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Abstract

We consider iterative algorithms of the form x := f(x), executed by a parallel or distributed

computing system. We first consider synchronous executions of such iterations and study their

communication requirements, as well as issues related to processor synchronization. We also dis-

cuss the parallelization of iterations of the Gauss-Seidel type. We then consider asynchronous

implementations whereby each processor iterates on a different component of x, at its own pace,

using the most recently received (but possibly outdated) information on the remaining compo-

nents of x. While certain algorithms may fail to converge when implemented asynchronously, a

large number of positive convergence results is available. We classify asynchronous algorithms into

three main categories, depending on the amount of asynchronism they can tolerate, and survey the

corresponding convergence results.
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1. INTRODUCTION

Parallel and distributed computing systems have received broad attention motivated by several

different types of applications. Roughly speaking, parallel computing systems consist of several

tightly coupled processors that are located within a small distance of each other. Their main purpose

is to execute jointly a computational task and they have been designed with such a purpose in mind:

communication between processors is reliable and predictable. Distributed computing systems are

somewhat different in a number of respects. Processors are loosely coupled with little, if any, central

coordination and control, and interprocessor communication is more problematic. Communication

delays can be unpredictable, and the communication links themselves can be unreliable. Finally,

while the architecture of a parallel system is usually chosen with a particular set of computational

tasks in mind, the structure of distributed systems is often dictated by exogenous considerations.

Nevertheless, there are several algorithmic issues that arise in both parallel and distributed systems

and can be addressed jointly. To avoid repetition, we will mostly employ in the sequel the term

"distributed", but it should be kept in mind that most of the discussion applies to parallel systems

as well.

There are at least two contexts where distributed computation has played a significant role.

The first is the context of information acquisition, information extraction, and control, within

spatially distributed systems. An example is a sensor network in which a set of geographically

distributed sensors obtain information on the state of the environment and process it cooperatively.

Another example is provided by data communication networks in which certain functions of the

network (such as correct and timely routing of messages) have to be controlled in a distributed

manner, through the cooperation of the computers residing at the nodes of the network. Other

applications are possible in the quasistatic decentralized control of large scale systems whereby

certain parameters (e.g. operating points for each subsystem) are to be optimized locally, while

taking into account interactions with neighboring subsystems. The second important context for

parallel or distributed computation is the solution of very large computational problems in which

no single processor has sufficient computational power to tackle the problem on its own.

The ideas of this paper are relevant to both contexts, but our presentation will emphasize

large scale numerical computation issues and iterative methods in particular. Accordingly, we shall

consider algorithms of the form x := f(x) where x = (xl,..., x,) is a vector in K" and f : Kn" - R"

is an iteration mapping defining the algorithm. In many interesting applications, it is natural to

consider distributed executions of this iteration whereby the ith processor updates xi according to

the formula

Xi := fi(X1,., ,X), (1.1)

while receiving information from other processors on the current values of the remaining compo-

nents.

Our discussion of distributed implementations of iteration (1.1) focuses on mechanisms for in-
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terprocessor communication and synchronization. We also consider asynchronous implementations

and present a survey of the convergence issues that arise in the face of asynchronism. These issues

are discussed in more detail in (Bertsekas and Tsitsiklis, 1989) where proofs of most of the results

quoted here can be found.

Iteration (1.1) can be executed synchronously whereby all processors perform an iteration, com-

municate their results to the other processors, and then proceed to the next iteration. In Section 2,

we indicate that this is feasible even if the underlying computing system is inherently asynchronous

(i.e. no processor has access to a global clock) provided that certain synchronization mechanisms

are in place. We review and compare three representative synchronization methods. In Section 3,

we discuss an alternative implementation of iteration (1.1) whereby components are updated one

at a time, and we indicate that such implementations can admit considerable parallelism when the

iteration mapping f has a sparse structure. Then, in Section 4, we discuss the effects of commu-

nication delays on the speed of the computation, assuming that processors communicate using a

point-to-point communication network. In Section 5, we indicate that the synchronous execution

of iteration (1.1) can have drawbacks, thus motivating asynchronous implementations whereby each

processor computes at its own pace while receiving (possibly outdated) information on the values

of the components updated by the other processors. An asynchronous implementation of iteration

(1.1) is not mathematically equivalent to its synchronous counterpart and an otherwise convergent

algorithm may become divergent. It will be seen that asynchronous iterative algorithms can display

several and different convergence behaviours, ranging from divergence to guaranteed convergence

in the face of the worst possible amount of asynchronism and communication delays. We classify

the possible behaviours in three broad classes; the corresponding convergence results are surveyed

in Sections 6, 7, and 8, respectively. Section 9 contains our conclusions.

2. SYNCHRONOUS ITERATIONS AND SYNCHRONIZATION MECHANISMS

Let X 1 ,..., Xp, be subsets of Euclidean spaces Rn, ... ., p respectively. Let n = nl +... + np,

and let X c Rn be the Cartesian product X = 17I1 Xi. Accordingly, any x E R is decomposed

in the form x = (x 1,... ,xp), with each xi belonging to Rni. For i = 1,. .. ,p, let fi :X '- Xi be a

given function and let f: X - X be the function defined by f(x) = (fi(x),..., fp(x)) for every

x E X. We consider an iteration of the form

x := f(x), (2.1)

and we call f the iteration mapping defining the algorithm. We assume that there are p processors,

with the ith processor assigned the responsibility of updating the ith component xi according to

the rule zxi := fi(x) = fi(x,...,xp). It is implicitly assumed here that the ith processor knows

the form of the function fi. In the special case where f(x) = Ax + b, where A is an n x n matrix

and b E Rn, this amounts to assuming that the ith processor knows the rows of the matrix A

corresponding to the components assigned to it. Other implementations of the linear iteration
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x := Ax + b are also possible. For example, each processor could be given certain columns of A.

We do not pursue this issue further and refer the reader to (McBryan and Van der Velde, 1987;

Fox et al., 1988) for a discussion of alternative matrix storage schemes.

For the implementation of iteration (2.1) we have just described, it is seen that if the function

fj depends on xi (with i : j) then processor j must be informed by processor i on the current

value of xi. To capture such data dependencies, we form a directed graph G = (N, A), called the

dependency graph of the algorithm, with nodes N = (1,...,p} and with arcs A = ((i,j) i 

j and fj depends on xi}. We assume that for every arc (i,j) in the dependency graph there is a

communication capability by means of which processor i can relay information to processor j. We

assume that messages are received correctly within a finite but otherwise arbitrary amount of time.

Such communication may be possible through a direct communication link joining processors i and

j or it could consist of a multihop path in a communication network. The discussion that follows

applies to both cases.

We say that an execution of iteration (2.1) is synchronous if it can be described mathematically

by the formula

x(t + 1) = f(x(t)), (2.2)

where t is an integer-valued variable used to index different iterations, not necessarily representing

real time. Synchronous execution is certainly possible if the processors have access to a global

clock, and if messages can be reliably transmitted from one processor to another between two

consecutive "ticks" of the clock. Barring the existence of a global clock, synchronous execution

can be still accomplished by using synchronization protocols called synchronizers. We refer the

reader to (Awerbuch, 1985) for a comparative complexity analysis of a class of synchronizers and

we continue with a brief discussion of three representative synchronization methods.

(a) Global Synchronization.

Here the processors proceed to the (t + 1)st iteration only after every processor i has completed

the tth iteration and has received the value of x (t) from every j such that (j,i) E A. Global

synchronization can be implemented by a variety of techniques, a simple one being the following:

the processors are arranged as a spanning tree, with a particular processor chosen to be the root

of the tree. Once processor i has computed xi(t), has received the value of xj(t) for every j such

that (j, i) E A, and has received a phase termination message from all its "children" in the tree,

it sends a phase termination message to its "father" in the tree. Phase termination messages thus

propagate towards the root. Once the root has received a phase termination message from all of

its children, it knows that the current phase has been completed and sends a message to this effect

which is propagated along the spanning tree. Once a processor receives such a message it can

proceed to the next phase. (See Fig. 2.1 for an illustration.)

(b) Local synchronization.

Global synchronization can be seen to be rather wasteful in terms of the time required for each

4



iteration. An alternative is to allow the ith processor to proceed with the (t + 1)st iteration as soon

it has received all the messages xi (t) it needs. Thus, processor i moves ahead on the basis of local

information alone, obviating the need for propagating messages along a spanning tree.

It is easily seen that the iterative computation can only proceed faster when local synchronization

is employed. Furthermore, this conclusion can also be reached even if a more efficient global

synchronization method were possible whereby all processors start the (t+1)st iteration immediately

after all messages generated by the tth iteration have been delivered. (We refer to this hypothetical

and practically unachievable situation as the ideal global synchronization.) Let us assume that the

time required for one computation and the communication delays are bounded above by a finite

constant and are bounded below by a positive constant. Then it is easily shown that the time spent

for a number K of iterations under ideal global synchronization is at most a constant multiple of

the corresponding time when local synchronization is employed.

The advantage of local synchronization is better seen if communication delays do not obey any

a priori bound. For example, let us assume that the communication delay of every message is

an independent exponentially distributed random variable with mean one. Furthermore, suppose

for simplicity, that each processor sends messages to exactly d other processors, where d is some

constant (i.e. the outdegree of each node of the dependency graph is equal to d). With global

synchronization, the real time spent for one iteration is roughly equal to the maximum of dp in-

dependent exponential random variables and its expectation is, therefore, of the order of log(dp).

Thus, the expected time needed for K iterations is of the order of K log(pd). On the other hand,

with local synchronization, it turns out (joint work with C.H. Papadimitriou, unpublished) that

the expected time for K iterations is of the order of logp + K log d. If K is large, then local syn-

chronization is faster by a factor roughly equal to log(pd)/ log d. Its advantage is more pronounced

if d is much smaller than p, as is the case in most practical applications. Some related analysis and

experiments can be found in (Dubois and Briggs, 1982).

(c) Synchronization via rollback.

This method, introduced by Jefferson (1985), has been primarily applied to the simulation

of discrete-event systems, but can also be viewed as a general purpose synchronization method.

Consider a situation where the message x (t) transmitted from some processor j to some other

processor i is most likely to take a fixed default value known to i. In such a case, processor i may

go ahead with the computation of xi(t + 1) without waiting for the value of xj(t), by making the

assumption that xz (t) will take the default value. In case that a message comes later which falsifies

the assumption that xy(t) had the default value, then a rollback occurs; that is, the computation of

xi (t + 1) is invalidated and is performed once more, taking into account the correct value of xj (t).

Furthermore, if a processor has sent messages based on computations which are later invalidated, it

sends antimessages which cancel the earlier messages. A reception of such an antimessage by some

other processor k could invalidate some of k's computations and could trigger the transmission of
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further antimessages by k. This process has the potential of explosive generation of antimessages

that could drain the available communication resources. On the other hand, it is hoped that

the number of messages and antimessages would remain small in problems of practical interest,

although insufficient analytical evidence is available at present. Some probabilistic analyses of the

performance of this method can be found in (Lavenberg et al.; Mitra and Mitrani, 1984).

3. GAUSS-SEIDEL ITERATIONS.

Iteration (2.2), in which all of the components of x are simultaneously updated, is sometimes

called a Jacobi-type iteration. In an alternative form, the components of x are updated one at

a time, and the most recently computed values of the other components are used. The resulting

iteration is often called an iteration of the Gauss-Seidel type and is described mathematically by

xi(t + 1) = i (x(t + 1),..xi,,_(t + 1),X,(t),... xp(t)), i = 1, .. .,p (3.1)

Gauss-Seidel iterations are often preferable: they incorporate the newest available information and

they tend to converge faster than the corresponding Jacobi iterations. In fact, under certain con-

ditions Jacobi iterations fail to converge while Gauss-Seidel iterations are guaranteed to converge.

However, the parallel implementation of iteration (3.1) can be problematic, if no two components

can be updated in parallel, and this is the case when the dependency graph describing the structure

of the iteration is complete (every component depends on every other component). On the other

hand, Gauss-Seidel iterations can be substantially parallelizable when the dependency graph is

sparse, as we now illustrate.

Consider the dependency graph of Fig. 3.1. A corresponding Gauss-Seidel iteration is described

by
x1 (t + 1) = fi (1 (t), 3 (t))

X2 (t + 1) = f2 (x (t + 1), X2 (t))

x 3(t + 1) = f 3 (z 2 (t + 1),x 3 (t), X4 (t))

X4 (t + 1) = f 4 (x 2(t + 1), 4 (t))

and its structure is shown in Fig. 3.2. We notice here that s 3 (t + 1) and x 4 (t + 1) can be computed

in parallel. In particular, a sweep, that is, an update of all four components, can be performed in

only three stages.

Frequently in Gauss-Seidel iterations the order in which the different components are updated

is not very important, in which case we are free to choose a particular order. In the context of our

example, a different ordering of the components leads to an iteration of the form

1 (t + 1) = fi (x (t),x3 (t))

x3 (t + 1) = f 3 (X2 (t),z 3(t), X4 (t))

x4 (t + 1) = f 4 ( 2 (t),z 4 (t))

x2 (t + 1) = f2 (xl(t + 1), 2 (t))
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which is illustrated in Fig. 3.3. We notice here that zl(t + 1), X3 (t + 1), and X4 (t + 1) can be

computed in parallel, and a sweep requires only two stages.

The above example motivates the problem of choosing an ordering of the components for which

a sweep requires the least number of stages. The solution of this problem is as follows.

Proposition 3.1. (Bertsekas and Tsitsiklis, 1989) The following are equivalent:

(i) There exists an ordering of the variables such that a sweep of the corresponding Gauss-Seidel

algorithm can be performed in K parallel steps.

(ii) We can assign colors to the nodes of the dependency graph so that at most K different colors

are used and so that each subgraph obtained by restricting to the set of nodes with the same color

has no directed cycles.

Unfortunately, the coloring problem of Prop. 3.1 is intractable (NP-hard). On the other hand,

in several practical situations, and especially when solving partial differential equations or image

processing problems, the dependency graph G has a very simple structure and the coloring problem

can be solved by inspection. Furthermore, in these contexts, the dependency graph G is often

symmetric; that is, the presence of an arc (i, j) E A also implies the presence of the arc (j, i). If

this is the case, the coloring problem of Prop. 3.1 reduces to coloring the nodes of the dependency

graph so that no two neighboring nodes have the same color. Even with unstructured dependency

graphs, reasonably good colorings can be found using simple heuristics, as is often done; see (Zenios

and Mulvey, 1988), for example. Let us also point out that the parallelization of Gauss-Seidel

methods by means of coloring is very common in the context of the numerical solution of partial

differential equations; see, for example, (Ortega and Voigt, 1985) and the references therein.

A related approach for parallelizing Gauss-Seidel iterations, which is very easy to implement, is

discussed in (Barbosa, 1986; Barbosa and Gafni, 1987). In this approach, a new sweep is allowed

to start before the previous one has been completed and, for this reason, one obtains, in general,

somewhat greater parallelism than that obtained by the coloring approach.

4. COMMUNICATION ASPECTS OF SYNCHRONOUS ITERATIONS

4.1. Basic Communication Tasks.

When an iterative algorithm is executed in a network of processors, it is necessary to exchange

some information between the processors after each iteration. The interprocessor communication

time can be substantial when compared to the time devoted to computations, and it is important

to carry out the message exchanges as efficiently as possible. There are a number of generic

communication problems that arise frequently in iterative and other algorithms. We describe a few

such tasks related to message broadcasting.

In the first communication task, we want to send the same message from a given processor

to every other processor (we call this a single node broadcast). In a generalized version of this

problem, we want to do a single node broadcast simultaneously from all nodes (we call this a
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multinode broadcast). A typical example where a multinode broadcast is needed arises in iterations

of the form (2.1). If we assume that there is a separate processor assigned to component xi,

i = 1,... ,p, and that the function fi depends on all components xi, j = 1,... ,p, then, at the end

of an iteration, there is a need for every processor to send the value of its component to every other

processor, which is a multinode broadcast.

Clearly, to solve the single node broadcast problem, it is sufficient to transmit the given node's

message along a spanning tree rooted at the given node, that is, a spanning tree of the network

together with a direction on each link of the tree such that there is a unique positive path from

the given node (called the root) to every other node. With an optimal choice of such a spanning

tree, a single node broadcast takes O(r) time, where r is the diameter of the network, as shown

in Fig. 4.1(a). To solve the multinode broadcast problem, we need to specify one spanning tree

per root node. The difficulty here is that some links may belong to several spanning trees; this

complicates the timing analysis, because several messages can arrive simultaneously at a node, and

require transmission on the same link with a queueing delay resulting.

There are two important communication problems that are dual to the single and multinode

broadcasts, in the sense that the spanning tree(s) used to solve one problem can also be used to

solve the dual in the same amount of communication time. In the first problem, called single

node accumulation, we want to send to a given node a message from every other node; we assume,

however, that messages can be "combined" for transmission on any communication link, with a

"combined" transmission time equal to the transmission time of a single message. This problem

arises, for example, when we want to form at a given node a sum consisting of one term from each

node, as in an inner product calculation [see Fig. 4.1(b)]; we can view addition of scalars at a node

as "combining" the corresponding messages into a single message. The second problem, which is

dual to a multinode broadcast, is called multinode accumulation, and involves a separate single

node accumulation at each node. It can be shown that a single node (or multinode) accumulation

problem can be solved in the same time as a single node (respectively multinode) broadcast problem,

by realizing that an accumulation algorithm can be viewed as a broadcast algorithm running in

reverse time, as illustrated in Fig. 4.1.

Algorithms for solving the broadcast problems just described, together with other related com-

munication problems, have been developed for several popular architectures (Nassimi and Sahni,

1980; Saad and Shultz, 1987; McBryan and Van der Velde, 1987; Ozveren, 1987; Bertsekas et al.,

1988; Bertsekas and Tsitsiklis, 1989). Table 4.1 gives the order of magnitude of the time needed

to solve each of these problems using an optimal algorithm. The underlying assumption for the

results of this table is that each message requires unit time for transmission on any link of the in-

terconnection network, and that each processor can transmit and receive a message simultaneously

on all of its incident links. Specific algorithms that attain these times are given in (Bertsekas et al.,

1988) and (Bertsekas and Tsitsiklis, 1989). In most cases these algorithms are optimal in that they

solve the problem in the minimum possible number of time steps. It also shown in (Bertsekas and
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Tsitsiklis, 1989) that if a hypercube is used, then most of the basic operations of numerical linear

algebra, i.e. inner product, matrix-vector multiplication, matrix-matrix multiplication, power of

a matrix, etc., can be executed in parallel in the same order of time as when communication is

instantaneous. In some cases this is also possible when the processors are connected with a less

powerful interconnection network such as a square mesh.

Problem Ring Tree Mesh Hypercube

Single node broadcast e(p) O(logp) e(p l/d) e(logp)

(or single node accumulation)

Multinode broadcast e(p) e(p) e(p) (p/ log p)

(or multinode accumulation)

Table 4.1: Solution times of optimal algorithms for the broadcast and accumulation problems

using a ring, a binary balanced tree, a d-dimensional mesh (with the same number of processors

along each dimension), and a hypercube with p processors. The times given for the ring also hold

for a linear array.

4.2. The effect of the number of processors on the communication overhead.

In many parallel iterative algorithms, the time required for interprocessor communication is

greatly affected by the number of processors used to execute the algorithm. It is generally true that

as the number of processors increases, the time spent for communication also increases. Therefore,

as we attempt to decrease the solution time of a given problem by using more and more processors,

we must contend with increased communication overhead. This might place an upper bound on

the size of problems of a given type that we can realistically solve even with an unlimited number

of processors.

For a given problem, there are both general and problem-specific reasons why the communi-

cation overhead tends to increase with the number of processors. A first reason is the possibility

of pipelining of computation and communication. If some of the results of computation at a pro-

cessor can be communicated to other processors while other results are still being computed, the

communication overhead will be reduced. Consider for example an iteration of the form

xi(t + 1) = fi ( zl(t),..., xp(t)), i= 1, .. ,p, (4.1)

where each zi is a vector of dimension k that is assigned to a separate processor i and n = pk is the

dimension of the problem. Pipelining of computation and communication is more pronounced when

there is a large number of variables assigned to each processor; then the variables that have been

already updated within an iteration can be made available to other processors while the updating of

other variables is still pending. A second reason is that in many systems, a portion of each message
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is used to carry overhead information. The length of this portion is usually fixed and independent

of the total length of the message. This means that there is a gain in efficiency when messages

are long, since then the overhead per bit of data is diminished. It is clear that the length of the

messages can be made longer if the number of variables updated by each processor is larger, since

then the values of many variables can be transmitted to other processors as a single message.

Even in the absence of overhead, and of pipelining of computation and communication, the effect

of the communications tends to be reduced as the dimension k of the component vectors xi in the

iteration (4.1) is increased. Suppose that processor i uses Eq. (4.1) to update the k-dimensional

vector xi, with knowledge of the other vectors xj, j ~: i. Suppose also that the computation time for

each update is e(nk) [as it will be, for example, when the function fi in Eq. (4.1) is linear without

any special sparsity structure]. After updating xi, processor i must communicate the corresponding

k variables to all other processors so that the next iteration can proceed. This can be done via

a multinode broadcast, and if a linear array is used for this purpose, the optimal communication

time is O(n), assuming that communication of k variables over a single link takes @(k) time. Thus,

the ratio
TCOMM Communication time per iteration
TCOMP Computation time per iteration

is 0(1/k), and the communication time becomes relatively insignificant as the number k of variables

updated by each processor increases. The ratio TCOMM/TcoMP is independent of the problem

dimension n; it only depends on k, that is, the size of the computation task per iteration for each

processor.

A further observation from this analysis is that the speedup obtained through parallelization

of the iteration (4.1) can be increased as the dimension n of the problem increases. In particular,

the computation time per iteration on a serial machine is O(n 2) [it is 0(nk) based on our earlier

hypothesis and, for a serial machine, we have p = 1 and k = n], so the speedup using a linear array

of p processors, each updating k = n/p variables, becomes

(n 2 ) _ = o(p)
0(n)+ 0(nk)

where the 0(n) and O(nk) terms correspond to the communication time and the computation time,

respectively.

We have thus reached the important conclusion that for iterations of the form (4.1), the com-

munication overhead will not prevent the fruitful utilization of a large number of processors in

parallel when the problem is large, even when a linear array (the "least powerful" network) is used

for communication. What is needed, as the dimension of the problem increases, is a proportional

increase of the number of processors p of the linear array that will keep the number k of variables

per processor roughly constant at a level where the communication time is relatively small. Note

also that when a hypercube is used in place of a linear array, the optimal multinode broadcast time
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is e((pk)/llogp), so the ratio TCOMM/TCOMP decreases from 8(1/k) to E(l/(klogp)). There-

fore, as the dimension of the problem increases by a certain factor, the number of processors of the

hypercube can be increased by a larger factor while keeping the communication time at a relatively

insignificant level, and the attainable speedup increases at a faster rate than with a linear array.

The preceding analysis does not assume any special structure for the iteration (4.1) other than

the hypothesis that a single variable update takes @(n) time. The ratio TCOMM/TCOMP is also

small for large k in many other cases where there is special structure. An important example is

associated with problems arising from discretization of two-dimensional physical space and with

the so called area-perimeter effect (see Fig. 4.2). As shown in the figure, the number of variables

that have to be communicated by a processor is 8(/), and the time taken for communication on a

mesh network or a hypercube is (V/A). The time taken for each variable update is a constant, and

the parallel computation time for each iteration is 8(k). The ratio TCOMM/TCOMP is 0(1/A).

The conclusion form the preceding discussion is that with proper selection of the size of the

computation task for each processor, the effects of communication can be minimized. Furthermore,

as the size of the given problem increases without bound, the speedup can typically also increase

without bound by using an appropriate parallel machine. In other words, there is no a priori

bound on the attainable speedup that is imposed by the communication requirements. The recent

prize-winning experimental work of Gustafson et al. (1988) supports these conclusions.

5. ASYNCHRONOUS ITERATIONS

Asynchronous iterations have been introduced by Chazan and Miranker (1969) (under the name

chaotic relaxation) for the solution of linear equations. In an asynchronous implementation of

iteration (2.1) processors are not required to wait to receive all messages generated during the

previous iteration. Rather, each processor is allowed to keep iterating on its own component at its

own pace. If the current value of the component updated by some other processor is not available,

then some outdated value received at some time in the past is used instead. Furthermore, processors

are not required to communicate their results after each iteration but only once in a while. We

allow some processors to compute faster and execute more iterations than others, we allow some

processors to communicate more frequently than others, and we allow the communication delays to

be substantial and unpredictable. We also allow the communication channels to deliver messages

out of order, i.e., in a different order than the one they were transmitted.

There are several potential advantages that may be gained from asynchronous execution [see

(Kung, 1976) for a related discussion].

(a) Implementation flexibility: There is no overhead such as the one associated with the global

synchronization method. Furthermore, in certain cases, there are even advantages over the local

synchronization method as we now discuss. Suppose that the iteration is such that an iteration

leaves the value of xi unchanged. With local synchronization, processor i must still send messages
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to every processor j with (i,j) E A because processor j will not otherwise proceed to the next

iteration. Suppose now that the algorithm is such that a typical iteration is most likely to leave xi

unchanged. Then each processor j with (i,j) E A will be often found in a situation where it waits

for rather uninformative messages stating that the value of xi has not changed. In an asynchronous

execution, processor j does not wait for messages from processor i and the progress of the algorithm

is likely to be faster. A similar argument can be made for the case where xi changes only slightly

between iterations. Notice that the situation is similar to the case of synchronization via rollback,

except that in an asynchronous algorithm processors do not roll back even if they iterate on the

basis of outdated and later invalidated information.

(b) Ease of restarting: Suppose that the processors are engaged in the solution of an optimization

problem and that suddenly one of the parameters of the problem changes. (Such a situation is very

common and natural in the context of data networks or in the quasistatic control of large scale

systems.) In a synchronous execution, all processors should be informed, abort the computation,

and then reinitiate (in a synchronized manner) the algorithm. In an asynchronous implementation

no such reinitialization is required. Rather, each processor incorporates the new parameter value

in its iterations as soon as it learns the new value, without waiting for all processors to become

aware of the parameter change. When all processors learn the new parameter value, the algorithm

becomes the correct (asynchronous) iteration.

(c) Reduction of the effects of bottlenecks: Suppose that the computational power of processor i

suddenly deteriorates drastically. In a synchronous execution the entire algorithm would be slowed

down. In an asynchronous execution however only the progress of xs and of the components strongly

influenced by xi would be affected; the remaining components would still retain the capacity of

making unhampered progress. Thus the effects of temporary malfunctions tend to be localized. The

same argument applies to the case where a particular communication channel is suddenly slowed

down.

(d) Convergence acceleration due to a Gauss-Seidel effect: With a Gauss-Seidel execution,

convergence often takes place with fewer updates of each component, the reason being that new

information is incorporated faster in the update formulas. On the other hand Gauss-Seidel itera-

tions are generally less parallelizable. Asynchronous algorithms have the potential of displaying a

Gauss-Seidel effect because newest information is incorporated into the computations as soon as

it becomes available, while retaining maximal parallelism as in Jacobi-type algorithms.

A major potential drawback of asynchronous algorithms is that they cannot be described math-

ematicallly by the iteration x(t + 1) = f (x(t)). Thus, even if this iteration is convergent, the

corresponding asynchronous iteration could be divergent, and indeed this is sometimes the case.

Even if the asynchronous iteration is convergent, such a conclusion often requires rather difficult

analysis. Nevertheless, there is a large number of results stating that certain classes of important

algorithms retain their desirable convergence properties in the face of asynchronism: they will be
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surveyed in Sections 6 through 8.

We now present our model of asynchronous computation. Let the set X and the function f be

as decsribed in Section 2. Let t be an integer variable used to index the events of interest in the

computing system. Although t will be referred to as a time variable, it may have little relation

with "real time". Let xi (t) be the value of xi residing in the memory of the ith processor at time

t. We assume that there is a set of times T i at which xi is updated. To account for the possibility

that the ith processor may not have access to the most recent values of the components of x, we

assume that

xi (t + 1) = fi (1 (r (t)),. .. ,x (r, (t))), Vt E T', (5.1)

where Tr (t) are times satisfying

0 < rj(t) < t, Vt > O.

At all times t V T i , xi (t) is left unchanged and

xi(t + 1) = xi(t), Vt V T'. (5.2)

The difference t - r (t) is equal to zero for a synchronous execution. The larger this difference is, the

larger is the amount of asynchronism in the algorithm. Of course, for the algorithm to make any

progress at all we should not allow r, (t) to remain forever small. Furthermore, no processor should

be allowed to drop out of the computation and stop iterating. For this reason, certain assumptions

need to be imposed. There are two different types of assumptions which we state below.

Assumption 5.1. (Total asynchronism) The sets T' are infinite and if {tk} is a sequence of
elements of T i which tends to infinity, then limk- r.(tk) = oo for every j.

Assumption 5.2. (Partial asynchronism) There exists a positive constant B such that:

(a) For every t > 0 and every i, at least one of the elements of the set {t,t + 1,... ,t + B - 1}

belongs to T i .

(b) There holds

t- B < rj(t) < t, Vi, j, Vt E T'. (5.3)

(c) There holds rii(t) = t, for all i and t E T'.

The constant B of Assumption 5.2, to be called the asynchronism measure, bounds the amount

by which the information available to a processor can be outdated. Notice that synchronous

execution is the special case of partial asynchronism in which B = 1. Notice also that Assumption

5.2(c) states that the information available to processor i regarding its own component is never

outdated. Such an assumption is natural in most contexts, but could be violated in certain types

of shared memory parallel computing systems. It turns out that if we relax Assumption 5.2(c),

the convergence of certain asynchronous algorithms is destroyed (Lubachevsky and Mitra, 1986;

Bertsekas and Tsitsiklis, 1989). Parts (a) and (b) of Assumption 5.2 are typically satisfied in

practice.
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Asynchronous algorithms can exhibit three different types of behaviour (other than guaranteed

divergence):

(a) Convergence under total asynchronism.

(b) Convergence under partial asynchronism, for every value of B, but possible divergence under

totally asynchronous execution.

(c) Convergence under partial asynchronism if B is small enough, and possible divergence if B is

large enough.

The mechanisms by which convergence is established in each one of the above three cases are

fundamentally different and we address them in the subsequent three sections, respectively.

6. TOTALLY ASYNCHRONOUS ALGORITHMS

Totally asynchronous convergence results have been obtained t by Chazan and Miranker (1969)

for linear iterations, Miellou (1975a), Baudet (1978), El Tarazi (1982), Miellou and Spiteri (1985)

for contracting iterations, Miellou (1975b) and Bertsekas (1982) for monotone iterations, and Bert-

sekas (1983) for general iterations. Related results can be also found in (Uresin and Dubois, 1986,

1988a, 1988b; Chine, 1988). The following general result is from (Bertsekas, 1983).

Proposition 6.1. Let X = , x i c C nl, Ji''. Suppose that the mapping f : X '-* X has

a unique fixed point x* E X. Furthermore, suppose that for each i E {1,... ,p}, there exists a

sequence (Xi(k)} of subsets of Xi such that:

(a) Xi(k + 1) c Xi(k), for all k > 0.
(b) The sets X(k) = 1niP Xi(k) have the property f (x) E X(k + 1), for all x E X(k).

(c) Every sequence {x(k)} with the property x(k) E X(k) for all k, converges to x*.

Then, under Assumption 5.1 (total asynchronism), the sequence {x(t)} generated by the asyn-

chronous iteration (5.1)-(5.2) converges to x*.

The key idea behind Proposition 6.1 is that eventually x(t) enters and stays in the set X(k);

furthermore, due to condition (b) in Prop. 6.1, it eventually moves into the next set X(k + 1).

Successful application of this result depends on the ability to properly define the sets X,(k) with

the required properties. This is possible for two general classes of iterations which will be discussed

shortly.

Notice that Prop. 6.1 makes no assumptions on the nature of the sets Xi (k). For this reason, it

can be applied to problems involving continuous variables, as well as discrete iterations involving

finite-valued variables. Furthermore, the result extends in the obvious way to the case where each

Xi (k) is a subset of an infinite-dimensional space (instead of being a subset of Rn'i) or to the case

where f has multiple fixed points.

Several authors have also studied asynchronous iterations with zero delays, that is, under the

t Actually, some of these papers only consider partially asynchronous iterations, but their con-

vergence results readily extend to cover the case of total asynchronism.
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assumption r (t) = t for every t E T'. See for example, (Robert, Charnay, and Musy, 1975; Robert

1976, 1987, 1988). General necessary and sufficient convergence for the zero-delay case can be

found in (Tsitsiklis, 1987), where it is shown that asynchronous convergence is guaranteed if and

only if there exists a Lyapunov-type function which testifies to this.

6.1. Maximum norm contractions.

Consider a norm on R" defined by

|xllJ = max lixilli-
i wi

where xi E Rn' is the ith component of x, I' -,i is a norm on Kni', and wi is a positive scalar, for

each i. Suppose that f has the following contraction property: there exists some a E [0, 1) such

that

llf(x) - x*l11 < CIx - *l11, Vx E X, (6.1)

where x* is a fixed point of f. Given a vector x(O) E X with which the algorithm is initialized, let

X,(k) = xi E I' II, - X, I < a I11(0) - x*l }. (6.2)

It is easily verified that these sets satisfy the conditions of Proposition 6.1 and convergence to x*

follows.

Iteration mappings f with the contraction property (6.1) are very common. We list a few

examples:

(a) Linear iterations of the form f(x) = Ax + b, where A is an n x n matrix such that p(lAl) < 1.

Here, IAI is the matrix whose entries are the absolute values of the corresponding entries of A, and

p(lAl), the spectral radius of IAl, is the largest of the magnitudes of the eigenvalues of IAl (Chazan

and Miranker, 1969). As a special case, we obtain totally asynchronous convergence of the iteration

r := ;rP for computing a row vector 2r with the invariant probabilities of an irreducible, discrete-

time, finite-state, Markov chain specified in terms of the stochastic matrix P, provided that one

of the components of ir is held fixed throughout the algorithm (Bertsekas and Tsitsiklis, 1989).

Another special case is considered in (Donnelly, 1971). Let us mention here that the condition

p(IAI) < 1 is not only sufficient but also necessary for totally asynchronous convergence (Chazan

and Miranker, 1969).

(b) Gradient iterations of the form f(x) = x - 7VF(z), where 7 is a small positive stepsize

parameter, F : R" R4 R is a twice continuously differentiable cost function whose Hessian matrix

is bounded and satisfies the diagonal dominance condition

E lVF F(x)I < Vi F(x) - i, Vi, Vx E X. (6.3)

Here, / is a positive constant and V? hF stands for (82 F)/(8xa Oxj) (Bertsekas, 1983; Bertsekas and

Tsitsiklis, 1989).
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Example 6.1. Consider the iteration x := --Ax, where A is the positive definite matrix

given by
1+e 1 I

A= 1 1+e 1 ,
1 1 l+e

and 7y, c are positive constants. This iteration can be viewed as the gradient iteration x := x -

7VF(x) for minimizing the quadratic function F(x) = 2x'Ax. If e > 1, then the diagonal dominance

condition of Eq. (6.3) holds and totally asynchronous convergence follows, when the stepsize -y is

sufficiently small. On the other hand, when 0 < e < 1, the condition of Eq. (6.3) fails to hold

for all 7 > 0. In fact, in that case, it is easily shown that p(lI - yAl) > 1 for every 7 > 0, and

totally asynchronous convergence fails to hold, according to the necessary conditions quoted earlier.

An illustrative sequence of events under which the algorithm diverges is the following. Suppose

that the processors start with a common vector x(0) = (c, c, c) and that each processor executes

a very large number to of updates of its own component without informing the others. Then,

in effect, processor 1 solves the equation 0 = (aF/l8x)(xl,c, c) = (1 + E)x1 + c + c, to obtain

x1 (to) P -2c/(1 + c), and the same conclusion is obtained for the other processors as well. Assume

now that the processors exchange their results at time to and repeat the above described scenario.

We will then obtain xi(2to) e -2xi(to)/(1 + E) -z (-2)2 c/(1 + E)2 . Such a sequence of events can

be repeated ad infinitum, and it is clear that the vector x(t) will diverge if e < 1.

(c) The projection algorithm (as well as several other algorithms) for variational inequalities.

Here, X = H[= Xi c Wn is a closed convex set, f X -+ Rn is a given function, and we are looking

for a vector x* E X such that

(X- X*)'f(x*) > 0, Vx E X.

The projection algorithm is given by x := [x - f(x)]+, where [.]+ denotes orthogonal projection

on the set X. Totally asynchronous convergence to x* is obtained under the assumption that the

mapping x F-p x - 7f(x) is a maximum norm contraction mapping, and this is always the case if

the Jacobian of f satisfies a diagonal dominance condition (Bertsekas and Tsitsiklis, 1989). Special

cases of variational inequalities include constrained convex optimization, solution of systems of

nonlinear equations, traffic equilibrium problems under a user-optimization principle, and Nash

games. Let us point out here that an asynchronous algorithm for solving a traffic equilibrium

problem can be viewed as a model of a traffic network in operation whereby individual users

optimize their individual routes given the current condition of the network. It is natural to assume

that such user-optimization takes place asynchronously. Similarly, in a game theoretic context,

we can think of a set of players who asynchronously adapt their strategies so as to improve their

individual payoffs, and an asynchronous iteration can be used as a model of such a situation.

(d) Waveform relaxation methods for solving a system of ordinary differential equations under a

weak coupling assumption (Mitra, 1987), as well as for two-point boundary value problems (Lang

et al., 1986; Spiteri, 1984; Bertsekas and Tsitsiklis, 1989).
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Other studies have dealt with an asynchronous Newton algorithm (Bojanczyk, 1984), an agree-

ment problem (Li and Basar, 1987), diagonally dominant linear programming problems (Tseng,

1987), and a variety of infinite-dimensional problems such as partial differential equations, and

variational inequalities (Spiteri, 1984; Miellou and Spiteri, 1985; Spiteri, 1986; Anwar and El

Tarazi, 1985).

In the case of maximum norm contraction mappings, there are some convergence rate estimates

available which indicate that the asynchronous iteration converges faster than its synchronous

counterpart, especially if the coupling between the different components of z is relatively weak.

Let us suppose that an update by a processor takes one time unit and that the communication

delays are always equal to D time units. With a synchronous algorithm, there is one iteration

every D + 1 time units and the "error" IIx(t) - * can be bounded by Ccat/(D+1), where C is some

constant and a is the contraction factor of Eq. (6.1). We now consider an asynchronous execution

whereby an iteration is performed by each processor i at each time unit and the values of xj (j : i)

which are used are outdated by D time units. Concerning the function f, we assume that there

exists some scalar / such that 0 < / < a and

Ilfi(x) - xi i < max{aIIxi - xziIi,,max xIzi -xjl}, Vi. (6.4)

It is seen that a small value of / corresponds to a situation where the coupling between different

components of x is weak. Under condition (6.4), the convergence rate estimate for the synchronous

iteration cannot be improved, but the error Ilx(t)- x* 11 for the asynchronous iteration can be shown

(Bertsekas and Tsitsiklis, 1989) to be bounded above by Cpt, where C is some constant and p is

the positive solution of the equation p = max{a,/lp-D}. It is not hard to see that p < al/(D+1)

and the asynchronous algorithm converges faster. The advantage of the asynchronous algorithm is

more pronounced when /3 is very small (very weak coupling) in which case p approaches a. The

latter is the convergence rate that would have been obtained if there were no communication delays

at all. We conclude that, for weakly coupled problems, asynchronous iterations are slowed down

very little by communication delays, in sharp contrast with their synchronous counterparts.

6.2. Monotone mappings

Consider a function f : n _ Rn which is continuous, monotone [that is, if x < y then f(x) < f(y)],

and has a unique fixed point x*. Furthermore, assume that there exist vectors u, v, such that

u < f(u) < f(v) < v. If we let fk be the composition of k copies of f and X(k) = {x I

ck (U) < X* < fk (V)}, then Prop. 6.1 applies and establishes totally asynchronous convergence. The

above stated conditions on f are satisfied by the iteration mapping corresponding to the successive

approximation (value iteration) algorithm for discounted and certain undiscounted infinite horizon

dynamic programming problems (Bertsekas, 1982).

An important special case is the asynchronous Bellman-Ford algorithm for the shortest path

problem. Here we are given a directed graph G = (N, A), with N = {1,... , n} and for each arc

(i, j) E A, a weight aij representing its length. The problem is to compute the shortest distance xi
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from every node i to node 1. Assuming that the shortest distances are finite, they correspond to

the unique fixed point of the monotone mapping f Rn '" -n defined by fi (x) = 0 and

fi(z) = min (aii + z), i x 1.
{jl(i,j)EA}

The Bellman-Ford algorithm consists of the iteration x := f(x) and can be shown to converge

asynchronously (Tajibnapis, 1977; Bertsekas, 1982). We now compare the synchronous and the

asynchronous versions. We assume that both versions are initialized with xi = oo for every i A 1,

which is the most common choice. The synchronous iteration is known to converge after at most

n iterations. However, assuming that the communication delays from processor i to j are fixed

to some constant Dij, and that the computation time is negligible, it is easily shown that the

asynchronous iteration is guaranteed to terminate earlier than the synchronous one.

Notice that the number of messages exchanged in the synchronous Bellman-Ford algorithm is

at most O(n3 ). This is because there are at most n stages and at most n messages are transmitted

by each processor at each stage. Interestingly enough, with an asynchronous execution, and if the

communication delays are allowed to be arbitrary, some simple examples (due to E.M. Gafni and

R.G. Gallager) show that the number of messages exchanged until termination could be exponential

in n, even if we restrict processor i to transmit a message only when the value of xi changes. This

could be a serious drawback but experience with the algorithm indicates that this worst case

behavior rarely occurs and that the average number of messages exchanged is polynomial in n.

Some results of this type can be proved analytically, an example being the following. Suppose that

there exist positive constants 6, A, such that the time between consecutive updates of xi is bounded

below by S and above by A, for each i. Furthermore, assume that the delay of each message is

an independent random variable, with exponential distribution and mean one. Then, the expected

number of messages exchanged is bounded above by a polynomial in n whose coefficients depend

on A and 6 (Tsitsiklis, 1988).

A number of asynchronous convergence results making essential use of monotonicity conditions

are also available for dual relaxation algorithms for linear and nonlinear network flow problems

(Bertsekas and Eckstein, 1987, 1988; Bertsekas and El Baz, 1987).

7. PARTIALLY ASYNCHRONOUS ALGORITHMS-I

We now consider partially asynchronous iterations, satisfying Assumption 5.2. Since old infor-

mation is "purged" from the algorithm after at most B units, it is natural to describe the "state"

of the algorithm at time t by the vector z(t) E X B defined by

z(t) = (x(t), x(t- 1),.. .,x(t-B + 1)).

We then notice that x(t + 1) can be determined [cf. Eqs. (5.1)-(5.3)] in terms of z(t); in particular,

knowledge of x(r), for r < t - B is not needed. We assume that the iteration mapping f is
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continuous and has a nonempty set X* c X of fixed points. Let Z* be the set of all vectors

z* E XB of the form z* = (x*, x*,.. ., x*), where x* belongs to X*. We present a sometimes useful

convergence result which employs a Lyapunov-type function d defined on the set XB.

Proposition 7.1. (Bertsekas and Tsitsiklis, 1989) Suppose that there exists a positive integer t*

and a continuous function d : XB F-+ [0, co) with the following properties: For every initialization

z(0) ~ Z* of the iteration and any subsequent sequence of events (conforming to Assumption

5.2) we have d(z(t*)) < d(z(O)) and d(z(l)) < d(z(O)). Then every limit point of a sequence
{z(t)) generated by the partially asynchronous iteration (5.1)-(5.2) belongs to Z*. Furthermore, if

X = n, if the function d is of the form d(z) = infz*ez. IIz - z* II, where II * II is some vector norm,

and if the function f is of the form f(x) = Ax + b, where A is a n x n matrix and b is a vector in

Rn, then d(z(t)) converges to zero at the rate of a geometric progression.

Suppose now that ni = 1 for each i, and consider a mapping f : ·n -, ~R of the form f(x) = Ax

where A is an irreducible stochastic matrix. In the corresponding iterative algorithm, each processor

maintains and communicates a value of a scalar variable xi and once in a while forms a convex

combination of its own variable with the variables received from other processors according to the

rule
n

Xi := Eaijxj.

j=1

Clearly, if the algorithm converges then, in the limit, the values possessed by different processors

are equal. We will thus refer to the asynchronous iteration x := Ax as an agreement algorithm. It

can be shown that, under the assumption of partial asynchronism, the function d defined by

d(z(t)) =max max I xi(r)l-min min I xi(r)l (7.1)
i t-B<r<t i t-B<r<t

has the properties assumed in Prop. 7.1, provided that at least one of the diagonal entries of A is

positive. In particular, if the processors initially disagree, the "maximum disagreement" [cf. (7.1)] is

reduced by a positive amount after at most 2nB time units (Tsitsiklis, 1984). Proposition 7.1 applies

and establishes geometric convergence to agreement. Furthermore, such partially asynchronous

convergence is obtained no matter how big the value of the asynchronism measure B is, as long as

B is finite.

The following example (Bertsekas and Tsitsiklis, 1989) shows that the agreement algorithm need

not converge totally asynchronously.

Example 7.1. Suppose that

A= 1/2 1/2
[ 1/2 1/2j

Here, the synchronous iteration x(t + 1) = Ax(t) converges in a single step to the vector x = (y, y),

where y = (x 1 + x2)/2. Consider the following totally asynchronous scenario. Each processor

updates its value at each time step. At certain times tl,t 2 ,..., each processor transmits its value
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which is received with zero delay and is immediately incorporated into the computations of the

other processor. We then have

Xl (t + 1) = () + 2 (t) tk < t < tk+l,
2 2 ' --

x2 (t + 1)- (t) + 2 tk < t < tk+ 1

(See Fig. 7.1 for an illustration.) Thus,

xl(tk+l) = (1/2)ik+l -tkxl(tk) + (1 - (1/2)tk+1-tk)x(tk),

x2(tk+l) = (1/2)tk+l--kx 2 (tk) + (1 - (1/2)tk+l-tk)x (tk)

Subtracting these two equations we obtain

1x2t+) - 1(ktk+l) = (1 - 2(1/2 )tk+ - -tk )2 (tk) - x(tk)I

= (1- ek)Xz2(tk) - Xl(tk)I,

where Ek = 2(1/2)tk+.-tk. In particular, the disagreement Iz2(tk) - x (tk)l keeps decreasing. On

the other hand, convergence to agreement is not guaranteed unless nl 1= (1 - ek) = 0 which is not

necessarily the case. For example, if we choose the differences tk+l - tk to be large enough so that

Ek < k - 2 then we can use the fact Ik= 1 (1- k- 2 ) > 0 to see that convergence to agreement does

not take place.

Example 7.1 shows that failure to converge is possible if part (b) of the partial asynchronism

Assumption 5.2 fails to hold. There also exist examples demonstrating that parts (a) and (c) of

Assumption 5.2 are also necessary for convergence.

Example 7.1 illustrates best the convergence mechanism in algorithms which converge partially

asynchronously for every B, but not totally asynchronously. The key idea is that the distance from

the set of fixed points is guaranteed to "contract" once in a while. However, the contraction factor

depends on B and approaches 1 as B gets larger. (In the context of Example 7.1, the contraction

factor is 1- Ek which approaches 1 as tk+l - tk is increased to infinity.) As time goes to infinity, the

distance from the set of fixed points is contracted an infinite number of times but this guarantees

convergence only if the contraction factor is bounded away from 1, which then necessitates a finite

but otherwise arbitrary bound on B.

Partially asynchronous convergence for every value of B has been established for several vari-

ations and generalizations of the agreement algorithm (Tsitsiklis, 1984; Bertsekas and Tsitsiklis,

1989), as well as for a variety of other problems:

(a) The iteration 7r := 7rP for the computation of a row vector 7r of invariant probabilities,

associated with an irreducible stochastic matrix P with a nonzero diagonal entry (Lubachevsky
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and Mitra, 1986). This result can be also obtained by letting xi = 7ri/7r*, where 2r* is a positive

vector satisfying ir* = 7r*P, and by verifying that the variables xs obey the equations of the

agreement algorithm (Bertsekas and Tsitsiklis, 1989).

(b) Relaxation algorithms involving nonexpansive mappings with respect to the maximum norm

(Tseng et al., 1988; Bertsekas and Tsitsiklis, 1989). Special cases include dual relaxation algorithms

for strictly convex network flow problems and linear iterations for the solution of linear equations of

the form Ax = b where A is an irreducible matrix satisfying the weak diagonal dominance condition

Ejii lai I < aii, for all i.

(c) An asynchronous algorithm for load balancing in a computer network whereby highly loaded

processors transfer fractions of their load to their lightly loaded neighbors (Bertsekas and Tsitsiklis,

1989).

In all of the above cases, partially asynchronous convergence has been proved for all values of

B, and examples are available which demonstrate that totally asynchronous convergence fails.

We close by mentioning a particular context in which the agreement algorithm could be of use.

Consider a set of processors who obtain a sequence of noisy observations and try to estimate certain

parameters by means of some iterative method. This could be a stochastic gradient algorithm (such

as the ones arising in recursive system identification) or some kind of a Monte Carlo estimation

algorithm. All processors are employed for the estimation of the same parameters but their in-

dividual estimates are generally different because the noises corrupting their observations can be

different. We let the processors communicate and combine their individual estimates in order to

average their individual noises, thereby reducing the error variance. We thus let the processors

execute the agreement algorithm, trying to agree on a common estimate, while simultaneously

obtaining new observations which they incorporate into their estimates. There are two opposing

effects here: the agreement algorithm tends to bring their estimates closer together, while new

observations have the potential of increasing the difference of their estimates. Under the partial

asynchronism assumption, the agreement algorithm tends to converge geometrically. On the other

hand, in several stochastic algorithms (such as the stochastic approximation iteration

x := x-1 (VF(x) + w),

where w represents observation noise) the stepsize 1lt decreases to zero as time goes to infinity.

We then have, asymptotically, a separation of time scales: the stochastic algorithm operates on a

slower time scale and therefore the agreement algorithm can be approximated by an algorithm in

which agreement is instantly established. It follows that the asynchronous nature of the agreement

algorithm cannot have any adverse effect on the convergence of the stochastic algorithm. Rigorous

results of this type can be found in (Tsitsiklis, 1984; Tsitsiklis et al., 1986; Kushner and Yin, 1987a,

1987b; Bertsekas and Tsitsiklis, 1989).

8. PARTIALLY ASYNCHRONOUS ALGORITHMS-II
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Let A be an n x n positive definite symmetric matrix and let b be a vector in ~R. We consider

the asynchronous iteration x := x - y(Ax - b), where y is a small positive stepsize. We define a

cost function F :" n .- R by F(x) = 'x'Ax - x'b, and our iteration is equivalent to the gradient

algorithm z x - 7 VF(x) for minimizing F. This algorithm is known to converge synchronously

provided that y is chosen small enough. On the other hand, it was shown in Example 6.1, that the

gradient algorithm does not converge totally asynchronously. Furthermore, a careful examination

of the argument in that example reveals that for every value of Y there exists a B large enough

such that the partially asynchronous gradient algorithm does not converge (Bertsekas and Tsitsiklis,

1989). Nevertheless, if y is fixed to a small value, and if B is not excessively large (we roughly

need B < C/y, where C is some constant determined by the structure of the matrix A), then the

partially asynchronous iteration turns out to be convergent. An equivalent statement is that for

every value of B there exists some y0 > 0 such that if 0 < y < yo then the partially asynchronous

algorithm converges (Tsitsiklis et al., 1986; Bertsekas and Tsitsiklis, 1989). The rationale behind

such a result is the following. If the information available to processor i on the value of xj is

outdated by at most B time units, then the difference between the value xi (rT(t)) possessed by

processor i and the true value xj(t) is of the order of yB, because each step taken by processor

j is of the order of y. It follows that for y very small the errors caused by asynchronism become

negligible and cannot destroy the convergence of the algorithm.

The above mentioned convergence result can be extended to more general gradient-like algo-

rithms for non-quadratic cost functions F. One only needs to assume that the iteration is of

the form x := z- 7s(x), where s(x) is an update direction with the property si(x)ViF(x) >

KlViF(x)l2 , where K is a positive constant, together with a Lipschitz continuity condition on

VF, and a boundedness assumption of the form lls(x)ll < LIIVF(x)II (Tsitsiklis et al., 1986; Bert-
sekas and Tsitsiklis, 1989). Similar conclusions are obtained for gradient projection iterations for

constrained convex optimization (Bertsekas and Tsitsiklis, 1989).

An important application of asynchronous gradient-like optimization algorithms arises in the

context of optimal quasistatic routing in data networks. In a common formulation of the routing

problem one is faced with a convex nonlinear multicommodity network flow problem (Bertsekas

and Gallager, 1987) that can be solved using gradient projection methods. It has been shown that

these methods also converge partially asynchronously, provided that a small enough stepsize is used

(Tsitsiklis and Bertsekas, 1986). Furthermore, such methods can be naturally implemented on-line

by having the processors in the network asynchronously exchange information on the current traffic

conditions in the system and perform updates trying to reduce the measure of congestion being

optimized. An important property of such an asynchronous algorithm is that it adapts to changes

in the problem being solved (such as changes on the amount of traffic to be routed through the

network) without a need for aborting and restarting the algorithm. Some further analysis of the

asynchronous routing algorithm can be found in (Tsai, 1986).
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9. CONCLUSIONS.

Iterative algorithms are easy to parallelize and can be executed synchronously even in inherently

asynchronous computing systems. Furthermore, for the regular communication networks associated

with several common parallel architectures, the communication requirements of iterative algorithms

are not severe enough to preclude the possibility of massive parallelization and speedup of the

computation. Iterative algorithms can also be executed asynchronously, often without losing the

desirable convergence properties of their synchronous counterparts, although the mechanisms that

affect convergence can be quite different for different types of algorithms. Such asynchronous

execution may offer substantial advantages in a variety of contexts.
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Figure 4.1.

(a) A single node broadcast uses a tree that is rooted at a given node (which is node 1 in the figure).

The time next to each link is the time that transmission of the packet on the link begins. (b) A

single node accumulation problem involving summation of n scalars al,..., an (one per processor)

at the given node (which is node 1 in the figure). The time next to each link is the time at which

transmission of the "combined" packet on the link begins, assuming that the time for scalar addition

is negligible relative to the time required for packet transmission. __



Figure 4.2.

Structure arising from discretization of two-dimensional space. Here the variables are partitioned

in rectangles of physical space, and we assume that only neighboring variables interact. Each

rectangle contains k variables, and at the end of each iteration, each rectangle must exchange

8(k1/ 2 ) variables with each of its neighboring rectangles.
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