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ABS TRACT

The linear stability of current-carrying toroidal plamsas is
examined to determine the possibility of exciting global
internal modes. The ideal magnetohydrodynamic (MHD) theory
provides a useful framework for the analysis of these modes,
which involve a kinking of the central portion of the plasma
column. Non-ideal effects can also be important, and these
are treated for high temperature regimes where the plasma is
collisionless.

The ideal MHD analysis assumes an equilibrium plasma confine-
ment configuration in which the nested magnetic flux surfaces
are circular in cross section. In the limit of a large aspect
ratio torus, this is an exact solution for the hydromagnetic
force balance in low-beta regimes, where the poloidal beta is
of order unity, and a reasonable model in finite-beta regimes,
where the poloidal beta is on the order of the aspect ratio.
Poloidal beta refers to the ratio of the plasma pressure to
the energy density of the magnetic field generated by the
toroidal current. The ideal MHD energy principle is applied
to study the stability of these internal kink modes, whose
dependence on the poloidal angle is dominated by an m=l
harmonic. In particular, the analysis demonstrates that
these modes, which may be excited above a low-beta threshold,
are stable above a second threshold at finite beta.

Non-ideal effects are then considered within a narrow layer
about the mode resonant surface. The plasma response, deter-
mined from a collisionless kinetic calculation, includes
finite electron conductivity and the non-adiabatic ion response.
Since the layer width is assumed on the order of the ion gyro-
radius, the mode structure is given by an integro-differential
system of equations. In the MHD stable region, this system is
solved in a low-beta limit to yield an unstable reconnecting
mode. Numerical evaluation of the stability criteria shows
that this mode stabilizes with increasing temperature gradient
or decreasing magnetic shear. This mode transforms into a
collisionless modification of the ideal internal kink mode
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which at low beta has a positive growth rate where the ideal
MHD theory predicts stability. However, an approximate solu-
tion, valid for arbitrary beta, indicates that stability is
restored for plasmas above a finite-beta threshold. Finally,
for plasmas well within the MHD instability region, the
collisionless effects are negligible, and the results of the
ideal analysis are recovered.

Thesis Supervisor: Dr. Bruno Coppi

Title: Professor of Physics
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CHAPTER 1

Introduction

In this thesis we examine the linear stability of high

temperature plasmas against the onset of a certain class of

internal modes. By "internal" we refer to those instabilities

which do not induce appreciable displacements at the plasma

surface. In fact these instabilities may exist even though

the surface of the plasma is held fixed, which may be physi-

cally accomplished with a conducting wall. Our analysis assumes

a toroidal plasma configuration typical of many current

tokamak experiments, although we consider a temperature

regime which is hopefully characteristic of the next generation

of experiments. Nevertheless, some of the effects we discuss

are common to other plasma configurations both in the labora-

tory and in nature.

It is well known1 that with one important exception,

internal modes in tokamaks tend to be localized near a mode

resonant surface. The exception, which is the principal

subject of this thesis, is the internal kink mode. This mode

is nonlocal in nature and may be excited if the value of q,

the inverse rotational transform, falls below unity at the

magnetic axis. An understanding of the internal kink mode

is important, especially in finite-beta regimes, because it

is hoped that thermonuclear plasma confinement devices will

operate with low values of q.
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Our approach to the internal kink begins within the

framework of the ideal magnetohydrodynamic (MHD) theory.

For reference, we recall the familiar equations

+ V (v) = 0 (1.1)
at - -

(a + v V) (pc - ) 0 (1.2)

( + v V) v =- Vp + (13)

E + 1 vxB = 0 (1.4)
C - *

V xB - J (1.5)

V xE + 1 B 0 (1.6)
c t

which describe the plasma mass density p, velocity v, pressure

p, current J, in relation to the electromagnetic fields E

and B. The first two equations are fluid equations, where

r is the ratio of specific heats, and the last two are

Ampere's and Faraday's laws, with c equal to the speed of

light. The remaining two equations couple the plasma to

the field through force balance and the so-called "frozen-in

law."

For the limiting case of a large aspect ratio torus,

it is convenient to approximate a torus with major radius
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R by a straight cylinder of length 2R having periodic

boundary conditions. Since the equilibrium is independent

of the poloidal angle and the longitudinal (toroidal) coor-

dinate, the plasma perturbations can then be analayzed in terms

of uncoupled m and n modes, where m is the poloidal wave

number and n is the longitudinal (toroidal) wave number.

Then the internal kinks are the m =1 modes, distinguished

by differing values of n. An internal kink is known2 to be

unstable whenever its mode rational surface lies within the

plasma. The instability can be roughly visualized as a rigid

helical displacement of the plasma within this surface, that

is, plasma with radius less than rl, where q(r1) = m/n. This

instability is driven by both the plasma current density and

pressure gradients. We can form a simple physical picture

of this instability3 by considering a current I flowing in

a wire aligned with a homogeneous magnetic field B. Then if

the wire is given a helical perturbation with the proper

helicity (right- or left-handed depending on whether the

current and field are parallel or antiparallel), the I xB

force acts to reinforce the displacement, and the perturba-

tion grows.

In the case of toroidal plasma, the analysis is more

involved. In the first place, the two-dimensional equilibrium

equation is more difficult to solve. Then, due to the fact

that the equilibrium configuration depends on the poloidal

variable, a decomposition of the perturbation into independent
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m modes is no longer possible. In other words, different m

harmonics are now coupled. The internal kink has now primarily

an m= 1 component with an admixture of other m harmonics. The

toroidal angle remains ignorable, and we may continue to

identify different n modes. Analytic progress on the sta-

bility properties of this mode can be made using asymptotic

methods for large aspect ratio tori. This will be the

approach we follow in this thesis.

For large aspect ratio, low-beta tokamaks, i.e. <<1,

Bp 1, a tractable equilibrium solution is available4'5 in

terms of an expansion in powers of e. Here is the inverse

aspect ratio and Bp is the ratio of the plasma pressure to

the poloidal magnetic pressure. In this solution, the magne-

tic flux surfaces are essentially circular in cross section,

while their centers are slightly shifted away from the

magnetic axis on the equatorial plane of the torus. An

analytic stability criterion against internal kink modes in

these low-beta configurations has been derived6 by expanding

the ideal MHD energy functional, retaining consistently

terms to order E ( p). This theory shows that modes

with n >2 behave essentially as in the cylindrical case,

that is, they are always unstable when their mode resonant

surface is within the plasma. On the other hand, the behavior

of the n = 1 mode is significantly altered by the toroidal

effects. For usual q profiles that fall below unity within

the plasma, this mode is found to be stable at sufficiently

low but it becomes unstable as exceeds some threshold
P P
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value. Its growth rate in the unstable regime increases

parabolically with Bp. This behavior has also been observed

numerically,8.

We note that in its unstable regime the internal kink

becomes mostly driven by the pressure gradient, as is the

case for ballooning modes. The latter modes have been shown

to have a "second stability region" at still higher beta,

due to the crowding of the magnetic surfaces at the outer

side of the torus.9 We should expect a similar stabilization

also to occur for the internal kinks. An attempt to incor-

porate higher beta effects into the internal kink stability

10
criterion was made by considering the limit of small current

density gradients and retaining some terms of order (ESp)

under the assumptions Es << 1 but >> 1. The ensuing
P P

correction turned out to be stabilizing as opposed to the

standard destabilizing contribution of order () 2
p

In order to investigate the stability properties of

internal kinks in the eS 1 regime, we have developed a
p

method which still assumes a large aspect ratio but does

not involve expansions in powers of E p. For this approach

we have adopted an equilibrium model that retains the strong

outward shift of the magnetic axis characteristic of high-

beta flux-conserving configurations, while neglecting effects

due to the deformation of the shape of the magnetic surfaces.

Using this model equilibrium we have been able to prove 

that at sufficiently high Ep , the internal kink instability

is suppressed, independent of the toroidal mode number n.
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This "second stability region" has recently been observed

for finite aspect ratio numerical equlibria using the ERATO

code.12

Having identified these two regions of stability, we

must now ask if additional, non-ideal effects can further

destabilize the plasma. For example, with the introduction

of the slightest amount of resistivity n, Eq. (1.4) must be

modified. The new equation

E + 1 v xB = nJ, (1.7)

allows the plasma motion to decouple from that of the mag-

netic field lines. The original theories13'1 4 considered

a collisional resistivity and found a new set of modes, the

tearing modes. Characteristic of these modes is the exis-

tence of a reconnection layer in which the field lines are

broken and rejoined in a new topology by the mode. In col-

lisional regimes of current experiments, modes of this type

can produce the so-called sawtooth oscillations of the soft

X-ray emissions. These oscillations are due to a thermal

instability of the central plasma column held in check by

the excitation of reconnecting modes which redistribute the

thermal energy of the center of the plasma towards the sur-

face.

At higher temperatures, however, collisional resistivity

is no longer the most important non-ideal effect, and the

analysis of these modes must be modified. Kinetic theories
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in which finite electron inertia is responsible for the de-

14-16coupling of plasma and field lines have been formulated

However, these treatments considered only the limit where

the spatial variations of the reconnection layer occured on

scale lengths greater than the ion gyro-radius. This resulted

in the use of two second order differential equations to des-

16
cribe the mode structure. It was observed that under real-

istic conditions (comparable electron and ion temperatures,

and an electron temperature gradient at least as steep as

the density gradient) this limit was invalid. This led to

the reformulation of the problem in terms of an integral

equation 7, which was valid to all orders of the ion gyro-

radius.

Some of these effects have been incorporated into the

18-21analysis of m=l modes . The analysis of this case differs

from those with m>l (the standard assumption for tearing modes)

since a) the boundary conditions on the layer are different,

and b) the ideal internal kink mode exists in the absence of

these effects. The main consequence of the first point is

that the conventional stability parameter of tearing modes, A'

(studied in Ref. 22 for the cylindrical case) is replaced by

a quantity XH which may be identified from our MHD results.

The second point implies that non-ideal effects modify the

existing internal kink (when destabilized) rather than intro-

duce a new mode. The first treatment of the resistive case8.

was extended19 with a moment equation approach to include a

full set of non-ideal effects, including finite electrical

resistivity, ion gyro-radius, electron drift wave frequency
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and ion-ion collisions. The problem has also been examined

20
in low-beta, arbitrary collisionality regimes , and dis-

cussed for finite-beta in the collisionless regime21

We shall investigate the behavior of these modes in

collisionless, finite ion gyro-radius regimes where the use

of the integral equation is indicated. In the low-beta,

23
ideal internal kink stable regime, the solution of the

integral formulation of the reconnecting mode is in fact

applicable to the m=l case. For the finite-beta regime,

however, we must adopt a model equation for the description

of the mode. Then we can show that the mode stabilizes above

a finite-beta threshold.

This thesis is organized in the following manner. In

Chapter 2, we review the ideal MHD theory6,2 4 that applies

to the low-beta (p<<l) regime. This is appropriate since

the same techniques will be applied in Chapter 3 for the

discussion of the finite-beta case. Our approach resembles

that of Ref. 24, however we use the coordinate system of

Ref. 5. The analysis of the ideal internal kink modes in

finite-beta (p 1) regimes is presented in Chapter 3.

Here we introduce the finite-beta equilibrium model and

demonstrate in several ways the stabilization of the modes

at sufficiently high beta. The asymptotic matching that

exists between these two regimes is presented in Chapter 4.

There we present the complete picture of the stability of

the ideal mode at arbitrary beta.

Our discussion of non-ideal effects begins in Chapter 5.
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The problem is formulated in terms of a boundary layer -

analysis in which the external MHD solution is matched to

the solution within the layer via the quantity H. The

integro-differential set of equations describing the sol-

ution within the layer are then derived using collision-

less kinetic theory. The solutions to these equations for

XH < 0 are reconnecting modes, which we anaylze in Chapter 6.

Modifications of the ideal internal kink for H > 0 are dis-

cussed in Chapter 7 for finite-beta regimes. Here we find

it useful to neglect the effects of temperature gradients to

simplify the analysis. Finally we are able to summarize all

results in Chapter 8. There we complete the picture of m=l

modes and identify directions for future analyses.
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CHAPTER 2

We begin by reviewing the theory of internal kink modes

in the standard low-beta, large aspect ratio tokamak6 '24

This theory is based on an asymptotic expansion of the ideal

MHD energy functional in powers of the inverse aspect ratio .

The fluid displacement is assumed to be dominated by a poloidal

harmonic with wavenumber m= 1. This couples, through the

poloidal modulation of the equilibrium, to m=O and m =2 side-

bands whose amplitudes are one order in smaller than the

fundamental one. The Euler equations for minimization of the

energy functional are solved perturbatively about the well-

known circular cylinder solution2 '2 5. This perturbative solu-

tion must be consistently carried out to order e because the

mode is marginally stable in zeroth and first orders. Therefore

an equilibrium is needed correct to order .

2.1 Low-beta confinement configuration

We begin by identifying an axisymmetric equilibrium solution

to the hydromagnetic force balance equation

* = dT d 4rR2 dp (2.1)

where in cylindrical coordinates (R,i,z) the Grad-Shafranov

operator is defined

*- aR L(1 a + (2.2)
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and gives the toroidal current in terms of the poloidal flux

2~. The other terms in Eq. (2.1) represent forces due to

the poloidal current cT/2 = cRBt/2 (Bt is the toroidal magnetic

field), and the gradient of the plasma pressure p. To order

C , a solution of the hydromagnetic force balance equation in

large aspect ratio, low-beta, nearly circular tokamaks is

described by the following mapping between cylindrical and

flux coordinates5 :

R = R + A(r) + r [l+e(r)] cose , (2.3a)

z = r [1-e(r)] sine , (2.3b)

= . (2.3c)

The geometry is indicated in Fig. 1. The coordinate r repre-

sents a flux variable that equals the approximate radius of

the nearly circular magnetic surfaces. The displacement of

their centers from the magnetic axis is given by A (r), and

the elliptical distortion needed to satisfy the equilibrium

equation in order e2 is measured by e(r). Other magnetic

surface functions like thepoloidal flux 2rr, the poloidal current

cT/2, the plasma pressure p and the inverse rotational trans-

form q will be regarded as functions of r; primes will denote

differentiation with respect to r throughout this paper.

Since we are interested in the stability of internal modes,

we assume that the plasma extends up to a perfectly conducting

wall at r= a. The inverse aspect ratio is defined as -a/R0.
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I

I R

I

flux surface

R =Ro

Figure 1: Coordinate systems for toroidal geometry.

II *_ygl I% % I ,a

I



-20-

The large aspect ratio, low-beta (p % ,E << 1), circular

tokamak ordering implies:

/r r A X r/R 0 X , (2.4a)

2 " 2
e r e r e E . (2.4b)

For convenience we define the following dimensionless variables

of order E:

n -A/r, a -- , p - r/R0 . (2.5)

Assuming the geometry (2.3) and the orderings (2.4), the Grad-

Shafranov equation is expanded in powers of . Retaining

terms to order , the expanded equilibrium equation is of

the form:

2

E A (r) cosme = o(E ), (2.6)

and the three radial coefficients A (r) vanish for a suitablem

choice of the functions ~i(r), A(r) and e(r). If we also

recall the definition of the inverse rotational transform

q(r), we obtain the following relationships5:

rT 1-A- ap-p- p + , (2.7)

R0 '
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r

r(2-s) dr + 4(s
T = RB 0 1 + 2 2 

B0 J 2R q
00 4- 0 R0 q

= RO Sp + (r) + (r) ]0~~~-~ + O(C ),

r e + 5r e - 2s(re + e)

3 ' 3 2 1 2s-5 3 2 4a2 a + 2 (l-s)a rc'p + ap + (s ), (2.10)

where zero subscripts denote quantities evaluated at the

magnetic axis. We have defined the radially dependent poloidal

beta:

22 
8TrR0 q- I -'

Cp(r) - - 2 4 r drp' r2 dr,B r
06

(2.11)

the internal inductance:

rr
^2

Z i(r) 2q r dr 
1i 4

r 0 q

and the magnetic shear:

d Zn qs(r) d Zn 
d n r '

(2.8)

(2.9)

(2.12)

(2.13)
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The equilibrium relationships (2.7-10) allow us to relate all

magnetic surface functions to the pressure p(r) and inverse

rotational transform q(r). Thus we shall use these two

profiles to characterize equilibrium states.

2.2 Energy principle

The stability analysis of the internal kink mode will be

based upon the ideal MHD energy principle. The increment of

potential energy associated with a fixed boundary plasma

displacement (r,e,5) is26:

Wli] 2 VI- - I s

+ ( *V p) (V ) + rp(v )t · (2.14)

where B and J are the equilibrium magnetic field and current

density respectively, and r is the ratio of specific heats.

We minimize W with respect to -.B by taking the plasma dis-

placement to be divergenceless (V.E=0). Since the equilibrium

configuration is axisymmetric it is sufficient to consider a

single toroidal harmonic with wavenumber n:

E(r,8,5) = Re [(r,e) exp(-in¢)]. (2.15)

After substituting the equilibrium solution of Section 2.1

in Eq. (2.14) and integrating over the toroidal angle, the

potential energy functional reads:
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w~xyl 1 rs 2 I T R0R IY ( W[X,Y] = BR r rT { - asin + X
03 0 2d 9 r ~8R 3r
0O O a2 : ·

R
+ '^2 3

R0 q D

+ R
R0 q D

inqDR0 2 r 2 
i Y- -- D 1 -s( cose8] X+

inqD R 0~a s2
R °+(x+p)sine - D a - X,

32 T
2 4[ 1TR 0R + R r T

+ (1 - P)2 r T+
2

lxI
I

where

D - 1 - cos ,

and the components of the

to the magnetic field are

fluid displacement perpendicular

given by:

X(r,O) _ (r,0).Vr D R R (2.18a)

Y(r,0) - r (r,8) .(B xVr) D2 R T- 1 (2.18b)

In the equilibrium coefficient functions of Eq. (2.16) we

have dropped terms of the form O(e )exp(ime) with m 0,

because, as we shall see, they will not contribute to the

leading increment of potential energy for m=l dominated

(2.16)

(2.17)
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internal kink modes. In particular, the small ellipticity

e(r) can be disregarded throughout the stability analysis

for this reason.

The Euler equation for the minimization of W with respect

to Y is:

inr

qD R0

a (rX) + a(asineX) 2DR0 (1-np)

ar ae R

+ na r R aY a(rX) a (csin X)i . (2.19)Bea LR0D D;e Dr B r

Since we want both X and. Y to be periodic functions of e,

they must satisfy the constraint:

d [inqR0 y 1 3(rX) 1 (asineX) + 2Ro= (2.20)
D R DX =0D (2.20)

JD DR

We are interested in modes whose poloidal variation is domin-

ated by the m=l harmonic. However the mode eigenfunctions

must contain a mixture of poloidal harmonics because the

equilibrium is not independent of the poloidal angle. The

standard, large aspect ratio, low-beta tokamak equilibrium

functions can be analyzed as:

f(r,e) = exp(ime) f(r) , (2.21)
m=- kO
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where

fmk(r) = 0 ( m+2k) (2.22)

and the term of order unity, f00(r), corresponds to the long

circular cylinder solution. Consistent with this perturbative

expansion we take a representation identical to (2.21) for

the mode eigenfunctions, with the exception that now it is

centered around the m = 1 harmonic:

fmk = (lm-ll+2 (2.23)

where the tilde indicates a component of the plasma displace-

ment. Since in the long cylinder approximation (i.e. keeping

only f00 and f10 ) the mode is marginally stable2 7, and the

contribution to the potential energy functional in order 

vanishes due to orthogonality, the stability of the mode will

2
be determined by the contribution of order e . To compute

this we need to keep only the f00 f01' f10 and f-1 0 terms

in the equilibrium, and the f10, fill f20 and f0 0 terms in

the displacement. We shall disregard all other terms, as we

have already done in the equilibrium coefficient functions

of Eq. (2.16). Accordingly, we introduce the representations:

X(r,8) = x0(r) + xl(r) exp(iO) + x2(r) exp(2ie), (2.24a)

Y(r,6) = -i [yo(r) +y 1(r) exp(ie) +y 2(r) exp(2ie)] , (2.24b)
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where the radial amplitudes are:

Xl " Y1 = 0(1) + (c2) , (2.25a)

XO X Y0 X2 X Y2 = O(E) (2.25b)

We are concerned with the stability of fixed boundary modes,

so that these radial amplitudes are subject to the boundary

conditions that they vanish at r= a, besides being regular

at r=O. Finally, they can be taken to be purely real without

loss of generality, because their real and imaginary parts

yield uncoupled contributions to the energy functional. With-

in these assumptions we rewrite the Euler equation (2.19) as:

a R aY a(rX) a(asine X) )
ae R RoD a ar ae

inp ie
+ nq (nq Y1- rx1 +x l) e = , (2.26)

which can be integrated once to yield:

aY a(rX) a+ (sine ) + n 2 e
Be ar a q (nqY1- rx1 + xl)e

+ (r x) [1 - (a +p)cose] = 0 . (2.27)

The integration constant (r x0) has been determined in such

a way that Eq. (2.27) will admit periodic solutions. Taking

Eq. (2.27) to the expression for the potential energy (2.16)
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we observe that, from its first positive definite term, there

remains a stabilizing contribution of t form p I (r x) 12

which is O( - 2) larger than any other term involving x.

Thus minimization of W with respect to x0 will require the

2
latter to be at least of order . For our purposes we can

take

xO = 0 . (2.28)

Now we integrate Eq. (2.27) to get:

22 2 , 1
Yi= (l- n )(rx + l)+ P (rxl - X1) + 2- cx2, (2.29a)

1

1 1

O 2 (p-a)(rx x1) + nq (arx1 + px1 ). (2.29c)

We take the results of the minimizations carried out so

far (2.28-29), to the potential energy functional (2.16).

Then, keeping only terms up to order 2, we perform the inte-

gration over the poloidal angle. The result is a quadratic

form of x, x2 and their derivatives. This radial functional

can be cast in a more convenient form by making the change

of variable



-28-

(2.30)x2 + x2 - px1/2

and integrating by parts the terms involving x1X 1, x2x1 and

x2 x2. As a result the xlx2 term also drops out. After

using the equilibrium relationships (2.7-10) to simplify the

coefficient functions, we obtain:

2 2 ra
7T B0 n r ( 2 '2

W[X1 ,X2] = 4R 0 dr r W0x + Wlr x1

O

2 ' ' 212 + 2+W2r xlx2 +W3rxx2 +W4r x2 +W 6x2 , (2.31)

where:

W = 1 [r2

+ r2 

(1 1 1 2 2 2 
4 12+ -n ap

3 12 2) 2
16 2 4 +

11

+ (2+ 11 p2 -2 n21) P-2n2

W = (2 2 2 2 p) W1 = (-)2 T2 - + np -n p + ( -2 + 2 ) a2

+ 2) ap 9 5 + 3 2
+ 16 4 4 

W = (1 3 + 32 + 3( + P p ,

+( 1 1+ -

(2.32a)

) 2
p (2.32b)I

(2.32c)
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3 (2 + 2) + 1 2 +2) p , (2.32d)

/1 21 2

W4 2= -, (2.32e)

W6 = 3 , (2.32f)

and

1 . (2.32g)nq

The functional W[(] is to be minimized subject to a

normalization constraint N ] = constant. If we take this

normalizing functional to be proportional to the kinetic

energy of the .mode, the associated Lagrange multiplier equals

the squared mode growth rate. In this work we shall neglect

the kinetic energy associated with the fluid motion parallel

to the equilibrium magnetic field. This results in an over-

estimated growth rate but does not alter the marginal stability

points. We shall also assume a constant plasma mass density.

It turns out that, in the low-beta regime, inertial effects

are significant only within a narrow layer around the m= 1

mode resonant surface. Therefore, in this regime, the constant

mass density approximation yields the proper growth rate

provided we take-that constant to be equal to the value at

the = 1 magnetic surface. Given these assumptions we write:
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2

N[CS = 2 f dV | j | (2.33)

where is the fluid displacement perpendicular to the

equilibrium magnetic field. Minima of W subject to our

normalizing constraint are obtained by varying the total

energy functional

4WR 0 ^2
E 2 N . (2.34)

Tr B0 n

B2
The dimensionless Lagrange multiplier y is such that

^ yR 0

Y n v= (2.35)
n VA1

where y is the (perpendicular) growth rate of the mode and

VAl is the Alfven velocity at the m= 1 mode resonant surface.

~~~~~~~~^2 4
We anticipate that y will be a quantity of order . Thus

the minimization of W carried out so far to order is not

affected by the introduction of the normalization constraint.

A2
Also, because of the smallness of y , we need only the leading

contribution to N which corresponds to the cylindrical approx-

imation:

a a

N[x1] = dr r + (r x = dr r x1 . (2.36)

0

0

From (2.31), (2.34) and (2.36) we obtain the Euler equa-

tions to be solved for the radial amplitudes xl and x2:
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+2 3 (3 2
2(W + Y )rxi - 2W0r xi= ( r3x2 +W 3r x) (2.37)

3 3 2
L(r)x2 (2w4r3x2 - 2W6r x2 =- W2r x1 ) W3r x 1. (2.38)

The solution of the equation for x2 can be expressed in terms

of the Green's function G(r,r) which satisfies

P3 + .2
L(r)G(r,r) = -r W2(r) a6w (r) 6(r-r), (2.39)3r W2(r) (2.39)ar

G(0,r) = G(a,r) = 0, (2.40)

where 6 is the Dirac delta function. Once this Green's func-

tion has been found, we immediately write down

a
x2 (r) = J dr G(r,r) x (r) , (2.41)

0

and observe that by (2.39) and (2.40) x2 satisfies its Euler

equation (2.38) as well as its boundary conditions at the origin

and the wall. We now insert the solution (2.41) for x2 into

the Euler equation (2.37) for xl. Then we integrate once and

take into account the regularity condition for x1 at r= 0,

to get:



-32-

Wl (r) + r x1 (r) = dr W0(r) rxl(r)

0

L^2 ' 3G (rr) 2
_ C dr x (r)+ W3 (r) r G(r,r) . (2.42)

0

The solution for the Green's function G(r,r) is detailed in

Appendix A. Taking the results of Eqs. (A.4, A.12) to Eq. (2.42)

and integrating the 6(r-r) term from G(r,r)/3r, we obtain:

[jr -W 2(r) 42 x r r rx
4W Cr) J (r) = J dr r W (r) xl( r)

4 ~0

+4 rl2 W(rl)(b-c) dr x1 (r) G+(r)G (r)G(±r+r), (2.43)
+' +

where is the unit step function, r1 is the radius of the

m=l mode resonant surface, i.e. p(r1) = 1, and the functions

G+ as well as the parameters b and c are defined in Eqs.

(A.11, A.12) of Appendix A.

From here on we can follow a procedure analogous to that

used to solve the radial Euler equation for the m= 1 mode in

a cylinder25. Recalling the expressions (2.32b,c,e) for the

radial functions W1, W2 and W4, we obtain the following

structure for the coefficient of r3 x1 (r) on the left hand

side of (2.43):
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2

W2 ^2 ^2W1 - 4 + y = (l-)2 [1.+O(E]] + O , (2.44)

^ 4

where y is of order as will be later verified. On the

other hand, the right hand side of (2.43) is of order E 2

because W0 X e and G±+ e. From (2.44) it is clear that a

perturbative solution of Eq.(2.43) in powers of will give

rise to a boundary layer type of problem in the vicinity of

u =1. We shall consider two asymptotic regions in the radial

variable, depending on how I1-pi is ordered.

The first, the outer region, corresponds to values of r

2
away from the m=l mode resonant surface, so that 1-ul >> .

In this region Eq.(2.43) reads:

(l)2 r3 x out)(r) = O( ) . (2.45)

Therefore we can try a solution of the form:

(out)(r) = x10 (rl-r) +x ls(r) , (2.46)

where

xls(r)/x10 < 1 . (2.47)

In what follows, we shall need to evaluate the integrals

of the right hand side of Eq.(2.43) only to leading order in

e. For this purpose we can approximate x1(r) by x10O(rl-r)
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in the first integral. This only amounts to the neglect of

higher order corrections coming from the contribution of xls (r)

in the outer region, and from the integration of the whole

integrand, which is a bounded function of r, over a narrow

layer around r = r1 . On the other hand, the main contribution

^12
to the second integral comes from the layer Ir -r l l/r e

! ^

where x (r) is not negligible. Since the factor that multi-

plies xl(r) in the integrand is a continuous function of r,

it can be approximated by its value at r= r1 and taken out of

the integral when evaluating the latter to leading order in e.

Taking these remarks into consideration, we obtain from Eq.

(2.43) to leading order in :

Xls (r)1 r1

Y13(1 )2 [ |dr r W0 (r ) G (r -r)x10 ' I r
r (1-)

- r 2 (b+l-c) G (r)G (r)G(±r+r) (2.48)

I (out)!
Therefore xls(r) and consequently xl (out) (r) behave sym-

metrically at both sides of r= r 1. If we now recall

r-r1
1 - = s 1 (2.49)r rL r r

1

where s1 s(r 1), and define the parameter
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rr1

XH -sr 2 (b+l-c) G+(rl) G (rl)- - dr r W(r) (2.50)

S l rl 0

we obtain the behavior of x (out) (r) near the resonant surface:

(out)'
xl (r) xls (r) Hr 1

=________ _ _ = - - ~. (2.51)
x10 X10 r+ rl - 0 w (r-r1)

The solution we have just derived in the outer region

breaks down when Il-~Vbl"r-rl1 /r, e . Therefore we consider

an inner region where the latter ordering holds. Here we

approximate the coefficient functions of Eq.(2.43) by the

leading terms of their Taylor expansions about r= r1. We also

use arguments identical to those of the previous paragraph to

evaluate the leading contributions to the integrals of the

right hand side. Thus, to leading order in , we obtain the

following equation:

2 (sY l)2 (in)'

[( rl )+()] x r= (2.52)

Notice that all terms of Eq. (2.52)' are consistently ordered

'2 4
in this inner layer if y e . This equation is easily

integrated. The integration constant can be adjusted so that

xl(in)(r) matches xl(Out)(r), provided the following eigen-

value condition holds:
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/s= > 0 (2.53)

the eigenfunction being

x (in) (r) r-r
_ _2_ = T - - arctan (X . (2.54)
x10 H 1

For XH <0, no matching eigenfunction can be constructed so

that no internal kink mode exists. For XH > 0, an unstable

mode with growth rate given by Eq.(2.53) is excited.

It is useful to point out that XH= 0 is the marginal

stability condition we would obtain from the potential energy

functional W[Xl,X2] alone, by inserting there x1 = x10 0(rl-r)

as a trial function and minimizing with respect to x2. To

see this, we take the solution (2.41) of the Euler equation

(2.38) for x2 to the functional (2.31) W[xl,x2]. After some

standard manipulations we get:

W[x1] = 4R dr W 0 r x(r) rxl(r)+ Wl(r) rxl(r)

- xl (r)r2 (b+l-c) dr x (r) G r) G(r)E(±r +r) (2.55)

' 2c ontribute because the coefficient of(r) x(r) has adoub l erealize that the second term in the integrand will notcontribute because the coefficient of xl(r)2 has a double
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zero at r= rl. The other terms yield:

2-n2r21 2 22
W[x 1 = 10 (r - r)] = 2RO n r l x1 1 0 XH (2.56)

In order to explicitly evaluate XH in terms of equili-

brium quantities, we take the values of G+(r1) as well as the

expression (2.32a) for W0 to Eq.(2.50). After making use of

the equilibrium relationship (2.9) we obtain

H R 2S b+l-c [(b+l)c (pl 2 ilt 4
0 1

+ 3 bc + l - + b4 (1 1]
2 pl 2 il- 4 il-

+ (n2 - 1) p dr r 3 (+ 3) ( - 1) ,(2.57)

1 2

piwhere p1 (r1) and i i(rl). This expression for X

is the sum of two terms. The second is equal to (1 -n 2)

times the cylindrical result and dominates for n >2. The

first terms contains toroidal modifications and is entirely

determined by the parameters b, c and il which depend only on

q(r), and by pl which also depends on p(r). For usual tokamak

profiles the n =1 mode is stable provided pl is sufficiently

6
small . For large Bpl and r1 not too close to the conducting

wall, Eq.(2.57) predicts the mode to be unstable with a growth

rate increasing quadratically with pl. This result is
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modified by the analysis of Chapter 3, where we consider regimes

with Spl X C . The overall stability picture for arbitrary

beta will be presented in Chapter 4.
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CHAPTER 3

A stability analysis of the internal kink requires know-

ledge of a global equilibrium solution because of the inherently

non-local nature of the mode. This poses a significant diffi-

culty to an analytical study of this instability in the finite-

beta regime where p is of the order of unity. As a matter

of fact the analysis of the previous section cannot be applied

to the finite-beta regime, because a must attain values

comparable to Bp and the perturbative equilibrium solution

(2.7-10) that requires a to be a small expansion parameter

breaks down.

Arbitrarily large values of Bp can be reached by means

of flux conserving sequences of equilibria, but no global

analytic solutions of the flux conserving tokamak equilibrium

equations at finite-beta are available. In order to study

analytically the stability of these configurations against

internal kinks, we shall adopt an approximate equilibrium

model which, although not fully consistent, encompasses some

of the relevant features of finite-beta confinement configu-

rations.

3.1 Equilibrium model for finite-beta plasma

Our finite-beta equilibrium model assumes a large aspect

ratio toroidal configuration whose magnetic surfaces are cir-

cular in cross section, strongly shifted from the magnetic axis.

Accordingly, the mapping between cylindrical and flux coordinates

is simply:
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R= R0 + A (r) + r cos8 , (3.la)

z = r sine , (3.lb)

= ~ . (3.1c)

Again the plasma is limited by a perfectly conducting wall

at r=a. The inverse aspect ratio is assumed small, i.e.

E =a/R0 <<1, but the poloidal beta is assumed large, of order

-1 Therefore a L Bis of order unity and we shall not make
P

small a expansions but shall retain complete functional depen-

dence on . On the other hand, in terms not involving p,

it is now sufficient to take the limit -+ 0 because nontrivial

results are already obtained to leading order in c. Thus we

write the volume element as

dV = dr de d R r D [1 +0(C)] (3.2)

and the poloidal field as

-' -1
B R D [1 +0()] (3.3)

where D= Ivr 1 is defined as in Eq.(2.17). This model involves

two free radial functions, namely (r) and ac(r), which we relate

to the pressure p(r) and inverse rotational transform q(r)

by taking the first two moments of the hydromagnetic force

28,29balance equation This equation reads:
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* , , 4R 2
A = - (T T + 4R p ) (3.4)

where A is the elliptic operator defined in Eq. (2.2), and primes

continue to denote differentiation with respect to r. Assuming

the geometry (3.1) and the large aspect ratio, large poloidal

beta ordering, we have:

D + 2 3l+a +(ra -2a)cose ] [ 1+0 ()] (35)
D 2 rD 3

1 2
- (TT + 4rR p) =

2 ' 2A
- [TT + 4rRp (1 +-) +8fR 0 r p cose] [1 +O()] . (3.6)

Notice in Eq.(3.6) the Bp e 1 ordering:

2' 2'
TT + 4R 0 p r 4E R P (3.7)

Without expanding in powers of , the functional dependence

of Eqs.(3.5) and (3.6) on the poloidal angle cannot be

matched. This reflects the fact that our model is inconsistent

with a true solution of the equilibrium equation at finite

beta. We choose to truncate the Fourier expansion of Eq.(3.5)

after its second cosme harmonic:

* 2)2+ ((1 '2
2(1-a ) 2(1-a2 )
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+ 2)32 cos +e a cosme [1+0()] , (3.8)
(1-a ) m-

and equate the m= and m= 1 harmonics of Eq,(3.8) to those

of Eq.(3.6). Recalling also the definition of the inverse

rotational transform we obtain:

r = q + O(E) , (3.9)
RO 0

47w(p O-P) 2
T = R0B0 1 + 2 - + (e (3.10)2 + O( ) (3.10)

-3/2
a(-a 2) = r (r) + O(C) (3.11)

R0 p

where Bp(r) is defined in Eq.(2.11). For the usual monoton-

ically decreasing p(r) profiles, p(r) > 0 and a > 0. Also from

Eq. (3.11) we see that a <1 so that no equilibrium limit exists2 9.

The value of a increases with the pressure gradient and approaches

its upper bound in the extreme high-beta limit (a +1 for

eBp >> 1), as a result of the crowding of magnetic surfaces

in the outer part of the torus. This equilibrium model clearly

emphasizes the effects associated with the strong outward

shift of the magnetic axis in deeply diamagnetic plasmas, while

neglecting those associated with finite aspect ratios and

noncircularity of the magnetic surfaces. The extent to which

it fails to represent a consistent solution of the hydromagnetic
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equilibrium equation is measured by the magnitude of the un-

balanced a (m>2) terms of Eq.(3.8) which happen to be propor-

m
tional to am. Therefore the model can be expected to yield

reliable results if the numerical value of a is reasonably

small. In practice this happens up to moderate values of

Bp , typically ep <1 for which a < 1/2. Within these limits
P .

the assumed circular magnetic surface configuration is in good

quantitative agreement with full numerical solutions of the

equilibrium equation30'31 Finally we note that, within O() ,

the eap " << 1 limit of our model matches asymptotically the

4,5
>> 1 limit of the standard low-beta equilibrium used in

P

Chapter 2.

3.2 Stability Analysis

As in the low-beta theory, we base our stability analysis

on the ideal MHD energy principle. We proceed in the same

fashion, noting however that now a is 0(1) and that it is

now consistent with our ordering to drop terms of order 

compared to terms of order unity. The plasma displacement 

is again taken divergenceless, and the analogue of Eq.(2.16) is:

2 Ra 2y 
8Ro dr aY ( a iD a 2W[X,Y- r d - -+

O r 

n D - (r -

+ in D - r - sine X
q2 D3
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1 (i
q2 D3

n q D2 + sin8 - D a) Xa)!

7T P+ 2 3 Dcos a(qD) - 2
q2-cose +(2-3acos+ l

B0 a
, (3.12)

where X and Y are as defined in Eq.(2.18). Likewise, W is

minimized with respect to Y via the Euler equation:

n r [

qD 10

+ a 1
Be 5

a (rX) + D (asine X) +2n q DY - r +2Dr a8

De Dr ae

subject to the periodicity constraint

1i n _ 1 3(rx) 1 (asin
D Y-D2 Dr D 2 e

X) X = 0. (3.14)

Integrating Eq.(3.13) once, we obtain to leading order in e:

aY a(rX) + 3(asine X) +
ae ar ae D [2 f do X] O=

where the integration constant is fixed by periodicity. From

Eq. (3.15) we see that the large, stabilizing first term in

2

DX

0 , (3.13)

I de

J 

(3.15)

I



-45-

W[X,Y] can be suppressed if de X= 0O. Thus we introduce the

trial function

X(r,e) = xl(r) exp(iO) + x2(r)exp(2ie) , (3.16)

where x and x2 are now of the same order in . Ideally we

should allow for higher poloidal harmonics in the trial

expression for X. However we can expect the internal kink mode

to be dominated by its m =1 and m =2 Fourier components, and

all other harmonics to be numerically small. Besides, our

model potential energy functional (3.12) is only competent

to calculate reliably the coupling between adjacent harmonics

in X because only the m= 0 and m= +±1 Fourier components of the

instability driving term are consistent with the hydromagnetic

equilibrium condition. Given the explicit representation

(3.16) for X, Eq.(3.15) can be integrated to yield

3

Y(r,O) = - i y(r)exp(ime), (3.17)
m= 

where

y 1 =rX 1+X1 +2 -ax, r(3.18a)

1 
Y2 = 2 (rx2 + X2 -axl) (3.18b)

1 ax (3.18c)
Y3 - a2'
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The integration constant y is then determined by the periodi-

city constraint (3.14):

1 2 rx u- (l+) 2 +3
YO 20 2 r 1 [ a

2acr a

+ a x - +a ]+rx2 -(l+6)a +2(1+2)a -a ]

+ 2 [-(1-6)a2 -12a 3 +3(1+20)a4- 2a , (3.18d)

2 1/2
where we have introduced a (1-a )

The angular integrals in the periodicity constraint

(3.14) and the potential energy functional (3.12) are of the

form d8 exp(ime)/(1-acosO) , where m and are integers.

In the low-beta theory it was sufficient to expand the denom-

inators in power of a. Here, however, we must perform the

integration exactly so that W retains the complete functional

dependence on a. Although tedious, this can be done in

I1
general. The result is :

on· W BrRx 2 + 2 +W i W, 2 '2 
W[x1,x2] = 4RX

2 2 2 ' 2
+ W2r x1x 2 +W 3rx 1x2 +W 4 r x2 +W rx 2x2+W 6 x2 (3.19)

where
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2 (2 3 2 4 5 6) (3.20a)
W 2 _ 4a -a + 4 (1+p)a -4a 6 (3.20a)

6 2a 34 2

1 2 22 2 2 3 2 5 6

+ 4(1+6p+22) )5 - 8(1+2)a + 4 7 (3.20b)

W= 1 4 -6p 2 + 2 4 + 2 4a3 - 1212a 4 + 4 (1-61-6 )a
3 5 3

2a 

5 2 27 8+ 6 (8U+3 a -12(1+2p) ), (3.20c)

W4 = i 12 2 2 + 3 2a4 +2(l-8 -481 ):

+12(4p+72) 6 - 8(1+6+3 2 )a7 +8(1+2) _ 2a9 (3.20e)

W5_= 1 (p 2a2 21 4 +4(1-3,+18P )a5 111P 2 6
2 a a

-2 (5 6l25 2 6 (3.20f)-2(5-24-36P2)o - 3(16+5p ) + 2(5+6) - 4a (3.20f)
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In arriving at these coefficient functions (3.20), we have made

use of the fact that, after integrating over and using the

equilibrium relationship (3.11), the instability driving term

in W may be written:

1 d 2

- r

q2D3cose +r (qD) _(2-3acose+a) arJx

1 + x + x 3 X1 2 (3.21)
q a r q a r q 

The derivatives of equilibrium quantities can then be eliminated

by partial integration, and as a result, the coefficients

(3.20) are functions of and alone. In addition, the x1

and x1 x1 terms exactly cancel following another integration

by parts, and the x1 x2 and x1 x2 terms vanish identically.

Thus the expression (3.19) for W is free of x and involves

only xl , x2 and x2 .

As in the low-beta theory, we shall use a perpendicular

kinetic energy as a normalization constraint in order to make

an estimate of the growth rate. Moreover, we now introduce

a further simplification in the normalizing functional, to

make it depend only on the radial amplitudes x1 and x2. In

so doing, the previous minimization of W remains unconstrained.

Thus we take:

N[XlX22 2 dV |C[X(xl , X2), Y(] (3.22)
0 J
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where X and Y depend only on x1(r) and x2(r) through Eqs.

(3.16, 17, 18a-d). The price we pay for not carrying out a

complete minimization of the total energy with respect to i

is only a slight underestimate of the growth rate because the

^2
Lagrange multiplier y , although formally of order unity,

turns out to be numerically small (2 ,10-2). The points

of marginal stability are of course unchanged. Again we have

taken the mass density to be a constant, equal to its value

at the =1 magnetic surface. This is consistent with our

expectation that, even at finite beta, inertial effects are

most important in the vicinity of the m =1 mode resonant sur-

face. After we perform the angular integrations, we eventually

find:

2 12 Nrx122 
N[x1,x 2] = dr r Nlr xl 21 + N2r xx 2 +N 2rxlx2

0

2 '2 2
+ N4r x2 +N5rx 2x2 +N6 x2 (3.23)

Terms in x1 were again eliminated by partial integration.

The coefficients in this expression are given by:

1 2 23 24 5 6N1 5 = 1[
-2 + 2+2 a - 2 a - a +2a 1+ 2a (3.24a)

a (l+a)

a 2 2 2 2a3(52
2 = 5 2 [2 +4 2 4 +2 (3.24b)

a (l+a)
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N ___ 622 24 5 6
3 5 -[6 6 a +2a +4a 

a (1+a)

N 1
4 5 2

N5 = 5 2
a (l+a)

1
N6 a5 2

a (l+a)

2 2 22 23 24 5
[j2 + 2 - 3 a -42a + 4 a +a] ,

2 24 + (122 5 6 7
[6U a -18U2'4 + (l+12U)a +2a -a ]

(3.24d)

(3.24e)

2 4 25 26 7 8[9iiC + 2(1-9 ) + (4+9p )a +a - 2a . (3.24f)[su +2(1~~~~~~~~- )

We now have to minimize a total energy functional

E[x1 ,x2] =
a 2'2 ' '
dr r Elr xl +E2r x12 +E3rl1X2

0

2 2 2 )
+E4r x2 +E5rx2x2 +E6x 2 ,4 2 522 62

where E is
^2

defined as in Eq. (2.34) so that E =W + Y N. for
I 1 1

1< i <6. The Euler equations for x and x2,

3 ' 3 ' 2
(2E1 r x1) =- (E2 r x2 + E3 r x2) 

L(r)x2 - (2E4rx 2 + E5r x2)2 4 2 5 2~~~~~~- (Er X2 + 2E rx2 )5 2 6 2

3 ' 2 
= (E2r x1) +E 3 r x 1

(3.24c)

(3.25)

(3.26)

(3.27)
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are then solved to determine the growth rate. We observe at

this point that the eigenvalue y depends on the equilibrium

and the toroidal mode number n only through the functions

a(r) and ii(r). Recalling the definition of i, we see that

it is sufficient to consider a single value of n. The results

for other modes follow immediately from the invariance of 

under the transformation n n, q qn/n at fixed a (r).

The solution of the radial Euler equations (3.26-27) is

more difficult to obtain than in the low-beta case, owing

both to the greater complexity of the Ei's and to the fact

that we are no longer free to use a as an O(e) expansion

parameter. In particular the boundary layer solution for the

growth rate is no longer possible. Nevertheless, at the end

of this section we shall consider a variational procedure

which yields a closed form estimate for y. On the other hand

we can make further progress with the observation that, since

there is no xl term in E, Eq. (3.26) can be integrated:

, E2 , 3

r x l = 2E x2 2 (3.28)

where the constant of integration must vanish to ensure

regularity of x1 at r=O0. If we take this solution back to

Eq. (3.25), we can express E as a functional of x2 alone:

a

2 2 2
E[x2] = dr r Clr2x2 + C2rx2x2 + C3x2 (3.29)

0
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where

2
4EIE4 -E 2

C = 4E (3.30a)

2E E -E E
C 15 23 (3.30b)
2 2E

4EE6 -E 2
C3 E1 (3.30c)
= 4E

Thus we are led to solve a single Euler equation for x2:

3 ' 2 ' 2'
(2Clr X2 + C2r x2) - (C2r x2 +2C3rx 2) = 0. (3.31)

Note that the Ci 's depend on the eigenvalue y through the Ei's.

At this point we can address the high-beta stability of

the mode. For this purpose it is sufficient to work with the

potential energy W alone, thus we set y =0 when evaluating the

Ci's. We consider the e B>> 1 limit where a approaches unity

within most of the plasma domain. Noting that in this limit

a tends to zero, we see from the expressions (3.20a-f) that

there are singular terms which should dominate in the integral

(3.29). Now if we expand the Ci coefficients in powers of a

-5
we find that the leading O(a ) terms exactly cancel. From

the terms in the next order, O(a 3), we find after an integra-

tion by parts:

__2 '24Ro r 3 x2 3 r3 2
W[x2 ; p >> 1] = dr3

0 Jr2q a
0 
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Finally, if we recall the equilibrium relationship (3.11),

and the definition of (2.11) we have11
p

2 2' 
W[X2; pl>>] = - r dr r p (r) x2 (r)

0

+ 3rp (r)x 2(r)2 (3.33)

Hence a sufficient condition for stability in the high-beta

limit is that the pressure be a monotonically decreasing func-

tion of the radius. This is due to the enhanced magnetic

tension induced by the pressure gradient through the equili-

9
brium shift of the magnetic surfaces · Moreover Eq.(3.33)

is independent of n, so this stabilization occurs for all

toroidal modes.

The high-beta stabilization of the mode can be verified

by a numerical solution of the eigenvalue equation (3.31).

As a typical example, we consider the class of equilibria

determined by the profiles:

p(r) = P 0 (1- r2/a2 ) exp(-2r2/a2 ) , (3.34a)

q(r) = q(l+ r2 /a 4) . (3.34b)

The magnetic axis pressure p can be used to scale p within

a flux conserving sequence characterized by a fixed value of

q0' Given the profiles (3.34), the equilibrium equation (3.11)
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must be solved for a(r). Then x2 (r) and y are determined from

Eq. (3.31) together with the boundary conditions for x2 . The

coefficient function C1 never vanishes, so there is no problem

with regularity of x2 at the = 1/2 magnetic surface r2.

This is due to the inclusion of a finite coupling between m =l 1

and m =2 harmonics as well as finite inertial effects in the

theory. In Fig. 2a- c, we plot the eigenfunctions x1 and x2

as well as their derivatives for q0 = 0.75 and $p - Cp(a) = 0.13,

0.62 and 0.95 respectively. For this q-profile we consider

the n= 1 mode. Figure 2a is a low-beta case which exhibits

the step function behaviour of x1 and the piecewise continuous

nature of x2 that we should expect from the analysis of Chapter

2. As Bp increases towards the peak growth rate case displayed

in Fig. 2b , we see that the eigenfunctions become smoother,

although x1 is still strongly peaked at r1. As c£p is further

increased towards the "second" marginal point in Fig. 2c,

the eigenfunctions again become sharper at r but x2 continues

to get smoother at r2. In all cases we see that x2 is signi-

ficantly smaller in magnitude than x1. Finally in Fig. 3

we plot the eigenvalue y as a function of e p. For this

choice of profiles the mode is stable above Bp = 0.99. In the

A~ C1 int. ; ens o e a 2
cBp << 1 limit, y tends to zero as (c ap) so that the mode

appears marginally stable. This will be resolved by an asymp-

totic matching to the low-beta theory. Also indicated in

Fig. 3 is the result of the variational calculation which we

describe next.
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4

I

0 rI r2 a 0 rI r2

Figure 2a: Eigenfunctions xl(r), x2(r) and their derivatives

which give the m = 1 and m = 2 components of the

internal kink displacement in the radial direction.

Here p = 0.13, and r and r2 are the positions

of the mode rational surfaces. The vertical axes

are not drawn to scale.
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I.,

3
I C I C

Figure 2b: Eigenfunctions x1(r), x2 (r) and their derivatives

for cBp = 0.62, which corresponds to the peak

growth rate.

. 0
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Figure 2c: Eigenfunctions xl(r), x2(r) and their derivatives

for E£3 = 0.95, which is near the second point of

marginal stability.
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'if'

A
'y

C3p

Figure 3: Normalized growth rate y of Eq. (2.35) as a function

of EBp _ aR01 ap(a) in the finite-beta regime for

nq0 = 0.75. For comparison the variational estim-

ate (dashed curve) of Eqs.(3.42,48) is plotted to-

gether with the numerical solution (solid curve) of

the one-dimensional eigenvalue problem (3.31).
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We begin the variational calculation by expressing the

solution of the Euler equation (3.27) for x2 in terms of a

Green's function. Since Eq. (3.27) has the same form as its

analogue (2.38) in the low-beta theory, the solution is formally

the same, i.e., Eq. (2.41), and the Green's function is deter-

mined via the same procedure detailed in Appendix A. Taking

this solution to Eq. (3.26), we are left with a single integral

equation to solve for xl:

4E1 (r)E4 (r) - E2 (r) ]2 3

4E4 (r) x(r) 

a

2 f ' 

4rlE4 (r 1) (b+l-c) dr xl( r) G+ (r) G_ (r) (+r+r), (3.35)
0 +,' +

where the functions G+(r) as well as the parameters b and c

are obtained from Eqs. (A.11, A.12) of Appendix A using the

coefficient functions Ei (r) of the finite-beta theory (3.20,

24). Now we define

, 4rE1 (r)E4(r) - rE2 (r) /2
x (r) x(r) 16(b+1-c)E 4 (r l)E4 (r) J , (3.36)

16(b+l-)E (r r)E (r) 

4rE (r)E (r) -rE2 (r) -1/2
k (r) _ G+ 16(b 1 c)E4(rl) (r) , (3.37)

and express Eq. (3.35) as a homogeneous Fredholm equation of

the second kind:
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a

x(r) = K dr K(r,r) x(r) , (3.38)

with a split kernel:

k+(r) k(r) for r > r

K(r,r) = (3.39)

k(r) k+(r) for r <r

We have introduced an eigenvalue K which is equal to unity

for a solution of the original equation (3.35). If we now

multiply Eq. (3.38) by x(r) and integrate, we find:

a

I dr (r)2

a a ' (3.40)a a

dr dr x(r) K(r,r) x(r)

0 0

which is a variational form for the original equation.

In order to proceed we must simplify the functional form

of the kernel K(r,r). To do this we begin by noting that the

combination 4W1W4 -W 2 has a minimum near r where it is

roughly equal to (1- ) . This behavior is responsible for

the maximum of xl at r seen in Fig. 2a-c. Thus the largest

contribution to k comes from r r1, and so we set r= r1
everywhere except for the combination (1-2 rr 2

everywhere except for the combination (1-) (r-r1) /1
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Secondly, recalling that in the low-beta theory it was suffi-

cient to retain the growth rate only in the coefficient

function E1, we likewise neglect y except in E1 now, as we

expect this eigenvalue to still be numerically small. Thus

we adopt the approximation:

2 2 2

4E1E4 -E2 4E1W4-W 2 2 [ (-+ H2

4E4 4W s1 + (3.41)
4 1

Here we have introduced a parameter H, analogous to that of

the low-beta theory, defined by the relation:

^ SH
Y N 1/2 5/2 ' (3.42)

N11 1

where a1 -a(r1) and N11 Nl (r1). Then we may write:

2 -1/2

k+(r) = k0+ ( rl + (3.43)

where

k = 2 5 -1/2
k0+ W21 (b+l+d) [rls1 01 -W 41 (b+-c)] (3.44a)

k =-w -2 -5 -1/2
k0- = W21(c+d)[rls al W41 (b+l-c)] (3.44b)

are constants, and we have written Wil Wi (r1 ) and introduced
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W3 1 - 3W21

4W21
(3.45)

Now, if we take a trial function of the form

Xr(r) -r 1) -1/2x (r) = + (3.46)

where v is a variational parameter, the integrals in Eq. (3.40)

can be performed to give:

K ( < V) =
4rlkO+k0

_ u
(3.47a)( K(1-XH2/ 2) ) 

K(XH>V) =
4rlk 0 +k 0 -

(3.47b)
K(vH ) 2K(1-v2/X 2 )

2/H2

Here K(z) is the complete elliptic integral of the first kind

and we have assumed H ,' v << 1. Now if we set dK/dv = 0 we

get v = AH. Finally, from the condition K = 1 we find

2 5
W21 al (b+l+d) (c+d)

AH = 2

1 41 (b+l-c)

(3.48)

and then the growth rate is given by Eq.. (3.42). This growth

rate estimate is plotted in Fig. -3 for comparison with the

numerical result. As expected, the approximate variational
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calculation underestimates y, although not significantly,

and provides a lower bound for the "second" point of marginal

stability.
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CHAPTER 4

Ideal MHD stability results

In the preceding sections we have analyzed the internal

kink mode in two distinct beta regimes. We now consider the

question of the asymptotic matching that exists between them.

In both cases we assumed a large aspect ratio, << 1, but in

the low-beta theory we assumed Sp X 1 while in the finite-beta

theory we took cs p 1. Thus we are interested in the agreement

between the low-beta theory in the limit Sp >> 1, and the

finite-beta theory in the limit CBp << 1. For this purpose

we consider a common or matching regime where the ordering

c << cap c a << 1 holds. Comparing the equilibrium relations

(2.7,8,9) and (3.9,10,11), we see that in this matching regime

they have a common limit to leading order in a and £:

rT [1+0(a¢)] (4.1)

Ro0

T = R0B0 1 + 2 + 2(e (4.2)
B0

a = r a (r) + 0 3(a) + O(C) (4.3)

Minimization of W in the matching regime follows the same

lines of either the low-beta or the finite-beta case. In the

trial function for X(r,8) we now have x2 % ax1 , and calculations

need to be carried out only to order a . The resulting radial



-65-

functional W1x1,x 2] equals that obtained by taking the p >> 1

limit of the low-beta result (2.31,32), i.e., by neglecting

2 2
there terms of order e2 and as compared to those of order a :

W0 = 0 , (4.4a)

2 1 2
W1 = (1-0)2 + ( - 2 + 2 2) 2 (4.4b)

W2 = (2 - 3 + 3)a , (4.4c)

W = 32 - + 2)a , (4.4c)

1 2

W4 = (1 - ) 2 (4.4e)

W5 = , (4.4f)

W6 3) - (4.4g)

Identical W. coefficient functions are obtained by taking the1

Bp a <<l 1 limit of the finite-beta result (3.19,20). To

verify this, we only have to expand Eqs. (3.19) and (3.20)

in powers of a to order a and integrate by parts the W5 r x2 x2

term. Likewise, the coefficient functions of the normalizing

functional in the matching regime are:

N 11
(4.5a)
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N2 = c/2 , (4. 5b)

N3 = 3a/2 , (4.5c)

N4 = 1/4 , (4.5d)

N5 = 1/2 , (4.5e)

N6 = 5/4 . (4.5f)

^ 2
Since x2 ax1 and y X a , only the N1 term needs to be retained

in this regime, as in the low-beta theory.

Consider now the eigenfunctions x1(r) and x2(r) obtained

in the minimization of the radial functional W[xlx 2]. In the

finite-beta theory x1 and x2 are continuous functions of r as

in Fig. (2a), the resonant surfaces r and r2 are easily iden-

tified by abrupt changes in x1 and x2. Viewed as a progression,
I I

x1 and x2 develop 6-function singularities as sBp tends to zero.

This is in agreement with their behavior in the low-beta regime

where

xl (r) x1 0 E(r1-r) ,(4.6a)

x2(r) = -x10 G(r,r1) , (4.6b)

and the Green's function G(r,r1) has discontinuities at r = r1

and r = r2, as shown in Appendix A.
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Given these considerations, the mode growth rate in the

matching regime is easily obtained as the >> 1 limit of

Eqs. (2.53,57):

2 2i^ ^ r (b+l) c

¥ = match - 2
RO s1 (b+l-c)

This expression is also the a << 1 limit of our variational

result at finite-beta (3.42,48). In this matching regime,

the a-dependent terms drop out of the linear differential

operator L defined in Eqs. (2.38) or (3.27). As a consequence

the parameters b and c are independent of Sp and are determined

by the q-profile alone. Also, d is of order a and is therefore

neglected compared to either b or c. We show in Appendix B

that b > 0 and c < 3/4. Thus, in the matching regime, the

stability is entirely determined by the sign of c,which is

usually positive unless r1 is sufficiently close to the conduc-

2
ting wall a. The (Sp ) dependence of match is responsible

for the parabolic shape of both the variational and the numerical

growth rate curves of Fig. 3 in the Bp << 1 region. As shown

in Fig. 3 and more clearly in Fig. 4, the numerical result

for finite also agrees with Eq. (4.7) in the matching regime.

In Fig. 4 we have plotted, on logarithmic scales, the growth

rates predicted by the low-beta and finite-beta theories of

Chapters 2 and 3 as well as the result (4.7) for the matching

regime, as functions of eBp. We have used the same equilibrium

sequence of Figs. 2 and 3, and set E = 0.1 when evaluating
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(solid line) as p + 0O, while the low-beta result.
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Ylow from Eqs. (2.53,57) for the sake of clarity. In this

logarithmic plot, Ymatch appears as a straight line of slope 2

that asymptotically approaches Ylow for large eap and Yfinite

for small Bp. In short, there is an asymptotic match between

the low-beta and finite-beta theories. We are therefore at

liberty to construct an asymptotically matched growth rate:

Y = Yfinite + Ylow match (4.8)

and use it to discuss the stability of the internal kink mode

for arbitrary beta.

We present a complete stability diagram against m= 1

dominated internal kink modes in Fig. 5. The marginal stability

curves correspond to the zeros of the matched growth rate

defined in Eq. (4.8). Here we have taken the p and q profiles

given by Eq. (3.34) and set = 0.25 when evaluating Ylow'

Since for this choice of q profile, q(a)= 3 q0, the m= 1

mode resonant surface will lie within the plasma for n < l/q0 < 3n.

The cases n = 1 and n 2 are distinguished at low-beta due to

the second term in Eq. (2.57), whereas we have already noted

that at finite-beta all n modes are equivalent.

At low-beta, n 2 modes are unstable if the = 1 surface

lies within the plasma, because the second term of Eq. (2.57),

which equals (1-n ) times the cylindrical value, makes a

large positive contribution to H. On the other hand, this

term vanishes for n = 1 and so the stability of this mode at

low-beta is entirely determined by b,c,Lil and pl. We recall
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ECp

)

q0

Figure 5: Stability diagram against ideal internal kink modes

for the profiles of Eq.(3.34) and inverse aspect

ratio = 0.25. The plasma is stable for values

of CSp and q0 outside the stippled region. For

the profiles chosen, the safety factor q(a) = 3q0.

I
I
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that, for sp <<1 and monotonically increasing q(r) profiles,

b>0 and c <3/4; also il >1/2. If r1 is sufficiently close

to a, c becomes negative and large in magnitude so that AH

is negative and the plasma is stable. This stabilization is

due to the proximity of the conducting wall to the mode resonant

surface, and causes the stability window for 0.5 <q0 U 0.6 in

Fig. 5. Otherwise the plasma is stable against the n =1 mode

only for Bpl less than some critical value.6

As pl1 exceeds this threshold, the internal kink mode

becomes unstable. Its growth rate increases parabolically

with p into the finite-beta regime. Here the indirect stabil-

izing effect of the pressure gradient discussed in Chapter 3

comes into play, and acts to suppress the instability. We can

also observe this from our variational expression for H (3.48).

5
In the very high-beta limit (a- O), W41al = 1/2, d= -3/4 and

we prove in Appendix B that b >-1/4 and c < 3/4. Thus AH <0

and the mode is stable. For the considered class of equilibria,

all n modes are stable above cB = 1.6. Again, the improved

stability towards lower values of q is due to wall stabili-

zation. Finally, the jagged appearance of the stability

boundaries for low values of q0 is due to the onset of the

individual n modes at q0 = 1/n. For q0 > 1 no internal kink

instability exists because there are no m= 1 mode rational

surfaces within the plasma.

Let us now return to the question of the validity of our

results which arises due to the approximate nature of our

finite-beta equilibrium model. We recall that with our model
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we were able to balance only the first two moments of the

Grad-Shafranov equation, leaving unbalanced terms proportional

to amcosme for m >2. As pointed out earlier, we expect reliable

results if a is not too large. For the profiles (3.34) used

in generating Fig. 5, the maximum equilibrium value of a at

the second marginal point is a(a) = 0.65 for eBp 1.6, when

nq0 approaches 1. At this moderate value of a, the flux sur-

faces obtained from a consistent solution of the equilibrium

equations are no longer circular in cross section. For a

circular conducting wall, the flux surfaces near the magnetic

axis have developed a noticeable vertical elongation. However,

the most significant feature of these equilibria, namely the

way the flux surfaces are squeezed towards the outer wall,

is well represented by our model. Another point worthy of

note is that even near the second marginal point, e.g. in

Fig. 2c, the amplitude of the x2 sideband is still rather small

when compared to xl. This suggests that our truncation of the

trial function (3.16) at the first poloidal harmonics is a

reasonable approximation. Thus, although our results should

not be taken as quantitatively exact given the approximate

nature of our analytical model, we do not expect any signifi-

cant change in the topology of the stability diagram. Recently,

this has been confirmed numerically by means of large 2-dimen-

sional equilibrium and stability codes.1 2



-73-

CHAPTER 5

In the preceding three chapters we have examined the

stability properties of internal kink modes within the frame-

work of the ideal MHD theory. However, the behavior of these

modes can be significantly affected when other effects which

lie outside the scope of the ideal MHD theory are taken into

consideration. In particular the "frozen-in law" Eq. (1.4)

has been assumed valid throughout the plasma, and this need

not be the case. In fact the singular behavior of the radial

displacement given in Eq. (2.51) and (3.46) near the mode

resonant surface is due precisely to this restriction. The

addition of the slightest resistivity, or any other effects

which cause the electric field to have a component parallel

to the magnetic field, removes the singularity. Recalling

that the growth rate of the ideal mode was determined from a

boundary layer analysis at the mode resonant surface, it is

clear that the introduction of non-ideal effects within this

layer will affect the growth of these modes, and may enable

the excitation of other modes as well. Qualitatively, these

effects are most important near marginal stability points.

In this chapter and its successors, we shall examine the beha-

vior of these non-ideal modes. We adopt a kinetic description

to describe these effects. In particular we shall assume that

the temperatures are sufficiently high that we may neglect

collisions.
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5.1 External boundary conditions

Our approach shall take the form of a boundary layer

analysis. That is, we shall assume the MHD description of

S(r,O8,) is adequate throughout the plasma, except for a

narrow layer in the vicinity of the mode resonant surface.

Within the layer we adopt a kinetic description. Here the

mode structure is best described in terms of electromagnetic

potentials , A. Finally an asymptotic matching is performed

between the solutions in the two regions which determines the

eigenfrequency w of the mode.

In order to make analytic progress, certain assumptions

must be made. We recall that the amplitude of the m=l1 harmonic

of _ is larger than that of the m =2 harmonic. Thus we would

expect the most significant effect to be on the m= 1 component.

Accordingly we work with its radial component

S(r,0,,t) = E(r)ei - in -iwt (5.1)

As we saw in Chapters 2 and 3, (r) is singular near r= rl

that is,

rl1 d H1 (5.2)
- - (5.2)

dr fr(rrl)

The quantity AH is given by an asymptotic matching of the

expressions (2.57) and (3.48)
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Figure 6: The MHD stability parameter XH(c3p ) for the

profiles of Eq.(3.34) with = 0.25, qO = 0.75

and n = 1.
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= low f+ finite X match (5,3)
H H H H

to handle arbitrary Bp regimes. This function has been plotted

in Fig. 6 for the case of the profiles (3.34). This approach

is analogous to that adopted for the determination of the ideal

growth rate, where an inner layer was required in order to

determine the function x1 (r).

In the second place, we are primarily interested in the

radial structure of the mode, (r) defined by expression (5.1).

If the inner layer is sufficiently narrow, we may perform the

analysis using a simple slab model equilibrium. We note that

this approximation neglects many of the toroidal effects studied

in previous chapters, but this is consistent with our decision

to work with the m= 1 component alone. The inclusion of these

effects could be extremely difficult.

Thus within the layer we choose a cartesian coordinate

system (with unit vectors e x ey , e ) whose x coordinate

represents the radial variable r-rl. If the y-axis is chosen

to lie in the direction of the transformed wave vector k =k e
Y-Y

(ky= -/r to O(e2) ),then the magnetic field will lie along

the z axis at the resonant surface and will have a slight

shear:

B B (e + e) (5.4)o-z L -y

where the magnetic shear length
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Ls - R0/ns , (5.5)

Bo is the toroidal magnetic field, R is the major radius,

and the shear, s, was defined in (2.13). Finally other equili-

brium quantities, such as density and temperature , will depend

on x alone.

As noted, within the layer the mode can be described as

an electromagnetic perturbation

MA
E = - V - a (5.6a)

c at

B = V xA . (5.6b)

Here we use the notation

(x) ei kyY -it (5 7)

for perturbed quantities. We shall assume that A=A ez.

Equivalently, we assume that the perturbed current lies parallel

to the equilibrium magnetic field. This assumption requires

. << 1, where

8wnT.
- = 1 (5.8)

j B 2

is the ratio of the jth species plasma pressure to the magnetic

field energy. To relate these potentials to the displacement
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E, we note that in the external (MHD) region, the "frozen-in

law" (1.4 ) is valid. From its y and z components,

wB
k c (5.9a)

y

xB
A = o o (5.9b)

s

Taken together, it is no surprise that these equations require

that the parallel electric field

El =-ik k k A)= 0 (5.10)

in the MHD region, where we have introduced an effective para-

llel wavenumber kll =kyx/L s. Finally, we recall that i,

and therefore %, has an overall step function discontinuity

in the vicinity of the layer. Using Eqs. (5.9) and (5.2) we

can then summarize the MHD boundary conditions by

rlXH
+(x) = E [G(-x) + 1X] (5.11a)

k c
A(x) I (x) (5.11b)

as x 0, where is an arbitrary constant.

5.2 Field equations within reconnection layer

Within the layer, the potentials are governed by the

constituentive Maxwell equations
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_v2 = 47r e.n. (5.12a)

-V2A = 4 j (5.12b)
J

where the summation is over plasma species of charge ej, having

perturbed densities n and parallel currents Jj We shall

consider a two component plasma of electrons and positive ions.

As indicated in Chapter 1, we shall assume the temperatures

are sufficiently high that nj and Jj must be calculated from

a kinetic, collisionless description of both plasma species.

It is useful to bear in mind that there are several

scale distances which are of interest in the analysis. For

example the boundary conditions (5.11) scale x with a distance

x X rlXH. On the other hand ion dynamics occur on a scale

x Pi' the ion gyro-radius. Finally electron inertia is

important on a scale

wL
e v (5.13)e k vy e

where ve is the electron thermal speed. This distance arises

because the parallel wavevector kl depends on x. Thus an

electron with parallel velocity v is resonant with the mode

at x 6e vil/e * It is customary at this point in the analysis

of a boundary layer problem to introduce an inner variable

scaled to the width of the layer, x x/6. For the problem
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at hand, this turns out to be more of a liability than an

asset: we would introduce an additional scale distance 6

to scale finite functions which are already scaled for small

x (e.g. P (6e/IxI) in Eq. (5.41) below). For the sake of

simplicity, we shall refrain from making 6 explicit. However,

when we refer to the limit x -, we really mean x/6 +-.

We shall first calculate the electron response to the

perturbed potentials X, A. Anticipating that the electron

gyro-radius pe is negligibly smaller than other scales of

interest, we shall average over their gyro-motion, and then

identify particles with their guiding centers. This procedure

is discussed in Appendix C; the result is that the electron

distribution function f (r, vtl) satisfies 3 2

af af af af
at + V b + E b e=0 , (5.14)
t r i a r m e - _ i

where E = c E xb/B is the drift velocity. To solve this equa-

tion we linearize in ,A. Thus we decompose fe into an equili-

brium piece and a perturbed piece

fe fe +fe (5.15)

and note that in our geometry

ik -
b = (e + e ) + Y A ex (5.16)

- L -y B -X5 0
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Then fMe must satisfy

af /i af afafMe + Me Me =0
at VI z L s =ay 

5

which is accomplished with a Maxwellian distribution

2 2
I /Ve

fMe (x, i) = n(x) e
e

where ve [2Te (x)/mel/2 is the electron thermal speed, and

n (x) = dV, fMe (5.19)

- C

is the electron density. The linearized form of Eq.(5.14)

is satisfied by

= Vi - k c afM ek fMe
= ( v -) -- A - A c m

BO ax kll c e avI

(5.20)

The induced density and parallel current are then given by

'

dvll fene =

(5.17)

(5.18)

(5.21)
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Je =-e fe (5.22)

_a0

These two quantities are related by a continuity equation

obtained by integrating (5.14) over v, which gives

an + v(V f + VE * vn = O (5.23)

Inserting (5.15) in this equation, we find

= enw ( *e e (5.24)ne(5.24)
lie k w Te n

where we kycTe/eBr is the electron drift frequency, and
y e n

-1
r =-dknn/dx. The integral (5.21) may be expressed in terms
n

of the function

co 2-u
1 ue

W(X) J 1 du , Im(A) > 0 (5.25)

which is related to the plasma dispersion function33

Z(X) by W(X) = -[1 + Z(A)]. Thus Eq, (5.21) becomes

neT( ~ eA) 1 W*e L *e
n - o (Oe 2 e kw e 2

*e ne (5.26)+ --4 (5.26)
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where X e 6 /JxJ, and n e r dnT e/dx. Then from (5.24)

we find

ne2w A)} E e X .e 1 2

lie Te 2e -( e e w e

(5.27)

As noted previously, these equations scale x with 6e. Assuming

> at' our neglect of p is justified since

P vm c 2r
e < e e n <<1 (5.28a)e vmc 2r «< 1(5.28a)
6 X 6eB L
e o s

where we have introduced a convenient parameter

6* W*e Ls/kyve (5.28b)

In treating the ion terms, we cannot neglect i, although

we shall still assume w << 2i = eBo/mic. Furthermore, provided

the ion temperature T T , the wave ion resonances occur at

distances 6i wL /kyvi, where vi is the ion thermal speed,

which are greater than either 6e or pi, that is, outside the

layer. Thus we can safely assume w >> lvi, which results

in a considerable simplification.

We solve the Vlasov equation for the ion distribution

function fi

af . a +f. aif.
t + (E + v x B) 0 (5.29)

at - ar m. c Tv



-84-

by the method of characteristics 34, as detailed in Appendix

D. The solution is of the form

fi = fMi + fi (5.30)

where the first term gives the equilibrium ion distribution

function as a Maxwellian with a slow spatial variation,

2 2(x) = n(x) -v /V i (5.31)
fM(X'v) 3/2 Zv.

1/2
where vi = [2Ti(x)/mi.] 2 .

The perturbed ion density and parallel current are given

by expressions analogous to Eqs. (5.21-22),

I 3
div fi (5.32)

Jli =e d3v vz f (5.33)

The ion response is best treated with the introduction

of a Fourier representation for the rapid variation of the

potentials. Thus we define a Fourier transform functional

, defined by

3[f] (k) dx e- ik x +(x) , (5.34a)

I
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with an inverse given by

[b] (x) = J dk eikx ok) (5.34b)

(5.34

and in performing the integral (5.34a), the slow variation of

(x) is taken to be constant. Also note that the limits of

integration in (5.34a) treat x as an inner variable.

The integrals (5.32,33) are performed in Appendix D. If

we define

,(k) - 3 [] (k) (5.35)

the result can be written

ne W*i ) *i b(S 
;[ni]= nTe So (1 - 1-+- nib(So 1

nev k11v. *. *.
nei kcli S [1 - (1 +ni)] + nib(So S1 )
Tic m o 0 i (

(5.36)

and

I = 2nw~i 2 ~

wk i* i )
+ 1 nib(S o -S 1) r (5.37)

I T (k) 7- a [A (k)
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1 2 2
where w = -kyCTi/eBor n , n = r dnTi/dx, b k 1 k2p2Y i 0 ' i n 2 i

and So,l(b) = exp(-b)I 1(b), where I 1 are modified Bessel

functions. Note that Eqs. (5.36,37) still retain slow equi-

librium x-dependence through n(x), Ti (x), Y(x). Now as

long as > (w/klc)A, the assumption w >> k vi renders the

second term of (5.36) negligible. Thus the ions couple only

to the electrostatic potential.

Now we may return to Poisson's equation (5.12a) with

the expressions (5.26,36). For the identified scales

6 e ',pi' V 2 is negligible, so we are left with the quasi-

neutrality condition

n = ni . (5.38)

If we compare the currents (5.27,37), we note that

2 2

Jlli Te klCV1
. << 1 , (5.39)

T. 2
Jle i w

hence the parallel conductivity is due primarily to finite

electron inertia, and Jili may be ignored. We also note that

2 2 2
d /dx >> k. Thus Ampere's law becomes

y

dA 4 rr
2 c JlIe (5.40)dx

After factoring out the common exponential factors in (5.38,40),

we arrive at a pair of equations for (x), A(x):
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6 v 6

¢(1+WT) - ( A)Pe( ) = 1 [ [ ] G] (x) (5.41a)

2 = 2roppe , (5.41b)
dx2 vec x xc e dx e

2 2
where = /w,e, = T /Ti, pe 4rrne /me. The conductivity

pe e 4 pe e

function Pe is defined

1 1 2
Pe (Ae) = 2e + W(Ae) [ - 1 + ne ( e)] (5.42)

Noting that i = -'*e/T' we may write

G(k) = So( + ) - nib(So - S ) (5.3)

which is the non-adiabatic ion response function. The right

hand side of (5.41a) gives this ion response to correct to

all orders of Pi. This term is an integral operator which is

in fact a convolution

1~ [ []G](x)= Jdx (x-x)g(x) = (go ) (x) , (5.44)

where g - -1 [G]. Manifest in (5.44) is the fact that the

ion response to is nonlocal.

Finally we note that it is possible to transform to a pair

of potentials with definite parity. In fact
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+ ~ - 1 (5.45a)

x CA A 2 v (5.45b)
ee

leaves (5.41) invariant and makes odd, A even in x. In terms

of these new potentials, the boundary conditions for matching

to the MHD region are

rlH x
%(x) X (-X 2 F) (5.46a)

A(x) c x (x) (5.46b)
e e

as xI x . In the next two chapters we shall examine solutions

to the system (5.41) with (5.46).
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CHAPTER 6

In this chapter we examine the stability properties of

modes that owe their existence to the decoupling of plasma

motion from that of the field lines. Thus we look for these

modes in regimes of ideal MHD stability, that is, where H < 0.

Referring to Fig. 6, we identify two such Bp regimes. However,

in this analysis we must assume B <<1, where

Be L 4renT L
- ( S)= ) (6.1)
2 rn 2 rn

so that our results are directly applicable only to the low-

beta regime. We shall also restrict our attention to the

realistic case Te Ti and ne " 1 which was not covered by pre-

vious treatmentsl6. For simplicity we shall assume 6e <p'

in which case the solution of Eqs. (4.51,46) can be given in

terms of certain integral expressions 7. Finally a numerical

approach may be used to study these expressions and complete

the analysis of these modes23.

The analysis presented in this chapter was originally

17,23developed for the treatment of m >2 reconnecting modes

When IXH' is fairly large, the boundary conditions (5.46)

for the m= 1 case are essentially the same as in the m > 2

case, and so the same analysis may be applied21 . However,

for the sake of definiteness, the original analysis took
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k >0, while we have k <0. Rather than redo the analysis
Y Y

making the change of signs explicit, we shall instead repeat

the analysis with ky > 0 and note that the physical results

Re(w)/ky and growth rate Im(w) should be independent of the

sign of ky. (Since the boundary conditions are real, working

with either (5.7) or its complex conjugate should produce

the same results.)

6.1 Integral formulation of collisionless reconnecting modes

In the analysis of reconnecting modes, it is conventional

to asymptotically match solutions of Eq. (5.41) to the boundary

conditions via the discontinuity A in the derivative of the

perturbed vector potential

A A (1 + A Ixl) (6.2)

where comparison with (5.46) gives the constant A =

crlXH~./(ve6e) and

A = (6.3)rlH

which is positive for AH < O0. Referring to Ampere's law (5.41b),

we find (6.2) remains valid across the region provided << 1.

Adopting this "constant A approximation", the integral of

Ampere's law across the reconnecting region gives

26 6 6

Ax26-[P e e ) (6.4), d2 dX. e
J~~~~~"-
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2 2 2
where (x) = c(x)/(v Ao ) d c /pe is the electron skin

depth, and 6, was defined in Eq. (5.28b). In this approxima-

tion the quasi-neutrality equation (5.41a) becomes

^ ^ ^ 6 6 ^

g - (1+ T) = Pe ( (6.5)

A slight rearrangement gives

-(6e/x)Pe e g , (
1 + T - P 1 + T -Pe

which allows us to rewrite (6.4) as

468

=2 (A -A) (6.7)
whe2 reo 1

where

( W o d
0

(6e/X) Pe (6e/IxI)

1 +rT -Pe(6e/X )

1 dx g o Pe(6e/IxI)

. 1 + WT -Pe (6e/xj )
(6.9)

2'
Now for 6 <<Pi' / O 6e/Pi Thus, for d /(46) <<1, the

mode frequencies are determined by A o() = 0. Stability

and

(6.8)
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properties are then determined by A and A1 (W).

6.2 Evaluation of A

The function AO(w) is defined by a contour integral which

lies along the positive real x-axis when Im(w) is sufficiently

large. Since we require Ao to be an analytic function of ,

we must deform the contour of integration C so that it is

crossed by no poles of the integrand. Changing variables,

X 6 /x, Eq. (6.8) becomes

^ +P (X)
A = (1 + T) d () (6.10)

C

where the denominator is

De () = 1 + T - P () . (6.11)

The contour C must be deformed from the positive real A-axis

so as to avoid the zeros of D (X). Since the integrand is zero

along IXI = , any ray emanating from the origin and satisfying

this criterion may be chosen.

The behavior of the zeros of D (X) are determined from

several observations. First, for Iw[ X, no zeros of De (X)

exist in the upper half A-plane. To determine if zeros of

De(A) pass into the upper half A-plane, we look for zeros of

D (X) for real values of as a function of real . We find
e

that for w +-l/T , D () +0 while as w +0, De (0) +0. If in

addition ne > 2, then D(A+) =0 when = + - (ne/2-1)/T, where



-93-

Im(X)

INTEGRATION
PATH

INTEGRATION
PATH

Figure 7: Poles of the integrand and integration

contour for A().

Re(X)

Im(X)

rH

H

A
C = 

Re(X)

%d -

-

rH



-94-

= ( - 1)/r + 1/2. Thus the number of poles in the upper

half -plane will depend on whether n e is greater or less than

2. Pole plots for the integrand are shown in Fig. 7.

For ne <2, there is only one pole in the upper half

plane, which is present for -1/t < w <0. This pole is found on

the imaginary -axis since W(X) is then real. In this case, we

integrate along the negative real axis, thereby avoiding the

pole. The resulting value of A () is complex for w in this

range. For other values of w (i.e. X <-l/T, >0), it is

convenient to integrate along the imaginary axis; for these

cases A is purely imaginary.

For n >2, two poles may cross into the upper half

A-plane. When w < 0, only one of these poles is present,

and the evaluation of A0 proceeds as in the ne <2 case. As

w is increased through zero, a second pole crosses the real

A-axis (at =0 ) and moves up the imaginary axis. At some

critical frequency w = c' the two poles meet at A = Ac . For

larger values of w, the two poles split off the axis and move

towards the lower half plane, eventually crossing the real

axis when = + at = + and _. For w > c' Ao can be evalu-

ated with an integral along the imaginary axis. In the range

< < 'W we must choose a contour which snakes between the

poles. In practice this is accomplished with a contour along

the real axis and a residue from a pole on the imaginary axis,

P (p (w))
R (w) = + 27i e, (6.12)

De (p ("))
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where Ap is the location of the pole (IAp I X iI), and the

prime denotes a derivative with respect to A.

At the critical frequency , there is a double pole at

Xc, thus De (A) = De (A) = 0. Introducing a frequency-indepen-

dent function

Be(X) = -2 le +W(X)[l1 + e( ( -)] , (6.13)

we find and are a solution of the system
C C

[T -W(Ac)] + Be(Ac) = 0 (6.14a)

c W (X) + B(Xc) = 0. (6.14b)

On the imaginary axis these equations are real; eliminating

c between them yields a single equation which may be solved

numerically for Ac and, therefore, wc

Finally, the asymptotic approximation to the W-function

W(A) + + 15 + (6.15)
2A 4A 8A

as IAI + X, may be used to approximate the integrand to order

-4X . Thus for the integral from A to , we have, to order
m

-3
m
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-1- ne (w+l-2 n )+r -4n -2
Io (A,') + (6.16)

m 12X (1 + UT)

Combining Eqs. (6.10, 12, 16), we find

A m oW(X) + 1-B (X)
A (M) = ( l+r) dA e

J OA[T - W(X)] +B e (X)

+ Io(m,w) + R () . (6.17)

To calculate O() we first store values of W(X), Be (X) along

the required axes from X =0 to IXmI. Then Simpson's rule

may be applied to the first term of Eq. (6.17) for all ;

additional evaluations of W(X), Be (X) are made only for

0 < ' < , when R (w) is required.

Nyquist plots of A () are readily obtained by evaluating

Eq. (6.17) for real values of . Typical plots for ne <2

and ne >2 are shown in Figs. 8 and 9, respectively. In addi-

tion to the poles at w=0, w , , we note that there are two

zeros. One of these, at w= -l/T, occurs at a branch point

of hO and has a phase velocity w/ky =-cTi/(eBorn). The other

zero occurs for = w o >0, and therefore has a phase velocity

in the opposite direction. This frequency is primarily a

function of ne and is only weakly dependent on Te/Ti. We may

obtain a good estimate 6 for by neglecting * altogether in
Eq. (6.4), and rewriting
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Nyquist plot of A0 (w) for ne = 1.0, T = 1.Figure 8:
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Nyquist plot of A () for -ne 3.0, = 1.Figure 9:
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1 1 d
P (X) = W(X) [- (1+2ne)] + 2 e d XI [ (6.18)

Then we have

[- (1 +-n e )] J dX W(() (6.19)

0

so that

WO 1 + 2 e (6.20)

Both of these functions are displayed in Fig. 10.

Recalling Eq. (6.7), the mode with = wc is unstable when
'd2

R (A d /(4 6*) + ) > 0. The growth rate can be estimated

from a Taylor series expansion of AO() around wo:

Re [ d /(46*) + A(1( o
) ]

¥ = e ^,JIw* (6.21)
IA (W) /awl =

0 WWO 0

The mode with w =-1/T requires ImA > 0 in addition for insta-

bility. Thus to assess the stability properties of these

modes, we need to examine 1

6.3 Stability properties

The integral expression for a1 can be greatly simplified

by the introduction of Fourier transforms. The main advantage

is that the convolution factor g o reduces to a product of

transforms G. Our remaining task will be to find a suitable

expression for the unknown .
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Recalling Eqs. (5.33a,44), we note

(g a ) (x) = dk (k)G(k)eikX (6.22)

-D

where ~ = f[i], and G is given by Eq. (5.43). Then if we

define a function

(6 /x)Pe ( e / xl

s (x) = e e , (6.23)
1 + WT Pe(6e/Ixl)

introduce Eqs. (6.22,23) in the expression (6.9) for Al, and

interchange the order of k- and x-integration, we find

1 dk
A1 6 27 Se(-k) Ik)G(k) (6.24)

e
0

where S = J[s ], and we have used the fact that Se, and G

are odd, odd and even functions of k.

To proceed, we need to determine (k). We cannot solve

Eq. (6.5) for (k) exactly, but we can construct an approximate

solution when 6e << p. Note that (6.20) implies

6 6 1 L m e Te' --s (6.25)
Pi Pi 2 r( e (6.25)

The most rapid variations in (x) occur for x 6 . In this

regime the ion response is mostly adiabatic 7, so the second
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term of Eq. (6.6) is negligible. Taking the Fourier transform

we find

t(k) = - S (k) (6.26)

efor k 1// e . Conversely, the long-wavelength limit is deter-
mined by x pi for which Pe = 1 - w. The Fourier transform

of Eq. (6.6) then gives

o(k) = i6 sign(k) (6.27)
e w (1 +) G(k)

which is valid for k l 1/pi .

These expressions are asymptotically matched. Noting

that G(k >X) = 0, and

S (k 0) = i ^ , (6.28)
e e (l+X)

we see that the k +0O limit of (6.26) is equal to the k+

limit of Eq. (6.27). An asymptotically matched expression is

D(k) = - S (k) (l+) (6.29)
e w (1 +) -G(k)

which is valid for all k to leading order in 6 e/Pi

Numerical evaluation of S (k) is complicated by the l/x

decay of se (x), which leads to a discontinuity in S (k) at
e e
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k =0. The discontinuity is removed from the numerical proce-

dure by introducing

S (k - 0) x 6
t (x) = e i 2 e (6.30a)2 2x +x

0o

tl(x) = s (x) - t (x). (6.30b)

We then find (To ,l = [t o, ])

Tl (k) = S (k- 0) sign(k) ekxoI (6.31)

so that T(k) is continuous as k 0. The choice of a value

for the parameter x is quite arbitrary; in practice it was

chosen to minimize the importance of T (k) near k= 0.

(Typically x 10 6
e .)

Since t (x) decays as 1/x , we approximate its Fourier

transform as an integral over a finite domain approximated

by a summation,

N

Tl(k) h E e-ikxn tl(x ) (6.32a)
n=l

x =h (N 1 n) (6.32b)n 2

to leading order in the small step size h. Note that Eq.

(6.32) is only valid for k << 2/h; however, the integral

(6.24) converges before large k-values are reached. Finally,
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if we restrict attention to a discrete set of k-values,

k = 2/hN, = 0,1, ..., Eq. (6.32a) becomes

N

-2Ti(2 -) E 2rink/N t (Xn) (6.33)
T (k ) =e e

n=l

This summation can be economically performed by using the fast

Fourier transform technique . Satisfactory results were

obtained for h 0.16 and N =2m, m -11.

We can now calculate (k); a typical case is shown in

Fig. 11. The sharp peak in ImD occurs when Eq. (6.27) is

valid and reflects the variation of G on the scale k l/pi.

For k 1/6 , Eq. (6.26) is valid; the oscillatory behavior

of is due to 6e, since G decays as l/k.

Numerical values of Al(ne) are plotted in Fig. 12 for

several values of Ls/r . A deuterium plasma with Te = Ti

was assumed, hence n e = ni and 6/pi (Ls/r n)/120. If we

rewrite Eq. (6.24), using Eq. (6.29),

A = dk S (k) 2 [ (1+ r)G(k) ] (6.34)

0

we can explain some of the qualitative features of these

plots. Comparison of Eq. (6.29) with Fig. 11 shows that as

k -+0, ImS2, ReS <0. Since the quantity in brackets in Eq.
e e

(6.34) is sharply peaked at k O, we find that most of the

contribution to the integral comes from the range k l/pi,

thus Al 16e/p i , and ImA1, ReA1 <0.
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Referring to Figs. 8 and 9, this means that the mode with

= -1/T is stable. The stability criterion for the other

mode is expressed in terms of A , or recalling Eq. (6.2),

XH' The mode is unstable for

0 > > i 4[Re pi rn' ne ] niT (6.35)

which for the paramters of Fig. 12 gives

0 l> >a 1 1 (6.36)
Pi 240 rn ReA1

These results are in general agreement with those of

Ref. (16) where the case ne 1 and T 'T. was excluded frome 1

the analytic treatment, but was considered in a purely numerical

solution. We find the same roughly linear dependence of the

stability boundary on ne. Our treatment of the ion gyro-radius

effects results, however, in instability at slightly smaller

values of A (larger values of Hx I).

In conclusion we note that the non-adiabatic ion response

exerts a strong stabilizing effect on these collisionless

reconnecting modes. This stabilization increases with both

ne and Ls/rn.
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CHAPTER 7

7.1 Collisionless internal kink modes

In the previous chapter we saw that the non-adiabatic

ion response to the electrostatic potential was responsible

for a strong stabilizing effect on collisionless reconnecting

modes. In this chapter we shall examine what role this ion

response plays in modifying the behavior of the internal kink

modes that exist when AH > 0. We note, however, that the

approach of the preceding chapter is limited by the need to

adopt the "constant A" approximation, which imposes a low-beta

restriction, << 1. Since it is our desire to investigate

higher beta regimes, we shall take a different approach in our

analysis.

A related difficulty arises from the fact that near

marginal stability the vector potential is far from being

constant (although for 8 << 1 it may not depart significantly

from the MHD result (5.46)). At the same time the electro-

static potential does not decay towards the boundaries of

the layer, but rather it approaches a constant. Consequently

it does not have a Fourier transform in the usual sense, which

makes the analysis of the previous chapter inappropriate.

These problems are resolve by the formulation of the problem

presented below.

The system of equations (5.41) may be rewritten

d2A ^ ^ A

dx2 w(h (7.1a)dx
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x d A - dA 
P dx2
e

(7.lb)

where we have written = /%., A = A6eve/(c¢ ), and

= (Be/2)(Ls/rn 2
S= (ae/2)(Ls/rn) was defined in Eq. (6.1). We have intro-

duced a new convolution kernel

h(x) = g(x) - (1 + wT) 6 (x) (7.2)

where 6(x) is the Dirac delta function. The Fourier trans-

form of h is

H(k) = (1 +wT) (S -1) - nib(So -S 1) (7.3)

where we recall b=k 2 p/2, S (b) =exp(-b) I (b) and IaremoifedBes fni NL o,l o 1 
are modified Bessel functions. Now we introduce a function

A A

dA rllH
X x - - A+dx 

whose virtue lies in its derivative

dx _ d2A
dx X -- dx

Then if we differentiate (7.lb), A can be replaced by X:

rX
d 1 dx ) _ + + H_

B e / x r x

(7.4)

(7.5)

(7.6)
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Now if we make the replacement (7.5) in Eq. (7.1a) and differ-

entiate,

2 d
_ = -ihA d

d x Ow [o )(7.7)

we obtain a pair of equations in which only the derivative

of 4 appears. Thus when we Fourier transform Eq. (7.7), we

obtain an algebraic relationship between X- [XX] and

-[d/dx],

2 ^^
k X(k) + wH(k)-(k) = 0 . (7.8)

Boundary conditions on X for the differential equation

(7.6) may be obtained from those on A and Eq. (7.4). In the

first place, since A is even, is as well. Eq. (7.4) may be

inverted:

A(x) - H x(x) -x dx) (7.9)
Aax = 2x dx

where the constant of integration was chosen to agree with

Eq. (5.46) in thelimit x+-. For consistency in the limit

x --, we require
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dx 1 d 1 (7.10)I x dx

-00

and of course X(x +--±) = 0. This condition may be expressed

in terms of d/dx, since Eq. (5.46a) implies

dx d = -1 , (7.11a)
dx

or equivalently

-(0) = -1 . (7.11b)

To summarize, we have reformulated the original integro-

differential system of equations (5.41) in A and into a new

system (7.6,8) in X and d/dx, which is, in fact, applicable

at arbitrary XH and B. The new system has an advantage in

that the integral relation between X and d/dx take the simple

form Eq. (7.8). We can exploit this to construct a quadratic

form for alone. If we multiply Eq. (7.6) by X and integrate,

then

[d (1 dX )4 2 rd 0 (7 12)

-aX )X e00 -00
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where the first integral is a principle value integral because

of the 1/x2 singularity of the integrand. Integrating the first

term by parts, and expressing the second in terms of Fourier

transforms, we have

dx d)2 + 1 d (x2) rl H d
~W dx x- ( x) 1 dx

e

$Wp (6e/n) dx n 7n
- im 2 X() 1 de(ri) + - 1

+ dk (k) X(k) = 0 , (7.13)

where we have used the fact that X and X are even. The

second term vanishes provided X satisfies Eq. (7.6). We can

eliminate (k) in the last term using Eq. (7.8). Using the

normalization (7.10) in the first term we finally have

X] -dx 1 d)2 1 d 2 +^1A x dx X)cowPe

dk k 2 (7.14)
X 0 (7.14)

owH
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This quadratic form may then be used in conjunction

with trial functions X to provide estimates of the eigenvalue

w. That is, we require

5[X] (, rlXH, Pi 6*' T , i; W) (7.15)

where we have explicitly indicated the parameters that appear

in Eq. (7.14). We note that the trial function must be normal-

ized according to Eq. (7.10). As a further condition, we note

that although for an eigenfunction Eqs. (7.10) and (7.11)

are equivalent, for a trial function this is generally not the

case. Thus we require Eq. (7.11) to be explicitly satisfied,

that is

X(O) = im wH(k (k)
k +0 k

= - w(l+Wr) Pi (7.16)

Finally, we note that although the form (7.14) is self-adjoint,

the function Pe (6e/Ix) is in general complex. The eigenvalue

w is then complex, and so the estimates of w made by Eq. (7.15)

are not extremal. In particular, we will not be able to place

lower or upper bounds on the growth rate y. However, we note

that insofar as the conductivity term is concerned, this

quadratic form is the same as one discussed by other authors36'37

who found excellent agreement between variational estimates and

numerical results.
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7.2 Model problem

The system of equations developed in the previous section

is still too complicated to solve directly, primarily due

to the complexity of the functions Pe and H. In this section

we shall therefore look for solutions to a simplified problem,

in which the effects of temperature gradients are neglected.

That is, we set

ne ni = , (7.17)

and for convenience we equate Te and Ti. In addition we shall

approximate the functional forms of Pe -W(Se/Ixi) and H 

[l-S (b)]. Noting that W(kO0) = -1 and W( +) 1/2X20
we take

2 226 -x
1 1 e
1 e_ I = .(.. 2 (7.18)

OWP ( /|XD aw (W -1) x

Since S (b 0) l -b and S (b+X) = (2fb) 1/2, we approximate0 0

k2 1 2
-k _ 1 (I + k2) . (7.19)

BH (k) ( + 1) Pi

We shall use the quadratic form (7.14) to examine the

gross stability properties of these modes. For this model

problem, we have
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9[x] (B, A, 6,/pi; w) = 0 , (7.20)

that is, the behavior of these modes can be discussed in terms

of a parameter space in B and

X r 1 H/Pi (7.21)

which for the purpose of this chapter we take non-negative.

The parameter

Pi 2r n i (7.22)

2rn I

shall be viewed as being held fixed. A convenient choice for

the trial function is

3

X(x) 2 2 (7.23)
ir ( + 6 )

whose Fourier transform is

X(k) = 62 eIlkI6 (7.24)

and these expressions make sense while Re(6 ) >0 and Re(6) >0.

The motivation for the functional form of (7.23) lies in the

fact that the MHD solution (2.54, 3.46) when expressed in terms

of X is expression (7.23) with 6 = XH. Evaluating d[X] using
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the model functions (7.18, 19), we find

2 2

1 5 e - 1 + 1 Pi Pi

(W -1) 2 62 4 8 2 

where the condition (7.16) gives

2 1 26 - ( l) Pi (7.26)
2 .

Solutions of Eq. (7.25) in a few limiting cases are of

interest. When y - -iw >> 1, a balance of the third and fifth

terms (all others being negligible) yields

Iy= Ajd Yx/1/2 (7.27a)

which in fact gives the ideal MHD internal kink growth rate

(2.53,3.42),

Y = XH VA/L s , (7.27b)

1/2
where vA is the Alfven speed B /(4inm) /2. Another possi-

bility is a balance between the first and third terms. This

gives a low-8 unstable mode,

/5 6*/BP i I (7.28a)I 
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whose growth rate may be written

y = IJ5 dAky/2LsI (7.28b)

This mode has been noted by other authors20'21and can exist

even for H = 0.

An important question is the fate of these modes in

high-S regimes. Taking the limit >> 1, the last three terms

may be balanced to find

= -1 + 0(B) (7.29)

which implies a stabilization at high . In fact for H= 0,

Eqs. (7.25) and (7.26) may be combined to give

42^ 2 - 42 + 2 + 206/Pi 2
^2 2 =O (7.30)

4B (w - 1)

Marginal stability then occurs at

2 1/2

_ 1 5+
4 + (6 )+ 2 (7.31)

c -4 Pi

For deuterium, and Ls/r = 10, SB=0.56. These results are

summarized in Fig. 13 which illustrates the different insta-

bility regimes in the (X,B) parameter space.

When H = 0 the analysis simplifies, because with the

approximation (7.19), we may rewrite Eq. (7.8) as
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df 1 2

dx( +1) idx 
aw ( + 1 P 

(7.32)d x
- -

Using this equation to eliminate d/dx in Eq. (7.6) gives a

single homogeneous second order differential equation for X,

d 2 dX1 1 2
dx (- dx (^2 T 2 X

(7.33)

Now as x, we find

2 _ w -1
K = 2

WPi

^ ̂2 2 1/2
If we define a new variable x= xK (Pi/26*)

(7.34)

then Eq. (7.33)

takes the simple form

^ 2

dx 2 2 L+ L2dx x 2 26*r / dx x r 

where

-2 2
2 1 Pi ^2r - 2 (1 - )

4d*

(7.35)

(7.36)

--KX
X 'e
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As long as w / [0,1], we may solve Eq. (7.35) on a contour for

which x is real; a solution decaying in x also decays in x.

Eq. (7.35) has a single solution. In the limit as

B +0, the solution is simply

^2

(x) -X /2 r = 1 (7.37)

which has a growth rate that scales as Eq. (7.28),

y = d vAky/Ls . (7.38)

At high values of , the solution develops the exponential

tail (7.34), while retaining the Gaussian shape near x= 0.

This is in fact guaranteed by the singular nature of Eq. (7.35)

at x = 0. Numerical solutions of this equation with the proper

asymptotic behavior are obtained by a shooting procedure.

That is, a differential equation solver38 is initialized at

large x using Eq. (7.34) and used to integrate inwards to x= 0.

The eigenvalue r2 is obtained by the requirement that X be
3 A3

even. In practice we require d3X/dx3 = 0 at x= 0, since the

A 2
singularity at the origin demands dX/dx= 0 for any r. The

growth rate is then computed from r2 via Eq. (7.36); these

results are displayed in Fig. 14 as functions of B. The eigen-

function X at the marginal point Bc= 0.41 is plotted in Fig.

15.
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Figure 14: Variation of eigenvalues r2 , y2 with for

the solution of Eqs.(7.35,36).
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Figure 15: Eigenfunction X(x) for Eq.(7.35) with = 0.4.
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This stabilization at H = 0 can be demonstrated simply

from a quadratic form that we can construct for Eq. (7.35).

When solved for r it gives

dx x + (pi/ 2 6*) dx (dx/dx)2 2 2

2 -X _

2 
dx x dx [(l/x)(dx/dx) + X]

_-co _c00

Thus as 8 +-, r increases at most linearly with 8. However

Eq. (7.36) implies

r2 X (1 _-) (7.40)

-1 2
so that w +-1 + O( ). Note also that r is real, so the

marginal point is =0.

To summarize the results of this chapter, we have refor-

mulated the collisionless reconnection equations into a form

suitable for treating reconnecting modes for arbitrary values

of . Restricting attention to modes with H 0 and neglecting

the effects of temperature gradients, we found that these modes

are stable at high beta. For small H,' the stability thres-

hold was found at Bc < 1/2. Recalling that when H < 0 there

was extra stabilization for n e > 0, we would expect stability

to improve in a more exact treatment of these modes.
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CHAPTER 8

Summary and conclusions

In this thesis we have examined the linear stability of

high temperature plasmas against the onset of internal

kink modes. For the sake of definiteness we have assumed

a large aspect ratio toroidal geometry with an axisymmetric

confinement configuration typical of tokamak experiments.

These instabilities are kinks in the sense that they involve

a macroscopic outward displacement of the center of the plasma

column, and internal modes in the sense that the amplitude

of the plasma displacement falls to zero at the plasma

boundary.

These modes were analyzed within the framework of the

ideal MHD theory in the first half of this thesis. There

we were able to identify two general EBp regimes of stability.

In the low-beta, eBp ' e regime, the plasma is stable provided

CBp is less than some critical value and q 0 >1/2, where q0

is the value of the inverse rotational transform at the

magnetic axis. Above this threshold, the plasma remains

unstable until finite-beta, CoBp 1 regimes are reached.

There we found a second point of marginal stability against

internal kinks, which exists regardless of the value of q.

Above this point the plasma is completely stable. This

stabilization was attributed to the enhanced magnetic tension

induced by the plasma pressure gradient which results from

the equilibrium crowding of the magnetic flux surfaces towards

the outside of the plasma.
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Recognizing that the ideal MHD solution changes rapidly

across a narrow radial layer, we considered the possibility

that non-ideal effects could play a major role in this layer

and thereby alter the stability properties of the plasma.

To address this question we assumed that the temperatures

were sufficiently high that collisions could be neglected.

Recalling from Chapters 7 and 8 that w a*e' the assumption

>e, or equivalently kll e>1, places the restriction on

the temperature

5/2
(Lr A) n ln(1-eV) > 1.38 ( )(lkG)( 14 3)( 2 ) (8.1)

10 cm 10cm

where v is the electron-electron collision frequency, ee e

is the electron mean free path, and lnA is the Coulomb

logarithm. Then from a kinetic description of the plasma

constituents, we were able to derive a set of equations for

the electromagnetic potentials within the layer. In conjunc-

tion with boundary conditions imposed by the external MHD

solution, these equations are sufficient for a solution of

the problem. This description was then reformulated in terms

of a new function X, which allowed us to consider arbitrary

regimes of and X, where

" Se - -2 -) (8.2)
n

provides a measure of the plasma beta, and
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X - (8.3)
1

where AH is the MHD stability parameter.

The results of our analysis of these modes are indicated

schematically in Fig. 16, where we identify stable and unstable

regimes in (,B) space. For <0, the ideal MHD theory pre-

dicts stability. However the low-beta analysis of Chapter 7

shows that a collisionless mode, the reconnecting mode, is

unstable below a threshold. At = O, which is the ideal MHD

marginal stability curve, we find what we have called the

collisionless internal kink instability. This mode is in

fact the collisionless analog of the resistive internal kink

mode. In Chapter 8 we found that this mode was stable for

B X 1. As X increases, the significance of non-ideal effects

decreases, until we recover what is essentially the ideal

internal kink mode, at A 1. Finally the MHD boundary condi-

tions on the reconnecting layer imply a relation between

B and A, since AH(Bep). We have indicated this schematically

by the dashed.curve in Fig. 16 (assuming q > 1/2). Then we

can consider a flux-conserving sequence of equilibria starting

at low-beta and progressing towards finite-beta regimes. We

would expect the plasma to be unstable to the reconnecting

mode, the collisionless kink, and finally the ideal internal

kink, before finally stabilizing at finite-beta regimes.
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This picture is, however, incomplete to the extent that

we have not been able to analyze the reconnecting modes for

8 X 1. On the other hand, the topology of Fig. 16 suggests

that this is a regime of stability for the reconnecting modes.

In addition, recent work on tearing modes, the resistive

counterpart of collisionless reconnecting modes, shows that

these modes are stable at B 1 in the limit of low collision-

ality.3 9 Furthermore, the effects of temperature gradients

on the collisionless kinks were completely neglected. On

the basis of the analysis for the reconnecting modes, we

would expect additional stabilization to result from their

inclusion in the analysis. Aside from these noted exceptions,

our description of these collisionless modes can be considered

complete.

Improvements and extensions to this theory might be made

in several ways. We recall that the MHD calculation of H

was performed using circular cross-section flux surfaces.

Ideally we would like to include small amounts of ellipticity

and triangularity in order to make a better approximation

to experimental configurations. Realistically, however, this

could prove an intractable analytic problem; the better pros-

pects for results probably lie with the fully numerical

approach using equilibrium and stability codes.

As far as the collisionless calculation is concerned,

we note that we proceeded on the fairly strong assumption

that the perpendicular component of the vector potential

could be neglected. Although this assumption is a priori
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reasonable at low-beta, it is probably not valid when B 2 1.

In this case we should redo the calculation of Chapter 5 to

derive a set of three coupled equations in ~, We , A . We

should also note that the matching between MHD and slab regions

was made with the leading l/(r-r 1
) 2 singularity in d/dr

given by Eqs. (2.51) and (3.41). This allowed us to perform

the analysis within the collisionless layer using definite

parity functions. The next order corrections to Eqs. (2.51)

and (3.41) can be calculated, and in fact introduce a small

antisymmetric component to the boundary conditions (5.46),

thereby breaking the symmetry within the layer. Collisionless

equations retaining this asymmetry within the layer have

been derived40, but their analysis is extremely difficult.

A more serious difficulty resides in our choice of a

slab geometry for the reconnecting layer. In a full toroidal

geometry, we recall that the local value of the inverse

rotational transform

rBt rTD
q = RB-R (8.4)

p RR

depends on the poloidal angle through D. Thus the resonant

surface is not in fact coincident with the q(r) = l1/n surface.

Thus we should consider abandoning the slab layer as presently

formulated, and instead consider a fully toroidal treatment.

At the same time, retention of the m=2 harmonic in the mode

resonant layer may be necessary.
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Finally there is the question of the non-linear

evolution of these modes. The importance of the ideal internal

kink has often been underrated due to the fact that it seems

25
to saturate non-linearly at a relatively small amplitude .

This non-linear evolution should be investigated in finite-

beta regimes.

On the other hand, there are indications that the internal

kink has been observed in recent experimental work. High-

frequency oscillations without sawtooth oscillations were

observed in the JFT-2 tokamak, and a possible explanation

in terms of the ideal internal kink, or perhaps the m= 1

41
resistive internal kink, was proposed . (The temperatures

in this experiment are still too low for a collisionless

kink.) More recently the PDX group has reported MHD "fish-

bone" activity at high neutral beam injection power, which

they interpret in terms of an ideal internal kink4 . Clearly

there are many prospects for future work on these internal

modes.
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APPENDIX A

In this appendix we determine the Green's function G(r,r)

that is used in Chapters 2 and 3 to express x2 in terms of
I. By definition G(r,) satisfies

x1 . By definition G(r,r) satisfies

L3 = (r-r) 2+ E A
L(r) G(r,r) =-r E2(r) a (r-r) (r) 6 (r-r) ,

r r E3) (A.1)

subject to the boundary conditions

G(O,r) = G(a,r) = 0 for 0 < r < a (A.2)

The differential operator L(r) is defined as

L(r)G(r,r)- ar 2r E4 (r r)
- rB

· , ,, 3

+ r 2E5 (r)) -2rE 6 (r)j G(r,r) , (A.3)

and the coefficient functions Ei are given in Chapter 2

for the low-beta case and in Chapter 3 for the finite-

beta case. Except for r= r, G satisfies L(r)G(r,r) =0.

Thus we set:

G(r,r) = G+r (r) x+ (r) (+rr)

where x+ and x are the solutions of the homogeneous equation

(A.4)
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L(r) x (r) = 0 , (A.5)

that satisfy the boundary conditions

x (O) = 0 , (A.6a)

x+ (a) = (A.6b)

The + subscripts refer to r < r, and the boundary conditions

(A.6) are such that Eq. (A.2) holds. The normalization of

x+ is arbitrary. Next we must determine the coefficients

G+(r) so that Eq. (A.1) is satisfied at r= r. The inhomo-

geneous terms of Eq. (A.1) force both G and its r-derivative

to be discontinuous at r= r. The first of these two terms

balances the discontinuity:

GAr+0 A) A^r- 0 r) E2(r)

G(r+O,r) - G(r-O,r) = - (A.7a)
2E4(r)

In addition, if we integrate Eq. (A.1) across r= r, we find:

aG(r+O,r) aG(r-O,r) E3(r) (A.7b)
ar ar

2rE 4(r)

Substituting our expression (A.4) for G(r,r), we arrive at

the pair of equations:
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^ A A E2 (r)
G+(r)x+(r) - G (r)x (r) = - I ,

+ + -2E4 (r)

, ^ A A , E3 (r)
G+(r)r x+(r) - G (r)rx (r) = 

2E4 (r)

The solution is:

G+, (r) =

(A. 8a)

(A. 8b)

(A.9)

^3 ^2
E2 (r)r ; (r)+E3 (r)r x(r)

2E4 ( r ) r
3 x+(r) (r) (r)2E4(r)r [x (r)x- (r)-x+ (r)x Cr)]

The denominator of this expression is 2r E4 times the Wron-

skian of x+ and x, and is therefore a constant which we choose

to evaluate at r = r1. Then if we normalize x+ so that

x+ (r1) = 1 (A.10)

and define

1
b = 

4
[r1 x(r 1 ) - 1]

c - 4 [r1 x+(r1 ) + 3]

(A. lla)

(A. llb)1

we find

A 3 ^ A ^ 2 (r)

E2 ( r) r x-)+E 3() r x-(r)

8E4 (rl)r (b+l-c)
(A.12)
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Again we point out that, although formally defined in the

same way, these quantities are different for each beta regime,

due to the different definitions of the coefficient functions

2Ei. In regimes where << 1 we have E4 = (1/2-) . Thus,

if (a) <1/2, Eq. (A.5) has a regular singular point at the

m= 2 mode resonant surface r2. In order for x+ to represent

a physical displacement and still satisfy the boundary condi-

tion at r=a we must take in this case

x+(r) = 0 for r2 < r < a . (A.13)

For r < r2 , x+ is then taken to be the solution of (A.5)

which is finite at r= r2. No such problem arises in the

finite-beta regime where E4 never vanishes.
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APPENDIX B

In this appendix we derive some useful bounds for the

parameters b and c defined in Eq. (A.11). For the purpose

of calculating these parameters it is convenient to transform

Eq. (A.5) to a first order Ricatti equation:

r Z+ + h1 Z+ + h2 + (Z+ + 3) (Z - 1) = (B.1)

where

rx
Z = , (B.2)-+ x+

rE4
1 E

h 4 =

h2 =3 +and
rE5 +2ES -2E 6

2E4

The boundary conditions for Z+ are now:

Z (r+0O) = 1 , (B.5a)

Z+(r + a) = r-a (B.5b)+ r-a

with the exception that, when cBp << 1 and r2 <a, the boundary

condition for Z+ is changed to:

r-r2
Z+(r r2) = r2 (B.5c)+ 2 r2~~~~~

(B.3)

(B.4).



-140-

as discussed in Appendix A. In terms of Z+, the parameters

b and c are:

b = [Z(rl) - 1] , (B.6a)

c = [Z+(r) +3] (B.6b)

In regimes where Bp << 1 we have:

h 2 ' (B.7)
hl 1/2 - u

h2 =0 . (B.8)

We consider q(r) profiles that are monotonically increasing

(and parabolic near r= 0). Then Eq. (B.7) implies h1 <0 for

0 < r <r 2 , and from Eq. (B.1) we see that Z must be positive

wherever Z+ should equal 0 or 1, and negative if Z+ -3.

In addition, as r0, Z_(r) approaches 1 from above. Given

this behavior of Z near r= 0 and the boundary condition

(B.5b) or (B.5c) for Z+, we conclude that Z_(rl) >1 and

Z+(r1) <0, hence b >0 and c <3/4. Also if r2 < a and the

boundary condition (B.5c) applies, then Z+ (r1) >-3 and c >0.

When r1 approaches a, Eq. (B.5b) applies and c tends to -X.

On the other hand, when r1 approaches 0, Eq. (B.1) forces

Z+(r1) to approach -3 from above and c becomes positive.
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In finite-beta regimes it is convenient to transform

Eq. (B.1) into the integral relation:

1 2 Z l+[h2(r)-3]Z(r)
Z(r) r E4(r) 3 dr , (B.9)

r E4(r)
r0

where r0 is a constant of integration that should be fixed

in such a way that Z satisfies its desired boundary condition.

With r0 =a, the solution of Eq. (B.9) satisfies the external

boundary condition (B.5b) for Z+. The solution Z_ is obtained

as the (pointwise) limit of solutions of Eq. (B.9) when r + 0,

so that the internal boundary condition (B.5a) is satisfied.

Now, although we know that E4 >O0, it is difficult to obtain

bounds on Z+ and Z_ due to the complexity of the h2 - 3 term.

However, in the very high-beta (p >> 1) limit, where a tends

to zero except in a narrow region near the magnetic axis,

this term makes a negligible contribution to the integral

because h2.- 3 is of order . Then, provided r1 is not near

zero, we find Z+(rl) <0 and Z (r1) >0 so that c < 3/4 and

b > -1/4.
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APPENDIX C

Here we average over the Vlasov equation for electrons,

af af af
e a e e( 1 a+ v r e (E + - v xB) e at er m c - v

-ft e ·
(C.1)

to eliminate their rapid gyro-motion4 3 We transform to guiding

center coordinates

1R = r + - vxb
0 ~ 1 e .%,

(C.2)

where b =B/B, =-eB/m c. Then we expand the distribution
function in powe e

function in powers of e
e

f (R' v vL a) = f + fl + .e II ' o

where vl = v ·b, v = v xbl and a is the gyro-angle.

leading order in e' the Vlasov equation becomes

af af
Qe (v xb) 0 v -e av e act

(C.3)

To

(C.4)

and in the next,

af af af aR af
o o e )+ v E · + v Rat -m - Rv av BR

f
+ a (f +R ) = 0 

e ac R 1 aR (C.5)
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From (C.4) we conclude fo(R, vii , v). Since fl must be

periodic in a, we can eliminate the last term of (C.5) by

averaging over a. Noting that

eE a c E a E(v b) b= c (C
me av B av B
e 

and

f a a
da (v aR ) -0, da (E *a 0 (C.1· a R T - -

we find

af af af af
o + o cExb o e o0
at + v b* R + B aR Eb - -a 0 (Ct ii- R B me avI me" "~'~1~~~I

.6)

.7)

.8)

Identifying the electron position r with R gives Eq. (5.14)

of the main text.
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APPENDIX D

In this appendix we solve the Vlasov equation (5.29)

by the method of characteristics in order to calculate the

ion response.3 4 Writing the Vlasov equation

df. af. af. f.

dt t v ar a av (D.1)

where

a = e (E + 1 v x B), (D.2)
- mi - C

we see that the phase space density fiis constant along the

particle trajectories. Thus any function of the constants

of motion gives us an equilibrium solution. We choose

f (HP n e-H/Ti (D.3)
fMi (H,Py 3/2 3 e

1

where in our x-dependent equilibrium the energy and y-component

of canonical momentum are the only constants of motion

1 2
H = miv (D.4a)

P = miv + m.iix , (D.4b)
y ziy z1'
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where Q. =eB /m.c. Note that the x-dependence of n, T and
I o I i~~~~~~~~~~~~~~~~~~3

Vi= (2Ti/mi)1/2 must be expressed via Py.

potentials

- ['3] (k x ) =
ik r-iwt

e --
ik-r-iwt

='3A] (k ) = e - -

In response to

(D.5a)

(D.5b)e-z

we find a change F in f. determined by1

dF fMi= - a -adt - av

But

af~i f Mi
f Mi Mi= m.v + m.

am,~~~~~~

DfMi
eaP -y

Y

and

e e -e e
a = - + .V(v ) (V * V) T- m -m. -

1 1 1 1

so that

- af
dF _ Mi dt a 1

[e e v )at 3H dt at e

Mi e _ + e __ -- v ·
ap c dt y c
Y

(D.6)

(D.7)

(D.8)

(D.9)



-146-

Thus

-1 _fMi

F(t) = [et + ie( - v. )I] Mi
c aH

+ [ c ' + ik e(- v - )I] (D.10)c y Y c BP

where

I = J dt eik (r-r) - iw(t-t) (D.11)

is an integral over the trajectory r(t) of the particle which

terminates at r = r(t). Since pi << Ls we shall neglect the

effects of shear on the ion orbits, and take v = v e +v e ,x-x y-y
vi = vz. The main effect of the shear is to introduce an

effective kl =kyx/Ls. Also we shall neglect ky l/rl compared

to k 1/6. Thus we may write

ik v ik v
I = dt exp[ x singt - x Y (cosT -1)

ID

+ iklvzt - it] , (D.12)

and noting that

afMi = -1 af Mi 1 a (DMi
f (D.13)

=H T. Mi 'Py m iQ ax
1 y ii
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we find

ik T. afMi
F (t) (f + iIf - I

T. fMi Mi m. . Dx+ ( v If) . (D.14)Vz i m -. YC.ax1 1

The perturbed ion density and parallel current are given by

(5.32,33); noting F= '[f]

[ni] = <F> (D.15a)

[Jjl i ] = e <v F> (D.15b)

where

<...> E Jd3v (...) (D.16)

Defining w*i =-kycTi/eBorn we then have

[ni]= Te <fMi> + i<IfMi> +i*irn a <Ifi

+eT i<vIfMi +i rn v If Mi ] (D.17a)
cT-i i <V I *iun ax z i

2 r
i Ti zf > +iw<vzIfMi > +iirn <v IfMi>

+e >-i i<vIfM i +i <v irn (D.17b)
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where the notation /x reminds us not to differentiate kl

(cf. Eq. (D.14)). The velocity integrals may be performed

to give

<fMi > = n

<0 2 22_ 0vt
<If .> = n dt exp(bcost -b- 1 iwt)Mi 4

(D.18a)

(D. 18b)

<V If Mi> = nviz Mi 1

0 222
dt )exp (bcosQt - b - 1 -iwt)

_bcotb kl

(D.18c)

<v2If > =
z Mi

ro
2 | dt 

nv. dt -
1

222
exp (bcost - b - i iwt) (D.18d)

22
where b = k2pi/2. Using the ide

bcos6Th _ (bco s

ebcossit = I (b) e a
= -00

where I is the th modified Bessel function, and the conven-

ient definition of the plasma dispersion function

ix
2 2

d e

J _co

z (X) = 2ie-x (D. 19)

t
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the integrals (D.18) may be expressed

-b
ine 

<If i > = - e
Mi Ikiiv~

Z I (b) Z(XA)
= 2,=

inv.eb e
<vzIfMi> = - 1 | I(b)[l X Z(X)]z mlvi =- 

2 -b
2 inv. e<VIf Mi> = -| lvi|
z Mi IhlvjF I (b) [A + Z( )] . (D.20c)2, ~ , 2 6z 2

However in the limit w >>kll1vi, << ni, we have >> 1 for all

2, so that we can approximate

n e- b I (b)
CL) 0 (D.21a)

<vzIf i>

z Mi

2

kllv i
- <IfMi> 2w

2
V.

Mi> 1
2

Recalling that dIo/db= Il(b) , and defining S (b) =e bI (b), we

find for the derivatives

a <IfMi>= in [S + nib (S - S )]

nax ~fiz= x Ifi>-n i
-x <Vzlfi> - <IfMi> -In <fi

(D. 22a)

(D. 22b)

(D. 20a)

(D.20b)

(D. 2 b)

(D.21c)
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a 2 v i rli<vzIfMi> = -( <IfMi r) (D.22c)

where ni=d dnTi/dinn. Inserting (D.21,22) into (D.17) and

identifying k with k then gives the result (5.36,37) quoted

in the text.
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