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Steady and Unsteady Heat and Mass Transfer
Through Porous Media with Phase Change

by Andrew P. Shapiro

ABSTRACT

The bekhavior of 1liquid water in roof insulation is
important in determining the conditions for which the
insulation will tend to accumulate water or dry out.

A one-dimensional, quasi-steady, analytical model is
developed to simulate transient transport of heat and mass
with phase change through a porous slab subjected to
temperature and vapor concentration gradients.

Small scale experiments examining the heat and moisture
transport through fiberglass insulation were conducted.
These experiments indicate that <condensate tends to
accumulate in a non-uniform manner.

In spite of the irreqularities in moisture distribution,
the data from these experiments indicate that the quasi-
steady model is capable of predicting the transient behavior
of heat and moisture transport in roof insulation.
Additionally, the quasi-steady model is shown to agree well
with the experimental results from other researchers.
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1. Introduction

In recent years there has been much speculation regarding
the supply of cheap energy. Because the price of end-use
energy depends on many factors, it has been difficult to
make accurate predictions of the long term cost of energy.
It is this uncertainty which has prompted many industries to
employ energy conservation techniques as a hedge against
sudden increases in energy costs.

The building industry has been active in developing and
implementing energy conservation measures. Improvements
have been achieved in building materials, construction
techniques, and building design which have greatly reduced
the energy consumption requirements of both industrial and
residential buildings [9,12]. In the effort to reduce
energy loss (or gain) through the building shell the two
major approaches have been to add thermal insulation and to
reduce air infiltration.

One of the major problems associated with the resulting
energy-efficient buildings is water vapor condensation
within the building shell. The reduced air infiltration can
cause undesirably high levels of humidity to occur inside
the building. As this humid interior air comes in contact

with the cold external building skin, condensation can be

expected.



Another manner in which water enters the building shell
is by leakage through holes and cracks in the exterior
shell. The numerous penetrations in the building shell
necessary for ventilation, air conditioning, and heating
provide 1likely sites for water leakage. The flat roof,
popular on industrial buildings for its low capital cost, is
especially vulneralble to leaks.

These two modes of water infiltration, condensation and
leakage, can be responsible for higher heat losses, due to
the decreased thermal resistance of the insulating material,
as well as the destruction of the building shell. Once the
water gets inside the roof cavity, the chances of fungal
decay of wooden components are greatly increased [10]. In
many cases the roof must be replaced. To illustrate the
magnitude of this problem the U.S. currently spends
approximately $10 billion per year on roofing, half of which
goes to repairs and maintance [11].

Therefore there is a clear need to understand the
mechanisms involved in moisture transfer in roofing systems.
Of primary importance is the wunderstanding of the
environmental conditions necessary to dry out a roofing
systen. Because of the inherent coupling of moisture
transfer and heat transfer, it 1is also necessary to
understand the effects of moisture on the heat transfer
behavior of the roofing system.

A review of the previous analytical work on simultaneous

heat and moisture in insulating materials indicates that it



is necessary to make simplifying assumptions to develop a
reasonable model[2,3]. However it is essential that such
simplification do not 1lose sight of the controlling
parameters. The first simplification is to model the
roofing system as a one-dimensional system. Secondly, the
roofing insulation is treated as a uniform porous medium
through which heat and vapor diffuse. The mechanism of
liquid diffusion may or may not be important. The theory of
liquid diffusion has been extensively applied to the field
of so0il mechanics. Reference [1] presents the theory of
liquid diffusion in soil. It is shown that below a critical
liquid content level the liquid is essentially immobile, and
above this critical 1level the 1liquid is subject to
diffusion.

Simultaneous transport of heat and mass through porous
insulation with condensation has been studied extensively
[2,3,4,5]. The analytic work of Thomas et al [2] presents
a set of differential equations to simulate the simultaneous
transfer of heat vapor and liquid through porous insulation.
Although their transient numerical model is verified by
experiment, the results cannot be generalized and the most
important governing parameters are not identified. In
addition their explicit solution is too complicate to be
easily applied

Motakef [3] has developed a simplified analytic model of
simultaneous heat and mass transport through porous media

with phase change. His formulation yields a completely



generalized solution for steady-state conditions in which
the parameters governing heat transfer, condensation rate,
and vapor diffusion are well defined. Motakef has also
shown that the steady-state solution can form the basis of a
transient model.

The previous experimental work on moisture transfer in
insulating materials [2,4] has clearly demonstrated the
coupling of heat transfer and moisture movement. Howevear
these experiments were of limited applicability to roofing
systems. The work of Katsenelenbogen[4] examining vapor
diffusion in vertically oriented polystyrene, demonstrates
the possibility of a 2zone of condensation within the
insulating slab as predicted by Motakef's model. Thomas et
al [2] examined moisture migration in horizontally oriented
figerlass <completely encased ©polyethylene film. His
experimental results provide useful data with which to
compare analytic models, but do not accurately represent a
roofing -system.

The objectives of this work are:

- To develop useful analytic tools capable of predicting
those cases for which a horizontal roof is subject to the
accumulation of condensate, and those cases for which a wet
roof will dry out. The heat transfer behavior of these roofs
is also of interest.

- To develop a small scale experimental apparatus to

investigate the behavior of liquid and heat transpoxt in a



sample of roofing material subjected to a variety of

realistic environmental conditions.

The quasi-steady model presented in this work is based
largely on the model developed by Motakef. Here, the
contribution has been the implementation of the transient
model and the verification of this model through numerical
simulation and experimentation.

There are two major objectives to the experimental
section of this work. The first is to provide a versatile
tool for testing the performance of small scale roofing
samples subjected to a variety of conditions. It is believed
observations from such experiments will 1lead to an
understanding of the physics involved in moisture movement.
Secondly, the experimental work will provide a means to
validate the analytic models developed in the following
sections. It is desirable to have the capability to subject
the sample to steady-state temperature and humidity
conditions as well as time varying conditions. The steady-
state conditions will provide information valuable to the
development of an analytic model, whereas the transient
conditions will be able to simulate actual weather
conditions.

The experiments presented in this work can be divided in
two catagories. The first two experiments have been designed
to verify the ability of the test apparatus to provide a

one-dimensional environment in which to test roofing



samples. The last two experiments examine the transient
behavior of moisture in fiberglass insulation.

In specific, the first experiment demonstrates the
ability to accurately determine the conductivity of an
insulation sample if a one-dimensional temperature field is
assumed. Though this ability was not employed in the
subsequent experiments, it is included here as reference for
future experiments. The second experiment verifies the one-
dimensional behavior of heat and vapor flux through a dry
insulation sample. In this experiment the failure mode of
the humidity sensors is also demonstrated. The next
experiment examines the movement of moisture in an
insulation sample with a vapor barrier on the cold side.
The last experiment is a study of the drying of an
insulation sample given an initial 1liquid content and

subjected to a temperature and concentration gradient.



2. ANALYSIS

2.1 PROBLEM STATEMENT

In this section we analyse the simultaneous transport of
heat, vapor, and moisture in fiberglass roofing insulation.
Assuming discontinuous, randomly oriented fibers the
insulation is modeled as a one-dimensional infinite slab of
a porous medium.

In this analysis we consider an infinite slab of a
porous medium that is permeable to heat, vapor, and 1liquid
water flux. The void space of the porous medium is occupied
primarily by air and water vapor. The slab 1is placed
horizontally with the high temperature reservoir below and
the low temperature reservoir above the slab. With the heat
transfer by conduction and radiation combined into an
effective conductivity, it can be assumed that heat is
transported solely by conduction from the high temperature
reservoir to the low temperature reservoir. Vapor diffuses
from the reservoir of higher vapor concentration to the
reservoir of lower concentration. The energy flux due to
diffusing vapor and air 1is assumed to be negligible.
Depending on the values of temperature and humidity in the
reservoirs, the temperature and concentration fields within
the slab may form a zone of saturation conditions, where the
local temperatures in <this 2zone equal the dew-point

associated with the local values of the vapor concentration.



In such a zone there will be phase change of vapor to
liquid. This condensation releases 1latent heat which
affects the temperature field. Thus the mechanisms of heat

and mass transfer through porous media with phase change are

coupled.

The goal of this analysis is to model the heat, vapor,
and liquid transport in such a slab with steady-state and

transient reservoir conditions.

2.2. HEAT AND MASS TRANSFER WITH PHASE CHANGE

IN POROUS MEDIA: SPATIALLY STEADY ANALYSIS

In this secton we consider the case in which the
reservoirs surrounding the slab are characterized by
constant temperature and humidity. In both reservoirs the
relative humidity is below 100 %. The reservoirs below and

above the slab are identified by (T, Cnp) and (T, Cg)

respectively:
T, — temperature of the hot reservoir
Cn — vapor concentration of the hot reservoir
T . ~ temperature of the cold reservoir

C. - vapor concentration of the cold reservoir

with Tp > T¢ and Cp > Cg



2.2.1 HEAT AND VAPOR TRANSPORT IN THE DRY REGIONS

Given that neither reservoir has a relative humidity of
100%, 1if condensation occurs it will be in a region
sandwiched between two dry zones. In each dry zone there
are no heat or vapor sources so the heat flux, q/A, is given
by Fourier's Law and the vapor flux, J,, is given by Fick's

Law:

a/A = -k dT/dz (1)

Jdy = —Dy, dc/dz (2)
where z is the distance across the slab measured from the
hot side. Integration of egs. (1) and (2) show that the dry
regions cn each side of the wet zone have linear temperature
and concentration profiles for steady-state conditions.
Let the wet zone have boundaries at Z2g and zq (2o < 2,) and
the temperatures at these boundaries be T, and T,. Since
these boundaries mark the edges of the region of
condensation the vapor concentration at z; is the saturation

concentration at T,, namely:

*

and similarly,

*
C; = C (Tq)
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Hence the temperature and concentration profiles in the

dry zone adjacent to the high temperature reservoir are

given by:
T = Th - Z/ZO (Th"To) (3)

For the dry region adjacent to the low temperature reservoir

we have:
T = Tg + (Lg=2)/(Lg=29) (T1-T¢) (5)
C = Cc + (Lt-z)/(Lt—zl) (Cq=Cc) (6)

where L¢ is the total length of the slab.

2.2.2 HEAT AND VAPOR TRANSPORT IN THE

CONDENSATION REGION

Let the region of condensation in a slab of a porous
medium, possibly between two dry regions, be characterized
by width L,, and temperatures T, and T, at the boundaries,
with T, > T,. The entire region being at saturation

requires that the temperature and concentration profile are

coupled such that



11

*
C(x) = C (T(x))

%*
where C is the saturation concentration of water vapor.

Vapor and heat diffuse from the hot side (x=0) to the

cold side (x=L,) . Heat is also conducted from the hot side

to the cold side.

The differential equation describing the steady-state

heat flow in the region is:

-k d2T(x) = w(x) (7)
dx?

where w denotes the rate of heat generation per unit volume.
Steady-state vapor flux is given by:

D, d2C(x) = I'(x) (8)
dx?

where I' denotes the rate of condensation per unit volume.

The energy released by condensation is the source at

heat generation, thus:

w((x) = hfg r(x)

where hfg is the latent heat of condensation.

The condensation rate, I', couples egns. (7) and (8).

Eliminating I' from them forms one differential equation:

42T + (hfg Dv / k) d2C = 0 (9)
dx? dx?
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To non-dimensionalize eq.(9), we define the following terms:

H
I

AT!' = To - Tl
c ' = (Cy + Cp)/2

AC! =Co - Cl

n' = (T - Tp') / T
T = (C-2c¢c.") / ac!

Q' = hgy 4C'/p cp T,' [Kossovitch number]
B' = AT'/T.'

Le = o / Dy

X =x/1L,

The resulting non-dimensionalization of eq.(9) yields:

dzn'/dx? + (Q'/Le B') d2C/dx? = 0 (10)

C is a function of 5 determined by the equation of state of
liquid water in saturation with its vapor. Thus eq. (10) is

a second order nonlinear equation whose boundary conditions

are:

7' (x=0) = .5
n'(x=1) = -.5
Note that in this geometry, X measures distance from the hot

side of the wet zone.



2.2.2.1 ANALYTICAL SOLUTION

Motakef[3] has solved eq. (10) in an analytic form using
a perturbation solution around a linear temperature profile.
In this formulation ideal gas behavior of the air/vapor
mixture is assumed, and the Clausius-Clapeyron relation is

invoked to express C as a function of A'.

C/C.' = exp (4)
where ¢ ='B'n' / (1L + B'n")
7' = hfg/(R Tr')

Motakef's approximation of n'(x) is given by:

n' = .50 1 - x - exp(Ax) = 1 (11)
exp(d) - 1
2
where A= 2 ' 8'q’
Le + y'Q!

This simple form of #5'(x) is a function of the parameter ..
This parameter is composed of the physical properties of air
and water, and the boundary conditions T(,,T;, and Ly.
Motakef[3] has shown that ) represents the ratio of the heat
released by condensation to the heat that would be conducted

through the medium if no condensation occurred.

13



2.2.2.2. NUMERICAL SOLUTION

Ed.(10) can be also solved numerically. The advantages
of a well-formed numerical solution are increased accuracy,
and flexibility in incorporating realistic changes in
physical properties resulting from condensation. An
additional use of the numerical solution is to verify the
accuracy of the analytic solution. Here the Clausius-
Clapeyron relation is used to approximate the rate of change

of saturation concentration of a vapor with temperature:
* *
dc/dT = hgy C / R T2 (12)
In this numerical approach C is determined from saturation
data at each step, whereas in the analytic solution eq. (12)
is integrated to give C as a simple function of Tr' and Cr',
the mean temperature and concentration of the wet zone. The
magnitude of the error induced by this approximation is

examined in section 2.2.2.3.

14



Using eq. (12), eq.(10) is recast in a finite difference

form using centered approximations for all derivatives:

2
T(i=1)=2T(i)+T(i+1) F(T(i)) + T(i+1)=T(i-1) K(T(i))=0
AX 2 AX
(13)
where
F(T(i)) = 1 + hggDv/k) (hgg C(T)2/(RT))
K(T(i)) = hgg?Dv C(T) / (k R T° ) (hgy/RT = 2)
C(T) is obtained frcm saturation data.

This second order nonlinear differential equation requires

at the

If the temperature

two boundary conditions.

boundaries, T, and T,, are known then the problem is fully

specified.
The method of solution is an iterative process based on
Newton's Method. The region of condensation is divided into

n sections (n=50 in our program). In this method, G(i) is

defined by the left hand side of eq. (13). The idea is to

In matrix notation

set G(i) equal to zero for all n.
Newton's Method can be expressed by:
k k+1 k

J AT = =G
where .

J(i,i)=4G(i) = -2 F(T;i)) + T(i+1)-2T¥i)+T(i-1) aF

aT (1) AX AX aT (1)
+ | T(i+1) - }(i—l) 8K
4 AX aT (i)

ELLiiiJ.::éFLi:Ll
2 AX i

J(i,i-1)=4G(i)
a(T(i-1))

F(T(§))-K(T(1))

AX

r-

T(i+l) - T(i-1)
2 AX

E

J(i,i+1)=4G (i)
d(T(i+1))

F(T(}))+K(T(i))
AX

15



J 1is the Jacobian matrix whose (i,3) component is
8G(i)/aT(j), and AT is the incremental change in the T
matrix. Since J 1is tridiagonal, it can be inverted
efficiently by elimination. Thus the AT matrix for step k+1
is given by:
k+1 k k-1
AT = -G (J)
In practice the OT matrix is multiplied by a scalar,a
(0<a<l), to ensure convergence. The solution is reached in

approximately ten iterations.

2.2.2.3. COMPARISON OF ANALYTICAL AND NUMERICAL SOLUTION
TO TEMPERATURE PROFILE IN WET ZONE

Figure 1 shows the reduced temperature profile in a
region of condensation as determined by the analytic method
described in section 2.2.2.1 and the numerical method
described 1in section 2.2.2.2. The relatively steep
temperature and concentration gradients in this case
represents an extreme condition at which to test the
analytical solution, because the rate of condensation will
be considerably higher than in most practical cases
involving roof insulation. The agreement between the
methods indicates that the approximations incorporated in
the analytical model, namely the use of the Clausius-

Clapeyron relation for determining the saturation

16



concentration and the perturbation solution of eq.(9), do
not introduce significant error into the solution of the
temperature field.

There are two advantages to the analytical solution.
First of all, its solution is fast and straightforward.
Once the boundary temperatures and wet zone thickness are
determined, the parameter ) can be calculated and the
temperature field is given by eq.(11). Secondly the
parameter ) provides immediate information regarding the
rate of overall condensation. The numerical model gives no
such insight.

As an illustrative example, the condensation rate in the

case depicted in fig | is determined as follows:

T, = 305 T, = 274 L, =0.1m

A =2 4' B'a" =2 (17.9)2 (.107) (29.5) = 3.82
Le + 7'a" 1 + (17.9) (29.5)

A =

2 He, T
K (To=17)/Ly

T = 0.023 kg/m?hr

17



=

nl

(T - T-7) / (To - Ta)

18

WET ZONE TEMPERATURE PROFILE
Comparison of Analytical arid Numerical Solutions

| 1l [ 1 l 1 7 T r' i r T [ T l T ] T
TO = 305 X T1 = 274 X ]
) analytical .

numerical /

FIG 1
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2.3 ZONE MATCHING -~ SPATIALLY STEADY REGIMES

In sections 2.2.1 and 2.2.2 the temperature and
concentration profiles in a slab of a porous medium with
condensation were determined in the dry and wet regions
respectively. 1In each regime the temperatures and positions
of the boundaries were assumed. In this section we consider
the conditions at the wet/dry interfaces in order to
determine the  temperatures and positions of these
boundaries. Two scenarios are examined: one in which the
condensate is in pendular form and is essentailly immobile;
and another in which the condensate moves against the
gradient of liquid content in a liquid diffusion process.

The case of immobile condensate ccrresponds to the onset
of condensation and subsequent low liquid content levels.
In this case there is an accumulation of condensate. As the
liquid content grows there is a tendency for capillary
forces to act on the droplets of condensate. The effect of
the capillary forces is to make the condensate mobile. When
all of the condensate is subjected to these capillary
interactions, the resulting mechanism of liquid mobility can
be modeled as liquid diffusion [1,3]. This is the behavior

assumed for the case of mobile condensate.



2.3.1 IMMOBILE CONDENSATE

20

Consider a slab of porous medium exposed to constant

temperature and vapor concentration boundary conditions,
such that there exists a region of condensation. If the
liquid content in the wet zone is below a critical level,
determined by the porous medium stucture, the condensate
will accumulate in small droplets and remain stationary. The
rate of condensation is given by eq.(8). The boundary
conditions at the wet/dry interface are determined by heat

and mass balances at the interfaces:

Th—= = - dT/dz
29 at 2=z,
Ch=Cop = - dc/dz
Zo
I =T, = - dT/d4z
1~ at z=z, (20)
Ci1= CC = - dc/dz
J."Zl

The four unknowns, T,,T,,23,27 are therefore specified by
the four boundary conditions. These boundary equation are
valid assuming the conductivity and diffusivity of the

insulation is unaffected by ligquid content.



2.3.1.1. MATCHING ZONES in the ANALYTIC SOLUTION

Motakef[3] has combined the four boundary conditions,
using the Clausius-Clapeyron relation and dropping high

order terms , into two implicit equations with two unknowns,

n0 and nl:

1 - hh exp(uh) + uh =0

(21)
1 - h, exp(u,) + ug, =0
where
Uh = "h T 7o
Ug = ¢ =~ 11
hy = C, / Cgqa¢(Ty) = relative humidity of hot side
h, = Co / Cgat(Ts) = relative humidity of cold side
Tr = (Th + Tc)/2

>
=]
i

Th =~ T¢
n = (T = Ty)/aT
Figure 2 is a plot of u for a given relative humidity,h, or

h The positive value of u is used when determining uh,

c.
the negative value corresponds to u,. Thus if given Ty, T
hy, hg, then the temperature at the wet/dry interface can be
found from eq.(21). With Ty and T, known eq.(11l) can be

used with the boundary conditions to solve for z5 and z,:

Zg= 2

(22)
S5+nl - 20=-n1 o1 12
n2+ ———'1——.5“”0 ni S

n2( 1-(n0-n1)/(.5-n0))

+ +5tnl - 20=21 ;1 12
2+ 50 ™ .5-n0

21



where by
I = -.5 exp(r) - 1
dexp () + 1
2 = -.5 exp(r) - 1

With Ty, T,, 2o, 2z, determined, the temperature and vapor
concentration distributions are obtained using the analyses

of sections 2.2.1 and 2.2.2.

22
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2.3.1.2. MATCHING ZONES IN THE NUMERICAL SOLUTION

As in the analytic solution, the numerical solution
satisfies continuity of heat and vapor flux at the wet/dry
interfaces. Those boundary conditions are given by
egs. (20). For the boundary at z,, the first two conditions

given in eq.(20) are combined to eliminate 2z,:

TIh=Tq - daT at 4 zg (23)

*
Since Cy and 4T/dC are both functions of T, and are
obtained from saturation data, the only unknown in eq. (23)
is Ty, which can be obtained by iterative solution of

eq.(23). Similarly T, can be obtained by iteration on the

following equation:

I, = Tc = dT at 2z = Zq (24)

The method chosen for converging on the correct values of T,
and T, was a modified Newton's Method. For obtaining Tj,, let

G and J be defined as follows:

*

G=_Ty =T, . 4T
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The goal of Newton's method is to set G equal to zero.

After each guess of T,, J is calculated. The subsequent

guess of T, is given by:
k+1 _ k
TO = TO - G / J

This algorithm converges to within 0.01 degree K of the
final value of T, in approximately 15 iterations. T, is
obtained similarly.

Once T, and T; are determined the position of the
wet/dry interfaces, zy and z; can be found using a similar
modified Newton's algorithm. By balancing the heat
generated by condensation with the vapor condensed in the

wet zone, the following relation is derived:

2y =1-zo|la= To * Cheg Do/k) (G -~ Cy) (24)
To = T + (heg D./k) (Co — Cu)
The numerical scheme used to determine z0 and 2zl is again
iterative. Define G(z,) as the discrepancy of the
temperature gradient across the wet/dry interface at zl1l, and

define J as the unit change in G per unit change in z1l:

k=  Tc-T,% - dr at z = z;
l‘-zl dz
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where AGK is the change in G resulting from the change in z,
at iteration k. The first guess of 2z, implies z; via
eq. (24). Newton's method determines the next guess of 2o as
follows:
az gkt = - g(zg)K / Ik

In practice the incremental change in 2z, is multiplied by
.5. This has the effect of ensuring convergence while
sacrificing speed. Nevertheless the final value of 2z, is
reached in typically 20 iterations. Thus we have determined
Tor T1+, 29, and z; for the spatially steady case of immobile
condensate. The temperature and concentration distributions

are determined via the analyses in sections 2.2.1 and

2.2.2.3.
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2.3.1.3. COMPARISON OF ANALYTICAL AND NUMERICAL
WITH IMMOBILE CONDENSATE

The complete solution for three examples of spatially
steady condensation occurring within a porous slab with
immobile condensate are presented in figures 3 =~ 5. The
three profiles represent relative humidities in both
reservoirs of 90 %, 80 %, and 70 %. Because the analytical
solution is based on a perturbation of a linear profile, the
resulting error increases with the degree of curvature of
these profiles. Therefore the relatively high temperature
drop across the slab used in these simulations will show a
high error compared to a more moderated temperaure drop.
There is some discrepancy between the analytical and
numerical results for the temperature distribution in the
slab. However the important quantities of heat flux
entering and leaving the slab are in agreement.

This discrepancy in the temperature profiles arises
because of the high sensitivity of the positon of z; and 2z,
on the gradients of the temperature profile at the wet/dry
interfaces ( see 2q.(20)). In the analytical solution, the
temperature of the wet zone boundaries are determined from
eq.(21). In that formulation, high order terms were
discarded. This approximation introduces a small error
into the calculated values of ny, 77, 29, and 2zj. Table 1
compares the boundary conditions of the wet zone with Hh and

Hc = 90 %, as determined by the analytical and numerical

methods.
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TABLE 1: COMPARISON OF ANALYTICAL AND NUMERICAIL SOLUTIONS

Immobile Condensate

Hh = Hc = 0.90

ANALYTICAL NUMERICAL
Ty 305 K 305 K
T 274 K 274 X
To 296.6 K 294.4 K
T, 280.2 K 280.2 K
Zo 0.343 0.401
21 0.858 0.843
Qin 0.79 0.85
Qout 1.40 1.32

note: Q = Q (T - To)/ k Lg

For many practical problems, the quantity of primary
interest is the heat tranfer across the slab. In these
applications, such as determining the heat flux in a
partially wetted slab, the analytical and numerical
solutions agree well. In cases of more moderate temperature

drops across the slab, the models agreement is even better.
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2.3.2. MOBILE CONDENSATE

If the liquid content in the condensate region is above
a critical level, 6c, the condensate can become mobile by
the mechanism of liquid diffusion [1,3]. Condensate can also
move by dripping due to gravity. This work examines only the
affects of liquid diffusion by capillarity. 1In this section
the temperature and concentration profiles of a condensate
region with mobile condensate are matched to the surrounding
dry zones. As in the previous case of immobile condensate,
we consider a slab of porous medium exposed to constant
temperature and vapor concentration boundary conditions, and

solve for the spatially steady temperature and concentration

profiles.

The liquid content profile is coupled to the vapor
concentration profile which in turn is coupled to the
temperature profile. With e defined as the ratio of the
volume of 1liquid condensate to the volume of air in the
media, and ¢ defined as the porosity of the nmedia,

conservation of water yields:

peDy d?e _ -D,, d2C (25)
dz? dz?

-D,, d%C = k/h 42T (26)
v dz?2 fg dz?

Combining egs.(25) and (26) we have:
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4?8 - k/ (peDyhgy) 42T (27)
dz? 179 “qge

33

The boundary conditions for the liquid content at the edge

of the wet region are 8 = 6c. These boundary conditions are
determined from the following condition: if 6(zg5:2;)) is
less than 6c, the condensate is immoblie and this analysis
does not apply; if 6(z3iz,) is greater than ec, then the
liquid will diffuse into the dry region and the problem is
not spatially steady. With the liquid content, e, specified

at the two boundaries, eq.(27) can be integrated twice to

solve for 6(z):
8(z) =8, + M C. Le 8 / (ped) [T + ATz - (T,+AT/2)] (28)

At steady-state there is no net accumulation of
condensate in the wet zone. Therefore the condensing vapor
is exactly balanced by evaporation of condensate at the
wet/dry interfaces. The liquid flux at each boundary, JO
and J1, can be determined by integrating eq. (27) once and

applying Fick's Law for diffusion:
J = - (peDy) de/dz (29)

The evaporation of liquid at the boundaries creates both a
source of vapor and a sink for heat. Therefore the
gradients of temperature and concentration will be

discontinuous at the wet/dry interfaces. Balancing heat
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flux and vapor flux at these interfaces provides the
criteria for matching the solutions of the temperature and

concentration profiles in the wet zone to the dry zone.

-k (Th"To)/Zo = =k dT/dZ + JO hfg at Z=Zo (30)

=Dy, (Ch=Cp)/2q = =Dy, dC/dz - Jg at z=z,5 (31)

-k (Ty-Tg)/(1-2z1) = -k dT/dz + J; hgy at z=z; (32)

-D, (C,-Cc)/(1-2z;) = -D, dC/dz - J,  at z=z, (33)

The following two sections describe the methods used 1in
satisfying egs. (30) through (33) in analytical and numerical

methods of solution.



2.3.2.1. MATCHING ZONES IN THE ANALYTIC SOLUTION
WITH MOBILE CONDENSATE

The analytic solution for the temperature profile in a
slab of a porous medium with a region of mobile condensate
begins by solving for the liquid content profile in terms of
the analytic solution of the temperature filed given in
section 2.2.2.3. Recall that

T = .5] 1-x-exp(Ax)~-1 AT' + Tp.' (34)
exp()) -1

Eq. (34) gives the temperature profile in the region of

condensation. This expression is substituted into eq. (28)

to yield:
e(x)=6c + .5 M C.' Le B' -exp(Ax) =1 (35)
p eq' exp()r) -1

where M is the ratio of vapor diffusivity to 1liquid
diffusivity. Having solved for e in the wet zone, the

liquid fluxes at the wet/dry interfaces,JO0O and J1l, are

determined from eq.(29):

Jo = Le 8' expA=1)-) (36)
Q 2 exp(xr-1)

Ji, = Le g' -llexp(A)+]
n' 2 exp(ir-1)

Under steady-state conditions there is no net

accumulation of 1liquid and hence no net accumulation of
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vapor or heat in the wet zone. Therefore the vapor flux
entering the region of condensation equals the vapor flux

leaving. The same can be said for the heat flux. It follows

that:

Ci_~C. = Cn=2C (37)
S c €h—=Co

Le = 21 20

T, =T, = T, =T,

Ly = 23 290

By substituting the values for J, and J,, obtained by
eq.(36), into the boundary conditions given by egs. (30)-(33)

it can be shown after some algebra that:

I, =T = In =Ty = In=7T¢
Le = 23 2o
or in reduced temperature and length scales:
M=o = Ny4—=ne = 1
2o 1-2,4. (38)

This indicates that the heat flux entering and leaving the
porous slab is the same as if no condensation had taken
place. The same analysis applies to the vapor flux entering

and leaving the slab. Thus:

ChCo = CiCe = 1
o 1 <
20 —~Z2a (39)

It can showﬁ that any smcoth temperature distribution in the
wet 2zone will lead to the same conclusion[3]: The overall
steady state heat and vapor transfer through porous'media
with phase change and mobile condensate is identical to the

case in which no condensation occurs. This conclusion is of



37

course dependent on the validity of the one dimensional,
constant property assumptions inherent in this analysis.

By non-dimensionalizing and eliminating the length
scale from egs.(30)=-(33) and invoking the Clausius-
Clapeyron relation, Motakef[3] has derived the following

simultaneous equations in which the only two unknowns are 70

and 7n4:

hh exp(éy) = exp(dgy) =

"Th T "0
578 [1+ A ] (1+noﬂ)zexp(¢o) -
exp(i)-1
Le/Qy [- ) ]
exp(x)-1 J (40)

hc exp(4.) = exp(éq) =

e = M1
5 v 8 [1+ AQ_L(E.(A).] (14n,0) 2exp(4y) -
exp(2)-1

exp(i)-1 (41)

Le/Qy [- dexp (i) ]]
These equations can be solved by successive iteration to

yield the temperatures at the wet/dry interfaces.
With Ty and T, known all that remains to be specified

are the positions of the wet 2zone boundaries. The length

scales can be readily obtained from eq. (38):



20 = 7h < "o
(42)

23 =1 - (n7 = ng)

Section 2.3.2.3. shows various worked expamles and
compares them to the numerical solution descibed in the

following section.

2.3.2.2. MATCHING ZONES IN THE NUMERICAL SOLUTION
WITH MOBILE CONDENSATE

The method of matching the boundary conditions at the
wet/dry interfaces with mobile condensate differs from the
method used in the case of immobile condensate in that
T9,T1,2q, and z; are determined simultaneously in this case.
In the previous section it was shown that the temperature
and concentration profiles in the dry zones are identical to
the linear profile found in a slab with no condensation.
This result is a consequence of the balances of heat, vapor
and liquid flux and is independent of whether the solution
is arrived at by numerical or analytic techniques.

The algorithm to satisfy the interface boundary

conditions uses a Modified Newton's Method and proceeds as

follows:

k

1) zp™ and zlk are guessed at step k.
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2) Tok and le are obtained from the linear temperature

profiles in the dry zone:
k _ - - k
TO = Th (Th Tc) / Zo

T, K =1 - (T - T / 2,F

3) Given Ty, T,, 2,5, 2 at step k, the technique for
solving for the temperature field in the wet zone described

in section 2.2.3 is used to obtain:

dT/dzzo and dT/dZZIat the wet zone boundaries

4) Egs.(30) and (31) are used to calculate J0 and J1:

Jok

k/hgg [Ty = Tg + dT/dzg I
g1k = -k/hgy [Ty - T + d1/dzl|]
AR 4

5) Define functions GO and Gl from eqgs.(31) and (33)
which the Modified Newton's Method drives to zero:

It

k . 13
GO¥ = Dy [(Cp - Cg) + dC/dz ] + JO

i1k

. k
Dy [(Cp = Cc) + dc/dz ) + J1

6) Let acoX = go¥ - gok~1
a1k = g1k - @g1k-1

The next guess for z0 and 2zl are determined as

follows:
azpX = - co¥ / (acoK/azy¥)
2z,% = - 61K / (a61K/nz, %)
zok+1 = Zok + Azok

k k
Zl + Azl



To ensure convergence Azo':[ are reduced by a factor of
2. This algorithm converges in typically 20 steps. The
sucess of this somewhat crude technique lies in the fact
that the sensitivity of GO is dominated by zy and Gl is

dominated by z,.

2.3.2.3 COMPARISON OF THE ANALYTICAL AND NUMERICAL
SPATIALLY-STEADY SOLUTIONS
WITH MOBILE CONDENSATE

The complete spatially steady solution for the
temperature profiles in a porous slab with mobile condensate
in the interior of the slab are presented in figures 6 -~
8. These plots represent reservoir humidities of 90 %,
80%, and 70 %, respectively. There is excellent agreement
between the two techniques.

It is important to note the effect of mobile condensate
on the heat transfer through the slab. In general, when
compared to the case of immobile condensate (figs 3 - 5),
the heat flux entering the hot side is less and the heat
flux leaving is greater. Thus the mobility of the
condensate has the effect of moderating the changes in
overall heat . flux that occur from condensation. In
practical experiments it may be the case that the condensate
is partially mobile, and therefore the actual heat flux
would be expected to fall between the heat fluxes determined

by the immobile and mobile models.
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One other effect of mobile condensate is to spread out
the region of condensation. Table 2 compares the location
of the wet zone for cases of identical reservoir conditions

with mobile and immobile condensate.

TABLE 2
COMPARISON OF WET ZONE BOUNDARY LOCATIONS
WITH IMMOBILE AND MOBILE CONDENSATE

NUMERICAL SOLUTIONS

Relative Humidity Immobile Mobile
20 23 20 21

90 % 0.401 0.843 0.126 0.967

80 % 0.550 0.750 0.282 0.917

70 % 0.666 0.674 0.546 0.780

ANALYTICAL SOLUTIONS

Relative Humidity Immobile Mobile
z, zq. zg zq

90 % 0.343 0.858 0.121 0.971

80 % 0.478 0.782 0.261 0.922

70 % 0.585 0.709 0.456 0.822

Expanding of the wet 2zone by mobile condensate may be
significant when analyzing transient experimental data.
This effect is considered when examining the data presented

in section 3.
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2.4. HEAT AND MASS TRANSFER WITH PHASE CHANGE
IN POROUS MEDIA:
SPATIALLY UNSTEADY ANALYSIS

In this section the effects of time dependent boundary
conditions and of an arbitrary initial 1liquid content
distribution aré examined. The goal of this analysis is to
develop a model to determine whether a wet porous slab will
dry out completely or redistribute its moisture when exposed
to given time-varying boundary conditions. The case of
moderate liquid content level that is not prone to liquid
diffusion is studied.

Consider the drying of a slab of porous media with an
arbitrary liquid content distribution in the wet 2zone as
depicted in fig 9. A mass balance at the wet/dry interface
at the hot side of the wet zone involves diffusion of vapor

from the dry region, diffusion of vapor out of the wet

region, and evaporation at the boundary.

Dv(dC/dz - dC/dz) = p € 8(zq,t) dzy/dt (1)
2o~ Zo+

The heat balance yields:
k(dT/dz - dT/dz) = - hgy p € 8(2g,t) dzp/dt (2)
290~ 2o+
Similarly, for the wet/dry interface at the cold side of the

slab, the mass and heat balances yield:
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Dv(dC/dz - dC/dz) = -p ¢ 6(z,,t) dz;/dt (3)
z1l- z1+
k(dT/dz = aT/dz) = hgg p ¢ 6(21,t) dzy/dt (4)
21~ 21+
2.4.1. ANALYTICAL SOLUTION TO THE

SPATIALLY UNSTEADY PROBLEM

The analytical solution to heat and mass transport
through porous media with phase change and time dependent
boundary conditions proceeds by assuming the time scale for
the wet zone boundary movement, r,, is much greater than the
time scale associated with vapor diffussion and heat
conduction through the dry zone, ryq and r_, respectively.
With this assumption, at each time step the temperature and
concentration profiles in the dry zones are linear, and the
solution for the temperature and concentration profiles in
the wet zone is given by the analysis presented in section

2.3.2.

The basis for the quasi-steady assumption is , >> Tc,d

where:
= .2 = (1=2z.)2
Teo = 2097/ T7c1 = (1-2()“/a (5)

rdo = 20°/DV rqy = (1-zq)2/Dv (6)

The time constant of the wet zone boundary movement is
given in the following analysis. Those cases for which

Te<<rc,q are subject to this quasi-steady analysis. For all
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other cases, numerical solution of the coupled unsteady
heat and mass transfer equations is required.
With the aforementioned assumptions, the temperature and

concentration gradients in the dry zones are:

dT/dz = - (T, - Tg)/2¢g ¢ dT/dz T - (T7 = Tg)/(1-2,)
zg 2 (7)

dc/dz_= = (C, - Cq)/2q i dC/dz+= = (Cp = Co)/(1-2,)
ZO ZO (8)

Introducing egs.(7) and (8) into egs.(1)-(4) and

eliminating the dz,/dt term results in:

Diheg Ch=Co + Tn=To = |Diheg dC| + 1} dT
k Zo Zo ‘dé (9)

Duhea C3~Cg + Ty—-To = |Dyheg dCj + 1 dT'
k 1-z4 1-z, k  dT dz (10)
Ta <3
Non-dimensionalizing eq. (9) yields:
h—No + 0 hnexp(#,) ~ exp(fo) = (11)

2o lLe B Zo

[1 + iy (1+n°B)-=exp(¢o)} dx dn dy’
Lep dz dn’dz

where

dX/dZ = zl-ZO

dn/dn'= (Tp~-Tg)/(Tp-T3)
and

dn'/dx is obtained from differentiating the solution to



the temperature profile given in section 2.2.2.2:

dn'/dx = ~-.5 1 + lexp(\x) (12)
exp(i)-1

The same analysis is applied to the wet/dry interface at the
cold side of the wet zone. Motakef has manipulated egs.(11)

and (12) and their cold side counterparts to derive the

following two equations involving 5, and 75;:

N—Ne + N hhexp(ﬂh)—exp(ﬁo) = -.5[1+QY(1+h°B)‘2expC¢°)]
Leg
* _zo AT’E(1+A/(exp(A)-1)Ji
Z23~20 AT
Ni—Ne +_0 exp(@By)-hcexp(8.) = -.5[1+nvﬁ1+h;83-3exp(¢,)
Lep -

* 1=24 AT! |1 + Aexp ()
2a-2o OT (exp(A)—-1)
(13 a,b)
Motakef has obtained the following equation for the hot side
wet zone boundary movement rate by introducing the
expression for (n,-ng)/2g from eq.(11) into eq. (1) to yield:
0(zo,t?) dzoZ/dt’ =

-2
-2 exp(fo)—hnexp(fn) + (1+noh) exp(Fo)(Nn—No)

1 + 0 v/Le (1+noB)—Rexp(fs)

Similarly for the cold side: (14a,b)

O(zy,t’) d(1-2,4)2/dt? =
-2
2 exp(@i)—hcexp(fc) - (1+n,8) exp(ﬁi}(h,—nc)
1 + 00 v/Le (1413 8) " 2exp(@,)

where t' = Fo* C,./pe = Dv Cr t.
Le= pe
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Therefore the time scales associated with the movement of

the wet zone boundaries are given by:

feo = Qée!Zo‘tIZOZ H Tel = geetzl,tnl—zl,)_z
DV Cr DV Cr

As stated earlier in this section, the validity of this
quasi-steady assumption depends on the ratio of ry to 74
(here we assume r, = 73 since Sc = 1). The previous analysis
then requires:

Tep = pedzo=2 / D C, = re@(2q,t) / C, >1

T zo2 / Do
(15)

ey = L€0(1=2,02 / D, Cp = ped(zq,t) / Cp >> 1

et (1-z,02 7 D, t *

The above conditions are satisified for water (p/Cr > 1000)
at liquid contents greater than .0l1. Therefore the quasi-
steady analysis is valid for practical liquid content values
that would be experienced in fiberglass insulation.

In the numerical scheme used to simulate the behavior of
this transient phenomenon, the required time step must

satisfy the following condition:

Td << Ttime step << Te

The time step is reevaluated at each step to be:
Ttime step = Y'd Te
Section 2.4.3 contains solutions to cases for which the
quasi-steady analysis is valid and demonstrates the error

imposed if the time constant requirement is not satisfied.



2.4.2 NUMERICAL SOLUTION OF THE
SPATIALLY UNSTEADY PROBLEM

As in the spatially steady problem, the advantages of a
numerical solution over an analytic solution that is based
on simplifying assumptions are increased accuracy and
flexibility in allowing variations in the physical
properties, such as thermal capacitance and conductivity, as
a function of liquid content. An additional goal of the
numerical solution presented here is to verify the quasi-
steady analytic solution presented in section 2.4.1. As in
the analytic solution the variations in physical properties

are neglected in this formulation.

The numerical scheme proceeds by considering finite

difference elements. In dry zones the time dependent heat

and mass balances yield:

a 82T/ax%2 (16)

aT/8t

Dv 32C/8x? (17)

ac/at

In the wet 2zone the effects of phase change must be
considered. Hence:
Dy 4C/at (18)

p PCp

8T/3t = o 32T/8%% + hes Dw 32C/8x° -
pC
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The coupling of the transient changes in temperature and
concentration is clear from eq. (18). Decoupling is achieved

by the following expression for aC/at:
ac/at = dc/dT x 4T/at (19)

Introducing eq. (19) into (18) yields:

aT/3t 1+hsg Dv dC/dT = ad?T/9x? + hig Dvs2C/ax%  (20)
p Cp p cp

Because of the high degree of nonlinearity in eq. (20) an
explicit finite difference algorithm is chosen. This
algorithm determines the temperature and concentration at
each node at time step k+1 based only on the temperature and
concentration profiles at step k. Egs. (16) and (17) are

discretized as follows:

aT(i)X = at o _T(i+n K - ZTIE)K + T(i-pk (21)
AZ
ac(i)X = at pv _c(i+1X - k4 cri-nk (22)
AZ

r(i)K*tl = p(i)K + aT(i)k

c(i)kK*l = c(i)¥ + ac(i)k

In the wet zone eq. (20) becomes:

AT (1) =_Atime a[T(i+l)“ -~ 2TCi)* + T(i—f)“]
(1+heg dC) az= )
pCp dT
+ heg DV[C(i-!-l)“ - 2CCi)ke + C(i--l)"]
p Cp az=
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o)kt = i)k + aT(i)K

c(i)¥* = c . (T(1)K*Y))

where dC/dT is obtained from saturation data.
Therefore, in the wet zone the coupling of the temperature
and concentration as a result of the saturation conditions,
requires the éolution of only OT. OC is determined from
saturation data.
Had eq. (20) been linear the stability criterion for an

explicit finite difference method would require:

a Atime / 522 < .5 [ 1+heg gg,]
dT
and
Dv Atime / 222 < .5 [ 1+heg dC ]
pCp dT
As an illustrative example, with
Az = .02 m

Th

305 K Tc=274K
hh = .9 he = .9

p = 1 kg/m> cp = 1000 J/kgK
hgy = 2:4E6 J/kg

dc/dT = .001 kg/m3K
Atime °~ 30 seconds
In practice the nonlinearity imposed by the coupling of the

temperature and concentration fields makes the time constant

much smaller then 30 seconds. By way of a trial and error



procedure it was determined that Atime had to be less than
0.1 seconds to avoid numerical oscillation. Since many of
the applications of interest such as the drying of a wet
insulation sample are expected to take hours, this numerical
technique is of limited value. It is possible to increase
the grid size and thus increase the minimum step size.
However when analysing a typical insulation section of 50
cm., a modest number of five nodes would require a spatial
step size of .01 m, a value smaller than the Az used in the
example. In spite of theses drawbacks the numerical
technique has been used to validate the quasi-steady
assumption made in the analytical solution. The following

section compares the two solutions.

54



2.4.3 COMPARISON OF ANALYTICAL AND NUMERICAL SOLUTIONS
TO THE SPATIALLY UNSTEADY PROBLEM

In this section two methods for predicting the transient
behavior of heat and mass transfer through porous media with
phase change are comﬁared. These methods are the analytical
solution described in section 2.4.1, and the numerical
solution described in section 2.4.2. Two cases are examined
here which are illustrative examples of the drying of a slab
of a porous medium given an initial liquid distribution.
The two cases are identical except for the amount of liquid
initially present in the wet zone. The first case
demonstrates an example in which the quasi-~steady analytic
solution is wvalid, whereas the second case shows the
discrepancy between the models when the quasi-steady

assumption does not apply.

EXAMPLE A:

In this example a slab of a porous medium is dried. The

boundary conditions are:

Th = 305 K Tc 274 K

hh = 10 % he = 10 %

The initial liquid content is uniformly distributed in wet

zone whose position is:
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0.05 .16 < Xx < .97
e(x,t=0) =
0 elsewhere

The criteria for the quasi-steady analysis to be valid is

given in eq. (14):

z_g = DGG(ZOit) // ~yr >> 1
d
In this example Cr = Cg ¢ (Tr) = Cg,4(289.5) = .011 kg/m3,

therefore Te 4545 so the quasi-steady assumption should
d
be valid.

Figure 10 shows the time history of the wet 2zone
boundaries. The smooth curve is the analytical solution and
the data points are from the numerical method. Both
techniques agree very well on the movement of the wet 2zone
as the drying process proceeds. As expected the movement of
the boundaries is quickest when the boundaries are nearest
the edges of the slab.

Figure 11 represents the time history of the heat fluxes
into and out of the slabs as predicted by the quasi-steady
model and the numerical model. Again the agreement between
the two solutions is excellent. 1Initially the heat fluxes
from both the hot and cold reservoir are into the slab.
This can be explained by the evaporative cooling occurring
at the edges of the wet zone. Thus the temperature is at
its minimum at the cold wet/dry interface. As drying

proceeds, the wet 2zone edges move away from the slab
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boundaries, and the rate of evaporation decreases.
Eventually the cold side of the wet 2zone receives enough
heat from the hot side to match the evaporation requirements
at the interface. From that point on, the heat flux out of
the slab at the cold edge is positive.

Note that the heat fluxes do not converge to values that
they would experience in a dry sample until after all the
moisture has evaporated. This can be explained by the fact
that the rate of evaporation is governed by the thickness of
the dry zone separating each reservoir from its
corresponding wet/dry interface, rather than the thickness
of the wet zone itself. As long as there is some liquid to
be evaporated, there will be more heat entering the slab
than leaving it. In section 2.4.1 it was shown that the
heat fluxes at any instant are determined by the values of
Th+TerHy/Hg 29, and 2. Therefore the heat flux is
independent of the amount of liquid present. The dependence
of the heat fluxes on the wet zone boundary positions can be
seen from figures 10 and 11. Note that the rate cf change
of Qin and Qout are closely related to the rate of change
of z3 and z,. Once the water in the wet zone is evaporated,
the interior of the slab will be warmed until the steady-
state linear temperature profile is reached. However this
last warming stage while appear as as step change to dry
conditions in the transient model, due to the assumed linear

temperature profile in the dry region.
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Figures 12 - 15 show the temperature and vapor
concentration profiles at various times for the same example
depicted in figures 10 and 11. These profiles were
determined by the numerical method. The gquasi-steady
assumption is verified by the linear profiles in the dry
regions. It is precisely these linear profiles in the dry
region that enable the quasi-steady analysis to effectively

model this transient problemn.
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EXAMPLE B:
In this example a slab of a porous medium is dried,
however the initial 1liquid content is much 1less than in
example A. The boundary conditions are:
Th = 305 K Tc = 274 K
hh

10 % he 10 %

The initial liquid content is uniformly distributed in wet
zone whose position is:
zg(t=0) = .16 zq(t=0) = .97
5 E-6 .16 < x < ,97
e(x,t=0) =
(o] elsewhere
The criteria for the quasi-steady analysis to be valid
is:

T = pe8(20,t) / Cr >> 1

In this case =z .454 so the quasi-~steady criterion is

not met. This example is solved by the numerical method.
Figures 16 -~ 18 give the temperature and concentration
distribution at various times. Note the nonlinear
temperature and concentration in the dry zones. In this
example the liquid content is so small that the rate of wet
zone boudary movement is of the same order as the conduction

and diffusion rates through the dry zone.
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In comparing the analytic model with the numerical model,
it has been shown that there is excellent agreement for
cases in which the quasi-steady criterion in eq.(15) is
satisfied. In applications involving condensation of water
in insulation this criterion is met in all cases of
practical interest. The deciding factor on which method to
use is based solely on computational time. With a mesh of
twenty nodes in the numerical method, the computation time
required to simulate 5 hours of drying in example A, was
approximately 12 hours. In contrast, the computation time
needed for the quasi-steady solution was only 30 minutes.
Hence the quasi-steady analysis is both fast and accurate,

whereas the numerical technique developed in this work is

impractical when used to model the drying of significant

amounts of water.
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70
2.5. TREATMENT OF VAPOR BARRIERS

In many applications involving heat and mass transport
through a porous slab, one or both sides of the slab may be
in contact with a membrane which is impermeable to mass
flux, but conductive of heat. In a thermal insulation
application, such a membrane is called a vapor barrier.
This section examines the modifications necessary in the
unsteady analytic formulation required to model the effect
of a vapor barrier.

Consider the cases discussed in section 2, with the
modification that a vapor barrier is placed at the cold
side. Constant temperature is assumed at the slab boundaries
and a constant humidity is imposed at the hot side. At the
vapor barrier, for the case of no condensation at the
barrier, the zero mass flux condition requires:

dc/dz = 0 at z = 1 (23)
If no condensation occurs in the slab, then the steady-state
mass flux is governed by diffusion with no sources or sinks.
Hence,

m = D, dC/dz (24)
and m, the vapor flux rate, is constant throughout the slab.
The boundary condition at z=1 given by eq.(23) indicates the
C is constant, and equal to C,, across the slab and there is
no mass flux.

Since the temperature is linear across the slab with no

condensation, the relative humidity increases monotonically



from the hot side to the cold side. Therefore as T, is
lowered, or C; increased, the relative humidity at the cold
side will approach 100 per cent, and condensation will begin
at the vapor barrier. Under these conditions there will be
no spatially steady position of the wet zone. Condensation
will accumulate at the cold side and migrate towards the hot
side as time proceeds.

The preceeding discussion indicates that the occurrence
of condensation in a slab of a porous medium with a vapor
barrier on the cold side can be determined solely from the
values of Ty,T, and C,. If C, is greater than the
saturation concentration of T,, condensation will occur.
With condensation the zero mass flux condition at the vapor
barrier becomes:

r(z=1) = -D, dc/dz (25)
where I' is the condensation rate at the vapor barrier. Hence
if ¢, is greater than the saturation concentration of T,
there will be mass flux into the slab.

Under conditions of high concentration gradients in the
slab, it is possible for condensation to occur in a finite
region adjacent to the vapor barrier as well as at the vapor
barrier itself. Two cases are illustrated in fig 19. 1In
case I the concentration gradient 1is such that all
condensation occurs at z=1, the vapor barrier. In case II,
the concentration gradient is steep enough with respect to

the temperature gradient to produce a region of

condensation.
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Assuming there is condensation at the vapor barrier, the

criterion for the existence of a finite region of condensate

is:

ch-¢Ccc > Th-Tc dc* (26)
Lt Lt aT
TC

The c* curve in figure 19 is the plot of the saturation
concentration corresponding to the 1linear temperature
profile. The right hand side of eq.(26) is the slope of c*
under conditions of condensation occurring only at the vapor
barrier. Hence the occurrence of a condensate region within
the slab can be determined from the relative values of
Th,Tc, and Ch.

If the inequality in eq.(26) is satisfied, the region of
condensation is determined via the analysis of section
2.2.2. for the case of immobile condensate. Here, however
2zl is known a priori to be 1. In most typical cases the
rate of condensation in the interior of the slab is much
smaller than the amount of condensation at the vapor barrier

on the cold side. Figure 20 shows the cumulative

condensation rate across the slab.

The previous analysis of the effect of a vapor barrier
can be incorporated into the transient model. The movement
of the cold éide of the wet region can be understood by
recalling eq. (14b) from section 2.4.1.

8(z1l,t) d(1l-z1)2/4t =

2_e 1) ~hcex c) - (1+ fze 1 l1=-nc
1 + G y/Le (1+118) “exp(41)
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If the cold side of the condensate region is at the vapor
barrier, the right hand side of eq. (14b) is clearly 2zero, so
the cold side of the wet 2zone will remain at the wvapor
barrier until the region dries out completely. If on the
other hand the wet region ends at 2z; < 1, the right hand
side of eq.(14b) 1is negative, so the wet region mnoves
towards the vapor barrier.

In the computer program the condensate at the vapor
barrier is assumed to become uniformly distributed in a thin
element of the slab ( ~ .05 Lg thick). In transient
problems this liquid content can quickly grow and become
unreasonably high. Hence a model of the growing condensate
film needs to be incorporated which takes into account the

mobility of condensate due to gravity and liquid diffusion.
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3. COMPARISON OF THE QUASI-STEADY MODEL
WITH AN EXISTING MODEL AND DATA

The results of section 2 indicate that the analytic
solution presented is well suited for modelling the
transient heat and mass behavior of a reasonable amount of
condensate in a slab of porous insulation.

The transport of heat and mass through a medium density
wetted insulation sample has been studied by Thomas et
al[2]. Their investigation provides data with which the
analytic model presented here is compared.

Thomas et al also modelled the behavior of heat and mass
transfer through wet insulation. They derived a series of
differential equations that govern the heat and mass
transpcrt in the insulation sample. The main differences
between the analytic solution presented in this work and the
model developed by Thomas are:

1) The Thomas formulation accounts for heat transferred
by diffusing air and vapor, whereas this analysis assumes
that conduction is the dominant mechanism of heat transfer.

2) The Thomés model accounts for the variation in heat
capacitance due to liquid content, while this model ignores
such variations.

3) The Thomas solution requires an explicit solution of
six coupled differential equations and 1is therefore
restricted to a very coarse spatial grid to enable
reasonable computation time. The analysis presented here is

discretized in time, but not in space.



In short the analysis presented in this work has made
several simplifying assumptions which enable an analytic
solution for the temperature and concentration profiles to
be formulated. In addition to the ease of using the
analytic model over an explicit technique, the advantage of
an analytic solution over a set of differential equations
that must be integrated simultaneously is the insight into
the governing parameters that the analytic solution offers.
In section 2.2 the parameter ), which is based on the
physical properties and the boundary temperatures and
humidity, was shown to be the variable controlling the rate
of condensation in the wet zone and the net heat and mass
flux through the insulation.

The experiment conducted by Thomas et al.[2] consisted of
uniformly wetting six layers of insulation and stacking them
together to form one specimen. The specimen was then heat-
sealed in plastic film. The test section was inserted in a
guarded hot plate device and subjected to a temperature
gradient. Transient temperature measurements were made with
inserted thermocouples and transient 1liquid content
measuremenﬁs were made periodically by removing the specimen
from the testing device, removing the insulation from the
plastic £film, and weighing the 1individual 1layers to
determine moisture content. After each measurement the
specimen was reassembled, resealed in plastic film, and

reinserted into the testing chamber.
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The resulting data give the temperature profile and
liquid content distribution as a function of time. V“I‘he
temperature data are plotted in figure 2la, along with the
Thomas model prediction and the prediction based on the
quasi~steady model presented here. Clearly both models
track the data very closely. Hence it can be inferred that
the simplifying assumptions inherent in this analysis
introduce no significant loss of accuracy. On the contrary,
the smoothness of the analytic solution enables a higher
degree of certainty when predicting the motion of the wet
zone.

Tables 3 and 4 and figures 21B and 21C present the liquid
content distribution data for two experiments. In the first
experiment the initial value of © was .025, and in the
second experiment the initial e was .051. Though the data
are sparse, it appears that the quasi-steady analysis is
better than the explicit solution at predicting the movement
of moisture in the slab. This improvement must be
attributed to the fact that the error imposed by the
explicit solution of the series of differential eqﬁations in
the Thomas model outweighs the error imposed by the
assumptions in the quasi-steady model. Both models tend to
overpredict the rate of movement of the wet region towards
the cold sidé. This may be attributed to the role that
gravity plays in pulling the condensate towards the hot side
and the effect of 1liquid diffusion, which was shown in

section 2.3.2.3 to cause the wet zone to spread out. Both
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the Thomas model and the quasi-steady model presented here
ignore the effects of gravity and liquid diffusion. It is
clear that both theorectical models are much worse at
predicting the liquid content distribution in the case in
which the initial e was .051. This would be expected if
liquid motion was occurring, since the degree of 1liquid

mobility increases with total liquid content.
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TABLE 3

COMPARISON OF MODEL PREDICTIONS AND

Initial moisture distribution & =

MEASURED MOISTURE DISTRIBUTIONS
.024

elapsed
time, h

43

value
measured
analytic

explicit

measured
analytic

explicit

MOISTURE DISTRIBUTIQN [pe6 (2,t)]

(kg/m=)
Region

1 2 3 4 5 6
23.5 23.0 22.6 26.4 26.4 24.5
24.0 24.0 24.0 24.0 24.0 24.0
24.0 24.0 24.0 24.0 24.0 24.0
0.0 0.0 0.0 8.16 36.0 98.4
0.0 0.0 0.0 0.0 32.8 111.2
0.0 0.0 0.0 0.0 0.0 144.0

Test conditions: L=40.56mm Th=31.7 Tg=9.7

Data from Thomas et al[2]
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TABLE 4

COMPARISON OF MODEL PREDICTIONS AND
MEASURED MOISTURE DISTRIBUTIONS
Initial moisture distribution & = .051

MOISTURE DISTRIBUTIQN [ped (z,t)]
kKa/nm=
Region
elapsed 1 2 3 4 5
time, h| value

measured 51.0 51.0 52.4 54.8 52.0

0 analytic 51.0 51.0 51.0 51.0 51.0
explicit 51.0 51.0 51.0 51.0 51.0
measured 0.0 17.8 65.4 75.5 89.0

43 analytic 0.0 0.0 0.0 64.5 190.0
explicit 0.0 0.0 0.0 41.4 213.6
measured 0.0 0.5 39.0 81.8 97.7

120 analytic 0.0 0.0 0.0 .0.0 255.0
explicit 0.0 0.0 0.0 0.0 255.0

Test conditions: L=35.38mm Tp=31.1 T, =9.8
Data from Thomas et al[2]
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4, Experiments

4.1. Apparatus

The purpose of the experimental apparatus was to
maintain a wide range of uniform temperature and humidity
conditions on two sides of a horizontal test section of
porous insulation. A schematic of the apparatus is given in
figure 22. The apparatus consists of two chambers; the top

chamber is referred to as the cold box and the bottom

-

chamber is the hot box.

4.1.1. Hot Box

The interior dimensions of the hot box are 17" x 17" x
24". The walls are constructed of Dexicon steel framing,
polyethlyene vapor barrier, plywood sheeting and guard
heaters sandwiched between two panels of R-8 extruded
polystrene insulation.

The hot box contains a fan and heating coil to maintain
the desired homogeneous temperature and humidity conditions
on the hot side of the test section. The humidity level is
controlled by bubbling air through a salt solution. Lithium
chloride and sodium chloride were used in the following
exper.. nts. The relative humidity over a saturated lithium

chloride .olution varies from 11.2 % at 0 °F to 17 % at 87
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OF. For sodium chloride, the relative humidity varies from
73 % to 75 % over the range of 32 °F to 212 °F [6]. By
diluting these salt solution relative humidities can be
achieved up to 100 %.

Guard heaters were used on the five exterior sides of the
hot box. The guard heaters are constructed of electric
resistance heat tape bonded to 1/8" aluminum sheet metal.
The voltage applied to the electric heat tape is controlled
to keep the aluminum plate at the same temperature as the
adjacent interior surface of the hot box. This in effect
prevents heat from being conducted out of the hot box walls.
Hence all of the energy supplied to the fan and heater must
be conducted, through the test section, into the cold box.
Thus the guard heater enables the heat flux through a test
sample to be determined directly from the energy supplied to

the hot box. This is verified in experiment 1.

4.1.2 Cold Box

The interior dimensions of the cold box are 17" x 17" x
24", The walls are constructed of Dexicon steel framing,
polyethlyene vapor barrier, plywood sheeting and R-16
extruded polystyrene insulation.

The cold box temperature is controlled by circulating
chilled propylene glycol / water solution through a coil of
copper tubing. A fan continually blows the interior air

over the cooling coil to maintain the required homogeneous
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conditions. This cooling loop is depicted in figure 22cC.
As in the hot box, the humidity 1level is controlled by

bubbling air through a salt solution.

4.1.3 Test Section and Probe Placement

The test section were 17" X 17" X 2" samples of rigid
fiberglass board with a nominal density of three pounds per
cubic foot. Figure 22B indicates how the test section was
held in place in between the hot and cold boxes. The edges
of the test section are covered with Teflon film to prevent
capillary migraticn of condensate along the test section /
apparatus interface. The Teflon film was fixed to the edges
by taping it to the horizontal surfaces of the test section
which were in contact with the polyurethane insulation (fig
22B)

The instrumentation probes consist of a humidity
transducer and a thermocouple. Each probe is inserted into
the test section from the edge. The probe positioning is
illustrated in figure 23. An incision approximately two
centimeters wide and fifteen centimeters deep 1is made
horizontally in the sample at the desired position of the
probe (fig 23). Two thin copper strips are inserted into
the incision and then the probe is pushed between the copper

strips to a depth of nearly fifteen centimeters. The metal
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strips are subsequently removed, and the probe wires are

taped to the test section to immobilze the probe.
4.1.4. Temperature and Humidity Measurements

Each probe consists of a type-K thermocouple (28 ga.) and
a PCRC-55 humidity transducer. The humidity transducers,
manufactured by Phys-Chemical Research Corporation, were
coated with a special polymer film to protect the transducer
from liquid water.

The impedance of the humidity transducer is sensitive to
the relative humidity of the surrounding air. The impedance
varies over three orders of magnitude from approximately 10
mega-ohms at 30% relative humidity to 100 kilo-ohms at 90%
relative humidity. The impedance of each sensor was
determined using a voltage divider circuit illustrated in
figure 24. Since the transducers are subject to
polarization from a DC current, a 600 Hz 10 volt signal is
applied across the circuit. With a known reference
impedance of 1 mega-ohms, the impedance of the transducer is

determined by the following formula:

Zprobe = Zref [1 / (Vin/Vprope =~ 1)1
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4.1.5 Humidity Transducer Calibration

Each humidity transducer was calibrated in a chamber in
which the true relative humidity was determined by the
equilibrium vapor pressure of various saturated salt
solutions. The relative humidity was verified with a EG&G
dew point hygrometer. Great care was taken to prevent the
transducers from becoming wet with condensate in the
calibration tests. The data from the calibration tests were
fit to a curve of the form:

1n(Z) = a (RH) + b / (RH) + c.
The calibration curves and calibration data for each
humidity transducer at 25°C are included in Appendix A. 1In
general, the calibration curves are within 5 % of the
manufacturer's specifications. Though variation among the
ten humidity transducers's calibration curves is small, it
is shown in experiment 1 that there 1is significant
hysterisis effects experienced after the transducers become
wet with condensate. The transducers are slightly
temperature sensitive, such that the actual humidity is
determined by adding 0.36 % RH for each degree that the

probe is below 25 ©°C to the value from the calibration

curve.
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4.1.6. Data Acquisition

The voltage across each thermocouple and each humidity
transducer is measured using an HP 3478A Multimeter
controlled by an HP 3497A Data Acquistion / Control Unit.
Data is automatically stored on diskettes at programmed time

intervals.



4.2 Experiment 1

Measurement of the Thermel Conductivity of a
Sample of Insulation

The objective of this experiment was to verify the
adiabatic behavior of the exterior walls of the hot box with
the guard heaters in use. A three inch sample of expanded
polystyrene was inserted between the hot and cold boxes.
The conductivity of this sample was accurately determined
from tests made at Dynatech Corporation, Cambridge, Ma,
using a guarded hot plate device (R-Matic by Dynatech).
With the cold box maintained at a constant temperature, a
known amount of energy was supplied to the hot box by the
electric fan. The temperature of the guard heaters was
adjusted to match their respective interior wall
temperatures. In theory, all of the energy input must leave
the hot box by conduction through the insulation sample. By
measuring the temperature drop across the insulation sample,

its conductivity is determined by the follow formula:

k=QL /A AT
where

L = the sample thickness = 3"

!

A = the sample cross sectional area = 2.37 ££2

Q the energy input

AT = the temperature drop across the sample
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The energy input, Q, was determined by measuring the voltage
and current input signals to the fan on an oscilloscope.

Q = Vrms Irms cos (¢)
where

¢ is the phase angle between the voltage and

current.

In this experiment Q was determined to be 8.93 Btu / hr.

With a steady-state temperauture drop across the sample of
83 ©F, the calculated thermal conductivity was determined to
be .297 Btu-in/hr ft2 ©F. The reported value of the
conductivity of this sample was .283 * 5% Btu-in/hr ft2 OF.
Thus the experimental error was approximately 5 %, which is
witkin the measured uncertainty. This excellent agreement
between the measured and accepted value of conductivity
indicates that the exterior walls of the hot box can be made
nearly adiabatic by use of the guard heaters,. and the flow

of heat to the cold box is nearly one-dimensional.



4.3 Experiment 2
Temperature and Concentration Profile in a

Dry Slab of Insulation

The purpose of this experiment was to verify that both
the steady-state temperature and concentration profiles in
the slab of dry insulation were linear, as expected from the
analysis of section 2.1

As described in section 4.1.3, the probes were inserted
approximately 15 centimeters into the test section from the
edge. However the undulations of the glass fibers made it
difficult to know exactly where each probe was finally
positioned. If it were demonstrated that the temperature
profile was in fact linear in a dry sample, then that linear
profile could be wused to accurately determine probe
position. Once the position of the probes had been
determined, it would then be possible to examine the vapor
concentration profile using the humidity sensors.

This experiment consisted of inserting eight probes
containing humidity sensors and thermocouples into the test
section and exposing the section to a steady-state
temperature gradient in the hot box / cold box apparatus.

The steady-state temperatures and humidities for each probe

were recorded.
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In the first run of this experiment, Ty = 50 °C and T, =
15 °c. After steady~state conditions had been reached, the
test section was removed from the apparatus and dissected to
determine the actual position of the probes. If the
temperature profile were linear, then the probe position

could be determined as follows:

—

Xcalc Th =T/ Th - T¢

Figures 25 and 26 show the actual temperature and
concentration profiles for this first run. The data are

presented in Table 4.

TABLE 4

Experiment 2
Data for Run 1

Probe Temp (°C) c(g/m?) Fmeasured Xcalc
1l 50 54.1 * 5% 0% .05 0 + .05
2 48 48.0 0.1¢ 0.06
3 42 45.1 0.20 0.23
4 37 31.0 0.41 0.37
5 25 20.7 0.67 0.71
6 22 18.6 0.74 0.80
7 17 12.9 0.94 0.90

8 15 10.2 1.0 1.0
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It is not clear whether the error in figures 25 and 26 is
caused by dissecting the sample or by deviations from a
linear profile. Since the discrepancy is relatively small,
it is reasonable to assume that the temperature profile is
linear and to determine the probe position accordingly.
Note that the deviation from linearity in the concentration
profile is much higher than in the temperature profile.
This suggests that the humidity transducers are a 1less
accurate measuring device than the thermocouples.

This experiment was conducted a second time. However in
Run 2 the test section had been wet initially. The aim of
the second run was to verify that that humidity sensors
would return to their calibration curves after being
subjected to 1liquid water. Approximately ten hours after
the probes indicated that the section had dried completely
and had reached steady-state conditions, the same procedure
as in Run 1 was used for determining temperature and
concentration profiles. The humidities in both reservoirs
in this case were less than those in Run 1. Figures 27 and
28 show the temperature and concentration profiles for this
case and téble 5 presents the data.

Figures 27 and 28 indicate that although the
thermocouples are unaffected by exposure to liquid water,
the humidity sensors do not return to their original
calibration curves. After a ten hour exposure to a

dessicant environment, it was observed that the probes would
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return to their calibration curves. This demonstrates a
major problem in measuring the vapor concentration profile
in a test section with condensation, since it is impossible
to extract the probes to expose them to dessicant while an
experiment is being run This problem is discussed in
section 6.

The results of Experiment 2 showed that the probe
position can be accurately determined by assuming a linear
temperature profile in a dry specimen. This method of
determining probe position is employed in the following
experiments. Unfortunately the humidity sensor readings are

unreliabie after the sensors have been exposed to

condensate.
TABLE 5
Experiment 2
Data for Run 2
Probe Temp (°C) c(g/m?) Xpeasured  Xcalc
1 49 23.3 * 5% 0 £ .05 0+ .05
2 43 14.5 0.18 0.17
3 41 14.0 0.22 0.20
4 35 10.0 0.37 0.37
5 24 7.3 0.63 0.67
6 22 7.3 0.69 0.74
7 21 9.1 0.71 0.75

8 12 4.2 1.0 1.0
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4.4 Experiment 3

Heat and Mass Transport Through
Porous Media With a Vapor Barrier

In this experiment a test section with an initial liquid
content was placed in the hot box / cold box apparatus with
a vapor barrier between the cold side of the specimen and
the cold box reservoir. The hot box was maintained at
approximately 46.5 °C, 35 % relative humidity, and the cold
box temperature was 17 ©C. As discussed in section 3, the
effect of the vapor barrier on the cold side of the test
section should be to move the condensate towards the vapor
barrier. Experiment 3 was conducted to examine this theory
and to compare the temperature profile data with the quasi-

steady model prediction.

4.4.1 Initial Liquid Content

The initial liquid content was introduced into the test
section by submerging the test section in a water bath. An
identical control section, cut from the same board of
fiberglass as the test section, was also placed in the bath.
In this experiment the test section and the control section
were completely submerged in water for six hours. The
samples were then set to drip dry in the horizontal position
at room temperature for 24 hours.

The control section was cut into halves and each half was

sliced into four specimens as illustrated in figure 29. The
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wet and dry weights of each specimen are presented in Table
6. The parameter 6 in table 6 is the ratio of liquid volume
to air volume in the specimen. ® is determined by the
following equation:

8 = wet weight - dry weight

Pu € Volume

The average value of 8 for each region was used in the
simulation. The distribution of the average values and the
data for & are plotted in figure 30. The amount of liquid
in the region closest to the hot side is extremely large and
thus would be expected to move via 1liquid diffusion and
possibly gravity. However the model assumes that the
condensate is immobile.

TABLE 6

Experiment 3
Initial Liquid Content Data

Region Specimen Wet Wt. Dry Wt. Volume e 8ave
0<x<.25 11 42.2g 2.7g 69 cm3 .78

12 83.7 3.8 103 .80 .79
.25<%<.5 21 9.5 2.6 69 .10

22 18.1 3.1 103 .15 .13
.5<x<.75 31 2.6 2.5 69 .0014

32 3.7 3.5 103 .0020 .0017
. 75<x<1 41 2.9 2.5 69 . 006

42 4.8 4.2 103 .006 .006
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4.4.2 Comparison of Data and Theory

The temperature data in Table 7 indicate that steady-
state conditions in the hot and cold reservoirs (probes 1
and 8 respectively) are reached in approximately three hours
(10500 secs). Figures 31 and 33 are plots of the
temperature profiles at 23000 and 100000 seconds after the
test section was inserted into the apparatus. Figure 32 is
a plot of the deviation between data and theory as a
function of position. The temperature profile predicted by
the quasi-steady model is indicated by the 1line in the
figures, and the data are represented by the points. In the
quasi-steady model, the solution to the temperature profile
in the wet zone is based on eq. (11), while the wet zone
boundary motion is governed by eq. (14). Figure 33 presents
the deviation between data and theory for the temperature
profile at 100,000 seconds. It is apparent that there is
much better agreement between the data and the model at the
hot side of the section than at the cold side. This is
because the high liquid contents at the vapor barrier induce
liquid motion, which the model does not take into account.
Both the model and data indicate an abrupt change in the
temperature gradient near the hot side of the section. The
location of this change corresponds to the wet zone boundary
according the the quasi-steady model. The data support the

model 's prediction of the wet zone boundary location.
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At the discontinuity in temperature gradient near the hot

side, the data indicate that there is a local minimum

114

temperature. This is not expected by the quasi-steady

theory. It has been shown in section 2.2 ( eq. (11) ) that
in any one dimensional wet zone, the temperature gradient is
always negative as long as the parameter A is positive.
Thus it can be argued that this minimum temperature in the
slab cannot be explained simply by variations in physical
properites, such as conductivity and diffusivity, due to the
prensence of liquid. Rather this local minimum temperature
must be due to a two-dimensional moisture distribution.
Perhaps there is moisture in the region between probe 3 and
the hot side that is actually dry for probe 2. Under close
examination of the insulation, patches of encrusted glass
fibers are observed that could explain how meoisture gets
trapped in isolated sites. If there were such a patch of
insulation located between probe 3 and the hot side, the
water on the cold side of the patch would not be able to
diffuse towards the hot box. This moisture would increase
the thermal conductivity between the hot side and probe 3,

and would explain the higher temperature measured at probe

3.



Experiment 3
Temperature (°C) Data

probe 1 2 3 4 5 6 7 8

time _

(sec) z =0.0 .10 .15 .50 .62 .75 .90 1.0
4700 37.0 29.2 30.2 28.7 27.3 26.1 25.3 22.6
10500 39.1 32.2 32.8 29.5 27.6 25.6 24.7 18.0
15200 39.7 32.6 33.1 29.3 27.2 25.2 24.3 15.6
20000 40.1 32.8 33.4 29.3 27.2 25.0 24.1 16.0
23000 40.3 33.0 33.6 29.4 27.2 25.0 24.0 17.3
90000 43.9 36.5 37.1 32.4 30.1 27.9 26.5 17.4
100000 43.9 36.6 37.1 32.5 30.2 28.1 26.7 17.6

The anomolous data near the cold side may be explained
by the development of isolated regions of condensate near
the vapor barrier. The photograph shows a typical wet patch
that was observed in a similar experiment. Though the
mechanism for producing these patches of condensate is not
obvious, it may be attributed to irregularities in both the
fiberglass‘and the vapor barrier / fiberglass interface, and
the surface tension of the condensate. These patches have
been observed in cases of high liquid content, which would

be expected at the vapor barrier (see figure 20, section

2.5).

TABLE 7 —
— WS
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If the temperatures at these anomolous points near the
cold side are attributed +to an irregular 1liquid
distribution, it is clear that the model will fail to
predict these data.

Another possible reason for the elevated temperatures
near the cold side is the formation of a somewhat
impermeable layer of condensate near the vapor barrier. The
theory expects there to be a high liquid content level near
the vapor barrier. If this is the case, it may be that the
vapor that would have been expected to diffuse to the vpaor
barrier cannot permeate the high liquid content layer, and
thus condenses within the slab. Given this scenario, the
released latent heat would have to be conducted out of the
slab, and hence the temperatures near the cold side would be
elevated.

Ignoring the data closest to the cold side, there appears
to be excellent agreement between the quasi-steady model and
the data. Table 8 shows the normalized heat fluxes entering
and leaving the slab at the times corresponding to the
profiles given in figures 31 and 32. In this table the
data closest to the cold side are ignored.

There is excellent agreement between data and theory on
the overall heat transfer entering and leaving the slab.
JYowever it musf be noted that the model is not valid in the
region of high liquid content that may occur at the vapor
barrier, because this 1liquid is prone to diffusion and

gravity as well as irregular distribution. Though the quasi-
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steady model predicts the approximate location of the wet /
dry interface, a small discrepancy in wet 2zone boundary
location will yield a large deviation in predicted
temperatures closer to the cold side. This high sensitivity
of temperature profile on wet zone boundary location <can
also explain the relatively large deviations between theory
and data near the cold side. Since there is good agreement
on the general shape of the temperature profile in the wet
zone, the error in the model 1lies in its method for
determining wet 2zone boundary movement. This may be
attributed to its assumption of immobile condensate.

After approximately 30 hours the test section was
removed from the apparatus and dissected to determine the
shape of the final moisture distribution. These data are
given in table 9. A plot of the final 1liquid distribution

with the prediction of the quasi-steady model is given in

figure 34.
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TABLE 8
Heat Fluxes Entering and Leaving Test Section

. Qin Qout Qin-£L Qout
tinme
(sec) measured theory measured theory measured theory
23 000 2.96 3.36 1.07 1.17 2.8 3.0
100 00O 2.83 2.72 1.04 0.98 2.7 2.8

note:1) 9 =Q / Q

2) data of Qrg ga?p%eneglected

Final Lid%%gégfgtribution
Region 8 ave
0 < x < .25 .047
.25 < x < .50 .022
.50 < X < .75 .034
.75 < X < 1.0 .214
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As expected from the analysis in section 2.5 the majority
of the condensate in the sample was found in the region
closest to the vapor barrier. Recall that the initial
liquid content was concentrated on the hot side. The final
liquid distribution data indicate that the quasi-steady
model does a good job of predicting the movement of

moisture in fiberglass insulation
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4.5. Experiment 4

Drying of a Wet Sample of Insulation

In this experiment a test section of fiberglass with an
initial 1liquid distribution was subjected to boundary
conditions that caused the water to evaporate completely
over a period of approximately 10 hours. The temperature
profile data were recorded and compared to the quasi-steady

model developed in section 2.
4.5.1 Initial Liquid Content

An initial liquid content was introduced into the test
section by partial submersion in a water bath as in
experiment 3. The depth of the water bath was approximately
one third of the thickness of the section, providing
distinct regions of wet and dry conditions. An identical
control section from the same piece of insulation, was also
placed in the bath. After five hours, both the test section
and the control section were removed from the bath and
placed on a rack to drip dry in a horizontal position for
twelve hours. By carefully examining the control section, it
was determined that the penetration depth of the liquid was
nearly uniform. Visual inspection also indicated that the
liquid was distributed evenly in the wet zone. This

observation combined with the difficulty in actually

121



measuring the 1liquid <content profile 1led to the
approximation that the liquid was uniformly distibuted in
the two centimeter section that was apparently wet.
Subsequent measurements of the weights of various control
specimens from the apparent dry region confirmed that the
moisture content was negligible.

The control sample was cut into several pieces which were
weighed wet. After drying each piece, the initial 1liquid
content was determined by subtracting the dry weight of each
specimen from its corresponding wet weight. The parameter o
was calculated be the formula given in section 4.3. Table
10 presents the data for the initial 1liquid content. This

liquid distribution is plotted in figure 35.

TABLE 10
Experiment 4
Initial Liquid Content Data

Specimen Wet Wt Dry Wt Volume e
1 15.0 g 5.5 g 199.5 cm? .049
2 10.3 3.9 124.6 .053
3 10.7 4.2 127.5 .053
4 6.9 3.0 87.1 .046
6 = ,050

ave
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4.5.2 Experimental Conditions

Following the drip drying period the test section was
inserted into the hot box / cold box apparatus. The steady-
state conditions in the hot box were maintained at 43 + 2 ©c
and .34 * .04 relative humidity. The cold box temperature

was 9.5 + 2 °C and the humidity was .90 * .04.

The high humidity in the cold box resulted from vapor
diffusing into the cold reservoir faster than it could be
removed by the salt solution method of humidity regulation.
This high humidity on the cold side of the sample was not
desirable since this experiment was examining the drying
process. This humidity control problem is addressed in
section 6.

The wet side of the test section was placed adjacent to
to the hot reservoir. The low relative humidity in the hot
box caused the liquid to evaporate and diffuse towards both

reservoirs. Temperature data were collected at eight points

in the slab approximately every fifteen minutes for ten

hours.

4.5.3 Comparison of Data and Theory

The resulting temperature data of probes 1 and 8 indicate
that steady-state conditions in the hot and cold boxes were

reached in approximately three hours (Table 11). Typical
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temperature profiles are shown in figures 36 and 37 at
20,000 and 30,0000 seconds after insertion of the test
section into the apparatus. The line on the figures gives
the temperature profile predicted by the quasi-steady model.

The deviation between data and theory at 20,0000 seconds
is shown on figure 38. Though the temperature data
generally do not coincide with the theoretical prediction,
it appears that both the data and theory agree on the effect
of evaporating condensate on the heat transfer in a wet
section of porous insulation. The measured heat fluxes, as
calculated from the temperature gradient at the egdes at
times of 20,000 and 30,000 seconds, and the predicted heat
fluxes are compared in Table 12. Throughout the simulation
the quasi-steady model overpredicts the rate of movement of
the wet zone towards the cold side. As in experiment 3, the
data and theory agree on the general shape of the
temperature profile in the wet =zone. However the high
sensitivity of the absolute temperature profile on wet zone
boundary position causes significant deviation between data
and theory. Among the reasons for the discrepancy between
data and theory, the most important appears to be the
assumption‘that the condensate is immobile. It was shown in
section 2 that the effect of mobile condensate in general is
to spread out the wet =zone. In this experiment the
potential for mobile condensate is enhanced by the force of
gravity pulling the condensate towards the hot side of the

test section. Therefore it is plausible that the reason
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for the model predicting a faster migration of the wet 2zone
towards the cold side is the immobile condensate assumption
inherent in the present model.

Overall both the data and the theory indicate a
significant variation between the heat entering the slab and
the heat leaving. The net accumulation of energy in the
section is responsible for the evaporation of the liquid.

The results show that the effective insulating value of a
section of a wet porous medium if viewed from the hot side,
is greatly reduced by the evaporation of the liquid, even if
the actual conductivity of the medium is assumed to be
unaffected by liquid content. However, the insulating value
of the same medium with respect to the cold reservoir is
actually improved. This phenomenon 1is caused by the
evaporative cooling within the insulation that increases the
temperature gradient near the hot side and reduces the
gradient at the cold side.

The implications of this experiment indicate that care
must be exercised when evaluating the heat transfer behavior
of damp insulation. The insulating value of the insulation

will be very different when determined from both the hot

side of the sample and the cold side.
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TABLE 11

Experiment 4
Temperature Data

Probe 1 2 3 4 5 6 7 8
time z= 0 .025 .18 .22 .37 .63 .71 1.0
(sec)
5000 40.9 35.2 30.5 29.8 27.3 22.8 22.7 13.8
10000 41.9 36.2 31.4 30.6 27.6 21.8 21.5 10.4
15000 42.3 36.6 31.5 30.6 27.0 20.5 20.3 8.9
20000 43.0 37.3 32.0 31.2 27.4 20.5 20.1 8.5
25000 43.5 37.9 32.4 31.6 27.9 20.9 20.4 8.5
30000 44.1 38.4 32.9 32.1 28.5 21.5 20.9 9.4
35000 44.6 38.%9 33.2 32.2 28.6 21.7 21.2 9.8
40000 45.6 42.8 35.9 32.8 27.9 21.6 21.3 10.3
TABLE 12
Experiment 4
Comparison of Measured and Predicted
Heat Fluxes
. Qin Qout: Qin—+4Qout
time

(sec) measured theory measured theory measured theory

20 000 6.6 4.11 1.16 .77 5.7 5.3

30 000 6.6 2.68 1.14 .57 5.8 4.7

note:l) Q@ = Q / Q gry sample
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5. Conclusions and Summary

The experiments by Thomas et al and those presented in
Chapter 4 have verified that the process of simultaneous
heat and mass transfer in porous media, as it is applied to
roof insulation, can be simulated using the quasi-steady
model developed in chapter 2. Experimental data have shown
that the quasi-steady model can accurately predict transient
temperature profiies, heat transfer rates, and moisture
movement through insulation for <cases in which the
assumptions inherent in the model are valid. These
assumptions include immobile liquid, and constant properties
such as thermal conductivity and mass diffusivity.

For the case of horizontal fiberglass insulation these
assumptions are appropriate in general. It has been shown
(3] that the condensate in horizontal fiberglass insulation
remains immobile at 1liquid <content 1levels up to
approximately 70 % by volume. The comparison of the quasi-
steady model and the Thomas model has shown that the
effects of property variations due to 1liquid 1levels in
practical cases of interest, is negligible.

When examining simultaneous heat and mass transfer through
porous media other than horizontal fibergalss, the validity
of these assumptions must be determined on an individual
basis. For example, Mofakef (3] has determined that for
vertically oriented fiberglass, mobility of liquid begins at

a liquid content level of 5%, which is cosiderably less than



the 70% <critical 1liquid content 1level for horizontal
fiberglass.

In cases in which the assumptions of the quasi-steady
model are not valid a different model must be used. If it
were determined that the variations in properties due to
liquid content are significant, a numerical approach, such
as the finite difference algorithm developed in chapter 2
would be required. Since the algorithm presented in this
work proved to be too slow for practical problems, it would
have to be amended. The required changes would involve an
implicit numerical technique and a coarser spatial grid.

If it were determined that 1liquid mobility would b . a
significant factor, the present quasi-steady model must be
amended to incorporate a model for liquid diffusion.

It is possible improve the quasi-steady model by
accounting for liquid mobility. However such improvements
will not account for the two-dimensional behavior of
condensate and the irregularities of the insulating medium
that were observed in experiments 3 and 4 in chapter 4.

In spite of two-dimensional affects, the experiments in
Chapter 4 demonstrate the ability of the model to predict
the predominant trends of heat and moisture transfer in
fiberglass insulation. The differences 1in heat fluxes
entering and leaving the insulation in the presence of a wet
region were accurately predicted in experiments 3 and 4.
The model also predicted the motion of the wet zone which is

essential when determining what environmental conditions
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will cause a wet insulation sample to dry out. The results
of experiments 3 and 4 indicate that the quasi-steady model
can be &expected to predict the transient moisture
distribution to within 25 % and heat fluxes to within 15%.
In short, the present work offers a relatively simple
model that can predict the transient behavior of heat and
liquid transfer through insulation. The next step in
formulating a model of a roofing system is to account for
its composite structure. This should amount to cascading
several slabs together, each characterized by a thermal
conductivity, vapor diffusivity and liquid water
diffusivity. The treatment of vapor barriers described in

chapter 3 will also be applied to the composite roof.
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6. Experimental Problems and Suggested Revisions

Several difficulties were encountered in the preceeding'
experiments that inhibited the full utilization of the hot
box / cold box apparatus. Foremost is the prblem of
measuring humidity. This difficulty was demonstrated in
experiment 2. The humidity sensors seemed to experience
extensive hysteresis after «coming in contact with
condensate. Although the sensors could return to their
calibration curves after being placed in a dessicator for
several hours, the sensors would not be calibrated while
within the test section. Since all of the experiments of
interest in this work involve 1liquid water in the test
section, the use of the PCRC-55 humidity transducers is
severely limited.

Until suitable humidity sensors are developed, it is
suggested that future experiments avoid the complication of
measuring relative humidity within the sample and
concentrate on accurate temperaure measurements.

Another recuf:ring problem was that of condensate dripping
from the cooling coil of the cold box onto the test section.
This problem was solved temporarily by placing absorbent
sponges beneath the coil to catch the condensate. However
this method has the disadvantage of accumulating large
amount of liquid water within the cold box. This liquid
acts as a source of vapor which competes against the salt

solution in controlling the humidity. This was seen in



experiment 4, where the steady-state relative humidity in
the cold box could not be maintained below 90 %. It was
desired to keep the cold box drier, but the technique of
bubbling air through the salt solution was not effective
enough.

Future use of this apparatus should therefore be preceded
by the design of a condensate drain placed under the cooling
coil to remove the condensate from the cold box.
Additionally, a more effective technique of humidity control
in both the hot and cold boxes should be designed. Much
higher air flow rates tbhrough the salt solution combined
with a condensate removal system should provide greater
humidity control.

Greater control of the cold box temperature is also
desirable. Though the circulation of the antifreeze
solution through the coiling coil could bring the cold box
down to 5 9 for a 1limited time, the steady-state
temperature could not be maintained below 15 ©C. A colder
ccld box would enable larger temperature and concentraiton
gradients to be imposed on the test section. This would
reduce the required accuracy of the temperature and, more
importantly, the humidity sensing devices.

The limiting factor in the temperature control of the
cold box was the steady-state cooling capacity of the
freezer. The rate of heat rejected at the cendensor cculd
not meet the demands of the cooling lcad of the cold box.

Some of the heat from the overworked freezer condensor was
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conducted back into the interior of the freezer, in effect
short circuiting the cooling loop.

There are two alternative methods for solving this
problem. First, a secondary cooling loop could be fixed to
the condensor of the freezer and thus improve the maximum
heat rejection rate that the freezer could maintain.

Secondly, and perhaps more effective, the freezer could
be replaced by a properly sized compressor and refrigerant
system. The antifreeze loop would be eliminated and the
cold box would be controlled by a thermostat connected to
the compressor. If the refrgieration 1loop 1is applied
directly to the cold box, the sizing of the compressor would
be critical in this application. An oversized compressor
would be short cycled at a frequency that could render the
cooling cycle inoperable, and an undersized compressor would
not be able to meet the cooling load.

The nominal heat removal rate for this apparatus is of
the order of 100 Btu/hr or 0.01 tons of refrigeration. The
carnot efficiency for a refrigeration cycle is given by:

B=Ty/ Ty -Tq
For this application T; = 273 K and T, = 330, 8 = 4.7. Thus
the hersepower the the compressor should be approximately:
HP = ton } 4.715 / 8 = .01
A refrigeration compressor of 0.01 HP is not a standard

size, therefore this compressor may have to be custom

manufactured.
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If a larger compressor were used it would have to be in
conjunction with a heat storage systemn. In this
configuration a secondary loop like the one presently used

would be employed.
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Humidity Sensor Calibration Data




HUMIDITY SENSOR CALIBRATION DATA
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In (2) vs. RH (%)
RH% 41.4 66.1 69.2 72.8 75.0 87. 92.5
Probe

1 15.1 12.9 12.5 12.4 12.4 11. 10.8
2 15.1 13.0 12.6 12.5 12.5 11. 10.9
3 15.1 13.0 12.6 12.4 12.4 11. 10.9
4 15.1 12.9 12.5 12.4 12.4 11. 10.9
5 15.1 12.9 12.5 12.4 12.4 11. 10.9
6 15.0 12.9 12.5 12.4 12.4 11. 10.9
7 15.0 12.9 12.5 12.4 12.4 11. 10.9
8 15.0 13.0 12.5 12.4 12.4 11. 10.9
9 15.1 13.0 12.5 12.4 12.4 11. 10.9
10 15.2 13.0 12.5 12.4 12.5 11. 10.9

Data collected at 25 9C
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Computer Program Listings

)



Quasi- Steady Transient Model
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I
FROGRAM TRANS1
T WRITTEN BY ANDY SHAFIFRO 154
C FEVISION DATE 10 SEFT 198%
COMMON/r3ram/trycrrydushfdsRrkwrdamarbetasAlsELED
REALXS T(101)sA1(12)yEL1(7)sE2(7)ydacoby(2:2)rthet3(101) sda3mma‘101
REAL¥8 trycrohfdrRokuwskdrdamarbetartOrntOrtisntisrdecdtrerror
REALXS g1s42rd1pral2psdudsehirthrterdtOrcOrclrhratioralens
REAL¥8 rhorscrelerdtertrrrbetarshfarercrrriirdtistratiorder
REALX8 omedassdamarslambdarrdtimerddtd:0dt ddtdilidtsylwresbl
REALX8 0y dlsdtdn0rdcdxOrdtdnxlrdednlrdedtlisrdedtdrserrslwrtime
FREALX8 constrdvrdtdxlprhhshecrccrchrsdet»rdtd::iOrs0slsairal
REALX8 concrhrsdnstfinalslt
INTEGER isi2sfladsansrnriterriter?
CHARACTERX10 file$sfilelssfilels

data A1/10.,4592y-,00404897y-,41752E-4, ,34851E-6»~-,10152E~-8,
& B868S31E-129.903668BE~159~,19969E-17y,779287E-21,,191482E-24,
&2 -.396806E4»,395733E2/
data E1/-8.9751114,-,4384553+~-19.179576934.7653195-19.46243790.+0./
data E2/-3,87446+2,94553+-8,06395,11,56339-6.,0288450.90./
FRINT %X»’%% This prodram calculates the temrerature and varpor %Xx’
PRINT X»’'XXx concentration rrofiles in a3 slab of fiberglass XX’

PRINT X " XX% with transient boundary conditions L S 54
PRINT Xs»’' XX 2nd liquid diffusion xx
PRINT %s’
FRINT %X¢’

PRINT %y ’ENTER INITIAL LIQUID CONTENT FILE’
READ %, files
OPEN (unit=10sfile=tiles$//’'.dat’sstatus=’0ld’)
PRINT %Xs’ENTER TheTec (K)’
READ Xsthetc
FRINT %’ ENTER RHhsRHc”
READ %shhshe
PRINT %Xy ’ENTER kd/kw’
READ Xskratio
PRINT % ’ENTER run label’
READ xsfiles
PRINT %Xy ’ENTER alrharerror’
READ Xsalepharerror
FPRINT Xy ENTER time stersy print intervslrsimulation time’
READ Xsdtimerrintstfinal
errint Xy ‘enter slab thickness’
read X»,1t
filels="temm’//file$//’' .dat’
filel2%='conc’//file$//’dat’
OPEN(unit=20sfile=filel$rstatus="new’)
OPEN(unit=30sfile=rile28sstatus=‘rew’)
C phusical rromrerties
dv=1,.6E-5
k.d=,026
kw=kratioxkd
R=461»8
rho = 1,146
cep = 1007,
le=kw/(rhoXceidv)
€C find ch & ¢
c
READ (10s%) 9320931
do 10 i=1,20

read(10yx)stheta(i)
10
continue




esrint ¥etpoeto
BE R S8/

al1=1klt

PP ¢aD ylb, Q0,01 ¥1L: w0=,014k1t 155
1f (21 .dt, Q0,99%1t) ;1=,99%1t

print KyuGoxlylt

ch=hh¥ (CONC(th))

ce=hcX(CONC(te))

t0=th-x0%{th-tec)/1t
ti=th=-x1X{(th=-te)/1lt

lw=x1-x0

lwp=1lw

iter2=0

time=0

rPlag=-.,01

80
format(’ ‘+410,5y’ ‘9910.959"  9g810.5s’ 410,95,

g ‘ ‘9410.5’ ‘»d10.,459’ ’y4810,4)
PRINT *»'TIME TO Ti X0
2 Qin Rout’
90
if (time .gt, pfladg) then
c
ei=(th-t0) X1t/ (xO0X(th=-tc))

c .
QO=(t1-te) X1t/ ((lt-x12%X(th-tc))

write(4,80)stimertOrtlrx0r~israirald

eflag =pflag + pint
end if
if (time .gt, tfinal) doto 2%90
iter = 0
100
dte=t0-t1
tre=(t0+t1)/2
betap=dta/tre
hfg=H(tre)

cre=CONC(tre)
c dtime = («O0XX2%xtheta(1)XX,5+(1t-x1)XX2Xtheta(20)%xX,5)/

c 3 (2kdvXcreXXx,5)
cO=conc(t0)
cl=conc(tl)
decp=c0~-cl
omedar=hfax{cl0~-cl)/(rhoXceXtre)
gamar=hfd/(rktrp)
bl=hfdxdv/kd
lambdar=2%damarkX2%betarkomedar/(let+damarkomedar)
dtd«0p=dtdx0
dtdxlp=dtdxl
const=dte/lw
dtdx03-,5%x(1+lambdap/(dexms(lambdar)-1))%Xconst
dtdxl=-,5%(1+1anbdarxdexr(lambdar)/(dexr(lambdar)-1))Xconst
dcdtO0=(conc(t0+.001)~c0)/,001

dedti=(conc(t1+.001)-c1)/,001
41=(th-t0)/x0+dtdx0+b1x((ch-c0)/%0 + dcdtOXdtdx«0)
g2=(t1-tc)/(1t=-nl)+dtdxl+bix((cl~cc)/(lt~-n1)+dcdtixdtdxl)

if (iter .gt. 0) doto 200
dtdx0p=dtdx0
dtdule=dtdul

dlp=d1

A Y
+

X1



L0=40+.01
F1=t1+.01
dt0=.,01
dt1=.01

dte=t0-t1
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1z
A-//

Ghgr ==, Tk Lelamaddze Tae i lamodar i~ Ko T
otdl=-,5¢ L+iamonar¥da i lambre Yidz 27 lambnir =1 ATl L,
d1=0bp=t0V /D4 dbd O+l &V ch=cOi/ 0+ dodtCrdhda

gl=itl-te)/(lt=l)+dtefl+bl®i (ol=ac)/(Llt-u1)+dodt1kdte 1

200
ddtdu0dt= (dtd0-dtd:x0r)/dt0
ddtdxidt= (dtdxil-dtdxle)/dtl
Jacoby(ls1)=(l+hfakdv/kd¥dcdtO) «(ddtd::0dt-1/40)
Jacoby(1s2)=(dl-d41r)/dtl
Jacoby(2y1)=(42-42p)/dL0
Jacoby(2s2)=(1+hfaxdv/kdXxdedtl) ¥ (ddtduidt+1/(1~2:1))
iter=jiter +1
dtO0=-alrhakdtoxdsl/(d1-g1p)
dti=—-alrphaxdt1xg2/(42-92p)
dlp=g1
42p=d2
c det=1/(jacobu(lr1)XJiacoby(2y2)=-Jacoby(1s2)RJjacobu(2s1))
dtO0=—-alphax(Jacobyu(2s2)%dl-Jacobuw(2,1)%42) xdet
c dti=alerhaX(.acoby(ls2)Xdl-Jacoow(lsl)%xd2)Xdet

if (dabs(dtO?).dt. .,10) dtO0=,1%sgn(dt0)

if (dabs(dtl).at, .10) dti=,1%xsdn(dtl)

t0=t0+dto

ti=t1+dt1

erraMAX(dabs(gl) rdabs(42))

if (err .gt, error) docto 100

do 250 i=1,20

nonNnn

2]

x=i
const=dtes/1wkX2Xkd/hfdXx,SklambdarXkX2/(dexr(lambdar)~1)
% Xerms/dem

damma(i)=constXdexsr(lambdarkx/20)
#=(20Xdx0+xklw)/1ur
i2=x
theta(i)=theta(il2)+(theta(i2+1)~theta(i2))¥(x~-i2)
3§ +damma(idxdtime
250
continue
du0=-dtimexdv/theta(1)X((ch~c0)/%0+dcdtOXdtdx0)
#%0=x0+dx0
l=xl-dtimeXdv/theta(20)X((cl-cc)/(1t-x1)+dedtixdtdxl)
lur=1lw
lw=x1-%0
if (lw .1t, .0005) then

rrint Xs‘dryout occurs under these conditions’
write(és80)stimetdtimesrtOstlyx0ynl

doto 2990
end if

time=time+dtime
iter2=iterl+l
if (dx0 ,d4t. le~18%xdtime) doto 90
c write solution to teme,dat file
290
drx=(x1-%0)/20
WRITE(205350)90.»th
WRITEL30,360)90.2¢ch
DO 300 i=1,101
WRITE(20,350) 920+ (i-1)%dxsyT(i)

nnnonn

ci=CONC(T(i))
c WRITE(30r,360)sx0+(i-1)¥Xd:trci
c300

[aXa PR A SYTAY of




o WRITE(20,3500 L stk

3350
FORMAT ¢’
360
FORMAT ¢’

RS 4y

“1Fé.4y’

o WRITE(30s360)r1.rc2

"sFB.4)

‘yFB8.7)

Ut

L
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FRINT Ko KRR K KKK AR KRR N KN UKy RV KRy by
FRINT %o K¥¥KX OUTFUT TILE
FRINT &y’ ¢
FRINT ks 'RUN LABEL’sfile$
FRINT %y’
PRINT X, ’'HEAT ENTERING SLAB =’ »kdX(th=t0)/x0,"'(W/m~2)"
PRINT %y 'HEAT LEAVING SLAE =’shkdXx(ti-te)/(1-x1)ys’(W/m~2)"
FRINT %, ’VAPOR ENTERING SLAR =’sdvXich-c0)/:x0s ' (ka/m™2 s)’
PRINT %,’VAPOR LEAVING SLAR =’sdvkicl-cc)/(1-x1),'(bd/m"2 s)’
PRINT %x»° *
PRINT Xy ’WET ZONE BOUNDARIES:’»sx0s3:1
PRINT %5’ '/
PRINT xs 'EVAPORATION RATE AT HOT SIDE =’».ids'(ka/m"2 s)’
PRINT %, EVAPORATION RATE AT COLD SIDE =’,ils’(kh3d/m~2 s)’

159

PRINT %,/ ¢
PRINT %y’lambdar =’y lambdar
GOTO 450

400

PRINT *%s’ NO CONVERGENCE 1!~
goto 450

425

PRINT %y’ NO CONDENSATICON WITH THESE BOUNDARY CONDITIONS’

450
STOP
END
¢ function CONC
REAL%X8 function CONC(T)
COMMON/raram/trrcrrsdvihfgrRrkwrdamarbetasAlsELSE2
REALX8 trxrldprtrnonsvdrALI(12)rEL(7)9E2(7)strrcrrdvrhPdrRrskwrgamarbets
intederx4 n
lap=231(11)/¢t-21(12))
D0 10 n=1,10
#=DFLOTJ(n)
lder=]ldr +sdan(ai(n))Xdexr(dlod(dabs(Al(n)))+(x-1)%Xdlod(T))
10 CONTINUE
tnon=(647.,3-T)/4647.3
vd=1,41,6351057%XtnonXkx(1./73.)+452,584599%ktnonkX(5./4.)~
g 44,4694653%Xtnonxx(7,/8,)
DO 20 n=1,7
vd=vd+E1(n)XkthonXXn
20
CONTINUE
vdavdR22,089%,003155/dexr(ldp)
CONC=1./vsg
RETURN
END
€ function H
REALX8 function H(T)
COMMON/m»a3ram/trecrrdvrhfdsRybwrdamarbetarAl sE1,E2
REALX8 tshfalrtnonrsA1(12)9EL(7)»E2(7)rtrrerrsdvrhfdsRebwrdamarbets
INTEGER n
tnon=(647.3-T)/647.3
hfdl=2,779221%tnonkk(1./3.)+4,62668%XtnonXX(S5,/6.)=1,07931%XLnonkx%k(7.,/8,)
DO 10 n=1,7
htdl=htg1+E2{n)Xtnonxxn
10
continue
H=hfg1%2.5009E4
RETURN :
end '
¢ function sdgn
res3l*8 function sgn(t)
realk8 ast
if (¢t .1t.0) then

v
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end if
sdn=3
return
end
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Numerical Transient Model
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Al
38}

mr2esm kbp2mEll
B mrogram solves for {hne trenzient lLemperzture
varar concentratiorm arnd liauid content =rofilecs
¢ im 3 roroug slao with heet conductiony varor diffusion
c
arnd pihase cnande with constant boundary conditions

reslx8 eta(102)rdeta(102)rcnc(l102)rydernc(102)

real¥8 aeta3a2(102)renc2(102)ytheta(102)rdedt(102)recned(102)
real%8 aslrhardvedtimerdushfdrderdtrtaverrhorscairer

re3l¥8 thrteshhrherrOslscOrclrchscersconstrbls?

realx8 concrhsrintrtimertfinalstfladrd2tdn2ydlecdn?
inteder isdsiterationriOril »iderilesfladsyfladg?

character ¥ 10 files$,filels$,filel2s

#rint ¥r»’enter dats outruyt filename’

read ¥rfilels
rrint Ky 'enter data file with initial temererature and’

wrint ¥r’'liquid distribution?’

resad Ky file$

Piles=Pilas//’.dat.’

filels=filels// " .det.’
cren({urnit=10sfile=filedrstatus='0ld’)
voreniunitz20yPile="tempr’'//fileldrsstatus="new’)
oreni{unit=30syfile="conc’//fileldsstatus=‘new’)
orenl{unit=40yfiles"theta’//fileldrsstatus="new’)
=rint Xy’enter ThyTe (K)’

raad kr»thsyte

#rint Xs’enter hhsrhe’

regd Xynhshce

#»rint Xy ‘enter timestersrrint intervalstime of simulation’

read Xydtimesrint,tfinal

¢ PHYSICAL FROPERTIES
d}"(=9001
zleha=2,32E-9
dw=1,8E-T
rho=1.,16
c3ir=1007
F5461b8

Lo

r22d initisl conditions
{t.ime=0
i0o=3
il=1
Jde 10 i=1 »101.,2
read(10s¥)yetalid)rcnc(i)rtheta(i)
crnef(id=cnecli)
if(if0.eq.3) then
if {thete(i) .me, 0) i0=i
2lse
Lf (il ,ea.l1) then

if (thets(i) .,eq. 0) il=i
end il

end if
19
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wlatly=th
etafl0Lliake
wt32i1)=th
et32(101)=tc
ch=hhXconec(th)
ce=hekconec(te)
cnc(l)=ch
wnef{1dl) =ce
cnel{l)=ch
cnc2(10l)=cc
dt=th=-te
tave=(th+tcd)¥.,S
de=cvh~=ce
i0p=i0
ilte=il
flagl=0
rrint X,10sil

S5

hfg=H{eta(31))

¢ stem in dry zone
vanstsdtime/{ {2Xdx) k%2)
flad=0
if (i0 .g2t.3) then
do 40 i=3,i0-2,2

call frc(d2tdx2ret3ririlOrilsflag)
call fnc(d2cdx2ycncriridrilsflag)
deta(i)=3leshaXconstXd2tdx2
denc(i)=dviconstXdedx2
etal¢i)=eta(i)tdeta(i)
cnc2(i)=cnc(id+denc(i)

if (eme2(i) .dt. 1.01%conc(eta2(i))) then
cnc2(i)=conc(eta2(i))

idp=1

endif

69

continue
endif

75
if i1 J1t. 99) then

do 80 1i=99si142,-2
vall Pne(d2tdxretasiriOrilsflag)
call fric(d2cdx2rcncrisrilOriirflag)
deta{i)=zlrhaxconstXd2tdx=2
denc(i)=dvXconstXdlecdx2

eta2(id=etali)+deta(i)

enc2(i)=cnc(i)t+denc(i)
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endif
30
continue
endif
1 = htg/(rhoXkecair)

flagsl
if ¢i0 Jle. il1l) then

do 100 i=i0»il,2

ca3ll fne(d2tdxlretaririOrilsflag)

d2tdx2=d2tdx2/ (2Xdx) X%x2

Jtdx=(eta(i+2)-eta(i-2))/(4xdx)

b2=nfakcne(i)/(rketa(i)xx2)

b3=1+b1x%xb2

call Phne(d2edx2rcncririOrilrflag)

d2cdx2=d2cdx2/(2Xdx) kX2

1€5
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A0 3n2sd2tdnZ¥b2tdtdakk Ik (D2 cne (L))
b ] X(p2-2¢¥cnciid/eta(il)

Juta(i)=dtimex(alrhakd2tdx2+bl¥duikdledd) /b3
etal(i)=eta(i)+deta(i)
crne2(i)=canc(etal(i))

dene(i)=crnc2(i)-cnc(i)

if (theta(i).ea:0 .and, dtimeXkdvikd2cdx2.,1t.decnci(i))then
deta(i)=dtimeXalrhaXd2tdn2

denc(i)=dtimeXdvXdlcdn2
etallil=eta(i)+detali)

cnc2f{id)=cnec(i) +decnec(i)
endif

theta(i)=theta(i)+dtimekdvikd2ecdx2-dcnc(i)
if{theta(i) ,1t., 1E-4) then

theta(i)=0.
¢
rprint X»ir»i0sil

if (i,eq i) i0p=i0+2
if (i.eq,il) ile=il-2

end if
100
vontinue -
endif
c
o
i0=i0#
il=ilp
if (i0.gt.il1) then
if (flag2 .ea.,0) then

Print Ky "KXXRXRER 4 r v 0o u t occur s KIOKKKKKRXK'
write(é6s14C . stimeri0rilreta(ild)reta(il)
2 s(eta(1)-eta(3))%x50/dtsy (eta(??)-eta(101))%X50/4¢t
write(és150)rstheta(i0)stheta(il)scnc(iQ®)cnc(il)
b 1 r{enci{l)~cne(3))XT0/der»{cnc(99)-cnc(101))%50/dc

flagl=1
endif

i0=3
i1=i0-2
endif
- ;
do 105 i=3:99,2
if (dabs(eta2(i)-tave).g2t,100) erint %,i

Abal i VNemb -t -
¥




erefid=emel (i) 1
109
voantinue

(&N
~)

Lime=time+dtime
e errint outerut
if (time .gt, tflag) then

tflag=tflag+rint
write(6,140)stimerildsilseta(iflretalil)
2 r(eta(l)-eta(3))xT50/dty (eta(9?)-eta3(101))%x50/d¢t
write(é,150)rtheta(i0)rtheta(il)rconc(id)renc(il)
% r(ene(l)=cnc(3))¥50/der(enc(9?)-cnc(101))%50/de
endif
if (time ,4t, tfimal) then -
do 130 i=1,101,2
write(20,160)yiseta(i)
write(30,1460)riscnc(i)
Wwrite{40,180)sisthetadi)
130
continue
doto 200
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wotbte 53

14¢

formak{’ ‘»f12,5y’ ‘i3y’ "9i3y’ ‘24104.597  '9210.5,y
) ’ 9f10.5r 4 ‘P10, 9)

150

format(’ ’»f10.5»’ ‘910,55, ‘yd104,59’ ‘5d410.5»
2 ‘ 79f10.S5y  ‘9P10.9)

140

format(’ "9i3s’ ‘9 f£10.95)

200

and

¢ function fnc returns second derivative
subroutine fnec(brarirdrsksflad)
realx8 b
realx8 a(102)
inteder isJdrksflag
if (i.ne,3 .and, i.ne.?9)

3
ba(-3(i-4)+16,%3(i-2)-30.%a(i)+16.%a(i+2)-3(i+4))/12,

if (i.eq,Jd+2 .or, isea.k+2) then
if ((k=-i).s1lt.b6 ,sor, i.9t.95) then

p=(a(i-2)-2.%a3(id+a(i+2))

else

b=(11.%a(i-2)-20.%3(i)+6,.ka(i+2)+4.%a3(i+4)~a3(i+b6))/12,

endif

endif
if (i,ea,k-2 ,or, iseq.Jd~2) then

it ((i-d).1t.é6 sor,e (i.1%t.7)) then
b=(a3(i-2)-2.,%a(i)+a(i+2))

else
ba(-a(i-46)+4 . Xa(i~-4)+6 . %a(i-2)-20.%a(id+11.%Xa(i+2))/12,

endif?

endif
if ({(i.easd)iori{i.eask)) then

b=(3(i-2)-2%3(i)+a(i+2))

endif .
if (i.ec¢3 s0rs 1.00.99 ) b=(3(i-2)-2.%a3(i)+a3(i+2))

return .
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Quasgi-Steady Transient Model
With Two Vapor Barriers
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BOGRAM rmoflund
WRITTEN BY ANDY SHAFIFRG
REVISION DATE 10 SEFT 1986
COMMON/esaram/trrcrrdvrhfdsRokwrdamarbetarAlsELSED
REALX8 T(10)sAL1(12)EL(7)E2(7)yjacobuy(2:2)sthetal(101)rd3mma(101)
_ REALX8 trrcrehfdrsRrkuwrkdrgamarbetartOrntOrtisntlydedtrerror
REAL¥8 d91,42,41prd2prdx0smhisthrterdtOrcOrclrhratioralrha

REALX8 rhorceprlerdtertrerbetarshfurprcreriivdtistratiorder
REALXS omedarsdamarrlambdarrdtimesrddtdxO0dirddtduidt,luprbl

REALXS JO0sJilsdtd:xOsdcdx0sdtdilsdednlsdodtlirdedtorerrylwrtine
REALX8 constrdvsdtdulsrhhshecrcerschrdetr»dtdxOmyx0riirairal
REALX8 concrhrsgnrtfinalrregion(é)rratiosL(10)s1t

INTEGER iri2sfladsansrnsiterriterl

CHARACTERX10 files$rfilels,filels

OM T O,

data A1/10.,4592+,~-,00404897»~,41752E~4,,346851E~6»~-,10152E~-8»
2 84531E-129.903648E~1S9-,19949E-17,.779287E~-215.,191482E-24,
g ~.396806E4,.395733E2/
data E1/-9.9751114,~-.43845537-19.179576+36.765319»-19.462437+0,+0./
data E2/-3.874456+2,94553,~8.046393,11,5633+-6.02884,0.,+0./
FRINT %» %% This prodram calculates the temrerature and varor XX’
PRINT %» "% concentration profiles in 2 slab of fiberdlass kX%’

PRINT X» "%X with transient boundary conditions Xk’
PRINT X» /XX and liauid diffusion XX’
PRINT %y’ *
PRINT %,*

FRINT %» "ENTER INITIAL LIQUID CONTENT FILE’

READR %» files

OFEN (unit=10sfile=files//’'.dat’sstatus=’agld’)

PRINT %, ’ENTER Ths»Te (K)’

READ Xsthstc

PRINT Xy ’enter slab thickness’

read Xslt

PRINT %» ’ENTER kd/kuw’

READ %xskratio

FRINT %» "ENTER run label’

READ %xsfiles

FRINT %y "ENTER alshaserror’

READ x+alrhaserror

PRINT Xy ’ENTER erint intervalrsimulation time’

READ %s=intstfinal

filels=‘temmr’//files//’'.dat’

fileZ¢='liaquid’//files$//’ .dat’

OPEN(unit=2

OFEN{unit=3
C physical =r

dv=1,.8E-5

kd=,026

kw=kratioxkd -

R=441.8

rho = 1,16

cee = 1007,

le=kw/(rhoXcpidv)
C find ch & ¢

read(10sX)syx0rx1
if ¢(x0.1t. .01) x20=,01
do 10 i=1,20

read(10sX)stheta(i)
10

continue
rnimd Yoo
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Ld=th

Lli=to

lw=:1=2:0

lur=lw
redgion(l)=,1%1¢t
redion{2)=,22%1t

171

redion(3)=,31X1t
redion{4)=,.39%x1lt
redion(3)=,87x%x1t
region(é)=1,0x1t
iter2=9
Lime=90
#flag=.01
80
format{’ ’»3210.95y° 9410.,99’  ‘9410.59" ’»410.59° ’y210.5)
83
FPormat(’ ‘949449 ‘949,49’ 949,49’ '9d4P.49’ 49,49’ ',49,4)
87 format(’ ‘»949.49' ‘9d49.49’ '949:49’ ’9d9.4y° 99,4, *
& 149,497 ‘»d9.49’ ‘9d49.4y’ ‘949, 4)
PRINT Xxy’'TIME TO T1 X0 X1~
write(20s%X)»’time %0 x1 T(1) T(2) T(3) T(4) T(S)
g T(6)’
90
if (time .d4t. pflag) then

write(é6,80)stimertOrtl ,x0rxi

do 95 i=1+46
?35

if (x0.1t.redion(i)) goto 94
?é '

do 97 Jsls,i-1s1
L{dJd)=0

@7
T(Jd)=th-redion(J)/x0%X(th-t0)

do 98 J=isé
n=(redion{J)-x0)/1w

L(J)=thetalint(1+19%x))

etazs . IR(1-x—f {lanbdarXx)-1)/(exm»{lambdar)=-1))
T(J)=etaxdtr+Ere

?8

continue
write (6s83)sT(1)sTC2)»T(3I)sT(4)»T(S)sT(S)
Wwrite(20+87)stimerx0sxlsT(L) s T(2)»T(3)sT(4)sT(S)»T(S)
write(30:,87)stimesx0s 1L (1)L (2)sLC¢3)sL(A)sL(S)2L(S)
Ppflag =rflad + Pint
end if ’
if (time
iter = 0

100

dte=t0-t1
tres(to+tl1)/2
betap=dtep/tre
hfg=H(tre) . -
crpaCONC(tre)

AddJmm @ APEAPI Ll 2/t AN WW F F D W naed B
»

+dt., tfinal) goto 290
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cizceome(tll 172
Gee=ed-cl

omedar=ifa¥licl-cl)/{rhokce¥tre

damar=hfa/(rXtre)

Liz=hfaxdev/kd
lambdar=2XdamapXk2¥bhetarkomedar/(let+tdamarkomedar)
dtdu0p=dtdno

dtdulr=dtdnl

cornst=dter/luw

dtdn02-,54(1+lambdar/(dexr(lambdar)~-1))kconst
dtdxi=-.Sk(1+lambdarsxdene(lambdar)/ (dexr(lambdar)~-1))%const




Jodtd=tooned b0+, 00 ) =20)/, 008 173
Jedtlz=lcone(ti+,.001)-c1)/,001
if (u0.2b.0) then

d1=(th=t0)/n0+dtd:0%(1+blkdecdtO)
else
doto 240
endif

if (iteer .2t. 0) doto 200
dtdxOr=dtd:0

dtduls=dtdxl

d1p=d1

t0=t0+.01

J410=,01

dte=t0-t1

Jtdu0=-,5k(1+lambdar/(dexpr(lambdar)~1))kdtr/luw
dtdxl=-,5%(1+lambdarkdexr(lambdas)/(dexr(lambdar)~ 1))*dtp/1w

d1=(th~t0)/%0+dtdxO%(1+bikdecdtd)
200
iter=iter +1
dt0=-alrhakdtOxdl/ (d1-g¢1»)
glep=al
if (dabs(dtO).gt. ,10) dtO=.1%sdn(d4t0)
t0=t0+4t0
err=dabs (41)
if (err ,dt, error) doto 100
do 250 i=1,20
ra3tio=19/1wPrk(dx0+{(i-1)X(lw-1wm)/19)
theta(i)=theta(i)+(theta(i+l)-theta(i))xratio

250

continue
const=dte/luXX2Xkd/hfdX,.JklambdarkX2/(dexpr(lambdar)-1)
3 Xere/ders
sum=0

do 255 i=1,19
damma{i)=constXdexes(lanbdark(i-1)/19)
theta(i)=theta(i)+damma(i)Xdtime
sum=sumt+theta (i) ¥lw/19

2355 continue
theta(20)=theta(20)~-dvk(dedtikdtdxi)kdtimex20/1luw

sum=sumttheta(20)%x1w/19
¢ print ¥rsumy’liauid content’
250
el -dbxme#dv/theta(l)t(dcdtO#dtde)
#0=x0+dx:0
c if (x1 ,1t.1t) xl=xi-dtime¥dv/theta(20)%(dcdtlkdtdxl)
lup=lu
luw=xi-x%0
if (lw +1t. +005%1lt) then

rrint ¥y ’dryout occurs under these conditions’
write(és80)stimetdtimesrtOrtlsx0snl

dqoto 290
nad 0




tire=timet+dtime 174
tterl2=1terl+l
it (and v3t, le-18¥dtime) sgoto 90

c write solution to temr.dat file

290

di=01x1=-20)/20

WRITE(20,350)s0.sth

¢ WRITE{(3D9340)20.rch

¢ DO 300 i=1,101
o WRITE(205350) r:0+(i=1)%kdx»T(1i)

c

L)

ci=CONC(T(i))
c WRITE(309360) rx0+(i-1)%Xdxrci
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CONTINUE

e WRITE(20+350)s1.ytc

¢ WRITE(30,360)r1,4rccC

350

FORMAT( "yF6.49’ ‘H»FB.4)
340

FORMAT(’ ‘yFb.4»’ ’'2F8.7)

390
FRINT Ko 7 2000K50R 500K K KK KKK 00K 33K KKK K KKK 30K 0K 30 303 000K 3K KO 0K K KOk ok K

PRINT Xp’ XXkXXX NUTPUT 1222 ¢ 0
PRINT %»’ ~
PRINT %y 'RUN LAREL’sfiles$

FRINT %¢* *
PRINT %), 'HEAT ENTERING SLAB =’ kdXk(th=t0)/%0s’ (W/m~2)"

PRINT %»“HEAT LEAVING SLAB =’skdi(ti-tc)/(1-x1)»'(W/m"2)"
PRINT ¥X» "VAPOR ENTERING SLAR =’'sdvXk{ch-c0)/x0s "(kd/m"2 s)’
PRINT X, ’VAPOR LEAVING SLAB a’,dvi(cl-cc)/(1-%1)»’'(ka/m"2 s5)’
FRINT %y’ *

PRINT %y WET ZONE ROUNDARIES:‘’»x0sxn1

FPRINT %X»¢’ '
FRINT ¥»’EVAPORATION RATE AT HOT SIDE ='»i0s’(ka/m"2 s5)’

FRINT X» ’EVAPORATION RATE AT COLD SIDE ='»Jl»’(ks/m"2 s)’

PRINT %»’ *
PRINT Xy ’lambdar ='ylambdar
GOTO 4590
400
FRINT %s’ NO CONVERGENCE !!”
agto 450
425 -
PRINT %»’ NO CONDENSATION WITH THESE BOUNDARY CONDITIONS’
450
STOP
END

¢ function CONC
REALX8 function CONC(T)
COMMON/maram/trycrydvehfedrsRrkwrdamarbetarAl»EL1»E2
REALX8 trxrlarrstnonsvesAL1(12),EL1(7)sE2(7)strrcrrdvshfasRekwrdamarbeta

inteder¥d4 n
lap=31(11)/(t-31(12))
e 10 n=1,10
#=DFLOTJ(n)
ldp=ldpr +sdn(3l(n))Xdexmr(dlog(dabs(Al(n)))+(x~-1)%kdlod(T))
10 CONTINUE
tnon=(847.3-T)/647.3
vﬂ=1.+1.6351057*tnon*#(1./3.)+52.534599ltnon¥*(5./6.)-
3 44.,6944653%xtnonk2x(7./8,)
DO 20 n=1,7
vd=vd+El (n)XtnonXkXkn
20
CONTINUE :
ve=vdX22,089%,003155/dexp(1lgp)
CONC=1,/vd
RETURN
END
C function H
REAL%8 function H(T)
COMMON/Param/trrcrrdvehfarRrkwrdamarsbetarAl,EL1,E2
REALX8 t hfd1,tnonsA1(12),EL1(7)»E2(7)strrcrsdvrhfasRrkwrdamarbeta
INTEGER n
tnon=(447.3-T)/847.3
hre1=,779221%ktnonXX(1.,/3,)+4,462648XtnonkX(5,./6,:)~1,.07931xtnonkk(7./3,)

DO 10 n=1,7
ROl =R OPATLE NI AV YEmmnd P
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LAt e
H=nf2i&2,92009E2 176
SETURM
e@rd

v function sdn
real¥8 function san(t)
rezl¥8 art
if (¢ «1t.0) then

a=-1
vwlse

end if
sdn=g
return
end



