucc
put skip edit ("min-space of " minspace, "Would

(a, f(2,0)
get list (ans);
if ans = "y"
then do;

put skip data (week,
put skip list ("More
get list (ans);
if ans = "y"
then do;

put skip data (sta
do i = start_day t

put skip data
end;

nd; /* t
/* then do *

p list ("Would yo

essful with a");
you like more info?
, a);

start_week, end_last_week, end_thisweek);
info ? (facility availabilities) ");

rt_day, current_day, court(*).totalslots);
o current_day;
(facavail (i,*));

hen do */
/
u like to rerun with a new min-space? (y/n)

t (ans);

=I, If
/* re-open slots that were

relax (misc_ptr, leayue_ptr);
= 1 to (num_changes - 1);
ubstr(facavail(change(i).day, change(i)

sched(change(i).day,change(i).ct,change(i
sched(change(i).day,change(i).ct,change(i
divsched.game(i).tll = 0;

divsched.game(i).t22 = 0;
court(change(i).ct).tota_slots. left =

court(change(i).ct).total_sl
court(change(i).ct).total_slots.used =

end;
num_changes = 1;

go to schedule;
end; /* then

P)

");

used during bomb run

ct), change(

) .time) .tll
) .time) .t 22

ots.left

i) time,

= "1 "b;

= 0;

= 0;

1)

+ 1;

-1;court(change(i).ct).total_slots.used
/* do i */

do */

end; /* divsched */

*/

e

end;
put ski
get is
if ans
then do

call
do i

s .

81

team_pair: procedure (num_tedms, num_games, pairings);

declare sysprint file stream output;

declare
declare
declare
declare
dec are
declare

(numteams, num_games, games_per_week, i, week, game) fixed;
(array_lines, first_line, n_games) fixed;
pairings (14,4,2) fixed;
index (14) fixed;
array (7,4,2) fixed;
t(5) label;

if numteams < 4 I numteams > 8

else go to t(numteams
then go
- 3);

to bad;

t(1): call four(array_tines, games_per_week, arrays i);
go to good;

t(2): call five(array_lines, games_per_week, array, i)
go to good;

t(3): call six(array_lines, gamesper_week, array, i);
go to good;

t(4): call seven(array_lines, games_per_week, array, i
go to good;

t(5): call eight(array_lines, games_per_week, array, i
go to good;

bad: put skip list ("Too many or too few teams");
return;

good:

I

/* determine
/* last line
/* necessary

first-li
will be
to utili

ne of (raw
placed in
ze seeding

data)
ast we
capabi

'array
ek in
lity o

' to use
'pairings
f schedul

such that
'. This
ing */

n_games = num_games + i;
firstline = mod (array_lines-mod(n_games,arrayl
if firstline = 0 then firstline = array_lines;

/* fill 'index' array with the
/* used in filling 'pairings'

line numbers of 'a
array */

ines),array_lines);

rray' to be */

do i = to

index (i)
if index(
end;

n_games;
= mod (firstline + i,
i) = 0 then index(i) =

array_lines);
array_tines;

/* now fill 'pairings' */

do week = 1 to ngames;
do game = 1 to gamesper_week;

pairings(week, game, 1) = array(index(week),
pairings(week, game, 2) = array(index(week),
end;

end;

return;

game, 1);
game, 2);

/ *************************************/

four: procedure(array_lines, yames_per_week, array, i);

./
is

I) ;

82

declare (array_lines, games_per_week, i) fixed;
declare array (7,4,2) fixed;
declare a_ray(7,4,2) fixed initial (2,3,1,4,0

2,4,1,3,0,0,0,0, 3,4,1,2,0,0,0,0,
0O0,0,0,0,0,0,0, 0,0O,O,O,O,O,0,,

array = a_ray;
array_lines = 3;

games_per_week = 2;

i = O;

,o,0,0,0,0,,0,0,0,0,
0,0,0,0,0,3,0,0);

return;
end;

/five: pro****cedure(arra**y_****ines,*** game**spe****rwee**k, array, i);

five: procedure(arraylines, games.perweek, array, i);

declare (array_lines, games_
declare array (7,4,2) fixed;
declare a_ray (7,4,2) fixed

2,3,1,4,0,0,0,0,
2,4,2,5,0,0,0,0,

array = a_ray;
array_lines = 5;

games_per_week = 2;
i = 1;

per_week, i) fixed;

initial (2,4,1,5
4,5,1,3,3,0,0,0,
C,O,,O,O,O,O,G,

,O,,O0,0
3,5,1,2,00,,0,0
0,0,0,0,0,0,0,0);

return;
end;

six: proce*****ure**dure(array********ines******** gamesperweek, array, i);

six: procedure(arraylines, gamesperweek, array, i);

declare (array_lines, yames_per_week, i) fixed;
declare array (7,4,2) fixed;
declare a_ray (7,4,2) fixed initial (3,4,2,5,1

3,6,2,4,1,5,0,0, 5,6,2,3,1,4,0,0,
3,5,4,6,1,2,0,0, 0,0,0,0,0,0,0,0,

array = a_ray;
array_lines = 5;

games_per_week = 3;
i = 0;

,6,G,0,
4,5,2,6,1,3,0,0,
,O0OO,,0,00,0);

return;
end;

/*******seven: procedure(array_**ines, gamesper****_week**** ar***************ray, i);***

seven: procedure(arraylines, gamesper.week, array, i);

declare (array_lines,
declare array (7,4,2)
declare a_ray (7,4,2)

3,4,2,5,1,6,
4,7,5,6,1,3,

array = a_ray;
array_lines = 7;

games_per_week = 3;

games_per_week,
fixed;
fixed initial
0,0, 6,7,2,4,1
0,0, 4,6,3,7,1

i) fixed;

(3,5,2,6,
,5,0,0,
,2,0,0,

1,7,0,0
5,7,2,
4,5,3,

3,1,4,0,0,
6,2,7,0,0);

83

i = 1;

return;
end;

/**/

eight: procedure(array_lines, games_per_week, array,

declare (array_lines, games_per_week, i) fixed;
declare array (7,4,2) fixed;
declare a_ray (7,4,2) fixed initial (4,5,3,6,2,7,1

4,8,3,5,2,6,1,7, 4,7,3,8,2,5,1,6, 6,8,
5,8,6,7,2,3,1,4, 4,6,5,7,2,8,1,3, 5,6,

array = a_ray;
array_ltines = 7;

games_per_week = 4;
i = 0;

return;
end;

end; /* teampair */

i) ;

,8,

3,7,2,4,1,5,
3,4,7,8,1,2);

84

max_val: procedure (iday, day1, season_ptr, leaque_ptr)
returns (fixed);

%include structures;
%include league_dcl;

declare (iday, rel_datel, best_value, i,
declare (maxweight, rel_date_now, day1,

days_from_start) fixed;
endseason) fixed;

/* Determine closeness of
/* decreases linearly with
/* This rewards any possib

current day to start of
distance, reaching 0 at
le scheduling and favors

block. Value */
end of season. */
tight packing. */

reldatel = season.day(dayl).rel_date;
reldatenow = season.day(iday).rel_date;
days_from_start = rel_date_now - rel_datel - 1;
end-season = season.day(season.num_days).rel_date;
bestvalue = endseason - season.day(iday).rel_date + 1;

/* determine maximum possible value of satisfying court preference */

if (league.court.mandatory.num = 0) & (eague.court.pref.yes = "1"b)
then do;

max_weight = league.court.pref.wt(1);
if maxweight > days_from_start

then bestvalue = best_value + niax_weight + 1;
end;

/* determine max. possible value of satisfying day preference

do i = 1 to league.day.num;
if league.day.pref(i) = season.day(
then do;

max_weight = league.day.wt(i);
if max_weight > days_from_start

then bestvalue = bestvalue
i = 6;

end;
end;

iday) .day_of_wk

+ max_weight + 1;
/* exit from loop */

/* determine max. possible value of satisfying timeslot preference */

do i = 1 to league.time_num;
if league.time(i).day = season.day(iday).day_of_wk
then do;

max_weight = league.time(i).wt;
if max_weight > days_from_start

then bestvalue = best_value + maxweight + 1;
i = 6; /* exit from loop */
end;

end;

return (bestvalue);

end; /* maxval */

85

eval: procedure (ts, iday, day1, ict, season_ptr, league_ptr, num_cts)
returns (fixed);

structures;
leaguedcl;

declare (ts, iday, dayl, ict, i, days_from_start,
declare (rel_date_now, end_season, value, weight,

/* Dete
/* decr
/* This

rel_datel) fixed;
num_cts) fixed;

rmine closeness of current_day to start of block. Value */
eases linearly with distance, reaching 0 at end of season.
rewards any possible scheduling and favors tight packing.

reldatel = season.day(dayl).reldate;
rel_datenow = season.day(iday).rel_date;
days_from_start = ret_date_now - rel_datel - 1;
endseason = season.day(season.num.days).rel_date;
value = endseason - season.day(iday).rel_date + 1;

/* if this is a preferred day add in corresponding weight

do i = 1 to league.day.num;
if league.day.pref(i) = season
then do;

weight = league.day.wt(i);
if weight > days_from_start

then value = value + we
i = 903;

end;
end;

.day(iday).day_of_wk

ight + 1;

/* if this is preferred court add in the corresponding weight */

if league.court.pref.yes = "l"b
then do i = 1 to num_cts;

if league.court.pref.ct(i) = ict
then do;

weight = league.court.pref.wt(i);
if weight > days_from_start

then value = value + weight +
i = 900;

end;
end;

/* if this is preferred time-slot, add in corresponding weight */

do i = 1 to league.time_num;

if (league.time(i).day = season.day(iday).day_ofwk)
& (league.time(i).startslt <= ts)
& (league.time(i).endslt >= ts)

then do;
weight = league.time(i).wt;
if weight > days_from_start

then value = value + weight + 1;
i = 900;

end;
end;

return (value);

%include
%include

1;

86

relax: procedure (misc_ptr, eague_ptr, court_list);

%include structures;
%include league_dc l;
declare sysin file stream input;
declare sysprint file stream output;

declare ans char(l);
declare (i, ict, court_list(10)) fixed;

if court.mandatory.num > 0
then do;

put skip edit ("There are currently
" mandatory courts. The

put skip edit (" ", "COURT", "SLOTS

do i =

ict
put

end;

", court.mandatory.num,
y are:") (a, f(1,0), a);
USED", "SLOTS LEFT")

(a(5), a(8), 2 a(13));
1 to mandatory.num;
= mandatory.ct(i);

skip edit (" ", court(ict).
court(ict).total_slot

name, court(ict).total_slots.used,
s.left) (a(4), a(10), 2 f(13,0));

put skip edit ("Do you wish
"uirements

get list (ans);
if ans = "y"
then do;

court.mandatory.num = O;

put skip list ("Do you want to
get
if a

then

list (
ns = "
do;

put sk

ans);
y "

ip edit ("

put skip edit ("

put skip edit ("

do i =

put
get
cour
put
yet
end;

end;

1 to n

skip
list (
tlist
skip l

list (
/,*

um_
ist
lea
(i)

ist
lea
do

to yet rid of the
for this league ?

mandatory court req",
(y/n)") (2 a);

specify preferred courts ? ");

Enter the court numbers
"lity. Also please

weight corresponding to
"you would be will

postpone the scheduling
" put on this court

courts;
("court ", i,

gue.court.pref
= league.cour
("weight for

gue.court.pref
i */

in

giv
the

ing
of

· '

order
e each

numbe
to")
a game

(2 a

of desirabi",
a") (2);

r of days",
(2 a);

to have it",
3) ;

"? ");
.ct(i));
t.pref.ct(i);
this court ? ");
.wt(i));

/* then do */
else do;

do i = 1 to num_courts;

courtlist(i) = i;
end;

end; /* else do */
end; /* then do (get rid of mand. courts) */

else do; /* no desire to get
put skip edit ("Would you like to

"courts ?

get list (ans);
do while (ans = "y");

put skip edit ("There
" mandatory

rid of mandatory courts */
add to the list of mandatory
(y/n) ") (2 a);

are now ", court.mandatory.num,
courts. They are:") (a, f(2,0), a);

87

do i =

out
end;

put skip
mandatory
get list
put skip
get list
end;

1 to court.mandatory.num;
skip list (" ", court.mandatory.ct(i));

list
. num
(cour
list

("What court number would you lik
= mandatory.num + 1;
t.mandatory.ct(mandatory.num));
("Do you want to add more ? (y/n)

e to add ? ");

It);
(ans);
/* do while */
/* else do */

end; /* then do (if mand.num > 0) */

else do; /* no mandatory courts */
put skip list ("Change weights for preferre
get list (ans);
if ans = "y"
then do i =

put skip

get list
courtli
put skip
yet list
end;

end;

d c

1 to numcourts;
edit ("Enter the id. number of co

" in preferential order ") (a
(league.court.pref.ct(i));

st(i) = league.court.pref.ct(i);
list ("What is the weight for this
(league.court.pref.wt(i));
/* then do i */

/* else do (no mandatory courts) */

ourts ? (y/n) ");

urt number ",i,
, f(2,0), a);

court ? ");

end; /* relax */

en d;

88

printout: procedure (misc_ptr, season_ptr, div_ptr, div_s_ptr,
schedptr, lg, div);

%include structures;
%include div-dcl;
%inctude scheddcl;
declare sysin file stream input;
declare sysprint file stream output;

declare 1 team_sched(8,14),
2 opponent fixed,
2 dow char(9) varying,
2 mon char(9) varying,
2 idate fixed,
2 ctname char(8) varying,
2 time fixed;

declare 1 tsstr
2 hr f

2 mins

declare
declare
declare
declare
declare

/* set
time =
do i =

tss
if t

then
else
time
end;

ing(15),
ixed,
char (4);

(i, iday, g, div, t, t2, count(8), hr, t, cts) fixed;
min char(4);
time fixed decimal(3,1);
ans char(l);
day_name(7) char(9) varying initial("Sunday", "Monday",

"Tuesday", "Wednesday", "Thursday", "Friday", "Saturday");

up time-slot array for output */
misc.timeslots.start;
1 to misc.timeslots.num;
string(i).hr = floor(time);
ime - floor(time) = 0.0

I tsstrinq(i).mins = ":00 ";
tsstring(i).mins = ":30 ";
= time + misc.time_slots.tength;

put skip list
put skip edit

put skip list
do i = 1 to di

put skip ed

end;
put skip;

("Schedule for ",misc.League(lg).name,"-league division ",
div) (3 a, f(2,0));

("Teams are:");
vision.numteams;
it (division.teamnumber(i), " ", team_name(i))

(f(8,0), 2 a);

do i = 1 to 8;

count(i) = 0;

end;

do i = 1 to divsched.n_games;
tl = divsched.game(i).tll;

t2 = divsched.game(i).t22;
count(tl) = count(tl) + 1;
count(t2) = count(t2) + 1;
iday = divsched.yame(i).day;
team_sched(tl,count(tl)).opponent =
teamsched(t2,count(t2)).opponent =

teamnumber(t2);
teamnumber(tl);

I

I

89

team_sched(tl,count(tl)).d_o_w=day_name(season.day(iday).day_of_wk);
teamsched(
teamsched(
teamsched(
teamsched(
team_sched(
teamsched(
teamsched(
teamsched(
teamsched(
hr = tsstr
min = tsst
put skip ed

divi

t2pcount
tl ,count
t2,count
tl ,count

t2,count
tl ,count

t2,count
tl ,count
t2,count
ing(divs
ring(div
it(divis
si on. tea

d_o_w, ", ",
teamsched(t
teamsched(t

(f

end; /* do i */

(t2)).d_o_w=day_name(season.day(iday).day_of_wk);
(t)).mon=misc.month(season.day(iday).month).name;
(t2)).mon=misc.month(season.day(iday).month).name;
(tl)).idate = season.day(iJay).date;
(t2)).idate = season.day(iday).date;
(tl)).ctname = court(divsched.game(i).ct).name;
(t2)).ctname = court(divsched.game(i).ct).name;
(t1)).time = divsched.game(i).time;
(t2)).time = divsched.game(i).time;
ched.game(i).time).hr;
sched.game(i).time).mins;
ion.teamnumber(tl)," plays ",
mnumber(t2), hr, min, team.sched(tl,count(tl)).
teamsched(tl,count(tl)).mon,
1,count(tl)).idate," on ",
1,count(tl)).ctname)
(3,0), a, 2 f(3,0), 4 a, f(3,0), 2 a);

put skip list ("Would you like schedule listings by team? (y/n)");
get list (ans);
if ans = "y"
then do t = 1 to division.num_teams;

put skip edit ("Schedule of team ",teamnumber(t)," : ",
teamname(t)) (a, f(3,0), 2 a);

do i = I to count(t);

tl = teamsched(t,i).time;
put skip edit (" Plays ",team_sched(t,i).opponent,

ts_string(tl).hr,tsstring(tl).mins,team_sched(t,i).d_o_w,
", ",teamsched(t,i).mon,teamsched(t,i).idate, " on ",

teamsched(t,i).ct-name) (a,2 f(3,0),4 a,f(3,0),2 a);
end; /* do i */

end; /* do t */

cts = misc.numcourts;
put skip ist("Would you
get list (ans);
if ans = "n" then return;

put skip edit (" ", court(1)
do i = 2 to cts;

put edit (court(i).name)
end;

put skip;

ike to see the full schedule? (y/n)");

.name) (a(19), a(10));

(a(10));

do iday = 1 to season.num_days;
put skip edit(day_name(season.day(

ts_string(1).mins) (a(12),
do i = 1 to cts;

put edit (sched(idayi,1).t1l,
(f(4,0)

iday).day_ofwk),
f(3,0), a);

"-", sched(iday,i
, a, f(3,0), a(2))

ts_string(1).hr,

,1).t22,

end; /* do i */
put skip edit (misc.month(season.day(iday).month).name,

season.day(iday).date, ts_string(2).hr, ts_stri
(a(9), 2 f(3,0), a);

do i = 1 to cts;
put edit (sched(iday,i,2).t11, "-", sched(iday,i,2).t2

(f(4,0), a, f(3,0), a(2));

I" o)

ng(2).mins)

2, "")

/* do i end;

90

do t = 3 to

put skip
misc.time slots.num;
edit(" ", ts_striny(t).hr, ts_string(t).mins)

(a(12), f(3,O), a);
do i = 1 to c

put edit

end;
end;

ts;
(sched(iday,i,t) .t1,

(f(4,0), a,
/* do i */
/* do t */

"-", sched(idayit).t22, "")
f(3,0), a(2));

put skip;
end;

return;
end; /*

/* do iday */

printout */

INTAIURAL SPORTS SCHEDULING PROCRAM

USER' S HANDBOOK

92

INTRODUCTION

Every effort has been made to make this program as powerful and easy

to use as possible. It should greatly simplify the scheduling task for

managers who understand how to use it to its fullest capabilities.

However, without a careful reading of this handbook and a certain amount

of advanced preparation prior to sitting down at the terminal, the mana-

ger may find himself facing an array of puzzling problems. To insure a

quick and successful terminal session the user should do the following:

1. Read the rest of this manual carefully.

2. Do the advanced preparation suggested in the following paragraphs.

3. Be very careful to input all data correctly when at the terminal.

4. Be very careful to follow the specified format for inputting each

data item.

This last item refers to such issues as whether the program wants a

number to be input as an integer (11 for instance) or a fraction (11.0).

In most cases the program specifies the format needed, but in general the

following rules apply.

A. If a number is requested enter it as an integer unless the number

represents a time of day.

B. All times are to be entered as decimal fractions representing

the number of hours on a 24-hour clock. (Thus 9 a.m. = 9.0,

4:30 p.m. = 16.5, noon = 12.0, midnight = 0.0)

C. lWhen a day of the week is to be entered, an integer representing

that day's position in the week should be used. (i.e. Sunday=l,

Tuesday = 3, Friday = 6, etc.)

D. When a month is asked for, an integer should.be entered that

represents that month's position in the list of months comprising

93

the season. (i.e. if a 4 month season starts in May, June = 2

not 6)

SPECIAL FEATURES

A number of optional features have been included in this program
forms

to give the manager variousAof control over the "shape" of the resulting

schedule. The manager can seed the teams within each division causing

the best teams to meet in the last week of the season; provide specific

days and/or times on specific days that particular teams cannot play;

specify a set of mandatory courts for a league; specify a weighted pref-

erential order for choosing courts to use for a league; and specify a

preferential order for choosing courts to use for a league; and specify

a preferential weighting of days of the week and times of day to be used.

Each of these capabilities is described seperately in the paragraphs that

follow. The manager should determine which of these capabilities he

desires to use and do any advanced preparation suggested in that section.

SEEDING - The program is designed to schedule each division so that

teams 1 and 2 play in the last week, 1 and 3 play the week before, and

so on. This provides the ability to have the strongest teams meet toward

the end of the regular season.if that is desired. If so, the manager

should simply enter the teams in order of strength, with the strongest

entered first. If seeding is not desired, the teams can be entered in

some random order. How strength of teams is determined is up to the man-

ager -- presumably he has some hunches along that line.

94

TEAM TIME-CONSTRAINTS - Often, teams will be unable to play on

certain dates in the season and specify this on their entry card. When

each division is about to be scheduled, the manager will be asked to enter

the teams in that division and dates on which any of them cannot play.

The manager should include on his list of teams, a list beside each team

of dates that team cannot play. These dates should include the month

index discussed in part D of the Introduction.

Occasionally, a team will be unable to play on only a portion of

some particular date. In that case the manager can specify the month

index and date involved and the indices of the first and last time-slots

in the unavailable portion of that day. This information should be written

down on the team list before sitting down to the terminal.

LEAGUE-WIDE CONSTRAINTS - The following constraints are entered

once for each league and are applied to all of the divisions within that

league.

A. Mandatory Courts - If some of the courts are unsuitable for

A-league (or even B) play, the manager can specify one or more courts that

must be used when scheduling the league at hand.

B. Preferred Courts - If the manager does not want to absolutely

require the league's games to be scheduled on a particular court(s) but

still would prefer to see some courts used more often than others, he

can list the courts in preferential order and give a weight to each one.

The higher the weight, the harder the program tries to satisfy that preference.

The functioning of these weights is basically as follows. In general

the program schedules each game in the first open slot it finds that

satisfies the mandatory constraints (court open, both teams can play then,

mandatory court (if any) is satisfied) and provides the requested minimum

spacing between a team's consecutive games. If a preferential constraint

has been specified, and the first open slot found does not satisfy that

95

preference, the program will search through the season in an attempt to

find a slot that does. The number of days it will search is the number

specified by the weight. It is important not to set these weights too

high (8 is a good limit to keep, 15 is probably an absolute maximum),

because if they are set too high the individual blocks of games within

a division may become so spread out that all of the blocks cannot be fit

into the season while still preserving the requested minimum spacing

between blocks. (A division of 6 teams playing 5 games each will have

5 "blocks" of games scheduled, each block containing 3 games, so that

each team plays once in each block) In addition to limiting the preference

seeking search, the weights' values also rate the relative importance of

different preferential constraints. Often, it may be possible to satisfy

either of a pair of preferential constraints, but not both. In that case,

the program will satisfy the one weighted more highly.

C. Preferred Day of Week - The user may want to schedule

games for a league on a particular day of the week whenever possible.

To facilitate this, he may list up to 5 preferred days and weight each

one. It is important that the most highly preferred day be entered first.

The user should draw up this list of days (dayvnumbers) and associated

weights ahead of time.

D. Preferred Time-Slots - If the user wishes to specify a

particular block of time slots on a certain day of the week as preferred

he may do this also. He cn list up to 5 such blocks, and should list

the most preferred first. For each group of times he will need to specify

the index for the day of the week this preferred group of slots falls on,

the indices of the first and last time-slots in this block, and the weight

96

for the block.

GENERAL PREPARATION

The following items should be prepared before sitting down at the

terminal, regardless of what optional features are to be used. The time

spent creating the lists suggested will be regained through a much shorter

and less frustating session at the terminal.

1. Calendar - The user first needs to determine what days will be

included in the season. To communicate this information to the computer

he will provide information about the months that the season spans and

tell it whether all of the days in that period should be included, or

just the weekends or weekdays. This provides the basic calendar, but does

not take into account exceptions such as holidays which should be removed

from the calendar. To provide for this, the program asks for days that

would normally be part of the season (i.e. Saturdays and Sundays if it

is a weekend sport) but are to be removed. The user should list these ahead

of time by month index and date. (i.e. for a September to November sport,

October 12 = 2, 12)

2. Time-Slots - One set of time slots is input that will be used for

every day in the season. Thus, the user must figure out the earliest time

that a game will start on any day in the season, and the latest time for

any day in the season and enter these limits. What the program actually

asks for is the start of the earliest slot, the end of the latest slot,

and the length of each slot. While the user only needs to enter these

limiting values, he should list all of the slots' starting times both to

97

check this against the list the computer produces and to aid in determining

the time-slots that each facility is available.

3. Facility Availabilities - To determine the slots available in the

season the program asks for a sample week of availabilities and replicates

ths through the season using its internal calendar. Exceptions to these

typical availabilities can then be entered to take care of days on which

varsity meets will be occupying one of the courts and so on.

The sample week should contain the most typical availabilities, as

time slots can be added or subtracted from this for dates that are entered

as exceptions. For each court the user should determine what time slots

will typically be available on each day of the week. A string of N digits

should then be generated, where N is the number of time slots known to the

program. The first of these digits will represent the first time slot and

so on. For each time-slot that is available on that court on that day the

user should put a 1 as the corresponding digit. For each unavailable slot

he should put a 0. This N-digit "bit-string" will then contain as many

ones as there are available slots on that court on that day, and their

positioning tells which slots are the open ones.

Specific dates in the season on which one of the courts has more or

fewer open slots than usual are then entered as exceptions. The user

should list ahead of time the exceptions that will need to be entered,

providing for each the month index, date, court index, and the new bit-

string to be used.

5. Division Data - For each of the divisions the manager will need

to determine the minimum number of games that each team will play, and the

minimum number of days to be skipped between the end'of one block of games

98

and the start of the next. This minimum spacing ensures that consecutive

games of any team in the division t11l be seperated by at least that many

days. It is nice to keep this space large so that a team's games are

spread evenly over the course of the entire season, but if it is made

too large, the program will be unable to schedule the division. If this

happehs, however, the program will allow the user to specify a new, smaller

spacing and try again to schedule the division. Thus, the user may want

to try requesting a large spacing first and then back down on it until

the scheduling is successful.

With this preparation done ahead of time you should find that the

program will save time in scheduling and provide a schedule that meets with

all of your wishes.

APPENDIX D

SAPLE RUNS

100

Welcome to .the intramural sports scheduling sstem.
Used. Properlw this ProMram should be of reat assistance but ou maw
run into Problems if Qou have not first looked over the user's manual+
If ou have not wet done so, Qou are advised to stop
here and do some reading+ Do wou wish to continue? (/n)

Please be careful to always enter data in the format
specified b the uestiono For instance, when responses are iven
in brackets at the end of the uestion, choose one of
them..... What.is the sport name Basketball

How mans leagues. (i.e. ABC, etc.) will there be ? 2

You will now be asked for the name of each league and
the number of divisions in ech. Please input the
leagues in the order ou want them scheduled in. Also,
remember that divisions must have 4 to 8 teams in them
What is the name of league I ? .A

How mans divisions in league 1 T 2

What is the name of league 2 ? B

How mans divisions in league 2 ? 2

Is sport a weekend(I), weekday(2), or full-week(3) sport? 1

How man, months does the regular season span ? 3

What is the name of month ? June

What dav of the week does this month start on?
Please ive a number, i.e. Sundai=l, Friday=6,

How manr daws in this month ? i.e. 28,29P30,or

What is the name of month 2 ? Julw

What d of the week does this month start on?
Please ive a number, i.e. Sunda=tl, Fridaw=6,

How mans daws in this month ? i.e. 28,29,30,or

What is the name of month 3 ? August

What das of the week does this month start on?
Please ive a number, i.e. Sundar=1 Friday=6,

etc. 3

31 30

etc. 5

31 31

etc. 1

How mans daws in this month ? i.e. 28,29P30,or 31 31

What date will season start on? (i.e. the first daS in June that's in season)

What date will season end on ? (no month, Just date)22

How marn courts are available ? 3

How long are the time--slots for each ame? Please respond with a fraction
rePresentinr the number of hours. (i.e. 90 minutes = 15 1.5

When does the earliest time slot (on an. day) start?
[9:30 a.m. = 9.5, 1 00 p.m. = 13e03 11.0

101
When does the latest time-slot (on art daw) end? 17.0

Please enter the names of the courts in their
default order of reference.
What is the name of facility 1 ? (8 chars max) Cage

What is the name of facility 2 ? (8 chars max) Dupontl

What is the name of facility 3 ? (8 chars max) DuPont2

Time-slot is 11:00 am.
Time-slot 2 is 12:30 Pom.
rime-slot 3 is 2:00 Pm.
Time-slot 4 is 3:30 pt.m
You will be asked to enter the availabilities of each of the courts
for the tyPical' daws in the season. Please enter these availabilities as
4-bit numbers with a I for each availabletime-slot
and a 0 for each unavailable slot
Please enter the availability of court 'Cage' on a typical Sunday 1111

Please enter the availabilitw of court 'Duponti' on a tpical Sunday 1111

Please enter the availability of court 'Dupont2' on a typical Sundaw 1111

Please enter the availability of court 'Cage' on a typical Saturday 1000

Please enter the availabilitw of court 'DuPontl' on a tPical Saturdaw 1111

Please enter the availability of court 'DuPont2' on a tPical Saturdaw 1111

Were all strings entered correctlw ? (/n) n

Enter day of week to be changed as a number 7

Enter court number to be changed 1

What is the correct availability string ? 1111

Is everything correct now ? w

You will now be asked for dates (e.9g Holidays)
which fall on days normally Part of the season, but
orn which no ames will be Played, Note that this
does not include days on which only some of the
courts are unavailable.
Are there an unavailable days in June ? n

Are there anw unavailable days in July ? y

What is the date 4

Any more unavailable days in July ' (y/n) n

Are there any unavailable days in August ? n

Are there any days on which more or fewer time
slots than usual will be open (/n) n

We are now reads to schedule A-league
Is there a mandatory court (or courts) for this league? (/n)

How mans ? 1 102

Please input the numbers of these courts in Preferential order
.Court 1 ? 1

Are there anr Preferred dass of the week for schedulinA-leaue ames (n) :

How mans Preferred dass are there ? 1

Please enter these referred dass in order of desirability, Along with
each das enter a weighting factor corresponding to the number of days ou
would be willing to delay the scheduling of a Particular ame to make
it fall on that day.
Das 1. ?1

Weighting factor ? 5

Are there ans times that are Preferred for schedulinsA-league ames ? y

Preferred times consist of a block of time-slots on a Particular da of
the week You mas specifys P to 5 such blocks b iving the dasy startin r
slot and ending slot of each Prefered block. You will also be asked to ive
a weight to each block corresPonding to the number of days a ame's
scheduling mas be delased in order to fall into that block,
How mans such blocks do sou wish to sPecify ? 1

Enter the number corresponding to the das on which
block 1(in referential order) occurs 1

Enter the number of the time-slot which begins this block,3

Enter the number of the last time-slot in block, 4

Weight for this block ? 5

We are now reads to schedule division number
of A-leasue

How mans teams in this division? (must be 4 to 8) 6

How many games will each team Play? 5

What is the name of team I ? Prudog

What is the name of team 2 ? bob.

What is the name of team 3 ? 'los

What is the name of team 4 ? maria

What is the name of team 5 ? Peter

What is the name of team 6 ? eric

Are there ans days in the season on which one of
the teams in this division cannot plays (/n) n

Are there an timeslots (or blocks of slots)
on which teams in this division cannot play? n

How mans dass would ou like to leave between
consecutive ames for each team in this division 10

103
Schedule for A-lea.Jue divisionr 1

Teams are'
1

2
3
4
5
6

P r1-dom
bob

maria
reter
eric

3 pla'ts
2 PlaYs
1 Plays

3 Pias
2 Plays
I PBlaY
5 Plas
2 vlas
1 vlaws

4 Plays
2 Plays
1 PlaBs
3 plas
4 plays
1 Plasd

Would ou

Schedule
Plays

Plays
Plaws
P 1 as
Plays

Schedule
P 1 a ys
Plays
P:Laws

P1Schedule

Plaws
Plays
Plays
P la;s
Plays

Schedule
Plays
Plays

Plays

Plays
Schedule

Plays

P laws
Plays
Plays
Plays

Schedule
PlaysP 1 as
Plaws
Plaws
Plays
PlaysP188§

0,

0

0

0

00o'
o

Would wou

4 14 00
5 15:30
6 11 00
6 14I00
4 15;30
5 1:00
6 14:00
3 1530
4 11 00
5 14:00
6 15:30
3 1100
5 14:00
6 15s30
2 11:00

Sunday,
Sundays,
Sundas,
Sundays,
Sundas,
Sundaw,
Sundays,
Sundays,
Sunday,
Sundays,
Sundaw,
Sunday,
Sunday,
Sundw,
Sunday,

June 13
June 13
June 13
June 27
June 27
June 27
July 11
July 11
July 11
July 25
July 25
July 25
August
August
August

on Case
on Case
on Cage
on Cagne
on Came
on Cage
on Cage
on Case
on Case
on Cage
on Cage
on Cage
8 on Cage
8 on Cage
8 on Cage

like schedule listings b team? (w/n)

f team 1 ru..dog
6 11:00 Sunday, June 13 on Cage
5 11S00 Sunday, June 27 on Cage
4 11:00 Sundayew, Jul 11 on Case
3 11:00 Sunday, July 25 on Cage
2 11:00 Sunday, August 8 on Cage
f team 2 : bob
5 15:30 Sundeay, June 13 on Cage
4 15:30 Sunday, June 27 on Cage
3 15:30 Sundays, July 11 on Cage
6 15:30 Sunday, Jul 25 on Cage
I 11#00 Sundeay, August 8 on Case
f team 3 'los
4 14100 Sunday, June 13 on Case
6 14:00 Sunday, June 27 on Case
2 15:30 Sunday, Jul 11 on Cale
1 11100 Sunday, Jul1 25 on Cage
5 14:00 Sundays, August 8 on Cage
f team 4 maria
3 14:00 Sundeay, June 13 on Case
2 15t30 Sunday, June 27 on Case
I 11100 Sunday, July 11 on Cage
5 14:00 Sunday, July 25 on Cage
6 15130 Sunday, August 8 on Ca.e
f team 5 Peter
2 15:30 Sunday, June 13 on Case
1 1:o00 Sunday, June 27 on Cage
6 14100 Sunday, July 11 on Cage
4 14100 Sunday, July 25 on Cage
3 14:00 Sunday, August 8 on Cage
f team 6 eric

1 1100 Sunday, June 13 on Cage
3 14100 Sunday, June 27 on Cage
5 14:00 Sunday, July 11 on Case
2 15:30 Sunday, Jul 25 on Cage
4 15130 Sunday, August 8 on Cage
like to see the full schedule? (/n) n:......

We are now reads to schedule division number
of A-leamue

How many teams in this division? (must be 4 to 8) 4

How many sames will each team Play? 6

What is the name of team 1 ? marv

What is the nrame of team 2 ? Jodv

What is the name of team 3 ? brenda

What is the name of team 4 mark

Are there any days in the season on which one of
the teams in this division cannot Play? (/n) n

Are there anw time-slots (or blocks of slots)
on which teams in this division cannot Play? n

How mns days would ou like to leave between
consecutive Names for each team in this division 10...

Schedule for A-league division 2
Teams re:

7
8
9

10

marv
jodw
b renda
mark

8 Plas
7 Plays
8 Plays
7 Plas
9 Plaws
7 Plays
8 Plas
7 Plays
8 Plays
7 Plays
9 Plays
7 Plads

Would ou

9 12:30
10 I :oo
10 12:30

9 11:00
10 12:30

8 11:00
9 12t30

10 11t00
10 12:30
9 11 00

10 1400
8 15:30

Sundaw, June 13 on Cage
Saturdaw, June 12 on Cage
Sundwr, June 27 on Case
Saturday, June 26 on Case
Sundawy July 11 on Cage
Saturdaw, July 10 on Cage
Sunday, July 25 on Cage
Saturday, July 24 on Case
Sunday, August 8 on Cage
Saturdaw, August 7 on Case
Sundawy August 22 on Cage
Sundaw, August 22 on Cage

like schedule listings by team? (/n)

Would ou like to see the full schedule? (/n)

C ae DuPont1 Dupont2

Saturday
June

11O00
12 12:30

14:00
15:30

7- 10 0- 0 0-
O- 0 0- 0 0-
0.- 0 0- 0 0-
0- 0 O- 0 O-

I1:00
13 12:30

14:00
15t30

1- 6
8- 9
3- 4
2- 5

.... 0 0- 0
0- 0 o- 0
O- 0 0-- 0
O- 0 O- 0

Saturday
June

11:00
19 12 30

14:00
15:30

0- () 0- 0 0- 0
O- 0 0-- 0 (- 0
0- 0 0- 0 0- 0
0- 0 0- 0 O- 0

2

Sunday
,June

0
0
0
0

. .1. i ,)
20 12 30

1 4 00
15 :30

L Ill

O ----

0-.

0-

V VL
0 O--

0 0-
0 O-

ki -1- ki

O 0-- 0

0 0-- 0
O0- 0

Saturda
,.June

Surdway
June

26 :12;3(0
14 00
15t30

1100
27 12t30

14 00
15:30

7-. 9 O- 0 0- 0
0-- 0- 0 0- 0
0 0 0- 0 O-
O 0 .- 0- 0

1- 5 0-- 0 0- 0
8-- 10 O- 0 0 o
3- 6 O-- 0 0- 0
2- 4 0- 0 0

Sat. rdas
J .u 1

S ..lnd a
J .I 1

11 00
3 12 30

14 00
15:30

1. 00

4 12t30
14:00
1 5:30

O 0 . 0--. O0 0-
0--. 0- - 0
(-. 0 0- 0 0- 0
0 0 0- O0- 0

0- 0 O-- O 0- 0
0.- O O- O 0- O

0- 0 0.-- 0 0- 0

0 0O- 0 O- 0

Saturday

Sunday

Ju 1, ds

Julrda
.Ju1y

Satd..r day
t I. 1 'u

Sunday
J u 1 :;

Sat u r d a v
J u 1 Y

11(00
10 12 30

:14;:00

15:30

11 00
11 12:30

14;00
15:i.30

11:00
17 1230

14:00
15:30

1 100

18 12:30
14:00
15:30

11 00
24 12 30

14+00
15:30

11;00
25 12 30

14 00

31 1 t30
14:00
L 5:30

7.- 8 0- 0 0-. 0
0- 0- O 0- 0
0-- 0 - O 0- 0
0-- O- 0 -- 0

1-- 4 0- 0 O- O
9- 10 0- O 0- O
5-- 6 0- 0 0- 0
2- 3 O- 0 0- 0

0-- 0 O- 0 0- O

0- 0 0-. O 0- 0
0- 0 0- 0 o- o
O-- 0 O- 0-

O- O 0- 0 0-- 0
0- - 0-- 0
O- O O- 0 0- 0
0- 0 0- O 0-- O

7-- 10 O- 0 0- 0
0 -' 0 0- 0 0- 0
0 - 0 O- 0 0- 0
O-- 0 0- 0 O.- O

1 - 3 .-- O 0-
8- 9 0-. 0 0-- 0
4-- 5 0- 0 0- 0
2-- 6 0- 0 0- O

0-- O- 0 0- 0
O.- O-- 0 0-. 0
0- O 0- 0-- 0
0- 0 - 0 O- 0

0.- 0 0.... 0 0 0
0- 0. 0-- (0- O
0- 0 -. 0(- 0
0(- 0 0- 0 ..) ..

7-- 9 0 0 0- 0

June 105

Sunda
A.Jgus t

11(00O
1 12:30
14:00
15:30

Sa t ur d a y I 11+1 0 (

r- U S T,
106

U- U uV- VU U I'l V

0- O 0-- 0 0 - ()
0- 0 O- 0 0- 0

.d ; V
14 00
15:30

1- 2 0-
8- 10 0-
3- 5 0-
4- 6 O -

0 0- 0
0) 0- 0
0 0- 0
0 O- 0

Sat urda
Auswust

Sunday,
August

Saturdaw
August

11:00
14 12 30

14:00
15t30

1 1 00

1 5 12::30
14:00
15:30

11 00
21 12:30

14:00
15:30

0- (0- 0 0- 0
0-) 0- 0 0- 0
0- 0 O- 0 0- 0
O- 0 0-- 0 0-- 0

0-- 0- 0 O- 0
0- 0 0.- 0 O- 0
O- 0 O- 0 o- 0
o- 0 O- 0 0-. 0

O- 0 0-- 0 - 0
0- 0 O- 0 O- 0
o- 0 - 0 0- 0

- 0 0-- 0 O- 0

11t 00
22 12 :30

14:00
:15;30

0- 0 0- 0 0-
0- 0 O- 0 0-
9- 10 0- 0 0-
7- 8 0- 0 0-

We are now reads to schedule B-league
Is there a mandatory court (or courts) for this leasue? (w/n).n ..

Are there referred courts for this league'? (If not, the order in which the
court nmes were originally entered will be used as the default,)

Enter the court numbers in order of desirability, Along with each
court number Please enter a weighting factor reflecting how desirable
that court is, The weight represents the number of das that
You are willing to ush a ame back in the schedule in order to have
it scheduled on that court.
C'ourt .11

What is the weight for this court S

Court 2 ? 2

What is the weight for this court ? 1

Court 3 ? 3

What is the weight for this court ? 1

Are there ant Preferred days of the week for schedulingB-league ames ? (/n)

How manw Preferred days are there ? 1

Please enter these Preferred days in order of desirability, Along with
each day enter a weightins factor corresPonding to the number of days ou
would be willing to delay the schedulinr of a Particular same to make
it fall on that day.
Day 1 ? I

Weighting factor ? 2

Sunday
AugSust

11:(00
8 12:30

14:00
15:30

Sunday
August

0
0
0

0Q
O

107

Are there any times that are referred for schedulingB-league games n

We are now reads to schedule division number I
of B-leamue

How mans teams in this division? (must be 4 to 8) 7

How mans games will each team plaY? ..5

What is the name of team '? tancr

What is the name of team 2 ? .is

What is the name of team 3 ? crazy

What is the name of team 4 ? hope

What is the name of team 5 ? izza

What is the name of team 6 ? .rape

What is the name of team 7 ? iiadibvh

Are there anw das in the season on which one of
the teams in this division cannot plaw? (/n)

What team? (enter its number) .1

What month and date is tana
not able to law on? (enter as numbers) 1 12

Are there more davs on which teams in this
division cannot lay? (/n)

What team? (enter its number) 1

What month and date is tang
not able to law on? (enter as numbers) 1 13

Are there more daws on which teams in this
division cannot play? (/n) n

Are there any timeslots (or blocks of slots)
on which teams in this division cannot plaw? n

How mans daws would You like to leave between
consecutive ames for each team in this division .5.

Schedule for B-league division 1
Teams are:

11 tana
12 is
:1.3 craz
14 hope
15 izza
16 igrape
17 iiadibvh

13 Plats 14 12:30 Saturday, June 12 on Cage
12 lavs 15 14;00 Saturday, June 12 on Case
11 plas 16 i 100 Sunday, June 20 on Cage

1 P J.i3Yb
12 plays
I1 plays
15 plays
12plays
11 plays
14 Plas
15 plays
11 P18as
14 plays
13 Plas
11 plays
14 plaws
13 plays
12 plays

Would ou

14 14;00
15 15 3()
17 1 100
13 1230
14 14:00
17 12:30
16 14;00
13 15:30
16 it 00
17 12t30
12 14t00
15 12:30
16 14:00
17 15 30

U3aTJrY Jrune zo cr bUase
cSBaturda Junre 26 on Case
Saturdavy June 26 on Cage
Saturday, July 3 on Cage
Saturday, July 3 on Case
Saturdayw July 3 on Cage
Saturday, July 10 on Cage
Saturday, July 10 on Cage
Saturday, July 10 on Cage
Sunday, Jul 18 on Cage
Sunday, July 18 on Cage
Sunday, ,July 18 on Cage
Saturday, July 24 on Cage
Saturday, JulY 24 on Case
Saturday, July 24 on Case

like schedule listings b team? (w/n)

Would ou like to see the full schedule? (/n) n

We are now reads to schedule division number
of B-leasue

How mans teams in this division? (must be 4 to 8) 6 ..

How many ames will each team play? 3 .:....

What is the name of team 1 ? .jerry

What is the name of team 2 ? bob

What is the name of team 3 ? hil

What is the name of team 4 ? bill

What is the name of team 5 ? mickey

What is the name of team 6 ? brent

Are there any days in the season on which one of
the teams in this division cannot play? (/n) n

Are there any timeslots (or blocks of slots)
on which teams in this division cannot play? y

What team? (enter number) 1 .

What month and date? (enter month as number) 1 12

Now enter the numbers corresponding to the first
and last time-slots in the unavailable block

Are there more blocks of time slots on which teams
in this division cannot play? (y/n)

What team? (enter number) 1

What month and date? (enter month as number) 1 13

Now enter the numbers corresponding to the first
and last time-slots in the unavailable block

.3

1 3

Are there more blocks of time slots on which teams
in this division cannot play? (/n) n

How marn days would You like to leave between

108

2

consecuti:LVe games tcr each team in thls lvl.slsorn

Schedulins of division was unsuccessful with
min-sPace of 87Would ou like more info? n

Would ou like to rerun with a new min--sPace? (/n) Y

Change weights for referred courts (/n) n

How mans days would ou like to leave between
consecutive ames for each team in this division 4

Schedule for B-leasue division 2
Teams are:

18
19
20
21
22
23

errs
bob
phil
bill
mickey
brent

22 Plays
19 Plas
18 pl8ys
21 Plays
19 Plays
18 Plays
20 Plays
21 Plays
18 Plays

Would ou

Would You

23 15t30 Saturday, June 12 on Cage
20 11i00 Sunday, June 13 on DuPontl
21 15:30 Sunday, June 13 on Dupontl
22 12:30 Sunday June 20 on Casge
23 14:00 Sunday, June 20 on Cage
20 15:30 Sunday, June 20 on Cage
22 11:00 Sunday, June 27 on DuPont1
23 12;0 Sunday, June 27 on DuPontl
19 14:00 Sunday, June 27 on Dupontl

like schedule listings by team? (/n) n ...

like to see the full schedule? (/n)

Case Duponti Dupont2

Saturday
June

Sunday
June

Saturday
June

Sunday
June

Saturday
O.". June

11:00
12 12:30

14:00
15:30

1100

15 : 30

19 12 :30
14:00
15:30

11 00
20 12:30

14:00
15:30

1 100
26 12:30

14:00
15:30

7-
13-
12-
22-

10 0-
14 0-
15 0-
23 0-

1- 6 19-
8-- 9 0-
3- 4 0-
2- 5 18-

0- 0 0-
0- 0 0-
O- 0 0-
o- 0 O-

11-
21-
19-
18-

7-
16-
12-
11--

16 0-
22 0-
23 0-
20 0-

9 0-
17 0-
14 0-
15 0-

0 O- 0
0 0- 0
0 0- 0
0 O- 0

20 0-
0 0-
0 0-

21 0-

0
0
0
0
()

0 0- 0
0 0- 0
0 o- 0
0 0- 0

0 0-
0 0-'
0 0-
0 0.-

0
0
0
0O
O

0 0- 0
o O- 0
0 0- 0
0 O- 0

11:00
27 12:30

14:00
15:30

1- 5 20-
8- 10 21-
3- 6 18-
2- 4 0-

22 0-
23 0-
19 0-

0 0 -

Sunday
June

0
0
0
0

Saturdas
J

:11:00
3 12+30

14:00
15 30

15-
12-
11-

..-

17 0-
13 0-
14 0-

0 0--

O 0- 0
O 0- 0
0 O- 0
0 0- (

O- 0 0- 0 O- 0
O- 0 0-- 0 0- 0
0.- 0 o- 0 0--
0-- o O- 0 0--

Saturdda
.Jul ys

11 00
10 12;30

14 00
15+30

7

14-
15-

8 0--
17 0-
16 0-
13 0-

0 0-
Q 0- O
0 0 - 0
0 O- o

Sund a
Jui1

Saturday
July

11 00
11 12+30

14:00
15 30

11:o00
17 12:30

14:00
15:30

1- 4 O-- 0 0- 0
9-- 10 O- 0 - 0
5- 6 O- 0 o- 0
2- 3 O- 0 O- 0

O- 0 0- 0 O- 0
0-- - O o0- 0
0- 0O- 0 0- 0
0-- 0 0- 0 0- O

Sundma
July

Saturda
Jul .

11; 100

18 12:30
14:00
15:30

iIo00
24 12:30

14:00
15T30

14-
13-
11-
0-

7-
14--
13-
12-

16 0-
17 0-
12 0 -

0 0-

10 0-
15 0-
16 o--
17 0-

0 0-
0 0-
0 0-
0 O-

0
0
0
0

0o O- 0
0 0- 0
0 0.- 0

0 -'···

Sunday
July

Saturda
July

11 :00
25 12 30

14:00
15:30

31 12:30
14 00
15:30

1- 3 0- 0 O- 0
8- 9 O- 0 0- 0
4- 5- 0- O- 0
2- 06 O- 0 0- 0

O- 0 O- 0 O- 0
O- 0 0- 0 O- 0
O- 0 0- 0 0- 0
0- O 0- 0 o- 0

Sunday
August

Saturda:
August

Sunday
AuJusSt

11:00
1 12 30

14 00
15:30

11:00
7 12:30

14 00
15+30

11 :0o
8 12:30

14:00
1530

O- 0 O-- 0 O- o
O- o 0- o O- 0
o- 0 O- 0 O-- o
O- 0 O- 0 0- 0

7- 9 0- 0 O- 0
0-- 0 0- 0Q - 0
O- 0 0- 0 O-- O
0O- 0 0- 0. 0- 0

1- 2 O- 0 O- 0
8-- 10 o0- 0o -- o
3- 5 0.- 0 - 0
4- 6 O- 0 O- o

Saturd ay
AuSust

11 :0

14 1230
14+00
15+30

O- 0- 0 0-- 0
0- 0 - 0 O- 0
0- (>- 0 0- 0
0- 0 O- 0 0- 0

Sunday
- IJuly ,

1100
4 12;30

14:00
15 30

110

b.L lO2 UW R .C .4 V ' I- U V -U U
:1.5 12t30

: 4:00
15:30

0-
0.-

0 0- 0 0-..
0 --- O ()

0 0- . 0 0 -- 0

S tu rdajJ
A usust

1.1: t00

21 12:30
14:00
15: 30

O- 0 0- 0 O0- 0
O- 0 0 - 0 0- 0

- 0 0- 0 0- 0
- -0- 0 0- 0

Sutnday 11+00
Au..ust 22 12:30

14:00
15:30

r 04:02 10+091 138

0-- 0 0- 0 0- o
O- 0 O- 0 0- 0
9- 10 0- 0-
7- 8 0- O 0- 0

A u..Iu st 0
0

111

112
RUIN 2

Welcome to the intramural sports scheduling sstem.
Used, ProPerly this Program should be of reat assistance but wou maw
run into Problems if wou have not first looked over the user's manual.
If ou have not wet done so, wou are advised to stop
here and do some reading. Do ou wish to continue? (/n)

Please be careful to aluaws enter data in the format
specified b the uestion. For instance, when responses are given
in brackets at the end of the auestion, choose one of
them. What is the sport name ? foosball

How manw leagues (i.e. ABC, etc.) will there be ? 2

You will now be asked for the name of each league and
the number of divisions in each# Please input the
leagues in the order wou want them scheduled in. Also,
remember that divisions must have 4 to 8 teams in them
What is the name of league I ? Z

How many divisions in league 1 ? 1

What is the name of league 2 ? ..

How manw divisions in league 2 ? 1

Is sport a weekend(I), weekday(2), or full-week(3) sport? 1

How manw months does the regular season span ? 1

What is the name of month 1 ? December

What dab of the week does this month start on?
Please give a number, i.e. Sundaw=l, Fridaw=6, etc .2

How manY daws in this month i.e. 28,29,30,or 31 31

What date will season start on? (i.e. the first day in December that's in seaso
n). 6

What date will season end on ? (no month, Just date)28 .

How manw courts are available ? 4

How long are the time--slots for each ame? Please respond with a fraction
rePresenting the number of hours, (i.e. 90 minutes = 15 3

When does the earliest time slot (on anw daw) start?
[9:30 a.m. = 95, 1+00 ptm. = 13.0] 10.5

When does the latest time-slot.(on anw daw) end? 22.5

Please enter the names of the courts in their
default order of Preference.
What is the name of facility 1

What is the name of facility 2

What is the name of facility 3

What is the name of facility 4

? (8 chars max).ska

? (8 chars max) teb

? (8 chars max). oard'.

? (8 chars max)..ing

I llll.;I'- O 51t 1 TSi vJi U 8 e!m!o
Time-slot 2 is 1;t30 p.m. 113
Time-slot 3 is 4:30 P.+m
Time--slot 4 is 7:30 .m,
You will be asked to enter the availabilities of each of the courts
for the 'twyical' daws in the season. Please enter these availabilities as
4-bit numbers with a 1 for each vailabletime-slot
arnd a 0 for each unavailable slot
Please enter the

Please enter the

Please enter the

Please enter the

Please enter the

Please enter the

Please enter the

Please enter the

Were all strings

availability of court 'ska' on a typical Sundaw. 1i.

availability of court 'teb' on a typical Sundaw 1111

availability of court 'ard on a tical Sunda. 1111

availability of court 'ing' on a typical Sundaw 1111

availability of court 'ska' on a twpical Saturdaw 1111

availability of court 'teb' on a tical Saturda. 1111

availability of court 'oard' on a typical Saturdaw 1111

availability of court 'ing' on a twPical Saturday 1111

entered correctly ? (/n).w .

You will now be asked for dates (e.g. Holidays)
which fall on davs normally Part of the season, but
on which no ames will be Plawed. Note that this
does not include daws on which onlw some of the
courts are unavailable.
Are there anw unavailable daYs in December ? n

Are there anw daws on which more or fewer time
slots than usual will be open ? (/n) .s

Input the name of the court whose availability
is to be changed, l*sk.a..

InPut the number of the month, and the date to be modified. 1 7..

Please enter the availability of court ska on December 7
as a 4-bit number with a for each available timeslot and a 0
for each unavailable slot .1100Q.

Are there other daws that have fewer or more
time slots than normal ? (/n) n

We are now reads to schedule Z-league
Is there a mandatory court (or courts) for this league? (/n) n

Are there Preferred courts for this league? (If not, the order in which the
court names were originally entered will be used as the default,) Y

Enter the court numbers in order of desirabilituw Along with each
court number Please enter a weighting factor reflecting how desirable
that court is. The weight represents the number of daws that
wou are willing to ush a ame back in the schedule in order to have
it scheduled on that court.
Court I ? 1

What is the weight for this court ? 5

114
What is the weight for this co.Jrt ? 1

Court 3 ? 3

What is the weight for this court ? 1

Court 4 4

What is the weight for this court ? 1

Are there anw Preferred days of the week for schedulinmZ-leasue ames (/n) n

Are there any times that are referred for schedulingZ-league ames ? y

Preferred times consist of a block of time-slots on a articular day of
the week, You maw specif u to 5 such blocks b giving the day, starting
slot and ending slot of each Prefered block. You will also be asked to give
a weight to each block corresponding to the number of days a ame's
scheduling may be delayed in order to fall into that block.
How mans such blocks do ou wish to specify ? 1

Enter the number corresonding to the day on which
block 1(in referential order) occurs. 1

Enter the number of the time-slot which begins this block.3.'.

Enter the number of the last time-slot in block.4

Weight for this block ? 3 :_.

We are now ready to schedule division number
of Z-league

How mans teams in this division? (must be 4 to 8) 8

How mans ames will each team play? 3

What is the name of team 1 ?7. z

What is the name of team 2 ? z2

What is the name of team 3 ? z3

What is the name of team 4 ? z4

What is the name of team 5 ? z5

What is the name of team 6 ? z6

What is the name of team 7 ? z7

What is the name of team 8 ? z8

Are there anw days in the season on which one of
the teams in this division cannot lau'? (/n) n

Are there any timeslots (or blocks of slots)
on which teams in this division cannot lay? n

How mans days would ou like to leave between
consecutive ames for each team in this division 5. L.,

t**$********888**Xttt****$8,8****8**8***

c neo..I.Le TOT' 4L--L...asUl oIV1sl1)or I
Teams are'

1
2
3
4
5
6
7
8

5 Plays
6 Plays
2 Plays
1 Plaws
4 P la s
5 Plays
2 Plays
1 Plaws

5 Plas
- 3 Plays
7 Plaws
1 Pla-s

Woauld ou

8 1(:30
7 13:30
3 16t30
4 19:30
6 16:30
7 1030
8 13:30
3 16:30
6 16:30
4 10:30
8 13:30
2 16:30

Saturdayw December 6 on ska
Saturdawy December 6 on ska
Saturdayw December 6 on ska
Saturday, December 6 on ska
Sunday, December 14 on ska
Saturday, December 13 on ska
Saturday, December 13 on ska
Saturdayw December 13 on ska
Sundaw, December 21 on ska
Saturdayw December 20 on ska
Saturdayw December 20 on ska
Saturday, December 20 on ska

like schedule listings b team? (/n) n

Would ou like to see the full schedule? (/n) n

We are now reads to schedule Q-league
Is there a mandatory court (or courts) for this league? (/n) n

Are there Preferred courts for this league? (If not, the order in which the
court names were originally entered will be used as the default.) w

Enter the court numbers in order of desirability, Along with each
court number Please enter a weighting factor reflecting how desirable
that court is. The weight represents the number of days that
sou are willing to ush a game back in the schedule in order to have
it scheduled on that court.
Court 1 ? .1

What is the weight for this court ? 3

Court 2 ? 2

What is the weight for this court ? 0

Court 3 ? 3

What is the weight for this court ? 0

Court 4 ? .4

What is the weight for this court ? 0

Are there any Preferred days of the week for schedulingQ-league games ? (/n)

How mans Preferred days are there ? 1

Please enter these referred days in order of desirabilitwy Along with
each day enter a weighting factor corresponding to the number of days ou
would be willing to delay the scheduling of a Particular game to make
it fall on that day,
Day 1 ? 7

Weighting factor ? 2

z2
z3

z6
z7
z8

115

Are there arn times that are Preferred for schedulinraQ-leaAue ames

Preferred times consist of a block of time-slots on a Particular da of
the week You maw secify up to 5 such blocks b iving the daw, starting
slot and ending slot of each Prefered block, You will also be asked to give
a weight to each block corresPonding to the number of days a ame's
schedulinr maw be delayed in order to fall into that block.
How many such blocks do ou wish to sPecif ? 1

Enter the number corresponding to the das on which
block i(in referential order) occurs 7

Enter the number of the time-slot which begins this blocko2

Enter the number of the last time-slot in block,3

Weight for this block ? '5

We are now reads to schedule division number
of Q-league

How mans teams in this division? (must be 4 to 8) 8

How mans ames will each team Play?

1

3

What is the name of team 1 ? al

What is the name of team 2 a2

What is the name of team 3 3

What is the name of team 4 .o4

What is the name of team 5 ? a5

What is the name of team 6 P a6

What is the name of team 7 a7

What is the name of team 8 ? o8

Are there any days in the season on which one of
the teams in this division cannot Play? (/n) n

Are there any time-slots (or blocks of slots)
on which teams in this division cannot Play? n

How mans days would ou like to leave between
consecutive games for each team in this division 5

Schedule for -league division 1
Teams are.

9 ol
10 o2
11
12
13
14
15
16

a3
o4
n5
o6
m7

13 Plays
14 lays

16 13:30 Saturday, December 6 on teb
15 16:30 Saturday, December 6 on teb

I V P .a1.s
9 Plays

12 Pla's
13 P.lays
10 Plas
9 Plays
13 lays

- 11 1 P.las
15 Plas
9 l ays

Would ou

1 Zi;6V baturoaY, tUecemoer 6 on oaro
12 16:30 Saturday, December 6 on oard
14 13:30 Saturday, December 13 orn teb
15 16:30 Saturday, December 13 on teb
16 13:30 Saturday, December 13 on oard
:1 16:30 Saturday, December 13 on oard
14 13:30 Saturday, December 20 on teb
12 16:30 Saturday, December 20 on teb
16 13:30 Saturday, December 20 on oard
10 16:30 Saturday December 20 on oard
like schedule listings b team? (y/n) n -

Would You like to see the

ska

full schedule? (/n)

teb oard ing

Saturday
December

10:30
6 13{30

16:30
19:30

5- 8 0-
6- 7 13-
2- 3 14--
1- 4 0-

0 0-
16 10-
15 9-
0 O-

0 0-
11 0-
12 0-

0 O-

Sundaw
December

10:30
7 13:30

16:30
19:30

O- 0 0- 0 0-
0- 0 (- 0 0-
0-- 0 0- 0 0-
0- 0 O- 0 0-

0 0-
0 0-
0 0-
0 0-

Saturdam
December

10:30
13 13:30

16:30
19:30

5- 7 0-
2- 8 12-
1- 3 13-
O.- 0 0-

0 0-
14 10-
15 9-
0 0-

0 0-
i6 0-
11 0-

0 0-

Sunday
December

10:30
14 13:30

16t30
1930

0- 0 O- 0 O- 0 O- 0
0- 0 0- 0 O- 0 0- 0
4- 6 0- 0 O- 0 O- 0
O- 0 O- 0 O- 0 O- 0

Saturday
December

10:30
20 13:30

16:30
19:30

3- 4 0-
7- 8 13-
1- 2 11-
O- 0 O-

0 0-
14 15-
12 9-
0 0-

0 0-
16 0-
10 0-

0 0--

Sunday
December

Saturday
December

10t30
21 13:30

16:30
19:30

10:30
27 13;30

16:30
19:30

O-

0-
5-
0-

0 O- (O- 0 0- 0
0 0- 0 O-- 0 0- 0
6 0- 0 0- 0 0- 0
O o- 0 O- 0 0- 0

O-- (0- 0 0- 0 0- 0
O- 0 O- 0 0- 0 0- 0
O- 0 0- 0 0- 0 0- 0
O- 0 0- 0 0- 0 0- 0

Sunday
December

10:30
28 13:30

16:30
19:30

r 04:36 4555 129

0- 0 0-
0- 0 0-
O- 0 0-
o- 0 0-

0 o- 0 O- 0
0 O- 0 O- 0
0 0- 0 0- 0
0 0- 0 0- 0

117

0
0
0
0

0
0
0
0

0
0
0
0
()

0
0
0
0

