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ABSTRACT

An adaptive numeric predictor-corrector guidance algorithm is developed for atmos-
pheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability
of the guidance design to vehicles with a wide range of performance capabilities is desired
so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is
desired to minimize mission-specific analysis and planning. The guidance algorithm moti-
vation and design are presented.

Performance is assessed for application of the algorithm to the NASA Entry Research
Vehicle (ERV). The dispersions the guidance must be designed to handle are presented.
The achievable operational footprint for expected worst-case dispersions is presented. The
algorithm performs excellently for the expected dispersions and captures most of the achiev-
able footprint.
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SYMBOLS

a = acceleration magnitude

a = acceleration vector

a, = inertial acceleration measured by the inertial measurement unit

A, = total inertial acceleration vector

AOTV = Aerobraking Orbital Transfer Vehicle

BTU = British Thermal IJnit

c = mean aerodynamic chord

cos(A¢) = cosine of incremental lift for heat rate control

C' = proportionality factor for the linear viscosity-temperature relationship

Co = aerodynamic drag coefficient

CL = aerodynamic lift coefficient

C, = speed of sound

CPU = central processing unit

CR = crossrange

CSDL = The Charles Stark Draper Laboratory, Inc.

det = determinant of sensitivity matrix

DR = downrange

DOF = degree of freedom

ERV = Entry Research Vehicle

fearth = flattening of oblate Earth

F, = inertial force vector

g = gravitational acceleration magnitude

9g = gravitational acceleration vector
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= Global Positioning System

h = altitude

/h = derivative of altitude with time

h = second-derivative of altitude with time

h, - scale height for exponential atmosphere model

i = unit vector

= second zonal harmonic coefficient

JSC = Lyndon B. Johnson Space Center

k = term in geodetic to geocentric latitude conversion

K = term in heat rate control equation

K = velocity vector term in the integration algorithm

K' = acceleration vector term in the integration algorithm

KAt =- gain on acceleration magnitude in variable time step equation

KLID =multiplicative scale factor on the nominal L/D

K6 = gain on heat rate error in heat rate control equation

Kb = gain on rate of change of heat rate in heat rate control equation

KP = multiplicative scale factor on the standard density

K, = gain in first-order filter for density smoothing

K2 = gain in first-order filter for L/D smoothing

LID = lift-to-drag ratio

LaRC = Langley Research Center

m = mass

M =Mach Number

MrF = inertial-to-Earth-fixed transformation matrix

MO = mean molecular weight of air at sea level

n.m. = nautical mile

NASA = National Aeronautics and Space Administration

16

GPS



POST = Program to Optimize Simulated Trajectories

= dynamic pressure

Q = heat load

Q = heat rate

Q = time rate of change of heat rate

R = position vector magnitude

Requator = radius of oblate Earth at equator

R, = inertial position vector

Rpole = radius of oblate Earth at pole

Re = Reynolds Number

S = Sutherland's constant in viscosity equation

S = aerodynamic reference area

SEADS = Shuttle Entry Air Data System

tG,rT = Greenwich mean time

T' = reference temperature

TM = molecular scale temperature

Tstatc = freestream static temperature

Twa.1 = wall temperature

TAEM = Terminal Area Energy Management

V = Viscous Interaction Parameter

V, = magnitude of inertial velocity

V, = inertial velocity vector

VR = magnitude of Earth-relative velocity

VR = Earth-relative velocity vector

z = geocentric colatitude of the postion vector

a = angle of attack

17



P/ = angle of sideslip

6 = small incremental change

A = incremental change

y = ratio of specific heats for air

= longitude

/. = coefficient of viscosity for air

/.z = Earth gravitational constant

4earth = Earth's rotation vector

c. -= natural frequency of heat rate control response

= bank angle

= universal gas constant

p = atmospheric density

= standard deviation

-r = time constant of filter

s x -= damping ratio of heat rate control response

SUBSCRIPTS

aero = aerodynamic

c = geocentric

cmd = command

d = desired

des = desired

drag = drag term
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e = error

El = entry interface

f = final

g = geodetic

imu = inertial measurement unit

inplane = projection of target unit vector into plane formed by the

position vector and the relative velocity vector

lat = direction perpendicular to the plane formed by the position vector

and the relative velocity vector

lift = lift term

lim = limiting value or boundary

LID = lift-to-drag ratio

max = maximum

min = minimum

nom = nominal

perpen = direction perpendicular to the plane formed by the position vector

and the relative velocity vector

pole = direction of the north pole

R = direction of the position vector

si = sea level

std = standard value

t = target aim point

p = atmospheric density
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SUPERSCRIPTS

EF = coordinatized in Earth-fixed coordinates

imu = value measured by inertial measurement unit on current cycle

imu past = value measured by inertial measurement unit on past cycle

A = estimated or measured

= value from previous guidance cycle
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1.0 INTRODUCTION

Routine access to space and the maintenance of a Space Station will increasingly

require greater flexibility in mission planning and the requirement for lower system mainte-

nance costs. The launch and recovery phases of space flight have historically been the

most demanding phases of space flight and therefore require the most development effort

and investment. Mission flexibility requires more frequent launch and deorbit opportunities.

For the case of re-entry vehicles, deorbit opportunities are defined by the ranging capability

of the vehicle. A high L/D vehicle increases the available deorbit opportunities increasing

mission flexibility. High L/D vehicles also are of interest for over-flight missions for the pur-

pose of reconnaissance.

Entry guidance algorithms developed to date have been highly vehicle-specific and

required great development and maintenance efforts over the life of the vehicle. These algo-

rithms were not applicable to other vehicles without extensive modification.

This study seeks to design an adaptive entry guidance algorithm that maximizes the

usable footprint by making full use of the available vehicle capability. This algorithm should

also be easy to maintain throughout the vehicle definition phase and operational life. Mini-

mizing the number of mission-dependent input parameters (I-loads) is desirable. The algo-

rithm should also be easily transported to other vehicles to minimize development cost.

Transportability is accomplished by minimizing vehicle-specific features of the algorithm.

Explicit heat rate control should be provided to allow full use of the entry corridor up to the

heat rate limits.
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This study seeks to design such an algorithm. A candidate entry guidance algorithm is

defined for the NASA Entry Research Vehicle (ERV), but is easily adapted to other vehicles

with minimal modification. The proposed algorithm attains almost complete coverage of the

achievable footprint, while employing a simple one-phase entry algorithm with explicit heat

rate control. Vehicle-specific features and I-loads are minimized, reducing algorithm devel-

opment and maintenance costs.

The ERV [1] is a proposed high-performance entry vehicle designed as a test bed for

future technology development in the areas of:

1. Maneuvering entry/synergetic plane change

2. Atmospheric uncertainties

3. Advanced thermal protection systems

4. Aerodynamic/aeroheating prediction

5. Adaptive guidance and navigation

6. Load-bearing thermostructures

The ERV is designed for deployment from the Space Shuttle, after which the ERV enters the

atmosphere for demonstration of the synergetic plane change, over-flight, and entry mis-

sions. Figure 1 on page 78 shows a three-view drawing of the ERV and the surface areas of

the aerodynamic control surfaces. Also seen is the size of the ERV in relation to the diam-

eter of the Shuttle payload bay in which the ERV must'fit.
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2.0 MOTIVATION

2.1 INTRODUCTION

The goal of any entry guidance algorithm is to successfully guide the vehicle to the

desired final state for the largest range of dispersions possible without violating any vehicle

constraints while also maximizing the achievable footprint. It is also desirable to minimize

the mission and vehicle-specific aspects of the guidance algorithm so as to minimize pre-

mission analysis and planning. Transportability of the algorithm from one vehicle to another

significantly reduces guidance algorithm development effort and cost.

To maximize the footprint attainable, the guidance algorithm must follow the optimal

path to any particular point in the footprint. The algorithms developed to date for such vehi-

cles as the Apollo capsule [2] and the Space Shuttle [3] have attempted to do this by fitting

the optimal trajectory with phases that follow important parameters (reference profiles) over

some range of conditions. These guidance algorithms were required to be computationally

efficient because of the limited on-board computer resources available. Analytic

expressions for the reference profiles allowed for low execution time and tailoring of the tra-

jectory for vehicle-specific constraints. For example, trajectories for these vehicles had to

be shaped to reduce and control the maximum heat rate experienced below that allowed for

the available thermal protection system materials.
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The Space Shuttle entry guidance system employs three major modes with seven phas-

es:

1. Entry

a. Pre-entry

b. Temperature control

c. Equilibrium glide

d. Constant drag

e. Transition

2. Terminal Area Energy Management

3. Approach and Landing

Except for the pre-entry phase which is open-loop, each phase is described by an analytic

expression relating the desired drag and altitude rate (the measured feedback terms used)

to the desired profile. Because the algorithms are tailored for a particular vehicle and the

reference profiles do not follow the optimal profile to all points in the footprint, guidance

algorithms developed to date can not be easily adapted to other vehicles or provide full cov-

erage of the theoretically achievable footprint.

The next generation of entry vehicles will not be so constrained due to advances in ther-

mal protection system materials and computer technology. For example, flight computers

are now capable of supercomputer speeds on the order of 40 million instructions per second

utilizing parallel processing architecture [4]. A different approach to guidance that attempts

to follow an optimal profile to maximize footprint capability is therefore possible.

The proposed approach is a predictor-corrector algorithm that numerically predicts the

final state for a particular control variable history and then corrects the control variable his-

tory to satisfy the specified final state constraints. This approach, proposed previously for
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various guidance problems, has most often been impractical because of the long trajectories

that must be predicted and the slow computer speeds.

Such an approach has been employed for the Space Shuttle Powered Explicit Guidance

(PEG) [5] used for second stage ascent and orbit insertion burns where the trajectory is

short enough to be predicted with the available computer resources. The Shuttle algorithm

numerically predicts the gravitational effects during the powered flight phase with a 10 step

integration of the 500 second trajectory.

A predictor-corrector has also been proposed for Aerobraking Orbital Transfer Vehicles

(AOTV) [6] which would utilize more advanced computers. This algorithm numerically inte-

grates the equations of motion along a skimming trajectory through the upper atmosphere

that is approximately 500 seconds long and requires about 100 integration steps.

The trajectories flown by the ERV or any high L/D entry vehicle are typically from 30 to

100 minutes long from entry interface (400K feet) to landing, so the computational demand

for such an algorithm is very gruat early in the entry when the time to landing is long. How-

ever, because the entry is long and the vehicle has excess ranging capability for all but a

small region along the edge of the footprint, the accuracy of the early predictions need not

be as high as for the later predictions. Hence, large time steps can be used early in the pre-

dictor algorithm. Later, when the vehicle nears the landing site, the time remaining is short,

and hence, the prediction is short. This allows the predictor-corrector to be executed more

often near landing just like the current analytic algorithms. Throughout the entry, vehicles

using an analytic guidance algorithm with reference profiles must closely follow the refer-

ence profile if the assumed reference profile is to guide the vehicle to the correct final state.

A predictor-corrector effectively recomputes a new reference profile each time it is executed,

so the guidance execution rate can be much lower than that for analytic algorithms.
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2.2 DISPERSIONS

Before the guidance algorithm can be designed, the possible dispersions that may affect

the trajectory must be considered. The Shuttle entry guidance system is required to reach

the Terminal Area Energy Management (TAEM) interface with less than a 2.5 nautical mile

position error from the target aim point. The dispersions of significance to an entry vehicle

trajectory include:

1. Vehicle characteristics

a. Mass

b. Aerodynamics

c. Maneuver rates

2. Environment characteristics

a. Atmospheric density

b. Atmospheric winds

c. Atmospheric properties influencing aerodynamic flow regimes (temperature,
mean free path, etc.)

3. Initial entry state vector

a. Velocity

b. Flight path angle

c. Heading

4. Propagation errors in navigation state vector

Of these potential dispersion sources, only the vehicle mass, aerodynamics, and the

atmospheric density and winds will be significant. By the early 1990's, almost perfect navi-

gation can be expected through use of the Global Positioning System (GPS). If the deorbit

burn guidance and control systems are assumed to correctly guide to the navigated state
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and there are no navigation errors, then the dispersions in the initial entry state vector are

negligible.

The vehicle mass should be known accurately, so for this study, a 3 error of +5% is

assumed. Experience from the Space Shuttle program shows that the vehicle aerodynamics

should be known to within +5% for the force coefficients on the first flight. Only the stability

derivatives and control effectiveness were missed significantly [7]. Even though the force

coefficients may be known to excellent accuracy, reduced control effectiveness can reduce

the possible trim angle of attack range reducing the maximum L/D achievable. Therefore,

for this study, a +10% dispersion in the lift and drag coefficients is considered. It should be

noted that the first few flights of a new vehicle are usually targeted to the middle of the foot-

print to maximize margin and allow for accurate determination of the vehicle characteristics

before the full ranging capability of the vehicle is used. After the first few flights, the aero-

dynamic characteristics should be known to within a few percent, so only about a +3% dis-

persion must be considered.

The atmospheric dispersions were obtained from two sources. Reference [8] specifies

the atmospheric dispersions to which aerospace vehicles must be designed. The average of

the steady state winds at four geographic locations is shown in Figure 2 on page 79. This

model was incorporated into the simulator environment with a magnitude scale factor to

simulate less than worst-case winds. The wind direction was selected for each run made

with winds and held constant throughout the trajectory. Reference [8] specifies Reference

[9] as the source for atmospheric density dispersions. However, the recent Shuttle flights

have provided estimated density data of a quality never before available. Atmospheric den-

sity profiles derived from Shuttle accelerometer measurements of the normal force acceler-

ation and the estimated normal force coefficient and relative velocity vector are presented in

Reference [10]. Figure 3 on page 80, taken from that report, shows the envelope of the
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derived density profiles for the first 12 Shuttle flights. Of particular interest is the range of

dispersions seen: -47% to +12%. Figures 4 on page 81 and 5 on page 82 show the density

profiles for the STS-1 and STS-9 Shuttle flights. High frequency density shear components

and constant density biases from the standard atmosphere are seen. For this study, con-

stant density biases of +30% and the Shuttle derived density profiles from Reference [10]

were used.

2.3 REFERENCE TRAJECTORIES

The size of the footprint for a particular vehicle is determined by the range in vehicle

L/D and the constraints placed on the trajectory such as heat rate limits. The edges of the

footprint correspond to the use of maximum or minimum UD. Maximum downrange or

crossrange, for example, requires maximum L/D, while minimum downrange requires mini-

mum L/D.

The determination of the optimal angle of attack and bank angle control histories for

maximum crossrange and downrange has been the topic of many papers [11] [12] [13] .

Wagner [12] used several optimization techniques to evaluate the maximum crossrange

achievable for a multiphase bank angle history flown at maximum ULD. The multiphase bank

profiles considered are shown in Figure 6 on page 83. It is seen that as the number of phas-

es increases, the multiphase profile approaches the optimal continuous profile also shown in

this figure. It was determined that a three-phase bank angle profile as illustrated in Figure 6

achieved almost the same crossrange as a continuous bank profile. This is shown in

Figure 7 on page 84 reproduced here from that paper. Further, as the number of phases
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increases, the optimum bank angle profile approaches a continuous profile that is almost lin-

ear with velocity as shown in Figure 8 on page 85. It was also hown that flying at the maxi-

mum L/D maximizes the crossrange attained.

This result is confirmed in Reference [13] which utilized a nonlinear programming tech-

nique to optimize the Space Shuttle trajectory for the maximum downrange and maximum

crossrange cases. The maximum downrange trajectory requires flying at zero bank angle

and at the angle of attack corresponding to maximum L/D as shown in Figure 9 on page 86.

The control histories for the maximum crossrange case are shown in Figures 10 on page 87

and 11 on page 88. Again, the optimal control history is the angle of attack corresponding to

maximum L/D and an almost linear bank angle profile with velocity.

Optimized trajectories for the ERV were reported in Reference [14]. These trajectories

were determined using the Program to Optimize Simulated Trajectories (POST) [15] and

imposed the following constraints on the trajectories:

1. Maximum heat rate of 125 BTU/sq ft/sec

2. Maximum heat load of 150K BTU/sq ft

The achievable footprint with these constraints, reported in Reference [14], is shown here in

Figure 12 on page 89 . Subsequently, the heat load limit was increased to 175K BTU/sq ft

resulting in the larger footprint shown in Figure 12. As will be seen, these footprints omit a

large area in the minimum downrange region that is achievable within the heating con-

straints. Also shown is the footprint of the Space Shuttle which has a maximum hypersonic

UL/D of 1.2 as compared with 1.8 for the ERV.

Figure 13 on page 90 shows the altitude history for the maximum downrange, maximum

crossrange, and minimum downrange cases. Figures 14 on page 91 and 15 on page 92
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show the bank angle and angle of attack histories for these trajectories. Figures 16 on page

93 and 17 on page 94 show the heat rate and heat load histories for these cases.

Figure 15 shows that the constant angle of attack corresponding to maximum L/D is

flown for the edge of the footprint except for the minimum downrange case. For the mini-

mum downrange case, the angle of attack corresponding to the minimum L/D on the back

side of the L/D curve (high drag coefficient) is flown early, followed by a ramp in angle of

attack starting at 1500 seconds after entry interface. This ramp corresponds to the vehicle

actually turning around and flying slightly back uprange, so maximum L/D is desired later to

maximize the distance flown uprange.. The angle of attack for the maximum downrange

case is slightly greater than that for maximum L/D because this trajectory exceeds the heat

load limit f flown at maximum L/D. The maximum downrange region of the footprint Is

therefore limited by the heat load limit set for the ERV. If the limit were relaxed, flight at

maximum L/D would allow a longer downrange trajectory.

Figure 14 shows that the bank angle profile for maximum crossrange is approximately

linear with time which is almost linear with velocity, which suggests that a linear bank angle

profile with velocity is sufficient. The maximum downrange case has a constant bank angle

of zero which is again linear with velocity. The minimum downrange case does not have a

linear bank profile. As was mentioned previously, for this case, the vehicle turns around and

flys back uprange.

The results of these studies suggest that use of a constant angle of attack profile and a

linear bank with velocity profile will capture a large portion of the achievable footprint. As

will be seen in the results, these profiles suffice to capture most of the footprint reported in

Reference [14] and additionally reach a large area in the minimum downrange region out-
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side the reported footprint. Only a small area of the reported footprint in the minimum

downrange region is unachievable.

Also of interest are the peaks in heat rate seen in Figure 16. Because the peaks in heat

rate are very short, explicit control of the heat rate should be possible in the maximum heat

rate regions without significantly impacting the giidance.

2.4 GUIDANCE APPROACH

The guidance design will attempt to maximize the size of the footprint while flying a con-

stant angle of attack profile and a linear bank angle with velocity profile. The predictor algo-

rithm integrates the equations of motion forward in time using the assumed control profile

and the necessary environment and vehicle models. The corrector then determines (using

multiple predicted trajectories with various control histories) the sensitivities of the final

state constraints to the control variables. The sensitivities are then used to compute the

required control variable values to reach the desired final state conditions. Heat rate control

is provided locally during the regions of maximum heating without significantly affecting the

assumed control histories. Also, in-flight measurements are utilized to increase the accura-

cy of the predicted trajectories by compensating for off-nominal conditions.

Such a simple profile for the maximum downrange and crossrange cases simplifies the

modeling of the control histories in the predictor. The only remaining question is how much

of the footprint this profile will capture. As will be seen in Subsection "4.2 Open-Loop
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Footprint" on page 57, such a profile achieves almost complete coverage of the achievable

footprint.

Also of concern is the linearity and convergence properties of the final state constraints

with the control variables. As will be seen, over almost all of the footprint except near the

edges, the constraints are highly linear and convergent with the control variables. Opera-

tionally, only about 75% of the achievable footprint is used to nsure guidance margin.

Thus, the question of nonconvergence near the edges is avoided.
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3.0 GUIDANCE DESIGN

3.1 INTRODUCTION

This section describes the mplementational details of the guidance scheme described

In the previous section. The equations of motion and environment and vehicle character-

Istics modeled in the predictor algorithm are described. The corrector algorithm to control

the final state constraints with the two available control variables is derived. Also derived

are the heat rate control and in-flight measurement algorithms. The heat rate control algo-

rithm provides control of the peaks in stagnation heat rate during the early portion of entry.

The in-flight measurement algorithm utilizes accelerations measured by the navigation sys-

tem to more accurately model the expected environment and vehicle characteristics in the

predictor algorithm. Because the predictor-corrector algorithm is computationally intensive,

areas where significant execution time savings have been or can be realized are ndicated.

Program listings of the algorithm coded in the HAL/S computer language are presented in

"Appendix B. ALGORITHM PROGRAM LISTINGS" on page 135.

As will be seen, the only inputs to the guidance system are the environment and vehicle

models, the assumed control profiles, and the navigated state vector. The state vector is an

input to any guidance system. The other inputs are developed for the analysis of any new

vehicle. Therefore, the guidance system is highly transportable between vehicles because

only the vehicle characteristics and aerodynamics model must be changed for a new vehi-

cle.
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3.2 UNIT TARGET VECTOR

The target aim point to which the vehicle is to be guided is specified by the longitude

and geodetic latitude of the Terminal Area Energy Management (TAEM) interface point which

occurs at 80K feet for the Shuttle. This point is selected based on the guidance algorithm

employed during the TAEM guidance phase. TAEM guidance provides precise control of

vehicle energy during the final stages of entry to guide to a specified runway with acceptable

energy. For computational ease, the longitude and geodetic latitude are converted to a tar-

get unit vector in Earth-fixed coordinates by first computing the geocentric latitude from,

= tan ( tang) ) (1)

where,

k R= =Rator 2 (2)

The unit target vector is then computed from,

cos(q5) cos(i.)

jEl = /cos(o) sin(A) (3)
L sin(&,c)

Alternatively,
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(4)

where,

where,

i, = sin(tb,)

i, = cos(A) /1 - i

i, = sign(A) /1-ix-i2

3.3 COMMANDED ATTITUDE COMPUTATION

(5)

(6)

(7)

Because the predictor can not be executed as frequently as analytic guidance algo-

rithms early in the entry, and because it in fact does not have to be executed as frequently,

it is necessary to update the commands sent to the vehicle autopilot more frequently than

the predictor-corrector execution rate. Typically, this would be done at the rate of current

analytic guidance algorithms, e.g., the Space Shuttle rate of .52 hz. The commanded bank

angle, ,,, is computed for the linear bank with velocity profile as shown in Figure 18 on

page 95 from the desired bank angle, Ad, and the current navigated inertial velocity magni-

tude, V,,

(8)
V, - V,

vEI - Vf
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to yield the near-optimal linear bank with velocity profile. The desired angle of attack con-

trol history is a constant angle of attack, and therefore,

acmd = ad (9)

As implemented in the current design, the guidance algorithm executive is executed at 1.0

hz. The attitude commands are updated at this frequency using Eq. (8) and (9) . The pred-

ictor-corrector algorithm is executed at .02 hz. during the entire entry phase, although it is

practical to run it much more frequently late in the trajectory when the length of the trajecto-

ry to be predicted is short. The possible execution rate of the predictor-corrector for a typi-

cal flight computer is addressed in Subsection "4.8 Algorithm Execution Time" on page 66.

3.4 CORRECTOR ALGORITHM

The corrector algorithm is executed to update the commanded attitude control history to

be flown. The guidance algorithm controls to two final state constraints, downrange error

and crossrange error, using two control variables, a constant angle of attack and the inter-

cept of the bank profile at the entry interface velocity as shown in Figure 18 on page 95 and

expressed in Eq. (8) .

Expanding the downrange and crossrange errors in a Taylor series expansion of the

control variables and neglecting the second-order and higher terms yields,

OR , aDR,
ADR, = DR Ad + +... (10)

a, d and
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A CRe aCR + a d +
and +

(11)

To intercept the target, the change in the constraint errors must null the predicted errors, or,

ADRe

A CR,

= -DR,

-CR,

(12)

(13)

Equations (10) through (13) provide a set of two simultaneous equations in two unknowns,

aDR, ODR, e

a1d ° 4radl
aCR, aCR LA dj

aad a d

which are solved for the control variable changes required,

DR,
= ( 0 CR, -

od

= (,RDR -
O°%J

DR,) / detCR)I de
aDR, CR) / det
Od

where det is the determinant of the matrix in Eq. (14).

(15)

(16)

The partial derivatives are approxi-

mated by finite difference equations of the form,

DRe(0d = 3) - DR,(bd = ,)
(17)

There are four partial derivatives that must be evaluated. They can be evaluated from three

predicted trajectories with control histories selected as:
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1. C, = a, d1 = (d

2. a42 = a'd + ad, 02 = 'd

3. a3 = C'd, 3 = d + 6 d

where the primes denote the control variables from the previous guidance solution. The

new guidance commands are then,

ad = a'd + Acd (18)

=d = O'd + Ad (19)

Protection must be provided for the.case where the determinant in Eq. (15) and (16) is

small or identically zero which corresponds to a loss of control authority of the control vari-

ables over the control constraints. In this case, no change is made to the control variables,

and the guidance command from the previous cycle is used. As the vehicle approaches the

TAEM interface altitude, the control authority decreases. Large control variable changes

become necessary to null the constraint errors in the short flight time remaining. This prob-

lem can be avoided in one of two ways. First, the guidance commands can be frozen at a

selected point before the termination altitude. For entry guidance, this approach is not pre-

ferred because the vehicle still has not landed. Alternatively, the target aim point can be

lowered below the TAEM interface altitude point at which TAEM guidance is activated. The

decreasing control authority problem is therefore reduced.

For the simulated trajectories in this report, the first approach is employed because it is

desired to evaluate guidance performance by considering the dispersions in the final state at

the TAEM interface altitude. Because the guidance algorithm controls only the final state

and not the intermediate states, it is necessary to target for the point at which the guidance

is terminated.
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3.5 PREDICTOR ALGORITHM

3.5.1 Introduction

The predictor algorithm is a simplified three-degree-of-freedom (3-DOF) trajectory simu-

lator complete with models for those environment and vehicle characteristics necessary to

model the translational equations of motion of the vehicle. Because the predictor is compu-

tationally intensive, the algorithm must be carefully designed to minimize computation, and

the coding of the algorithm in a particular computer language should make use of any lan-

guage-specific features to reduce computational requirements. Also, because the corrector

only utilizes the final state vector errors to correct the control variables, only the accuracy of

the predicted final state vector need be considered in selecting those effects to be modeled.

The environmental effects of concern for the long trajectories flown by entry vehicles

over large altitude and velocity ranges are:

1. Variation of atmospheric properties with altitude

2. Earth oblateness effect on gravity vector

3. Effect of atmospheric rotation with Earth on relative velocity vector

4. Movement of runway due to Earth rotation

The vehicle characteristics of importance are:

1. Vehicle mass

2. Aerodynamic coefficient variation with flight regime

3. Aerodynamic coefficient variation with angle of attack

4. Control history during trajectory

Dispersions to be considered are:
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1. Vehicle mass variation from nominal

2. Winds

3. Atmospheric density variation from nominal atmosphere

4. Aerodynamic coefficient variation from nominal

These dispersions can be measured in-flight because they affect the sensed acceleration

measured by the vehicle's inertial navigation system. The estimation of these dispersions is

discussed in Subsection "3.6 Estimators" on page 48.

The predictor performs the following computations upon being called by the corrector

with a desired control variable history:

1. Initialize the predictor state to the navigated state vector

2. Compute any ancillary parameters from the state vector

3. Compute the total acceleration vector from the predictor state vector and the envi-
ronment and vehicle models using the control variable profiles specified by the cor-
rector

4. Integrate the equations of motion forward in time one time step

5. Check the predictor termination conditions

a. Repeat steps 3 and 4 if the conditions are not met

b. Continue on to step 6 if the conditions are met

6. Compute and return to the corrector the final predicted state errors from the target
state vector and the predicted final state vector

3.5.2 Equations of Motion

The corrector provides a time-homogeneous navigated state vector comprised of,

1. The GMT time tag of the state vector, tGwr

2. The inertial position vector, R,

3. The inertial velocity vector, V,
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Also provided is the control variable history to be followed for the prediction. The equations

of motion to be integrated are,

d R,

dt (20)'IVl

dV, 
= A,dt

The acceleration is computed from the atmosphere and vehicle models as follows,

F, -~ -
A, - m = g, + aaeo

The gravitational acceleration, g,, is computed including the J2 term as,

(21)

(22)

9g IR, 12

JR, 2

where,

3 Rquat,
Ig = 'R + - J2 ((15 2) iR + 2 z ipoe)

2 ,IRI
2

and,

Z = R Ipole

The aerodynamic acceleration, a,,o, is computed from,

aaero =- alf ift + adr,ag drag

where,

CL, q S
a,,,t m
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(24)

(25)

(26)
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adag = m (28)

-- P Vz (29)

q = vVRV (30)= * VR VR(30)

VR = Vl - ,,eanrXR. (31)

idrag = (32)
I v

ilift = (idra X i,) cos(k) + ia sin(X) (33)

IR X drag

h,, = (34)

I R X idrg I

jR = (35)

IR, I

The acceleration due to lift, a,,ft, is more easily computed from,

a,,f = L a, (36)

since the nominal lift-to-drag ratio, L/D, is corrected using in-flight accelerometer measure-

ments of the actual vehicle sensed aerodynamic accelerations.

The atmospheric density, p, is computed by the atmosphere model using the position

vector, R.. The 1962 U.S. Standard Atmosphere model is employed and is described in Ref-

erence [16]. If another atmosphere model is selected as being a more accurate estimate of

the day-of-flight atmosphere, this model would replace the 1962 U.S. Standard Atmosphere

model. An operational vehicle might employ monthly or seasonal atmospheres from such
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sources as the GRAM Atmosphere [9] or even day-of-flight measurements to more accu-

rately model the expected atmosphere in the predictions. The level of accuracy required in

the atmosphere model will depend on the vehicle ranging capability and the amount of that

capability to be.used for a particular entry. Entries to the edges of the footprint will demand

a very accurate atmosphere model.

The aerodynamic coefficients are highly vehicle dependent. To minimize computational

requirements, they should be updated during the prediction as infrequently as possible. Of

course, the update frequency required depends on the trajectory flown and the rate of

change of the aerodynamic coefficients with flight regime change. The aerodynamic coeffi-

cient model for the ERV is presented in "Appendix A. ERV AERODYNAMICS MODEL" on

page 133.

The density, p, from the atmosphere model and the lift-to-drag ratio, L/D, from the aero-

dynamic model are both corrected by in-flight measurements as covered in Subsection "3.6

Estimators" on page 48. The estimated dispersions are compensated for using the following

equations,

p = Kp Ptd (37)

KL CL) (38)
D 6 Co

where the density and lift-to-drag ratio scale factors, Kp and KL, are provided by the estima-

tor and are held constant throughout the prediction being made.

The control history to be followed is the constant angle of attack, ad, and the linear bank

angle with velocity, . The latter is computed from,
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VI -VI
~b -~d (39)

VE,- V,

where d is the intercept of the linear bank angle profile at the entry interface velocity, VE,.

Because the entry interface and final velocities are not known a priori, and because small

variations in them have little effect on the predicted trajectory compared with the selected

control variables' values, the velocities are selected as constant values that cover all

expected dispersions in the entry and final velocities. These values are,

VE, - 26,000 ft/sec

Vf = 1,000 ft/sec

3.5.3 Integration of the Equations of Motion

The equations of motion are integrated using the 4th order Runge-Kutta algorithm with a

variable time step to minimize the number of time steps required to integrate the trajectory

to the final state. The 4th order Runge-Kutta algorithm requires four evaluations of the

acceleration per time step, but permits a time step more than four times as large as an algo-

rithm requiring only one acceleration evaluation per time step. The Runge-Kutta solution

[17] for the differential equations of motion of the form,

dRI
d t V, (40)dt

dV f(t, R V) (41)

is,
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-'(+ -')+ 4 t --R,(t + At) = R,(t)+ - 6 (Ko 2K + 2 K + K,)2 + )

V,(t + At) = V,(t) + 6t (K'o +6
2K' + 2K'2 + K'3)

where,

Ko = V,

_~ - K'
K, = (V, + 2-)

K2 = (V, + 2 )

K3 = (Vt ± K )

K' = f(t, R V,)

K' = f(t + 2 ' RI
2

K'2 = f(t + 2 R2'

+ At 2'

+ At K1

~ ~ K'
V, + At 2

K' 1V, + At )
2

K' 3 = f(t + At, R. + At K2, V, + At K'2) (51)

The time step is varied inversely with the total acceleration on the vehicle. This method

of time step control was selected because of its simplicity. The time step control equation is

of the form,

KA,
At = _ (52)

IA, I
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(47)
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(50)
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and the time step is limited between a minimum and maximum value,

At = midval(Atm,,, At, tma),, (53)

The optimization of the integration algorithm is important in developing a flight quality

algorithm, but is beyond the scope of this study. Higher-order integration algorithms with

time step control methods [17] may yield significant reductions in the required computation

time.

3.5.4 Termination Conditions for the Predictor

After each integration time step, the predicted state is compared with the termination

condition. The termination condition is defined by the altitude of TAEM interface (80K feet).

Because the predicted state at the TAEM interface altitude may have a relatively large alti-

tude rate and range rate, the predictor must be terminated accurately to provide an altitude-

homogeneous set of predicted state errors. Also, the variable time step control may allow

large integration time steps if the acceleration is low near the final state, further complicat-

ing the task of terminating accurately. Reasonable altitude homogeneity is ensured by forc-

ing use of the minimum integration time step starting some safe altitude above the

termination altitude.

3.5.5 Final State Error Computation

The final state errors are computed from the unit target vector and the predicted final

state vector. Because the target is fixed to the Earth and moves a significant distance dur-
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ing the long entry trajectory, the rotation of the Earth must be considered. This is done by

transforming the final state vector from inertial to Earth-fixed coordinates with the rotation

matrix MEf which is computed from the predicted termination time, the known orientation of

the Earth at some epoch time, and the known rotation rate of the Earth. This computation is

performed in the Earth-Fixed-From-Reference subroutine of the predictor-corrector which

may actually be a GN&C utility function also employed by the navigation principal function.

The downrange and crossrange errors are defined as shown in Figure 19 on page 96.

The errors are computed by first computing the downrange (in-plane) and crossrange (per-

pendicular) directions as follows,

RIF = MF R (54)

REF
I= E(55)

5 REF J

VR = M V (56)

EF VEF
/een - (57)I. x V l

EF X EF 'EF 'EF

'F · (t Iperpen) perpen (58)
mplar'e - _ 

|j:F _ (t:F _ iEeFrpen) ierpen

The downrange and crossrange errors are then,

DRe = Requator COs 1(i X iE,ane) sign((iR F x ipa,,ne) ·i/pen) (59)

CRe = Re Cs (Ip/ene ijF) Sign((,Ep/ane X itEF) (peFrpen X ,nF e)) (60)
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These errors have the dimensions of R,,,,tor and are converted to nautical miles for ease of

interpretation.

3.5.6 Algorithm Coding

A few comments regarding implementation of the predictor are appropriate. The com-

putations required to update the aerodynamic coefficients are the major computational load

for the predictor. It was found that it is not necessary to update the aerodynamics on each

of the four acceleration evaluations of the 4th order Runge-Kutta algorithm. They are there-

fore only evaluated once each integration time step. The computational load could be

reduced further if they are only updated when the independent variables (altitude, viscous

interaction parameter, and Mach Number) change by a significant amount from the previous

update. Also, although not done in this implementation, the aerodynamic coefficients should

be curve-fit if possible to avoid a table lookup and interpolation implementation. It is noted

in Figures 20 on page 97 and 21 on page- 98 that the aerodynamic coefficients do not change

very much below 300K feet until the Mach Number decreases below 2, so perhaps, two

tables or curve-fits would suffice instead of the thirty tables currently used.

3.6 ESTIMATORS

The final state predicted by the predictor algorithm for a particular control history is a

function of the assumed environment and vehicle characteristics. The accuracy of the pre-

dicted final state can be increased, and hence, the guidance margin increased, if in-flight
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measurements are utilized to make the assumed models more accurately reflect the condi-

tions actually experienced by the vehicle.

The accelerations modeled in the predictor are due to gravity and the aerodynamic forc-

es. The gravity acceleration can be modeled to sufficient accuracy using standard gravity

models. However, the aerodynamic accelerations are subject to significant variations due to

uncertainties in the atmospheric density, atmospheric winds, vehicle aerodynamics, and

vehicle mass. These uncertainties can be compensated for in the predictor by applying a

multiplicative scale factor to the lift and drag accelerations modeled in the predictor that is

equal to the ratio of the actual accelerations experienced to the predicted accelerations at

any point in the trajectory.

The measured lift and drag accelerations are derived from the inertial measurement

system sensed acceleration assuming a zero sideslip angle as follows,

A ^ - VR
adrag = -a, (61)

IVRI

a,, = a, a, - ad,o9 (62)

where the inertial acceleration, a,, is computed by back-differencing the accumulated sensed

velocity counts from the inertial measurement unit,

V;mu - V;mu paW

a, = (63)

In the predictor, the aerodynamic accelerations are,

C S 1 2adrg - mS 2 P V (64)
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a,,t D a a (65)

Data from the Shuttle program [10] shows that the primary dispersion affecting the

aerodynamic acceleration is in the atmospheric density. Further, over large altitude ranges,

this dispersion can be modeled to an accuracy sufficient for the prediction process as a con-

stant multiplicative bias. Therefore, for implementational purposes, the dispersion in the

aerodynamic accelerations due to the atmospheric uncertainties will be lumped into a densi-

ty scale factor as follows,

P
K = (66)

P Pstd

where,

A
A 2 adrg m (67)p = k~2a/ ,,o, ,

and the values for the nominal vehicle characteristics and the nominal atmospheric density

are determined using the predictor models for the vehicle state at the time of the measure-

ment. Because the nominal ballistic coefficient is assumed in deriving the measured densi-

ty, and the measured acceleration is due to the actual ballistic coefficient, uncertainties in

the ballistic coefficient will be reflected in the measured density. The equation for the drag

acceleration in the predictor is then,

adg = (co ) 2 VRKp Pptd (68)

or substituting for Kp from Eq. (66) yields,

ad.. (cmS) 1 V2 A (69)

Substituting for p from Eq. (67) then yields,
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A
ado = ad..g (70)

so the modeled drag is corrected for the dispersed drag coefficient, density, relative velocity,

and vehicle mass.

In general, the measured drag acceleration is a noisy signal and will exhibit short term

variations due to short lived local atmospheric dispersions [10]. Filtering of the density

scale factor is therefore necessary and is implemented using a first-order filter,

A

Kp = (1-K) Kp + K, P
P P std

(71)

which has a time constant , r,, of,

=At (
P In(1 -K)

where At is the sample rate of the measured drag acceleration, and K, is the filter gain.

similar lift-to-drag ratio scale factor is derived and applied to the lift acceleration,

a,,ft = K L () adrag (7
D D nom dra

where,

KL = (7

72)

A

'3)

4)
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and,

A A
a,

adrag

Again, filtering is necessary,

A

KL = (1-K 2 ) KL + K2
D ( )D ( nom

yielding a time constant, L, of,

AtZL = -- __ A
' In(1 - K2)

(75)

(76)

(77)

A time constant of 25 seconds was selected for both the density and UD filters. This value

filtered out the high frequency density shear components seen in the Shuttle profiles while

still providing adequate response to long term disturbances.

3.7 HEAT RATE CONTROL

The primary trajectory constraint on entry vehicles is the maximum heat rate the vehicle

can withstand. In general, the thermal protection system material is selected to withstand
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the maximum local heat rate on any particular portion of the vehicle, and the material thick-

ness is selected to withstand the total integrated heat load ocer the trajectory. Accurate

pre-flight predictions of the expected heat rate during entry can significantly reduce the ther-

mal protection system weight yielding significant performance increases for an entire mis-

sion.

Inspecting the reference trajectories in Figure 16 on page 93 shows that sharp peaks in

the heat rate occur. If these peaks are accurately controlled, and this control can be accom-

plished using only short term departures from the predictor assumed control history, no sig-

nificant departure will occur from the desired trajectory.

Heat rate control can be accomplished using either angle of attack, bank angle, or a

combination of both. Of these, bank angle alone is preferred because a constant angle of

attack trajectory is assumed and because angle of attack changes the vehicle drag coeffi-

cient resulting in a rapid change in energy rate and a rapid departure from the desired tra-

jectory. Also, most entry vehicles restrict the angle of attack range during maximum heat

rate regions to reduce the area on the vehicle that must be protected from the high heat

rate. Although the ERV does not need to restrict the angle of attack range, and hence, the

guidance does not provide for such a capabilty, the restriction can be handled by replacing

the constant angle of attack control history by a reference angle of attack control history

about which a constant angle of attack bias is applied for control.

Heat rate control is accomplished by computing the incremental bank angle required to

fly along the specified heat rate boundary (assumed to be a constant heat rate for any flight

regime) and then modulating bank angle according to the guidance value or the guidance

value plus the incremental lift for heat rate control, whichever requires more lift up. Hence,

no effort is made to pull the vehicle down into the atmosphere to follow the heat rate bound--

53



ary; instead, lift up is applied if the vehicle is flying "too low". The incremental lift for heat

rate control is computed to provide a second-order control response as follows,

Kb . K .
cos(AO) = (- d (- m) (78)

q q

To fly along a constant heat rate boundary,

Qi, = constant (79)

and the desired rate of change of heat rate, Qd.., is,

(de = 0 (80)

so,

K,5 + K6
cos(AO) = _ Q + Q - C,,(81)

q q

The stagnation heat rate is determined using the Engineering Correlation Formula [18] for a

one foot radius reference sphere as,

(Q : 17700 -'p (0 0) (82)

The time rate of change of heat rate, Q, is determined by back-differencing the heat rate

between guidance cycles,

I =Q Qpast. (83)
At

The equations of moion assuming small flight path angle yield,

h = C ' SCOS() - g (84)
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Considering only the perturbations due to the incremental lift, cos(AO), from Eq. (81) yields,

m K-. + K ( - Qi,.) = 0 (85)

Proper selection of the gains K and K is accomplished by linearizing Eq. (85) in altitude

and assuming that the time rate of change of VR is small compared to the change in -.

With these assumptions,

= 17700 (V)3510000
d ph
dh

and,

-j = 17700 (i R)305
10000

d'I dh
dh dt

Therefore, the homogeneous second-order differential equation in altitude is,

h + K K h + K K h = 0

where,

m 17700 10000 dh

The natural frequency and damping ratio of the second-order differential equation are,

wn = A/K K6

K K-

2 co,

(87)

(88)

(89)

(90)

(91)

(86)

or alternatively, for a desired natural frequency and damping ratio, K6 and Kb are selected

as,
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K = n (92)

=K = (K (93)

The derivative in Eq. (89) can be evaluated assuming an exponential atmosphere of the form,

= p, e-(hlhs) (94)

yielding,

d 4p7 e- (h2 hS) (95)
dh 2 h,

This logic is contained in the guidance algorithm in the Heat Rate Control subroutine. The

incremental lift required for heat rate control is provided to the Attitude Command subrou-

tine which adds it into the guidance command if it requires more lift up than the guidance

command. This occurs when the incremental lift given by Eq. (81) is greater than zero,

cos(Aq) > 0 (96)

Appropriate values of the natural frequency and damping ratio were determined parametri-

cally as,

o, = 0.10 sad (97)sec

z; = 1.00 (98)
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4.0 PERFORMANCE

4.1 SIMULATOR

Open-loop and closed-loop entry trajectories were simulated for the Entry Research

Vehicle (ERV) using a derivative of the 6-DOF Aeroassist Flight Experiment Simulator (AFES-

IM) [19] developed at The Charles Stark Draper Laboratory which is coded in the HAL com-

puter language. For this study, the aerodynamic model described in "Appendix A. ERV

AERODYNAMICS MODEL" on page 133 and the wind model shown in Figure 2 on page 79

were incorporated into the AFESIM. The characteristics of the ERV [14] are listed in Table 1

on page 73. The entry conditions with which all trajectories were initialized are also listed in

Table 1 on page 73. Because only the performance characteristics of the guidance were

being evaluated, the simulator was operated in the 3-DOF mode.

4.2 OPEN-LOOP FOOTPRINT

Open-loop trajectories were run using the constant angle of attack and linear bank with

velocity profiles to determine the portion of the footprint achievable. All trajectories were

terminated at the TAEM interface altitude of 80K feet, so the footprint can be increased about

100 nautical miles in all directions due to the range flown below 80K feet.
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Figure 22 on page 99 shows the lift-to-drag ratio, L/D, for the ERV at Mach 10 versus

angle of attack, . It is seen that maximum L/D is obtained at an angle of attack of 15

degrees. It is desirable to fly on the back side of the L/D curve (angle of attack greater than

15 degrees) so as to maximize the drag coefficient for a given UD. This reduces heating by

causing a quicker loss bf velocity early in entry than flying at the same UD on the front side

of the L/D curve. The L/D versus angle of attack curve shows the same shape with the max-

imum L/D at 15 degrees for all flight regimes with only a variation in the magnitude of L/D

across the angle of attack range. Therefore, angle of attack is modulated between 15 and 50

degrees for the footprint with 15 degrees corresponding to maximum UD and 50 degrees

corresponding to minimum L/D.

The open-loop footprint is shown in Figure 23 on page 100. Also shown for comparison

is the reported footprint for a heat load limit of 175K BTU/sq ft (shown earlier in Figure 12 on

page 89). That footprint included the range flown below 80K feet, hence the slight differ-

ences. It is seen that almost the entire reportedly achievable footprint is captured with the

assumed control profile. Most importantly, all of the maximum crossrange region is reached

when the range flown below 80K feet is included. Also, most of the minimum downrange

region of the footprint was captured even though the control profiles used do not correspond

to the optimal profiles determined using POST and shown in Figures 14 on page 91 and 15

on page 92. Additionally, the footprint reported in Reference [14] does not include the large

area in the minimum downrange region that the open-loop trajectories reached. The small

area not reached in the minimum downrange region by the control profiles is relatively

unimportant because the downrange ranging capability of the vehicle can be adjusted by

changing the deorbit time. A vehicle in low earth orbit travels at about four nautical miles

per second, so downrange is easily adjusted while on-orbit.
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Because the predictor-corrector guidance algorithm will follow the same control histo-

ries as used to generate the open-loop footprint for a nominal trajectory, the guidance algo-

rithm can reach all of the open-loop footprint for nominal conditions. It is seen that the

achievable footprint is bounded by the heat rate and heat load limits imposed on the ERV.

At least an additional 2000 nautical miles of ranging capability in the downrange direction

exists if the heat limits are relaxed.

4.3 EFFECT OF DISPERSIONS ON FOOTPRINT

The effect of dispersions on the achievable footprint was determined by repeating the

open-loop trajectories with the dispersions discussed in Subsection "2.2 Dispersions" on

page 26. The worst-case (3a) dispersions are summarized in Table 2 on page 73. Table 3

on page 74 shows the dispersions in downrange and crossrange for three of the control his-

tories in the maximum downrange region of the footprint. It is seen that only variations in

the lift and drag coefficients cause significant dispersions in the final state. Also, it is seen

that the effect of a + 10% CL dispersion is the same as that of a -10% CO. dispersion. This is

expected because both dispersions cause the same increase in the vehicle L/D. The same

occurs for a -10% CL dispersion and a +10% C dispersion, both of which decrease the

vehicle UD.

The effects of the dispersions on trajectories to the maximum crossrange region of the

footprint are seen in Table 4 on page 75. Again, it is seen that aerodynamic dispersions

have the greatest effect. A dispersion that increases UD increases the range, while a dis-

persion that decreases UD decreases the range.
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Table 5 on page 76 shows the effects of the dispersions on the minimum downrange

region of the footprint. The worst-case range dispersions again occur for the aerodynamic

dispersions.

4.4 ESTIMATOR PERFORMANCE

Figure 24 on page 101 shows the time response of the density filter with a 25 second

time constant for the STS-9 atmosphere. This trajectory also has dispersions of +1.9% in

C, -3.2% in mass, and a 63.8% crosswind. Therefore, the filter output does not follow the

actual density dispersion also shown in the figure. When the acceleration level is below 0.07

g's, the measurements are not incorporated, so the filter is inactive before 300 seconds and

from 600 to 850 seconds. As the velocity drops, the wind becomes a greater contributor to

the measured density error, hence the divergence in the measured density ratio starting at

1000 seconds. Figure 25 on page 102 shows the response of the UD filter with a 25 second

time constant for a -1.9% CL and a +1.9% CO dispersion. Again, the winds affect the meas-

urement by creating errors in the navigated angle of attack, so the estimated UD ratio is

slightly in error.

The use of an air data system like the Shuttle Entry Air Data System (SEADS) could sig-

nificantly improve the estimation process by providing accurate estimates of the angle of

attack, atmospheric density, and wind magnitude and direction. More accurate estimates

will increase the guidance margin, thereby increasing the achievable footprint for dispersed

trajectories.

60



4.5 CLOSED-LOOP PERFORMANCE

Based on the results of the open-loop trajectories with dispersions, worst-case disper-

sions were selected for each of three regions of the footprint: maximum downrange, maxi-

mum crossrange, and minimum downrange. Closed-loop trajectories with the

predictor-corrector guidance algorithm were then run to the three regions of the footprint.

The three target points selected for the closed-loop performance evaluation are shown in

Figure 23 on page 100. The 3a errors defined in Table 2 on page 73 were scaled such that

the total error due to multiple error sources would still represent a 3 dispersion so as to

test the guidance system for reasonably probable dispersion cases [20]. To run all disper-

sions at their 3a levels would be unrealistic.

The nominal and dispersed results for trajectories to each of the three regions are listed

in Tables 6 on page 77 through 8 on page 77 . Plots of selected parameters from these

cases are included. Figures 26 on page 103 through 31 on page 108 present the altitude,

velocity, heat rate, heat load, downrange, and crossrange time histories for the nominal

maximum downrange trajectory. Figures 32 on page 109 through 37 on page 114 present the

altitude, velocity, heat rate, heat load, downrange, and crossrange time histories for the

nominal maximum crossrange trajectory. Figures 38 on page 115 through 43 on page 120

present the altitude, velocity, heat rate, heat load, downrange, and crossrange time histories

for the nominal minimum downrange trajectory. In each of these cases, it is seen that the

heat rate does not approach the heat rate limit, so no incremental bank angle is needed for

heat rate control.

The control histories for the nominal maximum downrange trajectory and the dispersed

case listed second in Table 6 on page 77 are presented in Figure 44 on page 121 and
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Figure 45 on page 122 . Figure 44 shows the angle of attack histories for the nominal and

dispersed maximum downrange cases. It is seen that a two degree change in angle of

attack is required early in the trajectory increasing to four degrees by the end of the trajec-

tory. Figure 45 shows the bank angle histories for the nominal and dispersed maximum

downrange cases. The bank angle required shows no change from zero degrees for this

case.

The control histories for the nominal maximum crossrange trajectory and the dispersed

case listed second in Table 7 on page 77 are presented in Figure 46 on page 123 and

Figure 47 on page 124 . Again, it is seen that a four degree change in angle of attack is

required for the dispersed case. The bank angle history shows no change for the dispersed

case from that of the nominal case.

The control histories for the nominal minimum downrange trajectory and the dispersed

case listed second in Table 8 on page 77 are presented in Figure 48 on page 125 and

Figure 49 on page 126 . For this case, approximately a one degree change in angle of

attack is required. No change is required in the bank angle profile.

The required change in angle of attack for each of the dispersed cases shown was pri-

marily due to the change in the vehicle UD as this was shown to be the primary dispersion

source in Subsection "4.3 Effect of Dispersions on Footprint" on page 59. The breaking point

of the guidance occurs when the vehicle does not have enough UD range to overcome the

loss in UD due to aerodynamic dispersions. As mentioned previously, the Shuttle entry gui-

dance algorithm was required to guide to the TAEM interface aim point to within 2.5 nautical

miles of position. The results presented for the nominal and dispersed cases show that this

requirement is met with the predictor-corrector guidance algorithm. Also, the trajectory

plots show that the algorithm achieves this performance with very infrequent guidance
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updates (.02 hz.) and with very small control variable changes from the nominal constant

angle of attack and linear bank with velocity profiles. Most i nportantly, almost all of the

achievable footprint is captured using the predictor-corrector algorithm.

4.6 HEAT RATE CONTROL PERFORMANCE

The closed-loop trajectories shown previously did not require heat rate control because

the maximum heat rate experienced was significantly lower than the limit imposed on the

ERV. The time responses for bank angle, angle of attack, and heat rate for the beginning of

a typical trajectory with and without heat rate control are shown in Figures 50 on page 127

through 52 on page 129. The resulting bank angle versus velocity profile is shown in

Figure 53 on page 130. These trajectories are for the middle of the footprint where the peak

heat rate does not exceed the limit for the ERV. Therefore, for illustrative purposes, the heat

rate limit was reduced to 100 BTU/sq ft/sec. Comparing the trajectories with and without

heat rate control, it is seen that the heat rate control takes place over a fairly long time

range, but requires a significant departure from the linear bank profile over only a very short

velocity range. The impact on the trajectory is therefore small, and the predictor-corrector

stays converged on almost the same control history even though the vehicle does not follow

the assumed control profile during the heat rate control area.
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4.7 OVERCONTROL

For those trajectories not at the edge of the footprint, excess vehicle capability exists

that can be utilized to increase guidance margin for dispersions that may occur later in the

trajectory. For example, a 13,800 nautical mile downrange trajectory for the ERV only

requires flying at 20 degrees angle of attack instead of 15 degrees for the nominal trajectory.

The ERV can modulate angle of attack between 15 degrees (maximum UD) and 50 degrees

(minimum UD) on the back side of the UD curve, so the modulation capability is not equally

centered about the commanded angle of attack if flying at 20 degrees. By flying at 15

degrees (maximum UD) early in the trajectory, guidance can center the remaining guidance

capability equally about the aim point to cover dispersions in all directions, not just those

that require less UD to reach the target point. This approach is referred to here as overcon-

trol or command biasing.

Overcontrol can be implemented in several ways. First, the command can be biased

from the desired command when that command is not in the center of the modulation range.

As the vehicle flies a biased angle of attack, for example, the predicted final state will differ

from that for the unbiased command in such a direction that the next guidance command will

be moved in the direction opposite to the bias. By biasing in the proper direction, the com-

mand can be driven toward the center of the modulation range. If the guidance requires an

L/D higher than that in the middle of the UD range, flying at an even higher UD will drive

the required UD toward the middle. Secondly, the target aim point can be moved from the

nominal aim point early in the entry. For example, for a trajectory to the maximum down-

range region of the footprint, the target aim point can be moved even farther downrange. Of

course, at some point in the trajectory, the aim point must be moved back to the desired

point.
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The first approach was implemented in the predictor-corrector algorithm by biasing the

angle of attack by five degrees when it was more than two degrees away from 30 degrees.

The biasing was terminated at an inertial velocity of 13,500 feet per second so as to allow

the guidance to. fly the proper control history near the end of the trajectory to reach the tar-

get aim point.

Figure 54 on page 131 compares the angle of attack control history for a 13,760 nautical

mile downrange trajectory with the dispersions used for the closed-loop trajectories shown

earlier. Without overcontrol, the vehicle misses the target aim point by 19.20 nautical miles.

This occurs because the wind contribution to the dispersion increases as the vehicle velocity

drops, so the multiplicative scale factor on density does not properly model this dispersion.

As the wind contribution increases, a higher UD is required, and the angle of attack is driv-

en to 15 degrees or maximum L/D. Because maximum L/D was not utilized earlier in the

trajectory, the vehicle did not reach the target. Late in the trajectory, the predictor-corrector

goes unconverged as control authority is exhausted, causing the angle of attack to jump

between 15 and 30 degrees. By this point, the target aim point was unreachable anyway

due to the dispersions.

With command biasing, the commanded angle of attack early in the trajectory is that

corresponding to maximum UD or 15 degrees. It is seen that biasing drives the commanded

angle of attack to 25 degrees once the biasing is terminated at a velocity of 13,500 feet per

second or a time of 3,700 seconds. Later, when the wind dispersion drives the angle of

attack toward 15 degrees, there is significant margin remaining, and the angle of attack is

only driven to 24.5 degrees by the dispersion. With command biasing, the miss distance at

TAEM interface is only 0.27 nautical miles. Therefore, guidance margin is increased by

using overcontrol. More of the theoretically achievable footprint is attainable for dispersed
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cases, An even larger magnitude dispersion could have been handled late in the trajectory

since the angle of attack was not driven to that for maximum L/D.

Further work is needed in this area to determine the proper way to utilize overcontrol to

maximize guidance maFgin for the expected dispersions. The probability of the various dis-

persions occurring and the histories of those dispersions along a trajectory must be consid-

ered. For example, if a thick" atmosphere is encountered early in the trajectory equal to

the worst-case expected dispersion, it is highly unlikely that the atmosphere will get "thick-

er" later in the trajectory. Therefore, it is unnecessary to preserve guidance margin in the

direction needed to cover a "thicker" atmosphere beyond that already required for the

expected worst-case atmosphere. Such considerations should be taken into account in the

design of the overcontrol algorithm.

4.8 ALGORITHM EXECUTION TIME

An estimate of the execution time required for the predictor-corrector algorithm was

made using the execution time estimate feature of the HAL compiler. The estimate is for the

AP101 Shuttle flight computer. Figure 55 on page 132 shows the execution time required in

seconds as a function of the time to the TAEM interface point for a maximum downrange tra-

jectory. It is seen that early in the entry when the trajectory to be predicted is long, the pre-

dictor requires 43.7 seconds of CPU time. When only 500 seconds to the TAEM interface

point remains, the required time drops to 4.5 seconds. This figure can also be interpreted as

the minimum update interval for the predictor-corrector. Also, the guidance command will

be computed and sent to the vehicle autopilot a period of time after the start of the guidance
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cycle equal to the required execution time. It is seen that early in the entry, a significant

delay occurs between the start of the guidance cycle and the computation of the guidance

command. This delay was not simulated in the closed-loop trajectories, but will have a mini-

mal effect on the guidance margin because the guidance is not trying to fly a reference tra-

jectory like the analytic guidance algorithms. The predictor-corrector is numerically

computing a trajectory that will fly directly to the target aim point. Any error that builds up

between the start of the guidance cycle and the issuing of the guidance command can be

nulled easily since the entry is long, and the error will shrink as the delay decreases with

decreasing time to the TAEM interface point.

The Shuttle AP101 CPU is the product of early 1970's technology and is significantly

slower than flight computers that might be employed in future entry vehicles. The 80C86

CPU for example is two to five times faster than the AP101 CPU, so the execution time

required shown in Figure 55 on page 132 can be scaled down by a factor of two to five.

Computers utilizing parallel processing architecture could predict the three required trajecto-

ries simultaneously in three CPUs, cutting the required execution time by a factor of three. If

scaled by a factor of four due to the faster CPU and a factor of three due to parallel process-

ing architecture, the maximum time required drops to 3.6 seconds, and the time with 500

seconds remaining to the TAEM interface point drops to 0.4 seconds. The predictor-correc-

tor is therefore a viable guidance scheme for future entry vehicles.
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5.0 FUTURE RESEARCH TOPICS AND CONCLUSIONS

5.1 FUTURE RESEARCH TOPICS

Several topics for further algorithm development and optimization are discussed. These

are:

1. Further reductions in CPU execution time

2. Use of an air data system for in-flight measurements

3. Use of overcontrol to increase guidance margin

4. Control of more than two state constraints

Optimization of the predictor algorithm and the integration scheme can yield significant

reductions in execution time beyond that already attained. Simplifying the aerodynamic

model can yield a great reduction in execution time and an equally important reduction in

the computer core required. The current model has 30 tables, each with 51 breakpoints over

the angle of attack range. A curve fit of the aerodynamic coefficients over the angle of

attack range and the flow regimes would reduce the core required to store the model data

and the computations required for each lookup.

The estimator algorithm was shown to be effective in determining the dispersions from

in-flight measurements. However, the estimator is unable to differentiate between density

dispersions and atmospheric winds. Figure 24 on page 101 showed that the multiplicative

density scale factor did not accurately model the wind contribution to the drag acceleration

because the relative contribution of the wind to the dispersion increases as the vehicle
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velocity drops late in the trajectory. An air data system could provide an independent meas-

urement of the atmospheric winds, improving the estimation process and increasing guid-

ance margin by increasing the accuracy of the predicted trajectories.

The concept of overcontrol was introduced and shown to be effective for at least one

dispersed case. Further investigations should be made to determine how much overcontrol

is optimal for the expected dispersions. It may be possible to use the sensitivities of the

constraints to the control variables to determine a proper amount of command biasing for

any particular dispersion at any point in the trajectory.

Only the downrange error and crossrange error at TAEM interface are controlled in the

current design. The vehicle energy is not controlled which can allow significant dispersions

in the ranging capability during the TAEM phase of entry. Approaches include redefining the

TAEM aim point in terms of a desired energy level or utilizing a third control variable to pro-

vide control over an energy level constraint. The Space Shuttle makes use of a split rudder

as a speedbrake to provide a large energy control capability. Such an approach could be

utilized with the predictor-corrector by computing the sensitivity of the three constraints to

the three control variables. This would require four predictions instead of the three currently

needed, but the fourth prediction could be made only during the latter part of entry to clean

up any dispersions in energy level that occur during the entry due to dispersions. The CPU

execution time would then increase by one-third over that currently projected when the third

constraint is controlled.
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5.2 CONCLUSIONS

A predictor-corrector entry guidance algorithm has been demonstrated that exhibits

excellent performance and almost complete coverage of the achievable footprint. This algo-

rithm employs a simple control variable history to achieve near-optimal guidance for the

maximum downrange and maximum crossrange trajectories. Explicit heat rate control is

employed without significantly impacting the achievable footprint. This is achieved because

unlike previous guidance algorithms that included a long heat rate control phase with no

active targeting, the proposed algorithm always actively targets to the aim point and only

controls heat rate in the short high heat rate regions as required.

The algorithm has been demonstrated to handle atmospheric and aerodynamic disper-

sions within the capability of the vehicle. The required computer execution time is shown to

be within the capability of new flight computers.

Algorithm adaptability is provided through the utilization of in-flight measurements to

improve the accuracy of the predicted trajectory. Algorithm maintenance is simplified

because there are no reference trajectories used, and there are a minimum of

vehicle/mission-specific input parameters (I-loads). Transportability of the algorithm

between different entry vehicles is provided by eliminating vehicle-specific entry phases

other than the heat rate control phase which only requires the input of a heat rate limit. The

guidance algorithm does require a vehicle aerodynamic model, but this is developed in the

normal vehicle definition phase anyway.

In summary, an entry guidance algorithm has been developed that achieves near-opti-

mal performance while maximizing flexibility, adaptability, and transportability. Although
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more computationally intensive than analytic algorithms, execution of the predictor-corrector

is within the capability of current flight computers. It is hoped that this guidance approach

will significantly reduce the development and maintenance costs for new entry guidance sys-

tems.
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Table 1. Characteristics of the ERV and Trajectory Entry Conditions

Mass
Reference area
Mean Aerodynamic Chord

Altitude
Inertial Velocity
Flight Path Angle
Inclination
Latitude
Longitude
Vacuum Apogee
Vacuum Perigee

186.0 slugs
177.6 sq ft

25.0 ft

400,000.0 ft
25,778.843 ft/sec

-0.996 deg
28.50 deg

-28.071 deg
-69.313 deg
150.0 n.m.
20.0 n.m.

Table 2. Dispersions Used in Performance Study

Dispersion

Aerodynamics
Lift Coefficient

Drag Coefficient

Vehicle Properties
Mass

Atmospheric Properties
Density

Tailwind
Positive Crosswind
Headwind
Negative Crosswind

Symbol

CL+
CL-

CD+
CD-

p+
P

TW
CW+
HW
CW-

Magnitude Direction
(%) (deg)

+ 10%
-10%

+10%
-10%

+5%
-5%

+ 30%
-30%

99%
99%
99%
99%

61.5
151.5
241.5
331.5

deg
deg
deg
deg
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Table 3. Dispersed Cases for Maximum Downrange Region

Dispersion

NOMINAL
CL+
CL-
CD+
CD-
M+
M-
P+
P
TW
CW+
HW
CW-

NOMINAL
CL+
CL-
CD+
CD-
M+
M-
P+
P
TW
CW+
HW
CW-

NOMINAL
CL+
CL-
CD+
CD-
M+
M-
P+
P
TW
CW+
HW
CW-

Downrange
(n.m.)

14817
16445
13229
13242
16810
14890
14739
14615
15089
14882
14829
14751
14802

13849
15388
12355
12384
15711
13909
13785
13659
'14105
13901
13857
13796
13838

12116
13415
10822
10858
13715
13161
12068
11950
12339
12155
12121
12076
12108

Crossrange
(n.m.)

497
456
420
422
427
498
496
494
498
498
497
496
497

463
499
344
347
491
466
460
453
475
466
464
461
463

321
439
178
183
456
325
316
305
342
324
321
317
320

74

ad
(deg

15s
15
15
15
15
15
15
15
15
15
15
15
15

20
20
20
20
20
20
20
20
20
20
20
20
20

25
25
25
25
25
25
25
25
25
25
25
25
25

(deg

0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0



Table 4. Dispersed Cases for Maximum Crossrange Region

(deg
(deg

15
15
15
15
15
15
15
15
15
15
15
15
15

20
20
20
20
20
20
20
20
20
20
20
20
20

25
25
25
25
25
25
25
25
25
25
25
25
25

7d
(deg

60
60
60
60
60
60
60
60
60
60
60
60
60

60
60
60
60
60
60
60
60
60
60
60
60
60

60
60
60
60
60
60
60
60
60
60
60
60
60

Dispersion

NOMINAL
CL+
CL-
CD+
CD-
M+
M-
P+
P
TW
CW+
HW
CW-

NOMINAL
CL+
CL-
CD+
CD-
M+
M-
P+
P-
TW
CW+
HW
CW-

NOMINAL
CL+
CL-
CD+
CD-
M+

M-
p+
P
TW
CW+
HW
CW-

Downrange
(n.m.)

8308
9035
7602
7605
9200
8342
8271
8197
8465
8260
8473
8313
7984

7791
8476
7125
7132
8622
7820
7761
7689
7934
7766
7846
7775
7580

6940
7539
6355
6363
7661
6963
6915
6848
7070
6933
6958
6921
6819

Crossrange
(n.m.)

1822
2149
1506
1531
2193
1825
1819
1823
1820
1737
1890
1866
1692

1661
1966
1370
1392
2007
1664
1659
1662
1660
1607
1686
1673
1572

1344
1602
1100
1119
1635
1345
1342
1344
1342
1317
1355
1347
1290
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Table 5. Dispersed Cases for Minimum Downrange Region

Id
(deg

30
30
30
30
30
3O
30
30
30
30
30
30
30

30
30
30
30
30
30
30
30
30
30
30
30
30

30
30
30
30
30
30
30
30
30
30
30
30
30

(deg
(deg

90
90
90
90
90
90
90
90
90
90
90
90
90

80
80
80
80
80
80
80
80
80
80
80
80
80

70
70
70
70
70
70
70
70
70
70
70
70
70

Dispersion

NOMINAL
CL+
CL-
CD+
CD-
M+
M-
P+
P
TW
CW+
HW
CW-

NOMINAL
CL+
CL-
CD+
CD-
M+
M-
P+
P
TW
CW+
HW
CW-

NOMINAL
CL+
CL-
CD+
CD-
M+
M-
p+
Pp
TW
CW+
HW
CW-

Downrange
(n.m.)

2982
3014
2934
2914
3045
2996
2969
2914
3078
2993
2992
2996
2982

3851
4011
3680
3668
4060
3865
3865
3778
3954
3856
3841
3834
3828

4932
5262
4602
4600
5337
4949
4915
4854
5043
4934
4925
4914
4884

Crossrange
(n.m.)

938
1102
778
793

1119
937
938
943
930
914
941
939
907

1041
1233

858
875

1254
1041
1041
1046
1034
1020
1044
1042
1007

1075
1279

881
898

1304
1075
1075
1078
1069
1057
1077
1074
1040
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Table 6. Maximum Downrange Region Closed-Loop Results

Dispersions Final State

CL CD Mass p Wind 9 A Error
(%) (%) (%) (%) (%) (deg) (deg) (n.m.)

TARGET POINT + 9.800 + 144.700 -

NOMINAL + 9.799 +144.702 0.13
- 1.9- + 1.9 - 3.2 +19.1 63.8 HW + 9.799 +144.701 0.08
- 1.9 + 1.9 - 3.2 STS 1 63.8 HW + 9.803 +144.694 0.30
- 1.9 + 1.9 - 3.2 STS 9 63.8 HW + 9.802 +144.696 0.27
- 1.9 + 1.9 - 3.2 STS11 63.8 HW + 9.801 +144.698 0.13

Table 7. Maximum Crossrange Region Closed-Loop Results

Dispersions Final State
CL CD Mass p Wind kg A Error

(%) (%) (%) (%) (%) (deg) (deg) (n.m.,
TARGET POINT - 2.300 + 55.000 -

NOMINAL - 2.301 + 55.000 0.06
- 1.9 + 1.9 -3.2 +19.1 63.8 CW- - 2.295 + 54.998 0.32
- 1.9 + 1.9 - 3.2 STS 1 63.8 CW - 2.304 + 55.001 0.25
- 1.9 + 1.9 - 3.2 STS 9 63.8 CW- - 2.301 + 54.990 0.60
- 1.9 + 1.9 - 3.2 STS11 63.8 CW- - 2.299 + 55.000 0.06

Table 8. Minimum Downrange Region Closed-Loop Results

Dispersions Final State

CL CD Mass p Wind 0g A Error
(%) (%) (%) (%) (%) (deg) (deg) (n.m.)

TARGET POINT -14.900 + 9.800 -

NOMINAL -14.897 + 9.798 0.22
+ 1.9 - 1.9 + 3.2 -19.1 63.8 TW -14.902 + 9.801 0.13
+ 1.9 - 1.9 + 3.2 STS 1 63.8 TW -14.901 + 9.800 0.06
+ 1.9 - 1.9 + 3.2 STS 9 63.8 TW -14.900 + 9.800 0.00
+ 1.9 - 1.9 + 3.2 STS11 63.8 TW -14.899 + 9.799 0.08
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Figure 1. Three-View Drawing of the ERV
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Reproduced from Reference (8)

Figure 2. Atmospheric Wind Profile
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Figure 3. Envelope of Density Profiles Derived from Shuttle Flights
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Figure 4. STS-1 Density Profile Comparison
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Figure 5. STS-9 Density Profile Comparison
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Figure 6. Multiphase Bank Angle Program for UD = 1.5
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Figure 7. Crossrange Versus Number of Bank Steps
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Figure 9. Optimum Shuttle Angle of Attack Profile for Maximum Downrange
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Figure 11. Optimum Shuttle Angle of Attack Profile for Maximum Crossrange
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Figure 12. Landing Footprint for the ERV
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Figure 13. Altitude Histories for the Entry Missions of the ERV
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Figure 15. Angle of Attack Histories for the Entry Missions of the ERV
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Figure 17. Heat Load Histories for the Entry Missions of the ERV

94

- 3- 7

e1



Ad

Bank Angle, b

0.

VEI Vf

Inertial Velocity, V,

Figure 18. Bank Angle Versus Velocity Profile

95

I

I

I



it Plane

tains R, & VR)

:rossrange Error

Implane

It

Figure 19. Definitions of Downrange and Crossrange Errors

96

iFperpen

_ _

c---



.8

.6

.4

.2

C

a = 30°

a = 15°

01~ 2Cl~~ = 0 8

. - - I I
0 2 4 6 8 10

M I I t I I I I I

5 1.5 2.5 3.5 4.5 5.5 6.5 7.5x10 - 2

I 105
3 4 5 6x10 5

h, ft

Reproduced from Reference (14)

Figure 20. Predicted Lift Coefficient Profile for the ERV
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Figure 21. Predicted L/D Profile for the ERV
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Figure 24. Time Response of the Density Filter
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Figure 25. Time Response of the L/D Filter
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Figure 26. Closed-Loop Altitude History for the Maximum Downrange Case

103



200C

U

-,O

0
>

100C

30

IT

,oi

VI
4 VR

0

i

7

1000

-
"

VI

\ I

I1Lv
V

r

2000

VR

I I

iii
3000 .. ,. -~000 5000

T (SECS]

Figure 27. Closed-Loop Velocity History for the Maximum Downrange Case
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Figure 29. Closed-Loop Heat Load History for the Maximum Downrange Case
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Figure 32. Closed-Loop Altitude History for the Maximum Crossrange Case
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Figure 33. Closed-Loop Velocity History for the Maximum Crossrange Case
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Figure 34. Closed-Loop Heat Rate History for the Maximum Crossrange Case
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Figure 35. Closed-Loop Heat Load History for the Maximum Crossrange Case
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Figure 36. Closed-Loop Downrange History for the Maximum Crossrange Case
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Figure 37. Closed-Loop Crossrange History for the Maximum Crossrange Case

114

�

7-

--

I

I
I
I
I

I

7-

;t
E

;t
z

I

i
l l

Z
Lull

1 -I I

-
l

l l
E

lI I
l

_ - #____ __



Figure 38. Closed-Loop Altitude History for the Minimum Downrange Case
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Figure 39. Closed-Loop Velocity History for the Minimum Downrange Case
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Figure 40. Closed-Loop Heat Rate History for the Minimum Downrange Case
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Figure 41. Closed-Loop Heat Load History for the Minimum Downrange Case
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Figure 42. Closed-Loop Downrange History for the Minimum Downrange Case
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Figure 43. Closed-Loop Crossrange History for the Minimum Downrange Case
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Figure 45. Bank Angle Comparison for the Maximum Downrange Case
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Figure 46. Angle of Attack Comparison for the Maximum Crossrange Case
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Figure 47. Bank Angle Comparison for the Maximum Crossrange Case
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APPENDIX A. ERV AERODYNAMICS MODEL

The aerodynamics of the ERV were reported in Reference [14], and the longitudinal per-

formance coefficients, C, and L/D, are shown in Figures 20 on page 97 and 21 on page 98.

Figure 22 on page 99 shows a typical UD versus angle of attack profile. This profile is for a

Mach Number of 10, but across the flow regimes, the maximum L/D always occurs at an

angle of attack of approximately 15 degrees. This data was incorporated into the aerodyna-

mic model of the simulator and into the aerodynamic model of the predictor. It is seen that

the aerodynamic flow regimes are a function of:

1. Mach Number, M

2. Viscous Interaction Parameter, V

3. Altitude, h

The Mach Number, M, is computed from,

v
M = V, (99)

Cs

where the speed of sound, C,, is computed from,

c, = TM (100)

The viscous interaction parameter, V, is computed from,

V = M R (101)

where,
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ct (T' )o5 T,,, tc + 122.1 x 10-(5lrstatc) (102)
TsaticT' + 122.1 x 10-(5/r')

and,

r_ = 0.468 + 0.532 + 0.195 M2 (103)
Tatc Ttc 2

The Reynolds Number, Re, is calculated from,

Re = V E (104)

where the coefficient of viscosity for air, p, is given by,

= C (105)
S + T,,,,C
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APPENDIX B. ALGORITHM PROGRAM LISTINGS

Compiled listings of the flight software principal functions for the predictor-corrector gui-

dance algorithm as coded for use in the 6-DOF Aeroassist Flight Experiment Simulator

(AFESIM) follow. The algorithms are coded in the HAL/S computer language. The principal

functions are:

1. IL LOAD - Values for all constants and I-loads

2. FSW SEQ - Flight Software Sequencer

3. ORB_NAV - Orbit Navigation Algorithm

4. AERO_GUID - Predictor-Corrector Guidance Algorithm

At the beginning of each principal function is a description of the function and the

input/output parameters. At the end of each principal function is a cross reference table list-

ing the program line at which each variable is referenced or computed.
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