AN ADAPTIVE NUMERIC PREDICTOR-CORRECTOR

GUIDANCE ALGORITHM FOR ATMOSPHERIC

ENTRY VEHICLES

by

Kenneth Milton Spratlin

B.A.E., Georgia Institute of Technology (1985)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1987

©Kenneth Milton Spratlin, 1987

Signature of Author Department of Aeronautics and Astronautics May 8, 1987

518/87 Approved by _____

Professor Richard H. Battin Department of Aeronautics and Astronautics Thesis Supervisor

Approved by	12morright	_ & J	· · /vorma.	5/8/87
	/			Timothý J. Brand
		4		Technical Supervisor, CSDL

Accepted by _____ Professor Harold Y. Wachman Chairman, Department Graduate Committee

> Archives MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MAY 2 7 1987

LIBRAPLES

2

AN ADAPTIVE NUMERIC PREDICTOR-CORRECTOR

GUIDANCE ALGORITHM FOR ATMOSPHERIC

ENTRY VEHICLES

by

Kenneth Milton Spratlin

Submitted to the Department of Aeronautics and Astronautics on May 8, 1987, in partial fulfillment of the requirements for the Degree of Master of Science in Aeronautics and Astronautics

ABSTRACT

An adaptive numeric predictor-corrector guidance algorithm is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented.

Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.

Thesis Supervisor: Dr. Richard H. Battin

Title: Adjunct Professor of Aeronautics and Astronautics

Technical Supervisor: Timothy J. Brand

Title: Division Leader, The Charles Stark Draper Laboratory, Inc.

4

۰. ۲

ACKNOWLEDGEMENT

This report was prepared at The Charles Stark Draper Laboratory, Inc. in support of NASA Langley Research Center (LaRC) Task Order No. 87-43 under Contract NAS9-17560 with the NASA Lyndon B. Johnson Space Center (JSC).

Publication of this report does not constitute approval by the Draper Laboratory or the sponsoring agency of the findings or conclusions contained herein. It is published for the exchange and stimulation of ideas.

I hereby assign my copyright of this thesis to The Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts.

Kenneth M. Spratlin

Permission is hereby granted by The Charles Stark Draper Laboratory, Inc. to the Massachusetts Institute of Technology to reproduce any or all of this thesis.

I wish to take this opportunity to thank some of the many people who have helped me during the preparation of this thesis and my stay at M.I.T.. I would like to express my sincere gratitude to The Charles Stark Draper Laboratory for making my graduate study possible through the Draper Fellowship. I wish to thank all of the members of the Guidance and Navigation Analysis Division for their technical assistance and willingness to share their expertise. In particular I would like to thank T. Brand, J. Higgins, and A. Engel for their patience, assistance, and support during the preparation of this thesis and work on the Aeroassist Flight Experiment. I wish to thank my thesis advisor, Dr. R.H. Battin, for his assistance and in particular for his abilities as an educator. A special thanks for his encouragement and support goes to B. Kriegsman who recently passed away. He is greatly missed. I found the opportunity to interact with the people at CSDL to be the most rewarding aspect of my studies at M.I.T..

I also wish to thank H. Stone and R. Powell of NASA/LaRC for the opportunity to work on the ERV entry guidance problem and their assistance in answering my questions.

Most importantly, I wish to thank my parents and sisters for their unending love and support over the years.

. . -

TABLE OF CONTENTS

Sec	tion	F	bage
1.0	INT	ODUCTION	. 21
2.0	MOT	VATION	23
	2.1	Introduction	23
	2.2	Dispersions	26
	2.3	Reference Trajectories	28
	2.4	Guidance Approach	31
3.0	GUI	ANCE DESIGN	33
	3.1	Introduction	33
	3.2	Unit Target Vector	34
	3.3	Commanded Attitude Computation	35
	3.4	Corrector Algorithm	36
	3.5	Predictor Algorithm	39
	3.	.1 Introduction	39
	3.	2 Equations of Motion	40
	3.	3 Integration of the Equations of Motion	44
	3.5	4 Termination Conditions for the Predictor	46
	3.	5 Final State Error Computation	46
	3.5	6 Algorithm Coding	48

	3.6	Estimators	48
	3.7	Heat Rate Control	52
4.0	PER	FORMANCE	57
	4.1	Simulator	57
	4.2	Open-Loop Footprint	57
	4.3	Effect of Dispersions on Footprint	59
	4.4	Estimator Performance	60
	4.5	Closed-Loop Performance	61
	4.6	Heat Rate Control Performance	63
	4.7	Overcontrol	63
	4.8	Algorithm Execution Time	66
5.0	FUTU	JRE RESEARCH TOPICS AND CONCLUSIONS	69
	5.1	Future Research Topics	69
	5.2	Conclusions	71

Appendix	Page
Appendix A. ERV AERODYNAMICS MODEL	133
Appendix B. ALGORITHM PROGRAM LISTINGS	135
List of References	211

LIST OF ILLUSTRATIONS

•

Figure

Page

1.	Three-View Drawing of the ERV	78
2.	Atmospheric Wind Profile	79
3.	Envelope of Density Profiles Derived from Shuttle Flights	80
4.	STS-1 Density Profile Comparison	81
5.	STS-9 Density Profile Comparison	82
6.	Multiphase Bank Angle Program for L/D = 1.5	83
7.	Crossrange Versus Number of Bank Steps	84
8.	Comparison of Optimum Bank Angle Programs	85
9.	Optimum Shuttle Angle of Attack Profile for Maximum Downrange	86
10.	Optimum Shuttle Bank Angle Profile for Maximum Crossrange	87
11.	Optimum Shuttle Angle of Attack Profile for Maximum Crossrange	88
12.	Landing Footprint for the ERV	89
13.	Altitude Histories for the Entry Missions of the ERV	90
14.	Bank Angle Histories for the Entry Missions of the ERV	91
15.	Angle of Attack Histories for the Entry Missions of the ERV	92
16.	Heat Rate Histories for the Entry Missions of the ERV	93
17.	Heat Load Histories for the Entry Missions of the ERV	94
18.	Bank Angle Versus Velocity Profile	95
19.	Definitions of Downrange and Crossrange Errors	96
20.	Predicted Lift Coefficient Profile for the ERV	97
21.	Predicted L/D Profile for the ERV	98

22.	Predicted L/D versus Angle of Attack Profile for the ERV	. 99
23.	ERV Open-Loop Footprint with the Control Profile	100
24.	Time Response of the Density Filter	101
25.	Time Response of the L/D Filter	102
26.	Closed-Loop Altitude History for the Maximum Downrange Case	103
27.	Closed-Loop Velocity History for the Maximum Downrange Case	104
28.	Closed-Loop Heat Rate History for the Maximum Downrange Case	105
29.	Closed-Loop Heat Load History for the Maximum Downrange Case	106
30.	Closed-Loop Downrange History for the Maximum Downrange Case	107
31.	Closed-Loop Crossrange History for the Maximum Downrange Case	108
32.	Closed-Loop Altitude History for the Maximum Crossrange Case	109
33.	Closed-Loop Velocity History for the Maximum Crossrange Case	110
34.	Closed-Loop Heat Rate History for the Maximum Crossrange Case	111
35.	Closed-Loop Heat Load History for the Maximum Crossrange Case	112
36.	Closed-Loop Downrange History for the Maximum Crossrange Case	113
37.	Closed-Loop Crossrange History for the Maximum Crossrange Case	114
38.	Closed-Loop Altitude History for the Minimum Downrange Case	115
39.	Closed-Loop Velocity History for the Minimum Downrange Case	116
40.	Closed-Loop Heat Rate History for the Minimum Downrange Case	117
41.	Closed-Loop Heat Load History for the Minimum Downrange Case	118
42.	Closed-Loop Downrange History for the Minimum Downrange Case	119
43.	Closed-Loop Crossrange History for the Minimum Downrange Case	120
44.	Angle of Attack Comparison for the Maximum Downrange Case	121
45.	Bank Angle Comparison for the Maximum Downrange Case	122
46.	Angle of Attack Comparison for the Maximum Crossrange Case	123
47.	Bank Angle Comparison for the Maximum Crossrange Case	124
48.	Angle of Attack Comparison for the Minimum Downrange Case	125

49.	Bank Angle Comparison for the Minimum Downrange Case	126
50.	Bank Angle Versus Time Comparison for Heat Rate Control	127
51.	Angle of Attack Versus Time Comparison for Heat Rate Control	128
52.	Heat Rate Versus Time Comparison for Heat Rate Control	129
53.	Bank Angle Versus Velocity Comparison for Heat Rate Control	130
54.	Angle of Attack Versus Time Comparison with Overcontrol	131
55.	Required Execution Time for the Predictor-Corrector	132

-

-

. .

LIST OF TABLES

.

Table

Page

1.	Characteristics of the ERV and Trajectory Entry Conditions	73
2.	Dispersions Used in Performance Study	73
3.	Dispersed Cases for Maximum Downrange Region	74
4.	Dispersed Cases for Maximum Crossrange Region	75
5.	Dispersed Cases for Minimum Downrange Region	76
6.	Maximum Downrange Region Closed-Loop Results	77
7.	Maximum Crossrange Region Closed-Loop Results	77
8.	Minimum Downrange Region Closed-Loop Results	77

14

-

SYMBOLS

.

а	= acceleration magnitude
à	= acceleration vector
$\overrightarrow{a_i}$	= inertial acceleration measured by the inertial measurement unit
$\overrightarrow{A_{\prime}}$	= total inertial acceleration vector
AOTV	= Aerobraking Orbital Transfer Vehicle
BTU	= British Thermal Unit
ō	mean aerodynamic chord
$\cos(\Delta\phi)$	= cosine of incremental lift for heat rate control
C'	= proportionality factor for the linear viscosity-temperature relationship
Co	= aerodynamic drag coefficient
CL	= aerodynamic lift coefficient
C _s	= speed of sound
CPU	= central processing unit
CR	= crossrange
CSDL	= The Charles Stark Draper Laboratory, Inc.
det	= determinant of sensitivity matrix
DR	= downrange
DOF	= degree of freedom
ERV	= Entry Research Vehicle
f _{earth}	= flattening of oblate Earth
$\overrightarrow{F_{i}}$	= inertial force vector
g	= gravitational acceleration magnitude
$\overline{g_i}$	= gravitational acceleration vector

-

GPS	= Global Positioning System
h	= altitude
'n	= derivative of altitude with time
'n	= second-derivative of altitude with time
h,	= scale height for exponential atmosphere model
$\frac{1}{i}$	= unit vector
Jz	= second zonal harmonic coefficient
JSC	= Lyndon B. Johnson Space Center
k	= term in geodetic to geocentric latitude conversion
К	= term in heat rate control equation
ĸ	= velocity vector term in the integration algorithm
κ ΄	= acceleration vector term in the integration algorithm
$\kappa_{\Delta t}$	= gain on acceleration magnitude in variable time step equation
κ _{ι/0}	= multiplicative scale factor on the nominal L/D
K _o	= gain on heat rate error in heat rate control equation
K _ö	= gain on rate of change of heat rate in heat rate control equation
κρ	= multiplicative scale factor on the standard density
К1	= gain in first-order filter for density smoothing
K ₂	= gain in first-order filter for L/D smoothing
L/D	= lift-to-drag ratio
LaRC	= Langley Research Center
m	= mass
М	= Mach Number
М ^{ЕF}	= inertial-to-Earth-fixed transformation matrix
M _o	= mean molecular weight of air at sea level
n.m.	= nautical mile
NASA	= National Aeronautics and Space Administration

POST	= Program to Optimize Simulated Trajectories
\overline{q}	= dynamic pressure
Q	= heat load
Q	= heat rate
<i></i>	= time rate of change of heat rate
R	= position vector magnitude
R _{equator}	= radius of oblate Earth at equator
$\overrightarrow{R_{i}}$	= inertial position vector
R _{pole}	= radius of oblate Earth at pole
Re	= Reynolds Number
S	= Sutherland's constant in viscosity equation
S	= aerodynamic reference area
SEADS	= Shuttle Entry Air Data System
t _{GMT}	= Greenwich mean time
Τ'	= reference temperature
T _M	= molecular scale temperature
T _{static}	= freestream static temperature
T _{wall}	= wall temperature
TAEM	= Terminal Area Energy Management
\overline{v}	= Viscous Interaction Parameter
V,	= magnitude of inertial velocity
V,	= inertial velocity vector
V _R	= magnitude of Earth-relative velocity
\overline{V}_R	= Earth-relative velocity vector
Z	= geocentric colatitude of the postion vector

 α = angle of attack

β	= angle of sideslip
δ	= small incremental change
Δ	= incremental change
γ	= ratio of specific heats for air
λ	= longitude
μ	= coefficient of viscosity for air
μ	= Earth gravitational constant
$\overline{\omega}_{earth}$	= Earth's rotation vector
ω"	= natural frequency of heat rate control response
ϕ	= bank angle
R	= universal gas constant
ρ	= atmospheric density
σ	= standard deviation
τ	= time constant of filter
ζ	= damping ratio of heat rate control response

SUBSCRIPTS

aero	= aerodynamic
с	= geocentric
cmd	= command
d	= desired
des	= desired
drag	= drag term

е	= error
El	= entry interface
f	= final
g	= geodetic
imu	= inertial measurement unit
inplane	= projection of target unit vector into plane formed by the
	position vector and the relative velocity vector
lat	= direction perpendicular to the plane formed by the position vector
	and the relative velocity vector
lift	= lift term
lim	= limiting value or boundary
L/D	= lift-to-drag ratio
max	= maximum
min	= minimum
пот	= nominal
perpen	= direction perpendicular to the plane formed by the position vector
	and the relative velocity vector
pole	= direction of the north pole
R	= direction of the position vector
s/	= sea level
std	= standard value
t	= target aim point

 ρ = atmospheric density

SUPERSCRIPTS

EF	= coordinatized in Earth-fixed coordinates
imu	= value measured by inertial measurement unit on current cycle
imu past	= value measured by inertial measurement unit on past cycle
^	= estimated or measured
,	= value from previous guidance cycle

.

•

1.0 INTRODUCTION

Routine access to space and the maintenance of a Space Station will increasingly require greater flexibility in mission planning and the requirement for lower system maintenance costs. The launch and recovery phases of space flight have historically been the most demanding phases of space flight and therefore require the most development effort and investment. Mission flexibility requires more frequent launch and deorbit opportunities. For the case of re-entry vehicles, deorbit opportunities are defined by the ranging capability of the vehicle. A high L/D vehicle increases the available deorbit opportunities increasing mission flexibility. High L/D vehicles also are of interest for over-flight missions for the purpose of reconnaissance.

. Entry guidance algorithms developed to date have been highly vehicle-specific and required great development and maintenance efforts over the life of the vehicle. These algorithms were not applicable to other vehicles without extensive modification.

This study seeks to design an adaptive entry guidance algorithm that maximizes the usable footprint by making full use of the available vehicle capability. This algorithm should also be easy to maintain throughout the vehicle definition phase and operational life. Minimizing the number of mission-dependent input parameters (I-loads) is desirable. The algorithm should also be easily transported to other vehicles to minimize development cost. Transportability is accomplished by minimizing vehicle-specific features of the algorithm. Explicit heat rate control should be provided to allow full use of the entry corridor up to the heat rate limits.

This study seeks to design such an algorithm. A candidate entry guidance algorithm is defined for the NASA Entry Research Vehicle (ERV), but is easily adapted to other vehicles with minimal modification. The proposed algorithm attains almost complete coverage of the achievable footprint, while employing a simple one-phase entry algorithm with explicit heat rate control. Vehicle-specific features and I-loads are minimized, reducing algorithm development and maintenance costs.

The ERV [1] is a proposed high-performance entry vehicle designed as a test bed for future technology development in the areas of:

- 1. Maneuvering entry/synergetic plane change
- 2. Atmospheric uncertainties
- 3. Advanced thermal protection systems
- 4. Aerodynamic/aeroheating prediction
- 5. Adaptive guidance and navigation
- 6. Load-bearing thermostructures

The ERV is designed for deployment from the Space Shuttle, after which the ERV enters the atmosphere for demonstration of the synergetic plane change, over-flight, and entry missions. Figure 1 on page 78 shows a three-view drawing of the ERV and the surface areas of the aerodynamic control surfaces. Also seen is the size of the ERV in relation to the diameter of the Shuttle payload bay in which the ERV must⁻fit.

2.1 INTRODUCTION

The goal of any entry guidance algorithm is to successfully guide the vehicle to the desired final state for the largest range of dispersions possible without violating any vehicle constraints while also maximizing the achievable footprint. It is also desirable to minimize the mission and vehicle-specific aspects of the guidance algorithm so as to minimize premission analysis and planning. Transportability of the algorithm from one vehicle to another significantly reduces guidance algorithm development effort and cost.

To maximize the footprint attainable, the guidance algorithm must follow the optimal path to any particular point in the footprint. The algorithms developed to date for such vehicles as the Apollo capsule [2] and the Space Shuttle [3] have attempted to do this by fitting the optimal trajectory with phases that follow important parameters (reference profiles) over some range of conditions. These guidance algorithms were required to be computationally efficient because of the limited on-board computer resources available. Analytic expressions for the reference profiles allowed for low execution time and tailoring of the trajectory for vehicle-specific constraints. For example, trajectories for these vehicles had to be shaped to reduce and control the maximum heat rate experienced below that allowed for the available thermal protection system materials.

. - '

The Space Shuttle entry guidance system employs three major modes with seven phases:

1. Entry

- a. Pre-entry
- b. Temperature control
- c. Equilibrium glide
- d. Constant drag
- e. Transition
- 2. Terminal Area Energy Management
- 3. Approach and Landing

Except for the pre-entry phase which is open-loop, each phase is described by an analytic expression relating the desired drag and altitude rate (the measured feedback terms used) to the desired profile. Because the algorithms are tailored for a particular vehicle and the reference profiles do not follow the optimal profile to all points in the footprint, guidance algorithms developed to date can not be easily adapted to other vehicles or provide full coverage of the theoretically achievable footprint.

The next generation of entry vehicles will not be so constrained due to advances in thermal protection system materials and computer technology. For example, flight computers are now capable of supercomputer speeds on the order of 40 million instructions per second utilizing parallel processing architecture [4]. A different approach to guidance that attempts to follow an optimal profile to maximize footprint capability is therefore possible.

The proposed approach is a predictor-corrector algorithm that numerically predicts the final state for a particular control variable history and then corrects the control variable history to satisfy the specified final state constraints. This approach, proposed previously for

various guidance problems, has most often been impractical because of the long trajectories that must be predicted and the slow computer speeds.

Such an approach has been employed for the Space Shuttle Powered Explicit Guidance (PEG) [5] used for second stage ascent and orbit insertion burns where the trajectory is short enough to be predicted with the available computer resources. The Shuttle algorithm numerically predicts the gravitational effects during the powered flight phase with a 10 step integration of the 500 second trajectory.

A predictor-corrector has also been proposed for Aerobraking Orbital Transfer Vehicles (AOTV) [6] which would utilize more advanced computers. This algorithm numerically integrates the equations of motion along a skimming trajectory through the upper atmosphere that is approximately 500 seconds long and requires about 100 integration steps.

The trajectories flown by the ERV or any high L/D entry vehicle are typically from 30 to 100 minutes long from entry interface (400K feet) to landing, so the computational demand for such an algorithm is very great early in the entry when the time to landing is long. However, because the entry is long and the vehicle has excess ranging capability for all but a small region along the edge of the footprint, the accuracy of the early predictions need not be as high as for the later predictions. Hence, large time steps can be used early in the predictor algorithm. Later, when the vehicle nears the landing site, the time remaining is short, and hence, the prediction is short. This allows the predictor-corrector to be executed more often near landing just like the current analytic algorithms. Throughout the entry, vehicles using an analytic guidance algorithm with reference profiles must closely follow the reference profile if the assumed reference profile is to guide the vehicle to the correct final state. A predictor-corrector effectively recomputes a new reference profile each time it is executed, so the guidance execution rate can be much lower than that for analytic algorithms.

2.2 **DISPERSIONS**

Before the guidance algorithm can be designed, the possible dispersions that may affect the trajectory must be considered. The Shuttle entry guidance system is required to reach the Terminal Area Energy Management (TAEM) interface with less than a 2.5 nautical mile position error from the target aim point. The dispersions of significance to an entry vehicle trajectory include:

- 1. Vehicle characteristics
 - a. Mass
 - b. Aerodynamics
 - c. Maneuver rates
- 2. Environment characteristics
 - a. Atmospheric density
 - b. Atmospheric winds
 - c. Atmospheric properties influencing aerodynamic flow regimes (temperature, mean free path, etc.)
- 3. Initial entry state vector
 - a. Velocity
 - b. Flight path angle
 - c. Heading
- 4. Propagation errors in navigation state vector

Of these potential dispersion sources, only the vehicle mass, aerodynamics, and the atmospheric density and winds will be significant. By the early 1990's, almost perfect navigation can be expected through use of the Global Positioning System (GPS). If the deorbit burn guidance and control systems are assumed to correctly guide to the navigated state

and there are no navigation errors, then the dispersions in the initial entry state vector are negligible.

The vehicle mass should be known accurately, so for this study, a 3σ error of $\pm 5\%$ is assumed. Experience from the Space Shuttle program shows that the vehicle aerodynamics should be known to within $\pm 5\%$ for the force coefficients on the first flight. Only the stability derivatives and control effectiveness were missed significantly [7]. Even though the force coefficients may be known to excellent accuracy, reduced control effectiveness can reduce the possible trim angle of attack range reducing the maximum L/D achievable. Therefore, for this study, a $\pm 10\%$ dispersion in the lift and drag coefficients is considered. It should be noted that the first few flights of a new vehicle are usually targeted to the middle of the footprint to maximize margin and allow for accurate determination of the vehicle characteristics before the full ranging capability of the vehicle is used. After the first few flights, the aerodynamic characteristics should be known to within a few percent, so only about a $\pm 3\%$ dispersion must be considered.

The atmospheric dispersions were obtained from two sources. Reference [8] specifies the atmospheric dispersions to which aerospace vehicles must be designed. The average of the steady state winds at four geographic locations is shown in Figure 2 on page 79. This model was incorporated into the simulator environment with a magnitude scale factor to simulate less than worst-case winds. The wind direction was selected for each run made with winds and held constant throughout the trajectory. Reference [8] specifies Reference [9] as the source for atmospheric density dispersions. However, the recent Shuttle flights have provided estimated density data of a quality never before available. Atmospheric density profiles derived from Shuttle accelerometer measurements of the normal force acceleration and the estimated normal force coefficient and relative velocity vector are presented in Reference [10]. Figure 3 on page 80, taken from that report, shows the envelope of the

derived density profiles for the first 12 Shuttle flights. Of particular interest is the range of dispersions seen: -47% to +12%. Figures 4 on page 81 and 5 on page 82 show the density profiles for the STS-1 and STS-9 Shuttle flights. High frequency density shear components and constant density biases from the standard atmosphere are seen. For this study, constant density biases of \pm 30% and the Shuttle derived density profiles from Reference [10] were used.

2.3 REFERENCE TRAJECTORIES

The size of the footprint for a particular vehicle is determined by the range in vehicle L/D and the constraints placed on the trajectory such as heat rate limits. The edges of the footprint correspond to the use of maximum or minimum L/D. Maximum downrange or crossrange, for example, requires maximum L/D, while minimum downrange requires minimum L/D.

The determination of the optimal angle of attack and bank angle control histories for maximum crossrange and downrange has been the topic of many papers [11] [12] [13]. Wagner [12] used several optimization techniques to evaluate the maximum crossrange achievable for a multiphase bank angle history flown at maximum L/D. The multiphase bank profiles considered are shown in Figure 6 on page 83. It is seen that as the number of phases increases, the multiphase profile approaches the optimal continuous profile also shown in this figure. It was determined that a three-phase bank angle profile as illustrated in Figure 6 achieved almost the same crossrange as a continuous bank profile. This is shown in Figure 7 on page 84 reproduced here from that paper. Further, as the number of phases

increases, the optimum bank angle profile approaches a continuous profile that is almost linear with velocity as shown in Figure 8 on page 85. It was also thown that flying at the maximum L/D maximizes the crossrange attained.

This result is confirmed in Reference [13] which utilized a nonlinear programming technique to optimize the Space Shuttle trajectory for the maximum downrange and maximum crossrange cases. The maximum downrange trajectory requires flying at zero bank angle and at the angle of attack corresponding to maximum L/D as shown in Figure 9 on page 86. The control histories for the maximum crossrange case are shown in Figures 10 on page 87 and 11 on page 88. Again, the optimal control history is the angle of attack corresponding to maximum L/D and an almost linear bank angle profile with velocity.

Optimized trajectories for the ERV were reported in Reference [14]. These trajectories were determined using the Program to Optimize Simulated Trajectories (POST) [15] and imposed the following constraints on the trajectories:

- 1. Maximum heat rate of 125 BTU/sq ft/sec
- 2. Maximum heat load of 150K BTU/sq ft

The achievable footprint with these constraints, reported in Reference [14], is shown here in Figure 12 on page 89. Subsequently, the heat load limit was increased to 175K BTU/sq ft resulting in the larger footprint shown in Figure 12. As will be seen, these footprints omit a large area in the minimum downrange region that is achievable within the heating constraints. Also shown is the footprint of the Space Shuttle which has a maximum hypersonic L/D of 1.2 as compared with 1.8 for the ERV.

Figure 13 on page 90 shows the altitude history for the maximum downrange, maximum crossrange, and minimum downrange cases. Figures 14 on page 91 and 15 on page 92

show the bank angle and angle of attack histories for these trajectories. Figures 16 on page 93 and 17 on page 94 show the heat rate and heat load histories for these cases.

Figure 15 shows that the constant angle of attack corresponding to maximum L/D is flown for the edge of the footprint except for the minimum downrange case. For the minimum downrange case, the angle of attack corresponding to the minimum L/D on the back side of the L/D curve (high drag coefficient) is flown early, followed by a ramp in angle of attack starting at 1500 seconds after entry interface. This ramp corresponds to the vehicle actually turning around and flying slightly back uprange, so maximum L/D is desired later to maximize the distance flown uprange. The angle of attack for the maximum downrange case is slightly greater than that for maximum L/D because this trajectory exceeds the heat load limit if flown at maximum L/D. The maximum downrange region of the footprint is therefore limited by the heat load limit set for the ERV. If the limit were relaxed, flight at maximum L/D would allow a longer downrange trajectory.

Figure 14 shows that the bank angle profile for maximum crossrange is approximately linear with time which is almost linear with velocity, which suggests that a linear bank angle profile with velocity is sufficient. The maximum downrange case has a constant bank angle of zero which is again linear with velocity. The minimum downrange case does not have a linear bank profile. As was mentioned previously, for this case, the vehicle turns around and flys back uprange.

The results of these studies suggest that use of a constant angle of attack profile and a linear bank with velocity profile will capture a large portion of the achievable footprint. As will be seen in the results, these profiles suffice to capture most of the footprint reported in Reference [14] and additionally reach a large area in the minimum downrange region out-

side the reported footprint. Only a small area of the reported footprint in the minimum downrange region is unachievable.

Also of interest are the peaks in heat rate seen in Figure 16. Because the peaks in heat rate are very short, explicit control of the heat rate should be possible in the maximum heat rate regions without significantly impacting the guidance.

2.4 GUIDANCE APPROACH

The guidance design will attempt to maximize the size of the footprint while flying a constant angle of attack profile and a linear bank angle with velocity profile. The predictor algorithm integrates the equations of motion forward in time using the assumed control profile and the necessary environment and vehicle models. The corrector then determines (using multiple predicted trajectories with various control histories) the sensitivities of the final state constraints to the control variables. The sensitivities are then used to compute the required control variable values to reach the desired final state conditions. Heat rate control is provided locally during the regions of maximum heating without significantly affecting the assumed control histories. Also, in-flight measurements are utilized to increase the accuracy of the predicted trajectories by compensating for off-nominal conditions.

Such a simple profile for the maximum downrange and crossrange cases simplifies the modeling of the control histories in the predictor. The only remaining question is how much of the footprint this profile will capture. As will be seen in Subsection "4.2 Open-Loop

Footprint" on page 57, such a profile achieves almost complete coverage of the achievable footprint.

Also of concern is the linearity and convergence properties of the final state constraints with the control variables. As will be seen, over almost all of the footprint except near the edges, the constraints are highly linear and convergent with the control variables. Operationally, only about 75% of the achievable footprint is used to ensure guidance margin. Thus, the question of nonconvergence near the edges is avoided.

3.0 GUIDANCE DESIGN

3.1 INTRODUCTION

This section describes the implementational details of the guidance scheme described in the previous section. The equations of motion and environment and vehicle characteristics modeled in the predictor algorithm are described. The corrector algorithm to control the final state constraints with the two available control variables is derived. Also derived are the heat rate control and in-flight measurement algorithms. The heat rate control algorithm provides control of the peaks in stagnation heat rate during the early portion of entry. The in-flight measurement algorithm utilizes accelerations measured by the navigation system to more accurately model the expected environment and vehicle characteristics in the predictor algorithm. Because the predictor-corrector algorithm is computationally intensive, areas where significant execution time savings have been or can be realized are indicated. Program listings of the algorithm coded in the HAL/S computer language are presented in "Appendix B. ALGORITHM PROGRAM LISTINGS" on page 135.

As will be seen, the only inputs to the guidance system are the environment and vehicle models, the assumed control profiles, and the navigated state vector. The state vector is an input to any guidance system. The other inputs are developed for the analysis of any new vehicle. Therefore, the guidance system is highly transportable between vehicles because only the vehicle characteristics and aerodynamics model must be changed for a new vehicle.

3.2 UNIT TARGET VECTOR

The target aim point to which the vehicle is to be guided is specified by the longitude and geodetic latitude of the Terminal Area Energy Management (TAEM) interface point which occurs at 80K feet for the Shuttle. This point is selected based on the guidance algorithm employed during the TAEM guidance phase. TAEM guidance provides precise control of vehicle energy during the final stages of entry to guide to a specified runway with acceptable energy. For computational ease, the longitude and geodetic latitude are converted to a target unit vector in Earth-fixed coordinates by first computing the geocentric latitude from,

$$\phi_c = \tan^{-1} \left(\frac{\tan(\phi_g)}{k} \right) \tag{1}$$

where,

$$k = \left(\frac{R_{equator}}{R_{pole}}\right)^2 = \left(\frac{1}{1 - f_{earth}}\right)^2$$
(2)

The unit target vector is then computed from,

$$\vec{i}_{t}^{EF} = \begin{bmatrix} \cos(\phi_{c}) & \cos(\lambda) \\ \cos(\phi_{c}) & \sin(\lambda) \\ \sin(\phi_{c}) \end{bmatrix}$$
(3)

Alternatively,

$$\vec{i}_t^{EF} = \begin{bmatrix} i_x \\ i_y \\ i_z \end{bmatrix}_t^{EF}$$
(4)

where,

$$i_{z} = \sin(\phi_{c}) \tag{5}$$

$$i_x = \cos(\lambda) \sqrt{1 - i_z^2} \tag{6}$$

$$i_y = \operatorname{sign}(\lambda) \sqrt{1 - i_x^2 - i_z^2} \tag{7}$$

3.3 COMMANDED ATTITUDE COMPUTATION

Because the predictor can not be executed as frequently as analytic guidance algorithms early in the entry, and because it in fact does not have to be executed as frequently, it is necessary to update the commands sent to the vehicle autopilot more frequently than the predictor-corrector execution rate. Typically, this would be done at the rate of current analytic guidance algorithms, e.g., the Space Shuttle rate of .52 hz. The commanded bank angle, ϕ_{cmd} , is computed for the linear bank with velocity profile as shown in Figure 18 on page 95 from the desired bank angle, ϕ_{d} , and the current navigated inertial velocity magnitude, V_{l} ,

$$\phi_{cmd} = \phi_d \frac{V_i - V_f}{V_{EI} - V_f} \tag{8}$$

to yield the near-optimal linear bank with velocity profile. The desired angle of attack control history is a constant angle of attack, and therefore,

$$\alpha_{cmd} = \alpha_d \tag{9}$$

As implemented in the current design, the guidance algorithm executive is executed at 1.0 hz. The attitude commands are updated at this frequency using Eq. (8) and (9). The predictor-corrector algorithm is executed at .02 hz. during the entire entry phase, although it is practical to run it much more frequently late in the trajectory when the length of the trajectory to be predicted is short. The possible execution rate of the predictor-corrector for a typical flight computer is addressed in Subsection "4.8 Algorithm Execution Time" on page 66.

3.4 CORRECTOR ALGORITHM

The corrector algorithm is executed to update the commanded attitude control history to be flown. The guidance algorithm controls to two final state constraints, downrange error and crossrange error, using two control variables, a constant angle of attack and the intercept of the bank profile at the entry interface velocity as shown in Figure 18 on page 95 and expressed in Eq. (8).

Expanding the downrange and crossrange errors in a Taylor series expansion of the control variables and neglecting the second-order and higher terms yields,

$$\Delta DR_{e} = \frac{\partial DR_{e}}{\partial \alpha_{d}} \Delta \alpha_{d} + \frac{\partial DR_{e}}{\partial \phi_{d}} \Delta \phi_{d} + \dots$$
(10)
$$\Delta CR_e = \frac{\partial CR_e}{\partial \alpha_d} \Delta \alpha_d + \frac{\partial CR_e}{\partial \phi_d} \Delta \phi_d + \dots$$
(11)

To intercept the target, the change in the constraint errors must null the predicted errors, or,

.

$$\Delta DR_e = -DR_e \tag{12}$$

$$\Delta CR_e = -CR_e \tag{13}$$

Equations (10) through (13) provide a set of two simultaneous equations in two unknowns,

$$\begin{bmatrix} \frac{\partial DR_{e}}{\partial \alpha_{d}} & \frac{\partial DR_{e}}{\partial \phi_{d}} \\ \frac{\partial CR_{e}}{\partial \alpha_{d}} & \frac{\partial CR_{e}}{\partial \phi_{d}} \end{bmatrix} \begin{bmatrix} \Delta\alpha_{d} \\ \Delta\alpha_{d} \end{bmatrix} = \begin{bmatrix} -DR_{e} \\ -CR_{e} \end{bmatrix}$$
(14)

which are solved for the control variable changes required,

•

$$\Delta \alpha_{\sigma} = \left(\frac{\partial DR_{e}}{\partial \phi_{d}} CR_{e} - \frac{\partial CR_{e}}{\partial \phi_{d}} DR_{e} \right) / \det$$
(15)

$$\Delta \phi_{d} = \left(\frac{\partial CR_{e}}{\partial \alpha_{d}} DR_{e} - \frac{\partial DR_{e}}{\partial \alpha_{d}} CR_{e} \right) / \det$$
(16)

where det is the determinant of the matrix in Eq. (14). The partial derivatives are approximated by finite difference equations of the form,

$$\frac{\partial DR_e}{\partial \phi_d} = \frac{DR_e(\phi_d = \phi_3) - DR_e(\phi_d = \phi_1)}{\phi_3 - \phi_1}$$
(17)

There are four partial derivatives that must be evaluated. They can be evaluated from three predicted trajectories with control histories selected as:

1.
$$\alpha_1 = \alpha'_{\sigma_1}$$
 $\phi_1 = \phi'_{\sigma_1}$
2. $\alpha_2 = \alpha'_{\sigma_1} + \delta \alpha_{\sigma_1} \phi_2 = \phi'_{\sigma_2}$
3. $\alpha_3 = \alpha'_{\sigma_1}$ $\phi_3 = \phi'_{\sigma_1} + \delta \phi_{\sigma_2}$

where the primes denote the control variables from the previous guidance solution. The new guidance commands are then,

$$\alpha_d = \alpha'_d + \Delta \alpha_d \tag{18}$$

$$\phi_d = \phi'_d + \Delta \phi_d \tag{19}$$

Protection must be provided for the case where the determinant in Eq. (15) and (16) is small or identically zero which corresponds to a loss of control authority of the control variables over the control constraints. In this case, no change is made to the control variables, and the guidance command from the previous cycle is used. As the vehicle approaches the TAEM interface altitude, the control authority decreases. Large control variable changes become necessary to null the constraint errors in the short flight time remaining. This problem can be avoided in one of two ways. First, the guidance commands can be frozen at a selected point before the termination altitude. For entry guidance, this approach is not preferred because the vehicle still has not landed. Alternatively, the target aim point can be lowered below the TAEM interface altitude point at which TAEM guidance is activated. The decreasing control authority problem is therefore reduced.

For the simulated trajectories in this report, the first approach is employed because it is desired to evaluate guidance performance by considering the dispersions in the final state at the TAEM interface altitude. Because the guidance algorithm controls only the final state and not the intermediate states, it is necessary to target for the point at which the guidance is terminated.

3.5 PREDICTOR ALGORITHM

3.5.1 Introduction

The predictor algorithm is a simplified three-degree-of-freedom (3-DOF) trajectory simulator complete with models for those environment and vehicle characteristics necessary to model the translational equations of motion of the vehicle. Because the predictor is computationally intensive, the algorithm must be carefully designed to minimize computation, and the coding of the algorithm in a particular computer language should make use of any language-specific features to reduce computational requirements. Also, because the corrector only utilizes the final state vector errors to correct the control variables, only the accuracy of the predicted final state vector need be considered in selecting those effects to be modeled.

The environmental effects of concern for the long trajectories flown by entry vehicles over large altitude and velocity ranges are:

- 1. Variation of atmospheric properties with altitude
- 2. Earth oblateness effect on gravity vector
- 3. Effect of atmospheric rotation with Earth on relative velocity vector
- 4. Movement of runway due to Earth rotation

The vehicle characteristics of importance are:

- 1. Vehicle mass
- 2. Aerodynamic coefficient variation with flight regime
- 3. Aerodynamic coefficient variation with angle of attack
- 4. Control history during trajectory

Dispersions to be considered are:

- 1. Vehicle mass variation from nominal
- 2. Winds
- 3. Atmospheric density variation from nominal atmosphere
- 4. Aerodynamic coefficient variation from nominal

These dispersions can be measured in-flight because they affect the sensed acceleration measured by the vehicle's inertial navigation system. The estimation of these dispersions is discussed in Subsection "3.6 Estimators" on page 48.

The predictor performs the following computations upon being called by the corrector with a desired control variable history:

- 1. Initialize the predictor state to the navigated state vector
- 2. Compute any ancillary parameters from the state vector
- 3. Compute the total acceleration vector from the predictor state vector and the environment and vehicle models using the control variable profiles specified by the corrector
- 4. Integrate the equations of motion forward in time one time step
- 5. Check the predictor termination conditions
 - a. Repeat steps 3 and 4 if the conditions are not met
 - b. Continue on to step 6 if the conditions are met
- 6. Compute and return to the corrector the final predicted state errors from the target state vector and the predicted final state vector

3.5.2 Equations of Motion

The corrector provides a time-homogeneous navigated state vector comprised of,

- 1. The GMT time tag of the state vector, t_{GMT}
- 2. The inertial position vector, $\overline{R_i}$
- 3. The inertial velocity vector, V_i

Also provided is the control variable history to be followed for the prediction. The equations of motion to be integrated are,

$$\frac{dR_i}{dt} = \vec{V_i}$$
(20)

$$\frac{d\vec{V}_i}{dt} = \vec{A}_i \tag{21}$$

The acceleration is computed from the atmosphere and vehicle models as follows,

$$\vec{A}_{i} = \frac{\vec{F}_{i}}{m} = \vec{g}_{i} + \vec{a}_{aero}$$
(22)

The gravitational acceleration, $\vec{g_i}$, is computed including the J_2 term as,

$$\vec{g}_i = -\frac{\mu}{|\vec{R}_i|^2} \vec{i}_g$$
(23)

where,

.

$$\vec{i}_{g} = \vec{i}_{R} + \frac{3}{2} J_{2} \frac{R_{equator}^{2}}{|\vec{R}_{i}|^{2}} \left((1 - 5 z^{2}) \vec{i}_{R} + 2 z \vec{i}_{pole} \right)$$
(24)

and,

$$z = \vec{i_R} \cdot \vec{i_{pole}}$$
(25)

The aerodynamic acceleration, \vec{a}_{aero} , is computed from,

$$\vec{a}_{aero} = a_{lift} \vec{i}_{lift} + a_{drag} \vec{i}_{drag}$$
(26)

where,

$$a_{lift} = \frac{C_L \,\bar{q} \,S}{m} \tag{27}$$

$$a_{drag} = \frac{C_{o} \ \bar{q} \ S}{m}$$
(28)

$$\overline{q} = \frac{1}{2} \rho V_R^2$$
⁽²⁹⁾

$$V_R^2 = \vec{V}_R \cdot \vec{V}_R$$
 (30)

$$\vec{V}_R = \vec{V}_I - \vec{\omega}_{earth} \times \vec{R}_I$$
(31)

$$\vec{i}_{drag} = -\frac{\vec{V}_R}{|\vec{V}_R|}$$
(32)

$$\vec{i}_{lift} = (\vec{i}_{drag} \times \vec{i}_{lat}) \cos(\phi) + \vec{i}_{lat} \sin(\phi)$$
(33)

$$\vec{i}_{lat} = \frac{\vec{i}_R \times \vec{i}_{drag}}{|\vec{i}_R \times \vec{i}_{drag}|}$$

$$\vec{i}_R = \frac{\vec{R}_l}{|\vec{R}_l|}$$
(34)
(35)

The acceleration due to lift, a_{uft} , is more easily computed from,

$$a_{l,tt} = \frac{L}{D} a_{drag} \tag{36}$$

since the nominal lift-to-drag ratio, L/D, is corrected using in-flight accelerometer measurements of the actual vehicle sensed aerodynamic accelerations.

The atmospheric density, ρ , is computed by the atmosphere model using the position vector, $\vec{R_{l}}$. The 1962 U.S. Standard Atmosphere model is employed and is described in Reference [16]. If another atmosphere model is selected as being a more accurate estimate of the day-of-flight atmosphere, this model would replace the 1962 U.S. Standard Atmosphere model. An operational vehicle might employ monthly or seasonal atmospheres from such

sources as the GRAM Atmosphere [9] or even day-of-flight measurements to more accurately model the expected atmosphere in the predictions. The level of accuracy required in the atmosphere model will depend on the vehicle ranging capability and the amount of that capability to be used for a particular entry. Entries to the edges of the footprint will demand a very accurate atmosphere model.

The aerodynamic coefficients are highly vehicle dependent. To minimize computational requirements, they should be updated during the prediction as infrequently as possible. Of course, the update frequency required depends on the trajectory flown and the rate of change of the aerodynamic coefficients with flight regime change. The aerodynamic coefficients coefficients are highly vehicle dependix A. ERV AERODYNAMICS MODEL" on page 133.

The density, ρ , from the atmosphere model and the lift-to-drag ratio, L/D, from the aerodynamic model are both corrected by in-flight measurements as covered in Subsection "3.6 Estimators" on page 48. The estimated dispersions are compensated for using the following equations,

$$\rho = K_{\rho} \rho_{std} \tag{37}$$

$$\frac{L}{D} = K_{\underline{L}} \left(\frac{C_{L}}{C_{D}} \right)_{nom}$$
(38)

where the density and lift-to-drag ratio scale factors, K_{ρ} and $K_{\frac{L}{\rho}}$, are provided by the estimator and are held constant throughout the prediction being made.

The control history to be followed is the constant angle of attack, α_d , and the linear bank angle with velocity, ϕ . The latter is computed from,

$$\phi = \phi_{d} \frac{V_{l} - V_{l}}{V_{El} - V_{l}}$$
(39)

where ϕ_d is the intercept of the linear bank angle profile at the entry interface velocity, V_{EI} . Because the entry interface and final velocities are not known a priori, and because small variations in them have little effect on the predicted trajectory compared with the selected control variables' values, the velocities are selected as constant values that cover all expected dispersions in the entry and final velocities. These values are,

$$V_{EI} = 26,000 \text{ ft/sec}$$

 $V_f = 1,000 \, {\rm ft/sec}$

3.5.3 Integration of the Equations of Motion

The equations of motion are integrated using the 4th order Runge-Kutta algorithm with a variable time step to minimize the number of time steps required to integrate the trajectory to the final state. The 4th order Runge-Kutta algorithm requires four evaluations of the acceleration per time step, but permits a time step more than four times as large as an algorithm requiring only one acceleration evaluation per time step. The Runge-Kutta solution [17] for the differential equations of motion of the form,

$$\frac{dR_i}{dt} = \vec{V_i} \tag{40}$$

$$\frac{dV_i}{dt} = f(t, \vec{R}_i, \vec{V}_i)$$
(41)

is,

$$\vec{R}_{i}(t+\Delta t) = \vec{R}_{i}(t) + \frac{\Delta t}{6} (\vec{K}_{0} + 2\vec{K}_{1} + 2\vec{K}_{2} + \vec{K}_{3})$$

$$(42)$$

$$\vec{V}_{1}(t + \Delta t) = \vec{V}_{1}(t) + \frac{\Delta t}{6} (\vec{K'}_{0} + 2\vec{K'}_{1} + 2\vec{K'}_{2} + \vec{K'}_{3})$$
(43)

where,

.

$$\vec{K}_0 = \vec{V}_1 \tag{44}$$

$$\vec{K}_1 = (\vec{V}_1 + \frac{\vec{K}_0}{2})$$
(45)

$$\vec{K}_2 = (\vec{V}_1 + \frac{\vec{K'}_1}{2}) \tag{46}$$

$$\vec{K}_3 = (\vec{V}_1 + \vec{K'}_2) \tag{47}$$

$$\vec{K'}_0 = f(t, \vec{R}_{t_i}, \vec{V}_i)$$
(48)

$$\vec{K'}_1 = f(t + \frac{\Delta t}{2}, \vec{R}_1 + \Delta t \frac{\vec{K}_0}{2}, \vec{V}_1 + \Delta t \frac{\vec{K'}_0}{2})$$
(49)

$$\vec{K'}_2 = f(t + \frac{\Delta t}{2}, \vec{R}_i + \Delta t \frac{\vec{K}_1}{2}, \vec{V}_i + \Delta t \frac{\vec{K'}_1}{2})$$
(50)

$$\vec{K'}_{3} = f(t + \Delta t, \vec{R}_{1} + \Delta t \vec{K}_{2}, \vec{V}_{1} + \Delta t \vec{K'}_{2})$$
(51)

The time step is varied inversely with the total acceleration on the vehicle. This method of time step control was selected because of its simplicity. The time step control equation is of the form,

$$\Delta t = \frac{\kappa_{\Delta t}}{|\vec{A}_t|} \tag{52}$$

•

and the time step is limited between a minimum and maximum value,

$$\Delta t = midval(\Delta t_{\min}, \Delta t, \Delta t_{\max})$$
(53)

The optimization of the integration algorithm is important in developing a flight quality algorithm, but is beyond the scope of this study. Higher-order integration algorithms with time step control methods [17] may yield significant reductions in the required computation time.

3.5.4 Termination Conditions for the Predictor

After each integration time step, the predicted state is compared with the termination condition. The termination condition is defined by the altitude of TAEM interface (80K feet). Because the predicted state at the TAEM interface altitude may have a relatively large altitude rate and range rate, the predictor must be terminated accurately to provide an altitude-homogeneous set of predicted state errors. Also, the variable time step control may allow large integration time steps if the acceleration is low near the final state, further complicating the task of terminating accurately. Reasonable altitude homogeneity is ensured by forcing use of the minimum integration time step starting some safe altitude above the termination altitude.

3.5.5 Final State Error Computation

The final state errors are computed from the unit target vector and the predicted final state vector. Because the target is fixed to the Earth and moves a significant distance dur-

ing the long entry trajectory, the rotation of the Earth must be considered. This is done by transforming the final state vector from inertial to Earth-fixed coordinates with the rotation matrix \hat{M}_{i}^{F} which is computed from the predicted termination time, the known orientation of the Earth at some epoch time, and the known rotation rate of the Earth. This computation is performed in the Earth-Fixed-From-Reference subroutine of the predictor-corrector which may actually be a GN&C utility function also employed by the navigation principal function.

The downrange and crossrange errors are defined as shown in Figure 19 on page 96. The errors are computed by first computing the downrange (in-plane) and crossrange (perpendicular) directions as follows,

$$\vec{R}_i^{EF} = \vec{M}_i^{EF} \vec{R}_i^{\prime}$$
(54)

,

$$\vec{i}_{R}^{EF} = \frac{\vec{R}_{i}^{EF}}{|\vec{R}_{i}^{EF}|}$$
(55)

$$\vec{V}_R^{EF} = \vec{M}_I^{EF} \vec{V}_R^{I}$$
(56)

$$\vec{i}_{perpen}^{EF} = \frac{\vec{i}_{R}^{EF} \times \vec{V}_{R}^{EF}}{|\vec{i}_{R}^{EF} \times \vec{V}_{R}^{EF}|}$$
(57)

$$\vec{i}_{inplane}^{EF} = \frac{\vec{i}_{t}^{EF} - (\vec{i}_{t}^{EF} \cdot \vec{j}_{perpen}^{EF})\vec{i}_{perpen}^{EF}}{|\vec{i}_{t}^{EF} - (\vec{i}_{t}^{EF} \cdot \vec{j}_{perpen}^{EF})\vec{i}_{perpen}^{EF}|}$$
(58)

The downrange and crossrange errors are then,

$$DR_{e} = R_{equator} \cos^{-1}(\vec{i}_{R}^{EF} \times \vec{i}_{inplane}^{EF}) \operatorname{sign}((\vec{i}_{R}^{EF} \times \vec{i}_{inplane}^{EF}) \cdot \vec{i}_{perpen}^{EF})$$
(59)

$$CR_{e} = R_{equator} \cos^{-1}(\vec{i}_{inplane}^{EF} \cdot \vec{i}_{t}^{EF}) \operatorname{sign}((\vec{i}_{inplane}^{EF} \times \vec{i}_{t}^{EF}) \cdot (\vec{i}_{perpen}^{EF} \times \vec{i}_{inplane}^{EF}))$$
(60)

These errors have the dimensions of $R_{equator}$ and are converted to nautical miles for ease of interpretation.

3.5.6 Algorithm Coding

A few comments regarding implementation of the predictor are appropriate. The computations required to update the aerodynamic coefficients are the major computational load for the predictor. It was found that it is not necessary to update the aerodynamics on each of the four acceleration evaluations of the 4th order Runge-Kutta algorithm. They are therefore only evaluated once each integration time step. The computational load could be reduced further if they are only updated when the independent variables (altitude, viscous interaction parameter, and Mach Number) change by a significant amount from the previous update. Also, although not done in this implementation, the aerodynamic coefficients should be curve-fit if possible to avoid a table lookup and interpolation implementation. It is noted in Figures 20 on page 97 and 21 on page 98 that the aerodynamic coefficients do not change very much below 300K feet until the Mach Number decreases below 2, so perhaps, two tables or curve-fits would suffice instead of the thirty tables currently used.

3.6 ESTIMATORS

The final state predicted by the predictor algorithm for a particular control history is a function of the assumed environment and vehicle characteristics. The accuracy of the predicted final state can be increased, and hence, the guidance margin increased, if in-flight measurements are utilized to make the assumed models more accurately reflect the conditions actually experienced by the vehicle.

The accelerations modeled in the predictor are due to gravity and the aerodynamic forces. The gravity acceleration can be modeled to sufficient accuracy using standard gravity models. However, the aerodynamic accelerations are subject to significant variations due to uncertainties in the atmospheric density, atmospheric winds, vehicle aerodynamics, and vehicle mass. These uncertainties can be compensated for in the predictor by applying a multiplicative scale factor to the lift and drag accelerations modeled in the predictor that is equal to the ratio of the actual accelerations experienced to the predicted accelerations at any point in the trajectory.

The measured lift and drag accelerations are derived from the inertial measurement system sensed acceleration assuming a zero sideslip angle as follows,

$$\hat{a}_{drag} = -\vec{a}_{l} \cdot \frac{\vec{V}_{R}}{|\vec{V}_{R}|}$$
(61)

$$\hat{a}_{l_{lft}} = \sqrt{\overline{a_l} \cdot \overline{a_l} - \hat{a_{drag}}}$$
(62)

where the inertial acceleration, $\vec{a_i}$, is computed by back-differencing the accumulated sensed velocity counts from the inertial measurement unit,

$$\vec{a}_{i} = \frac{\vec{V}_{i}^{mu} - \vec{V}_{i}^{mu} \text{ past}}{\Delta t_{mu}}$$
(63)

In the predictor, the aerodynamic accelerations are,

$$a_{drag} = \frac{C_D S}{m} \frac{1}{2} \rho V_R^2$$
(64)

$$a_{lift} = \frac{L}{D} a_{drag}$$
(65)

Data from the Shuttle program [10] shows that the primary dispersion affecting the aerodynamic acceleration is in the atmospheric density. Further, over large altitude ranges, this dispersion can be modeled to an accuracy sufficient for the prediction process as a constant multiplicative bias. Therefore, for implementational purposes, the dispersion in the aerodynamic accelerations due to the atmospheric uncertainties will be lumped into a density scale factor as follows,

$$\kappa_{\rho} = \frac{\hat{\rho}}{\rho_{std}} \tag{66}$$

where,

$$\hat{\rho} = \frac{2 \hat{a}_{drag}}{V_R^2} \left(\frac{m}{C_D S}\right)_{nom}$$
(67)

and the values for the nominal vehicle characteristics and the nominal atmospheric density are determined using the predictor models for the vehicle state at the time of the measurement. Because the nominal ballistic coefficient is assumed in deriving the measured density, and the measured acceleration is due to the actual ballistic coefficient, uncertainties in the ballistic coefficient will be reflected in the measured density. The equation for the drag acceleration in the predictor is then,

$$\partial_{drag} = \left(\frac{C_o S}{m}\right)_{nom} \frac{1}{2} V_R^2 K_\rho \rho_{std}$$
(68)

or substituting for K_{ρ} from Eq. (66) yields,

$$a_{drag} = \left(\frac{C_D S}{m}\right)_{nom} \frac{1}{2} V_R^2 \dot{\rho}$$
(69)

Substituting for $\stackrel{\wedge}{\rho}$ from Eq. (67) then yields,

$$a_{drag} = \hat{a}_{drag}$$
(70)

so the modeled drag is corrected for the dispersed drag coefficient, density, relative velocity, and vehicle mass.

In general, the measured drag acceleration is a noisy signal and will exhibit short term variations due to short lived local atmospheric dispersions [10]. Filtering of the density scale factor is therefore necessary and is implemented using a first-order filter,

$$K_{\rho} = (1 - K_1) K_{\rho} + K_1 \frac{\hat{\rho}}{\rho_{std}}$$
 (71)

which has a time constant , $\tau_{
ho}$, of,

$$\tau_{\rho} = -\frac{\Delta t}{\ln(1-K_1)} \tag{72}$$

where Δt is the sample rate of the measured drag acceleration, and K_1 is the filter gain. A similar lift-to-drag ratio scale factor is derived and applied to the lift acceleration,

$$a_{lift} = K_{\frac{l}{D}} \left(\frac{L}{D}\right)_{nom} a_{drag}$$
(73)

where,

$$K_{\frac{L}{D}} = \frac{\left(\frac{L}{D}\right)}{\left(\frac{L}{D}\right)_{nom}}$$
(74)

and,

$$\left(\frac{\dot{L}}{D}\right) = \frac{\dot{a}_{lnt}}{\dot{a}_{drag}}$$
(75)

Again, filtering is necessary,

$$K_{\frac{L}{D}} = (1 - K_2) K_{\frac{L}{D}} + K_2 \frac{\left(\frac{L}{D}\right)}{\left(\frac{L}{D}\right)_{nom}}$$
(76)

yielding a time constant, $\tau_{\frac{L}{D}}$, of,

$$\tau_{\frac{L}{D}} = -\frac{\Delta t}{\ln(1-K_2)} \tag{77}$$

A time constant of 25 seconds was selected for both the density and L/D filters. This value filtered out the high frequency density shear components seen in the Shuttle profiles while still providing adequate response to long term disturbances.

3.7 HEAT RATE CONTROL

The primary trajectory constraint on entry vehicles is the maximum heat rate the vehicle can withstand. In general, the thermal protection system material is selected to withstand

the maximum local heat rate on any particular portion of the vehicle, and the material thickness is selected to withstand the total integrated heat load over the trajectory. Accurate pre-flight predictions of the expected heat rate during entry can significantly reduce the thermal protection system weight yielding significant performance increases for an entire mission.

Inspecting the reference trajectories in Figure 16 on page 93 shows that sharp peaks in the heat rate occur. If these peaks are accurately controlled, and this control can be accomplished using only short term departures from the predictor assumed control history, no significant departure will occur from the desired trajectory.

Heat rate control can be accomplished using either angle of attack, bank angle, or a combination of both. Of these, bank angle alone is preferred because a constant angle of attack trajectory is assumed and because angle of attack changes the vehicle drag coefficient resulting in a rapid change in energy rate and a rapid departure from the desired trajectory. Also, most entry vehicles restrict the angle of attack range during maximum heat rate regions to reduce the area on the vehicle that must be protected from the high heat rate. Although the ERV does not need to restrict the angle of attack range, and hence, the guidance does not provide for such a capability, the restriction can be handled by replacing the constant angle of attack control history by a reference angle of attack control history about which a constant angle of attack bias is applied for control.

Heat rate control is accomplished by computing the incremental bank angle required to fly along the specified heat rate boundary (assumed to be a constant heat rate for any flight regime) and then modulating bank angle according to the guidance value or the guidance value plus the incremental lift for heat rate control, whichever requires more lift up. Hence, no effort is made to pull the vehicle down into the atmosphere to follow the heat rate bound-

ary; instead, lift up is applied if the vehicle is flying "too low". The incremental lift for heat rate control is computed to provide a second-order control response as follows,

$$\cos(\Delta\phi) = \frac{K_{\ddot{o}}}{\bar{q}} \left(\ddot{Q} - \ddot{Q}_{des}\right) + \frac{K_{\dot{q}}}{\bar{q}} \left(\dot{Q} - \dot{Q}_{lim}\right)$$
(78)

To fly along a constant heat rate boundary,

$$\dot{Q}_{lim} = \text{constant}$$
 (79)

and the desired rate of change of heat rate, $\ddot{Q}_{\textit{des}}$, is,

$$\ddot{Q}_{des} = 0 \tag{80}$$

so,

$$\cos(\Delta\phi) = \frac{\kappa_{\ddot{o}}}{\bar{q}}\ddot{Q} + \frac{\kappa_{\dot{o}}}{\bar{q}}(\dot{Q} - \dot{Q}_{iim})$$
(81)

The stagnation heat rate is determined using the Engineering Correlation Formula [18] for a one foot radius reference sphere as,

$$\dot{Q} = 17700 \sqrt{\rho} \left(\frac{V_R}{10000}\right)^{3.05}$$
(82)

The time rate of change of heat rate, \ddot{Q} , is determined by back-differencing the heat rate between guidance cycles,

$$\ddot{Q} = \frac{\dot{Q} - \dot{Q}_{past}}{\Delta t} \tag{83}$$

The equations of motion assuming small flight path angle yield,

$$\ddot{h} = \frac{C_L \, \bar{q} \, S}{m} \cos(\phi) - g \tag{84}$$

Considering only the perturbations due to the incremental lift, $cos(\Delta \phi)$, from Eq. (81) yields,

$$\ddot{h} - \frac{C_L S}{m} K_{\ddot{q}} \ddot{Q} + K_{\dot{q}} (\dot{Q} - \dot{Q}_{lim}) = 0$$
(85)

Proper selection of the gains $K_{\dot{q}}$ and $K_{\ddot{q}}$ is accomplished by linearizing Eq. (85) in altitude and assuming that the time rate of change of V_R is small compared to the change in $\sqrt{\rho}$. With these assumptions,

$$\dot{Q} = 17700 \left(\frac{V_R}{10000}\right)^{3\,05} \frac{d\,\sqrt{\rho}}{d\,h} h$$
 (86)

and,

$$\ddot{Q} = 17700 \left(\frac{V_R}{10000}\right)^{3\,05} \frac{d\sqrt{\rho}}{dh} \frac{dh}{dt}$$
(87)

Therefore, the homogeneous second-order differential equation in altitude is,

$$\ddot{h} + K K_{\ddot{o}} \dot{h} + K K_{\dot{o}} h = 0$$
(88)

where,

$$K = -\frac{C_L S}{m} 17700 \left(\frac{V_R}{10000}\right)^{3 \, 05} \frac{d \sqrt{\rho}}{d \, h}$$
(89)

The natural frequency and damping ratio of the second-order differential equation are,

$$\omega_n = \sqrt{K K_{\dot{q}}} \tag{90}$$

$$\zeta = \frac{K K_{\ddot{\varphi}}}{2 \omega_n} \tag{91}$$

or alternatively, for a desired natural frequency and damping ratio, $K_{\dot{q}}$ and $K_{\ddot{q}}$ are selected as,

.

$$K_{\dot{\varphi}} = \frac{\omega_n^2}{K} \tag{92}$$

$$K_{\ddot{g}} = \frac{2\zeta \omega_n}{\kappa}$$
(93)

The derivative in Eq. (89) can be evaluated assuming an exponential atmosphere of the form,

$$\rho = \rho_{st} e^{-(h/h_s)} \tag{94}$$

yielding,

-

$$\frac{d\sqrt{\rho}}{dh} = -\frac{\sqrt{\rho_{sl}}}{2h_s} e^{-(h/2h_s)}$$
(95)

This logic is contained in the guidance algorithm in the Heat Rate Control subroutine. The incremental lift required for heat rate control is provided to the Attitude Command subroutine which adds it into the guidance command if it requires more lift up than the guidance command. This occurs when the incremental lift given by Eq. (81) is greater than zero,

.

$$\cos(\Delta\phi) > 0 \tag{96}$$

Appropriate values of the natural frequency and damping ratio were determined parametrically as,

$$\omega_n = 0.10 \frac{\text{rad}}{\text{sec}} \tag{97}$$

$$\zeta = 1.00 \tag{98}$$

.

4.0 PERFORMANCE

4.1 SIMULATOR

Open-loop and closed-loop entry trajectories were simulated for the Entry Research Vehicle (ERV) using a derivative of the 6-DOF Aeroassist Flight Experiment Simulator (AFES-IM) [19] developed at The Charles Stark Draper Laboratory which is coded in the HAL computer language. For this study, the aerodynamic model described in "Appendix A. ERV AERODYNAMICS MODEL" on page 133 and the wind model shown in Figure 2 on page 79 were incorporated into the AFESIM. The characteristics of the ERV [14] are listed in Table 1 on page 73. The entry conditions with which all trajectories were initialized are also listed in Table 1 on page 73. Because only the performance characteristics of the guidance were being evaluated, the simulator was operated in the 3-DOF mode.

4.2 OPEN-LOOP FOOTPRINT

Open-loop trajectories were run using the constant angle of attack and linear bank with velocity profiles to determine the portion of the footprint achievable. All trajectories were terminated at the TAEM interface altitude of 80K feet, so the footprint can be increased about 100 nautical miles in all directions due to the range flown below 80K feet.

Figure 22 on page 99 shows the lift-to-drag ratio, L/D, for the ERV at Mach 10 versus angle of attack, α . It is seen that maximum L/D is obtained at an angle of attack of 15 degrees. It is desirable to fly on the back side of the L/D curve (angle of attack greater than 15 degrees) so as to maximize the drag coefficient for a given L/D. This reduces heating by causing a quicker loss of velocity early in entry than flying at the same L/D on the front side of the L/D curve. The L/D versus angle of attack curve shows the same shape with the maximum L/D at 15 degrees for all flight regimes with only a variation in the magnitude of L/D across the angle of attack range. Therefore, angle of attack is modulated between 15 and 50 degrees for the footprint with 15 degrees corresponding to maximum L/D and 50 degrees corresponding to minimum L/D.

The open-loop footprint is shown in Figure 23 on page 100. Also shown for comparison is the reported footprint for a heat load limit of 175K BTU/sq ft (shown earlier in Figure 12 on page 89). That footprint included the range flown below 80K feet, hence the slight differences. It is seen that almost the entire reportedly achievable footprint is captured with the assumed control profile. Most importantly, all of the maximum crossrange region is reached when the range flown below 80K feet is included. Also, most of the minimum downrange region of the footprint was captured even though the control profiles used do not correspond to the optimal profiles determined using POST and shown in Figures 14 on page 91 and 15 on page 92. Additionally, the footprint reported in Reference [14] does not include the large area in the minimum downrange region that the open-loop trajectories reached. The small area not reached in the minimum downrange ranging capability of the vehicle can be adjusted by changing the deorbit time. A vehicle in low earth orbit travels at about four nautical miles per second, so downrange is easily adjusted while on-orbit.

Because the predictor-corrector guidance algorithm will follow the same control histories as used to generate the open-loop footprint for a nominal trajectory, the guidance algorithm can reach all of the open-loop footprint for nominal conditions. It is seen that the achievable footprint is bounded by the heat rate and heat load limits imposed on the ERV. At least an additional 2000 nautical miles of ranging capability in the downrange direction exists if the heat limits are relaxed.

4.3 EFFECT OF DISPERSIONS ON FOOTPRINT

The effect of dispersions on the achievable footprint was determined by repeating the open-loop trajectories with the dispersions discussed in Subsection "2.2 Dispersions" on page 26. The worst-case (3σ) dispersions are summarized in Table 2 on page 73. Table 3 on page 74 shows the dispersions in downrange and crossrange for three of the control histories in the maximum downrange region of the footprint. It is seen that only variations in the lift and drag coefficients cause significant dispersions in the final state. Also, it is seen that the effect of a + 10% C_L dispersion is the same as that of a -10% C_D dispersion. This is expected because both dispersions cause the same increase in the vehicle L/D. The same occurs for a -10% C_L dispersion and a + 10% C_D dispersion, both of which decrease the vehicle L/D.

The effects of the dispersions on trajectories to the maximum crossrange region of the footprint are seen in Table 4 on page 75. Again, it is seen that aerodynamic dispersions have the greatest effect. A dispersion that increases L/D increases the range, while a dispersion that decreases L/D decreases the range.

Table 5 on page 76 shows the effects of the dispersions on the minimum downrange region of the footprint. The worst-case range dispersions again occur for the aerodynamic dispersions.

4.4 ESTIMATOR PERFORMANCE

Figure 24 on page 101 shows the time response of the density filter with a 25 second time constant for the STS-9 atmosphere. This trajectory also has dispersions of +1.9% in C_0 , -3.2% in mass, and a 63.8% crosswind. Therefore, the filter output does not follow the actual density dispersion also shown in the figure. When the acceleration level is below 0.07 g's, the measurements are not incorporated, so the filter is inactive before 300 seconds and from 600 to 850 seconds. As the velocity drops, the wind becomes a greater contributor to the measured density error, hence the divergence in the measured density ratio starting at 1000 seconds. Figure 25 on page 102 shows the response of the L/D filter with a 25 second time constant for a -1.9% C_L and a +1.9% C_D dispersion. Again, the winds affect the measurement by creating errors in the navigated angle of attack, so the estimated L/D ratio is slightly in error.

The use of an air data system like the Shuttle Entry Air Data System (SEADS) could significantly improve the estimation process by providing accurate estimates of the angle of attack, atmospheric density, and wind magnitude and direction. More accurate estimates will increase the guidance margin, thereby increasing the achievable footprint for dispersed trajectories.

4.5 CLOSED-LOOP PERFORMANCE

Based on the results of the open-loop trajectories with dispersions, worst-case dispersions were selected for each of three regions of the footprint: maximum downrange, maximum crossrange, and minimum downrange. Closed-loop trajectories with the predictor-corrector guidance algorithm were then run to the three regions of the footprint. The three target points selected for the closed-loop performance evaluation are shown in Figure 23 on page 100. The 3σ errors defined in Table 2 on page 73 were scaled such that the total error due to multiple error sources would still represent a 3σ dispersion so as to test the guidance system for reasonably probable dispersion cases [20]. To run all dispersions at their 3σ levels would be unrealistic.

The nominal and dispersed results for trajectories to each of the three regions are listed in Tables 6 on page 77 through 8 on page 77. Plots of selected parameters from these cases are included. Figures 26 on page 103 through 31 on page 108 present the altitude, velocity, heat rate, heat load, downrange, and crossrange time histories for the nominal maximum downrange trajectory. Figures 32 on page 109 through 37 on page 114 present the altitude, velocity, heat rate, heat load, downrange, and crossrange time histories for the nominal maximum crossrange trajectory. Figures 38 on page 115 through 43 on page 120 present the altitude, velocity, heat rate, heat load, downrange, and crossrange time histories for the nominal minimum downrange trajectory. In each of these cases, it is seen that the heat rate does not approach the heat rate limit, so no incremental bank angle is needed for heat rate control.

The control histories for the nominal maximum downrange trajectory and the dispersed case listed second in Table 6 on page 77 are presented in Figure 44 on page 121 and

Figure 45 on page 122. Figure 44 shows the angle of attack histories for the nominal and dispersed maximum downrange cases. It is seen that a two degree change in angle of attack is required early in the trajectory increasing to four degrees by the end of the trajectory. Figure 45 shows the bank angle histories for the nominal and dispersed maximum downrange cases. The bank angle required shows no change from zero degrees for this case.

The control histories for the nominal maximum crossrange trajectory and the dispersed case listed second in Table 7 on page 77 are presented in Figure 46 on page 123 and Figure 47 on page 124. Again, it is seen that a four degree change in angle of attack is required for the dispersed case. The bank angle history shows no change for the dispersed case from that of the nominal case.

The control histories for the nominal minimum downrange trajectory and the dispersed case listed second in Table 8 on page 77 are presented in Figure 48 on page 125 and Figure 49 on page 126. For this case, approximately a one degree change in angle of attack is required. No change is required in the bank angle profile.

The required change in angle of attack for each of the dispersed cases shown was primarily due to the change in the vehicle L/D as this was shown to be the primary dispersion source in Subsection "4.3 Effect of Dispersions on Footprint" on page 59. The breaking point of the guidance occurs when the vehicle does not have enough L/D range to overcome the loss in L/D due to aerodynamic dispersions. As mentioned previously, the Shuttle entry guidance algorithm was required to guide to the TAEM interface aim point to within 2.5 nautical miles of position. The results presented for the nominal and dispersed cases show that this requirement is met with the predictor-corrector guidance algorithm. Also, the trajectory plots show that the algorithm achieves this performance with very infrequent guidance

updates (.02 hz.) and with very small control variable changes from the nominal constant angle of attack and linear bank with velocity profiles. Most inportantly, almost all of the achievable footprint is captured using the predictor-corrector algorithm.

4.6 HEAT RATE CONTROL PERFORMANCE

The closed-loop trajectories shown previously did not require heat rate control because the maximum heat rate experienced was significantly lower than the limit imposed on the ERV. The time responses for bank angle, angle of attack, and heat rate for the beginning of a typical trajectory with and without heat rate control are shown in Figures 50 on page 127 through 52 on page 129. The resulting bank angle versus velocity profile is shown in Figure 53 on page 130. These trajectories are for the middle of the footprint where the peak heat rate does not exceed the limit for the ERV. Therefore, for illustrative purposes, the heat rate limit was reduced to 100 BTU/sq ft/sec. Comparing the trajectories with and without heat rate control, it is seen that the heat rate control takes place over a fairly long time range, but requires a significant departure from the linear bank profile over only a very short velocity range. The impact on the trajectory is therefore small, and the predictor-corrector stays converged on almost the same control history even though the vehicle does not follow the assumed control profile during the heat rate control area.

4.7 OVERCONTROL

For those trajectories not at the edge of the footprint, excess vehicle capability exists that can be utilized to increase guidance margin for dispersions that may occur later in the trajectory. For example, a 13,800 nautical mile downrange trajectory for the ERV only requires flying at 20 degrees angle of attack instead of 15 degrees for the nominal trajectory. The ERV can modulate angle of attack between 15 degrees (maximum L/D) and 50 degrees (minimum L/D) on the back side of the L/D curve, so the modulation capability is not equally centered about the commanded angle of attack if flying at 20 degrees. By flying at 15 degrees (maximum L/D) early in the trajectory, guidance can center the remaining guidance capability equally about the aim point to cover dispersions in all directions, not just those that require less L/D to reach the target point. This approach is referred to here as overcontrol or command biasing.

Overcontrol can be implemented in several ways. First, the command can be biased from the desired command when that command is not in the center of the modulation range. As the vehicle flies a biased angle of attack, for example, the predicted final state will differ from that for the unbiased command in such a direction that the next guidance command will be moved in the direction opposite to the bias. By biasing in the proper direction, the command can be driven toward the center of the modulation range. If the guidance requires an L/D higher than that in the middle of the L/D range, flying at an even higher L/D will drive the required L/D toward the middle. Secondly, the target aim point can be moved from the nominal aim point early in the entry. For example, for a trajectory to the maximum down-range region of the footprint, the target aim point can be moved back to the desired point.

The first approach was implemented in the predictor-corrector algorithm by biasing the angle of attack by five degrees when it was more than two degrees away from 30 degrees. The biasing was terminated at an inertial velocity of 13,500 feet per second so as to allow the guidance to fly the proper control history near the end of the trajectory to reach the target aim point.

Figure 54 on page 131 compares the angle of attack control history for a 13,760 nautical mile downrange trajectory with the dispersions used for the closed-loop trajectories shown earlier. Without overcontrol, the vehicle misses the target aim point by 19.20 nautical miles. This occurs because the wind contribution to the dispersion increases as the vehicle velocity drops, so the multiplicative scale factor on density does not properly model this dispersion. As the wind contribution increases, a higher L/D is required, and the angle of attack is driven to 15 degrees or maximum L/D. Because maximum L/D was not utilized earlier in the trajectory, the vehicle did not reach the target. Late in the trajectory, the predictor-corrector goes unconverged as control authority is exhausted, causing the angle of attack to jump between 15 and 30 degrees. By this point, the target aim point was unreachable anyway due to the dispersions.

With command biasing, the commanded angle of attack early in the trajectory is that corresponding to maximum L/D or 15 degrees. It is seen that biasing drives the commanded angle of attack to 25 degrees once the biasing is terminated at a velocity of 13,500 feet per second or a time of 3,700 seconds. Later, when the wind dispersion drives the angle of attack toward 15 degrees, there is significant margin remaining, and the angle of attack is only driven to 24.5 degrees by the dispersion. With command biasing, the miss distance at TAEM interface is only 0.27 nautical miles. Therefore, guidance margin is increased by using overcontrol. More of the theoretically achievable footprint is attainable for dispersed

cases. An even larger magnitude dispersion could have been handled late in the trajectory since the angle of attack was not driven to that for maximum L/D.

Further work is needed in this area to determine the proper way to utilize overcontrol to maximize guidance margin for the expected dispersions. The probability of the various dispersions occurring and the histories of those dispersions along a trajectory must be considered. For example, if a "thick" atmosphere is encountered early in the trajectory equal to the worst-case expected dispersion, it is highly unlikely that the atmosphere will get "thick-er" later in the trajectory. Therefore, it is unnecessary to preserve guidance margin in the direction needed to cover a "thicker" atmosphere beyond that already required for the expected worst-case atmosphere. Such considerations should be taken into account in the design of the overcontrol algorithm.

4.8 ALGORITHM EXECUTION TIME

An estimate of the execution time required for the predictor-corrector algorithm was made using the execution time estimate feature of the HAL compiler. The estimate is for the AP101 Shuttle flight computer. Figure 55 on page 132 shows the execution time required in seconds as a function of the time to the TAEM interface point for a maximum downrange trajectory. It is seen that early in the entry when the trajectory to be predicted is long, the predictor requires 43.7 seconds of CPU time. When only 500 seconds to the TAEM interface point remains, the required time drops to 4.5 seconds. This figure can also be interpreted as the minimum update interval for the predictor-corrector. Also, the guidance command will be computed and sent to the vehicle autopilot a period of time after the start of the guidance

cycle equal to the required execution time. It is seen that early in the entry, a significant delay occurs between the start of the guidance cycle and the computation of the guidance command. This delay was not simulated in the closed-loop trajectories, but will have a minimal effect on the guidance margin because the guidance is not trying to fly a reference trajectory like the analytic guidance algorithms. The predictor-corrector is numerically computing a trajectory that will fly directly to the target aim point. Any error that builds up between the start of the guidance cycle and the issuing of the guidance command can be nulled easily since the entry is long, and the error will shrink as the delay decreases with decreasing time to the TAEM interface point.

The Shuttle AP101 CPU is the product of early 1970's technology and is significantly slower than flight computers that might be employed in future entry vehicles. The 80C86 CPU for example is two to five times faster than the AP101 CPU, so the execution time required shown in Figure 55 on page 132 can be scaled down by a factor of two to five. Computers utilizing parallel processing architecture could predict the three required trajectories simultaneously in three CPUs, cutting the required execution time by a factor of three. If scaled by a factor of four due to the faster CPU and a factor of three due to parallel processing architecture, the maximum time required drops to 3.6 seconds, and the time with 500 seconds remaining to the TAEM interface point drops to 0.4 seconds. The predictor-corrector is therefore a viable guidance scheme for future entry vehicles.

68

.

.

5.0 FUTURE RESEARCH TOPICS AND CONCLUSIONS

5.1 FUTURE RESEARCH TOPICS

Several topics for further algorithm development and optimization are discussed. These are:

- 1. Further reductions in CPU execution time
- 2. Use of an air data system for in-flight measurements
- 3. Use of overcontrol to increase guidance margin
- 4. Control of more than two state constraints

Optimization of the predictor algorithm and the integration scheme can yield significant reductions in execution time beyond that already attained. Simplifying the aerodynamic model can yield a great reduction in execution time and an equally important reduction in the computer core required. The current model has 30 tables, each with 51 breakpoints over the angle of attack range. A curve fit of the aerodynamic coefficients over the angle of attack range and the flow regimes would reduce the core required to store the model data and the computations required for each lookup.

The estimator algorithm was shown to be effective in determining the dispersions from in-flight measurements. However, the estimator is unable to differentiate between density dispersions and atmospheric winds. Figure 24 on page 101 showed that the multiplicative density scale factor did not accurately model the wind contribution to the drag acceleration because the relative contribution of the wind to the dispersion increases as the vehicle velocity drops late in the trajectory. An air data system could provide an independent measurement of the atmospheric winds, improving the estimation process and increasing guidance margin by increasing the accuracy of the predicted trajectories.

The concept of overcontrol was introduced and shown to be effective for at least one dispersed case. Further investigations should be made to determine how much overcontrol is optimal for the expected dispersions. It may be possible to use the sensitivities of the constraints to the control variables to determine a proper amount of command biasing for any particular dispersion at any point in the trajectory.

Only the downrange error and crossrange error at TAEM interface are controlled in the current design. The vehicle energy is not controlled which can allow significant dispersions in the ranging capability during the TAEM phase of entry. Approaches include redefining the TAEM aim point in terms of a desired energy level or utilizing a third control variable to provide control over an energy level constraint. The Space Shuttle makes use of a split rudder as a speedbrake to provide a large energy control capability. Such an approach could be utilized with the predictor-corrector by computing the sensitivity of the three constraints to the three control variables. This would require four predictions instead of the three currently needed, but the fourth prediction could be made only during the latter part of entry to clean up any dispersions in energy level that occur during the entry due to dispersions. The CPU execution time would then increase by one-third over that currently projected when the third constraint is controlled.

5.2 CONCLUSIONS

A predictor-corrector entry guidance algorithm has been demonstrated that exhibits excellent performance and almost complete coverage of the achievable footprint. This algorithm employs a simple control variable history to achieve near-optimal guidance for the maximum downrange and maximum crossrange trajectories. Explicit heat rate control is employed without significantly impacting the achievable footprint. This is achieved because unlike previous guidance algorithms that included a long heat rate control phase with no active targeting, the proposed algorithm always actively targets to the aim point and only controls heat rate in the short high heat rate regions as required.

The algorithm has been demonstrated to handle atmospheric and aerodynamic dispersions within the capability of the vehicle. The required computer execution time is shown to be within the capability of new flight computers.

Algorithm adaptability is provided through the utilization of in-flight measurements to improve the accuracy of the predicted trajectory. Algorithm maintenance is simplified because there are no reference trajectories used, and there are a minimum of vehicle/mission-specific input parameters (I-loads). Transportability of the algorithm between different entry vehicles is provided by eliminating vehicle-specific entry phases other than the heat rate control phase which only requires the input of a heat rate limit. The guidance algorithm does require a vehicle aerodynamic model, but this is developed in the normal vehicle definition phase anyway.

In summary, an entry guidance algorithm has been developed that achieves near-optimal performance while maximizing flexibility, adaptability, and transportability. Although

more computationally intensive than analytic algorithms, execution of the predictor-corrector is within the capability of current flight computers. It is hoped that this guidance approach will significantly reduce the development and maintenance costs for new entry guidance systems.

•

.
Table 1. Characteristics of the ERV and Trajectory Entry Conditions

Mass	186.0 slugs
Reference area	177.6 sq ft
Mean Aerodynamic Chord	25.0 ft
Altitude	400,000.0 ft
Inertial Velocity	25,778.843 ft/sec
Flight Path Angle	0.996 deg
Inclination	28.50 deg
Latitude	28.071 deg
Longitude	69.313 deg
Vacuum Apogee	150.0 n.m.
Vacuum Perigee	20.0 n.m.

Table 2. Dispersions Used in Performance Study

Dispersion	Symbol	Magnitude (%)	Direction (deg)
Aerodynamics			
Lift Coefficient	CL+	+ 10%	
	CL-	-10%	
Drag Coefficient	CD+	+ 10%	
	CD-	-10%	
Vehicle Properties			
Mass	м+	+5%	
	М-	-5%	
Atmospheric Properties			
Density	ρ^+	+ 30%	
	ρ^{-}	-30%	
Tailwind	TW	99%	61.5 deg
Positive Crosswind	CW+	99%	151.5 deg
Headwind	HW	99%	241.5 deg
Negative Crosswind	CW-	99%	331.5 deg

	ασ	ϕ_d	Dispersion	Downrange	Crossrange
(d	leg)	(deg)		(n.m.)	(n.m.)
Γ	15	0	NOMINAL	14817	497
1	15	0	CL+	16445	456
·	15	0	CL-	13229	420
1	15	0	CD+	13242	422
1	15	0	CD-	16810	427
1	15	0	M+	14890	498
1	15	0	M	14739	496
1 '	15	0	ρ^+	14615	494
1 '	15	0	ρ^{-}	15089	498
1 '	15	0	TW	14882	498
1 '	15	0	CW+	14829	497
1	15	0	HW	14751	496
	15	0	cw-	14802	497
	20	0	NOMINAL	13849	463
1 2	20	0	CL+	15388	499
2	20	0	CL-	12355	344
2	20	0	CD+	12384	347
2	20	0	CD-	15711	491
2	20	0	M+	13909	466
2	20	0	M	13785	460
2	20	0	ρ^+	13659	453
2	20	0	ρ^{-}	14105	475
2	0	0	TW	13901	466
2	0	0	CW+	13857	464
2	0	0	HW	13796	461
2	0	0	CW-	13838	463
2	5	0	NOMINAL	12116	321
2	5	0	CL+	13415	439
2	5	0	CL-	10822	178
2	5	0	CD+	10858	183
2	5	0	CD-	13715	456
2	5	0	M+	13161	325
2	5	0	M	12068	316
2	5	0	ρ_{\perp}^{+}	11950	305
2	5	0	ρ^{-}	12339	342
2	5	0	/W	12155	324
	5	U	CW ⁺	12121	321
	5	U	HW	12076	317
2	5	0	CW-	12108	320

Table 3. Dispersed Cases for Maximum Downrange Region

1

α_d	ϕ_{d}	Dispersion	Downrange	Crossrange
(deg)	(deg)		(n.m.)	(n.m.)
15	60	NOMINAL	8308	1822
15	60	CL+	9035	2149
15	60	CL-	7602	1506
15	60	CD+	7605	1531
15	60	CD-	9200	2193
15	60	M+	8342	1825
15	60	M-	8271	1819
15	60	ρ^+	8197	1823
15	60	ρ-	8465	1820
15	60	TW	8260	1737
15	60	CW+	8473	1890
15	60	HW	8313	1866
15	60	CW-	7984	1692
20	60	NOMINAL	7791	1661
20	60	CL+	8476	1966
20	60	CL-	7125	1370
20	60	CD+	7132	1392
20	60	CD-	8622	2007
20	60	M+	7820	1664
20	60	M ⁻	7761	1659
20	60	ρ^+	7689	1662
20	60	ρ^{-}	7934	1660
20	60	TW	7766	1607
20	60	CW+	7846	1686
20	60	HW	7775	1673
20	60	CW-	7580	1572
25	60	NOMINAL	6940	1344
25	60	CL+	7539	1602
25	60	CL-	6355	1100
25	60	CD+	6363	1119
25	60	CD-	7661	1635
25	60	M+	6963	1345
25	60	M	6915	1342
25	60	ρ^+	6848	1344
25	60	ρ^{-}	7070	1342
25	60	TW	6933	1317
25	60	CW+	6958	1355
25	60	HW	6921	1347
25	60	CW	6819	1290

Table 4. Dispersed Cases for Maximum Crossrange Region

a	ϕ_{a}	Dispersion	Downrange	Crossrange
(deg)	(deg)	1	(n.m.)	(n.m.)
30	90	NOMINAL	2982	938
30	90	CL+	3014	1102
30	90	CL-	2934	778
30	90	CD+	2914	793
30	90	CD-	3045	1119
30	90	M+	2996	937
30	90	M	2969	938
30	90	ρ^+	2914	943
30	90	ρ^{-}	3078	930
30	90	TW	2993	914
30	90	CW+	2992	941
30	90	HW	2996	939
30	90	CW-	2982	907
30	80	NOMINAL	3851	1041
30	80	CL+	4011	1233
30	80	CL-	3680	858
30	80	CD+	3668	875
30	80	CD-	4060	1254
30	80	M+	3865	1041
30	80	M-	3865	1041
30	80	ρ^+	3778	1046
30	80	ρ-	3954	1034
30	80	TW	3856	1020
30	80	CW+	3841	1044
30	80	HW	3834	1042
30	80	cw-	3828	1007
30	70	NOMINAL	4932	1075
30	70	CL+	5262	1279
30	70	CL-	4602	881
30	70	CD+	4600	898
30	70	CD-	5337	1304
30	70	M+	4949	1075
30	70	M	4915	1075
30	70	ρ+	4854	1078
30	70	ρ-	5043	1069
30	70	TW	4934	1057
30	70	CW+	4925	1077
30	70	HW	4914	1074
30	70	cw-	4884	1040

Table 5. Dispersed Cases for Minimum Downrange Region

Dispersions						Final State	
CL (%)	CD (%)	Mass (%)	ρ (%)	Wind (%)	ϕ_g (deg)	λ (deg)	Error (n.m.)
	TARGET POINT				+ 9.800	+ 144.700	-
- 1.9 ⁻ - 1.9 - 1.9 - 1.9	+ 1.9 + 1.9 + 1.9 + 1.9 + 1.9	NOMII - 3.2 - 3.2 - 3.2 - 3.2 - 3.2	NAL + 19.1 STS 1 STS 9 STS11	63.8 HW 63.8 HW 63.8 HW 63.8 HW	+ 9.799 + 9.799 + 9.803 + 9.802 + 9.801	+ 144.702 + 144.701 + 144.694 + 144.696 + 144.698	0.13 0.08 0.30 0.27 0.13

Table 6. Maximum Downrange Region Closed-Loop Results

Table 7. Maximum Crossrange Region Closed-Loop Results

Dispersions						Final State	
CL (%)	CD (%)	Mass (%)	ρ (%)	Wind (%)	ϕ_{g} (deg)	λ (deg)	Error (n.m.)
TARGET POINT					- 2.300	+ 55.000	-
NOMINAL				- 2.301	+ 55.000	0.06	
- 1.9	+ 1.9	- 3.2	+ 19.1	63.8 CW-	- 2.295	+ 54.998	0.32
- 1.9	+ 1.9	- 3.2	STS 1	63.8 CW-	- 2.304	+ 55.001	0.25
- 1.9	+ 1.9	- 3.2	STS 9	63.8 CW-	- 2.301	+ 54.990	0.60
- 1.9	+ 1.9	- 3.2	STS11	63.8 <i>CW</i>	- 2.299	+ 55.000	0.06

Table 8. Minimum Downrange Region Closed-Loop Results

Dispersions						Final State	
CL	CD	Mass	ρ	Wind	ϕ_g (deg)	λ	Error
(%)	(%)	(%)	(%)	(%)		(deg)	(n.m.)
	TARGET POINT					+ 9.800	-
+ 1.9	NOMINAL				-14.897	+ 9.798	0.22
+ 1.9	+ 1.9 - 1.9 + 3.2 -19.1 63.8 TW				-14.902	+ 9.801	0.13
+ 1.9	+ 1.9 - 1.9 + 3.2 STS 1 63.8 TW				-14.901	+ 9.800	0.06
+ 1.9	+ 1.9 - 1.9 + 3.2 STS 9 63.8 TW				-14.900	+ 9.800	0.00
+ 1.9	+ 1.9 - 1.9 + 3.2 STS11 63.8 TW				-14.899	+ 9.799	0.08

Figure 1. Three-View Drawing of the ERV

Figure 2. Atmospheric Wind Profile

Figure 3. Envelope of Density Profiles Derived from Shuttle Flights

Figure 4. STS-1 Density Profile Comparison

Figure 5. STS-9 Density Profile Comparison

Figure 7. Crossrange Versus Number of Bank Steps

Figure 8. Comparison of Optimum Bank Angle Programs

Figure 9. Optimum Shuttle Angle of Attack Profile for Maximum Downrange

Figure 10. Optimum Shuttle Bank Angle Profile for Maximum Crossrange

Figure 11. Optimum Shuttle Angle of Attack Profile for Maximum Crossrange

Figure 12. Landing Footprint for the ERV

Figure 13. Altitude Histories for the Entry Missions of the ERV

Figure 14. Bank Angle Histories for the Entry Missions of the ERV

Figure 15. Angle of Attack Histories for the Entry Missions of the ERV

Figure 16. Heat Rate Histories for the Entry Missions of the ERV

Figure 17. Heat Load Histories for the Entry Missions of the ERV

Figure 18. Bank Angle Versus Velocity Profile

.....

Figure 20. Predicted Lift Coefficient Profile for the ERV

Figure 21. Predicted L/D Profile for the ERV

Figure 22. Predicted L/D versus Angle of Attack Profile for the ERV

,

Figure 23. ERV Open-Loop Footprint with the Control Profile

Figure 24. Time Response of the Density Filter

Figure 25. Time Response of the L/D Filter

Figure 26. Closed-Loop Altitude History for the Maximum Downrange Case

-

Figure 27. Closed-Loop Velocity History for the Maximum Downrange Case

Figure 28. Closed-Loop Heat Rate History for the Maximum Downrange Case

Figure 29. Closed-Loop Heat Load History for the Maximum Downrange Case

Figure 30. Closed-Loop Downrange History for the Maximum Downrange Case

•

Figure 31. Closed-Loop Crossrange History for the Maximum Downrange Case

Figure 32. Closed-Loop Altitude History for the Maximum Crossrange Case

Figure 33. Closed-Loop Velocity History for the Maximum Crossrange Case

Figure 34. Closed-Loop Heat Rate History for the Maximum Crossrange Case

,

Figure 35. Closed-Loop Heat Load History for the Maximum Crossrange Case

Figure 36. Closed-Loop Downrange History for the Maximum Crossrange Case

Figure 37. Closed-Loop Crossrange History for the Maximum Crossrange Case

Figure 38. Closed-Loop Altitude History for the Minimum Downrange Case

Figure 39. Closed-Loop Velocity History for the Minimum Downrange Case

Figure 40. Closed-Loop Heat Rate History for the Minimum Downrange Case

Figure 41. Closed-Loop Heat Load History for the Minimum Downrange Case

Figure 42. Closed-Loop Downrange History for the Minimum Downrange Case

Figure 43. Closed-Loop Crossrange History for the Minimum Downrange Case

-

Figure 44. Angle of Attack Comparison for the Maximum Downrange Case

Figure 45. Bank Angle Comparison for the Maximum Downrange Case

Figure 46. Angle of Attack Comparison for the Maximum Crossrange Case

Figure 47. Bank Angle Comparison for the Maximum Crossrange Case

Figure 48. Angle of Attack Comparison for the Minimum Downrange Case

Figure 49. Bank Angle Comparison for the Minimum Downrange Case

Figure 50. Bank Angle Versus Time Comparison for Heat Rate Control

Figure 51. Angle of Attack Versus Time Comparison for Heat Rate Control

Figure 52. Heat Rate Versus Time Comparison for Heat Rate Control

Figure 53. Bank Angle Versus Velocity Comparison for Heat Rate Control

Figure 54. Angle of Attack Versus Time Comparison with Overcontrol

Figure 55. Required Execution Time for the Predictor-Corrector

APPENDIX A. ERV AERODYNAMICS MODEL

The aerodynamics of the ERV were reported in Reference [14], and the longitudinal performance coefficients, C_L and L/D, are shown in Figures 20 on page 97 and 21 on page 98. Figure 22 on page 99 shows a typical L/D versus angle of attack profile. This profile is for a Mach Number of 10, but across the flow regimes, the maximum L/D always occurs at an angle of attack of approximately 15 degrees. This data was incorporated into the aerodynamic model of the simulator and into the aerodynamic model of the predictor. It is seen that the aerodynamic flow regimes are a function of:

•

- 1. Mach Number, M
- 2. Viscous Interaction Parameter, \overline{V}
- 3. Altitude, h

The Mach Number, M, is computed from,

$$M = \frac{V_R}{C_s}$$
(99)

where the speed of sound, C_s , is computed from,

$$C_{\rm s} = \sqrt{\gamma \, \frac{\Re}{M_0} \, T_{\rm M}} \tag{100}$$

The viscous interaction parameter, \overline{V} , is computed from,

$$\overline{V} = M \sqrt{\frac{C'}{Re}}$$
(101)

where,

$$C' = \left(\frac{T'}{T_{static}}\right)^{0.5} \left[\frac{T_{static} + 122.1 \times 10^{-(5/T_{static})}}{T' + 122.1 \times 10^{-(5/T')}} \right]^{1.0}$$
(102)

and,

$$\frac{T'}{T_{static}} = 0.468 + 0.532 \frac{T_{wall}}{T_{static}} + 0.195 \frac{\gamma - 1}{2} M^2$$
(103)

The Reynolds Number, Re, is calculated from,

$$Re = \frac{\rho \ V_R \ \bar{c}}{\mu} \tag{104}$$

where the coefficient of viscosity for air, μ , is given by,

$$\mu = \frac{\beta T_{static}^{3/2}}{S + T_{static}}$$
(105)

APPENDIX B. ALGORITHM PROGRAM LISTINGS

Compiled listings of the flight software principal functions for the predictor-corrector guidance algorithm as coded for use in the 6-DOF Aeroassist Flight Experiment Simulator (AFESIM) follow. The algorithms are coded in the HAL/S computer language. The principal functions are:

- 1. IL_LOAD Values for all constants and I-loads
- 2. FSW_SEQ Flight Software Sequencer
- 3. ORB_NAV Orbit Navigation Algorithm
- 4. AERO_GUID Predictor-Corrector Guidance Algorithm

At the beginning of each principal function is a description of the function and the input/output parameters. At the end of each principal function is a cross reference table listing the program line at which each variable is referenced or computed.

136

•

.

-

HAL/S	STD 360-24.20 INTERMETRICS, INC.	APRIL 27, 1987	15:0:48.40
STHT	SOURCE		CURRENT SCOPE
1H 112	IL_LOAD:		1 11-1040
211 H	PROCEDURE 1		ן זר־רסים
2222	FUNCTION: VALUES OF I-LOADS AND CONSTANTS FUNCTS: NONE OVTPUTS: ALL I-LOADS AND CONSTANTS LISTED		1 11_10AD
22	COMMENTS: NOVE		IL_LOAD
555	MATH CONSTRATS AND CONVERSION FACTORS		IL_LOAD IL_LOAD IL_LOAD
212 H	DECLARE PI SCALAR DOUBLE CONSTANTI3.141592653589793238515		I IL_LOAD
213 M	DECLARE DLG_TO_SEC SCALAR DOUBLE CONSTANTI36001)		ן זר"רסעם
214 H	DECLARE SCC_TO_DEG SCALAR DOUBLE CONSTANTIL / DEG_TO_SEC),		J IL_LOAD
215 M)	DECLARE DEG_TO_RAD SCALAR DOUBLE CONSTANTIPI / 1801)		ן זר"רסעם
216 H	DECLARE RAD_TO_DEG SCALAR DOUBLE CONSTANTI1 / DEG_TO_RAD);		J IL_LOAD
217 HJ	DECLARE SEC_TO_RAD SCALAR DOUBLE CONSTANTIDEG_TO_RAD / 340011		I IL_LOAD
218 H	DECLARE RAD_TO_SEC SCALAR DOUBLE CONSTANT(1 / SEC_TO_RAD))		ן זר"רסעם
219 H	DECLARE FI_TO_M SCALAR DOUBLE CONSTANTIO.3048)		ן זר"רסעם
220 H	DECLARE M_TO_FT SCALAR DOUBLE CONSTANTIJ / FT_TO_MIJ		ן זר"רסעם
221 H	DECLARE FT_TO_MM SCALAR DOUBLE CONSTANTIFT_TO_M / 1852);		ן זר"רסעם
222 M	DECLARE NH_TO_FT SCALAR DOUBLE CONSTANTIL / FT_TO_NN))		ן ור־רסעם
223 H	DECLARE G_TO_FPS2 SCALAR DOUBLE CONSTANT(9.80665 M_TO_FT))		I IL_LOAD
224 HI	DECLARE FPS2_TO_G SCALAR DOUBLE CONSTANT(1 / G_TO_FPS2)}		I IL_LOAD
225 H	DECLARE LBH_TO_KG SCALAR DOUBLE CONSTANTI .453592371)		I IL_LOAD
226 M	DECLARE KG_TO_LBM SCALAR DOUBLE CONSTANT(1 / LBM_TO_KG)}		I IL_LOAD
227 H	DECLARE SLUG_TO_KG SCALAR DOUBLE CONSTANTILBM_TO_KG G_TO_FPS211		ן זר"רסעם
228 M	DECLARE KG_TO_SLUG SCALAR DOUBLE CONSTANTIKG_TO_LBM FPS2_TO_GJ		I IL_LOAD
229 HI	DECLARE LBF_TO_N SCALAR DOUBLE CONSTANTI4.4482216152605))		ן זר־רסאם
230 M	DECLARE M_TO_LBF SCALAR DOUBLE CONSTANTIL / LBF_TO_NI)		I IL_LOAD

HAL/S	STD 360-24.20 INTERMETRICS, INC. AP	IIL 27, 1987	15:0:48.60
STMT	SOURCE		CURRENT SCOPE
555	FSM SEQ VARIABLES		11_L0AD 11_L0AD 11_L0AD
231 H	AERO_DAP_CHT = 1,		IL_LOAD
232 M	AERO_DAP_PHS = 01		I IL_LOAD
233 H	AERO,GUID_CNT = 51		I IL_LOAD
234 H)	AERO_GUID_PHS = 01		I IL_LOAD
235 H	ORB_NAV_CWT = 51		ן ור"רסאם
236 MÌ	ORB_NAV_PHS = 0;		ן ור"רסאם
555	EPOCH DATA		IL_LOAD IL_LOAD IL_LOAD
237 M 237 M	* Ef_T0_REF_AT_EPOCH = HATRIX (+1.0, +0.0, +0.0, +0.0, +1.0, +0.0, +0. BOOUBLE,3,3	((0.1+ .0.0+ .	11_L0AD
230 H)	T_EPOCH = 01		I IL_LOAD
555	EARTH PHYSICAL PARAMETERS		IL_LOAD IL_LOAD IL_LOAD
239 M	EARTH_FLAT = 1 / 298.3)		ן זר"רסעם
240 M	EARTH_J2 = 1082.7E-6)		IL_LOAD
E 241 M	3 Earth_MJ = (3.986012E14) / (.3046) j		IL_LOAD
El 242 MI SI	_ EARTH_POLE = VECTOR		I1_LOAD
242 H	9.999579598948170E-1)}		IL_LOAD
243 H)	EARTH_R = (6378166.0) / .30481		I IL_LOAD
246 MI	EARTH_RATE = 7.292114883223324E-5)		i IL_LOAD
E) 245 M)	- ME_NUV = EARTH_RATE EARTH_POLE1		IL_LOAD

HAL/S	STD 360-24.20 INTERMETRICS, INC.	APRIL 27, 1987	15:0:48.60
STHIT	SOURCE		CURRENT SCOPE
555	PREDICTOR-CORRECTOR 1-LOADS (MISSION-SPECIFIC)		IL_LOAD IL_LOAD IL_LOAD
22222	TARGET ATH POINT FOR HAXIMAH DOM-RRANGE CASE Domenange = 13849 N.M. Crossrange = 497 N.M.		IL_LOAD IL_LOAD IL_LOAD IL_LOAD IL_LOAD
22222	INTTAL CONDITIONS: INTTUDE -28.071 DEG LATITUDE -69.331 DEG		11_10AD 11_10AD 11_10AD 11_10AD
88888	INCLINATION 28.50 DEG FLIGHT AANH ANCLE 29.50 DEG FLIGHT VELOCITY 25778.433 FL/SEC ALTITUDE 400000.04 FT		IL_LOND IL_LOND IL_LOND IL_LOND IL_LOND IL_LOND
222	GEODETIC LATITICSE OF TARH INTERFACE AIM POINT		IL_LOAD IL_LOAD IL_LOAD
246 H]	LAT_TARGET = 3.0641		J IL_LOAD
222	LONGITUDE OF TAEM INTERFACE AIM POINT		IL_LOAD IL_LOAD IL_LOAD
247 M	LONG_TARGET = 157.6591		I IL_LOAD
222	INITIAL CONTROL VALUES FOR MAXIMAN DOM-REANCE CASE		1 IL_LOAD
248 M	PHI_EI = 0.01		I IL_LOAD
249 H)	ALPHA_ET = 20.01		I IL_LOAD
222	ESTIMATOR FILTER GAINS (TAU = 25.0 SECONDS)		IL_LOAD IL_LOAD IL_LOAD
250 M	K_RHQ_FILTER_GAIN = .03921)		I IL_I OAD
251 M	L_OVER_D_FILTER_GAIN = .03921,		ן ור־רסאם
555	VENTCLE MASS [SLUGS]		IL_LOAD IL_LOAD IL_LOAD
252 M	HASS_NAV = 186.01		IT_LOAD

HAL/S	STD 360-24.20 INTERMETRICS, INC.	APRIL 27, 1987	15:0:48.60
STHT	SOURCE		CURRENT SCOPE
222	PREFICTOR-CORRECTOR I-LOADS (DESIGN PARAHETERS NOT NORMALLY CHANGED)		IL_LOAD IL_LOAD IL_LOAD
2222	ALTITUDES AT MHICH GUIDANCE QUITS, FREEZES COMMAND, TARGETS, AND Vises Minimum Time Step for integration		11_LOAD 11_LOAD 11_LOAD 11_LOAD
253 H	ALT_EXIT = 400000.01		I IL LOAD
254 M	ALT_FREEZE_GUID = 100000.0)		I IL LOAD
255 H)	ALT_TAEM = 80000.05		I IL_LOAD
256 M	ALT_TAEM_BIAS = ALT_TAEM + 10000.01		ן ור"רסעם
222	G-LEVEL AT MHICH TO ACTIVATE GUIDANCE		11_L0AD 11_L0AD 11_L0AD
257 M	G_RUN_GUTDANCE = 0.07)		I IL_LOAD
<u></u>	GRAVITY HODEL NITH JZ TERH		IL_LOAD IL_LOAD IL_LOAD
258 H	GRAVITY_MODEL =])		I IL_LOAD
555	REFERENCE AREA OF ERV		IL_LOAD IL_LOAD IL_LOAD
259 M	S_REF = 177.41		I IL_LOAD
222	TIME IMPRHENT BETHEEN EXECUTIONS OF PREDICTOR-CORRECTOR EXECUTIVE		IL_LOAD IL_LOAD IL_LOAD
260 M	DT_AEROGUID = 1.05		ן זר"רסעם
2222	NUTBER OF EXECUTIONS OF PREDICTOR-CORRECTOR EXECUTIVE BETWEEN UPDATES OF CONMUNDED ATTITUDE USING PREDICTOR-CORRECTOR		IL_LOAD IL_LOAD IL_LOAD I L_LOAD
261 M	GUID_PASS_LIM = 501		I IL_LOAD

HAL/S	STD 360-24.20 INTERMETRICS, INC.	APRIL 27, 1987	15:0:48.60
STHT	SOURCE		CURRENT SCOPE
222	LINEAR BANK HITH VELOCITY PROFILE CONSTANTS		IL_LOAD IL_LOAD IL_LOAD
262 M	PHI_DES_HAX = 180.01		I IT_LOAD
263 M	PHI_MAX = 90.01		I IL_LOAD
264 M	V_FI:44L_MAG = 1000.01		IL_LOAD
265 M	V_INITIAL_MAG = 26000.01		I IL_LOAD
266 H	V_MAG_CHANGE = V_INITIAL_MAG - V_FINAL_MAG,		I IL_LOAD
222	CONSTANT ANGLE OF ATTACK PROFILE CONSTANTS		IL_LOAD IL_LOAD IL_LOAD
267 Hİ	ALPHA_MAX = 45.0)		I IL_LOAD
268 M)	ALPHA_MIN = 15.01		1 IL_LOAD
222	VARIABLE THE STEP CONTROL CONSTANTS		IL_LOAD IL_LOAD IL_LOAD
269 M	DELTA_T_PRED_GAIN = 200.01		1 IL_LOAD
270 Mİ	DELTA_T_PRED_MAX = 20.0)		1 IL_LOAD
271 M	DELTA_T_PRED_MIN = 2.0)		IL_LOAD
222	HEAT RATE CONTROL CONSTANTS		IL_LOAD IL_LOAD IL_LOAD
272 H	HS = 23500.01		1 IL_LOAD
273 M	CHEGA_QDDT = 0.10)		IL_LOAD
274 M]	QD0T_LIHIT = 125.01		I IL_LOAD
275 H	RH0_SL = 0.0023785		I IL_LOAD
276 M)	ZETA_QDOT = 1.00)		I IL_LOAD
277 M	CLOSE IL_LOAD!		ן זר"רמעם
8 ****	LOCK SUMMARY ****		
COMPOOL	VARIABLES USED		

HAL/S STD 360-24.20 Stht

INTERMETRICS, INC.

.

APRIL 27, 1987 15:0:48.60

SOURCE

.

CURRENT SCOPE

AERO_DAP_CHT*, AERO_DAP_PHS*, AERO_GUJO_CNT*, AERO_GUJO_PHS*, ORB_MAV_CNT*, ORB_MAV_PHS*, EF_TO_REF_AT_EPOCH*, T_EPOCH* EARTH_FLAT*, EARTH_J2*, EARTH POL*, EARTH_POLE*, EARTH_RATE*, ME_MAV*, EAWAY DATE, EARTH POLE*, LAT_TABRET* LONG_TARGET*, PHI_ET*, ALPHA_ET*, K_RHO_FILTER_GAIN*, L_OKER_CF_FILTER_GAIN*, MASS MAV*, ALT_EXIT*, ALT_FREEZEGUID*, ALT_TAEH* ALT_TAEH_BIAS*, ALT_TAEH, G_RR1_GUDARCE*, GAIN*, L_OKEC_S_FILTER_GAIN*, MASS MAV*, ALT_EXIT*, ALT_FREEZEGUID*, ALT_TAEH* V_FINAL_MGS*, V_INITIAL MAG*, V_MAG_CHANCE*, V_INITIAL_MG, SLET*, DI_AEROGUID*, GUTO_PASS_LIN*, PHI_GES_MAX*, PHI_MAX* DELTA_T_RRED_MAX*, DELTA_T_PRED_MIN*, HS*, ONEGA_GOOT*, QOOT_LIMIT*, RHO_SL*, ZERA_QOOT*

.

APRIL 27, 1987 15:0:48.60 INTERMETRICS, INC. **** COMPILATION LAYOUT **** HAL/S STD 360-24.20

-

IL_POOL: EKTERVAL COMPOOL) IL_DOOL: EKTERVAL COMPOOL) IL_LOAD: PROCEDURE, •

HAL/S STD 360-24.20

INTERMETRICS, INC. APRIL 27, 1987 15:0:48.60

SYMBOL & CROSS REFERENCE TABLE LISTING:

ICROSS REFERENCE FLAG KEY: 4 = ASSIGNMENT, 2 = REFERENCE, 1 = SUBSCRIPT USE, 0 = DEFINITION)

5	NAME				= DEFINITION		
!		241	AI IKIBULES	CROSS REFE	RENCE		
=	AERO_DAP_CNT	INTEGER	STRGLE. ALTON	FO. INTTA	VDEE. 0 0031	1100 4	INT AFFERIATE
ູ	AERO_DAP_PHS	INTEGER	STNCIE. ALTCH	ILL TWITTA	. ANET. 0 0020		NUL KETEKENLEU
M	AERO GUID CNT	INTEGER	STACLE ALTON	101 111 111 111 111	1000 0 1000	2620 4	NUL NEVENENCED
N	AERO GUID PHS	INTEGED		CU, INIIA	. AKET: U UU25	4 UZ55	NOT REFERENCED
2	ALPHA ET	SCALAD	STUCIE VILLE	EU, INITIAL	. XREF: 0 C022	4 0234	NOT REFERENCED
6	ALPHA MAX	STAL AD	STRUE VIAG	EU, INITIAL	. XKEF: 0 0097	4 0249	NOT REFERENCED
*	ALPHA MIN	SCALAD	STUDIE ALTO	THINT (DA	- XKET: 0 0209	4 0267	NOT REFERENCED
\$	ALT EXIT	SCALAD	STINIC VITO	THINK (D)	. XHET: 0 0209	9 02920	NOT REFERENCED
2	ALT FREEZE CUTN		otter VIII	ITTINI (na	. XHEF: 0 0079	4 0253	NOT REFERENCED
	ALT TACH		SINGLE, ALIG	RED, INITIAL	. XREF: 0 0209	4 0254	NOT REFERENCED
	ALI_IACH	SCALAK	SINGLE, ALIG	ED, INITIA	. XREF: 0 0209	4 0255	2 0256
	ALI_IACT_BIAS	SCALAR	SINGLE, ALIG	JED, INITIAL	. XREF: 0 0209	4 0256	NOT REFERENCED
9	UEG_IU_KAD	SCALAR	DOUBLE, ALIG	IED, STATIC ,	CONSTANT	XREF	0 0215 2 0216
ļ			2 0217				
2	DEG_TO_SEC	SCALAR	DOUBLE. ALIG	ED. STATIC.	CONSTANT	YDCC.	A150 5 2150 0
ŝ	DELTA_T_PRED_GAIN	SCALAR	SINGLE. ALTO	IFD. TNITTAL	VDEE 0 0200	- 1340 P	
ŝ	DELTA_T_PRED_MAX	SCALAR	SINGLE. ALTO	FD. TNTTA	· ANLI · 0 0200		NUT REFERENCED
5	DELTA_T_PRED_MIN	SCALAR	STUGIE. ALTC	FO. TWITTA	. ANET 0 0000		NUL KETEKENCEU
\$	DT_AEROGUID	SCALAR	STUGLE ALTO	ED THEFT	· AMERI U ULU7		NUI KEPEKENCED
ŝ	EARTH FLAT	SCALAR			- AKETI U UKUY		NUL KEFEKERCED
0	EARTH J2	SCALAD		CU, INIIIA	. AKET: U UL59	4 UZ39	NOT REFERENCED
-	EARTH MU	SCALAD	DADIE ALIG	EU, INLIA	. XREF: 0 0160	4 0240	NOT REFERENCED
10	FADTH DOLE	T LUCATAN	DUUBLE, ALIG	ED, INITIAL	. XREF: 0 0161	4 0241	NOT REFERENCED
1 2			DOUBLE, ALIG	JED, INITIAL	. XREF: 0 0162	4 0242	2 0245
13		SCALAR Soli 11	DOUBLE, ALIG	ED, INITIAL	. XREF: 0 0163	4 0243	NOT REFERENCED
•	ER TO DEF AT FROM	SCALAR	DOUBLE, ALIG	JED, INITIAL	. XREF: 0 0164	4 0244	2 0245
• ;	ET_IU_KET_AT_EPOCH	3 X 3 MATRIX	DOUBLE, ALIG	JED, INITIAL	. XREF: 0 0004	4 0237	NOT REFERENCED
*		SCALAR	DOUBLE, ALICT	ED, STATIC,	CONSTANT	XREF :	0 0224 2 0228
2	n_10_	SCALAR	DOUBLE, ALIG	ED, STATIC,	CONSTANT	XREF 1	0 0219 2 0220
;			2 0221				
3		SCALAR	DOUBLE, ALIG	JED, STATIC,	CONSTANT	XREF :	0 0221 2 0222
2	G_HUN_GUIDANCE	SCALAR	SINCLE, ALICH	IED, INITIAL	. XREF: 0 0209	4 0257	NOT REFERENCED
3	6_10_FPS2	SCALAR	DOUDLE, ALIG	ED, STATIC,	CONSTANT	XREF:	0 0223 2 0224
5	CRAVEN MORE		2 0227				
0 2		INTEGER	SINGLE, ALIG	IED, INITIAL	. XREF: 0 0165	4 0258	NOT REFERENCED
5 8	GUIU_PASS_LIN	SCALAR	SINGLE, ALIG	IED. INITIAL	. XREF: 0 0209	4 0261	NOT REFERENCED
53	HS	SCALAR	SINGLE, ALIG	ED, INITIAL	XREF: 0 0209	4 0272	NOT REFERENCED
=	IL_LOAD	PROCEDURE	XREF: 0 021	1 NOT REFE	RENCED		
2	K_RHO_FILTER_GAIN	SCALAR	SINGLE, ALIG	IED, INITIAL	XREF: 0 0168	4 0250	NOT BEFEDENCED
	KG_TO_LBH	SCALAR	DOUBLE, ALIG	ED, STATIC,	CONSTANT	XREF.	0 0226 2 0228
8	KG_10_SLUG	SCALAR	DOUBLE, ALIG	IED. STATIC.	CONSTANT	XBFF.	0.0228
1			NOT REFERENCE	0			• • • • • •
2	L_OVER_D_FILTER_GAIN	SCALAR	SINCLE, ALIG	ED. INITIAL	XREF: 0 0171	4 0751	NUT BEEDENCED
5	LAT_TARGET	SCALAR	SINGLE, ALIG	ED. INITIAL	XRFF: 0 0209	4 0.264	ANT DEFEDENCED
5	LBF_TO_N	SCALAR	DOUBLE . ALTO	JED. STATTE	CONCTANT		O 0100 1 010
ភូ	LBM_TO_KG	SCALAR	DOUBLE, ALIG	ED. STATIC.	CONSTANT		0 0005 1 0000
			2 0227			TOWA	4770 7 C770 A
5	LONG_TARGET	SCALAR	SINGLE, ALIG	ED, INITIA	. XREF: 0 0209	4 0247	NOT BEFEBENCED
2	H_T0_FT	SCALAR	DOUBLE, ALIG	ED, STATIC.	CONSTANT	XREF	0 0220 2 0222
2	HASS_NAV	SCALAR	SINGLE, ALIG	ED. INITIAL	XREF: 0 0010	4 0752	NOT DESEDENCED
2	N_TO_LBF	SCALAR	DOUBLE, ALIG	ED. STATIC	CONSTANT	XBFF.	0 0220
			NOT REFERENCE	c			

.
.60		: 0 0222	NOT REFERENCED	NOT REFERENCED	NOT REFERENCED	NOT REFERENCED	NDT BEFEDENCED	0 0212 2 0215	NOT REFERENCED	0 0216		0 0218		NOT REFERENCED	NOT REFERENCED	0 0214		0 0217 2 0218	0 0227		NOT REFERENCED	2 0266	2 0266	NOT REFERENCED	NOT REFERENCED	NOT REFERENCED
15:0:4		XREF	4 0273	4 0235	4 0236	2920 \$	4 0263	XREF	4 0274	XREF		XREF:		4 0275	4 0259	XREF		XREF	XREF		4 0238	4 0264	4 0265	4 0266	4 0245	4 0276
PRIL 27, 1987	RENCE	CONSTANT	XREF: 0 0209	XREF: 0 0035	XREF: 0 0034	XKET: U U2U9 YDEE: D 0000	XREF: 0 0209	COLISTANT	XREF: 0 0209	CONSTANT		CONSTANT		XREF: 0 0209	XREF: 0 0174	CONSTANT		CONSTANT	CONSTANT		XREF: 0 0006	XREF: 0 0209	XREF: 0 0209	XREF: 0 0209	XREF: 0 0176	XREF: 0 0209
Ŧ	ISS REFE	STATIC.	INITIAL	INITIAL	INITIAL	TNTTTAL	INITIAL	STATIC.	INITIAL	STATIC,		STATIC,		INITIAL	INITIAL	STATIC.		STATIC,	STATIC,		INITIAL	INITIAL	INITIAL	INITIAL	INITIAL	INITIAL
	ITES & CRO	AL IGNED. RENCED	ALIGNED,	ALIGNED,	ALIGNED,	ALTGRED,	ALIGNED,	ALIGHED,	ALIGNED,	ALIGNED,	RENCED	ALIGNED,	RENCED	ALIGHED,	ALIGHED,	ALIGNED,	RENCED	ALIGNED,	ALIGNED,	REACED	ALIGNED,	ALIGNED,	ALIGNED,	ALIGNED,	ALIGNED.	ALIGNED,
I N C .	ATTRIBU	DOUBLE, NOT REFE	SINGLE,	SINGLE,	SINGLE,	STNGLE	SINGLE,	DOUBLE,	SINGLE,	DOUBLE,	NOT REFE	DOUBLE,	NOT REFE	SINGLE,	SINGLE,	DOUBLE,	NOT REFE	DOUBLE,	DOUBLE,	NOT REFE	DOUBLE,	SINGLE,	SINGLE,	SINGLE,	SINGLE,	SINGLE,
INTERMETRICS,	TYPE	SCALAR	SCALAR	INIEGEN Trifeged	SCALAR	SCALAR	SCALAR	SCALAR	SCALAR	SCALAR		SCALAR		SCALAR	SCALAR	SCALAR		SCALAR	SCALAR		OLALAR	SCALAR	SCALAR	SCALAR	S - VECTOR	SCALAR
/S STD 360-24.20	NAME	NH_T0_FT	CHECA_QDOT	DRR NAV CNI	PHI DES MAX	PHIEI	PHI_MAX	Id	GDOT_LINIT	RAD_TO_DEG		KAD_10_SEC		KHO_SL	S_KEF	SEC_TO_DEG		SEC_TO_RAD	SLUG_TO_KG	T EBOCH		V_FINAL_MG	V_INTIJAL_HAG	V HAG CHANGE	TE NAV	ZETA_400T
HAL	5	222	209	<u>,</u>	209	96	209	212	209	216		817		5	5	214	-	/12	227	4		5	607 607	602		203

HAL/S	STD 360-24.20	INTERMETRICS, INC.	APRIL 27, 1967	15:1:9.06
STHT		SOURCE		CURRENT SCOPE
518 H	FSM_SEQ:			I FSN_SEQ
518 H	· PROCEDURE)			I FSH_SEQ
13				•
57	ELENTION. EVEC	12 flatur fortur Antional Activity (1110-111)		I FSH_SEQ
5 2		DIE FLIGHT OUTMAKE PKINCIPAL PUNCIIONS AT		FSN_SEQ
57		CH MAIE AND IN PRUPER ORDER MHEN FUNCTIONS ACTIVE		FSH SEQ
57		VAV_ACT - ORBIT NAVIGATION ACTIVE FLAG		FSH SEQ
57	AERO	GUID_ACT - PREDICTOR-CORRECTOR ACTIVE FLAG		FSH SEQ
57	AERO	_DAP_ACT ~ DIGITAL AUTOPILOT ACTIVE FLAG		FSN SEQ
57	OULPUIS: NONE			I FSH SEQ
57	CUMENIS: NOIE			I FSH SEQ
3		***************************************		FSH_SEQ
5				1 564 650
5	LOCAL VARIABLE:			I FSN SEQ
10				FSM_SEQ
H 619	DECLARE FSH	PASS INTEGER DOUBLE INITIAL(0)		I FSN_SEQ

.

,

HAL/S	STD 3.	60-24.20	INTERMETRICS, INC.	APRIL 27, 1987	15:1:9.08
STHT			SOURCE		CURRENT SCOPE
E) 520 M)	IF	ORB_NAV_ACT = ON ANC	id Modifsm_pass, orb_mv_cnt) = orb_mv_phs then		l FSM_SEQ
521 M	-	CALL ORB_NAVA			I FSN_SEQ
E 522 H	IF	AERO_GUID_ACT = ON A	AND MOOLFSM_PASS, AERO GUID CNT) = AERO GUID PHS TH	z	
523 M)	-	CALL AERO_GUID,			I FSH SEQ
E 524 H	H	AERO_DAP_ACT = ON AN	VO MODIESH PASS, AERO DAP CHTJ = AERO DAP PHS THEN		
525 M)	-	CALL AERO_DAP,			FSN_SEQ
526 M]	ISM	_PASS = FSM_PASS + 1	1		l fsn.seg
527 HI	CLOSE	FSM_SEQ1			FSN_SEQ
	LOCK	S U M M A R Y ***			
EXTERNAL ORB_	L PROCE	DURES CALLED ERO_GUID, AERO_DAP			
COMPOS	VADTAD	156 1650			

COMPONL VARIABLES USED Orb_MAV_ACT, ORB_MAV_CMT, ORB_MAV_PHS, AERO_GUID_ACT, AERO_GUID_CMT, AERO_GUID_PHS, AERO_DAP_ACT, AERO_DAP_CMT, AERO_DAP_PHS

APRIL 27, 1987 15:1:9.08 INTERMETRICS, INC. HAL/S STD 360-24.20

.

**** COMPL.LATION LAYOUT ****

FSH_POOL: EXTERNAL COMPOOLS IL_POOL: EXIERNAL COMPOOL!

ORB_NAV1 EXTERNAL PROCEDURE

AERO_GUID: EXTERNAL PROCEDURE;

.

•

AERO_DAP: EXTERNAL PROCEDURE)

FSM_SEQ: PROCEDURE)

HAL/S STD 360-24.20 INTERMETRICS, INC.

APRIL 27, 1967 15:1:9.06

٠

SYMBOL & CROSS REFERENCE TABLE LISTING:

(CROSS REFERENCE FLAG KEY: 4 = ASSIGNENT, 2 = REFERENCE, 1 = SUBSCRIPT USE, 0 = DEFINITION)

								2 0524					
								2 0522					
								2 0520					
	2 0525		2 0524	2 0524	5260 3	2 0522	2 0522	0 0519		2 0521		2 0520	2 0520
	0517	2 0524	1200 0	00200		0023	0022	XREF: (0515	2 0520	0 0035	0034
ENCE	XREF: 0	0255 2	XREF: (0254	XREF	XREF: 0	INITIAL	ENCED	XREF: (0262 3	XREF: (XREF: (
SS REFER	1=	XREF: 0	INITIAL	TALIAL	XBFF, C	INITIAL	INITIAL	STATIC,	OT REFER	.]	XREF: 0	INITIAL	INITIAL
ES & CRO	VERSION	INITIAL	LIGHED,	VEDCTON	INTTAL	LIGHED.	LIGHED,	LIGNED,	0518 N	VERSION	INITIAL	LIGHED.	LIGHED,
ATTRIBUTI	KTERNAL,	LIGHED,	INGLE, A	VTEDNA)	LIGHED.	INGLE, A	INGLE, A	OUBLE, N	XREF: 0	KTERNAL,	LIGHED.	INGLE. A	INGLE, A
-	ü	2	0	<u>с</u>		0	S	ē 4	•		<	ŝ	U)
TYPE	URE	_ {	¥ 0	DURE	_	æ.	æ	œ	DURE	E CEE	_ !	×	×
	PROCED	BIT(1	INTEGE	PROCED	BIT(1	INTEGE	INTEGE	INTEGE	PROCED	PROCED	11110	10111	INICAL
	đ		TP PHS	101	UID_ACT	UID_CNT	JIO_PHS	22					2
NAHE	AERO DI	AERO	AERO DI	AERO GL	AEROG	AERO_G	AEROC	A NC I	FSH_SEC	OKB NA			ML ONO
DCL	517	255	50	516	256	23	52	410	518			n #	5

•

HAL/S	STD 360-24	20 INT	ERHETRICS, INC.	APRIL 27, 1967	11:19:28.56
STMT			Sounce		CURRENT SCOPE
523 M	ORB_NAV1				I ORB_NAV
523 M	PROCEDURE 5				I ORB. MAV
55	FISICITION	MATNTATU CETTHATE OF V			1 DRB_NAV
50		STATE VECTOR DERIVED P	PARAMETERS		DRB_NAV
53	INPUTS;	T_ATTITUDE - TIME T	TAG OF STATE VECTOR		L ORB NAV
53			ION VECTOR		CRB_NAV
50		AI - ACCELE	LIT VELIUR Eration vector		ORB_NAV
57		QIB - ATTITU	UDE QUATERNION		1 ORB NAV
50	OUTPUTS:	T NAV - BANAV I T NAV - TTHE T	ANGLE Tao de state vertos		I ORB_NAV
50		R_NAV - POSITI	IAU UT SIAIE VELIUR Ion Vector		ORB_NAV
5		V_HAV - VELOCI	ITY VECTOR		I CHER MAY
5		A_HAV - ACCELE	ERATION VECTOR		ORB NAV
52			UDE QUATERAILON		I ORB NAV
50		K KAV TAG - HAGNII	TUDE OF POSITION VECTOR		DRB_NAV
52			VELIUM IN UTRELITUM UP POSITION VECTOR		DRB_NAV
53		V NAV MAG - MEDITIC	UNE ABUYE FISHEM ELLIPSUID TIME AF VELACITY VECTAD		DRB_NAV
:5		V REL NAV - BFI ATT	TVE VELOCITY VELTAD		ORB_NAV
5		V REL MAG - MAGNIT	THE OF RELATIVE VELOCITY VELTOR		I ORB_NAV
0		RDOT NAV - RADTAL	I VELOCITY MENTINE		ANN BHO
5		G LOAD - SENSED	D ACCELEDATTON MACUTTINE TH C'C		I DRB_NAV
5		ALPHA NAV - ANGLE	DF ATTACK		
5		BETA NAV - SIDESL	LIP ANGLE		
<u>5</u>		PHI_NAV - BANK A	ANGLE		AND AND I
57		ENTRY_COMPLETE - TAEM	I INTERFACE FLAG		ORB NAV
57	COMPENIS:	PERFECT NAVIGATION IS	ASSUMED, SO THE STATE VECTOR FROM		I ORB NAV
57		FROM THE ENVIRONMENT N	MODEL IS COPIED.		I ORB NAV
3		**************	******************************		1 DRB_NAV
5					
57	LOCAL VARI	ABLES			I ORB_NAV
3					I ORB_NAV
524 M	DECLARE	VREL_BODY VECTOR(3) SI	INGLE INITIAL(0),		I ORB_NAV

.

97 IVN	00 70 07 UIS			
141/3	07.42-000 UIC	THERREINICS, INC.	. APRIL 27, 1987	11:19:28.54
STHT		SOURCE		CURRENT SCOPE
222	COPY ENVIRONMENT STATE VEI	 5708 		CRB_NAV CRB_NAV DRB_NAV
222	READ TIME TAG			I DRB_NAV I ORB_NAV I ORB_NAV
525 M	T_IHU_NAV = T_ATTITUDE,			I ORB_NAV
222	READ STATE VECTOR			CRB_NAV CRB_NAV CRB_NAV
E 526 H]	RRI,			I ORB_MAV
527 M	V_NAV = VI)			I ORB_NAV
E 528 M				I ORB_NAV
222	READ ATTITUDE QUATERNION			I ORB_NAV I ORB_NAV I ORB_NAV
E 529 M	Q_B_T0_I = QIB;			I ORB_NAV
222	READ BANK ANGLE			ORB_NAV ORB_NAV ORB_NAV
530 M	PHI_NAV = PHIJ			I ORB_NAV

.

· 151

HAL/S	STD 360-24.20 INTERMETRICS, INC. APRIL 27, 1987 11:1	19:28.56
STHT	SOURCE	CURRENT SCOPE
222	COMPUTE STATE VECTOR DERIVED PARAMETERS	ORB_NAV ORB_NAV ORB_NAV
631 M	T_NAV = T_IHU_NAVI	ORB NAV
E 532 M	R_NAV_MAG = ABVALIR_NAV))	ORB NAV
13 13 H		ORB NAV
E 534 M	ALT_MAV = R_MAV_MAG - (1 - EARTH_FLAT) EARTH_R / SQRT(1 + 111 - EARTH_FLAT) - 1) (1 - (UNUT_R -	ORB. NAV
E 534 M	 ЕАТИ-РОЦЕЛ 115	ORB NAV
535 MI	V_NAV_MG = ABVALIV_NAVJ,	ORB NAV
- El 536 MI	V_REL_NAV = V_NAV - (HE_NAV * R_NAV),	ORB_ NAV
E 537 Hİ	V_REL_MAG = ABVALIV_REL_MAVJJ	ORB_ NAV
E(530 H	RDOT_NAV = V_NAV . UNIT_R.	ORB_NAV
E(539 H	G_LOAD = ABVALIA_NAV) FPS2_TO_GJ	ORB_NAV
222	ANGLE OF ATTACK AND SIDESLIP ANGLE	ORB_NAV CRB_NAV CRB_NAV
E 540 H	VREL_BODV = SQFORMISQPOSE(Q_B_TO_I), V_REL_NAV))	ORB_NAV
541 H) S(ALPHA_NAV = SARCTANZIVREL_BODY , VREL_BODY) RAD_TO_DEG; 3 1	ORB_NAV
542 M S	BETA_NAV = ARCSINIVREL_BODY / V_REL_HAGJ RAD_TO_DEGJ 2	ORB_NAV
222	FLAG SIGNALING TAEH INTERFACE OR SKIP OUT	ORB_NAV ORB_NAV ORB_NAV
543 M	IF ((ALT_NAV > ALT_EXIT) AND (RDOT_NAV > 0)) OR (ALT_NAV < ALT_TAEM) THEN	ORB_NAV
E 544 N	AERO_BRAKE_COMPLETE = TRUE1	ORB_NAV

152

CURRENT SCOPE I ORB_NAV 11:19:28.56 APRIL 27, 1987 INTERMETRICS, INC. SOURCE **** BLOCK SUMMARY **** 545 M CLOSE ORB_NAVI HAL/S STD 360-24.20 STHT

•

EXTERNAL FUNCTIONS INVOKED SQFORM, SQPOSE, SARCTAN2

COHPOOL VARIABLES USED I INU MAV*, T ATTITUDE, R.MAV*, RI, V.MAV*, VI, A.MAV*, AI, Q.B.TO_I*, QIB, PHI MAV*, PHI, T.MAV*, T_IMU MAV, R.MAV UNITE.MAY, RANZ-MAS, ALTIANV*, SERNI-LIAT, EARTH, R. UNIT.R, EARTH, POLE, V.MAY, ING*, V. NAV, V.REL_MAV*, FRELMA*, R_MAV VIET.MAY, RODI_NAV*, G_LOADM*, A.MAV, FPS2_TO_G, Q.B.TO_I, ALPHA_MAV*, RAD_TO_DEG, BETA_MAV*, V_REL_MAG*, ALT_MAV, ALT_EXIT RDOT_NAV, ALT_TAEN, AERO_BRAKE_COMPLETE*

•

•

APRIL 27, 1987 11:19:28.56 INTERMETRICS, INC. **** COMPILATION LAYOUT **** SRV_TO_GIL: EXTERNAL FUNCTIONS Q_ERR_ANG: EXTERNAL FUNCTION! SARCTAN2: EXTERNAL FUNCTIONS FSM_POOL: EXTERNAL COMPOOLS ENV_POOL: EXTERNAL COMPOOL! IL_POOL: EXTERNAL COMPOOLS SQPOSE: EXTERNAL FUNCTION DQFORM: EXTERNAL FUNCTIONS SQFORM: EXTERNAL FUNCTION SQMULT: EXTERNAL FUNCTION HAL/S STD 360-24.20 ORB_NAV: PROCEDURE;

.

MAL/S STD 360-24.20 INTERMETRICS, INC.

APRIL 27, 1987 11:19:28.56

SYMBOL & CROSS REFERENCE TABLE LISTING:

(CROSS REFERENCE FLAG KEV: 4 = ASSIGNMENT, 2 = REFERENCE, 1 = SUDSCRIPT USE, 0 = DEFINITION)

FERENCE .	AL XREF: 0 0088 4 0528 2 0539	: 0 0078 4 0544 NOT REFERENCED	AL XREF: 0 0001 2 0528	AL XREF: 0 0075 4 0541 NOT REFERENCED	AL XREF: 0 0384 2 0543	AL XREF: 0 0080 4 0534 2 0543	AL XREF: 0 0514 2 0543	AL XREF: 0 0076 4 0542 NOT REFERENCED	-PARM XREF: 0 0518	NAL, VERSION=2 XREF: 0 0516		AL XREF: 0 0464 2 0534	AL XREF: 0 0467 2 0534	AL XKEF: U 0468 2 0554	ANI VDEC. 0 0087 & 0578 ANY OFFICIAN	FEDENCEN V VVOJ 4 VJJ 11 NUJ KEFENCEU FEDENCEN	-PARM VDEF. 0 NE20	AL XBFF: 0 0001 2 0530	AL XREF: 0 0077 4 0530 NOT DESEDENTED	-PARM XREF: 0 0521	-PARM XREF: 0 0519	-PARH XREF: 0 0517	-PARM XREF: 0 0520	-PARM XREF: 0 0516	AL XREF: 0 0064 4 0529 2 0540	NAL, VERSION=2 XREF: 0 0517		AL XREF: 0 0001 2 0529	-FAKN XHEF: U U522	AL XREF: 0 0087 4 0526 2 0532 2 0533	AI VOEE 0 0000 4 0110 0 0111 0 0111	AL ANET: U UUBY 4 USSZ 2 USSA ANT VBEE: 0 0007 3 0541 3 0540	ALL VOEF. 0 0000 6 0520 3 0527 6 0542	AL XREF. 0 0001 2 0500 2 0543 Al XREF. 0 0001 2 0524	VAL VERSTANS VOL 2 VOES A ACT 2 ACAI	-PARM XREF: 0 0518	MAL, VERSION=3 XREF: 0 0519 2 0540	NAL, VERSION=3 XREF: 0 0520		NAL, VERSION=3 XREF: 0 0521 2 0540	NAL, VERSION=2 XREF: 0 0522	AL XREF: 0 0001 2 0525	AL XREF: 0 0067 4 0525 2 0531	AL XREF: 0 0092 4 0531 NOT REFERENCED	-PARM XREF: 0 0516	-PÅRM XREF: 0 0519 Al VDEF: 0 0093 4 0533 3 0534 3 0534	DCCU 3 PCCU 3 CCCU P CTUU U ITANA JA
ATTRIBUTES & CROSS REI	DOUBLE, ALIGNED, INITI	ALIGHED, INITIAL XREF	DCUBLE, ALIGNED, INITI/	SINGLE, ALIGNED, INITI	SINGLE, ALIGNED, INITI	DOUBLE, ALIGHED, INITI/	SINGLE, ALIGNED, INITI	SINGLE, ALIGHED, INITI	SINGLE, ALIGNED, INPUT	DOUBLE, INITIAL, EXTERN	NUT REFERENCEU	DOUBLE, ALIGHED, INITI	DUUBLE, ALIGNED, INITL	DOUDLE, ALIGHEU, INLILL	DUBLE, ALIGICU, UNALL	XREF: 0.0523 PUT DE	SINGLE, ALIGHED, IMPHT	SINGLE. ALIGNED. INTTL	SINGLE, ALIGNED, INITI	SINGLE, ALIGNED, INPUT	SINCLE, ALICHED, INPUT	SINGLE, ALIGNED, INPUT	SINGLE, ALIGNED, INPUT	DOUBLE, ALIGNED, INPUT	SINGLE, ALIGNED, INITI	SINGLE, INITIAL, EXTER	NOT REFERENCED	DOUBLE, ALIGHED, INITI	DANIE ALIGHED INTE	DUUDLE, ALIGREU, INLIL 2 DETA	TTINT DENCE ALTONO	DOURIE, ALTONED, CONST.	DOURLE, ALTCRED, TALTT	DOUBLE. ALICHED. INTTL	SINGLE. INITIAL EXTER	SINGLE, ALIGNED, INPUT	SINGLE, INITIAL, EXTERN	SINGLE, INITIAL, EXTER	NOT REFERENCED	SINGLE, INITIAL, EXTER	SINGLE, INITIAL, EXTER	NOT REFERENCED DOUBLE, ALIGNED, INITL	DOUBLE, ALIGHED, INITI.	DOUBLE, ALIGHED, INITI	DOUBLE, ALIGHED, INPUT	SIRGLE, ALIGRED, INPUI DOUBLE, ALIGRED, INTIT	41707 (ATIMITA (TIMA)
TYPE	3 - VECTOR	BIT(1)	3 - VECTOR	SCALAR	SCALAR	SCALAR	SCALAR	SCALAR	SCALAR	3 - VECTOR FUNCTION		SCALAR 7 _ VECTOR	STALAD STALAD	SCALAD	SCALAR	PROCEDURE	4 - VECTOR	SCALAR	SCALAR	4 - VECTOR	3 - VECTOR FUNCTION	A LIECTOR	Z - VECTUR	t - VETTOP		SCALAR	SCALAR	SCALAR	3 - VECTOR	SCALAR FUNCTION	SCALAR	3 - VECTOR FUNCTION	4 - VECTOR FUNCTION		4 - VECTOR FUNCTION	4 - VECTOR FUNCTION	SCALAR	SCALAR	SCALAR	3 - VECTOR	3 - VECTOR						
DCL NAME	88 A_NAV	78 AERO_BRAKE_COMPLETE		75 ALPHA NAV	564 ALI_EXI	BU ALL NAV	JY BETA WILL	CO DE LA NAV			444 EADTU CLAT	447 EADTU DARE	448 FADTH D	15 FPS2 TO G	B3 G LOAD	523 ORB_NAV	520 P _	I PHI	77 PHI_NAV	521 q	519 9	517 9	520 q	516 9		DI/ 4_EKK_ANG	1 018	522 R	B7 R NAV		89 R NAV MAG	7 RAD TO DEG	90 RDOT NAV	1 RI -	516 SARCTAN2	518 SARG	519 SQFORM	520 SQIULT		521 SUPUSE	TTH OL ANG 375	1 T_ATTITUDE	67 T_IMU_NAV	. 92 T_NAV	U 916 11 913	93 UNIT_R	

1.19.24 64		1522 527 2 DETE 2 DETA	535 NOT REFERENCED	537 2 0542 536 2 0537 2 0540	524 4 0540 2 0541	536
M C . APRIL 27, 1987 1	ATTRIBUTES & CROSS REFERENCE	[MGLE, ALIGNED, IMPUT-PARM XREF: 0 0 JUBLE, ALIGNED, INITIAL XREF: 0 00%4 4 0	0538 Duble, Alighed, Initial Xref: 0 0095 4 0	AGUE: ALIGHED, INITIAL XREF: 0 0096 4 0 JUBLE: ALIGHED, INITIAL XREF: 0 0097 4 0 JUBLE: ALIGHED, INITIAL VALE: 0 0007 4 0	THE ALLOWED STATIC, INITIAL XREF, U UUUL 2 U Thole, Aligned, Static, Initial Xref; 0 0 0552	INGLE, ALIGNED, INITIAL XREF: 0 0481 2 0
INTERMETRICS, I	TYPE	3 - VECTOR 3 - VECTOR DI	2 Scalar Scalar	3 - VECTOR 3 - VECTOR DI	3 - VECTOR SI	3 - VECTOR
HAL/S STD 360-24.20	CL NAME '	22' V 94 V_NAV	95 V_NAV_MAG 96 V_REL_MAG	97 V_REL_NAV 1 VI	24 VREL_BODY	BI ME_NAV

		147 ID(1 11) THUR	CO.071CT1
Ŧ	SOURCE		CURRENT SCOPE
15 H) AFRO_GUID:			À AEBO GUTO
15 M PROCEDURE,			
			AERO_GUID
CI FUNCTION:	NUBERIC DEFILITION/CODDECTION ENTRY CUTANCE ALCOUNTUM		AERO GUID
0	FOR THE ENTRY RESEARCH VEHTCLE LEDUI		AERO GUID
C INPUTS:	A NAV - SENSED INFRIAL ACCELEDATION VETTO		I AERO_GUID
.	ALPHA_NAV - ANGLE OF ATTACK		
53	ALT_NAV - ALTITUDE ABOVE FISHER ELLIPSOID		AERO GUTO
53	G_LOAD - SENSED ACCELERATION MAGNITUDE IN G'S		AERO GUID
	R_NAV - INERTIAL POSITION VECTOR		AERO GUID
57	V VAN - GREENWICH MEAN TIME		I AERO GUID
52	V_NAV - INERIAL VELOCITY VECTOR		AERO GUID
	V_MAY_TAG - INERITAL VELOCITY MAGNITUDE		AERO GUID
52	V_REL_FIAG - RELATIVE VELOCITY MAGNITUDE		AERO GUID
c) MIDURE.	A DUA CHA - RELATIVE VELUCITY VECTOR		AERO_GUID
	ALFRA_CTU - CUTTATUEU ANGLE UF ATTACK Dut PhD - COMMINES BARE 1101 F		AERO GUID
C1 DESTONED BY	V. K. SDDATITU		AERO_GUID
	r s branch i abonitany tis		AERO_GUID
5 2	L.S. URAPEK LABURAIUKT, INC. Mati stor og		AERO_GUID
5-	FEE TECHNOLOCY CONDE		AERO_GUID
57) AERO_GUID
57	CARBKIDGE, MA UZ159 11333 Drg 2143		AERO_GUID
	7442-063 (170)		AERO GUID

•

157

٩

14:13:28.85	LUNGENI SCUPE AFRO_GUID AFRO_GUID AFRO_GUID	AERO_GUID	I AERO_GUID I AERO_GUID	AERO_GUID	I AERO_GUID	I AERO_GUID	AERO_GUID	AERO_GUID	I AERO_GUID	AERO_GUID AERO_GUID AERO_GUID	AERO_GUID	AERO_GUID	I AERO_GUID	AERO_GUID	1 AERO_GUID
APRIL 27, 1907															
10-24.20 INTERMETRICS, INC. Samere	VARIABLES	ARE ALPHA_DES SCALAR SINGLE,	.ARE CL_EST SCALAR SINGLE) .Are cosphi_qdot scalar single initial(-1.0))	.ARE DELTA_T_PRED SCALAR SINGLE,	ARE EF_FROM_REF_AT_EPOCH MATRIX(3, 3) DOUBLE)	ARE GUID_PASS INTEGER SINGLES	ARE I_TARGET_EF VECTOR(3) DOUBLE!	.ANE INTITALIZE_GUIDANCE BOOLEAN INTITALITRUE). Are phi des stalide stanie.	ARE RHO_NAV SCALAR SINGLE)	HERIC PROPERTIES STRUCTURE	JCTURE ATHOSPROP :	I H SCALAR SINGLE,	I RHO SCALAR SINGLE,	I TS SCALAR SINGLE,	I TH SCALAR SINGLE)
HAL/S STD 3 Stht	C LOCAL	516 MJ DEC	517 Hİ DEC 518 Hİ DEC	519 M DEC	520 H DEC	521 MI DEC 523 MI DEC	522 NI DEC	524 MI DEC	525 MJ DEC	CI ATHOS	526 Mİ STR	526 HÌ	526 M]	526 M]	526 M

HAL/S	STD 360-24.20	INTERMETRICS, INC.	APRIL 27, 1987	14:13:28.85
STHT		SOURCE		CURRENT SCOPE
<u>555</u>	PREDICTOR-CORRECTOR EXECU			I AERO_GUID I AERO_GUID I AERO_GUID
E 527 M	IF (INITIALIZÉ_GUIDANCE	= TRUE) THEN		l AERO_GUTO
222	FIRST-PASS INITIALIZATION			AERO_GUID AERO_GUID AERO_GUID
528 H	100			AERO_GUID
529 H	I CALL INITIAL_GUID			AERO_GUID
E) B30 H]	I INITIALIZE_GUIDAN	CE = FALSE,		I AERO_GUTO
531 H	END)			AERO_GUID
532 M	IF (G_LOAD > G_RUN_GUID	ANCE) THEN		AERO_GUID
555	RUN GUIDANCE			AERO_GUID AERO_GUID AERO_GUID
533 M	001			AERO_GUID
222	RUN L/D AND DENSITY ESTIM	LATORS		AERO_GUTD AERO_GUTD AERO_GUTD
534 M	1 CALL FILTERS,			I AERO_GUID
555	RUN PREDICTOR/CORRECTOR A	IT CORRECT RATE		AERO_GUID AERO_GUID AERO_GUID
535 M)	1 IF (GUID_PASS = 0)) AND (ALT_NAV > ALT_FREEZE_GUID) THEN		AERO_GUID
536 M	1 CALL CORRECTOR	-		AERO_GUID
555	COUNT GUIDANCE PASSES			AERO_GUID AERO_GUID AERO_GUID
537 H)	1 GUID_PASS = GUID_	1 + SSA		AERO_GUID
538 M]	1 IF (GUID_PASS >=	GUID_PASS_LIM) THEN		I AERO_GUID
539 M)	1 GUID_PASS = 01			AERO_GUTD

HAL/S	STD 360	-24.20 INTER	NETRICS,	INC.	APRIL 27, 1987	14:13:28.A5
STHT			SOURCE			CURRENT SCOPE
555	COMPUTE	BANK MAGNITUDE FOR HEAT RAT	TE CONTROL			AERO_GUID AERO_GUID AERO_GUID
1H 0+5	1	CALL HEAT_RATE_CONTROL)				AERO_GUID
555	UPDATE	COMMANDED ATTITUDE				AERO_GUID AERO_GUID
541 H	1	CALL ATTITUDE_COMMAND)				i AERO GUID
642 H	EN	6				I AERO_CUID
						ı

,

.

HAL/S	STD 360-24.20 INTERMETRICS, INC.	APRIL 27, 1987	14:13:28.85
STHT	SOURCE		CURRENT SCOPE
543 H	INITIAL_GUID:		INITIAL GUID
543 M	PROCEDURE ,		I INITIAL_GUID
555	FUNCTION: GUIDANCE FIRST-PASS INITIALIZATION		INITIAL_GUID INITIAL_GUID INITIAL_GUID
222	LOCAL VARIABLES		INITIAL_GUID INITIAL_GUID INITIAL_GUID
544 M	DECLARE LAT SCALAR SINGLE,		I INITIAL_GUID
545 M)	DECLARE LONG SCALAR SINGLE!		I INITIAL_GUID
546 H	DECLARE X SCALAR SINGLE,		I INITIAL_GUID
547 M	DECLARE Y SCALAR SINGLES		INITIAL GUID
548 M	DECLARE Z SCALAR SINGLE,		INITIAL GUID
222	ONIENTATION OF EARTH AT EPOCH		INITIAL GUID INITIAL GUID INITIAL GUID
E1 649	EF_FROM_REF_AT_EPOCH = TRANSPOSELEF_TO_REF_AT_EPOCH11		INITIAL_GUID
222	GUIDANCE COUNT FOR PRED-CORR		INITIAL_GUID INITIAL_GUID INITIAL_GUID
550 H	GUID_PASS = 0,		I INITIAL GUID
222	INITIAL ALPHA AND BANK GUESS		INITIAL_GUID INITIAL_GUID INITIAL GUID
551 H	ALPHA_DES = ALPHA_EI)		I INITIAL GUID
552 H)	PHI_DES = PHI_EI		
222	INTIAL ATTITUDE COMMUND		I INITIAL_GUID I INITIAL_GUID I INITIAL_GUID
553 H	ALPHA_CMD = MIDVALIALPHA_MIN, ALPHA_EI, ALPHA_MX1)		I INITIAL_GUID
554 M	PHI_CHD = MIDVALI(-PHI_MX), PHI_EI, PHI_MX))		I INITIAL GUID
222	CONVERT TARGET LONGITUDE AND LATITUDE TO RADIANS		I INITIAL_GUID I INITIAL_GUID I INITIAL_GUID

HAL/S	STD 360-24.20 INTERMETRICS, INC.	APRIL 27, 1967	14:13:28.05
STHT	Source		CURRENT SCOPE
555 M	LONG = LONG_TARGET DEG_TO_RAD)		I INITIAL_GUID
556 M	LAT = LAT_TARGET DEG_TO_RAD)		I INITIAL_GUID
555	CONVERT GEODETIC LATITUDE TO GEOCENTRIC LATITUDE		INTIAL_GUID INTIAL_GUID INTIAL_GUID
E 557 M	2 Lat = arctanitanilati (1 - Earth_flat)))		
222	COMPUTE UNIT TARGET VECTOR IN EARTH-FIXED COORDINATES		INITIAL_GUID INITIAL_GUID INITIAL_GUID
550 M)	Z ·= SINLAT)		INITIAL_GUID
E 559 H	X = 1 - 2 , X = 1 - 2 ,		I INITIAL_SUTO
560 M	IF (X <= 0) THEN .		INITIAL_CUID
H 199	X = 0)		I INTTAL GUID
542 M	ELSE		I INITIAL CUID
542 M]	X = SQRT(X) COS(LONG))		I INTTIAL_GUID
E43 H1	Y = 1 - X - Z 5		 INTTAL_GUTD
564 M)	If (Y <= 0) THEN		
565 M)	Υ = 01		I INITIAL_GUID
566 M]	ELSE		I INITIAL_GUID
566 M	Y = SQRT(Y) SIGN(LONG))		I INTTIAL GUID
El 14 19 19 19 19 19 19			INITIAL_GUID
222	INTIALIZE FILTERS		INITIAL_GUID INITIAL_GUID INITIAL_GUID
568 M]	K_RHO_MAV = 1.01		INITIAL_GUID
[H 695	K_LO0_NAV = 1.01		INITIAL GUID
570 M	CLOSE INITIAL_GUID)		INITIAL_GUID
9 ****	LOCK SUMMARY ****		

14:13:28.85	CURRENT SCOPE	ET, DEG_TO_RAD, LAT_TARGET
APRIL 27, 1967		, PHI_HAX, LONG_TARE
I N C .		1, ALPHA_MAX, PHI_CNO*
INTERMETRICS,	SOURCE	, PHI_EI, ALPHA_CHD*, ALPHA_MIN) Nav*
HAL/S STD 360-24.20	STMT	COMPOOL VARIABLES USED Ef_to_ref_at_epoch, alpha_e1, Earth_flat, k_rho_nav*, k_log

OUTER VARIABLES USED EF_FROM_REF_AT_EPOCH*, GUID_PASS*, ALPHA_DES*, PHI_DES*, I_TARGET_EF*

HAL/S	STD 360-24.20 INTERMETRICS, INC.	APRIL 27, 1967	14:13:28.85
STHT	SOURCE		CURRENT SCOPE
571 M	FILTERS:		FILTERS
571 M	PROCEDURE)		I FILTERS
<u></u>	FUNCTION: IN-FLIGHT ACCELERATION MEASUREMENT FILTERING		FILTERS FILTERS FILTERS
222	LOCAL VARIABLES		FILTERS FILTERS FILTERS
572 M	DECLARE A_DRAG_MAG SCALAR SINGLE,		FILTERS
573 H	DECLARE A_LIFT_MAG SCALAR SINGLE		I FILTERS
574 M)	DECLARE ATHOS ATHOSPROP-STRUCTURE		FILTERS
575 MÌ	DECLARE CD_NOM SCALAR SINGLE,		I FILTERS
576 M	DECLARE CL_NOM SCALAR SINGLE)		FILTERS
577 HÌ	DECLARE LOD_HEAS SCALAR SINGLES		FILTERS
H 8/8	DECLARE LOD_NOM SCALAR SINGLE,		I FILTERS
579 HJ	DECLARE MACH SCALAR SINGLES		I FILTERS
560 M]	DECLARE RHO_HEAS SCALAR SINGLES		FILTERS
H 189	DECLARE V_BAR SCALAR SINGLES		I FILTERS
222	LOOK UP OF NONITALL DENSITY AND L/D		FILTERS FILTERS FILTERS
E 502 H	CALL USATHOS6218_NUV, EARTH_POLE) ASSIGNIATHOS))) FILTERS
E 503 N	CALL AERO_PARAMETERSIV_REL_MAG, ATMOS) ASSIGNIV_BAR, MACH);		I FILTERS
504 H	CALL LOOKUPIALPHA_MAV, ATHOS.P., Y_BAR, MACH) ASSIGNICL_MOH, CD_MOH))		I FILTERS
595 M	100_NOM = CL_NOM / CD_NOM1		1 FILTERS
555	COMPUTE DRAG AND LIFT ACCELERATION		FILTERS FILTERS FILTERS
EI 586 MI	A_DRAG_NG = -IA_NVV . V_REL_NAV) / V_REL_NG)		 FILTERS

164

.

•

HAL/S	STD 360-24.20 INTERMETRICS, INC. APRIL 27, 1987 1	14:13:28.85
STHT	SOURCE	CURRENT SCOPE
E 587 M	A_LIFT_HAG = SQRT(A_NAV . A_NAV - A_DRAG_HAG A_DRAG_HAG))	I FILTERS
555	COMPUTE MEASURED L/D AND DENSITY	FILTERS FILTERS FILTERS
588 M	LOD_HEAS = A_LIFT_HAG / A_DRAG_HAG)	FILTERS
E 589 M	RHO_HEAS = 2 A_DRAG_MAG MASS_NAV / (CD_NOM S_REF V_REL_MG))	I I FILTERS
222	FILTER MEASURED L/D AND DENSITY RATIOS	FILTERS FILTERS FILTERS
590 M	K_LOD_NAV = (1 - L_OVER_D_FILTER_GAIN) K_LOD_NAV + L_OVER_D_FILTER_GAIN (LOD_MEAS / LOD_NOM))	FILTERS
H 169	K_RHO_NAV = (1 - K_RHO_FILTER_GAIN) K_RHO_NAV + K_RHO_FILTER_GAIN (RHO_MEAS / ATMOS.RHO))	I FILTERS
222	COMPUTE FILTERED HEASURED DENSITY	FILTERS FILTERS FILTERS
592 H)	RHQ_MV = K_RHQ_MV ATHOS.RHOs	FILTERS
555	COMPUTE FILTERED ESTIMATED CL	FILTERS FILTERS FILTERS
593 M	CL_EST = K_LOD_NAV CL_NOH;	FILTERS
5% M	CLOSE FILTERS,	I FILTERS
G ***	LOCK SUMMARY ****	
DUTER P	ROCEDURES CALLED Kup, Aero_parameters, usatmos62	
COMPOOL R_N. K_R	VARIABLES USED AV. EARTH_POLE, V_REL_MG, ALPHA_NUV, A_NAV, V_REL_NUV, HASS_NAV, S_REF, K_LOD_NAV*, L_DVER_D_FILTE HO_NAV*, K_RHO_FILTER_GAIN, K_RHO_NAV	ER_GAIN, K_LOD_MAV
N REED	101411 FC 11475	

OUTER VARIABLES USED RHO_NAV*, CL_EST*

.

•

OUTER STRUCTURE TEMPLATES USED ATMOSPROP

HAL/S	STD 360-24.20 INTERMETRICS, INC.	APRIL 27, 1987	14:13:28.85
STHT	SOURCE		CURRENT SCOPE
1H 265	HEAT_RATE_CONTROL:		I HEAT_RATE_CONTRO
595 M	PROCEDURE I		} HEAT_RATE_CONTRO
555	FUNCTION: CONTROL PEAK HEAT RATE		HEAT_RATE_CONTRO HEAT_RATE_CONTRO HEAT_RATE_CONTRO
222	LOCAL VARIABLES		HEAT_RATE_CONTRO HEAT_RATE_CONTRO HEAT_RATE_CONTRO
596 MÌ	DECLARE COSPHI_1 SCALAR SINGLES		HEAT_RATE_CONTRO
597 H	DECLARE COSPHI_2 SCALAR SINGLE!		HEAT_RATE_CONTRO
598 M	DECLARE FIRST_PASS BOOLEAN INITIAL(TRUE),		HEAT_RATE_CONTRO
599 M	DECLARE HS_2 SCALAR SINGLES		HEAT_RATE_CONTRO
H 009	DECLARE K_QOOT SCALAR SINGLE)		I HEAT_RATE_CONTRO
IN 109	DECLARE K_QDOT_RATE SCALAR SINGLE,		HEAT_RATE_CONTRO
602 M	DECLARE KI_GAIN SCALAR SINGLE,		I HEAT_RATE_CONTRO
H E09	DECLARE KI_QOOT SCALAR SINGLE,		I HEAT_RATE_CONTRO
604 N	DECLARE OMEGA_QODT_SQUARED SCALAK SINGLE,		HEAT_RATE_CONTRO
(H 509	DECLARE QBAR SCALAR SINGLES		HEAT_RATE_CONTRO
(M 909	DECLARE 700T SCALAR SINGLES		HEAT_RATE_CONTRO
607 MI	DECLARE QDDT_PAST SCALAR SINGLE;		HEAT_RATE_CONTRO
IM 809	DECLARE QDDT_RATE SCALAR SINGLE)		HEAT_RATE_CONTRO
609 MI	DECLARE THO_ZETA_OHEGA SCALAR SINGLE!		HEAT_RATE_CONTRO
12 17 17	3.05		_
	(FOOD / ANT JAK (MATANA AND A AND		I HEAT_RATE_CONTRO
H 119	IF (FIRST_PASS = TRUE) THEN		HEAT_RATE_CONTRO
612 M]	00		I HEAT_RATE_CONTRO
E 613 H	1 FIRST_PASS = FALSE,		HEAT_RATE_CONTRO
55	HEAT RATE CONTROL CONSTANTS		HEAT_RATE_CONTRO

HAL/S	STD 360-	-24.20	INTERMETRICS,	INC. A	IPRIL 27, 1987	14:13:28.85
STHI			SOURCE			CURRENT SCOPE
C						I HEAT BATE CONTON
614 HI	1	HS_2 = 2 HSJ				HEAT RATE CONTROL
M 219	1	K1_GAIN = S_REF	: SQRT(RHO_SL) 17700.0 / (HS_2)	MASS_NAV1,		HEAT RATE CONTROL
H ['] 919	1	OHEGA_GDOT_SQUAI	.RED = CMEGA_QDDT CMEGA_QDDT,			HEAT_RATE_CONTROL
617 H)	1	THO_ZETA_OHEGA :	= 2 ZETA_QDOT OHEGA_QDOT}			HEAT_RATE_CONTROL
	FIRST PA	INITIALIZATI	- NO			HEAT_RATE_CONTROL HEAT_RATE_CONTROL HEAT_RATE_CONTROL
(H 819	1	QOOT_RATE = 01				I HEAT RATE CONTROL
H 619	END	2				HEAT_RATE_CONTROL
H 029	ELSE) HEAT_RATE_CONTROL
620 H	qDO	T_RATE = (QDOT -	- QDOT_PAST) / DT_AEROGUID)			HEAT_RATE_CONTROL
, 621 HI	9_100P	AST = QDOT,				HEAT_RATE_CONTROL
622 H	IF (QD	OT > .5 QOOT_LII	MIT) THEN			I HEAT_RATE_CONTROL
623 M	100					I HEAT_RATE_CONTROL
222	ESTIMATE	D DYNAMIC PRESSI	 URE 			HEAT_RATE_CONTROL HEAT_RATE_CONTROL HEAT_RATE_CONTROL
624 M	-	QBAR = .5 RHO_N	IAV V_REL_MAG V_REL_MAG)			HEAT_RATE_CONTROL
222	HEAT RAT	E CONTROL GAINS				HEAT_RATE_CONTROL HEAT_RATE_CONTROL HEAT_RATE_CONTROL
E 625 M	-	K1_qDOT * K1_GA1	IN CL_EST (V_REL_MAG / 10000.0	3.05) EXP(-(ALT_NAV / HS_2)	101	I I HEAT_RATE_CONTROL
626 H)	~	K_QDOT = OMEGA_(gDOT_SQUARED / K1_QDOT,			I HEAT_RATE_CONTROL
627 M)	٦	K_QDOT_RATE = TI	WO_ZETA_OMEGA / K1_QDOT1			I HEAT_RATE_CONTROL
<u></u>	HEAT RAT	E CONTROL EQUATI				HEAT_RATE_CONTROL HEAT_RATE_CONTROL HEAT_RATE_CONTROL
628 M	-	COSPHI_1 = K_QDI	OT_RATE GDOT_RATE / GBAR,			HEAT_RATE_CONTROL
629 Aİ	-	COSPHI_2 = K_QD(OT (QDDT - QDDT_LIMIT) / QBAR)			HEAT_RATE_CONTROL
630 M	-	COSPHI_QDDT = CI	OSPHI_1 + COSPHI_2,			I HEAT_RATE_CONTROL

.

HAL/S	STD 360-24.20	INTERMETRICS,	INC.	APRIL 27, 1987	14:13:28.85
STMT	-	SOURCE			CURRENT SCOPE
H 189	END 5				HEAT RATE CONTROL
632 M	ELSE				HEAT RATE CONTROL
632 H	COSPHI_GOOT = -1.01				HEAT RATE CONTROL
H 229	CLOSE HEAT_RATE_CONTROL >				HEAT RATE CONTROL
**** 8 1	OCK SUMMARY **				1
COMPOOL	VARIABLES USED 1 Mag. NS. & DEF DHO CI				

٠

.

V_REL_MG6. HS. S_REF, RHQ_SL, MASS_NAV, CMEGA_QDOT, ZEVA_QDOT, DT_AEROGUID, QDOT_LIMIT, ALT_MAV Outer variables used RHQ_MV, CL_EST, cosph1_qdot*

.

HALVS	S STD 360-24.20 INTERMETRICS, INC. APRIL 27, 1987	14:13:20.85
STMT	SOURCE	CURRENT SCOPE
634 M	I ATTITUDE_COMMAND:	ATTITUDE_COMMAND
634 M	I PROCEDURE,	ATTITUDE_CCHHAND
555	LOAD ALPHA COMMAND	ATTITUDE_CONNAND ATTITUDE_CONNAND ATTITUDE_CONNAND ATTITUDE_CONNAND
635 M	ALPHA_CHD = ALPHA_DES;	ATTITUDE_CONTAND
555	COMPUTE AND LIMIT PHI COMMAND	ATTITUE_COMMAND ATTITUE_COMMAND ATTITUE_COMMAND
636 M	{ PHI_CHD = PHI_DES ABSIV_NAV_MAG - V_FINAL_MAG) / V_MAG_CHANGE}	ATTITUDE_COMMAND
637 H	I PHI_CHD = HIDVAL((-PHI_MAX), PHI_CMD, PHI_MAX))	ATTITUDE_COMMUD
555	ADJUST COMMANDED BANK ANGLE FOR HEAT RATE CONTROL	ATTITUCE_COMMAND ATTITUCE_COMMAND ATTITUCE_COMMAND
638 M	I IF ICOSPHI_QDOT > 0) THEN	ATTITUDE_COMMAND
639 H	l D0,	ATTITUDE_COPENND
M 049	I TEMPORARY COSPHI_CHD SCALAR SINGLEI	ATTITUBE_COMMUND
641 M	i 1 cosphi_chd = cos(phi_chd deg_to_rad) + cosphi_gdot1	I ATTITUDE_COMMUD
642 M	1 COSPHI_CHD = MIDVALI-1.0, COSPHI_CHD, +1.01	I ATTITUDE_COMMAND
643 H	1 PHL_CHD = SIGN(PHL_CHD) ARCCOS(COSPHL_CHD) RAD_TO_DEG)	ATTITUDE_COMMAND
H 559	l Evo,	ATTITUDE_COMMAND
555	LIMIT ALPHA AND PHI COPHANDS	ATTITUDE_CONNAND ATTITUDE_CONNAND ATTITUDE_CONNAND
645 M	I ALPHA_CHD = MIDVALFALPHA_MIN, ALPHA_CHD, ALPHA_MXI)	ATTITUDE_COMMAND
646 M	PHI_CHD = MIDVAL((-PHI_MAX), PHI_CHD, PHI_MAX))	ATTITUDE_COMMAND
H 299	I CLOSE ATTITUDE_COMMAND)	ATTITUDE_CONNAND
8 ****	LOCK SUMMARY ****	
COHPOOL ALF ALF	L VARIABLES USED PHA_CHD*, PHI_CHD*, V_NAV_HAG, V_FINAL_MAG, V_MAG_CHANGE, PHI_MAX, PHI_CHD, DEG_TO_RAD, RAD_TO_ PHA_NAX	EG, ALPHA_MIN, ALPHA_CMD

HAL/S	STD 360-24.20	INTERMETRICS,	INC.	APRIL 27, 1987	14:13:28.65
STHT		SOURCE			CURRENT SCOPE
[H 849	CORRECTOR:				CORRECTOR
[W 869	PROCEDURE J				I CORRECTOR
555	FUNCTION: PREDICTOR/CORRE	ECTOR SEQUENCER			CORRECTOR CORRECTOR CORRECTOR
555	LOCAL VARIABLES				CORRECTOR CORRECTOR CORRECTOR
H 649	DECLARE ALPHA_TRY SCALJ	AR SINGLE,			I CORRECTOR
650 N	DECLARE DELTA_ALPHA SCI	ALAR SINGLE CONSTANT(3)			I CORRECTOR
[H 159	DECLARE DELTA_PHI SCALI	AR SINGLE CONSTANTI31,			I CORRECTOR
652 H)	DECLARE DETERM SCALAR :	SINGLE INITIAL(0)			CORRECTOR
(H 239	DECLARE DDRE_DA SCALAR	SINGLE) CORRECTOR
654 M	DECLARE DDRE_DP SCALAR	SINGLE			I CORRECTOR
655 M	DECLARE DCRE_DA SCALAR	SINGLED			I CORRECTOR
656 M	DECLARE DCRE_DP SCALAR	SINGLE			I CORRECTOR
657 H	DECLARE CRE SCALAR SIM	GLEI			CORRECTOR
658 M]	DECLARE CR_ERROR ARRAVI	(3) SCALAR SINGLE,			I CORRECTOR
(H 659	DECLARE CR_ERR SCALAR :	SINGLE			I CORRECTOR
H 099	DECLARE PHI_TRY SCALAR	SINGLE			I CORRECTOR
W 199	DECLARE PRED_EXIT BOOLI	EANS) CORRECTOR
662 M	DECLARE DR_ERROR ARRAY	13) SCALAR SINGLEJ			I CORRECTOR
H 299	DECLARE DR_ERR SCALAR !	SINGLE			I CORRECTOR
H 499	DECLARE DRE SCALAR SIN	GLE;			I CORRECTOR
(M 299	DO FOR TEMPORARY I = 1	TO 31			I CORRECTOR
(H 999	1 DO CASE IJ				I CORRECTOR
(H 299	2 DOI				I CORRECTOR CASE
668 M]	3 ALPHA_TRY = AI	LPHA_DES!			CORRECTOR
H 699	3 PHI_TRY = PHI	DESI			CORRECTOR

,

HAL/S STD 360-24,20 INTERMETRICS	i, INC.	APRIL 27, 1987	14:13:28.85
INT SOURCE			CURRENT SCOPE
670 MJ 2 END,			CORRECTOR
671 MJ 2 DOJ			I CORRECTOR CASE 2
672 MJ 3 ALPHA_TRY = ALPHA_DES + DELTA_ALPHA)			I CORRECTOR .
673 M 3 PHI_TRY = PHI_DES,			I CORRECTOR
674 MJ 2 ENDI			CORRECTOR
675 HI 2 DOJ			I CORRECTOR CASE 3
676 H] 3 ALPHA_TRY = ALPHA_DESI			I CORRECTOR
677 Ml 3 PHI_TRY = PHI_DES + DELTA_PHI,			I CORRECTOR
678 M) 2 END,			I CORRECTOR
679 H 1 END,			CORRECTOR DO CASE END
C CMLL PREDICTOR MITH DESIRED CONTROL MISTORY C CMLL PREDICTOR MITH DESIRED CONTROL MISTORY C			CORRECTOR CORRECTOR CORRECTOR
680 MI 1 CALL PREDICTOR;			CORRECTOR
C			L CORRECTOR CORRECTOR CORRECTOR
601 M 1 DR_ERROR = DR_ERR) S 1			CORRECTOR
682 M] 1 CR_ERROR = CR_ERRJ SI 1			CORRECTOR
683 MI END,			I CORRECTOR
C			CORRECTOR CORRECTOR CORRECTOR
684 M¦ DDRE_DA = (DR_ERROR - DR_ERROR) / DELTA_ALPHA) S 3	-		CORRECTOR-
685 M] DDRE_DP = (DR_ERROR - DR_ERROR) / DELTA_PHI S] 1			CORRECTOR
686 M DCRE_DA = (CR_ERROR - CR_ERROR) / DELTA_ALPHA) S 3	-		1 CORRECTOR
607 M DCRE_DP = ICR_ERROR - CR_ERROR) / DELTA_PHI, s 3			CORRECTOR

172

•

HAL/S	STD 360-24,20 INTERMETRICS, INC.	APRIL 27, 1987	14:13:20.85
STHT	SQUACE		CURRENT SCOPE
H 869	PREDICTOR:		PREDICTOR
H 869	PROCEDURE J		PREDICTOR
222	FUNCTION: NUMERIC PREDICTOR ALGORITHM		PREDICTOR PREDICTOR PREDICTOR
222	LUCAL FUNCTION		PREDICTOR PREDICTOR PREDICTOR
H 669	DECLARE EARTH_FIXED_FROM_REFERENCE FUNCTION MATRIXI3, 3) DOUBLEJ		PREDICTOR
222	LOCAL VARIABLES		PREDICTOR PREDICTOR PREDICTOR
700 HI	DECLARE TOTAL_TIME_STEPS INTEGER SINGLES		PREDICTOR
1H 102	DECLARE A_PRED VECTOR(3) DOUBLE;		PREDICTOR
702 H	DECLARE A_PRED_MAG SCALAR SINGLES		PREDICTOR
703 H	DECLARE ALPHA_PRED SCALAR SINGLE,		PREDICTOR
704 H	DECLARE ATMOS ATMOSPROP-STRUCTURE)		PREDICTOR
705 M	DECLARE CD_PRED SCALAR SINGLE,		I PREDICTOR
706 H	DECLARE CL_PRED SCALAR SINGLE,		PREDICTOR
707 H	DECLARE DOT SCALAR DOUBLES		I PREDICTOR
708 M	DECLARE EF_FROM_REF MATRIX(3, 3) DOUBLES		1 PREDICTOR
709 MJ	, DECLARE I_INPLANE VECTOR(3) DOUBLE;		PREDICTOR
710 HI	DECLARE I_NORMAL VECTOR(3) DOUBLE}		PREDICTOR
IH TTL	DECLARE INTEG_LOOP SCALAR SINGLE,		PREDICTOR
712 H	DECLARE IR_E VECTOR(3) DOUBLE,		I PREDICTOR
713 H	DECLARE LOD_PRED SCALAR SINGLE;		PREDICTOR
714 H	DECLARE MACH_PRED SCALAR SINGLE)		PREDICTOR
715 M	DECLARE PHI_PRED SCALAR SINGLE,		PREDICTOR
116 H	DECLARE R_PRED VECTOR(3) DOUBLE)		PREDICTOR
117 H}	DECLARE R_HAG_PRED SCALAR DOUBLE;		PREDICTOR
718 HJ	DECLARE RDDT_PRED SCALAR SINGLE,		PREDICTOR

HAL/S	STD 360-24.20	INTERMETRICS,	INC.	APRIL 27, 1987	14:13:28.85
STHT		SOURCE			CURRENT SCOPE
719 MI	DECLARE T_PRED SCALAR D	JOUBLE ;			PREDICTOR
720 H	DECLARE V_BAR_PRED SCAL	LAR SINGLE,			I PREDICTOR
721 HJ	DECLARE V_MAG_PRED SCAL	AR DOUBLES			I PREDICTOR
722 H	DECLARE V_PRED VECTOR(3) DOUBLES			PREDICTOR .
723 MJ	DECLARE V_REL_MAG_PRED	SCALAR SINGLE			PREDICTOR
724 HI	DECLARE V_REL_PRED VECT	for(3) SINGLE1			PREDICTOR
725 M	DECLARE VR_E VECTORI3)	DOUBLE J			1 PREDICTOR
555	INITIALIZE PREDICTOR STAT	re vector			<pre>h PREDICTOR h PREDICTOR h PREDICTOR</pre>
726 H]	T_PRED = T_GHT >				I PREDICTOR
E 727 H					 PREDICTOR
E 728 H	R_MAG_PRED = ABVALIR_PR	RED),			 PREDICTOR
E 729 H	V_PRED = V_NAVI				l PREDICTOR
EI 730 MI	V_MAG_PRED = ABVAL(V_PF	RED),			 PREDICTOR
E 731 M		INE_NAV + R_PRED),) PREDICTOR
E 732 H	V_REL_MAG_PRED = ABVALI				I I PREDICTOR
222	ANGLE OF ATTACK FOR PREDI	ICTION			PREDICTOR PREDICTOR PREDICTOR
733 H	ALPHA_PRED = ALPHA_TRY				PREDICTOR
222	INITIALIZE 1962 U.S. STA	NDARD ATHOSPHERE			PREDICTOR PREDICTOR PREDICTOR
E) 734 H	CALL USATHOS621R_PRED,	- EARTH_POLE) ASSIGN(ATHOS)			 PREDICTOR
555	FORCE 1ST TIME STEP TO BE	E MINIMM TIME STEP			PREDICTOR PREDICTOR PREDICTOR

HAL/S	STD 360-24.20	INTERHETRICS, INC. APRIL 27, 19	87	14:13:28.85
STHT		SOURCE		CURRENT SCOPI
735 H S	- A_PRED = VECT	0R (999999., 999999., 99999., 15 asincle.3		PREDICTOR
222	PREDICTOR LOOP			PREDICTOR PREDICTOR PREDICTOR
736 Hİ	DO FOR TEMPOR	ARY TIME_INCREMENT = 1 TO 5000,		PREDICTOR
222	CONPUTE TIME ST	EP FOR 4TH ORDER RUNGA-KUTTA INTEGRATION		PREDICTOR PREDICTOR PREDICTOR
737 H	1 TOTAL_TIME	_STEPS = TIME_INCREMENT,		PREDICTOR
738 H	I IF LATHOS.	H <= ALT_TAEM_BIAS) THEN		PREDICTOR
739 M	1 DELTA_T	_PRED = DELTA_T_PRED_HINJ		PREDICTOR
740 M	1 ELSE			PREDICTOR
740 M	1 DOI			PREDICTOR
E 741 M	2 A_PR	ED_HAG = ABVAL(A_PRED))		 PREDICTOR
742 H	2 IF (A_PRED_HAG ~= 0) THEN		PREDICTOR
743 H	2	ELTA_T_PRED = DELTA_T_PRED_GAIN / A_PRED_MAG)		PREDICTOR
744 M	s erse			PREDICTOR
744 HI	. ×	ELTA_T_PRED * DELTA_T_PRED_MX5] PREDICTOR
745 H	2 DEL1	A_T_PRED = HIDVAL(DELTA_T_PRED_HIN, DELTA_T_PRED, DELTA_T_PRED_HAX),] PREDICTOR
746 H	1 END,			I PREDICTOR
222	AERODYNAMIC PRC	PERTIES LOOK-UP		PREDICTOR PREDICTOR PREDICTOR
El 747 HJ	1 CALL AERO	↓ PARAHETERSIV_REL_HUG_PRED, ATHOS) ASSIGNIV_BAR_PRED, HUCH_PRED)}		 PREDICTOR
748 M	1 CALL LOOK	IPLALPHA_PRED, ATMOS.H, V_BAR_PRED, MACH_PRED.1 ASSIGNICL_PRED, CD_PRED.1		} PREDICTOR
222	ESTIMATED L/D			<pre>PREDICTOR PREDICTOR PREDICTOR PREDICTOR</pre>
749 Mİ	1 LOO_PRED :	K_LOD_NAV CL_PRED / CD_PREDI		I PREDICTOR

. .

....

.

175

IERTURANT Z_PRED SCALAR DOUBLE, D DENSITY Tho_PRED = K_RHO_NUV ATHOS.RHO, RHO_PRED = K_RHO_NUV ATHOS.RHO, The HODEL The HODEL PHI_FRED = PHI_TRY ABSIV_HAG_PRED - V_FI PHI_PRED = HIDVAL(1-PHI_HAX), PHI_PRED,

14:13:28.85	CURRENT SCOPE	 PREDICTOR	1 PREDICTOR	 PREDICTOR	I PREDICTOR	I I PREDICTOR	l PREDICTOR	PREDICTOR PREDICTOR PREDICTOR	 PREDICTOR	(PREDICTOR	I PREDICTOR	I PREDICTOR	} PREDICTOR	PREDICTOR PREDICTOR PREDICTOR	I PREDICTOR	PREDICTOR PREDICTOR PREDICTOR	PREDICTOR	PREDICTOR PREDICTOR PREDICTOR	} PREDICTOR
APRIL 27, 1967											22 Z_PRED) U_PRED + 2								
D 360-24.20 INTERMETRICS, INC.	SOURCE	DRAG_ACCEL = .5 RHO_PRED V_REL_HAG_PRED CO_PRED S_REF / HASS_NAV}	LIFT_ACCEL = LOD_PRED DRAG_ACCEL\$	I_VEL = V_REL_PRED / V_REL_MG_PRED;	I_LAT = UNITII_VEL + R_PREDIS	I_LIFT = UNIT(I_LAT = I_VEL) CPHI + I_LAT SPHIJ	AERO_ACCEL = LIFT_ACCEL I_LIFT - DRAG_ACCEL I_VEL)	AVITY ACCELERATION MITH J2 TEAH	U_PRED = R_PRED / R_MG_PRED,	Z_PRED = U_PRED . EARTH_POLE1		Z_PRED EARTH_POLE),	CRAV_ACCEL = -IEARTH_MU / R_MG_PRED 1 U_PRED3	TAL ACCELERATION	A_PRED = AERO_ACCEL + GRAV_ACCEL)	LL RUNGA-KUTTA INTEGRATOR	CALL INTEGRATOR,	ate parameters	R_HAG_PRED = ABVALIR_PRED);
S SI		~	2	~~	~	~	×	151	~~~	~	~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	121	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	131	2		~
HAL	STMT	E 769 M	770 H	Е 771 М	772 M	Е 773 М	E 774 H	000	5 775 M	E 776 M	Е 777 Н	е 777 н	E 778 H	000	Е 779 Н	 .	780 H		E 761 H

.

HAL/S	STI	D 360-24.20 INTERMETRICS, INC.	APRIL 27, 1987	14:13:28.85
STHIT		SOURCE		CURRENT SCOPE
E) 782 H)	~	V_HAG_PRED = ABVALIV_PREDIJ		I PREDICTOR
222		LATIVE VELOCITY		PREDICTOR PREDICTOR PREDICTOR
E 783 M	~	V_REL_PRED = V_PRED - (NE_NAV * R_PRED))		 PREDICTOR
E (704 H	~	V_REL_MG_PRED = ABVAL(V_REL_PRED))) PREDICTOR
222	151	62 U.S. STANDARD ATTHOSPHERE		PREDICTOR PREDICTOR PREDICTOR
. E) 785 H]	~	CALL USATHOS621 R_PRED, EARTH_POLE) ASSIGNIATHOS)		 PREDICTOR
786 HI	-	ENDI		PREDICTOR
222	5	ATE PARAMETERS.		PREDICTOR PREDICTOR PREDICTOR
787 Hİ	-	T_PRED = T_PRED + DELTA_T_PRED;		PREDICTOR
E 788 H	-	RDOT_PRED = V_PRED . R_PRED / R_NG_PRED)		 PREDICTOR
222	1 3 1	ECK FOR ATHOSPHERIC EXIT		PREDICTOR PREDICTOR PREDICTOR
789 H	-	IF ((ATMOS.H > 400000) AND (RDOT_PRED > 0)) THEN		PREDICTOR
E 790 H	-	PRED_EXIT = TRUE,		 PREDICTOR
E 191 M	-	IF [PRED_EXIT = TRUE] THEN		 PREDICTOR
H 262	-	EXITS		PREDICTOR
555	181	IECK FOR TAEM INTERFACE		PREDICTOR PREDICTOR PREDICTOR
793 M	-	IF (ATHOS.H <= ALT_TAEH) THEN		PREDICTOR
19 H	-	EXIT		PREDICTOR
795 M	_	END ,		PREDICTOR

14:13:28.85	CURRENT SCOPE	PREDICTOR PREDICTOR PREDICTOR	 PREDICTOR	 PREDICTOR	I PREDICTOR	I PREDICTOR	 PREDICTOR	 PREDICTOR	PREDICTOR	I PREDICTOR	E)), PREDICTOR	 PREDICTOR	PREDICTOR	PREDICTOR	-
STD 360-24.20 INTERMETRICS, INC. APRIL 27, 198	source	COMPUTE DOMANANCE AND CROSSRAMCE ERRORS	* Ef_FROM_REF = EARTH_FIXED_FROM_REFERENCE(T_PRED))		- = EF_FROM_REF (V_PRED - ME_UMV * R_PRED);		I_INPLANE = UNITII_TARGET_EF - II_TARGET_EF . I_NORMAL) I_NORMAL))	DOT = I_INPLANE . I_TARGET_EF,	IF (ABS(DOT) > 1) THEN	DOT = SIGN(DOT);	CR_ERR = EARTH_R FT_TO_NH ARCCOSIDOT) SIGHIIT_INDLANE # I_TARGET_EF) . (I_NORHAL # I_INDL	DOT = I_E . I_INPLANE,	IF (ABS(DOT) > 1) THEN	DOT = SIGNI DOT)	•
HAL/S	STHT	555	EI 796 MI	EI 797 MI	E 198 H	E 799 H	E 19 00 8	E 801 M	802 H	803 M	E 804 M	E) 805 M	IM 908	807 MI	E

.

-

APRIL 27, 1967 [°] 14:13:2 8.85	CURRENT SCOPE] INTEGRATOR	I INTEGRATOR	INTEGRATOR INTEGRATOR INTEGRATOR	I INTEGATOR I INTEGATOR I INTEGATOR	I INTEGRATOR	I INTEGRATOR	I INFEGRATOR	I INTEGRATOR	- 11475(5814748			TINTEGRATOR	I INTEGRATOR	I INTEGRATOR	I INTEGRATOR	I INTEGRATOR	I INTEGRATOR	I INTEGRATOR CASE &	I INTEGRATOR	-
STD 360-24.20 INTERMETRICS, INC.	. Source	NTEGRATOR:	ROCE DURE 3	FUNCTION: 4TH ORDER RUNGA-KUTTA INFEGRATOR ALCORITIM	LOCAL VARIABLES	DECLARE ACCUM_ACCEL VECTORI3) DOM3LES	DECLARE ACCUM_VEL VECTOR(3) DOUBLES	DECLARE ORIG_POS VECTOR(3) DOUBLES	DECLARE ORIG_VEL VECTOR(3) DOUBLES	DO CASE INTEG LOOP)	100	ORIG_POS = R_PRED.		ACCUT_VEL = V_PRED,	ACCH_ACCEL = A_PREDI	R_PRED = ORIG_POS + .5 DELTA_T_PRED V_PRED.	V_PRED = ORIG_VEL + .5 DELTA_T_PRED A_PRED!	Ekoj	fog	ACCUT_VEL = ACCUT_VEL + 2 V_RED	
HAL/S	STHT	809 H} I	809 MI F	555	555	610 M	H 118	612 H)	H 218	814 H	I H SIS	516 M 2	EI 817 MI 2	E 818 H 2	E) 819 HI 2	E 820 H 2	E 821 H 2	822 H 1	823 M	E 824 H 2	E)
7, 1987 14:13:28.85	CURRENT SCOPE	I I INTEGRATOR	 INTEGRATOR	INTEGRATOR	I INTEGRATOR CASE 3	I I INTEGRATOR	INTEGRATOR	 INTEGRATOR) INTEGRATOR	I INTEGRATOR	I INTEGRATOR CASE 4	 INTEGRATOR	 INTEGRATOR	I INTEGRATOR	I INTEGRATOR DO CASE END	I INTEGRATOR					
--------------------------	---------------	---	---	------------	---------------------	-----------------------------------	---------------------------------------	---	--	--------------	---------------------	--	--	--------------	--------------------------	--------------	--------------------	--			
APRIL :																					
24.20 INTERMETRICS, INC.	SOURCE -	R_PRED = ORIG_POS + .5 DELTA_T_PRED V_PRED)	v_PRED = ORIG_VEL + .5 DELTA_T_PRED A_PRED,			ACCUM_VEL = ACCUM_VEL + 2 V_FRED;	ACCHI_ACCEL = ACCHI_ACCEL + 2 A_PRED)	- R_PRED = ORIG_POS + DELIA_T_PRED V_PREU,	v_PRED = ORIG_VEL + DELTA_T_PRED A_PRED!			R_PRED = ORIG_POS + (ACCUM_VEL + V_PRED) DELTA_T_PRED / 61	v_PRED = ORIG_VEL + (ACCUM_ACCEL + A_PRED) DELTA_T_PRED / 6;			EGRATOR,	S U H H A R Y ****	SED _pred, v_pred, a_pred, r_pred*, delta_t_pred, v_pred*			
5 TO 360-				ENG	100					ENB	Ő			ENG	END 5	OSE INI	y c K	LOOP, R			
ŝ	L-	EI S	7 H] 2	I IN C	1 H 6	EI M 2	E M 2	EI MI 2	E M 3	I HI I	1 H 5	EI MI 2	r HI 2	1 H 1	Ĩ .	E E	1 B L 1	ER VAR INTEG			
H	STM	826	823	828	829	830	831	832	833	834	835	836	83.7	836	839	840	***	150			

INTERMETRICS, INC. APRIL 27, 1907 14:13:28.05	SOURCE CURRENT SCOPE	CM_REFERENCE:	TATX(3, 3) DOUBLES	01/20 EARTH FIXED FROM REFER NUTL LEFT) REFERENCE INGRITAL TO EARTH-FIXED NUTL LEFT) REFERENCE INGRITAL TO EARTH-FIXED ANSFORMATION MATRIX OR VARIOUS APPROXIMATIONS THEREOF ANSFORMATION MATRIX OR VARIOUS APPROXIMATIONS THEREOF ANSFORMATION MATRIX OR VARIOUS APPROXIMATIONS THEREOF ANSFORMATION MATRIX OR LAPSED SINCE THE ORIGIN RIH-FIXED FROM REFERENCE ROTATION MATRIX RIH-FIXED FROM REFERENCE ROTATION MATRIX RIH-FIXED FROM REFERENCE ROTATION MATRIX CARTH FIXED FROM REFERENCE ROTATION MATRIX	CALAR DOUBLE)	PBDA SCALAR DOUBLE) EARTH FIXED FROM REFER	PEDA SCALAR DOUBLES	OSULT - T_EPOCH) EARTH_RATEJJ	INIT - T_EPOCH) EARTH_RATE))	RIX (CLAPBDA, SLAPBDA, 0, -SLAPBDA, CLAPBDA, 0, 0, 0, 0, 1) EARTH_FIXED_FROM_REFER Double[3,3]	AT_EPOCH))	XED_FROM_REFERENCE)	M A R Y ****		
STD 360-24.20 I N		EARTH_FIXED_FROM_REFERENCE:	FUNCTION(T) MATRIX(3, 3) DOUBL	DATE: 01/01/80 FUNCTION: COMPUTE (LEFT) REF FUNCTION: COMPUTE (LEFT) REF INPUTS: TANSFORMATION MAI INPUTS: EATTH-FIXED FROM R COMPLENTS: MONE REFERENCE: UNDOCUMENTED	DECLARE T SCALAR DOUBLE)	DECLARE CLAMBDA SCALAR DOUB	DECLARE SLAMBDA SCALAR DOUB	CLAMBDA = COS(IT - T_EPOCH)	SLAPBDA = SINI(T - T_EPOCH)	RETURN (MATRIX (C adouble,3,3	* EF_FROM_REF_AT_EPOCH))	CLOSE EARTH_FIXED_FROM_REFEREN	. O C K S U M M A R Y ****	VARIABLES USED	OCH, EARTH_RATE
HAL/S	STHT	14 I 149	841 H	22222222	H 248	843 H	844 H	845 M]	[H 940	847 MI SI	E 847 H	848 H	**** B [COMPOOL	T E

COMPOOL VARIABLES USED T_GHT, R_MAV, V_NAV, ME_MAV, EARTH_POLE, ALT_TAEM_BIAS, DELTA_T_PRED_HIM, DELTA_T_PRED_MAV, K_LOD_MAV K_RHO_NAV, V_FINAL_MAG, V_MAG_CHANGE, PHI_MAX, DEG_TO_RAD, S_REF, MASS_NAV, EARTH_J2, EARTH_R, EARTH_MJ, ALT_TAEM, FT_TO_MH CURRENT SCOPE I PREDICTOR APRIL 27, 1987 14:13:28.85 ï OUTER VARIABLES USED Alpha_TRY, DELIX_T_PRED*, DELYA_T_PRED, PHI_TRY, PRED_EXIT*, PRED_EXIT, I_TARGET_EF, CR_ERR*, DR_ERR* INTERMETRICS, INC. SOURCE OUTER PROCEDURES CALLED USATHOS62, AERO_PARAMETERS, LOOKUP #### BLOCK SUMMARY #### 849 Mİ CLOSE PREDICTORI HAL/S STD 360-24.20 THIS .

.

.

OUTER STRUCTURE TEMPLATES USED ATMOSPROP

APRIL 27, 1987 14:13:28.85	CURRENT SCOPE	I CORRECTOR			
INC.					
INTERMETRICS,	SOURCE		A R Y ****	PHI_DES_MAX	LPHA_DES*, PHI_DES*
HAL/S STD 360-24.20	STHI	850 M) CLOSE CORRECTOR	**** BLOCK SUMMA	COMPOOL VARIABLES USED Alpha_Min, Alpha_Max, F	OUTER VARIABLES USED Alpha_des, phi_des, alf

•

-

HAL/S	STD 360-24.20 INTERMETRICS, INC. APRIL 27, 1987	14:13:28.85
STHT	SOURCE	CURRENT SCOPE
851 H	aero_paraheters:	I AERO_PARAVETERS
851 H	PROCEDURE(V_REL_MAG, ATHOS) ASSIGN(V_BAR, MACH1)	I AERO_PARAHETERS
222	FUNCTION: COMPUTE AERODYNAMIC FLOM REGIME PARAMETERS	AERO_PARAMETERS AERO_PARAMETERS AERO_PARAMETERS
222	LOCAL VARIABLES	AERO_PARAKETERS AERO_PARAKETERS AERO_PARAMETERS
852 M	DECLARE V_REL_MAG SCALAR SINGLE,	AERO_PARAMETERS
853 H	DECLARE ATHOS ATHOSPROP-STRUCTURE)	AERO_PARAVETERS
854 H	DECLARE MACH SCALAR SINGLE,	I AERO_PARAMETERS
855 H	DECLARE V_BAR SCALAR SINGLES	I AERO_PARAMETERS
856 H]	DECLARE C_PRIME SCALAR SINGLES	I AERO_PARAMETERS
857 H	DECLARE GAMMA_VBAR SCALAR SINGLE,	I AERO_PARAMETERS
858 H	DECLARE REVINOLDS_NUMBER SINGLEJ) AERO_PARAMETERS
859 H	DECLARE SPEED_OF_SOUND SCALAR SINGLE)	AERO_PARAMETERS
IM 098	DECLARE T_PRIME SCALAR SINGLE,	AERO_PARAHETERS
JH 198	DECLARE T_MALL SCALAR SINGLE,	1 AERO_PARAMETERS
862 M	DECLARE VISCOSITY SCALAR SINGLE,	AERO_PARAMETERS
555	LOCAL CONSTANTS	AERO_PARAMETERS AERO_PARAMETERS AERO_PARAMETERS
863 M]	DECLARE C_BAR SCALAR SINGLE CONSTANTI(25.0)	I AERO_PARAMETERS
864 M)	DECLARE DEG_R_TO_DEG_K SCALAR SINGLE CONSTANT(9 / 51)	I AERO_PARAMETERS
865 M	DECLARE GAMMA SCALAR SINGLE CONSTANT(1.4))	AERO_PARAMETERS
El 866 MI	3 DECLARE UNIV_GAS_CONST SCALAR SINGLE CONSTANTIG.31432 10);	I AERO_PARAMETERS
867 M	DECLARE MOLE_MT_ZERO SCALAR SINGLE CONSTANT(28.9644))	I AERO_PARAMETERS
868 M	DECLARE SPEED_OF_SOUND_CONST SCALAR SINGLE CONSTANTISARTIGAMMA UNIV_GAS_CONST / MOLE_MT_ZEROJI) AERO_PARAMETERS

HAL/S	STD 360-24.20 INTERMETRICS, INC. APRIL 27, 1987	14:13:28.85
STHT	Source	CURRENT SCOPE
222		AERO_PARAMETERS AERO_PARAMETERS AERO_PARAMETERS
B69 H	SPEED_OF_SOUND = SPEED_OF_SOUND_CONST M_TO_FT SQRT(ATHOS.TH))	I AERO_PARAMETERS
·870 M]	IF SPEED_OF_SOUND = 0 THEN	I AERO_PARAMETERS
871 H	MACH = DJ) AERO_PARAMETERS
872 H	ELSE	1 AERO_PARAMETERS
872 H	MACH = V_REL_MAG / SPEED_OF_SOUND }	I AERO_PARAMETERS
555	REYNOLDS NURBER	AERO_PARAHETERS AERO_PARAHETERS AERO_PARAHETERS
E 873 H	-6 VISCOSITY = 1.456 10 KG_TQ_SLUG ATHOS.TS / ((110.4 + ATHOS.TS) M_TD_FT))	I AERO_PARAHETERS
874 H	IF (VISCOSITY = 0 OR ATHOS.H > 300000) THEN	I AERO_PARAHETERS
875 M)	REVNOLOS_MURBER = 0,	I AERO_PARAVETERS
876 H	ELSE	I AERO_PARAHETERS
876 H	REVNOLDS_MURBER = ATHOS.RHO V_REL_HAG C_BAR / VISCOSITY,	I AERO_PARAMETERS
222	VISCOUS PARMETER	AERO_PARAHETERS AERO_PARAHETERS AERO_PARAHETERS
877 HÌ	IF REVNOLDS_MURBER = 0 THEN	I AERO_PARAVETERS
878 M	V_BAR = 0,	I AERO_PARAMETERS
879 M	ELSE	I AERO_PARAMETERS

9711 SOME COMENT SOME COMENT SOME COMENT SOME 9711 DO TALL FOR VISCOS PARAMETER 1 (480) PARAMETER 1 (480) PARAMETER 9011 T INUL = 2130 O BC, TD, BC, TD, BC, R, DO BO, INEN 1 (480) PARAMETER 1 (480) PARAMETER 9011 T FULL = 2130 O BC, TD, BC, R, DO BO, INEN 1 (480) PARAMETER 1 (480) PARAMETER 9011 T FULL = 2130 O BC, TD, BC, R, DO BO, INEN 1 (480) PARAMETER 1 (480) PARAMETER 9011 T FULL = 5170 O BC, TD, BC, R, DO BC, R, DO BO, INEN 1 (480) PARAMETER 1 (480) PARAMETER 9011 T FULL = 5170 O BC, R, DO BC, R, DO BC, R, DO BC, R, DO BC, R, DO BC, R, DO BC, R, DO BC, R, DO BO, INEN 1 (480) PARAMETER 9011 T FULL = 5170 O BC, R, TD, BC, R, DO BC, R, DO BC, R, DO BC, R, DO BC, R, DO BC, R, DO BO, INEN 1 (480) PARAMETER 9011 T FULL = 5170 O BC, R, TD, BC, R, DO BO, INEN 1 (480) PARAMETER 9011 E LES TF (ATMES, M > 200000 JM (ATMES, M < 25000 THEN 1 (480) PARAMETER 9011 E LES TF (ATMES, M > 200000 JM (ATMES, M < 25000 THEN 1 (480) PARAMETER 9011 E LES TF (ATMES, M > 200000 JM (ATMES, M < 25000 THEN 1 (480) PARAMETER 9011 E LES TF	Off SOME SOME SOME Construction Conston state <th>HAL/S</th> <th>STO 360-24.20</th> <th>INTERMETRICS, INC. APRIL 27, 1</th> <th>987 J</th> <th>1:13:28.85</th>	HAL/S	STO 360-24.20	INTERMETRICS, INC. APRIL 27, 1	987 J	1:13:28.85
07 M D0 IREG_PADARETER	07 H1 00. 1 $\frac{1}{1}$ ILL FOR VISCION PARAMETTS 1400 JARANETTS 06 H1 1 1 ILL HORS, AC 500011 TRH 1400 JARANETTS 08 H1 1 1 JALL EST FLATHOS, A > 240001 TRH 1400 JARANETTS 08 H1 1 1 JALL = 1591.0 - 0.015 ATTOS, H. BER, R. D. ALE, R. D. D. ALE, R. D. D. ALE, R. D. D. ALE, R. D. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. D. ALE, R. D. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. D. ALE, R. D. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R. D. ALE, R.	STHT		source		CURRENT SCOPE
CI 1.441.1.(FOR V155.005 FAMBLETER RE00_PAMBLETER RE00_PAMBLETER 001 1 1.11.1.(FORS.14 C 249001) TERK RE00_PAMBLETER RE00_PAMBLETER 01 1 1.11.1.(FORS.14 C 249001) TERK RE00_PAMBLETER RE00_PAMBLETER 02 H1 1 1.41.1.517.0.05 E.g., 10.752.1. RE0_PAMBLETER RE0_PAMBLETER 03 H1 1 ELES TF (ATTRGS.14 > 249001) TERK RE0_PAMBLETER RE0_PAMBLETER 03 H1 1 FLES TF (ATTRGS.14 > 249001) TERK RE0_PAMBLETER RE0_PAMBLETER 03 H1 1 T_MLL = 504.0.056.9_A.0.056.9_A.0.056.9_A.0.056.4_A.0.050.0_METER RE0_PAMBLETER RE0_PAMBLETER 04 1 T_MLL = 504.0.056.9_A.0.056.9_A.0.050.0_METER RE0_PAMBLETER RE0_PAMBLETER 05 H1 1 T_MLL = 504.0.056.9_A.0.056.9_A.0.050.0_METER RE0_PAMBLETER RE0_PAMBLETER 05 H1 1 FLEST TF (ATTRGS.14 > 100000) TERK RE0_PAMBLETER RE0_PAMBLETER 05 H1 1 FLEST TF (ATTRGS.14 > 100000) TERK RE0_PAMBLETER RE0_PAMBLETER <td>CI $\frac{1}{1}$</td> <td>879 M</td> <td>100</td> <td></td> <td></td> <td>i aero_parameters</td>	CI $\frac{1}{1}$	879 M	100			i aero_parameters
80 H1 IF IATMOS. H < 249001 TREN	00 H Ir (ATMOG. Ar < 340001 THEK	555	T_MALL FOR VISCOUS PA	 IRAMETER 		I AERO_PARAHETERS I AERO_PARAHETERS I AERO_PARAHETERS
81 Hi - T_MLL = 2170.0 EE_A_TO_EE_A; AEO ON THEN	801 H I I Light I Light I Light I Light I Light I Light I Light I Light I Light I Light I Light I Light I Light I Light I Light I Light I Light I Light I Light Light I Light	880 MJ	1 IF LATHOS.H <	c 249000) THEN		AERO_PARAMETERS
022 11 ELSE IF (ATMOS: M >= 249001) AND (ATMOS: M <= 540000) THEN	82 H) 1 ELS IF IATMOS. H > 2 40001 Me0 (ATMOS. H < 360001 THEH	H 188	1 ~ T_HALL = 2	2178.0 DEG_R_TO_DEG_K;		I AERO_PARAMETERS
63 H T_MLL = (991.0 - 0.015 ATMCS.H) DEG_R_TO_GEG_K1 AERO_PADAMETER 69 H T_MLL = 594.0 DEG_R_TO_DEG_K1 AERO_PADAMETER 69 H T_MLL = 504.0 DEG_R_TO_DEG_K1 AERO_PADAMETER 69 H T_MLL = 504.0 DEG_R_TO_DEG_K1 AERO_PADAMETER 69 H If ATMOS.H < 1000001 THEN	63 Hill $T_{MLL} = 15915.0 - 0.015$ AINGS. AI) GGG, R_10 GGG, R_10 GGG, R_10 GGG, R_10 GGG, R_10 AGG FERS 1 AGG, JAAAWETES 65 Hill $T_{MLL} = 504.0$ DGG, R_1 > 3 400001 YIGH 1 AGG, JAAAWETES 1 AGG, JAAAWETES 65 Hill $T_{MLL} = 504.0$ DGG, R_1 DGG, R_1 > 3 400001 YIGH 1 AGG, JAAAWETES 1 AGG, JAAAWETES 66 Hill If (AINGS. H > 100001 YIGH 1 AGG, JAAAWETES 1 AGG, JAAAWETES 69 Hill If (AINGS. H > 100001 AUD (AINGS. H < 1700001 TIGH	882 M)	1 ELSE IF (ATHC	DS.H >= 249000) AND (ATMOS.H < 360000) THEN		I AERO_PARAMETERS
064 I ILES IF IATINOS.H >= 360000) THEN AERO_PARAMETER AERO_PARAMETER 055 IL T_MLL = 564.0 DEE_A_TO_DEE_A_S AERO_PARAMETER IAERO_PARAMETER 055 IL T_MLL = 564.0 DEE_A_TO_DEE_A_S IAERO_PARAMETER IAERO_PARAMETER 056 IL IF (ATINOS.H >= 100000) THEN IAERO_PARAMETER IAERO_PARAMETER 059 H IF (ATINOS.H >= 100000) THEN IAERO_PARAMETER IAERO_PARAMETER 050 H IELSE IF (ATINOS.H >= 100000) THEN IAERO_PARAMETER IAERO_PARAMETER 060 H IELSE IF (ATINOS.H >= 100000) THEN IAERO_PARAMETER IAERO_PARAMETER 060 H IELSE IF (ATINOS.H >= 100000) THEN IAERO_PARAMETER IAERO_PARAMETER 060 H IELSE IF (ATINOS.H >= 100000) THEN IAERO_PARAMETER IAERO_PARAMETER 060 H IELSE IF (ATINOS.H >= 200000) THEN IAERO_PARAMETER IAERO_PARAMETER 07 H IELSE IF (ATINOS.H >= 200000) THEN IAERO_PARAMETER IAERO_PARAMETER 07 H IELSE IF (ATINOS.H >= 200000) THEN IAERO_PARAMETER IAERO_PARAMETER 07 H <td< td=""><td>60 MI I LLSE JF (ATPOS. H > 3.40000) THEN 1 ALED_PARAMETER 1 ALED_PARAMETER 60 MI I T_MLL = 50A.0 DEC_ATO_DEC_ATO 1 ALED_PARAMETER 1 ALED_PARAMETER 61 MI I T_MLL = 50A.0 DEC_ATO_DEC_ATO 1 ALED_PARAMETER 1 ALED_PARAMETER 61 MI I T_MLL = 50A.0 DEC_ATO_DEC_ATO 1 ALED_PARAMETER 1 ALED_PARAMETER 61 MI I TATOTATATATATATATATATATATATATATATATATAT</td><td>683 H</td><td>1 T_MALL = 1</td><td>15913.0 - 0.015 ATMOS.H) DEG_R_TO_DEG_K;</td><td></td><td> AERO_PARAMETERS</td></td<>	60 MI I LLSE JF (ATPOS. H > 3.40000) THEN 1 ALED_PARAMETER 1 ALED_PARAMETER 60 MI I T_MLL = 50A.0 DEC_ATO_DEC_ATO 1 ALED_PARAMETER 1 ALED_PARAMETER 61 MI I T_MLL = 50A.0 DEC_ATO_DEC_ATO 1 ALED_PARAMETER 1 ALED_PARAMETER 61 MI I T_MLL = 50A.0 DEC_ATO_DEC_ATO 1 ALED_PARAMETER 1 ALED_PARAMETER 61 MI I TATOTATATATATATATATATATATATATATATATATAT	683 H	1 T_MALL = 1	15913.0 - 0.015 ATMOS.H) DEG_R_TO_DEG_K;		AERO_PARAMETERS
055 Hi 1 T_MILL = 504.0 DEC_R_TO_DEC_K1 (AERO_PARAMETER (AERO_PARAMETER 1 If (ATMCS: MARMETER (AERO_PARAMETER (AERO_PARAMETER 065 Hi 1 If (ATMCS: MARMETER (AERO_PARAMETER (AERO_PARAMETER 069 Hi 1 If (ATMCS: M > 1000001 HEN (AERO_PARAMETER (AERO_PARAMETER 069 Hi 1 ELSE IF (ATMCS: M > 1000001 AND (ATMCS: M < 1700001 THEN	055 H. T_MLL = 504.0 EG_R_T0_0EG_K1 1 AERO_PARAFETES 05 H. F. MLL = 504.0 EG_R_T0_0EG_K1 1 AERO_PARAFETES 05 H. F. MLVISCOUS PARAFETER 1 AERO_PARAFETES 05 H. F. MLVISCOUS PARAFETER 1 AERO_PARAFETES 05 H. F. MLVISCOUS PARAFETER 1 AERO_PARAFETES 05 H. F. F. MTNOS. H < 1700001 THEN	884 M	I ELSE IF LATHO	JS.H >= 360000) THEN		AERO_PARAMETERS
Circle Gummeries Gummeries AERO_PARAMETER AERO_PARAMETER B0H I IF (ATMOS. H > 100000) THEN AERO_PARAMETER AERO_PARAMETER B0H I IF (ATMOS. H > 100000) THEN AERO_PARAMETER AERO_PARAMETER B0H I ELSE IF (ATMOS. H > 100000) THEN AERO_PARAMETER AERO_PARAMETER B0H I ELSE IF (ATMOS. H > 100000) AND (ATMOS. H) AERO_PARAMETER AERO_PARAMETER B0H I ELSE IF (ATMOS. H > 100000) AND (ATMOS. H) AERO_PARAMETER AERO_PARAMETER B0H I ELSE IF (ATMOS. H > 100000) AND (ATMOS. H) AERO_PARAMETER AERO_PARAMETER B0H I ELSE IF (ATMOS. H > 100000) AND (ATMOS. H) AERO_PARAMETER AERO_PARAMETER B0H I ELSE IF (ATMOS. H > 100000) AND (ATMOS. H) AERO_PARAMETER AERO_PARAMETER B01H I GAMM_VBAR = 1.75 ATMOS. H) AERO_PARAMETER AERO_PARAMETER B02H I GAMM_VBAR = 1.75 ATMOS. H) AERO_PARAMETER AERO_PARAMETER B03H I GAMM_VBAR = 1.71 GAMM_VBAR = 1.71 AERO_PARAMETER AERO_PARAMETER Circomont	CI CIANAL FOR VISCIOUS PARNETIR AERO PARAMETERS CI CIANAL FOR VISCIOUS PARNETIR AERO PARAMETERS BM I IF (ATINOS. M < 100000) THEN	065 M	I T_MALL = E	504.0 DEG_R_T0_DEG_K;		L AERO_PARAMETERS
86 Hi I IF (ATHOS.H < 100000) THEN	66 H) If (ATMGS: H < 10000) THEN	<u></u>	GAPPIA FOR VISCOUS PAR	 AAHETER 		AERO_PARAMETERS AERO_PARAMETERS AERO_PARAMETERS
807 Mi 1 GAMHA, VDAR = 1.4) AERO_PARAUETER 808 Mi 1 ELSE IF (ATMOS. H >= 100000) AUD (ATMOS. H < 170000) THEN	80 ¹ Mi 1 GutHu, YOAR = 1.4; I AERO_PAUNETES 80 ² Hi 1 ELSE IF (AITNOS: H >= 100001 AUD (ATHOS: H < 170001 THEN	86 M	I IF (ATHOS.H <	C 100000) THEN		I AERO_PARAHETERS
869 Hi 1 ELSE IF (ATHCS: H >= 10000) AND (ATHCS: H < 170000) THEN	600 Hi 1 ELSE IF (ATHOS.H >= 100001) A00 (ATHOS.H) / 100001 A00 (ATHOS.H) / 4ERO_PARAFETES 601 Hi 1 6AHA_UBAR = 1.7 - 3.00E-6 ATHOS.H) / AERO_PARAFETES / AERO_PARAFETES 601 Hi 1 ELSE IF (ATHOS.H >= 1700001 AND (ATHOS.H < 2250001 THEN	B87 M	1 GAHHA_VBAF	R = 1.4,		I AERO_PARAHETERS
899 Hi 1 GAHAL, VGAR = 1.7 - 3.00E-6 ATHOS.H) AERO_PARAWETER 990 Hi 1 ELSE IF (ATHOS.H >= 1.70000) AND (ATHOS.H < 225000) THEN	69 Hi 1 G4P44, VBAR = 1.7 - 3.00E-6 ATHOS. H) AERO_PARAVETERS 09 Hi 1 ELSE IF (ATHOS. H) × 170000 AND (ATHOS. H < 2250001 THEN	1H 888	I ELSE IF (ATHC	DS.H >= 100000) AND (ATMOS.H < 170000) THEN		AERO_PARAHETERS
690 H(1 ELSE IF (AIMOS.H >= 170000) AND (ATMOS.H < 225000) THEN	09 Hi 1 ELSE IF (ATHOS. H) >= 170000) AND (ATHOS. H) Z55000) THEN 1 AERO_PARAMETERS 091 Hi 1 GAMMA_VBAR = 1.375 - 1.09E 6 ATHOS. H) 1 AERO_PARAMETERS 092 Hi 1 ELSE IF (ATHOS. H) >= 225000) AND (ATHOS. H) 1 AERO_PARAMETERS 093 Hi 1 ELSE IF (ATHOS. H) >= 225000) AND (ATHOS. H) 1 AERO_PARAMETERS 093 Hi 1 ELSE IF (ATHOS. H) >= 225000) AND (ATHOS. H) 1 AERO_PARAMETERS 093 Hi 1 GAMMA_VBAR = 1.20 -4.00E-7 ATHOS. H) 1 AERO_PARAMETERS 095 Hi 1 GAMMA_VBAR = 1.11 1 AERO_PARAMETERS 1 AERO_PARAMETERS 095 Hi 1 CAMMA_VBAR = 1.11 1 AERO_PARAMETERS 1 AERO_PARAMETERS 01 I CHIA_VBAR = 1.11 1 AERO_PARAMETERS 1 AERO_PARAMETERS 01 I CHIA_VBAR = 1.11 1 AERO_PARAMETERS 1 AERO_PARAMETERS 01 I CHIA_VBAR = 1.11 1 AERO_PARAMETERS 1 AERO_PARAMETERS 01 I CHIA_VBAR = 1.11 1 AERO_PARAMETERS 1 AERO_PARAMETERS 02 I I CHIA_VBAR = 1.11 1 AERO_PARAMETERS 1 AERO_PARAMETERS 03 Hi 1 I_PARAMETERS 1 AERO_PARAMETERS 1 AERO_PARA	889 M	I GAMMA_VBAF	R = 1.7 - 3.00E-6 ATHOS.H,		I AERO_PARAMETERS
091 Hi Gutwu, VDAR = 1.375 - 1.09E-6 ATHOS.H) 1 AERO_PARAWETER 032 Hi ELSE IF (ATHOS.H >= 255000) AND (ATHOS.H) 1 AERO_PARAWETER 033 Hi CAHFU_VDAR = 1.220 - 4.00E-7 ATHOS.H) 1 AERO_PARAWETER 034 Hi CAHFU_VDAR = 1.220 - 4.00E-7 ATHOS.H) 1 AERO_PARAWETER 035 Hi CAHFU_VDAR = 1.220 - 4.00E-7 ATHOS.H) 1 AERO_PARAWETER 035 Hi ELSE IF (ATHOS.H >= 3000001 THEN 1 AERO_PARAWETER 035 Hi ELSE IF (ATHOS.H >= 3000001 THEN 1 AERO_PARAWETER 035 Hi ELSE IF (ATHOS.H >= 3000001 THEN 1 AERO_PARAWETER 035 Hi CAHHU_VDAR = 1.1) 1 AERO_PARAWETER 035 Hi CAHHU_VDAR = 1.1) 1 AERO_PARAWETER 035 Hi CAHHU_VDAR = 1.1) 1 AERO_PARAWETER 035 Hi CAHHU_VDAR = 1.1) 1 AERO_PARAWETER 035 Hi I CAHHU_VDAR = 1.1) 1 AERO_PARAWETER 036 Hi I I_PRIME = 1.460 + .532 I_MUL / ATHOS.IS + .195 (GAHM_VDAR = 1) MUCH / Z1) ATHOS.IS) 1 AERO_PARAMETER 037 Hi I_PRIME = (I_HDE / ATHOS.IS) (IATHOS.IS + 122.1 10) / (I_PRIME + 122.1 10 1 AERO_PARAMETER 037 Hi (5/T_PRIME 1 1) 1) 1 1 / (I_PRIME + 122.1 10	091 Hi GutHu, UBAR = 1.375 - 1.095-6 ATMOS.H) AERO_PARAMETERS 092 Hi ELSE IF (ATMOS.H >= 225000) AND (ATMOS.H < 300000) THEN	890 M	I ELSE IF IATHC	DS.H >= 170000) AND (ATMOS.H < 225000) THEN		I AERO_PARAHETERS
92 Hi I ELSE IF (ATHOS.H >= 225000) AND (ATHOS.H < 300000) THEN	92 Hi 1 ELSE IF (ATHOS.H >= 225000) AND (ATHOS.H) AERO_PARWETERS 93 Hi 1 GAHA_VGAR = 1.220 - 4.00E-7 ATHOS.H) AERO_PARWETERS 89 Hi 1 GAHA_VGAR = 1.220 - 4.00E-7 ATHOS.H) AERO_PARWETERS 89 Hi 1 ELSE IF (ATHOS.H >= 300000) THEN AERO_PARWETERS 89 Hi 1 ELSE IF (ATHOS.H >= 300000) THEN AERO_PARWETERS 89 Hi 1 GAHA_VGAR = 1.1J AERO_PARWETERS 61 T_PRINE FOR VISCOUS PARAMETER AERO_PARAMETERS 61 T_PRINE = 1.460 + .532 T_MULL / ATHOS.IS + .195 (GAMA_VBAR = 11) MCH / 21) ATHOS.IS1 AERO_PARAMETERS 896 Hi 1 T_PRINE = 1.460 + .532 T_MULL / ATHOS.IS + .195 (GAMA_VBAR = 11) MCH / 21) ATHOS.IS1 AERO_PARAMETERS 896 Hi 1 T_PRINE = 1.460 + .532 T_MULL / ATHOS.IS + .195 (GAMA_VBAR = 11) MCH / 21) ATHOS.IS1 AERO_PARAMETERS 896 Hi 1 T_PRINE = 1.460 + .532 T_MULL / ATHOS.IS + .195 (GAMA_VBAR = 11) MCH / 21) ATHOS.IS1 AERO_PARAMETERS 897 Hi 1 C_PRINE = 1.460 + .532 T_MULL / ATHOS.IS + .195 (GAMA_VBAR = 11) MCH / 21) ATHOS.IS1 AERO_PARAMETERS 897 Hi 1 C_PRINE = 1.1 MCH / ATHOS.IS + .122.1 10 AERO_PARAMETERS 897 Hi 1 (FATHRE = 1.460 + .532 T_MULL / ATHOS.IS + .122.1 10 AERO_PARAMETERS 897 Hi 1	H 168	I GAHHA_VBAF	R = 1.375 - 1.09E-6 ATHOS.H}		1 AERO_PARAMETERS
893 HI 1 GAH4U_VGAR = 1.220 - 4.00E-7 ATHOS.H) (AERO_PARWETER 894 HI 1 ELSE IF (ATHOS.H >= 3000001 THEN (AERO_PARWETER 895 HI 1 GAH4L_VGAR = 1.1J (AERO_PARWETER 895 HI 1 GAH4L_VGAR = 1.1J (AERO_PARWETER 895 HI 1 GAH4L_VGAR = 1.1J (AERO_PARWETER 816 HI 1 GAH4L_VGAR = 1.1J (AERO_PARWETER 817 HI 1 C_PATHE FOR VISCOUS PARMETER (AERO_PARWETER 818 HI 1 T_PRIHE = 1.468 + .532 T_MULL / ATHOS.TS + .195 (GAM4A_VBAR - 1) MACH / 2) ATHOS.TS + [AERO_PARWETER (AERO_PARWETER 896 HI 1 T_PRIHE = 1.468 + .532 T_MULL / ATHOS.TS + .195 (GAM4A_VBAR - 1) MACH / 2) ATHOS.TS + [AERO_PARWETER (AERO_PARWETER 897 HI 1 C_PRIHE = (T_PRIHE / ATHOS.TS) ((ATHOS.TS + .122.1 10 (AERO_PARWETER 897 HI 1 (5/T_PRIHE) 1 (AERO_PARWETER (AERO_PARWETER 897 HI 1 (5/T_PRIHE) 1 (AERO_PARWETER (AERO_PARWETER	833 Hi 1 Guthu, VBAR = 1.220 - 4.00E-7 ATMOS.H) I AERO_PARWETERS 894 Hi 1 ELSE IF (ATMOS.H >= 300001 THEN I AERO_PARWETERS 895 Hi 1 Guthu, VBAR = 1.1) I AERO_PARWETERS 895 Hi 1 Guthu, VBAR = 1.1) I AERO_PARWETERS 895 Hi 1 Guthu, VBAR = 1.1) I AERO_PARWETERS 816 Filt ABO - FRIHE FOR VISCOUS PARMETERS I AERO_PARWETERS 817 Hi 1 T_PRIHE = 1.466 + .532 T_MULL / ATMOS.TS + .195 (Guthu, VBAR = 1) MCH ⁷ / 21 ATMOS.TS + IERO_PARWETERS I AERO_PARWETERS 896 Hi 1 T_PRIHE = 1.466 + .532 T_MULL / ATMOS.TS + .195 (Guthu, VBAR = 1) MCH ⁷ / 21 ATMOS.TS + IERO_PARWETERS I AERO_PARWETERS 896 Hi 1 T_PRIHE = 1.466 + .532 T_MULL / ATMOS.TS + .195 (Guthu, VBAR = 1) MCH ⁷ / 21 ATMOS.TS + IERO_PARWETERS I AERO_PARWETERS 897 Hi 1 C_PRIHE = 1.466 + .532 T_MULL / ATMOS.TS + .195 (Guthu, VBAR = 1) MCH ⁷ / 21 ATMOS.TS + IERO_PARWETERS I AERO_PARWETERS 897 Hi 1 C_PRIHE = 1.466 + .532 T_MULL / ATMOS.TS + .122.1 10 AERO_PARWETERS 897 Hi 1 C_PRIHE = 1.466 + .532 T_MULL / ATMOS.TS + .122.1 10 AERO_PARWETERS 897 Hi 1 C_PRIHE = 1.1 PRIME / ATMOS.TS + .122.1 10 AERO_PARWETERS 897 Hi 1 0.7 1 1) 0.7 1 10 AERO_PARWETERS <td< td=""><td>892 M</td><td>I ELSE IF (ATHC</td><td>DS.H >= 225000) AND (ATMOS.H < 300000) THEN</td><td></td><td>AERO_PARAMETERS</td></td<>	892 M	I ELSE IF (ATHC	DS.H >= 225000) AND (ATMOS.H < 300000) THEN		AERO_PARAMETERS
894 H) 1 ELSE IF (ATMOS.H >= 300001 THEN 1 AERO_PARAMETER 895 H) 1 GAMA_VBAR = 1.1) 1 AERO_PARAMETER 895 H) 1 GAMA_VBAR = 1.1) 1 AERO_PARAMETER 1 T_PRIME AND C_PRIME FOR VISCOUS PARAMETER 1 AERO_PARAMETER 1 T_PRIME AND C_PRIME FOR VISCOUS PARAMETER 1 AERO_PARAMETER 1 T_PRIME AND C_PRIME FOR VISCOUS PARAMETER 1 AERO_PARAMETER 1 T_PRIME = 1.468 + .532 T_MALL / ATMOS.TS + .195 (GAMM_VBAR - 1) MACH / 2) ATMOS.TS 1 1 AERO_PARAMETER 896 H1 T_PRIME = 1.468 + .532 T_MALL / ATMOS.TS + .195 (GAMM_VBAR - 1) MACH / 2) ATMOS.TS 1 1 AERO_PARAMETER 897 H1 C_PRIME = (T_PRIME / ATMOS.TS) (IATMOS.TS + .122.1 10 1 / (T_PRIME + 122.1 10 - 1 1 AERO_PARAMETER 897 H1 (5/T_PRIME) 1 1 / (T_PRIME + 122.1 10 - 1 1 (AERO_PARAMETER 1 / (AERO_PARAMETER	894 H) 1 ELSE IF (ATHOS.H >= 30000) THEN 1 AERO_PARAMETERS 895 H) 1 GAPHA_VBAR = 1.1) 1 AERO_PARAMETERS 61 T_PRIHE AND C_PRIHE FOR VISCOUS PARAMETERS 1 AERO_PARAMETERS 61 T_PRIHE AND C_PRIHE FOR VISCOUS PARAMETERS 1 AERO_PARAMETERS 61 T_PRIHE AND C_PRIHE FOR VISCOUS PARAMETERS 1 AERO_PARAMETERS 61 T_PRIHE = 1.468 + .532 T_MALL / ATHOS.TS + .195 (GAMMA_VBAR - 1) MCH / 21 ATHOS.TS) 1 AERO_PARAMETERS 896 H1 T_PRIHE = 1.468 + .532 T_MALL / ATHOS.TS + .195 (GAMMA_VBAR - 1) MCH / 21 ATHOS.TS) 1 AERO_PARAMETERS 897 H1 C_PRIHE = 1.7005.TS + .122.1 10 1 / T_PRIHE + .122.1 10 1 AERO_PARAMETERS 897 H1 1 1 1 1 1 1 / T_PRIHE / .110 1 AERO_PARAMETERS	893 M	I GANNA CANNA	R = 1.220 - 4.00E-7 ATHOS.HI		I AERO_PARAMETERS
895 H) 1 Gutha_VBAR = 1.1) AERO_PARWETER C 'PRIME_AND C_PRIME_FOR VISCOUS PARAMETER AERO_PARAMETER B36 M 1 T_PRIME = 1.4608 + .532 T_MALL / ATMOS.TS + .195 (GAMM_VBAR - 1) MACH ' / 2) ATMOS.TS1 AERO_PARAMETER B46 M 1 T_PRIME = 1.4608 + .532 T_MALL / ATMOS.TS + .195 (GAMM_VBAR - 1) MACH ' / 2) ATMOS.TS1 AERO_PARAMETER B47 M 1 C_PRIME = 1.7608.TS1 ! (ATMOS.TS1 10 ' 122.1 10 ' 127.1 10 ' 127.1 10 ' 127.1 10 ' 126.0 PARAMETER B77 H 1 (.57T_PRIME 1 1 ' 1) ' 11) / (T_PRIME 1 1 ' 10 ' 10 ' 10 ' 10 ' 10 ' 10 ' 10	095 H) 1 Gumm_ubar = 1.1; I afro_proverters 01 I_PRIME AND C_PRIME FOR VISCOUS PARAMETERS I afro_proverters 01 I_PRIME AND C_PRIME FOR VISCOUS PARAMETERS I afro_proverters 02 I_PRIME AND C_PRIME FOR VISCOUS PARAMETERS I afro_proverters 03 H1 I_prime = 1.466 + .532 T_MULL / ATMOS.TS + .195 (Gumm_graft - 1) MucH / 21 ATMOS.TS; I afro_proverters 03 H1 I_prime = 1.466 + .532 T_MULL / ATMOS.TS + .195 (Gumm_graft - 1) MucH / 21 ATMOS.TS; I afro_proverters 03 H1 I_prime = 1.466 + .532 T_MULL / ATMOS.TS + .195 (Gumm_graft - 1) MucH / 21 ATMOS.TS; I afro_proverters 03 H1 I_prime = 1.466 + .532 T_MULL / ATMOS.TS + .122.1 10 Afro_proverters 04 H1 C_prime / ATMOS.TS + .122.1 10 Afro_proverters 05 H1 I I_much122.1 10 Afro_proverters 05 H1 I I_much122.1 10 Afro_proverters	894 M	I ELSE IF (ATHC	DS.H >= 3000001 THEN		I AERO_PARAMETERS
CI TPRIME AND C_PRIME FOR VISCOUS PARMETER A ERO_PARMETER CI T_PRIME AND C_PRIME FOR VISCOUS PARMETER A ERO_PARMETER CI T_PRIME AND C_PRIME FOR VISCOUS PARMETER A ERO_PARMETER CI T_PRIME AND C_PRIME FOR VISCOUS PARMETER A ERO_PARMETER B36 MI I T_PRIME = 1.468 + .532 T_MULL / ATMOS.TS + .195 (GAMM_VBAR - 1) MUCH / 21 ATMOS.TS) A ERO_PARMETER B37 MI I C_PRIME = I.7468 + .532 T_MULL / ATMOS.TS + 122.1 10 A ERO_PARMETER B37 MI I C_PRIME = IT_PRIME / ATMOS.TS) I(ATMOS.TS + 122.1 10 A ERO_PARMETER B37 MI I I/T_PRIME / ATMOS.TS) I(ATMOS.TS + 122.1 10 A ERO_PARMETER	CI	895 M	I GAPHA_VBAF	R = 1.1,		I AERO_PARAMETERS
EI 896 MI 1 T_PR1HE = 1.468 + .532 T_MALL / ATHOS.TS + .195 (GAMMA_VBAR - 1) MACH / 2) ATHOS.TS1 AERO_PARMETER 897 MI 1 C_PR1HE = (T_PR1HE / ATHOS.TS) (LATHOS.TS + 122.1 10 897 MI 1 (5/T_PR1HE 1) 897 MI 1 (5/T_PR1HE 1)	E1 1 T_PRINE = 1.466 + .532 T_MALL / ATMOS.TS + .195 (GAMM_VBAR - 1) MACH / 2) ATMOS.TS, A ERO_PARAMETERS 895 M1 1 C_PRINE = 1.466 + .532 T_MALL / ATMOS.TS + .195 (GAMM_VBAR - 1) MACH / 2) ATMOS.TS, A ERO_PARAMETERS 897 M1 1 C_PRINE = 1.466 + .532 T_MALS.TS) I (ATMOS.TS) I (ATMOS.TS) 897 M1 1 C_PRINE / ATMOS.TS) I (ATMOS.TS) I (ATMOS.TS) 897 M1 1 C_PRINE / ATMOS.TS) I (ATMOS.TS) I (AERO_PARAMETERS 897 M1 1 (5.7_PRINE / ATMOS.TS) I (ATMOS.TS) I (AERO_PARAMETERS 897 M1 1 (5.7_PRINE / ATMOS.TS) I (ATMOS.TS) I (AERO_PARAMETERS	555	T_PRIME_AND_C_PRIME_F	FOR VISCOUS PARAHETER		AERO_PARAMETERS AERO_PARAMETERS AERO_PARAMETERS
EI	EI C_PRIME = (T_PRIME / ATMOS.TS) ((ATMOS.TS + 122.1 10) / (T_PRIME + 122.1 10 AERO_PARAMETERS EI (5/T_PRIME) 1 (5/T_PRIME) 1 AERO_PARAMETERS 897 HI 1 (5/T_PRIME) 1 AERO_PARAMETERS	E 896 M	1 T_PRIME = 1.4	468 + .532 T_MILL / ATMOS.TS + .195 (GAMMA_VBAR - 1) MACH / 2) ATMOS	151.	AERO_PARAMETERS
EI (5/T_PRIHE) 1 897 HI 1 (1) 1 I AERO_PARMETER	E) (5/T_PRIME) 1 897 H 1 (5/T_PRIME) 1 1 (AERO_PARMETERS	E 897 M	1 C_PRIME = 17_		122.1 10	- 1 AERO_PARAMETERS
		E) 897 H	1 (5/T_PRIME)	1		I AERO_PARAHETERS

D 360-24.20 I N V_BAR = MACH (C_PRIME END) ie Aero_Parameters) ie aero_Parameters) ie aero_Parameters) ie aero_fo_suus Kg_to_suus	TERMETRICS, INC. APRIL 27, 1907 14:13:20.85	SOURCE CURRENT SCOPE	/ REVNULDS_NUMBER) J		I AERO_PARAFETERS			- -
) 360-24.20 INTERMETRI(x	V_BAR = MACH (C_PRIME / REYNOLDS_NUMBER	END 1 .	JE AERO_PARAHETERS)	.К SUMMARY ****	ABLES USED KG_TO_SLUG	URE TEMPLATES USED
	TH I		898	899	900	***	COHD	OUTEI

Mathematical and an and an and an and an and an and an and an and an and an and an and an and an and an and and	PTMT -		
90. H IOOUGH 10000 90. H IOOUGH 10000 90. H IOOUCH 10000 91. H IOOUCH 10000 92. H IOOUCH 10000 93. H IOOUCH 10000 94. HOURS IOOUCH 10000 95. HOURS IOOUCH 10000 96. HOURS IOOUCH 10000 97. HOURS IOOUCH 10000 98. H IOOUCH 10000 99. H ICLAR 1117 99. H ICLAR 11110 90. H ICLAR 11110 91. H ICLAR 11110 92. H ICLAR 11110 93. H ICLAR 11110 94. H ICLAR 11110 95. H ICLAR 11110 94. H ICLAR 11100 95. H ICLAR 11100 96. H ICLAR 11100 97. H ICLAR 11000 96. H ICLAR 11000 97. H ICLAR 11000 97. H ICLAR 11000 97. H ICLAR 11000 97. H ICLAR 11000	Ē	SOURCE	CURRENT SCOPE
90.1 POCEDURE ALPARA, ALTA V_BARG, MICLI, COLI 10000 1 PERTIDAL, CONCUPOT, CLANDA, ALTITUDE, VISCOUS 10000 1 PARTIDAL, CONCUPOT, CLANDA, ALTITUDE, VISCOUS 10000 1 PARTIDAL, CONCUPOT, CLANDA, ALTITUDE, VISCOUS 10000 1 PARTIDAL, CONCUPOT, CLANDA, ALTITUDE, VISCOUS 10000 1 PARTIDAL, PARTER, ALTITUDE, ALTITUDE, ALTITUDE, VISCOUS 100000 1 PARTIDAL, CONCUPOT, CLANDA, ALTITUDE, VISCOUS 100000 1 PARTIDAL, PARTIDAL, VISCOUS, ALTITUDE, ALTITUDE, VISCOUS 100000 1 PARTIDAL, VISCOUS, ALTITUDE, ALTITUDE, VISCOUS 100000 1 PARTIDAL, PARTERA, ALTITUDE, ALTITUDE, ALTITUDE, VISCOUS 100000 1 PARTIDAL, VISCOUS, ALTITUDE, ALTITUDE, VISCOUS 100000 1 PARTIDAL, PARTIDAL, VISCOUS, ALTITUDE, VISCOUS 100000 1 PARTIDAL, PARTIDAL, VISCOUS, ALTITUDE, VISCOUS 100000 1 PARTIDAL,	H 106	Γοοκινρι	1 100KUP
Image: Constraint of the constr	H 106	PROCEDUREFALPHA, ALT, Y_BAR, MACH) ASSIGNICL, CD]}	1 TOOKUP
CI TAMARTER, AND MUCH MARKER COMPUT	55	FUNCTION: LOOK-UP OF CL AND CD VERSUS ALPHA, ALTITUDE, VISCORS	1 100KUP
OUTPOUT OUTPOUT <t< td=""><td>55</td><td>PARAHETER, AND MACH NUMBER.</td><td></td></t<>	55	PARAHETER, AND MACH NUMBER.	
C V_BAR - VISCOS PARAFERA - CONCOUNT C OUTUTI CON - DARG COFFICIENT - CONCOUNT - CONCOUNT C OUTUTI CO - DARG COFFICIENT - CONCOUNT - CONCOUNT - CONCOUNT C C C - US NITICOF - DARG COFFICIENT - CONCOUNT - CONCOUNT - CONCOUNT - CONCOUNT C C C C C C C C C C C C C C C C C C C	50	ANTOISI ALTIA - ANGLE UP ALLACK (DEG) ALTITUDE - ALTITUDE ABOVE FISHER FUITDSATA (FT)	LOOKUP
C OUTPUT: CUCK - MACH - MACH - MACH - MACH - MACH - MACH - MACH - MACH - LUTP COEFFICIENT -	5	V_BAR - VISCOUS PARAMETER	1 LUUKUP
0 0 <td>57</td> <td>MARHT. CD DOLD ANTRER</td> <td>1 LOOKUP</td>	57	MARHT. CD DOLD ANTRER	1 LOOKUP
C FLOM_RECHR T. LUER VILTIDUE CALL LUCKUR C FLOM_RECHR T. LUER VICHI DATA LUCKUR C REFERNEL ANT DOUGHT WALLAGE LUCKUR LUCKUR C REFERNEL ANT DOUGHT WALLAGE LUCKUR LUCKUR C LUCLARE ANT SCULAR SINGLE LUCKUR LUCKUR C LUCLARE ANT SCULAR SINGLE LUCKUR LUCKUR C LUCLARE ANT SCULAR SINGLE LUCKUR LUCKUR C LUCKUR LUCKUR LUCKUR C LUCKUR LUCKUR LUCKUR C LUCKUR LUCKUR LUCKUR C LUCKUR LUCKUR LUCKUR C LUCKUR LUCKUR LUCKUR C LUCKUR LUCKUR LUCKUR C LUCKUR LUCKUR LUCKUR C LUCKUR LUCKUR LUCKUR C LUCKUR LUCKUR LUCKUR C LUCKUR LUCKUR LUCKUR DECLARE ALPALAR SIN	50	CUTCUT CU - UTAG CUEFFICIENT	I LOOKUP
CI 3 = USE VARIA DATA 2 = USE VARIA DATA CI 3 = USE VARIA DATA 100009 CI 1 = USE VARIA DATA 100009 CI 1 = USE VARIA DATA 100009 CI 1 = USE VARIA DATA 100009 CI 1 = USE VARIA DATA 100009 CI 1 = USE VARIA DATA 100009 CI 1 = USE VARIA DATA 100009 CI 1 = USE VARIA DATA 100009 CI 1 = USE VARIA DATA 100009 CI 1 = USE VARIA DATA 100009 CI 1 = USE VARIA DATA 100009 CI 1 = USE VARIA DATA 100009 CI 1 = USE VARIA DATA 100009 CI 1 = USE VARIA 100009 CI 1 = USE VARIA 100009 CI 1 = USE VARIA 1 = USE VARIA CI 1 = USE VARIA 1 = USE VARIA CI 1 = USE VARIA 1 = USE VARIA CI 1 = USE VARIA 1 = USE VARIA CI 1 = USE VARIA	5	FLON REGIME: 1 = USE ALTITUDE DATA	
CI REFRENCE: NOT DOCURENTED 100000 CI TUTTION DOCURENTED 100000 CI TUTTION DOCURENTED 100000 CI TUTTION DOCURENTED 100000 00 TUTION DOCURENTED 100000 00 TECLARE ALT SCALAR SINGLE 100000 00 TECLARE ALT SCALAR SINGLE 100000 00 TECLARE ALT SCALAR SINGLE 100000 00 TECLARE ALT SCALAR SINGLE 100000 00 TECLARE ALT SCALAR SINGLE 100000 00 TECLARE CL SCALAR SINGLE 100000 01 TECLARE CLARE SINGLE 100000 02 TECLARE CLARE SINGLE 100000 03 TECLARE CLARE SINGLE 100000 04 TECLARE CLARE SINGLE 100000 05 TECLARE CLARE SINGLE 100000 05 TECLARE CLARE SINGLE 100000 05 TECLARE CLARE SINGLE 100000 05 TECLARE ALPH-ALENCE 100000 05 TECLARE ALPH-ALENCE 100000	53	2 = USE V BAR DATA	
CI	22	S ≅ USE MACH DATA Reference: Not documented	
CI International International CI International International 902 HI DECLARE ALAR SINGLE International 903 HI DECLARE ALAR SINGLE International 904 HI DECLARE ALAR SINGLE International 905 HI DECLARE ALAR SINGLE International 906 HI DECLARE CO SCALAR SINGLE International 907 HI DECLARE CO SCALAR SINGLE International 907 HI DECLARE CO SCALAR SINGLE International 907 HI DECLARE CO SCALAR SINGLE International 907 HI DECLARE ALAR SINGLE International 907 HI DECLARE VARIA SCALAR SINGLE International 907 HI DECLARE VARIA SCALAR SINGLE International 907 HI DECLARE VARIA SCALAR SINGLE International 908 HI DECLARE ALPIN_ARCT SCALAR SINGLE International 909 HI DECLARE ALPIN_ARCT SCALAR SINGLE International 908 HI DECLARE ALPIN_ARCT SCALAR SINGLE International 908 HI DECLARE ALPIN_ARCT SCALAR SINGLE <td< td=""><td>5</td><td></td><td>1 LOOKUP</td></td<>	5		1 LOOKUP
C1 -rector and control VARIABLE 100000 902 NI DECLARE ALTA SUNCLE 100000 903 NI DECLARE ALT SCALAR SINGLE 100000 903 NI DECLARE ALT SCALAR SINGLE 100000 904 NI DECLARE ALT SCALAR SINGLE 100000 905 NI DECLARE ALT SCALAR SINGLE 100000 905 NI DECLARE NCH SCALAR SINGLE 100000 905 NI DECLARE NCH SCALAR SINGLE 100000 905 NI DECLARE NCH SCALAR SINGLE 100000 907 NI DECLARE V_BAR SINGLE 1000000 907 NI DECLARE V_BAR SINGLE 100000 907 NI DECLARE V_BAR SINGLE 100000 907 NI DECLARE V_BAR SINGLE 100000 908 NI DECLARE ALPIN_FRACT SCALAR SINGLE 100000 908 NI DECLARE ALPIN_MAS SCALAR SINGLE 100000 908 NI DECLARE ALPIN_MAS SCALAR SINGLE 100000 908 NI DECLARE ALPIN_FRACT SCALAR SINGLE 100000 908 NI DECLARE ALPIN_MAS SCALAR SINGLE 100000 908 NI DECLARE ALPIN_MAS SCALAR SINGLE 1000000 908 NI DE	55		1 LOOKUP
902 HI DECLARE ALPHA SCALAR SINGLEJ 1 LOOKUP 903 HI DECLARE ALT SCALAR SINGLEJ 1 LOOKUP 904 HI DECLARE CO SCALAR SINGLEJ 1 LOOKUP 905 HI DECLARE CO SCALAR SINGLEJ 1 LOOKUP 906 HI DECLARE CL SCALAR SINGLEJ 1 LOOKUP 907 HI DECLARE VLAR SINGLEJ 1 LOOKUP 907 HI DECLARE VLAR SINGLEJ 1 LOOKUP 907 HI DECLARE VLAR SINGLEJ 1 LOOKUP 907 HI DECLARE VLAR SINGLEJ 1 LOOKUP 907 HI DECLARE VLAR SINGLEJ 1 LOOKUP 907 HI DECLARE ALPHA_HAS SCALAR SINGLE J 1 LOOKUP 908 HI DECLARE ALPHA_HAS SCALAR SINGLEJ 1 LOOKUP 909 HI DECLARE ALPHA_HAS SCALAR SINGLE J 1 LOOKUP 909 HI DECLARE ALPHA_HAS SCALAR SINGLE J 1 LOOKUP 910 HI DECLARE ALPHA_HAS SCALAR SINGLE J 1 LOOKUP 911 HI DECLARE ALPHA_HAS SCALAR SINGLE CONSTANTISOJ) 1 LOOKUP 912 HI DECLARE ALPHA_HAS SCALAR SINGLE CONSTANTISOJOJ 1 LOOKUP 913 HI DECLARE ALPHA_HAS SCALAR SINGLE CONSTANTISJOODJ 1 LOOKUP 914 HI DECL	50	INFUL AND UUIPUL VARIABLES	1 LOOKUP
707 III UCCURE ATPIA SCALAR SINGLEJ 1 LOCKUP 908 HI DECLARE CL SCALAR SINGLEJ 1 LOCKUP 906 HI DECLARE CL SCALAR SINGLEJ 1 LOCKUP 906 HI DECLARE V.BAR SINGLEJ 1 LOCKUP 907 HI DECLARE V.BAR SINGLEJ 1 LOCKUP 907 HI DECLARE V.BAR SINGLEJ 1 LOCKUP 907 HI DECLARE V.BAR SINGLEJ 1 LOCKUP 907 HI DECLARE V.BAR SINGLEJ 1 LOCKUP 907 HI DECLARE V.BAR SINGLEJ 1 LOCKUP 907 HI DECLARE V.BAR SINGLEJ 1 LOCKUP 907 HI DECLARE V.BAR SINGLEJ 1 LOCKUP 908 HI DECLARE V.BAR SINGLEJ 1 LOCKUP 910 HI DECLARE ALPHA_HAX SCALAR SINGLEJ 1 LOCKUP 910 HI DECLARE ALPHA_HAX SCALAR SINGLE CONSTANTIOJ) 1 LOCKUP 911 HI DECLARE ALPHA_HAX SCALAR SINGLE CONSTANTIOJ) 1 LOCKUP 912 HI DECLARE ALPHA_HAX SCALAR SINGLE CONSTANTIOJ) 1 LOCKUP 913 HI DECLARE ALT_L SCALAR SINGLE CONSTANTIOJ) 1 LOCKUP 914 DECLARE ALT_L SCALAR SINGLE CONSTANTISTOODIJ 1 LOCKUP 915 HI DECLARE ALT_L SCALAR SINGLE CONSTANTISTOODIJ 1 LOCKUP 914 DECLARE ALT_L SCALAR SINGLE CONSTANTISTOODIJ 1 LOCKUP 915 HI DECLARE ALT_L RAN SCALAR SINGLE CONSTANTISTOODIJ 1 LOCKUP 914 DECLARE ALT_L SCALAR SINGLE CONSTANTISTOODIJ 1 LOCKUP 915 HI DECLARE ALT_L RAR SINGLE CONSTANTISTOODIJ 1 LOC	111 000		
903 HI DECLARE ALT SCALAR SINGLE 1 100KUP 906 HI DECLARE CD SCALAR SINGLE 1 100KUP 905 HI DECLARE CL SCALAR SINGLE 1 100KUP 906 HI DECLARE CL SCALAR SINGLE 1 100KUP 906 HI DECLARE CL SCALAR SINGLE 1 100KUP 907 HI DECLARE V.PAR SCALAR SINGLE 1 100KUP 907 HI DECLARE V.BAR SCALAR SINGLE 1 100KUP 907 HI DECLARE V.BAR SCALAR SINGLE 1 100KUP 907 HI DECLARE ALPHA-FRACT SCALAR SINGLE 1 100KUP 910 HI DECLARE ALPHA-FRACT SCALAR SINGLE 1 100KUP 910 HI DECLARE ALPHA-FRACT SCALAR SINGLE 1 100KUP 910 HI DECLARE ALPHA-FRACT SCALAR SINGLE 1 100KUP 910 HI DECLARE ALPHA-FRACT SCALAR SINGLE 1 100KUP 910 HI DECLARE ALPHA-FRACT SCALAR SINGLE CONSTANTI 50.1. 1 100KUP 910 HI DECLARE ALPHA-FRACT SCALAR SINGLE CONSTANTI 50.1. 1 100KUP 910 HI DECLARE ALPHA-FRACT SCALAR SINGLE CONSTANTI 50.1. 1 100KUP 910 HI DECLARE ALPHA-FRACT SCALAR SINGLE CONSTANTI 50.0.1. 1 100KUP 911 HI DECLARE ALPHA-FRACE CONSTANTI 50.0.1. <t< td=""><td>11 204</td><td>BECLARE ALPHA SCALAR SINGLE;</td><td>I LOOKUP</td></t<>	11 204	BECLARE ALPHA SCALAR SINGLE;	I LOOKUP
906 HI DECLARE CD SCALAR SINCLE, 100000 905 HI DECLARE CL SCALAR SINCLE, 100000 906 HI DECLARE CL SCALAR SINCLE, 100000 907 HI DECLARE V.BAR SCALAR SINCLE, 100000 907 HI DECLARE V.BAR SCALAR SINCLE, 100000 907 HI DECLARE V.BAR SCALAR SINCLE, 100000 907 HI DECLARE ALPHA-FRACT SCALAR SINCLE, 100000 910 HI DECLARE ALPHA-FRACT SCALAR SINCLE, 100000 910 HI DECLARE ALPHA-FRACT SCALAR SINCLE, 100000 910 HI DECLARE ALPHA-FRACT SCALAR SINCLE ONSTANTI 50.). 100000 910 HI DECLARE ALPHA-FRACT SCALAR SINCLE ONSTANTI 50.). 100000 910 HI DECLARE ALPHA-FRACT SCALAR SINCLE ONSTANTI 50.). 100000 910 HI DECLARE ALPHA-FRACT SCALAR SINCLE ONSTANTI 50.). 100000 911 HI DECLARE ALPHA-FRACT SCALAR SINCLE ONSTANTI 50.0.0.). 100000 912 HI DECLARE ALPHA-FRACT SCALAR SINCLE ONSTANTI 50.0.0.). 100000 913 HI DECLARE ALT-FININ SCALAR SINCLE CONSTANTI 50.0.0.0.) 100000 914 DECLARE ALT-FININ SCALAR SINCLE CONSTANTI 50.0000 100000 1000000 915 HI <td>903 H</td> <td>DECLARE ALT SCALAR SINGLE)</td> <td>1 10001</td>	903 H	DECLARE ALT SCALAR SINGLE)	1 10001
905 HI DECLARE CL SCALAR SINGLE. 100000 906 HI DECLARE MICH SCALAR SINGLE. 100000 907 HI DECLARE WICH SCALAR SINGLE. 100000 907 HI DECLARE V_BAR SCALAR SINGLE. 100000 907 HI DECLARE V_BAR SCALAR SINGLE. 100000 910 HI DECLARE ALPHA_FRACT SCALAR SINGLE. 100000 910 HI DECLARE ALPHA_HAX SCALAR SINGLE ONSTANTISOI). 100000 910 HI DECLARE ALPHA_HAX SCALAR SINGLE CONSTANTISOI). 100000 910 HI DECLARE ALPHA_HAX SCALAR SINGLE CONSTANTISOI). 100000 910 HI DECLARE ALPHA_HAX SCALAR SINGLE CONSTANTISOI). 100000 911 HI DECLARE ALPHA_HAX SCALAR SINGLE CONSTANTISOI). 100000 912 HI DECLARE ALPHA_HAX SCALAR SINGLE CONSTANTISOI). 100000 911 HI DECLARE ALPHA_HAX SCALAR SINGLE CONSTANTISOIO). 100000 912 HI DECLARE ALTHA_NE SCALAR SINGLE CONSTANTISOIO). 100000 912 HI DECLARE ALTHA_NE SCALAR SINGLE CONSTANTISOIO). 100000 913 HI DECLARE ALTHA SCALAR SINGLE CONSTANTIAL_MIX - ALT_MINI 100000 914 HI DECLARE ALT_NIN SCALAR SINGLE CONSTANTIAL_MIX - ALT_MINI 100000 <td>904 M</td> <td>DECLARE CD SCALAR SINGLE)</td> <td>1 100KUP</td>	904 M	DECLARE CD SCALAR SINGLE)	1 100KUP
906 HI DECLARE MACH SCALAR SINGLE, 1 LOOKUP 907 HI DECLARE V_BAR SCALAR SINGLE, 1 LOOKUP 907 HI DECLARE V_BAR SCALAR SINGLE, 1 LOOKUP 917 HI DECLARE V_BAR SCALAR SINGLE, 1 LOOKUP 918 HI DECLARE ALPHA_HAX SCALAR SINGLE, 1 LOOKUP 910 HI DECLARE ALPHA_HAX SCALAR SINGLE CONSTANT(501), 1 LOOKUP 910 HI DECLARE ALPHA_HAX SCALAR SINGLE CONSTANT(501), 1 LOOKUP 910 HI DECLARE ALPHA_HAX SCALAR SINGLE CONSTANT(501), 1 LOOKUP 910 HI DECLARE ALPHA_HAX SCALAR SINGLE CONSTANT(501), 1 LOOKUP 911 HI DECLARE ALT_HAX SCALAR SINGLE CONSTANT(510), 1 LOOKUP 912 HI DECLARE ALT_HAX SCALAR SINGLE CONSTANT(51000), 1 LOOKUP 913 HI DECLARE ALT_HAN SCALAR SINGLE CONSTANT(510000), 1 LOOKUP 914 HI DECLARE ALT_HAN SCALAR SINGLE CONSTANT(ALT_MX - ALT_MINI) 1 LOOKUP 915 HI DECLARE ALT_HIN SCALAR SINGLE CONSTANT(ALT_MX - ALT_MINI) 1 LOOKUP	905 M	DECLARE CL SCALAR SINGLEJ	FOOKING
907 HJ DECLARE V_BAR SCALAR SINGLE, 100KUP CI 100KUP 100KUP CI 100KU 100KUP CI 100KU 100KUP 908 HI DECLARE ALPHA_FRACT SCALAR SINGLE, 100KUP 909 HI DECLARE ALPHA_MXX SCALAR SINGLE, 100KUP 910 HI DECLARE ALPHA_MXX SCALAR SINGLE CONSTANT (50.1) 100KUP 910 HI DECLARE ALPHA_MIN SCALAR SINGLE CONSTANT (50.1) 100KUP 911 HI DECLARE ALPHA_MIN SCALAR SINGLE CONSTANT (50.1) 100KUP 912 HI DECLARE ALPHA_MIN SCALAR SINGLE CONSTANT (51.000.1) 100KUP 913 HI DECLARE ALT_HIN SCALAR SINGLE CONSTANT (41.T_MX - ALT_MINI) 100KUP 914 HI DECLARE ALT_HIN SCALAR SINGLE CONSTANT (41.T_MX - ALT_MINI) 100KUP 915 HI DECLARE ALT_RIN SCALAR SINGLE 100KUP	1M 906	DECLARE MACH SCALAR SINGLE,	1 LOOKUP
CICCAL VARIABLES100KUP709091929192939494959596969798989999909091919291919291939494959595969697979898999991919192939394949595949695969697989899999990919293949495959596969798989999999091929394949595959696979898999999909091<	907 H	DECLARE V_BAR SCALAR SINGLE,	I LOOKUP
CI LOCAL VARIABLES 100XUP 701 DECLARE ALPHA_FRACT SCALAR SINGLE 100XUP 908 HI DECLARE ALPHA_MAX SCALAR SINGLE (00XIA) 100XUP 909 HI DECLARE ALPHA_MAX SCALAR SINGLE CONSTANT(50), 1100XUP 910 HI DECLARE ALPHA_MIN SCALAR SINGLE CONSTANT(50), 1100XUP 911 HI DECLARE ALPHA_MIN SCALAR SINGLE CONSTANT(51), 1100XUP 912 HI DECLARE ALT_L SCALAR SINGLE CONSTANT(517000), 1100XUP 913 HI DECLARE ALT_HIN SCALAR SINGLE CONSTANT(517000), 1100XUP 913 HI DECLARE ALT_HIN SCALAR SINGLE CONSTANT(ALT_MAX - ALT_MINI), 1100XUP 914 HI DECLARE ALT_RUN SCALAR SINGLE CONSTANT(ALT_MAX - ALT_MINI) 1100XUP 915 HI DECLARE ALT_RUN SCALAR SINGLE, 1100XUP	5		
90B HI DECLARE ALPHA_FRACT SCALAR SINGLE 1 LOOKUP 909 HI DECLARE ALPHA_MAX SCALAR SINGLE CONSTANT(50), 1 LOOKUP 910 HI DECLARE ALPHA_MIN SCALAR SINGLE CONSTANT(50), 1 LOOKUP 911 HI DECLARE ALPHA_MIN SCALAR SINGLE CONSTANT(50), 1 LOOKUP 912 HI DECLARE ALT_HAX SCALAR SINGLE CONSTANT(517000), 1 LOOKUP 913 HI DECLARE ALT_HAX SCALAR SINGLE CONSTANT(517000), 1 LOOKUP 913 HI DECLARE ALT_HIN SCALAR SINGLE CONSTANT(ALT_MX - ALT_MINI) 1 LOOKUP 914 HI DECLARE ALT_RUN SCALAR SINGLE CONSTANT(ALT_MX - ALT_MINI) 1 LOOKUP 915 HI DECLARE ALT_RUN SCALAR SINGLE 1 LOOKUP	55	LOCAL VARIABLES	400x001 400x001
909 H1DECLARE ALPHA_HAX SCALAR SINGLE CONSTANT(50),1 LOOKUP910 H1DECLARE ALPHA_HIN SCALAR SINGLE CONSTANT(0),1 LOOKUP911 H1DECLARE ALT_L SCALAR SINGLE CONSTANT(537000),1 LOOKUP912 H1DECLARE ALT_HAX SCALAR SINGLE CONSTANT(537000),1 LOOKUP913 H1DECLARE ALT_HIN SCALAR SINGLE CONSTANT(317000),1 LOOKUP914 H1DECLARE ALT_HIN SCALAR SINGLE CONSTANT(ALT_HXX - ALT_HINI)1 LOOKUP914 H1DECLARE ALT_RUN SCALAR SINGLE CONSTANT(ALT_HXX - ALT_HINI)1 LOOKUP915 H1DECLARE CL_1 SCALAR SINGLE)1 LOOKUP	908 M	DECLARE ALPHA_FRACT SCALAR SINGLE,	I LOOKUP
910 HI DECLARE ALPHA_MIN SCALAR SINGLE CONSTANTIO)) 911 HI DECLARE ALT_L SCALAR SINGLE) 912 HI DECLARE ALT_L SCALAR SINGLE) 912 HI DECLARE ALT_HAX SCALAR SINGLE CONSTANT(537000)) 913 HI DECLARE ALT_HIN SCALAR SINGLE CONSTANT(300000)) 914 HI DECLARE ALT_RUN SCALAR SINGLE CONSTANT(ALT_MXX - ALT_HINI) 1 LOOKUP 915 HI DECLARE ALT_RUN SCALAR SINGLE CONSTANT(ALT_MXX - ALT_HINI) 1 LOOKUP 915 HI DECLARE ALT_RUN SCALAR SINGLE) 1 LOOKUP	1H 606	DECLARE ALPHA_MAX SCALAR SINGLE CONSTANTISO))	I LOOKUP
911 HI DECLARE ALT_L SCALAR SINGLE) 912 HI DECLARE ALT_HAX SCALAR SINGLE CONSTANTI537000)) 913 HI DECLARE ALT_HAX SCALAR SINGLE CONSTANTI500000)) 913 HI DECLARE ALT_HIN SCALAR SINGLE CONSTANTIALT_HAX - ALT_HINI) 914 HI DECLARE ALT_RUN SCALAR SINGLE CONSTANTIALT_HAX - ALT_HINI) 1 LOOKUP 915 HI DECLARE CD_1 SCALAR SINGLE) 1 LOOKUP)H 016	DECLARE ALPHA_MIN SCALAR SINGLE CONSTANTIO),	LOOKUP
912 HI DECLARE ALT_HAX SCALAR SINGLE CONSTANTI537000), 913 HI DECLARE ALT_HIN SCALAR SINGLE CONSTANTI300000), 914 HI DECLARE ALT_RUN SCALAR SINGLE CONSTANTIALT_HAX - ALT_MINI) 914 HI DECLARE ALT_RUN SCALAR SINGLE, CONSTANTIALT_HAX - ALT_MINI) 1 LOOKUP 915 HI DECLARE CU_I SCALAR SINGLE)	H II6	DECLARE ALT_L SCALAR SINGLE)	1 LOOKUP
913 HI DECLARE ALT_HIN SCALAR SINGLE CONSTANTI3000001) 914 HI DECLARE ALT_RUN SCALAR SINGLE CONSTANTIALT_MAX - ALT_MINI) 915 HI DECLARE CD_1 SCALAR SINGLE; 1 LOOKUP	912 H	DECLARE ALT_HAX SCALAR SINGLE CONSTANTI537000),	1 LOOKUP
914 M) DECLARE ALT_RUN SCALAR SINGLE CONSTANTIALT_MUX - ALT_MINIS 915 M) DECLARE CD_1 SCALAR SINGLES	913 HI	DECLARE ALT_HIN SCALAR SINGLE CONSTANTI 3000001)	1 LOOKUP
915 M DECLARE CD_I SCALAR SINGLE,	914 M	DECLARE ALT_RUN SCALAR SINCLE CONSTANTIALT_MAX - ALT_MINI) LOOKUP
	915 M	DECLARE CD_1 SCALAR SINGLE,	I LOOKUP

•

	2005													,				
	14:15:28.85 CURRENT	LOOKUP	1 LOOKUP	l LOOKUP	1 LOOKUP	LOOKUP	1 LOOKUP	I LOCKUP	I LOOKUP	rookup	1 LOOKUP	1 LOOKUP	LOOKUP	LOCKUP	LOOKUP	I LOOKUP	1 LOOKUP	I LOOKUP
	APKIL 2/1 1987																.0148, .0208, .0245, .0373,	
60-24.20 T U T E D M E Y D Y C C Y L C	SQUACE	LARE CD_2 SCALAR SINGLE,	LARE CL_1 SCALAR SINGLE,	LARE CL_2 SCALAR SINCLE,	LARE COS_ALPHA SCALAR SINGLES	LARE FRACT SCALAR SINGLEJ	LARE FLOM_REGIME INTEGER SINGLE,	LARE I INTEGER SINGLE,	LARE J INTEGER SINGLE,	LARE MACH_L SCALAR SINGLES	LARE MACH_MAX SCALAR SINGLE CONSTANT(10))	LARE MACH_MIN SCALAR SINGLE CONSTANT(2))	LARE SIN_ALPHA SCALAR SINGLES	LARE V_BAR_L SCALAR SINGLE,	LARE V_BAR_MAX SCALAR SINGLE CONSTANT(0.0744))	LARE V_BAR_MIN SCALAR SINGLE CONSTANTIO.0050))	LARE V_BAR_TABLE ARRAY(B) SCALAR SINGLE CONSTANT(.0050, .0103,	70, .0744);
HAL/S STD	STHT	916 MÍ DI	917 HI DI	10 HH 816	10 H 616	920 MJ DI	921 MI DI	922 M D	923 H D	924 M) DI	925 H) DI	926 M) D	927 M) DI	928 M) D	929 MI DI	930 MI D	931 MI DI	IN 126

•

.

•

.

.

HAL/S	STD 360-24.20 INTE	RMETRICS, INC.	APRIL 27, 1987	14:13:28.85
STHT		SOURCE		CURRENT SCOPE
222	DETERMINE INDEX OF ANGLE OF ATTACK			1 LOOKUP
938 M	J = MIDVAL(1, (TRUNCATE(ALPHA) +	11, 501,		1 LOOKUP
939 HI	ALPHA_FRACT = LALPHA - TRUNCATE()	ALPHA 1 5		- FOOKING
222	DETERNINE FLOM REGIME TO USE FOR LI	an 200		1 LOOKUP
H 0%	FLOM_REGIME = 01			
IH 1%	IF (ALT >= ALT_MIN) THEN			L LOOKUP
1M 246	FLOW_REGIME = 1,			LOOKUP
943 H	ELSE IF (MACH <= MACH_MAX) THEN			1 LOOKUP
1H 946	FLOM_REGIME = 3;			1 LOOKUP
945 M	ELSE			1 LOOKUP
945 H	FLOM_REGIME = 25			LOOKIP
[H 956	DO CASE FLOM_REGIME,			1 LOOKUP
000	INTERPOLATE FOR ALPHA USING CORRECT	T TABLES		1 LOOKUP
222	ALTITUDE DATA			1 LOOKUP
947 H	1 00,			LOOKUP CASE 1
948 M	2 ALT_L = HIDVALIALT_HIN, ALI	T, ALT_MAX1)		1 LOOKUP
949 HI S	2 CL_1 = CL_ALT + 1CL_ALT 1,J 1			1 LOOKUP
950 M S	2 CL_2 = CL_ALT + (CL_ALT 2,J is			1 100KUP
951 M S	2 CD_1 = CD_ALT + (CD_ALT 1, ^J + (CD_ALT			1 LOOKUP
952 M S	2			1 100KUP
953 M	2 FRACT = (ALT_L - ALT_HIN) /	/ ALT_RUNS		1 LOOKUP
954 M	1 END ¹			1 LOOKUP

14:13:28.05	CURRENT SCOPE	1 100KUP 1 100KUP	l LOOKUP CASE 2	1 LOOKUP	1 LOCKUP	1 LOOKUP	1 LOOKUP	1 LOOKUP	1 LOOKUP	l LOOKUP	LOOKUP	1 LOOKUP	1 LOOKUP	l Lookup	1 100KUP	400001 100001 100001	LOOKUP CASE 3	1 LOOKUP	1 LOOKUP	1 LOOKUP	Lookup	4 1 100KUP
APRIL 27, 1987											-		_	-							-	
0-24.20 INTERMETRICS, INC.	SOUNCE	5 DATA	10	V_DAR_L = MIDVALIV_BAR_MIN, V_BAR; V_BAR_MAX);	DO FOR TEMPORARY K = 7 TO 1 BY -1;	I = K,	IF (V_BAR_L >= V_BAR_TABLE) THEN K	EXIT	ENDI	CL_1 = CL_VISC + (CL_VISC - CL_VISC) ALPHA_FRACT) I,J I,J+I I,J	CL_2 = CL_VISC + (CL_VISC - CL_VISC) ALPHA_FRAC1 I+1,J I+1,J+1 I+1,J+1 I+1,J	CD_1 = CD_VISC + (CD_VISC - CD_VISC) ALPHA_FRACT) 1,J 1,0+1 I,J	CD_2 = CD_VISC + (CD_VISC - CD_VISC) ALPHA_FRAC1 I+1,J I+1,J+1 I+1,J	FRACT = (V_BAR_L - V_BAR_TABLE) / (V_BAR_TABLE - V_BAR_TABLE I 1+1 I	ND)	 ATA 	0	MACH_L = MIDVALIMACH_MIN, MACH, MACH_MAXIJ	I = MIDVAL(1, (TRURCATE(MACH_L / 2)), 4),	CL_1 = CL_MACH + (CL_MACH - CL_MACH) ALPHA_FRACT) I,J I,J I,J I,J	CL_2 = CL_MACH + (CL_MACH - CL_MACH) ALPHA_FRACI I+1,-1 I+1,-1 I+1,-1+	CD_1 = CD_MACH + (CD_MACH - CD_MACH) ALPHA_FRACT) I,J I,J+I I,J
ST0 36		VISCO	7	8	8	м	M	m	8	2	2	2	8	2	1	MACH	1	~	N	N	8	8
HAL/S	STHT	222	955 H	956 M	957 H	958 H	959 M S	H 096	W 196	962 MI S	963 MI S	964 M S	965 M	ебь ні S	H 796	222	1H 896	H 696	IM 026	971 M N S	972 M S	1 873 HI IN 819

÷

.

•

AL/S	STD 360-24.20	INTERMETRICS, INC.	APRIL 27, 1987	14:13:28.85
		SOURCE		CURRENT SCOPE
Ŧ	CO_2 = CO_MACH	+ (CD_MACH - CD_MACH) ALPHA_FRACT) +1.J IIIJJI I+1.J+1 I+1.J		1 LOOKUP
Ĩ	E FRACT = IMACH_L	/ 2 - 111		1 LOOKUP
Ŧ	L END,			LOOKUP
Ŧ	END ;			I LOOKUP DO CASE END
555	INTERPOLATE BETWEEN TABI			100KUP 100KUP 100KUP
Ŧ	Cr = cr 1 + (cr 5 - cr	L_1) FRACTS		ł rookup
Ŧ	CD = CD_1 + (CD_2 - CC	D_LI FRACTI		1 LOOKUP
Ŧ	close Lookup;			1 LOOKUP

.

194

HAL/S	S1D 360-24.20 INTERMETRICS, INC 2	APRIL 27, 1987	14:13:28.85
STHI	SOURCE		CURRENT SCOPE
M 18 6	USATHOS621		USATHOS62
H 186	PROCEDUREIR, POLE) ASSIGNIATHOS))		I USATHOS62
22			USATMOS62
5.5	FUNCTION: COMPUTES THE DENSITY OF THE ATMOSPHERE (0-150KH)		USATMOS62
<u>.</u>	AT A SPECIFIED ALTITUDE USING THE 1962 U.S.STANDARD		USATMOS62
50	INPUTS: R - INERTIAL POSITION VECTOR (FT)		USATMOS62
55	POLE - INERTIAL NORTH POLE (ND)		USATHOS62
5 0	UUTRUIS: AITUS.H - ALIIIUDE (FT) ATMOS.RHO - DENSITY IIAM/FT##ZI		USATHOS62
57	ATHOS. IS - STATIC TEMPERATURE OF AIR (DEG K)		I USATHOS62
50	AIRUSSIM - MULECULAR TEMPERATURE OF AIR (DEG K) Nomenclature: A - Earin Equatoriai Rantik (m)		USATMDS62
5	F - EARTH FLATTENING (ND)		USATHOS62
55	RO - EARTH RADIUS (PHI = 45 DEGS) (M) DHI - CENCEADUIC LAIITURE ARCON		USATHOS62
5	PSI - GEOCENTRIC LATITUDE (DEGS)		USATHOS62
5	GO - SEA-LEVEL GRAVITY (M/S/S)		I USATHOS62
3	MO ~ MEAN MOLECULAR WEIGHT OF AIR (ND)		LISATMOSA2
57	RR - UNIVERSAL GAS CONSTANT		USATHOS62
50	(TOH-5) / (DEG K) / (RG-HOT)		USATHOS62
5			USATMOS62
982 MI	DECLARE ATHOS ATHOSPROP-STRUCTURE		USATHOS62
983 M)	DECLARE R VECTOR(3) DOUBLE)		USATHOS62
984 M	DECLARE POLE VECTORI3) DOUBLEN		
			1 USA1M0562
985 Mİ	DECLARE GO SCALAR SINGLE CONSTANT(9,80665))		USATHOS62
986 M	DECLARE M0 SCALAR SINGLE CONSTANTI28.96441)		I USATHOS62
987 M	DECLARE RR SCALAR SINGLE CONSTANT(8314.32)		LISATMOS62
988 M	DECLARE K2 SCALAR SINGLE CONSTANTIGO HO / RRI)		USATHOS62
IN 686	DECLARE M_TO_FT SCALAR DOUBLE CONSTANT(1 / .3048))		I USATHOS62
W 066	DECLARE KG_TO_LBM SCALAR SINGLE CONSTANTIL / .4535923715		J USATHOS62
H 166	DECLARE A SCALAR DOUBLE CONSTANT16378178))		
111 000			1 UDACIMINACU
IN 266	DECLARE F SCALAR DOUBLE CONSTANTII / 298.32)		I USATMOS62

	CD.021CI
SOURCE	CURRENT SCOPE
DECLARE RO SCALAR SINGLE CONSTANTIA SQRTII1 +.11 - F) / /1 + 11 - F) /))	I USATHOS62
DECLARE I INTEGER SINCLE,	USATMOS62
DECLARE NSESS INTEGER SINGLE CONSTANT(12)	1 USATHOS62
DECLARE H_BASE ARRAVINSEGS + 1) SCALAR SINGLE CONSTANTIO, 11000, 20000, 32000, 47000, 52000,	USATMOS62
61000, 79000, 90000, 100000, 110000, 120000, 1500001,	I USATHOS62
DECLARE TM_BASE ARRAYINSEGS + 1) SCALAR SINGLE CONSTANTI209.15, 216.65, 216.65, 228.65, 270.65,	USATHOS62
270.65, 252.65, 180.65, 180.65, 210.65, 260.65, 360.65, 960.651,	USATHOS62
DECLARE T_BASE ARRAVINSEGS + 1) SCALAR SINGLE CONSTANTI288.15, 216.65, 216.65, 228.65, 270.65,	1 USATHOS62
270.65, 252.65, 180.65, 180.45, 210.02, 257.00, 349.49, 892.791,	USATHOS62
DECLARE RHO_BASE ARRAYINSEGS + 1) SCALAR SINGLE CONSTANT(1.2250, 0.36392, 0.088035, 0.013225,	USATHOS62
0.0014275, 0.00075943, 0.00025109, 0.00002001, 0.000003170, 0.0000004974, 0.0000009829,	USATMOS62
0.0000002436, 0.000000013361,	I USATHOS62
DECLARE DTMDH ARRAYINSEGS) SCALAR SINGLE INITIALI0065, .0009, .0010, .0028, .0000,0020, -	USATMOS62
.0040, .0000, .0030, .0050, .0100, .02001,	I USATMOS62
DECLARE DTDH ARRAVINSEGS) SCALAR SINGLE INITIALI006500, 000000, 001000, 0028000, 00000000	USATHOS62
,002000,004000, .000000, .002937, .0046986, .009249000, .018110))] USATHOS62
DECLARE SCALAR DOUBLE,	1 USATHOS62
R_MAG, H, SPSI;	67SULLASI
DECLARE SCALAR SINGLE,	Sacuration 1
DH, EXPO, ALTADJ, ALTRATIO, GRAVRATIO, TEMPRATIO,	I USATHOS62
DETERMINE ALTITUDE ABOVE FISHER ELLIPSOID	USATHOS62
R_MAG = ABVAL(R),	USATHOS62
SPSI = (R / R_MAG) . POLES	USATHOS62
	SOURCE ECLARE RO SCALAR SINGLE CONSTANTIA SARTI(11 + (1 - F1 ¹) / 11 + (1 - F1 ¹))))) ECLARE I INTEGER SINGLE CONSTANTIA SARTI(11 + (1 - F1 ¹))))) ECLARE I INTEGER SINGLE CONSTANTI2)) ECLARE NEES INTEGER SINGLE CONSTANTI201 ECLARE NEES INTEGR SINGLE CONSTANTI201 ECLARE NEES INTEGR SINGLE CONSTANTI201 ECLARE TLAASE ARRAVINSEGS + 1) SCALAR SINGLE CONSTANTI280.15, 216.65, 220.65, 270.65, 270.65, 222.65, 100.65, 100.65, 210.65, 200.55, 300.55, 900.65)) ECLARE TLAASE ARRAVINSEGS + 1) SCALAR SINGLE CONSTANTI280.15, 216.65, 228.65, 270.65, 270.65, 222.65, 100.65, 100.65, 200.55, 210.05, 200.55, 900.65)) ECLARE TLAASE ARRAVINSEGS + 1) SCALAR SINGLE CONSTANTI2250, 0.36379, 0.00000099329, 270.65, 222.65, 100.65, 100.65, 210.05, 210.03, 20000009979, 0.00000009929, 270.65, 222.65, 100.65, 100.65, 210.05, 210.05, 200.05, 0.00000099329, 0.001275, 0.00002001354) ECLARE RPQ_BASE ARRAVINSEGS + 1) SCALAR SINGLE CONSTANTI 2250, 0.30000, 0.0000009929, 0.00000002454, 0.000000001354) ECLARE DTMM ARRAVINSEGS SCALAR SINGLE INITIAL-0065, 0000, 01000, 000000, -002000, -002000, 0.0000000, 0000, 0000, 00291, 0.000000, 02201, 0.00000, 01100), 0028, 00000, -00200, -0000000, 1.0000, 0000, 0000, 0020, 00000, 022917, 0046960, 000000, 01100), 0028, 00000, -00200, -0000000, -00000, 00000, 00000, 00100, 0020, 000000, -00200, -000000, 00000, 00000, -00200, 000000, 00000, -00200, 00000, 00000, 00000, -00200, 00000, 00100, 0028, 00000, 00000, -00200, -00200, 00000, 00000, -00200, -00000, 00000, -00200, 00000, -00200, -00200, -00200, 00000, -00200, -00200, 00000, 00000, -00200, -00000, 00000, 00000, 00000, 0028, 00, 00000, -00200, -00200, -00200, -00200, -00200, -00000, 00000, -00200, -00200, -00200, 00000, 00000, -00200, -00200, -00200, -00200, -0000, 00000, -00200, -00200, -0000, 00000, 00000, -00200, -00000, -00200, -0000, -0000, -00200, -0000, -00200, -0000, -0000, -0000, 00000, 00000, 00000, 00000, -0000, -00200, -0000, -0000, -0000, -0000, -0000, -0000, 00000, 00000, 00000, 0000, 0000, 0000, -0000, -0000, -0000, -0000, -00

-

HALZ	s srt	360-24.20 INTERMETRICS, INC.	APRIL 27, 1987	14:13:28.85
STHT		SOURCE		CURRENT SCOPE
E 1006 M		1 = (R_HAG / H_T0_FT) - A (1 - F) / SQRT(1 - F (2 - F) (1 - SPS1)),		 USATHOS62
1007 M	_	ATHOS.H = H M_TO_FT1		I USATMOS62
υÜŪ		FERMINE DENSITY, STATIC TEMPERATURE, AND MOLECULAR TEMPERATURE		USATMOS62 USATMOS62 USATMOS62
1008 M	_	[F (H > 150000) THEN		I USATHOS62
1009 M	_	ATMOS.RHO = 0,		USATHOS62
1010 M	-	ELSE		USATMOS62
H OTOT	_	001		USATHOS62
H 1101	-	GRAVRATIO = R0 / 1R0 + H),		I USATHOS62
1012 M	1	IF (H < 90000) THEN		I USATHOS62
1013 M	1	H = GRAVRATIO H,		USATMOS62
E 1014 M		2 Gravratio = Gravratio ,		I I USATHOS62
1015 M	1	DO FOR TEMPORARY N = 1 TO NSEGSI		USATMOS62
H 9101	2	I = N;		USATHOS62
1017 H S.	~ `	IF (H < H_BASE) THEN N+1		USATHOS62
H 8101	5	EXIT,		USATHOS62
1019 M	-	ENDI		USATHOS62
1020 M S		DH = H - H_BASE J I		USATHOS62
1021 M S	1	ATHOS.TH = [M_BASE + DH DTHDH ; I		USATHOS62
1022 H S		ATTHOS.TS = T_BASE + DH DTDH > I I		USATHOS62
1023 M	-	IF (H < 90000) THEN		USATMOS62
1024 M	1	001		USATHOS62

HAL/S	5TD 360-24.20 INTERHETRICS, INC. APRIL 27, 1987	14:13:28.85
STHT	SOURCE	CURRENT SCOPE
1025 M 2 S	IF (DTHDH = 0) THEN I	UEATMOS62
1026 н) 2 S	ATMOS.RHD = RHO_BASE EXP(-K2 DH / TH_BASE)) I I	t USATHOS62
1027 HI 2	ELSE	I USATHOS62
1027 Mİ 2	001	USATMOS62
1028 M 3 S	$f \times PO = 1 + K2 / DTHDH I I I I I I I I I I I I I I I I I I $	USATMOS62
E 1029 M 3 S	ATHOS.RHO = RHO_BASE (TH_BASE / ATHOS.TH) I	USATHOS62
1030 H 2	ENDI	I USATHOS62
1 W 1201	ENDJ	USATMOS62
1032 H 1	ELSE	I USATMOS62
1032 H 1	DOJ	I USATMOS62
1033 M 2 S	ALTADJ = RU + H_BASE - TH_BASE / DTHDH) I I	USATHOS62
1034 MI 2 SI	$ALTRATIO = (RO + H) / (RO + H_BASE)$	USATHOS62
1035 M 2 S	TEMPRATIO = TH_BASE / ATHOS.TH, I	USATHOS62
E 1036 M 2 S	2 4 (Lady) (R0 / Altady) (R0 / Altady) - Expo = (K2 / DTHDH) (R0 / Altady)	USATHOS62
1037 H 2 S	ATMOS.RHO = RHO_BASE TEMPRATIO EXP(IK2 / DTMOH) GRAVRATIO ALTRATIO IDH / ALTADJ) I) USATHOS62
E 1037 H 2	EXPO (TEHPRATIC ALTRATIC))	LUSATHOS62
1038 M 1	ENDJ	I USATMOS62
E 1039 H 1	3 ATMOS.RHO = ATMOS.RHO (KG_TO_LBM / (M_TO_FT G_TO_FPS2)),	 USATMOS62
1040 HI	ENDJ	I USATMOS62
1041 MJ C	LOSE USATHOS62,	USATMOS62

CURRENT SCOPE APRIL 27, 1987 14:13:28.85 INTERMETRICS, INC. . SOURCE **** BLOCK SUMMARY **** Compool variables used 6_to_fps2 OUTER STRUCTURE TEMPLATES USED ATHOSPROP HAL/S STD 360-24.20 STHT

HAL/S STD 360-24.20 INTERMETRICS, INC. Stht source

.

....

CURRENT SCOPE

APRIL 27, 1987 14:13:28.85

1042 MI CLOSE AERO_GUID,

**** BLOCK SUMMARY ****

COMPOOL VARTABLES USED G_LOAD, G_RUN_GUIDANCE, ALT_NAV, ALT_FREEZE_GUID, GUID_PASS_LIM

APRIL 27, 1987 14:13:28.85 INTERMETRICS, INC. EARTH_FIXED_FROM_REFERENCE: FUNCTION **** COMPILATION LAYOUT **** HEAT_RATE_CONTROL: PROCEDURE; ATTITUDE_COMMAND: PROCEDURE) INTEGRATOR: PROCEDURE, AERO_PARAMETERS: PROCEDURE; INITIAL_GUID: PROCEDURE; PREDICTOR: PROCEDURE FSM_POOL: EXTERNAL COMPOOLS IL_POOL: EXTERNAL COMPOOL CORRECTOR: PROCEDURE FILTERS: PROCEDURE; AERO_GUID: PROCEDURES LOOKUP: PROCEDURES HAL/S STD 360-24.20

.

USATMOS62: PROCEDURE

APRIL 27, 1987 14:13:28.85

INTERMETRICS, INC.

HAL/S STD 360-24.20

.

.

SYMBOL & CROSS REFERENCE TABLE LISTING; (CROSS REFERENCE FLAGKEV: 4 = ASSLEMMENT, 2 = REFERENCE, 1 = SUBSCRIPTUSE, 0 = DEFINITION)

	2 0591 2 0785	2 0880	2 0891	2 1009		2 0789	2 0888		2 0876		4 1022	44U1 3		2 0588				4 0779		2 0743	6 0831		6 0830				2 097A		6 0645	2 0668			2 0950	2 0972		2 06%			5 0694				4 0676		2 0941
	2 0584	2 0876	2 0890	2 1007	2 1039	2 074B	2 0886	4 1007	2 0764		2 0897	4701 7		2 0587		2 0588	2 0587	2 0741	2 0837	2 0742	6 0825	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6 0824	0110 6	C 1117		0 0902	200	4 0635	2 0635		2 0553	2 0949	2 0971		2 0645	0 0909		2 0645	0160 0		0 0760	4 0672		£060 0
	2 0583 2 0748	2 0874	2 0899	2 0982	2 1037	2 0738	2 0884	2 0894	2440 2		2 0896	ADEE.		4 0586		4 0587	2 0586	4 0735	2 0833	4 0741	4 0819	0100 4	8180 6	9220 4			1060 0		4 0553	4 0551		2 0551	4 0939	2 0965		2 0553	XREF :		2220 2	XKEF:	2 0584	4 0733	4 0668		1060 0
	2 0582 2 0747	2 0873	2 0888	2 3897	2 1035	2 0584	2 0883	2 0893	149D 2	6 1039	2 0873	11	:	0 0572		0 0573	0 0087	1020 0	2 0831	0 0702	0 0810		1180 0	0 0751	1010 0		XREF :		0 0352	0 0516		1040 0	0 0908	2 0964		0 0513	=		51cU V	=	0 0074	2020 0	0 0649		XREF:
ERENCE	2 0574 2 0738	2 0869	2 0886	2 0896	2 1029	0 0526	2 0882	2 0892 2 0577	0750 D	4 1037	0 0526	CONSTAN		XREF:		XREF:	XREF:	XREF:	2 0827	XREF :	XREF:	VDEF.	AKET:	YDEF.	PENCEN.	0 0451	ARH		. XREF:	XREF:	6 0694	. XREF:	XREF:	2 0963		. XREF:	, CONSTAN		- AKER!		XBFF.	XRFF:	XREF:		ARM
ROSS REFE	0 0526 2 0734	2 0853	2 0884	2 0894	2 1026	XREF :	Z 0880	2 0891 Vnef.	AREF:	4 1029	XREF:	STATIC.		STATIC		STATIC	INITIAL	, STATIC	2 0825	STATIC	· STATIC	STATTC	DIAILU	7	NOT REFE	2 0747	- INPUT -		INITIAL	STATIC .	6 0693	INITIAL	STATIC .	2 0962		INITIAL	STATIC,		TALITAL O	DIALICI	INITIAL	STATIC	STATIC		1-TUPUT
JTES & CF	XREF: 2 0704	2 0793	2 0883	2 0893	2 1022	ALIGNED	5/80 2	2 0890 Al TCHEN	AL10101	4 1026	ALIGRED ALIGNED	ALIGNED		ALIGNED,		ALIGNED	ALIGNED	ALIGNED,	1280 2	ALIGNED	ALIGNED	AI TONED.		TEMPORAG	0 0515	2 0583	ALIGNED		ALIGNED,	ALIGNED,	2 0676	ALIGNED,	ALIGNED,	2 0952	2 0974	ALIGNED	ALIGNED	ALTCHED	ALTONED	PENCEN	ALIGNED	ALIGNED	ALIGNED.		ALIGNED
ATTRIBU	ALIGHED 2 0592	2 0789	2 0082	2 0892	2 1021	SINGLE,	2 0/95	2 0889		4001 4	STHOLE.	DOUDLE.	2 1006	SINGLE,	2 0589	SINGLE,	DOUBLE,	DOUBLE,	2 0819	SIMOLE,	DOUBLE,	2 UBS/	2 0816	SINGLE.	XREF:	XREF:	SINGLE,	2 0939	SINGLE,	SINGLE,	2 0672	SINGLE,	SINGLE,	2 0951	2 0973	SINGLE,	SINGLE,		CTHOLE ,	NOT DEFI	SINGLE	SINGLE.	SINGLE,	2 0733	SINGLE, 2 0948
TYPE	STRUCTURE TEMPI.ATE					I SCALAR		L SCALAB		1 CCALAD	I SCALAR	SCALAR		SCALAR		SCALAR 7 - USCYOD	2 - VECTUR	3 - VELICIA		JUALAR 7 VEFTOD	J - ACCION	3 - VECTOR		3 - VECTOR	PROCEDURE	PROCEDURE	SCALAR		SCALAR	SCALAR		SCALAR	SCALAR			SCALAR	SLALAR	SCALAD	SCALAR		SCALAR	SCALAR	SCALAR		SCALAR
NAME	ATHOSPROP				3	•		RHO		. IS	Ŧ	*		A_DRAG_HAG		A NAV	A DRFD		A DDFN MAG	ACCUM ACCEN		ACCUM_VEL		AERO_ACCEL	AERO_GUID	AERO_PARAMETERS	ALPHA		ALPHA_CHD	ALTHA_UES		ALPHA_EI	ALPHA_FRACT					ALPHA MIN	ALPHAMIN	1	ALPHA_NAV	ALPHA_PRED	ALPHA_TRY		ALI
10	526				227	500		526		526	526	166		2/4	573	5	50		202	810		811		751	515	851	106	1	352	1		1	506		513		ŝ	513	910		\$	203	649		101

-

		2 095 0 091	160 0
3:28.85		2 0535 4 0948 XREF:	XREF:
14:1		0513 0911	
1, 1987	RENCE	XREF: 0 XREF: 0 CONSTANT	CONSTANT
APRIL 2	OSS REFE	INITIAL STATIC STATIC,	STATIC,
	JTES & CR	AL IGHED, AL IGHED, AL IGNED,	ALIGNED,
	ATTRIBU	SINGLE, SINGLE, SINGLE, 2 0948	SINGLE,
I N C			
RMETRICS,	PE		
INTE	IVI	SCALAR SCALAR SCALAR	SCALAR

/S STD 360-24.20 Name	INTERMETRICS, I Type	N.C., APRIL 27, 1987 14:13:28.85 Attributes & cross reference
LT_L LT_L	SCALAR SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0535
LT_HAX	SCALAR	SINGLE' ALIGNED, STATIC XREF: 0 0911 4 0948 2 0953 SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0912 2 0910 2 0064
LT_MIN	SCALAR	SIGGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0913 2 091 2 0941 2 0948 2 0953
TRUN	SCALAR	DOUBLE, ALIGHED, INITIAL XREF: 0 0079 2 0535 2 0625 ' SINGLE, ALIGHED, STATIC, CONSTANT XREF: 0 0914 2 095
T_TAEM_BIAS	SCALAR SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0793 SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0758
LIAUJ	SCALAR Scalar	SINGLE, ALIGNED, STATIC XREF: 0 1003 4 1033 2 1036 2 1031 STNCLE ALIGNED STATIC VALLE OF 2003 4 1033 2 1036 2 1031
IMOS	STRUCTURE	ATHOSPROPARATION OF ALL AND A LUSY 2 LUSY ATHOSPROPARATION OF ALL ALL ALL ALL ALL ALL ALL ALL ALL AL
THOS	STRUCTURE	4 1037 6 1039 A THOSPROP-STRUCTURE, ALTGNED, INPUT-PARM XREF; 0 0851 0 0851 A THOSPROP-STRUCTURE, ALTGNED, INPUT-PARM XREF; 0 0851 0 0852 2 0859 2 0837 2 0874 2 0876 2 0850 2 0882 2 0833 2 0848
THOS		2 0806 2 0888 2 0889 2 0890 2 0891 2 0892 2 0893 2 0896 2 0896 2 0897
THOS	STRUCTURE STRUCTURE	ATHOSPROP-STRUCTURE, ALIGHED, STATIC XREF; 0 C574 4 0582 2 0583 2 0594 2 0591 2 0592
TTITUDE COMMAND		A הרוטסארטףSIRUCTURE, ALIGNED, STATIC XREF: 0 0704 4 0734 2 0738 2 0747 2 0748 2 0764 4 0785 2 0789 2 ע־93 עריבי
BAR	SCALAR	XMEFT 2 0941 0 0654 SINGLE ALIGNED, STATIC, CONSTANT XREFT 0 0863 2 0876 STMCLE ALIGNED STATIC, CONSTANT
0	SCALAR	SINGLE, ALLONED, ASSIGN-PARM XREF; 0 0901 0 0904 4 0975
D.ALT	SCALAR ARRAY	ARRAY (2,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 033
D_HACH	SCALAR ARRAY	2 0951 2 0952 Array(5,51), Single, Algued, Static, constant xref; 0 0951 2 0053
D_NOM D_PRED	SCALAR Scalar	SINGLE ALIGNED, STATIC XREF: 0 0575 4 0584 2 0585 2 0599
_visc	SCALAR ARRAY	ARRAY(8,51), SINGLE, ALGNED, STATIC, CONSTANT XREF: 0 0759 ARRAY(8,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0935
0_1	SCALAR	2 U964 2 U965 2 NGLE, ALIGNED, STATIC XREF: 0 0915 4 0951 4 0964 4 0973 2 0979
0_2	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0916 4 0952 4 0965 4 0979 2 0979
_	SCALAR	SINGLE, ALIGNED, ASSIGN-PARM XREF: 0 0901 0 0905 4 0976 Not deferriced
L_ALT	SCALAR ARRAY	ARRAY(2,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF; 0 093
L_EST L_MACH	SCALAR SCALAR ARRAY	STRUCT, ALIGNED, STATIC XREF: 0 0517 4 0593 2 0625 STRUCT, S.LIGNED, STATIC XREF: 0 0517 4 0593 ARAY(5,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0936
L_NOM L PRED	SCALAR Scalar	C 07/1 C 09/2 SINGLE ALIGNED, STATIC XREF: 0 0576 4 0584 2 0585 2 0593
L_VISC	SCALAR ARRAY	SINGLE'ALIGHED, SIATIC XREF: 0 0706 4 0748 2 0749 Arravie,51), Single, Aligned, Static, Constant Xref: 0 0934
5	SCALAR	c 0762 c 0765 SINGLE, ALIGNED, STATIC XREF: 0 0917 4 0949 4 0962 4 0971
۲_2	SCALAR	2 07/8 SINGLE, ALIGNED, STATIC XREF: 0 0918 4 0950 4 0963 4 0972 2 0928

			2 0643 4 0632				4 0682	2 0695	26400 2	2 0695	2690 2	2 0881	2 0007	62.70 6	7/80 7	2 0677	4 0744 2 0833				769N 2	2 1022	6 0803		4 0681	2 0774	2 0695	1001 0	0 1000				2 0776		2 0808
		2 0847	6 0642 4 0630	2 0630	2 0630 2 0773	4 0804	0 0658	2 0693	2 0690	0690 Z	2 0690	0 0864	2 0006	0 0150		0 0651	4 0743 2 0832		2 0745	2 0745	14 NG 40	2 1021	2 0802	4 0808	0 0662	2 0770	2 0693	XREF :	XREF:				2 0734		2 0804 2 0846
::28.85		4 0845	NOT USED 4 0641 0 0518	4 0628	4 0767	2 0682	XREF :	4 0689	40000	4 0684	4 0685	XREFL	0 0005	VDEE.		XREF	4 0739 2 0827		2 0743 2 0744	2 0739	7590 A	4 1020	4 080I	2 0681	XREF:	4 0769	4 0688 2 0420 2	FIAL	TIAL	2 1037	2 0557	2 0777	2 0582		2 0777 2 0845
14:13		0 0843	0 0919 0 0640 L XREF:	0 0596	0 0752	0 0659	<u>ں</u>	0 0657		9590 O	7590 0	5	XREF	5	;	L.	0 0519 2 0826		0 0513	1150 0	L AKET:	0 1003	0 0707 2 0808	0 0663	IC	0 0753	0 0664	TIC, INI	IIC, INI	2 1036	0 0463	9990 0	0 0466		0 0468
7, 1987	RENCE	XREF:	XREF: XREF: INITIA	XREF:	XREF:	XREF:	D, STAT)	XREF:	XKET :	XRFF:	XREF:	CONSTAN	F	2 0766 FORSTAN		CONSTAI	XREF: 2 0821		XREF:	XREF :	TITUT	XREF:	XREF: 6 0807	XREF:	D, STAT	XREF:	XREF:	ED, STA	ED, STA	2 1033	XREF:	. XREF:	XREF:		XREF:
APRIL 2	OSS REFE	STATIC 0 0648	STATIC Y STATIC,	STATIC	SIALIC Y	STATIC	, ALIGNE 2 0689	STATIC	STALLC	STATIC	STATIC	STATIC,	CONSTAN	2 0641 STATTC.		STATIC,	STATIC 2 0820		INITIAL	INITIAL	OTIVIC	STATIC	STATIC 2 0806	STATIC	2 D688	2	STATIC TNITTAL	E, ALIG	E, ALIG	2 1028	INITIAL	INITIAL	INITIAL		INITIAL UNITIAL
	TES & CRI	ALIGNED, 2 0536	ALIGNED, TEMPORAR ALIGNED,	ALIGNED,	TEMPORAR	ALIGNED,	, SINGLE	ALIGNED,	ALIGNED,	ALIGNED,	ALIGNED.	ALIGNED,	2 0885 ALIGNED.	2 0556 AI TCMED.	2 0686	ALIGNED, 2 0687	ALIGNED, 2 0787	2 0837	ALIGNED,	ALIGNED,	2 0695	ALIGNED, 2 1037	ALIGNED, 4 DRD5	ALIGNED,	, SINGLE 2 0685	TEMPORAR	ALIGNED,	1. SINGL	J' SINGL	2 1025 Vncc.	ALIGNED,	ALIGNED,	ALIGNED,	2 0785	ALIGNED, ALIGNED,
	ATTRIBU	DOUBLE, XREF:	SINGLE, SINGLE, SINGLE,	SINGLE,	SINGLE,	SINGLE,	ARRAY(3) 2 0686	SINGLE,		SINGLE	SINGLE	SINGLE,	2 0803 DOUBLE.	2 0555 STNGLE.	2 0684	SINGLE, 2 0685	SINGLE, 6 0745	2 0836	SINGLE,	SINGLE,	2 0693	SINGLE, 2 1026	DOUBLE, 2 0804	SINGLE,	AHRAY131 2 0684	SINGLE,	SINGLE,	ARRAY (12	2 1022 ARRAY(12	2 1021	DOUBLE,	DOUBLE,	DOUBLE,	2 0777	DOUBLE,
INC																																			
ICS, INC																														NOT					
ETRICS, INC							Å																		4X			AY	AY	TV EINPTTON					
NTERMETRICS, INC	TYPE	ALAR XOCEDURE	ALAR Alar Alar	ALAR	ALAR	CALAR	CALAR ARRAY	CALAR Per ad	741 AD	ALAR	ALAR	CALAR	CALAR	CALAR		CALAR	CALAR		CALAR	CALAR Calar		CALAR	CALAR	CALAR	LALAH ARHAY	CALAR	CALAR Dalar	CALAR ARRAY	CALAR ARRAY	V Z MATRIV EIRFITCH	CALAR	CALAR Calar	- VECTOR		CALAR Calar
INTERMETRICS, INC	TYPE	SCALAR PROCEDURE	SCALAR SCALAR SCALAR	SCALAR	SCALAR	SCALAR	SCALAR ARRAY	SCALAR SCALAR	SCALAR STAJAD	SCALAR	SCALAR	SCALAR	SCALAR	SCALAR		SCALAR	SCALAR		SCALAR Scalar	SCALAR SCALAR		SCALAR	SCALAR	SCALAR	SCALAK ARKAY	SCALAR	SCALAR SCALAR	SCALAR ARRAY	SCALAR ARRAY	NEE 3 V 3 MATRIX ELANTICAL	SCALAR	SCALAR Scalar	3 - VECTOR	44 1400	SCALAR
D INTERMETRICS, INC	TYPE	SCALAR	SCALAR Scalar Scalar	SCALAR	SCALAR	SCALAR	SCALAR ARRAY	SCALAR SCALAR		SCALAR	SCALAR	SCALAR	SCALAR	SCALAR		SCALAR	SCALAR		LN SCALAR X SCALAR	N SCALAR		SCALAR	SCALAR	SCALAR	SCALAH ARHAY	SCALAR	SCALAR SCALAR	SCALAR ARRAY	SCALAR ARRAY	M DEFEDENCE 3 V 3 MATDIX ELACTION	SCALAR	SCALAR SCALAR	3 - VECTOR		SCALAR
360-24.20 INTERMETRICS, INC	TYPE	SCALAR PROCEDURE	TA SCALAR CHD SCALAR 3DOT SCALAR	SCALAR	SCALAR SCALAR	SCALAR	R SCALAR ARRAY	SCALAR Scalar		SCALAR	. SCALAR	O_DEG_K SCALAR	RAD SCALAR	LPHA SCALAR		HI SCALAR	PRED SCALAR		PRED_PAIN SCALAR PRED_PAX SCALAR	PRED_MIN SCALAR		SCALAR	SCALAR	SCALAR	N SCALAR ARRAY	CEL SCALAR	SCALAR Xajid Scalar	SCALAR ARRAY	SCALAR ARRAY	TYEN EDGN DEFEDENCE 3 V 3 MAIDIV ENVLION	LAT SCALAR	12 SCALAR NI SCALAR	OLE 3 - VECTOR		A SLALAR PATE SCALAR
'S STD 360-24.20 INTERMETRICS, INC	NAME TYPE	CLAMBDA SCALAR CORECTOR PROCEDURE	LOD_ATLTHA SLALM COSPHI_CHO SCALAR COSPHI_GHOT SCALAR SCALAR	COSPHI_1 SCALAR	CDHI SCALAR CDHI SCALAR	CR_ERR SCALAR	CH_ERRUN	CCRE SCALAR DCRF DA SCALAD		DORE DA SCALAR	DORE DP SCALAR	DEG_R_TO_DEG_K SCALAR	DEG_TO_RAD SCALAR	DELTA ALPHA SCALAR		DELTA_PHI SCALAR	DELTATTPRED SCALAR	DELTA T DDED CATU CCLLAD	DELTA_T_PRED_BAIN SCALAR DELTA_T_PRED_MAX SCALAR	DELTA_T_PRED_HIN SCALAR		0H SCALAR	DOT SCALAR	DR_ERR SCALAR	UN_ERKOR	DRAG_ACCEL SCALAR	UKE SCALAR DT AFROGUTD SCALAR	DTDH SCALAR ARRAY	DTHDH SCALAR ARRAY	FADIH FIXEN EDAM DEEEDENCE 3 V 3 MAIDIV HAMIIN	EARTH_FLAT	EARTH J2 SCALAR FADTH MI SCALAR	EARTH POLE 3 - VECTOR		CANTATE SCALAR EARTH_RATE SCALAR

•

		2 0798	4 1036	2 0993	•	4 0944	4 N975	2 0804		2 0017	2 0868	4 089 1	6 1014	2 0538		2 0988	2 1008		9660 0				2 0625	1 0963	1 0974	1 1021 1 1035	2 0804		000 e	1000 7	2 0801	2 0773
		2 0797 2 0847	2 1029	0 0992		4 0613 4 0942	4 0966	2 0012		2 0014	0 0865	4 0889	2 0779 2 1013	6 0537		0 0445	2 1007	2 1034	XREF:			_	2 0615	1 0962	1 0973	1 1020 1 1034	2 0801	2 0773	2 0774		2 0800	2 0772
1:28.85		4 0796 4 0549 2 0549	4 1028	XREF :		2 0611 4 0940	4 0953	1100 0	2 0532	2 0532 0 0013	XREF:	4 0887	4 0778 4 1011	2 0535		2 0538 XRFF.	4 1006	2 1023	STANT		2 0614	NOT USED	4 0614	4 0958	1 0972	4 1016 1 1033	4 0800	4 0772	4 0773		4 0567	4 0771
[14:1]		0 0708 0 0520 0 0520	0 1003	NT		0 0598 0 0921	0.920	XREF:	0 0082	0 0513 XREF:	NT	0 0857	0 0754 0 1003	0 0521		0 0513 NT	0 1002	2 1020 MOSPROP	TIC, CONS		0 0513	0 0755	0 0599	0 0922	1 0971	0 0994	0 0709	0 0756	0 0757		0 0522	0 0758
27, 1987	ERENCE	XREF: XREF: XREF:	XREF	, CONSTA		L XREF: XREF:	XREF:	Ę	L XREF:	L XREF: NT	, CONSTA	XREF:	XREF: XREF:	XREF:		L XREF: CONSTA	XREF :	2 1017 PLATE AT	NED, STA	2 1034	L XREF:	XREF:	XREF:	XREF:	4 0970	XREF: 1 1028	XREF:	XREF:	XREF: XREF:		XREF :	XREF:
APRIL	ROSS REF	, STATIC , STATIC	, STATIC	, STATIC	0 0571	, INITIA	, STATIC	, CONSTA	, INITIA	, INITIA , CONSTA	, STATIC	, STATIC	RY STATIC	, STATIC		, INITIA	, STATIC	6 1013 TURE TEM	LE, ALIG	2 1033 0 0595	, INITIA	RY	, STATIC	, STATIC	1 0966	, STATIC 1 1026	, STATIC	RY	RY - STATIC		, STATIC	RY
	utes a c	AL IGNED AL IGNED AL IGNED	ALIGNED	ALIGNED	2 0534	, STATIC ALIGNED	2 0946 ALIGNED	2 0979 ALIGNED	ALIGNED	ALIGNED	AL IGNED	ALIGNED 4 DR95	TEMPORA	ALIGNED	4 0550	ALIGNED	ALIGNED	2 1012 EE STRUC	31, SING	2 1020 2 0540	ALIGNED	FENPORA	ALIGNED	ALIGNED	1 0965	ALIGNED 1 1025	ALIGNED	Z USUS TEMPORA	TENPORA ALIGNED		ALIGNED	TEMPORA
	ATTRIB	DOUBLE, DOUBLE, DOUBLE,	SINGLE,	DOUBLE,	Z IOU6 XREF:	ALIGNED SINGLE,	4 0945 SINGLE,	2 0978 DOUBLE,	2 0808 DOUBLE	DOUBLE,	2 1039 SINGLE,	SINGLE,	DOUBLE,	2 1037 SINGLE,	4 0539 exilent	SINGLE,	DOUBLE,	2 1011 **** S	ARRAY (]	2 1017 xeff:	SINGLE	SINGLE,	STNGLE,	SINCLE,	1 0964 2 0975	SINGLE,	1 1036 DOUBLE,	SINGLE,	SINGLE,	2 0808	2 0804	SINGLE,
INC																																
FRICS,																															-	
ERMEI	TYPE	MATRIX MATRIX MATRIX	~	~	URE	- 5	~	~	~ .	. ~	~	~	ECTOR A	æ			~	~	RARAY	DURE	~	~ .				æ	CTOR	CTOR	CTOR			CTOR
INI		м м м X X X м м м	SCALAF	SCALAF	PROCE	INTEGE	SCALAF	SCALAF	SCALAF	SCALAF	SCALAR	SCALAF	3 - VE Scalaf	INTEGE	SCALAD	SCALAF	SCALAF	SCALAF	SCALAF	PROCEL	SCALAF	SCALAF	INTEG	INTEG		INTEG	3 - V	3 - V	 			37 - K
_		POCH CH																		Ŀ,												
560-24.20		_REFAT_E _REFAT_E _FATEPO	1			SIME		-	IT DANCE	52		DAM	19 19	SS	SS LIM					TE_CONTRO	r	PRED					¥		Ļ	7 55		
/S STD	NAME	EF_FROM EF_FROM EF_TO_RI	EXPO	L	FILTERS	FLOW	FRACT	FT_TO_N	G_LOAD G_UIN CI	G_TO_FP	GAMIA		GRAV_AC	GUID_PA:	GUID PA:	09	Ŧ	Ŧ	H_BASE	HEAT RA	HS	HS_NORM	1.5	1		I	I_INPLA	I_LAT	I_LIFI I_NORHA	T TADGE		I_VEL
HAL	סכר	708 520 308	1003	992	571	921 921	920	11	82 613	ä	865	100	754	521	513	985	1002	526	966	595	513	755	665	922		466	602	756	÷21	622		758

HAL	/S STD 360-24.20	INTERMETRICS,	INC.		APRIL 27	, 1987	14:13	28.85		
DC	NAHE	TYPE	ATTRIB	utes & Cro	SS REFER	ENCE				
542 523 711 809	INITIAL_GUID INITIALIZE_GUIDANCE INTEG_LOOP INTEGRATOR	PROCEDURE BIT(1) SCALAR PROCEDURE	XREF: ALIGNED SINGLE, XDEF.	2 0529 0 , Static, Aligned, 2 0700 0	0542 Initial Static	XREF: 0 (XREF: 0 (1111	0527	4 0530 2 0814	
712	IR_E	3 - VECTOR	DOUBLE,	ALIGNED,	STATIC	XREF: 0 (2170	1970	2 0799	2 0805
923	7	INTEGER	SINGLE, 1 0951	ALIGNED. 1 0952 1	STATIC 0962 1	XREF: 0 (0963 1 (1923 4 1964	0938	1 0949 1 0971	1 0950 1 0972
957 84	K K_LOD_NAV	INTEGER Scalar	I 0975 SINGLE, SINGLE,	1 0974 Temporary Aligned,	INITZAL	XREF: 4 (XREF: 0 (957	0958	1 0959 6 0590	2 0593
009	K_QDOT K_DNOT_BATE	SCALAR	2 U749	ALIGNED,	STATIC	XREF: 0 (0090	0626	2 0629	
472	K_RHO_FILTER_GAIN	SCALAR	SINGLE,	ALIGNED, ALIGNED,	STATIC INITIAL	XREF: 0 (XREF: 0 (0472	0627	2 0628	
83	K_RH0_NAV	SCALAR	SINGLE,	ALIGNED,	INITIAL	XREF: 0 (2083	0568	6 0591	2 0592
966	KG_TO_LBM .	SCALAR	SINGLE,	ALIGNED,	STATIC, (CONSTANT		XREF:	0660 0	2 1039
602	KI_GAIN	SCALAR	SINGLE.	AL IGNED . AL TGNED .	CONSTANT	XBFF. 0	KEF: (0018	2 0873 2 0675	
603 988	K1_QDOT K2_	SCALAR Scalar	SINGLE	ALIGNED.	STATIC	XREF: 0	2003	0625	2 0626	2 0627
		CCALAN	51NGLE, 2 1028	ALIGNED, 2 1036 2	STAFIC, C	CONSTANT		XREF1	0 0988	2 1026
818 545	L_OVER_D_FILTER_GAIN Lat	SCALAR Scalar	SINGLE,	ALIGNED,	INITIAL	XREF: 0 (0475	0290		
513	LAT_TARGET	SCALAR	SINGLE,	ALIGNED,	INITIAL	XREF: 0		0220	/66N 0	8660 Z
577	LIFI_AUCEL LOD MEAS	SCALAR Scalar	SINGLE,	TEMPORARY		XREF: 0 (759	0270	2 0774	
578	LOD_NOM	SCALAR	SINGLE,	ALIGHED.	STATIC	XREF: 0 1	8/30	0585	2 0590	
713	LOD_PRED	SCALAR	SINGLE,	ALIGNED,	STATIC	XREF: 0 (1713	0749	2 0770	
513	LONG TARGET	SCALAR SCALAR	SINGLE,	ALIGNED,	STATIC	XREF: 0 (545	0555	2 0562	2 0566
106	LOOKUP	PROCEDURE	XREF	2 0584 2	0748 0	0901	100	פככט		
9	M_T0_FT	SCALAR	DOUBLE,	ALIGNED,	CONSTANT		(REF: (0100 0	2 0013	2 0869
989	M_TO_FT	SCALAR	2 08/3 000BLE,	ALIGNED,	STATIC, C	CONSTANT		XREF:	0 0989	2 1006
106	MACH	SCALAR	SINGLE,	Z 1059 ALIGNED,	INPUT-PA	۲ بر	KREF; (1060 0	0 0906	2 0943
579	МАСН		2 0969			•				}
851	MACH	SCALAR	SINGLE,	ALIGNED,	STATIC ASSIGN-PJ	XREF: 0 (3579 4 Kref: (0583	2 0584 0 0854	4 0871
926	- 11.284		4 0872	2 0896 2	8690					
925	MACH_MAX	SCALAR	SINGLE	ALIGNED, ALIGNED,	STATIC STATIC, (XREF: 0 (CONSTANT	9260	XREF1	2 0970 0 0925	2 0975 2 0943
926	MACH MIN	SCALAD	2 0969 5 MUCI E							
214	MACH_PRED	SCALAR	SINGLE,	ALIGNED,	STATIC .	XREF: 0 (0714	XHET:	0 0926 2 0748	2 0969
519	MASS_NAV	SCALAR	SINGLE,	ALIGNED,	INITIAL	XREF: 0 (1314	0589	2 0615	2 0769
986	MO	SCALAR	STHGLE,	ALIGNED,	STATIC, 1	CONSTANT		XREF:	0 0867	2 0868
1015	z	INTEGER	SINGLE,	TEMPORARY		XREF: 4	1015	1016	1 1017	6 0 00
995	NSEGS	INTEGER	SINGLE,	ALIGNED,	STATIC, (CONSTANT		XREF:	0 0995	2 0996
513	OHEGA_ QDOT	SCALAR	SINGLE.	Z 0998 2 ALIGNED.	: 0999 2 INITIAI	XBFF: 0 1	1001	1015	2 1417	
604	UMEGA_QDOT_SQUARED	SCALAR	SINGLE,	ALIGNED.	STATIC	XREF: 0	1090	0616	2 0626	
		-								

.

206

.

& CROSS REFERE	NCE									
GNED, STATIC B36	XREF:	٥	0812	4	0816	2	0820	~	0826	
GNED, STATIC 837	XREF:	•	0813	4	0817	2	0821	N	0827	
GNED, INITIAL : 643 6 0646	XREF:	•	0025	4	0554	4	0636	9	0637	
GNED, STATIC	XREF:	0	0524	4	0552	2	9290	~	0669	

2 0646 2 0767 4 0677 2 1005

.

HAL	/S STD 360-24.20	INTERMETRICS,	INC.	APRIL	27, 1987	14:1	3:28.85	
DCL	NAME	TYPE	ATTRU	BUTES & CROSS REF	ERENCE			
812	ORIG_POS	3 - VECTOR	DOUBLE	, ALIGNED, STATIC	XREF: (0812	4 0816	2 0820
813	ORIG_VEL	3 - VECTOR	DOUBLE	, ALIGNED, STATIC	XREF: C	0813	4 0817	2 0821
25	PHI_CHD	SCALAR	Z UB55 SINGLE 2 D661	2 085/ , Aligned, Initia 6 0663 - 6 0664	L XREF: (0025	4 0554	4 0636
524	PHI_DES	SCALAR	SINGLE 2 0673	ALIGNED, STATIC 2 0677 6 0695	XREF: (0524	4 0552	2 0636
513 402	PHI_DES_MAX Phi ei	SCALAR Scalar	SINGLE	, ALIGHED, INITIA	L XREF: 0	0513	2 0696	
513	PHI_MAX	SCALAR	SINGLE	, ALIGNED, INITIA , ALIGNED, INITIA	L XREF: 0	0402	2 0552 2 0554	2 0554 2 0637
715	PHI_PRED	SCALAR	SINGLE	, ALIGNED, STATIC	XREF: (0715	4 0765	6 0766
660	PHI_TRY	SCALAR	SINGLE	, ALIGNED, STATIC	XREF: (0990 (4 0669	4 0673
186	POLE	3 - VECTOR	DOUBLE	, ALIGNED, INPUT-	PARM	XREF:	0 0981	0 0984
199	PRED_EXIT Predictor	BIT(1) PRACEN(DE	ALIGHE	D, STATIC XREF:	0 0661 4	0290	2 0791	
509	GBAR	SCALAR	SINGLE	: 2 UGBU O U697 , ALIGNED, STATIC	XREF: (0605	4 0624	2 0628
606	quot	SCALAR	SINGLE	, ALIGNED, STATIC	XREF: (9090 (4 0610	2 0620
513	GDOT_LIMIT	SCALAR	SINGLE	, ALIGNED, INITIA	L XREF: (0513	2 0622	2 0629
204	QDDT_PAST	SCALAR	SINGLE	, ALIGNED, STATIC	XREF: 0	1 0607	2 0620	4 0621
981 981		SCALAR 3 - VECTOR	DOUBLE	<pre>ALIGNED. STATIC ALIGNED. INPUT-</pre>	XREF: (PARM	0608 XRFF:	4 0618 0 0981	4 0620
1002	U A		2 1005					
11	R_MAG_PRED	SCALAR	DOUBLE	, ALIGNED, STATIC	XREF: (1902	4 1004	2 1005
à			2 0778	4 0781 2 0768	ARCE	1110	82/0 \$	4//N 2
716	R_PRED	3 - VECTOR 3 - VECTOR	DOUBLE	, ALIGNED, INITIA . ALIGNED, STATTC	L XREF: (0086	2 0582	2 0727
			2 0734	2 0772 2 0775	2 0781	0783	2 0785	2 0788
\$	RAD_TO_DEG	SCALAR	Z 0798 DOUBLE	2 0816 4 0820 • ALIGNED. CONSTA	4 0826 4 NT	0832 XBFF,	4 0836 0 0006	2040 0
718	ROOT_PRED Devini de Mindea	SCALAR	SINGLE	, ALIGNED, STATIC	XREF: (0718	4 0788	2 0789
		SLALAR	SINGLE 2 0898	, ALIGNED, STATIC	XREF: (0.0858	4 0875	4 0876
000		SCALAR	***	SEE STRUCTURE TEM	PLATE ATHC	SPROP		
-		SLALAN ANNAY	ARRAYI 2 1026	13), SINGLE, ALIG 2 1029 2 1037	NED, STATI	IC, CON	STANT	XREF :
580	RHO_HEAS	SCALAR	SINGLE	, ALIGNED, STATIC	XREF: 0	0580	4 0589	2 0591
676 092	RHU_NAV RHO DRFD	SCALAR	SINGLE	, ALIGNED, STATIC	XREF: 0	0525	4 0592	2 0610
513	RHO SL	SCALAR	STUGLE	» ICHPUKAKT AITCHED TWITTA	XKEF: 0	09/0 0	4 0764	2 0769
987	R	SCALAR	SINGLE	, ALIGNED, STATIC	, CONSTANT	CTCD L	XREF:	0 0987
545	KU	SCALAR	SINGLE	, ALIGNED, STATIC	, CONSTANT	-	XREF:	0 0993
478	S_REF	SCALAR	SINGLE	, ALIGNED, INITIA	L XREF: (0478	2 0589	2 0615
944 844	SIN_ALPHA SI AIRNA	SCALAR SCALAR	SINGLE	, ALIGNED, STATIC	XREF: (0927	NOT USE	•
859	SPEED_OF_SOUND	SCALAR	SINGLE	, ALIGNED, STATIC . ALIGNED. STATIC	XREF: (0844	4 0846 4 0846	2 0847
898	SPEED_OF_SOUND_CONST	SCALAR	SINGLE	, ALIGNED, STATIC	, CONSTANT		XREF:	0 0868
1002	ISAS	SCALAR SCALAR	SINGLE	, TEHPORARY , ALIGHED, STATIC	XREF: (XREF: 0	0761	4 0768 4 1005	2 0773 2 1006

2 0628 2 1004 2 1006 2 0777 2 0777 2 0731 2 0797

2 0877 6660 0 2 0988 2 1011 2 0769

2 0624

207

HAL	/S STD 360-24.20	INTERMETRICS,	INC. APRIL 27, 1987 14:13:28.85		
ไว	NAME	TYPE	ATTRIBUTES & CROSS REFERENCE		
841	Т	SCALAR	DOUBLE, ALIGNED, INPUT-PARM XREF: 0 0841 2 ABAA	0 0842 2	2 0845
966	T_BASE	SCALAR ARRAY	ARRAVI131, SINGLE, ALIGNED, STATIC, CONSTANT 2 1032 2 1032	XREF: (8650 0
310	T_EPOCH T_CUT	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0310 2 0845	2 0846	
719	T PRED	SUALAR Sualad	DOUBLE, ALIGHED, INITIAL XREF: 0 0022 2 0726 Double Alighter Statte Version 2 222		
860	T_PRIME	SCALAR	SINGLE, ALIGNED, STATIC AREF: U U/19 4 U/26 SINGLE, ALIGNED, STATIC XREF: 0 0860 4 0896	2 0897	96/Å 2
861	T_MALL	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0861 4 0881	4 0883 4	4 0885
1003	TEMPRATIO	SCALAR	Z UB96 SINGLE, ALIGNED, STATIC XRFF; O 1003 & 1035	2 1037	
736	TIME_INCREMENT	INTEGER	SINGLE, TEMPORARY XREF: 4 0736 2 0737	1001	
526	TH TH RASE	SCALAR	**** SEE STRUCTURE TEMPLATE ATHOSPROP		
		SCALAR ARRAT	ARRAYLIJ), SINGLE, ALIGNED, STATIC, CONSTANT 2 1021 2 1026 2 1029 2 1033 2 1025	XREF: (2660 0
200	TOTAL_TIME_STEPS	INTEGER	SINGLE, ALIGNED, STATIC XREF: 0 0700 4 0737	NOT REFE	RENCED
929		SCALAR	**** SEE STRUCTURE TEMPLATE ATMOSPROP		
762	U PRED	SCALAR 3 - Vector	SIAGLE, ALIGNED, STATIC XREF: 0 0609 4 0617 Dourse: Temporadov Voce: 0 0743 6 0775	2 0627	
į			2 0778	9//0 7	
999	UNIV_GAS_CONST USATMAS62	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF:	0 0866 3	2 0868
100	V RAR	SCALAD	• XHEF: 2 0582 2 0734 2 0785 0 0981		
13	V BAR	SCALAR SCALAR	SINGLE, ALIGNED, INPUT-PARM XREF: 0 0901	0 0907	2 0956
			JINULS, ALIUNCU, ASSIGN-PARM - XREP; U U851 4 AAAA MAT DESERVISED	0 0855 4	4 0878
581	V_BAR	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0581 4 0583	2 0584	
928	V_BAR_L	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0928 4 0956	2 0959	2 0966
929	V_BAR_MAX	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF:	0 0929	2 0956
064	V BAR MIN	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF;	0 0930	2 0956
	V BAR FREU V BAD TABLE	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0720 4 0747	2 0748	
		SCALAR ARRAT	AKRAYIBJ, SINGLE, ALIGNED, STATIC, CONSTANT 2 D969 2 0044	XREF: (0 0931
513	V_FINAL MAG	SCALAR	C U737 C U766 STMCLF. ALTCNER, TNTTTAL VBEE, 0 0637 2 0474	1720 0	
513	V_HAG_CHANGE	SCALAR	SINGLE ALIGNED INTIAL AREF, U USIS 2 U030 SINGLE, ALIGNED, TNITTAL XREF, D DETR 2 D DARK	29/0 2	
721	V_MAG_PRED	SCALAR	DOUBLE, ALIGNED, STATTC XPEF; 0 0721 & 0730	2 0765 A	4 0702
8	V_NAV	3 - VECTOR	DOUBLE, ALIGNED, INITIAL XREF: 0 0093 2 0729	5	7010
5	V_NAV_HAG	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0094 2 0636		
125	V_FKEU	3 - VECIUR	DOUBLE, ALIGNED, STATIC XREF: 0 0722 4 0729	2 0730 3	2 0731
			2 0782 2 0783 2 0788 2 0798 2 0817 2 0818 3 0026 2 002 0 002 0 001 2 0818	2 0820	4 0821
851	V_REL_MAG	SCALAR	2 UO24 2 UO26 4 UO27 2 UO3U 2 UO32 4 UO33 Stncif. Aitchen. thout-dadh vee. A Agei	2 0836 6	9 0837
			2 0876 ALT UNIT 1 0 001		7/00 7
56	V_REL_HAG	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0095 2 0583	2 0586	2 0589
723	V RFI MAG PREN	Crat AD	2 0610 2 0624 2 0625		
2		OCALAR	SIMGLE, ALIGNED, STATIC XREF: 0 0723 4 0732	2 0747	2 0769
96	V_REL_NAV	3 - VECTOR	6 0//1 4 0/04 DOUBLE, ALIGNED, INITIAL XREF: D D096 2 D586		
724	V_REI_PRED	3 - VECTOR	SINGLE, ALIGNED, STATIC XREF: 0 0724 4 0731	2 0732	1270 2
678			4 0783 2 0784		
725	VISCUSIFY	SCALAR Z _ VECTOR	SINGLE, ALIGNED, STATIC XREF: 0 0862 4 0873	2 0874	2 0876
999	ME_NAV	3 - VECTOR	DUUBLE, ALIGNED, STATIC XREF: 0 0725 4 0798 SINGLF, ALIGNED, INITIAL VEEL 0 0660 3 0733	2 0799	0010
546	×	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0546 & 0559	2 0560 S	0410 7
1	:		6 0562 2 0563 2 0567		Tecn +
56	ł	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0547 4 0563	2 0564 4	4 0565

	2 0563
	2 0559 2 0777
3:28.85	4 0558 4 0776 2 0617
14:1	0 0548 0 0763 0 0513
, 1987 ENCE	XREF: XREF: XREF:
I N C . APRIL 27 Attributes & cross refer	6 0566 2 0567 SINUEL ALIGNED, STATIC 2 0551 TEHPORARY DOUBLE, TEHPORARY SINGLE, ALIGNED, INITIAL
INTERMETRICS, Type	SCALAR Scalar Scalar
HAL/S STD 360-24.20 DCL NAME	548 Z 763 Z_PRED 513 ZETA_QODT

•

.

•

•

.

-

- Freeman, D.C., Powell, R.W., Naftel, J.C., and Wurster, K.E., "Definition of an Entry Research Vehicle", AIAA Paper 85-0969, AIAA 20th Thermophysics Conference, Williamsburg, Virginia, June 1985.
- 2. Morth, R., Reentry Guidance for Apollo, MIT Document R-532, January 1966.
- 3. Shuttle Level C FSSR, Part A, Entry Through Landing Guidance, STS 83-0001A, December 15, 1982.
- 4. Lerner, E.J., "Supercomputer in a Six-Inch Cube", *Aerospace America*, Vol. 4, No. 11, November 1986, pp. 13-14.
- Brand, T.J., Brown, D.W., and Higgins, J.P., Space Shuttle G&N Equation Document No.
 24 (Revision 2), Unified Powered Flight Guidance, CSDL C-4108, June 1974.
- Higgins, J.P., "An Aerobraking Guidance Concept for a Low L/D AOTV", CSDL Memo No. 10E-84-04, May 24, 1984.
- Young, J.D., Underwood, J.M., et al., "The Aerodynamic Challer.ges of the Design and Development of the Space Shuttle Orbiter", Space Shuttle Technical Conference, NASA CP-2342 Part 1, held at the Lyndon B. Johnson Space Center, Houston, Texas, June 28-30, 1983.

- 8. Terrestrial Environment (Climatic) Criteria Guidelines for Use in Aerospace Vehicle Development, 1982 Revision, NASA TM 82473, June 1982.
- 9. Justus, C.G., Fletcher, G.R., Gramling, F.E., and Pace, W.B., *The NASA/MSFC Global Ref*erence Atmosphere Model - MOD 3, (with Spherical Harmonic Wind Model), NASA Contractor Report 3256, March 1980.
- 10. Findley, J.T., Kelly, G.M., and Troutman, P.A., *Final Report Shuttle Derived Atmospheric Density Model*, NASA Contractor Report 171824, November 1986.
- 11. Bryson, A.E., Mikami, K., and Battle, C.T., "Optimum Lateral Turns for a Re-Entry Glider", Aerospace Engineering, March, 1962, pp. 18-23.
- 12. Wagner, W.E., "Roll Modulation for Maximum Re-Entry Lateral Range", Journal of Spacecraft, Vol. 2, No. 5, September-October 1965.
- Zondervan, K., Bauer, T., Betts, J., and Huffman, W., "Solving the Optimal Control Problem Using a Nonlinear Programming Technique Part 3: Optimal Shuttle Reentry Trajectories", AIAA Paper 84-2039, AIAA/AAS Astrodynamics Conference, Seattle, Washington, August 1984.
- Powell, R.W., Naftel, J.C., and Cunningham, M.J., "Performance Evaluation of an Entry Research Vehicle", AIAA Paper 86-0270, AIAA 24th Aerospace Sciences Meeting, Reno, Nevada, January 1986.
- Program to Optimize Simulated Trajectories (POST) Volume 1 Formulation Manual, NASA CR-132689, April 1975.

- U.S. Standard Atmosphere, 1962, Prepared under the sponsorship of NASA, U.S. Air Force, and U.S. Weather Bureau, Published by the US Government Printing Office, 1962.
- 17: Battin, R.H., An Introduction to the Mathematics and Methods of Astrodynamics, forthcoming book, 1987.
- 18. Scott, C.D., et al., "The Aerothermodynamics and Thermal Protection System Challenges for an Aerobraking Orbital Transfer Vehicle", Presented at the NASA Symposium on Recent Advances in TPS and Structures for Future Space Transportation Systems, held on December 13-15, 1983.
- 19. Aeroassist Flight Experiment, AFESIM All-Digital Functional Simulator, Simulator Definition Documentation, Volume 1, CSDL-R-1951, March 27, 1987.
- 20. Phillips, R.E., "Three Aspects of Covariance/Monte Carlo Analysis: Bias, Reducing Dimensionality and Systematically Choosing Error Vectors", CSDL Memo No. 10E-86-18, June 23, 1986.