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The feasibility of taking practical engineering constraints into con-
sideration when designing optimal linear regulator systems is investi-
gated. The study is conducted by prespecifying the structural form
of time-varying feedback gains, while leaving various free parameters
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the usefulness of the method.
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CHAPTER I

INTRODUCTION

One of the most important and most widely-treated problems

to date in the field of optimal control theory is the so-called "linear

regulator problem. ,,1, Historically, this problem of determining

a control input to a linear system which minimizes the sum of

integral squared error and control energy, finds its conception in

Wiener's work on .stationary time series and linear filtering and
3prediction problems. The 1950's witnessed further contributions

and extensions to the analysis of linear regulator systems 4 ' 5 6and

today, among control theorists, we find a renewed interest in this

area.

One of the primary reasons for this rebirth of interest in the

linear regulator problem, besides the mathematical ease in which

optimal control solutions are obtained in closed form, is that this

study provides us with a strong correlation between the classical

methods of analytic feedback system design via frequency domain

methods and the more recent variational approach favoring analysis

in the time domain. 7,8 The modern approach to the control problem,

with a foundation resting on the concept of state variable descriptions

Superscripts refer to numbered items in the References.

-1-
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of dynamical systems and a structure molded by such tools as the

minimum principle, 1,9 dynamic programming, 10 and the digital

computer, is neither confined solely to time-invariant (stationary)

problems nor is it confined to the consideration of only infinite-time

control intervals.

The ability to consider the entire class of linear regulator

problems in a general framework has not only unified the theory of

optimal linear systems but has also served to uncover some of the

underlying relationships that exist between the structure of the opti-
11mal system and such fundamental concepts as controllability and

12observability. 1 Indeed, the linear regulator problem does not

stand alone on a technical island, for the regard paid to its solution

is matched in turn by the solution's importance and application to

numerous segments of automatic control theory. The equations

which appear in the study of the optimal linear regulator problem

also appear in the study of every optimal tracking problem ' 2and

every linear filtering and prediction problem16, 31 Therefore, re-

suits which are obtained from an investigation of the regulator problem

are also pertinent to the tracking and filtering problems.

The elegant form in which the solution to the linear regulator

problem may be expressed is well-known. The optimal control,

u (t), for t to T] is simply a linear feedback control law

u (t) = -L (t) x(t)
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where x(t) is the current state of the system and L (t) is a matrix

of feedback gains. The elements of L (t) are obtained from the

solution of a nonlinear matrix differential equation (the Riccati

equation) which lies at the heart of the optimization problem. How-

ever, this elegance gleams brighter in the eyes of the mathematician

than in those of the engineer. Because of the computation instability

of the Riccati equation solution in the forward time direction, it is

not possible to accurately compute the elements of L (t), t > t in

an on-line manner by simply integrating the Riccati equation forward

in time, starting from t = t .t It therefore becomes necessary to
0

first solve the Riccati equation off-line, in the reverse time direction,

by starting at t T with an appropriate boundary condition. Having

accomplished this, the time-varying gains L (t) are then stored on

tape in the feedback controller, to be played back upon command in

real time. This method of implementing the optimal control is diffi-

cult and often impractical in many instances due to the circuitry re-

quirements for synchronous playback of a large number of time-

varying signals.

In this research we shall take these engineering problems into

consideration, and propose a suboptimal control scheme for linear

f This is not the case in the filtering problem for which the Riccati
equation solution is stable as t-+Oo. 16 Nonetheless, the theoretical
results of this report are still applicable tolinear filtering problems.
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regulator systems. Our goal is to determine a linear feedback con-

trol law which is relatively easy to implement, yet one which results

in near optimal system performance. -Our method of approach is to

trade mathematical optimality in return for engineering simplicity

and practical usefulness. This we shall accomplish by prespecifying

the structural form of time-varying feedback gains, while leaving

various free parameters to be chosen in an optimal fashion. In this

manner, we shall precisely formulate, and subsequently analyze, a

"suboptimal linear regulator problem."

Our initial task, which we undertake in Chapter II, is to ex-

plicitly define the optimal linear regulator problem. We discuss the

solution to this optimal control problem in terms of the solution

K(t; T, F) to the matrix Riccati differential equation. We show that
*

the optimal control, u (t), may be expressed as a linear, time-varying

feedback law.

u (t) = -B'(t) K(t; T, F) x(t) = -L (t) x(t)

and we present several well-known properties of K(t; T, F).

Having presented the reader with an understanding of the form

of the optimal solution, we turn, in Chapter III, to methods for imple-

menting the optimal control. We show that due to the computational

instability of the Riccati equation solutions, one cannot accurately

compute I(t; T, F) in an on line manner for t> t This fact forces

us to implement the optimal control by prestoring the elements of
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L (t) on tape and playing the tape back upon comnland in real time to

generate u (t). Therefore, K(t; T, F) is computed off-line, before

the control system is placed into operation. This leads to our study

of nunerical techniques for the off-line computation of K(t; T, F),

,tnd we discuss three known algorithms in which the nonlinear Riccati

differential equation is approximated by a nonlinear difference

equation. We then develop an iterative scheme for determining

K(t; T, F) which is an extension (to the matrix case) of Kalaba's

method of successive approximations. 7 By introducing the concept

of a "cost mnatrix, " and solving a sequence of linear differential

equations, we obtain a sequence of iterates which converge mono-

tonically to K(t; T, F).

In Chapter IV, we discuss the engineering difficulties associated

with storing the optimal feedback gain matrix L (t) on tape for

te[ t, T . Motivated by engineering feasibility, we then constrain

the control input to our system to be of the form u(t) = -L(t) x(t),

where we prescribe a time structure for the feedback gain matrix

L(t). By leaving various free parameters in the description of L(t)

it then becomes possible for us to choose a cost functional (L),

and to develop the new concept of a "suboptimal linear regulator

problem." Making use of gradient matrices, we then derive neces-

sary conditions which the solution, L°(t), of the suboptimal problem

must satisfy, as well as various properties of the solution itself.
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In Chapter V, we examine the important special case for which

the feedback gain matrix L(t) is constrained to be piecewise constant

over the control interval [t , T] . We discuss the implications of

this constraint insofar as they relate to the storage limitations of a

digital computer which may be used to implement the suboptimal

control. We show that as the storage capacity is increased, the

suboptimal control becomes arbitrarily close to the optimal control.

We then apply the necessary conditions for suboptimality derived in

Chapter IV, and develop an iterative scheme for computing the piece-

wise constant suboptimal gain matrix. A second-order example is

included which illustrates the proposed method. Suggestions for

further research comprise Chapter VI.

The major contribution of this report is the development and

theoretical analysis of the suboptimal linear regulator problem, in

particular, the piecewise constant problem of Chapter V. It is hoped

that this research will disuade those critics of optimal control theory

who argue that the gap between theory and practice has grown too

wide. For it is possible to narrow that so-called "gap" by applying

optimization techniques with one hand, while taking into account

practical engineering constraints with the other. This research is

but one such attempt.



CHAPTER II

THE OPTIMAL LINEAR REGULATOR PROBLEM

An essential prerequisite for any "sub-optimal" design of a

linear regulator system is a thorough understanding of the optimal

linear regulator problem itself. This knowledge provides a strong base

upon which to build a theory of sub-optimization, and in the final analysis

it is this knowledge which must be used to judge the merits of our sub-

optimal design.

In this chapter we shall formulate the optimal linear regulator

problem in a mathematical framework, and discuss its solution in terms

of the solution to a matrix Riccati differential equation. We shall not

attempt to be all inclusive, but merely present the salient features of

the optimal solution and discuss several properties of the Riccati equation

which appear elsewhere in the literature.

This chapter is an abridged version of Chapters II, IV and VI of

Reference 13. In some cases, the proofs of certain results are omitted

for the sake of brevity. For a more extensive investigation into the linear

regulator problem and its associated Riccati equation the reader is urged

to see References 1, 2, 13, 16.

A. LINEAR DYNAMICAL SYSTEMS--DEFINITION

In the sequel we confine our attention to dynamical systems which

are characterized by the following elements:

-7-
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(1) A time set {t} which we shall take to be the real line,
i.e., {t} = (-oo, o)= E1

(2) A set of states {x} = X = En called the state space, where
E is an n-dimensional Euclidean vector space.n

(3) A set of inputs or controls {u } = U = E called the input

space.

(4) A function space 2Q whose elements are bounded, measur-
able functions which map E1 into U.

(5) A set of outputs {y } = Y = E called the output space.

(6) A linear differential equation which describes the evolution
of the state of the system in time, i. e.,

d
dt x(t) = A(t) x(t) + B(t) u(t) (2.1)

where the nxn and nxr matrices A(t) and B(t), respectively,
are locally integrable.

(7) An algebraic equation which relates the output vector at
time t to the state at time t, viz.,

y(t) = C(t) x(t) (2.2)

where C(t) is an mxn matrix which is locally integrable.

A system, A, possessing the above properties is called a "con-

tinuous time, linear dynamical system."

B. THE OPTIMAL REGULATOR PROBLEM--FORMULATION

Let us suppose that we are given a linear dynamical system 

satisfying conditions (1) -(7). Let us suppose further that t and

x are given elements of (-ao, oo) and X, respectively, and that-o
T is a given element of (t, co), i.e., T > t

t x, t and T are often referred to as the initial state, the initial
time and the final or terminal time, respectively.
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If u( ) is a given element of 2, let x (t) = (t; t , x , u(' )) denote_u - 0 -O' -

the solution of the system equation (2. 1) starting from x at time t

(i. e, x(t ) = x ), and generated by the control u (. ). Let yu(t) = C(t)x (t)

be the corresponding output trajectory. The optimal linear regulator

problem is then to determine the control u(') E¢2 which minimizes the

quadratic cost functional

T
1 1J(Xo to T u())= <x (T), F x (T)>+ [<Yu(t),y (t)>+<u(t), u(t)>Jdt

-0) o 2 - .u...
t
0

(2. 3)

where F is a positive semi-definite matrix, the "terminal state" x (T) eX

is unconstrained, and the terminal time T is fixed.

We shall denote by u (.) the control which minimizes (2.3) and by

x (.) the trajectory in the state space X , generated by u ().

Note that there is no loss of generality in considering the cost

functional (2. 3). The most general form of the cost functional (2.3)

for a given system is

J(xo to, Tu (' )) = < (T) FY(T) >

T

+ f [< yu(t),Q(t)y (t)> +<u(t),R(t)u(t)>] dt
t
0

where (t) is an mxm positive

rxr positive definite matrix and

zero. However, if we now define

(2.4)

semi-definite matrix and R(t) is an

F and Q(t) are not both identically

a new system which is charac-
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terized by the equations

d

-: x(t) = A(t)x(t) + B(t)u(t); x = xdt- M - - - -o -o

y(t) = C(t) x(t)

wh e r e A(t) = A(t), B(t) = B(t)R 1(t), C(t) C/2(t) C(t), u(t)= R1/(t)u(t)t

(so that x(t) = x(t)), it is clear that the cost functional (2.4) written with

respect to the system Z becomes

'~ 1
J(x to T,U(-)) = < (T), C(T)FC(T)X- (T) >

T

+ [<_ (t), -(t)> +<~(t), (t)>] dt
t
0

which is of the same form as Eq. (2. 3). Hence, without loss of generality,

we shall consider the following optimization problem, which we summarize

for convenience.

The Optimal Linear Regulator Problem

Given the linear dynamical system I;, characterized by the

equations

x(t) = A(t)x(t) + B(t) u(t); x(t ) = x

Y(t) = C(t) x(t)

and the cost functional.

Since R (t) is positive definite it possesses a unique positive definite
square root, written as R-1/2(t). Similarly, the positive semi-
definiteness of Q(t) implies the existence of the unique positive semi-
definite square root, Q/Z(t).
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T

J(x ,t, T,u( )) =2' <x(T),Fx(T)> + f [< (t),y(t)>+<u(t),u(t)>dtI _ j J< y() yu(t), u(t)>]dt
t

where T is fixed. Find the control u ( ) over the interval [to, T]

such that J(x , to, T, u ()) is minimized.

C. THE OPTIMAL REGULATOR PROBLEM--SOLUTION

The optimization problem posed above is solved most expeditiously

I' tise of the Minimum Principle. Using this method we find that the

c)ptimal control u as a function of time may be obtained by solving the

Znx2n Hamiltonian system of equations

- B(t)B'(t) x(t. . .... .. (2 5)
(t) - A'(t) p(t)

subject to the boundary conditions

x(t0) = x (2.6)O -o

p(T) = Fx(T)

The optimal control for t [ t, T] is then given by

u (t) = -B'(t) p(t) (2.7)

The system of Eqs. (2.5) represents simply the Euler equations

for our minimization problem. However, the solution of these equations

is difficult due to the computational difficulties involved in solving time-

varying equations with split boundary conditions.

Alternatively, a more manageable solution to the regulator problem

is obtained by solving for u (t) as an instantaneous function of the time

t and the state x(t), (i.e., solving for the optimal feedback control

X (t):

Lp (tj
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law). In this case we find that the n-vector p(t) and the n-vector

x(t) can be related by the linear transformation K(t), i.e.,

p(t) = K(t) x(t) (2.8)

so that the optimal control law may be written as a linear feedback law

u (x(t), t) = -Bt) ) x (t)= -L (t)x(t) (2.9)

provided that K(t) is the unique solution of the matrix differential

equation

satisfying

Under

generated

K(t) = -A(t)K(t) - K(t)A(t)- C'(t)C(t)+ K(t)B(t)B'(t)K(t) (2. 10)

the boundary condition

K(T) = F (2. 11)

these conditions, the state x (t) of the optimal system is

by the linear differential equation

A * - -*

dt x (t) = [A(t)- B(t)B'(t)K(t)] x (t) ; x (to) = x 12)

Consequently, we see that any study of the optimal linear regulator

problem is intrinsically tied to the study of the properties of the solution

to Eq. 2. 10. We call Eq. 2. 10 the "matrix Riccati equation" or, for

short, the "Riccati equation".

The first and most immediate property of the Riccati equation solution

is

Proposition 1: If K(t) is

equation (2. 10) satisfying

i.e., K(t) = K'(t) for all

the unique solution of the Riccati

K(T) = F, then K(t) is symmetric,

t< T.
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'l'his proposition is well-known and is given here for the sake of

completeness. Its proof, which is elementary if one takes the

tlranspose of both sides of Eq. (2. 10), is omitted.

Let tus now define the functional, J (x, t, T), for arbitrary t (-co, T)

ant x eX as being the optimal "cost" relative to (x, t), i.e.,

J (x, t, ) = min J(x (t), t, T, u( ))
u( )cF 

T

< x (T),Fx (T> ()> -+< (><), ()>] dT

t

J(x, t, T, u(.)) ' (2. 13)
u=U

Having defined J (x, t, T) we now state and prove another well-known

result. We present a more direct proof than those commonly found in

the control literature 12 which rely upon Hamilton-Jacobi theory. We

show,

Lernmma 1: If K(t) is the unique solution of the Riccati

equation satisfying K(T) = F, then

* 1
J (x, t, T) = <x,K(t)x> (2. 14)

Proof: In the proof we shall assume (without loss of generality)

that F= 0. Then, substituting

u (T) = -B(T)K(T )x (T)and * 
Y (T) = C(T) X (T)

into Eq. (2. 13) we find that
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J (x,t,T) = 2 

t
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< X (T), [C'(T)C(T)+K(T)B (r)B'(T)K(T)]

If we now define f (T, t) as being the transition matrix of the optimal-C

closed loop system 2. 12, i.e.

ad 1 ( ' t) = [Aj - c

(Tr, t) satisfies the equation

(T) - B(T)B'(T)K(T)] c(T, t) ; P (t, t) = I

then

X (T) = b_ (T, t) x (t)
C

= (T, t) x

Substituting Eq. (2. 15) into the above expression for J (x, t, T)

J (x, t, T) = < x, V(t)x>

V(t)
T

f
t

(2. 16)

Note that V(t) is uniformly continuous in t. It remains only to show

that V(t) = K(t). To accomplish this we differentiate both sides of

Eq. (2. 16) with respect to t.

d
' ( , t) = -

Using the well-known relation

and its transpose

(T) > dT

obtain

(2. 15)

we

where

4m'(T, t) [ C'(T)_C(T)K_(T)B(T)B_(T)K(T)L7))C(T, t) dT

-[ A(t) - (t) B '(t)K ()] ' -~P ' (T t)
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d
-j t c(T' t) - C(T, t) [A(t) - B(t) B '(t)K(t)]

alit otain, since K(t) = K'(t), that

dt V(t) = --A'(t)V(t) -V(t)A(t)+ K(t)B(t)B'(t)V(t)

+ V(t) B(t)B '(t)K(t) - C'(t)C(t) - K(t)B(t)B'(t)K(t) (2. 17)

with V(T) = 0. But Eq. (2. 7) is a linear equation in V(t) and therefore

possesses a unique solution. Consequently if K(t) is the unique solution

of the Riccati equation with K(T) = 0, substituting V(t) = K(t) in (2. 17)

wvill result in an identity. 

In particular, since J (x, t, T) is non-negdtive (by virtue of the fact

that F is positive semi-definite) we deduce from Lemma 1 that, for any

element x X,

<x,K(t)x> = 2J (x,t,T) > 0 (2. 18)

Therefore, K(t) is positive semi-definite for all t < T provided that

it is well defined.

The above discussion has been contingent upon the fact that the

solution to the Riccati equation (2. 10) is unique. However, this equation,

being nonlinear, may not have any solution, much less a unique solution.

Consequently, an investigation dealing with the existence and uniqueness

of the Riccati equation solution becomes necessary. In Appendix A we

show, by taking into account the nature of our specific optimization

problem, that Eq. (2. 10) does, indeed, possess a well-defined solution

over the entire interval (-oo, T]. Our main result is



-16-

Theorem 1: For all T and all positive semi-definite

matrices F, the equation

K(t) = -A'(t)K(t) - K(t)A (t) - C'(t)C(t) + K(t)B(t)B'(t)K (t)

has a unique, positive semi-definite solution defined over the

entire interval (-oo, T] which satisfies K(T) = F.

Finally, for notational purposes in the sequel, we define:

Definition 1: Let K(t;T,F), t < T denote the unique solution

of the Riccati equation (2. 10) satisfying the boundary condition

K(T; T, F) = F.

D. A "CLOSED FORM" EXPRESSION FOR K(t;T,F)t

We can obtain the solution to the Riccati equation in a closed-form

by considering the Euler equations (2. 5) corresponding to the underlying

minimization problem. These equations are repeated for convenience as

[ .: _z .. i (2. 19)

A(t) -B(B(B ' (t)1

where Z ........ ............. (2.20)

-C'(t)C(t) - A'(t)

Prior to deriving an expression for K(t; T, F), we shall investigate

some properties associated with the 2nx2n matrix Z . First of all,

we note that Z satisfies the relation

tThe results of this section have been derived by Kalman and may be
found in Reference 16. We have repeated the proofs for the sake of
completeness and to gain further insight to the structure of the matrix
K(t; T, F).
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Z = Z'J

where

0 . - I-I

J . ......
I 0O

As a consequence of Eq. (2.21) we can immediately show

Proposition 2: If X is an eigenvalue of Z , then so

Proof: Z = _ implies that JZ'J = .

-J= J' we have Z'J =

value of Z'

But since J

- J. This implies that - is an eigen-

(with eigenvector J ). But a matrix and its transpose

have the same eigenvalues and so - is an eigenvalue of Z. 11

If we now let

4(t, t )
-- O

_1 (t to ) : ,12(t, t)

21 ( t t o ) : 22( t , to )

(2.23)

be the transition matrix of Eq. (2. 19), it follows, due to the form of Z

that

Lemma 2: 2Y(t, t ) satisfieso

4i 1 1(t, to )

_2 12(t, t o )

2 (t , to)

= '22 ( to t)

= 1 2(to t)

=2 1 (to, t)

(2.21)

(2.22)

is

(2.24)
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Proof: Let y = col (x, p ), and let i(t, t) be the transition

matrix of y = Zy. Let Jv = y , so that the vector v satisfies the

equation

v = J 1ZJv =- JZ J v

Since '(t , t) is the transition matrix of v = -Z'v and since
-1v = J y = J'y, the transition matrix of y = Z y is given by

4i(t,t ) = J I'(t,
O - - 0 t)J= J' 4'(t o , t)J

which yields the desired results. 

We can now show,

Theorem 2:

K(t; T, F) = [ 2 2 (T, t) - F_ 12 (T, t)]-

= [ 2 1 (t, T)+ 2 2 (t, T)F]

Proof:

1

[F_ 1 1(Tt)- 2 1(T, t)]

[+ 1 1(t, T)+ P12 (t, T)F] 1

Since

x (T)

p (T)

and since p(T) = Fx(T)

x (t)

= i(T, t) ..

p (t

we have

x(T) = T 1 1(T,t)x(t) + 12 (T, t) p(t)

p(T) = Fx(T) = 42 1(T, )x(t) + 22 (T, t)p(t)

= -Z'v

(i)

(ii)
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But since p (t) = K(t; T, F) x(t), we find that

K(t; T, F) = [ 2z(T, t) - F 12(T, t)] -l [Fi 1(T, t) - 2 1(T, t)]

The inverse term in the above expression exists provided K(t;T,F)

exists. In particular, this inverse will exist for all t < T if F is

positive semi-definite, by Theorem 1. This condition rules out the

so-called "conjugate points" of the Calculus of Variations. 19

Now, since K(t; T, F) is symmetric, we have, taking the trans-

pose of the above expression, that

K(t; T,F)= [-Z((T, t ) F] [22(. t)-'p2(T, )F]

substitution of Eq. (2. 24) of Lemma 2 yields the desired relation (ii). I

Notice that unless A(t), B(t) and C(t) are constant matrices

(i. e., is a time-invariant system), the result of Theorem 2 simply

replaces the difficult problem of solving the Riccati equation (2. 10)

by another of similar difficulty, since only in the rarest cases can

_i(t, T) be expressed in analytic form. However, we have shown that

the solution of time-varying linear regulator problems involves the

same analytic difficulties as the solution of linear differential equations

with time-varying coefficients.

Besides being of interest from a theoretical point of view, the results

of Theorem 2 present a foundation upon which to build an iterative scheme

for the determination of K(t; T, F) on a digital computer. This in fact
16has been done and the resulting iterative technique is commonly
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referred to as the Automatic Synthesis Program (ASP) which we

briefly discuss in Section C of Chapter III.

The results which we presented above are valid only when the

terminal time T is finite. In order to extend these results to cover

the case T = oo, and thereby gain a firm understanding of the nature

of the Riccati equation solution K(t; T, F) as regards the parameter

T, it is first necessary to introduce the concepts of controllability and

observability. This is the object of the next section. In the succeeding

sections we present the appropriate results for the solution to the linear

regulator problem as T -co, and investigate the stability properties

of the resulting optimal system.

11, 12E. CONTROLLABILITY AND OBSERVABILITY-DEFINITIONS

The fundamental concepts of controllability and observability occupy

central positions if one wishes to investigate properties of the Riccati

equation solution K(t; T, F) and, in turn, properties of the optimal

solution itself, e.g., stability, speed of response, etc. Among the

more useful results which these concepts provide us with, are upper

and lower bounds to the optimal cost -- bounds which can be pre-

computed prior to actually determining K(t; T, F).

In this section we present the various definitions associated with

these linear system concepts. From the definitions we also obtain a

necessary and sufficient condition for the invertibility of K(t; T, F).

We consider the linear dynamical system .which is characterized

by the equations
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x(t) = A(t)x(t) + B(t) u(t)

y(t) = C(t) x(t)

and we let (t, t ) denote the transition matrix of . We then have

Definition 2: is completely controllable if and only if for every

there exists a time tl(t) > t such that the symmetric matrix

W(t, t )
-1

tI

t

(2.25)

is positive definite.

Definition 3: is

t

completely observable if and only if for every

there exists a time t2 (t) > t such that the symmetric matrix

M(t, t)

t 2

=f (2. 25')

t

is positive definite.

In the special case when is stationary (i. e., A, B, C are constant

matrices) it has been shown (Ref.

Lemma 3:

(a)

(b)

(c)

If = constant then

Z is completely controllable if and only if

rank [,AB,AB ... A.. n-B] = n

E is completely observable if and only if

rank [C', A'C', . . . (A') n-l '] = n

If is completely controllable [observable]

then W(t, tl)[M(t, t2 )] is invertible for all tl>[t 2 >t].

Finally, we wish to make definitions which will remove the dependence

of W(t, t) and M(t, t 2 ) upon t. If A and B are positive semi-definite

W(t, t) is positive definite then so is W(t, t),

t

t

1 1) that

(2.26)

(2.26')

_

11(t, T)B(T)B'(T)11)t, T dT

I

(1)'(T, t)C'()C(T)IT) (T t) dT

t Note that if t > t.
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matrices, we use the notation A > B or A> B to indicate that A- B is

either positive definite or positive semi-definite respectively. Hence

Definition 4: z is (i) uniformly completely controllable and

(ii) uniformly completely observable if there exists positive

constants cr, a(Cr), (o-) such that for all t

(i) O < a(cT)I < W(t, t+c-)< (c-)I

(ii) 0 < a(-)I < M(t, t + ) < (cr-)I

Note that, in particular, Definition 4 implies that

o < a(cr) < t W(t, t + ) < P(n')

and na(-) < tr [W(t, t + r)] < n(a-)

and similarly for M(t, t + r-).

Several cases for which Z is uniformly completely controllable,

in the event that A(t) = A = constant, are

1. B(t) = B = constant and the pair {A, B} is controllable

(i. e., Eq. 2.26 is satisfied).

2. B(t) = b(t)B, where {A, B} is controllable and the scalar

function of time b(t) satisfies 0 < a < b(t) < c for all time.

3. B B < B(t)B'(t) < B2 B for all t, where {A, B1 } and

{A, B2} are completely controllable.

Similar results hold for Y2 to be uniformly completely observabl

but with C'(t) replacing B(t).

An immediate relationship between these concepts and our optima

control problem is afforded by the following lemma.

e

t The matrix norm in this expression is the one induced by the inner
product on X and is defined by Eqs. A. 3 and A. 4 of Appendix A.

al
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Lemma 4: K (t; T, 0) exists for t < T (i) if and (ii) only if

is completely observable with t2 (t) < T

Proof:

t

(i) If K (t; T, 0) does not exist then there is a non-zero

vector xE such that
- n

< x, K(t;T, 0)x > = 0 =_Z -
min J(x, t, T, u)) = J (x, t, T)

u(. )E2Q

But in order for J (x, t, T) to equal zero it is necessary that u (t)0 .

Cons equently

0 = J (x,t,T)

T

2 2

t

Since the motion is free (u = 0 ) we have X(T) = )(T,t)X

T

t

1= I< x,2 [

which implies that M(t, T) is singular and so M(t, t2 ) is singular for

all t2 < T.

(ii) If is not completely observable with t < T, then M(t, T)

is singular and so there is a non-zero x E such that <x,M(t, T)x>
n -- ---

Hence

J(x, t, T, u( ))
u( )= 

which implies that K (t; T, 0)

= < x, M(t, T) x> = '0I -

is singular. 

Note that if K(t) is invertible, then K (t; T, 0 ) will be positive definite

since K(t; T, 0) > 0 by Lemma 1. On the basis of Lemma 4 we have the

following corollaries whose proofs are immediate.

t2(t) is the first time t >t for which det M(t, t2 ) / 0.

< X(T), C'(T)C(T) X(T) > dT

and so

= 0.

11)- , t) C -(T) (T) (T, t) dT ]X >
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Corollary 1: If is completely observable and if K (t; T, 0 )
-1

exists, then K (T; T, 0 ) will exist for all T < t.

Corollary 2: If K(t; T, 0) is invertible then so is K(t; T, F)

for all F> 0.

Finally, we mention the fact that if F> 0 then K (t; T, F )

definite for all t < T irrespective of the observability of .

is positive

F. THE OPTIMAL LINEAR REGULATOR SOLUTION FOR T = oo

Having established the required preliminaries we are now in a

position to investigate the case where we allow the terminal time T--cx.

We shall show that, under suitable hypotheses, lim K (t; T, 0) exists as

T -oo. We also investigate the stability of the optimal closed-loop

system in this case, noting that, in general, optimality does not imply

stability.

In what follows we assume F= 0 to avoid the mathematical subtleties

of "weighing" a terminal state x(T) as T -ocn. Under such conditions

it is possible to show

Theorem 3:2 If is completely controllable, then

lim K(t;T, 0) = K(t)
T -oo

(i) exists for all t, and (ii) K(t) satisfies the Riccati equation

K(t) = -K(t)A(t)-A'(t)K(t)-C'(t)C(t)+K(t)B(t)B '(t)K(t)

With some abuse of notation, we shall henceforth call K(t) the

"equilibrium" solution of the Riccati equation.
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Having established the fact that lim {min J(x, t, T, u )} exists and
T -oo u

1-iven by 2 < x, K(t)x >, we would now like to show that it is eual

nin {lim J(x, t, T, u )} = min J(x, t, oo, u ), and that this minimum
u '1' -'oo

is achieved when
u

u(x,t) = - B'(t) K(t) x(t)

so that K(t) is associated with a meaningful optimal linear regulator

problem which is defined on the infinite interval. This is indeed the case

and we can prove

Theorem 4: Assuming F = 0 and T = co, we have

min J(x,t, o, u(.)) = lim J (x,t, T)
u(') T -oo

= I <x, K(t) x >

and the minimum is achieved at u( ) = u (x(t), t) where

u (x(t), t) = -B(t) K(t) x(t)

(2. 27)

(2. 28)

Inasmuch as the solution to our control problem for T = oo is

well-defined over the infinite interval [t, oo] , it is meaningful to ask

questions concerning the stability of the optimal closed-loop system with

the control law 2.28. We wish to obtain conditions which will guarantee

stability (relative to the equilibrium solution x(t)-- 0), noting that, in

general, a system's optimality does not preclude its stability.

.
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Our main result is

2, 16Theorem 5: ' If is uniformly completely controllable

and uniformly completely observable, the controlled system

x(t) = [A(t) - B(t)B'(t)K(t)] x(t) (2.29)

is uniformly asymptotically stable and

*J~~~ 1
V(x, t) = J (x, t, c) = < x, K (t) x> (2.30)

is a suitable Lyapunov function.20

If is not uniformly completely observable and controllable the

optimal closed loop system may be unstable; hence mere observability

and controllability are not sufficient to assure stability. For example,

consider a first order system characterized by the equations, X > 0,

xt
x(t) = ax(t) + e u(t)

y(t) = ce x(t)

Note that is completely controllable and completely observable but

is neither uniformly completely controllable nor observable. In fact

2Xt te 2(\-a 1=-lW(t,t+cr) = e() 

2 -2Xt [ e2(aX)cl]
and M(t, t+c) = c e 2(a-)
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so that there exists no constants a(o-), (c-) such that for all t,

(i) W(t, t+o-) < (c-r) and (ii) M(t, t+cr) > a(u-) > 0. Consequently,

Definiticn 4 is not satisfied for this system (unless

however, that for all W(t, t+c-) and M(t, t+cr) are always strictly

positive.

The Riccati equation corresponding to the cost functional

J(x o, , u( ))= 20) O' Go' u(. ) ,

k (t)

f [y 2 (t) + u (t)] dt
0

= -2ak(t) - e -2Xt c2 + e2tk2 t c +e k(t)

The equilibrium solution k(t) is given by

lim k(t; T, 0)
T -o

-2Xt A
= e k

k = (a-X) +(a-) + c

The optimal feedback control law is

u (x(t), t) = -e

and the optimal closed-loop system is described by

X -a- 2 + c
2

x(t) = X(t)

which is a linear, time -invariant equation. Consequently, if

0 < a < 2 

there always exists a c > 0, such that X > 0. Hence, the solutions

of the optimal system, being of the form e x , will be unstable.o

x= 0). Note,

is

k(t) =

where

-Xt 
k x(t)

x(t) =
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Note that in general the "equilibrium" solution K(t) of the Riccati

equation will be time-varying. There is, however, an important class

of problems for which K(t) is a constant matrix and for which the

optimal control is simply a linear, time- invariant feedback control law.

For this class of problems, is time-invariant and is characterized

by the equations

x(t) = Ax(t)+ Bu(t)

Y(t) = C x(t)

We assume that Z is completely controllable and we seek the control

u () which minimizes

0D

J(x, t, o, u()) = [< y(T),y (T) > + <U (T),U (T)> ] dT
t

By Theorem 4, the solution to this regulator problem is given by

u (x(t),t) = -B'K(t) x(t) (2.31)

where K(t) is the equilibrium solution of the Riccati equation

_d K(t) = -K(t)A- A'K(t) - C'C+K(t)BB'K(t) (2. 32)

i. e., K(t) = lim K(t; T, 0)
T -o



-29-

Finally, the optimal cost is given by

J (x,t, c) = < K(t) x > (2. 33)

In order to determine K(t), we first note that since L is constant,

the matrix Tq(t, T) appearing in Theorem 2 is given by 4,(t-T), more

specifically by
Z(t-T)

i(t-T) = e

Therefore, by virtue of Theorem 2, we deduce that

K(t;T, O) = K(t-T,O)

and consequently K(t) = lim K(t; T, 0) will be a constant, since
T -oo

K = lim K(tl-T,O) = lim K(t2 -T, 0) for all t, t2.
T -oo T - c

Now, since K (t) = K is a constant (positive semi-definite) matrix

which must satisfy the Riccati equation (2. 32) we see that K is a solution

of the algebraic system of equations

0 = -KA-A'K- C'C+ KBB'K (2. 34)

K must be at least positive semi --definite. However, Eq. (2. 34),

being a system of quadratic equations, may possess more than one

solution, in fact there may exist more than one positive semi-definite

solution. At this point we would like conditions guaranteeing the existence

of a unique positive semi-definite solution of Eq. (2. 34). The require-

ment for this is the observability of , (see Definition 3), and in

Appendix B we prove
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Theorem 6: If the time-invariant system Z is completely

controllable and completely observable then

(a) The algebraic equation

0 = KA+ A'K+ C'C - KBB'K (2.35)

cannot possess a positive semi-definite solution, but may

possess a positive definite solution.

(b) K = lim K (t; T, 0 ) is the unique positive definite
T -oo

solution of Eq. (2.35)

(c) The optimal closed-loop system

x(t) = (A- BB'K)x(t) (2.36)

is asymptotically stable, i.e., Re Xi(A- BB'K) < 0 and

1
V(x) = < x,Kx > (2.37)

is a suitable Lyapunov function.

Note that even under the assumption of complete observability,

there may exist indefinite solutions to Eq. (2. 35). (By Theorem 6 there

will not exist any positive semi-definite solutions. ) However, there will

only be one positive definite solution, and only this one will be

associated with our optimization problem--although isolating this solution

may be extremely tedious. In Chapter III we shall discuss several

iterative schemes for the determination of K.
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This concludes our abridgment of the optimal linear regulator

problem. We have explicitly defined this problem and we have

investigated its solution in terms of the solution to a non-linear matrix

differential equation (the Riccati equation). We then obtained some

properties of the Riccati equation solution K (t; T, F), in particular

its relationship to the optimal cost J (x, t, T), as well as a representa-

tion theorem (Theorem 2) giving a closed-form, explicit expression

for K(t; T, F). Finally, we extended our results to include the case

T = oo and examined the stability properties of the optimal system

using the fundamental linear system concepts of controllability and

observability. In the next chapter we investigate some further properties

of the Riccati equation solution and focus our attention on computational

schemes which one may use to determine K(t; T, F).



CHAPTER III

RICCATI EQUATION COMPUTATIONS

In the foregoing chapter we have defined the linear regulator problem

and we have studied the properties of its solution. In particular, the

key role played by the matrix Riccati equation has been delineated.

Having established a theoretical foundation for the study of linear

regulator systems, we will now begin to investigate such associated

problems as methods of implementing the optimal control, computational

schemes for the solution of the Riccati equation, etc. These problems

are slightly more of an engineering nature than of a theoretical one, and

their analysis is undertaken in this chapter.

A. IMPLEMENTATION OF THE OPTIMAL FEEDBACK SYSTEM

In Chapter II we saw that the optimal control may be represented

as a feedback control law in the form

u (t) = -B'(t) K(t) x = -L (t)= -L t)(t) (3. 1)

Thus, the system state at time t is operated on by the linear trans-

formation K(t) (which is the Riccati equation solution) and then by the

linear transformation -B'(t) to generate the optimal control. The

optimal feedback system is therefore linear and time-varying, its behavior

is governed by the matrix K(t), inasmuch as B(t) is known. Figure 3. 1

shows the structure of the optimal feedback system.

The positive definite matrix K(t) is central to the implementation of

the optimal control as a feedback law. In order to construct this optimal

feedback controller it is necessary to compute and/or implement K(t)

-32 -
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in some manner. We recall that K(t), for te [t, T] is the (unique)

solution of the matrix Riccati equation

K(t) = -K(t) A(t) - A'(t)K(t) - C'(t)C(t) + K(t)B(t)B'(t)K(t) (3. 2)

with the boundary condition

K(T) = F (3.3)

Equation 3.2 is nonlinear and for this reason it seldom admits closed-

form solutions. Therefore, we must compute K(t) using a digital

computer. There are numerous computational schemes for the solution

of ordinary differential equations and theoretically any desired degree

of computational accuracy can be obtained. By using such a scheme it

is possible to compute K(t) for t < T by solving the Riccati equation

3. 2 backwards in time, starting from the boundary condition (3. 3) at

the terminal time. This computation can be done "off-line", before

the control system is placed into actual operation. Once K(t) for

t- [to, T] is computed, the gain matrix L (t) = B'(t)K(t) is stored on

tape in the system's feedback controller and is played back upon command

in forward time to generate the optimal control according to Eq. (3. 1).

All is not as simple as it sounds, however. For multi-input, multi-

output systems we may be required to store a large number (depending

upon the dimension of L (t)) of time-varying signals on tape. Each

signal requires its own playback head and associated playback circuitry.

In addition, all signals must be played back in time-synchronization

with each other. The demands which these tasks place upon the design

engineer can therefore become formidable if not overpowering. We

shall have more to say on the problem of tape storage in Chapter IV.



-34-

r - -,

Feedback Controller

L ….--------- J

Fig.3.1 Structure of the Optimal Regulator System
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As an alternate scheme to computing K(t) off-line and storing its

elements on tape, we may generate K(t) on-line while the system

is in operation as follows. We first use a computer to solve the Riccati

equation backwards in time to determine the matrix K(t ). We need

then store only the elements, of the matrix K(t ) in our control system
0

and compute K(t) for t > t in real time by including a small, specific

purpose digital computer into our feedback loop. This computer would

have to integrate Eq. 3. 2 forward in time starting from the initial

condition K(t ). The important thing to remember is that since K(t)

is independent of the system state, the matrix K(t ) may be precomputed

(once A(t), B(t) and C(t) have been specified). In the sequel we shall

show that this method is unsatisfactory and that it is not possible to

generate K(t) accurately in an on-line manner.

In the following sections we will examine the computational properties

of the Riccati equation and discuss various computational schemes which

are applicable for its solution.

B. STABILITY PROPERTIES OF THE RICCATI EQUATION

Any study of numerical schemes for solving a differential equation

should be preceded by an investigation of the stability properties of the

equation itself. This is necessary because often the result of such an

investigation will favor one computational scheme over another. Con-

sequently, we shall first examine some of the stability properties of

the matrix Riccati equation.
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Let us suppose that our system is uniformly completely con-

trollable and uniformly completely observable. Let F 1 and F2 be

arbitrary positive semi-definite matrices, and let Kl(t) and K2(t)

be the (unique) solutions of the Riccati equation 3.2 with the respective

boundary conditions K(T) = F1 and K2 (T) F2 . We wish to examine

the difference K(t) = K2(t) - Kl(t) in order to determine whether the

two Riccati solutions Kl(t) and K2(t) diverge or converge for t< T.

Since Kl(t) and _K2 (t) are both solutions of equation 3.2 (but

having different values at T), 6K(t) obeys the differential equation,

where A (t) - A(t) - B(t)B'(t)Kl(t),-1 l

d- 6K(t) = -K(t)Al(t)-Aj(t)6K(t) + SK(t)B(t)B'(t)6K(t) (3.4)

with the boundary conditions

6K(T) = K2 (T) - K1(T) = F -F 1 (3.5)

Equation (3.4) is derived by writing

K2(t) = -K2(t)A(t) - A'(t)K (t)-C'(t)C(t) + K (t)B(t)B'(t)K (t)

= -K2 (t)Al(t) -A'(t)K 2(t)-C'(t)C(t) + K2(t)B(t)B'(t)K2 (t)

-Kz(t)B(t)B'(t)K (t) - K (t)B(t)B'(t)K2 (t)

and subtracting

Kl(t) -Kl(t)Al(t ) -AAl(t )K l (t )-C '(t)C (t )-K l (t)B (t )B '( t)K l (t)

By virtue of Theorem 1 and Lemma 4, both K l(t) and K2(t) exist

for all t< T and are invertible for t< T--r. Consequently it is possible

to investigate the stability properties of Eq. (3.4) as t--oo by use of

t:he Lyapunov function
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V(&K, t) = 2 tr(6K K 1 ) (3.6)

In References 2 and 13 it is shown that

Theorem 7: If is uniformly completely controllable and

uniformly completely observable, then any two solutions K(t;T,F 1)

and K(t; T, F2 ) of the Riccati equation are uniformly asymptotically

stable to each other as t -- oo and

V(6K, t) = 2 tr (K (3.6)

is a suitable Lyapunov function.

This theorem states that the difference 6K(t) between any two

solutions tends to zero as t --oo. Consequently, all solutions of the

Riccati equation approach each other as t -- oo. Recalling that the

equilibrium solution of the Riccati equation, K(t), is well-defined for

all t, we can summarize this convergence property as a lemma.

Lemma 5: If 52 is uniformly c. c. and uniformly c. o. then

for any T and any positive senmi-definite matrix F, the

solution K(t; T, F) converges asymptotically to K(t) as

t --Co, where K(t) is the equilibrium solution of the Riccati

equation.

In other words, Lemma 5 states that for any Riccati equation solution,

the effect of the terminal condition K(T) = F is gradually "forgotten" as

t - - .

Since asymptotic stability in negative time implies instability in

positive time, any solution K(t; T, F) is unstable as t -+oo. That
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:is to say, the difference between any two Riccati solutions _Kl(t) and

K2 (t) tending asymptotically to zero as t -- oo implies that 6K(t) will

increase without limit as t -+oo. Consequently, one cannot compute

K(t; T, F) on the interval [t, T] by integrating Eq. (3. 2) in the forward

time direction, starting with the initial condition K(t ). This procedure

is ccmputationally unstable; a small numerical error in K(t ) will

manifest itself in a large error in K(t) for t> t . To make this notion

more precise we consider the following first order example.

Let be characterized by the equations

x(t) = a x(t) + u(t)

y(t) = c x(t)

and let the cost functional J(x, 0, T, u) be given by

J(x, 0, T,u) = ff (T) + [ (T) + u (T)] dT
2

0

The Riccati equation associated with the solution of the optimization

problem is
2 2k(t) = -2a k(t) - c + k (t) ; k(T)= f > 0

The solution of this equation is given byI

(~3+a) + f-a-- e2(t-T)
k(t; T, f) = (n-a) UT-a) f-a+)

1 - f-a-t e2P(t-T)
f-a+p

where = (a2+c2)1/2

The equilibrium solution k(t) is given by

(t) = lim k(t; T, 0) = + a =
T -oo



.39-

We now wish to verify (by example) the instability

librium solution k as t -oo. For this purpose, then,

a solution of the Riccati equation which differs from k

amount at t= 0, i.e.,

k 1 (0) = (3+a) + A

The expression for kl(t), t > 0 is given by

(P3+a) + A e2t

k l(t) = (-a) -a) -1 - e

The expression for 6k(t) = kl(t)-k is

8k(t) = 2 e32pt( ~+~a2 t

From either the expression for k(t) or for k(t)

for any value of A, the solution kl(t) diverges from

A is a small positive number, the solution k(t) fails

of the equi-

let k(t) be

by a small

we see that

k . In fact, if

to exist for

t> = In ( 2+)

The approximate shape of the solution kl(t) for different values

of A are shown in Fig. 3. 2.

This simple example demonstrates that one cannot compute k

for t > 0 from knowledge of k(O). A small error at any step of the

computation will manifest itself as time increases in the positive direction.

It should be remarked that although k and k l(t) diverge in the

forward time direction, this does not necessarily imply that the state

trajectories corresponding to the feedback gains diverge. In fact it
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is quite conceivable that as long as kl(t) exists and is positive,

the state trajectory resulting from application of kl(t) will be "close"

in some sense to the trajectory resulting from use of k.

If such is' the case, then in the multi-dimensional problem, the

value of K(t _;T, F) may provide a feasible means of generating state

trajectories which "approximate" the optimal state trajectory over the

interval [to, T], even though computing K(t; T, F) for t > t by

integrating the Riccati equation forward in time is subject to large

numerical errors. In References 13 and 21 this concept is investigated

in more detail and additional results are presented concerning the

behavior of the difference between two Riccati equation solutions.

C. OFF-LINE, NUMERICAL SOLUTION OF THE RICCATI EQUATION

In the foregoing section we showed that due to the computational

instability of the Riccati equation solutions it is unfeasible to store

K(t ) in our feedback controller and then compute K(t) for t > t
0 O

in an on-line manner. Computation errors and computer round-off

errors at any step in the forward time integration of the Riccati equation

will become magnified as time increases, thereby making it virtually

impossible to generate K(t) accurately in real time. This phenomenon

has been illustrated in the first order case by Figure 3.2.

Consequently we must abandon the hope of computing K(t) on-line

and revert to the other alternative of precomputing K(t) for t [to, T],

storing L (t) = B'(t)K(t) on tape, and playing the tape back upon command

in real-time. The computation of K(t) must therefore be done off-line,
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before the control system is placed into actual operation. This

fact leads us to consider numerical techniques for the off-line

computation of K(t;T,F).

There are numerous schemes which are available for the numerical

solution of ordinary differential equations by use of a digital computer.

Each one offers its own advantages and disadvantages. Basically,

these schemes may be classified as either "one-step" or "multi-step"
23methods. In this section we shall outline several one-step methods

which ark- applicable to the off-line solution of the Riccati equation,

and discuss the relative merits of each scheme.

We seek a numerical solution of the Riccati equationt over the

interval t < t < T. To do this we first sub-divide the interval of
o -

interest into N subintervals of length 6 , where 6 is small. We

therefore obtain a sequence of times t tl, t2 ... t N = T such that

t. = t. - 6 for i = 1,2, .,N (3.7)

We wish to generate a sequence of nxn matrices K1, K2, ...

'K.,. ,K N = F, such that K. approximates the true solution K(t; T, F)-1 N -

at t = t., i.e.,

K. K(ti;T F) (3. 8)

and such that the matrices K. are generated by d recursion relation of-1
the form

Ki = gi(Ki; 6) (3. 9)

t Naturally we will obtain only an approximation to K(t).
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where gi for i = 1,..., N is a mapping from the space of nxn

matrices into itself. Some examples of such schemes are:

1. Runge-Kutta Scheme This is a popular computational scheme

for digital computers because of its programming efficiency. Its

application to the solution of the Riccati equation has been investigated

in Reference 25. The basic iterative scheme is as follows.

We first define

f (t, K) = -KA(t) - A'(t)K- C'(t)C(t) + KB(t)B'(t)K (3. 10)

The Runge-Kutta method then uses the following recursion formula to

compute Ki 1 given Ki

K1 = ~(2) (3) (4)] (3.11)K. gi(K ;6)= K.- [G(1)+ 2G(.)+ 2G(.3 ) + G(.4) ] (3 11)-1- 1 1i - -- - 1 -1 - 1 -1

with K N = F (3. 12)

The nxn matrices G( ) are given by

G( ) = f (ti.Ki) (3. 13a)

(2) f -12
G ( ) f (ti 2 i 2 i (3. 13b)

(3) f(t 6 1 (2)G( f(ti i + G (3. 13c)

G() = f(t -6, K. + G(3) (3. 13d)-- =ti --1 1

Using this method we can theoretically achieve any degree of

approximation to the true solution K(t; T, F) by choosing 6 sufficiently

small.
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2. Automatic Synthesis

for determining K(t) is

ave, if K(T) = F, that

K(tN- 1; tN' F) = [21 (tN-

where the 2nx2n transi

Hence we have recui

Progra.m (ASP)1 6 Another difference method

based on Theorem 2. From this theorem we

K(T-6) = K(tN_ ) is exactly given by

1' tN)+22(tN- 1' tN)F] [1 l(tN - 1' tN)+ I(N tN- 1 )F] -1

(3. 14)

tion matrix XT(t, T) has been defined in Eq.(2.23).

rsively from Eq. 3. 14 that

K. i- gi(Ki;6) = [2 1 (ti -6 ti )+ 1 2 2 (ti -6, t)Ki ] [ 1 (ti

where in this case the sequence of generated matrices

are exactly equal to K(ti;T,F) i.e.,

K i K(t.;t F) for i = 0, 1,.

-a, ti ) + 2(ti- 6 ti )Ki] -

(3. 15)

{Ki; i = O,...,N-1}

. ., N (3.16)

Although the scheme gives exact results for K(ti; T, F), (for any

value of 6, incidentally) this fact is overshadowed by the complexity of

the method. The computation of (ti -6, t i) is generally difficult, and

at each step in the iteration (3. 15) we must invert an nxn matrix.

However, if were a constant system, then

_Y(ti -6, t ) = e for all i
- 1

where
A

Z = .......

-CI C

and the recursive scheme of Eq. (3.

ease.

-BB'

-A'

15) could be applied with relative



3. Discrete Optimization Method

determine an approximation to K(t;

of discrete optimization techniques.

[It, T] into N equal segments we

Z by a discrete time system, Ed

the difference equations
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Another method which is useful to

T,F) is based on the application

After subdividing our interval

replace our continuous time system

over [to, T]. 'd is described by

(3. 17)xi+ 1 (I+6A )xi + B.u ; = (t )-- l --1 i --1--i -- o --

Yi = C.x. (3.18)-i -1-1

where A, B and C i are equal to A(ti), B(ti) and C(ti) respectively.--1 --1 -1 - 1
We also replace the cost functional (2. 3) by the summation

N- 

Jd(Xo t o y {u ) = 1 > +6 [<i Y> +< u i>]do -- _N N 7i ' -- -
i=0

(3.

We wish to determine the control sequence {ui, i = 0,,...,N-1}

the corresponding state sequence {xi, i = 0, 1, ... ,N} such that Jd

absolutely minimized. This problem is the so-called "discrete linear

regulator problem" and is investigated in Ref. 26, with the result that

the optimal control sequence is given by

u -- (I+56B'K B )- B!'i I+5
- i -- i+1 i --1 -i

19)

and

is

(3.20)

The symmetric matrix K satisfies the difference equation

Ki = gi(Ki+l; 5)

(I+6 A.)'[Ki+ i-6Ki+Bi.(I+S6B K. B IB!Ki+.] (I + 6A.)+6C C.- -- i - -- -i-i+1-i -i-1 --1 i -i
(3.21)

with the boundary condition KN = F.-N
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26It can also be shown that the matrix K. for i = 0, 1, .. ,N
-1

has the property that

N-1
Jd(x ,tj) = <XN FX > +- '. _ id- 2 N'-- -N 2 i, Yi i' i

i=j

2 x. K .x > (3.22)= 2 -- j - -J

This result is notably similar to the result of Lemma 1 for the con-

tinuous time regulator problem, and with this in mind we may regard

Eq. (3. 21) as a discrete analog the the matrix Riccati (differential)

equation. In particular (3.22) guarantees that K. will be positive semi--1

definite for all i.

Examining Eq. (3.21) we note that as 68-0 the solution to thi:s

equation approaches K(t; T, F), since the difference equation in the limit

approaches the Riccati differential equation. Consequently, for small 6

it is reasonable to use Eq. (3.21) to generate a sequence of matrices

Ki, i = 0,...,N such that

K. K(ti, T, F)

This scheme is simple to implement on a digital computer, the

computation time is small and the method is not adversely affected by
27 27round-off errors.27 A computer program for the generation of K exists

and is written in Fortran II for the case when A, B and C are constant

matrices. Further research on this discrete approximation scheme is

currently being pursued.
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4. Comparison of Methods 1-3

Each of the aforementioned algorithms for the off-line computation

of the Riccati equation solution offers its own advantages and disadvantages.

From a strictly computational point of view, the Runge-Kutta scheme is

the simplest to use. No matrix inversion is necessary at any step in

the iteration, whereas the other methods require a matrix inversion

(which is a time-consuming process for a digital computer, especially

if the order of the matrix is large). The Runge-Kutta scheme requires

only matrix multiplications and additions thereby making it computationally

efficient. On the other hand, this scheme can lead to wildly erroneous

results as follows. In using the Runge-Kutta technique we cannot guarantee

that every matrix in the sequence KN_ 1' KN 2 ... generated by

Eq. (3. 11) will be positive semi-definite because of the discretation error

which this scheme introduces at each step. Suppose for example that

Ka (which is our approximation to the Riccati equation solution at t = t )

is an indefinite matrix for some integer a < N. However, the solution of

the Riccati equation satisfying K(t ) = K may fail to exist for t < t

since the conditions of Theorem 1 are not satisfied for K . Consequently,

the Runge-Kutta scheme can "pick-up", and begin integrating along, a

Riccati equation solution which has a finite escape time for some t < t

As experience has shown, it is this very dilemma which makes Euler's

method unsuitable for Riccati equation computations, even for extremely

small time -increments 6.
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The second method which we discussed has the property of yielding

exact results (subject to computer round-off errors) for the Riccati

equation solution at the times t., i = 0, 1, . . .,N. However, this

accuracy is achieved at the expense of difficult and time consuming

calculations. At each step in the ASP program we must evaluate the

transition matrix (ti- 6, ti) and invert the nxn matrix [ll(ti-6, ti) +

4 12(ti -6,t.)Ki]. For sufficiently small, 6, however,
we can approximate the matrix ' (t.- 6, t) by

1 

1 1

I - A(T)dT f B(T)B'(T)dT

t. -6 t. -6
1 . 1

1f 'TC(-t.. rt . . t 1

1 1

In such a case we are sacrificing numerical accuracy for computational

simplicity, although we are still left with performing the inversion of an

nxn matrix.

The discrete optimization method also requires the inversion of a

matrix at each step, however the order of the matrix to be inverted is

rxr where r is the number of control inputs. In most control applications,

the number of control variables is less than the number (n) of state

variables, so that the computational difficulty of the discrete optimization

method is generally less than that of the ASP method although greater

than that of the Runge-Kutta scheme. Naturally, the results of this

method will only be an approximation to the true Riccati equation solution.

However, there is an important property which the discrete optimization

1(t i- 81tdZ
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method possesses. By Eq. (3.22) we are guaranteed that each

matrix in the generated sequence KN_1' KN-2' . . is at least positive

semi-definite. Therefore, this sequence of matrices will not diverge

from the true Riccati equation solution K(t; T, F) as may be the case

for the Runge-Kutta scheme. Hence, for small 6, the discrete optimization

scheme will always give a reasonable approximation to K(t; T, F), at

the expense of inverting an rxr (positive definite) matrix at each step

in the iteration.

In the above we have discussed three methods which are practical

for the numerical, off-line, solution of the Riccati equation. There are

other schemes which may also be satisfactory and their exploration

remains a subject for a considerable amount of further re search. We

re-emphasize that all Riccati equation computations are done off-line,

so that computing time is not the essential factor in our iterative scheme

but is subordinate to computational accuracy.

Finally we need mention that in the event Z is time-invariant and

T = oo, any of the above techniques can be used to compute K. By

Lemma 5 we may obtain K as

-' - -1i-e - o a

where K. g (Ki 6) and K F--1-1i(K i = -
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D. COMPUTATION OF K(t; T, F) BY SUCCESSIVE APPROXIMATIONS

In the previous section we discussed schemes which are applicable

to the numerical solution of the Riccati equation. These methods share

a common basis in their approximation of the nonlinear (Riccati)

differential equation by a nonlinear difference equation.

Another method for the off-line solution of nonlinear differential

equations is to introduce an associated sequence of linear differential

equations whose successive solutions approach the solution of the original

nonlinear equation. This is the strategy behind such numerical schemes
18as Newton's method and the method of successive approximations as

advanced by Kalaba 7 (often referred to as "quasilinearization").

In Reference 17, the method of successive approximations is applied

to the solution of a first-order Riccati equation. In this section we shall

extend Kalaba's results to the matrix case and generate a sequence of

approximations to K(t; T, F) which possess certain monotone convergence

properties.

In the sequel we shall again use the notation A > B to mean that

the matrix A- B is positive semi-definite, and A> B to denote that

A- B is positive definite, where both A and B are arbitrary positive

semi-definite matrices. We first prove a result of general interest

concerning the matrix K(t; T, F). By using the fact that K(t; T, F) is

associated with the optimal control we show
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Lemma 6: Let VL(t) denote the (unique symmetric

positive semi-definite) solution of the linear matrix

differential equation

V(t) = -V(t) [A(t)-B(t)L(t)]

- C'(t)C(t) - L'(t)L(t) (3.24)

satisfying V(T) = F. Then

K(t; T, F) < V(t)_ - - L for all L(t) (3.25)

Proof: Consider the system with the linear feedback control

law u L(t,x(t)) = -L(t) x(t), so that the closed-loop system satisfies

x(t) = [ A(t)-_Bt_(t)L(t) x(t)

If we let L(t, to) be the transition matrix corresponding to

~ L(t, to) satisfies

d
dL (t, to) = [A(t)- _B(t )Lt _L(t, to)

and if t(t ,T)0

IL(to, to ) = I

and xcE , the cost associated with using the controln
u (. ) is

J(x , t, T, u ( 1= <x, V(t)x>
2 (3.26)

V (t) = ' (T, t)F L(T, t) +
T

f! L(T t)
t

where

L(T, t)dT

(3.27)

- [__(t) - B(t)L(Q] _V~t)

A(t;) - B(t)L(t) i. e 

[ f '(T) C ((T) + LL'(T) L(T) ] ~

u 
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Upon differentiating both sides of the above expression we find that

V (t) = V (t)[ A(t) - B(t)L(t)] -[ A(t) - B(t)L(t)] 'V (t)-C'(t)C(t)-L'(t)L(t)

(3.24)

with V(T) = F . Expression 3.27 is the unique solution to Eq.(3.24)

since Eq. (3. 24) is linear is V (t). Note that V(t) > O . Let V L(t)

denote this solution, emphasizing its dependence upon L(t). But now,

since UL ( ) is not the optimal control, we have

2 < x,K(t;T, F )x> = J(x,t,T,u(')) ! *

< J(x, t, T, u( ))
u= uL

for any rxn time-varying matrix L(t). Hence, since x

K(t; T, F) < V L(t)

for all L(t) as claimed, with equality holding if and only

For arbitrary L(t), Lemma 6 furnishes us with upper

solution to the Riccati equation, which may prove helpful

investigation of the regulator problem by providing upper

optimal cost J (x o, tT).

Henceforth, we shall call the matrix V L(t) given by

(and satisfying Eq. 3.24) the cost matrix associated with

as

1= x, ,V (t)x>2 - -L -
is arbitrary,

if L(t) = B'(t)K(t; T, F). 

bounds for the

in any a priori

bounds to the

Eq.(3. 27)

L(t), inasmuch

J(x, t, T,u(. )) , V x >
u (t) = -L(t)x(t)

(3.26)
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Definition 5: For all t [t o, T], the cost matrix V L(t)

associated with the feedbdck gain matrix L(t) is given by

T

V L(t) = _1 I(T, t)F L(T, t) + L(T, t) [C '(T)C(T)+L'(T)L(T)]! L(T, t)dT

t

where L(T, t) is the transition matrix corresponding to A(T)-B(T)L(T).

In Appendix C we discuss this concept of a cost matrix further and we

derive various expressions for the difference between cost matrices

associated with different L(t)'s.t These expressions are quite useful,

and in fact application of Eq. (C. 17) yields a simple expression for V _L(t) -

K(t; T, F) , as follows.

If Vl(t) and V_2 (t) denote the cost matrices corresponding to

Ll(t) and L2 (t), respectively, then from Eq. (C. 17) we find that

T

V (t) - V2(t) = f 1(, t)[(L1-L2)'(L1 -L2 )- (L1-L2)'(B'V-L 2 )
t

-(B'V 2 -L 2 )'(L -L2)l (T, t)dT (C. 17)

where l(T,t) satisfies

d_1 (T, t)= [A(T)-B(T)i(T)] 1(T, t); l (t, t) = I

We now let L l(t) = L(t) and L2 (t) = B'(t)K(t; T, F ), so that V2 (t)

K(t; T, F) and therefore

T

V L(t) - K(t; T, F) = f L(T, t) [L(T)-K(T)] '[L(T)-K(T)] L(T, t)dT

t

(3..28)

t Note that all cost matrices have the same boundary condition V (T) = F.
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which again shows that VL(t) > K(t) for all L(t).

Lemma 6 suggests a method of generating a series of approximations

to the solution K(t; T, F ) of the Riccati equation. It is logical to

expect that if L (t) is a reasonable approximation to B'(t)K(t; T, F),
-n

then the cost matrix V (t) corresponding to L (t) will be "close" to

K(t; T, F). We then suspect that L n+(t) = B'(t)V (t) will be even a

better approximation to IB'(t)K(t;T,F) than was L (t), and so on.

It is the purpose of the following theorem to make this ntion precise.

The proof may be found in Appendix D. (See Reference 17 for the one-

dimensional case).

Theorem 8: (Method of Successive Approximations)

Let Vn+l(t), n = 0, 1, . . ., be the cost matrix associated

with L+(t) where L is recursively determined by

L n+(t) = B'(t)V n(t) ; n = 0, 1,... (3.29)

and where L (t) is arbitrary with associated cost matrix

V (t). Then

(a) K(t; T, F) < Vn+l(t) < Vn(t) for n = 0, 1 ...

(b) lim V (t) = V (t) existsn n -00n -oo

(c) V (t) = K(t;T, F)

Before discussing the implications of Theorem 8 from a computational

aspect, we shall examine some of its mathematical ramifications. We

first note that for any xE En, the theorem assures that <x,V (t)x >

converges monotonically to <x,K(t;T,F)x>. Since V n(t) and K(t;T,F)
_ ~~-n 
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are continuous, we conclude by 7.2.2 of Ref. 15, that <x, Vn (t)x >

converges uniformly in n to <x,K(t)x> over any interval [t, T]

in which K(t; T, F) exists. Since this result is valid for all x, we can

assert that V (t) converges uniformly to K(t; T, F) over any interval

[to, T], i.e., given an > 0 there exists an N such that for all n> N

sup IVn(t) - K(t; T,F) 1 <
t < t< To- 

Secondly, the iterative scheme suggested by Theorem 8 is precisely

that which is obtained when one applies Newton's method to recursively

determine the solution K(t; T, F) of the Riccati equation. (See Reference

18, Chapter 18 for the application of Newton's method in function spaces).

In Appendix E we examine this equivalence further by way of a short,

non-rigorous exposition. We hasten to add that the successive approxima-

tion scheme of Kalaba (also referred to as "quasi-linearization") and

Newton's method are not always equivalent, although in this application

they are, and hence we have indirectly shown monotone convergence for

Newton's method. For further relationships that exist between these two

iterative schemes see Reference 17.

The method of successive approximations as discussed above is

interesting.from a mathematical viewpoint. However, the actual use

of such a scheme to compute K(t; T, F) is slightly handicapped from a

computational point of view. At the n-th iteration we must compute V (t)

for all te[t, T] . This is accomplished by integrating the linear equation

V (t) = -A( (t)Vn(t) - V (t)A (t) - L(t)L (t) - _C'(t) C(t) (3.30)-n -n - n -n C
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backwards in time starting from the boundary condition V (T) = F.
n

For n = 1, 2,.., L (t) is given by L(t) = B'(t)V (t) and A (t)n .n n- n
A(t) - B(t)Ln(t). Therefore, to integrate Eq. (3. 30) on a computer we

must store the value of L (t) for all t e [to, T], as well as the matrices

A(t), B(t), C(t). Once V (t) is determined, we set Ln+l(t) = B'(t)Vn(t)

and compute V +l(t), etc., until Vk(t) is sufficiently close to K(t;T,F)

for large enough k. However, in order to obtain a reasonable approxima-

tion to K(t; T, F) we may require a large number of iterations,t each one

entailing an integration of Eq. (3. 30).

Therefore, when this scheme for determining the Riccati equation

solution is compared with those of Section C we see that the successive

approximation scheme requires more off-line computation. Instead of

integrating a non-linear equation (the Riccati equation) once, we must

integrate a linear equation several times. (Note that no matrix inversions

are required in this integration. ) It is difficult to say which approach

is more reliable, as far as accuracy is concerned, without a comparatory

numerical investigation and error analysis. Nor can we definitely state

a priori which scheme is more efficient from a computational viewpoint,

as to programming simplicity, although the fact that Eq. (3. 30) is linear

may permit us to use a simpler numerical integration technique (i.e.,

Euler's method) than was allowed in Section C. In any case, this topic

remains a subject for further research.

t For a given system this depends entirely on the initial choice of L (t).
If L (t) is a good approximation to B'(t)K(t; T, F) then only a few
iterations of Eq. (3. 30) will be required to yield a thoroughly adequate
approximation to K(t; T, F). This is because of the extremely rapid
convergence of Newtopg's method once the iterations begin to approach
the desired solution (quadratic convergence property).
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In the previous discussion we showed that the method of successive

approximations yielded a monotonic sequence of matrices which

converged to K(t; T, F). At each step in the method the solution of a

linear time-varying differential equation was required.

In the special case when is time-invariant and T = oo we know

that K(t) = K = constant. For this situation it then seems reasonable

to expect that if the method of successive approximations were employed

to find K it should only be necessary to solve a linear, time-invariant

algebraic equation at each iteration inasmuch as K itself satisfies an

algebraic equation, namely

= KA + A'K+ C'C - KBB'K (3.31)

This is indeed the case and in Appendix D we extend Theorem 8

to cover this situation. We list the result as a corollary to the main

theorem.

Corollary 1: Let the time-invariant system be completely

observable and controllable and let Vn, n = 0, 1, ... be the

(unique) positive definite solution of the linear algebraic

equation

0 = V A + A' V + C'C+ L' L (3. 32)- n--n -n-n -- n-n - --n-
where, recursively

L =B'V for n= 1,2,...-n -- n-l
A = A- BL-n - --n

and where L is chosen such that the matrix A = A- BLhas-o -o - -- o
has eigenvalues with negative real parts. Then,
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(a) K < Vn+ < V < ... for n = 0, ,..- -n+l -n -
(b) lim V =K

-- nn --Co

Corollary 1 provides us with yet another method of determining

K on a digital computer. Linear matrix equations such as Eq. (3. 32)

(which arise constantly when seeking Lyapunov functions for linear
20time-invariant systems ) may be solved by use of Kroneker products

(see Ref. 22). If we do this, Vk can be determined at any step by
n(n+ ) n(n+ 1)inverting an 2 x 2 matrix. However, if the number of

state variables, n, is large we will be required to invert a very high

order matrix at each step in the iterative scheme. Thus, the order

of the system places a severe limitation on the usefulness of this method

for determining K , since matrix inversion is a very time consuming

process for a digital computer, especially when the order of the matrix

to be inverted is large. In such a case it would then seem more efficient

to compute K by Eq. 3.23, using the methods of Section C.

In using the successive approximation scheme of Corollary 1 we

must choose L such that the resulting closed-loop system-o
x(t) = (A- BLo)x(t) = Ax(t)

is asymptotically stable. By virtue of Theorem 6 there exists at least

one such L , namely L = B'K. However, it is possible to show that-- o - -o

if is completely controllable then there exists an L such that the

poles of the closed loop system x = A x, i.e., the eigenvalues of A,

can achieve any desired configuration consistent with the dimension of
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the system. 4 It is necessary for Re ki(A ) < 0 to insure the

boundedness of V . Otherwise the corollary is meaningless.

Finally, we mention that Eq. (3. 32) is precisely that which is

obtained by applying Newton's method to solve Eq. (3. 31). However,

Newton's method alone will not provide conditions which will insure

monotonic convergence such as we have done.

In summary, we have shown that the implementation of the optimal

control in a linear feedback loop must be accomplished by introducing

a tape record system. This is necessary due to our inability to compute

K(t) accurately in an on-line manner because of the instability of the

Riccati equation solution, K(t; T, F) , in forward time. Realizing these

facts we then discussed several iterative schemes which one might use

to precompute K(t; T, F) in an off-line manner. Once K(t; T, F), or a

reasonable facsimile, is computed, the gain matrix L (t) = B(t)K(t; T, F)

is stored on tape. The tape is then placed into our feedback controller

to be played back in real time once the system begins operating. Besides

being a tedious task, the storage of a large number of time-varying

signals on magnetic tapes can become impractical from a hardware point

of view, especially when we require all signals to be played back in

time-synchronization. In the following chapter we shall look at this

problem in greater detail and suggest a means of designing the linear

feedback loop in a "sub-optimal" fashion. In effect we shall accomplish

a sub-optimal design by simplifying the hardware requirements at the

expense of optimal performance.



CHAPTER IV

"SUBOPTIMAL" DESIGN TECHNIQUES

A. INTRODUCTION

In Section III. D we obtained a sequence of linear control laws

u (x, t) -L (t)x which for n--cO, u (x, t) approached the optimal

control. For a fixed n, therefore, u (x,t) can be regarded as a

"suboptimal" control; its use in a feedback loop will necessarily

result in a cost which is greater than the optimal cost. However,

by taking n sufficiently large, the performance of the "suboptimal"

system can be made arbitrarily close to that of the optimal system

as shown in Theorem 8.

Yet one major difficulty remains. The implementation of

u (x, t) in an actual control system must overcome the same-n-
hurdles as those in the path of implementing the optimal control,

u'(x, t) = -B'(t)K(t; T, F)x. In both cases it is necessary to pre-

compute time-varying gain matrices, store them on tape, and play

the tape back upon command in an on-line manner.

Briefly, let us reflect upon the inherent problem associated

with this method of implementing the optimal control. Suppose for

example that we deal with a 10-th order system, i.e., n= 10,

having three control variables, i.e., r =3, so that the matrix

L (t) = B'(t)K(t; T, F) has a total of 10x3 = 30 time-varying

elements. Once determined, each of these components must be

stored on a separate tape track requiring 30 separate tape heads.

-59-
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At time t these signals must not only be played back by the tape

recorder, but also be played back in time synchronization with one

another, and in synchronization with real time. The circuitry re-

quired for simultaneous playback and synchronization of 30 signals

can therefore become quite unwieldy, forcing one to consider more

practical schemes for control implementation.

Our major obstacle to the realizable implementation of the

optimal gain matrix L (t) = B'(t)K(t; T, F) is that in general we can

say nothing a priori concerning its time-varying structure. (Except

in the very special case when the system to be controlled is time

invariant and the terminal time T = oo, for which B'(t)K = constant,

as described in Section II. F.) Even if Z' is stationary, the optimal

feedback gains will be time-varying if T is finite. If is time-

varying it is virtually hoepless to expect any qualitative results con-

cerning the time-varying structure of B'(t)K(t; T, F). The main

theoretical tool for such an investigation is Theorem 2, however its

application to an analytical study is severely limited since only in

the rarest cases can we specify the time structure of the 2n x 2n

matrix I(T, t) which appears in Theorem 2 knowing the time

structure of the matrices A(t), B(t) and C(t).

Let us digress and suppose for a moment that it is possible to

ascertain information as to the nature of the time variation of L*(t).

For example, suppose L*(t) for t [t, T] is known to be of the

form
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L (t) = a(t) L (4.1)

*
where a(t) is a (known) scalar function of time and L is a constant

rxn matrix. In order to implement the feedback control law
*

u*(x, t) = -a(t) L x it is only necessary to set r.n feedback gains

at fixed values in the control loop and to multiply the r signals

L x(t) by a(t). The scalar function a(t) may either be stored on

tape or else generated in real time by a digital or analog computer.

The implementation of this closed-loop system is shown in Fig. 4.1.

Expanding on this view, let us suppose we know that the op-

timal gain matrix L (t) for t [to, T] has a structure given by

M

L (t) = oa(t) ( 4.2)
j=l

where a(t) j=l, ... ,M are scalar time functions and L. are con-

stant rxn matrices. The implementation of the optimal feedback

law for this case is shown in Fig. 4.2. Once again, the M functions

aj(t) may be stored on tape and played back in synchronization upon

command. Notice how this a priori knowledge of the time structure

of L (t) enables us to transform the problem of storing the r.n

elements of L (t) on tape into one of setting gain amplifiers and

storing (or generating somehow) only the functions aj(t), j= 1,.. .,M.

(Hopefully M< r.n).
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Fig. 4.1 Implementation of u(x,t)=-a(t)L x(t)

M

Fig. 4.2 Implementation of u(x,t)= - a (t)L.x(t)
I=

,(t)
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Returning now to reality, the prospect of having an optimal

gain matrix of the form suggested by Eq. (4.2)is rather slim to say

the least. Even if L*(t) were of this form it would not be an easy

task to determine this fact a priori. This is indeed unfortunate for

it would have presented us with a method of circumventing the engine-

ering difficulties inherent in storing a large number of signals on

tape. All is not lost, however, for it seems reasonable to expect

that we can sacrifice a small piece of optimal performance for the

sake of structural simplicity.

To be more specific, we assume that we have at our disposal

a set of scalar (linearly independent) time functions aj(t) j = 1, . ., M

for t [ t, T] . We then restrict the control input to our system 

to be of the form

M

u(x, t) = - a(t)Lx(t) (4.3)
j=l

where L. for j=l, ... ,M are arbitrary, constant r x n matrices.

We are free to choose these matrices in such a manner as to make

the control law (4.3) "close" to the optimal control law u*(x,t) =

--L*(t)x(t) in some reasonable fashion. In such a case (4.3) may be

regarded as -"suboptimal"--for a given set of qaj's it is unreason-

able to expect that there will exist matrices L such that (4.3) will

in fact be the optimal control. On the other hand, as discussed
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above, a linear control law of the proposed form (4.3) is relatively

easy to implement. By its use, therefore, we are attempting to

trade mathematical optimality in return for engineering simplicity

and practical usefulness. In this chapter we shall make this notion

more precise from a mathematical viewpoint and present a theory

for determining the matrices Lj, by defining a "suboptimal linear

regulator problem. "

B. STRUCTURE OF THE SUBOPTIMAL CONTROL

In proposing a structure for a suboptimal regulator control

two things should be considered. First that it be of a form which

readily lends itself to actual implementation, and second that it be

of sufficient generality so that the optimal control can be approxi-

mated to any degree of accuracy. With these thoughts in mind we

will consider in detail a proposed suboptimal control structure.

Let u*(x, t) = -L*(t)x denote the optimal linear regulator con-

trol. The suboptimal design scheme to be investigated will consist

of approximating the control matrix L*(t) over the interval of

interest [to, T] . In this manner the suboptimal control will be a

linear feedback control law, so that it becomes unnecessary to

introduce nonlinear function generators into the feedback system.

This is only reasonable since the system is linear and the opti-

mal control itself is a linear feedback law. One technique for ap-

proximating L*(t) is briefly described in Section A via Eq. (4.3).
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In that scheme DL(t) is approximated over the entire interval [t ,T]

by a gain matrix of the form

M

L(t) = aj(t) L
j=l

The implementation of such a gain matrix requires M synchronized

tape tracks on which the a's are stored and (n. r)-M constant

gain amplifiers whose fixed settings correspond to the values of the

components of L, j= 1,...,M. As M increases so does the com-

plexity of the feedback controller. But on the other hand we certainly

expect that as M increases it should be possible to choose the set

of matrices L, j = 1, . .. ,M so that L(t) becomes a finer and finer

approximation to L*(t). In the sequel this question will be analyzed

fu rthe r .

The basic concept behind the above procedure is that it enables

us to specify a time-varying structure for L(t) which is amenable

to an engineering implementation. Once we choose the M matrices

L. (given the aj(t)'s) the gain matrix L(t) is completely specified

over the entire interval [to, T] . This can also be a liability, how-

ever. For example, a particular set of matrices Lj, j = 1, ... , M

may result in a gain matrix L(t) which is a good-approximation to

L*(t) over one subinterval (tl,t 2 )c [ to, T] but which is a poor

approximation to L*(t) over a different subinterval (t3,t 4 )C[to, T]
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Alternatively, another set of matrices L may correspond to an

L(t) which well approximates L*(t) over (t3, t4) but yields a poor

approximation to L*(t) over (tl,t 2).

Dilemmas of this sort may be eliminated, if instead of speci-

fying the structure of L(t) over the entire interval [t T] we speci-

fy its structure over various subintervals. To formulate this notion

in more precise terms we assume that we may choose an integer

N > 1 and a set of times t, t, t...,t N such that

t < t< t2 < ''' < tN- < tN = T (4.4)

Thus, the intervals

li = (ti, ti+l] i = 0, ... , N-1

are disjoint with

U i (t ,T]Ii = (to TJ

i=O

We can now independently specify the structure of L(t) over each

of the intervals I.. For any fixed value of i between i = 0 and

i = N-1 let a ij(t) j=1, ... ,M be a set of M continuous, real-

valued scalar time functions which are linearly independent over the

interval I. = (ti , ti ] . In addition, for a fixed integer i, O< i<N-l,

let L.. j = 1, . . .,M be a set of r x n constant matrices which we

are free to arbitrarily choose.
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We now constrain the gain matrix L(t), for t (ti, ti+] to

be of the form

M

L(t) ai(t)L.. for t. < t < i=0, 1,..., N-1 (4.5)
i- -- i+ 1

j=l

(Notice that if N = 1, this case reduces to that described in Section A

since I = (t , T], indicating the generality expressed by Eq, (4.5).)

When L(t) is of this form, the choice of the NM time

functions aij(t), and the N.M matrices Lij completely specifies

the gain matrix over the entire interval [t , T . However, unlike

the scheme discussed previously, this method specifies L(t) for

t [t, T] by specifying L(t) over disjoint subintervals whose union

is the entire interval of interest. The problem we are now faced

with remains basically the same. Once we are given (or choose) the

integers M and N and the functions aij(t) i =0, ... , N-l, j= 1, ... ,M

we wish to determine the NM matrices L.. so that L(t) as given
-ij

by Eq. (4.5) well-approximates L (t) over [t, T . We shall dis-

cuss this point further in the next section.

The implementation of a gain matrix of the form (4.5)becomes

more and more difficult as N increases. We have already discussed

the case N = 1. For N > 1 the implementation of L(t) still re-

quires only M separate, but synchronized, tape tracks; the time

function, aj(t), to be stored on the j-th track is given by
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a(t) = aij(t) for tc(ti, ti+l]; i = 1, .N (4.6)

In addition, we still require (r.n)M simple gain amplifiers in

the feedback loop, but unlike the case N = 1 these amplifiers must be

provided with circuitry to increase or decrease their gains at the

times ti, i = 0, 1, ... ,N-1. For example, consider the k-th ele-

ment of L(t). Corresponding to this element we require an amplifier

whose gain gkl(t) is adjusted according to

gk(t) = Lk) for t(ti, ti i = 0, Nij i+1

We shall have more to say on the discrete time adjustment of ampli-

fier gains in a feedback loop when we consider piecewise constant

gain matrices in Chapter V.

C. THE SUBOPTIMAL LINEAR REGULATOR PROBLEM

As described in the foregoing sections we wish to constrain the

gain matrix L(t) to be of the specific form (4.5). The purpose of

such a constraint is to circumvent the implementation difficulties as-

sociated with storing a large number (n. r) of time-varying

quantities on tape. The proposed scheme requires only M tape

tracks (where we are free to choose M) and (n. r)M simple gain

amplifiers whose gains must be readjusted at the times ti. These

gains correspond to the elements of the matrices L for

i = 0, ... ,N-1; j = 1, ... ,M.
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Once M, N and the time functions aij(t) are chosen, the

matrices L.. completely specify the gain matrix L(t). We shall
-13

determine the matrices L.. in such a manner that the associated
-- lJ

control law

u(x,t) = -L(t)x(t)

minimizes J(x, to, T, u(. )) subject to the structural constraints (4.5)

placed on L(t), For convenience we define

Definition 6: Let M and N be fixed positive integers,

and let ti, i = 0, 1,...,N be a given set of times such that

t < ...t <tN_ 1 <t N = T

For every i, i = 0, 1, ... ,N-l, let aij(t), j = 1,2,...M

be a given, linearly independent, set of M scalar time

functions which are defined and uniformly bounded over the

time interval (ti, ti+l]1

We then say that the function L(.) is of class A1NM

if

M

L(t) = ~ aij(t) L ij for tE (ti, ti+l] i = , ... ,N-l
j=l

(4.7)

where Lij; i 0 ., N-1, j = 1,...,M are arbitrary r x n

constant matrices.
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More succintly we have

M

ANM = {L(.): L(t)= aij(t)Lij for t(ti,ti+l]1; i = 0, 1, ... ,N-1}
j=l

Note that A as defined is a linear function space; if L(. ) andNM 1

L() EA then aL1 (.) + bL2(.) EANM for all scalars a, b. We2 NM' I 2

shall make ANM a normed linear space by introducing a suitable norm.

If L(..)eANM we define

T 1/2

lL( .) 11 = [f IL(t) II2 dt] (4.8a)

t
o

where the norm on the matrix L(t) is the induced matrix norm defined

earlier in Chapter II, viz.,

-IL(t) i - sup I L(t)xl = Xma [ L(t)L(t)]
jx II =1 

(4.8b)

We shall make use of Eqs.(4.8a)and(4.8b) in Section D.

In the definition of ANM' the scalar time functions a. ij(t) are

assumed given. Thus L(t) is determined solely by the choice of the

matrices L... We shall now discuss the manner in which these
-1J

matrices are to be determined. Let L(. ) ANM and let VL(t) be

the cost matrix associated with L(t) as defined in Appendix C.

VL(t) is therefore given by



-71 -

T

YL(t) = L(T, t)FL(T, t) + TL(T, t)[ C'(T)C(T) + L'(T)L(T)] JL(T, t)dT
t

(4.9)

If, now, x is the initial state of our system Z at time t,
-0 0

the cost associated with the control u(x, t) = -L(t) x(t) is given by

J(x t T,u(.)) ( ) >- 0 = u = ( -L ( <' Lt o ->

(4. 10)

It would then seem reasonable, inasmuch as our original control

objective was to minimize the cost J(x ,to T, u(. )), that we should

attempt to choose the matrices L.. in such a manner that the resulting

gain matrix L(t) minimizes (4.10). Consequently our problem is to

choose L(. )EANM (or equivalently the constant matrices Lij) such

that 4.10 is minimized.

On the surface this proposition for choosing L.. is quite

reasonable. There is, however, one difficulty--the optimal choice

of Lij will in general depend upon the initial state x . In an actual

control system the initial state is not known a priori and must be

measured in real time. If we demand that L(.) minimize (4.10) the

resulting dependence of L.. upon x precipitates on-line compu---11 -o

tation. This defeats our entire purpose of trying to simplify the

implementation requirements of our feedback controller. We wish to

have all computations done off-line.
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Our only alternative in such a case is to choose L(.) to

minimize a functional independent of x . One such functional is-o

Iv(L) = kmaxI VL(t)] = (4.11)
IIx r-0

which is the maximum value that(4. 10) can attain when x ranges--o

over the unit hyper-sphere. v(L) is always nonnegative since VL(to)

is positive semidefinite, yet this particular choice of v is mathe-

matically unpleasant since k (.) is a nonlinear functional of its

a r gument.

The functional v(L) is the maximum eigenvalue of VL(t ).

But since all eigenvalues of VL(to) are positive, a useful, and

mathematically tractible substitute for v(L) is simply the trace of

the matrix VL(to), i.e., the sum of all the eigenvalues of VL(to).

Hence, we write

A(L) = tr VL(to) (4. 12)

The trace of a matrix is a linear functional of its argument, which

is an extremely useful property as we shall see in later sections.

Consequently, in the sequel, we shall seek the control matrix

L(. )ANM which minimizes (4.12). We denote the optimal choice

of L(-) by L 0°() i.e., L(.) is the argument of ji(L) for which

hi(L) attains its minimum value. Mathematically this is expressed

as

<X 0 VL (t0 )x0 >
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L°() = arg min [trVL(t )] (4.13)
L(. )EANM

Besides being reasonable from a mathematical standpoint, the

choice of the functional (L) also has a physical interpretation as

follows. Suppose that the initial state x is a random variable which

is uniformly distributed over the surface of the unit sphere in E 

Under these conditions it is most reasonable to seek the control

matrix L(.)EANM which minimizes the expected value (over x )

of the cost J(xot, T,u(.)), i.e.,

E ( J(-oto T, u(.)) Ex {2 <x , VL(to)X }
-x -o x 2 -o-L -o

u = -L(t)x

(4. 14)

1 1
but Bx {2 <xo, VL(to)Xo>} Ex {2 trxoL(t o ) x_}

-o -o

1

x0 2 L o-o--o-o

2 tr {VL(to) . E(x x) }- L-t.) -0-0

where the last step follows from the fact that the trace and expectation

operations commute. But now since x is uniformly distributed over

the surface of the unit sphere,

E(x x' ) = I , (the identity matrix)0-0
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so that E{ <x VL(to)Xo>) tr VL(to) = (4.15)2 -o -L 0-0 2 t L (

Therefore, the gain matrix which minimizes (4.14) is that which mini-

mize s (4. 12), and is characterized by Eq. (4. 13). In Section E we shall

give necessary conditions for L°(.) to minimize IL(.).

There is yet another interpretation of b. The functional v(L)

is the maximum value attainable by <x, VL (t )x > as x ranges-o'-L o-o -o
over the surface of the unit sphere, aS, in E . It is then possibly

to show that pL/n is the average value of the cost <x, V (t )x >

as x varies over aS. To prove this statement let denote this-O

average, then by definition, is given mathematically by

= f < , VL(t)x > ds ds (4.16)
as as

where ds denotes an element of surface area in E . But on the

unit sphere, x 12 = < x,x > = 1 so that we can write (4.16) in the

form

< f<X, VL(to)x > ds < x,x > ds (4.17)
as aS

But x is the unit normal to the surface aS. We therefore make use

of the divergence theorem 2 9 to replace both surface integrals over

as in (4.17) by volume integrals over the unit sphere S. Since

div Ax = trace A for any square matrix A, we obtain
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[ trVL(to ) ]

(tr I).f
S

fd
S

dv
_ 1 tr VL(to)n

which shows that the average value of < x VL(t )x >-O-L o -o
unit hypersphere II x 1= 1--O

is the average of the eigenvalues of

VL(to) 

We can readily obtain a lower bound for j(L). In Lemma 6

we showed that for any gain matrix L(t), the associated cost matrix

V (t) satisfied

K(t; T, F)<V L(t)L

In particular,

for all t[to, T] (4. 19)

for t = t and L(.)eANM we obtain
O N

it; T, F) < VL(t)

since K(t )

for all L(.)eANM-- NM (4.20)

and VL(to) are both positive semidefinite, taking

the trace of both sides of Eq. (4.20) yields

tr K(t )< tr V L(t)-o - -L o = (L) for all L(.)EANM (4.21)

We may carry Eq. (4.21) one step further by asserting that equality

can only hold if and only if L(t) = L (t) = B'(t) K(t; T, F) for all

This fact is immediately obtainable from Eq.(3.28) since

(4.18)

over the

Then,

t E [t0) T .
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tr VL(to) - tr K(to) = tr [V L(to) - K(t )]

T

trf L (t, to) [ L(t)- L*(t)] [ L(t)-L*(t)] _L(t t)dt
t

> 0 if L(t) / L(t)

In summary, the suboptimization problem which we shall analyze

in the sequel is

The suboptimal linear regulator problem

Given the set of times {ti, i=O, 1, . . ., N} and the set of functions

{ai (t), i=0, 1, ... , N-l; j=l, 2, . . ., M}. Determine the gain matrix

L (.)ANM whereNM'

M

ANM = {L( ):L(t) aj(t)Lij for t (ti, ti+l], i=0,1, N-1
j=l

which minimizes

[i(L) = tr VL(to)

0 0o0We shall call L (.) the suboptimal gain matrix and =i(L ) the sub-

optimal cost.

D. CONVERGENCE OF THE SUBOPTIMAL SOLUTION AS M-aoO

In the foregoing development we constrained the time structure

of gain matrix L(t) to be of the form (4. 7), or in other words we
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required L(. )ANM The argument in favor of such a constraint is

based on the fact that it is easier to implement a gain matrix of this

forni (by using M tape channels and associated piecewise constant

feedback gains) than it is to implement the gain matrix L (t)

B'(t) K(t; T, F). As M is allowed to increase, N remaining constant,

the circuitry demands of the linear feedback loop also increase and

it becomes more and more difficult to implement L(t). On the other

hand, as M increases, the set ANM encompasses a more inclusive

class of gain matrices, i.e.,

NM NM for 1 2 (4. 22)
1 2

since any element L(. )eANM is automatically an element of ANM
NM 1 2NM2

for M2 > M1. In other words, for a prespecified set of scalar time

functions aij(t)j , the sets N . form a nested sequence:

A CA 11N1I AN2 .

Consequently, if L(.) denotes the element of ANM which minimizes

i(L), we suspect that as M increases, LM(t) will become a finer
* 0and finer approximation to L (t) = B'(t)K(t; T, F). In addition, if M

denotes the minimum value of (L) over the class ANM, we then

also expect iM-0 tr K(to) as M--oo. Prior to actually determining

necessary conditions on LM(.) for the minimization of (L) we shall

investigate the above notions in a more precise mathematical framework.
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For convenience in what follows, we assume that the integer N

is specified and that the times t are equally spaced on the interval

[to T], i.e.,

t i+=t +A i= 0,1,...,N-1

where A= (T-to)/N.

We then let 1 (t), +2 (t), .. . be an infinite sequence of real-

valued scalar time functions which are defined and square integrable

on the interval [ 0, A] ,t and which are complete in this class Z 2[0, A]

where we define

Definition 7: The sequence {j(t)} is said to be complete

(in a 2 [ 0, A]) if given any P(t)c 2[ 0, A] and any E> 0

there is a linear combination Pk(t) of the form

k

Pk(t) = > aj j(t) (4.23)
j=l

where al, ...,ak are real numbers such that

A

k(.) -() 2 [ I k(t) - 3(t) dt]/ < (4.24)
0

where k depends on 

t This class of functions is denoted by 2 [ 0, A].
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Examples of such sequences which are complete in , 2[ 0, ]

(i) pj(t) = t ( j - l ) j 1 2,j l ,.

(ii) j(t) : e(j-l)tj= 1,2,...

We now turn to our suboptimization problem.

the class ANM

For any fixed M

is described by

M

ANM = {L(.): L(t) = a aij(t) Lij for t e[
j=l

We wish to choose the functions a. (t)
1introduced above. We therefore choose

introduced above. We therefore choose

aij(t)= j(t-i )

t i t t.+ A ] i = 1, . .N- 1}

akin to the functions
3j(t)

for tE( ti ti+A ]

for j = 1, 2, ... ,M (4.25)

Thus L(.)EANM-- NM

M

L(t) = I (t-iA)L

j=l

is of the form

for tE(t i , t. +A] i = 0, 1,
8 ] 

We let L(t) be the gain matrix of the form
-M 

ji(L)

(4.26)

(4.26) which minimizes

= trVL(t )
O

is the suboptimal gain matrix; and we let

are

i=O, 1, ... , N-1

s (: that L 0 (· 
-M
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04M = i(L) 
- L(.) L -M)

(4.27)

denote the associated suboptimal cost, indicating the dependence of
othese quantities upon M. Clearly M cannot increase with M, i.e.,

f 1°> .24> ... (4.28)

since any linear combination of 41 ,..., M of the form (4.26) is

automatically a linear combination of 1 , ... IM, b M+1' Correspond-

ingly,

ANlC AN2 C... (4.29)

We then show in Appendix G that

Theorem 9:
o *(i) lim JiM = tr K(to) = p(L )

M-oo

T

and (ii) lim IL0(.)-L(. ) 2= lim [ -t) (t)dt] 1/2= 0
M- - M-oo to

where L (t) = B'(t) K(t; T, F)

Hence, the intuitively expected results which we discussed earlier

are indeed true. For a specific set of complete functions {j}, the

minimum value of (L) over the class ANM (denoted by FM) con-

verges to trK(to) as M-oo, where we recall from Eq. (4.21) that
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tr K(t ) is absolutely the smallest value that (L) can ever attain.

In addition we have shown that the sequence L(.), L2(.),..., where

LM(.) is the suboptimal gain matrix belonging to the set ANM, con-

verges to a limit in a mean-square sense and that the limit is L (.).
0This fact is often written as LM(.) L (.). Therefore, by allowing

greater complexity in the form of the gain matrix L(.) we can achieve

a suboptimal system performance approaching optimality. The price

we must pay is reflected in the increased hardware requirements

necessary to implement a gain matrix of the form (4.26) as M in-

creases.

The above theorem gives results which are notably similar to

those which appear in the study of the Ritz method in the calculus of

variations. (See Ref. 19, Chapter 8). Borrowing the terminology

indigenous to this method, we have shown that the sequence L(.),

L2(.),. . is a minimizing sequence for the functional (_L) since
o *

°M-[i(L ). In addition, we have shown that the minimizing sequence

has a limit. Generally, this is an extremely difficult task in most

applications of the Ritz method, and depends on the detailed structural

form of the functional to be minimized (in our case 1(L)). At the

present time the Ritz method is quite familiar to physicists and is a

standard direct method in the calculus of variatidns. However, it

does not seem to have been applied to the solution of optimal control

problems; Theorem 9 suggests that it may be fruitful to do so.
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The speed of convergence of ilM to (L ) and of LM() to

L (-) obviously depends both upon the original optimization problem

itself and on the choice of the functions j(t). In any particular

situation we would like to choose the set {4j} so that linear combi-

nations of the form (4.26) involving only a very small number of

functions j will result in quite satisfactory approximations to L (.)

and [L(L ). This is indeed a difficult problem and remains a subject

for further research.

E. NECESSARY CONDITIONS FOR THE SUBOPTIMALITY OF L°(.)

In this section we shall obtain necessary conditions for L°(.)eNM

to minimize 1i(L) = trVL(to). We assume that N and M are fixed

and that the functions a ij(t) i = 0, . . ., N-, j=l, . . ., M and the times

ti, i = 0, 1, .. .,N are given. Under these circumstances, the speci-

fication of L(.)eANM is equivalent to the specification of the N.M

constant matrices L.. appearing in the expression for L(t). There-

fore, the task of determining L°(.) reduces to determining the

matrices L.. such that (L) is minimized. Hence we may regard

1(L) as a function of L... We denote the set of matrices Li at

which 1 (L) attains its minimum by {L i = 0 1 . .,N-1, j = 1, M}.ij 
Finally, we define V°(t) as the cost matrix associated with L (t),

i.e.,

V (t) = VL(t) L(t) (4.30)
L(t) = L °(t)
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whe re

M

L t) aij(t) L.j for t(ti, t i = O, 1, N-1L°(t = ij~t - l ( t i i+l 
j=l

We now determine conditions which L must satisfy in order to

minimize bp(L).

For fixed values of i and j, the functional tr VL(to) is con-

t:inuously differentiable with respect to the elements of the matrix

L... Therefore, trVL(to) is a trace function of the r x n matrix

Lij as defined in Appendix F. In addition, since tr VL(t ) is con-

tinuously differentiable in the elements of L.. we know, appealing
--1J

to the concepts of basic calculus, that in order for the set of matrices

{Lj } to minimize tr VL(t ) it is necessary that

a tr VL (t)
o ki = 0 for i = 0, 1,...,N-1; j=l, ... ,M

8(ij k = 1, ... r; = 1, ... n (4.31)

where (L )ki denotes the k-th element of the matrix L...-1j -1i
Equation(4. 31) simply expresses the requirement that the partial deriva-

tives of a functional evaluated at its minimum must be zero. Intro-

ducing the concept of a "gradient matrix" as defined in Appendix F.

Equation(4.31) may be written in a more compact form as

a tr VL(to)
0= 0 for i = 01,...,N-1; j = 1,...,M (4.31a)

8L..
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We now wish to evaluate the above gradient matrix in order to

obtain necessary conditions on the matrices L We employ the

technique outlined in Appendix F to calculate the gradient matrix of

the trace function VL(to), and show

Theorem 10: (Necessary conditions for suboptimality)

If L (.)EANM minimizes trVL(to) then for all

i = O0, 1,..,N-1

ti+ 

a..(tjL°(t)-B'(t)V (t)]4o(t, t )'(t, t)dt = 0;j=l, . .., M
ti

(4.32)

where o(t, to) denotes the transition matrix corresponding

to L(t), i.e.,

dt o(t, t ) = [A(t)(t)t)L (t) 4o(t, t); o(t t) = I..... o - o 0 to)=0 

Proof: To compute
a tr V(to)

L 8L°.
- iJ

we define, for fixed

L°(t)

L (t) = 

L°(t)

for t < t t.O- -- 1

+ Eaij(t)A Lij

; ti+ <t<T

for t.< t < ti1-- i+l

where cA L.. denotes a small deviation from L.°..
-1i --1J

Then if V (t)

the cost matrix associated with L (t) we have, by linearity of the

i and j

(4.33)

is
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of the trace functional

tr V (to) - tr V(to) = tr[V (t0) - V (t)]

We now use Eq. (C. 17)of Appendix C to write

T

V (to)-Vo(to)=-C 0 0 ' (t, t )[(L _L )'(L-L ) - (Le- 0 - -
t

0

-L°)'(B'V -L°j_-- -o -

-(B'V -L )'(L-L )] e (t, t )dt------0- 0 t od

where _ e(t,to)

(4.35)

satisfies

dt ' (t, to) = [A (t) - B(t)Le(t)] C(t, to); E (to t )= I

Substituting Eq. (4.35) into Eq.(4.34) and using the definition of

yields

EL(t)L (t)

tr[ VE(to)- Vo(to)] =

ti+ 1

trf

t.
1

,' (t, to)[ 2aij(t)(Lij)'(ALij)-2a ij (t)(B' Vo- L)' (ALij)] (t, to)dt

But to first order in e for t(ti, ti+l]

Ie(t, to ) = o (t, to) + eo(t, t) faij(T)o(to, T)B(T)(AL ij)o(T, to)dT
t.

1

(4.34)

we have
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Hence, to first order in , tr[V (to) - V (to)] becomes

ti+.

tr[V (t )-V (t)] = -2trf
t.

1

ti+ 

=-2e trf
ti

I

Finally,

aij(t)(t, t )[_B (t)V(t)- L(t)] 'Lij)o(t, t )dt

aij(t)o(t, t)o(t, t) [B'(t)V (t) -L(t)] '(ALij)dt
i j -- o 0 0 - 0 (t) - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,

as shown in Appendix F, this implies

atrV (to )-L o
aL.

-1j L. .=L . .-1J - ij

ti+ 1

= -2z aij(t)[B'(t)V o(t)-L (t)]_o )(t,(t, )dt
t.

1

Since this matrix must equal zero if L°(.) is to minimize tr VL(to)

we obtain the desired result. For every fixed integer i, the above

gradient matrix must equal zero for all j = 1, ... , M. II
In the very special (and unusual) situation when the initial

state x of the system is known a priori it is then possible to

choose L(.)EANM which minimizes

2J(x ,to, T, u( )) =< X' VL( t - ° > = tr[ V(t ) x 
-o o =-L 0- o L -o-o

u=-_Lx_
(4.36)

If we let L (.) be that element of ANM which minimizes Eq.(4.36)

and if V (t) denotes the cost matrix associated with L(t) we can-1
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obtain, via the same technique used in the proof of Theorem 10, that

Corollary 1: If L (.)EAN minimizes <x ,oV (t )x >NM o'-L o o

then for all i = 0,1, .. ,N-l1; j=l, ... ,M

ti+1

J ij(t)[L (t)-B'(t)Vf(t) _m (t, t ) _( (t t )dt = 

t.
1

The results of Theorem 10 may be extended to cover yet another

situation. In Section IV.C we showed that if the initial state x is

a random variable which is uniformly distributed over the surface of

the unit hypersphere, < x ,x > = 1, then the gain matrix L°(.) which

minimizes L(L) also minimizes the expected value of

lu=-L(t)x -- o -o

as x varies over the unit hypersphere. Suppose now, that the initial

state x is a random variable which is uniformly distributed over the

surface of a p-dimensional (p<n) ellipsoid, described mathematically

by < x ,Px > = 1, where P is a positive semidefinite matrix of

rank p. We now wish to choose L(.)EANM which minimizes the

expected value of Eq.(4.37)as x varies over the given ellipsoid. In-0

this case we can easily show, by making use-of the fact E(xo) = P,

that

Corollary 2: If x is uniformly distributed over the sur--o
face of the ellipsoid < x > , and if L (.)EANM-- -o NM
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minimizes the expected value (over x )-o of <x , V (t )x >- -L o -o
then for all

t.
i

Note that Corollary I becomes a special case of Corollary 2 by taking

p= 1.

Theorem 10 gives only necessary conditions for L(.)EANM

to locally minimize tr VL(to) ). We have not shown sufficiency of this

condition nor have we shown that for our given set of functions aij (t)
1J

there exists a unique L (.)EA NM

matters for future research.

satisfying Eq. (4.32). These are

A useful property of the function L°( ) which may be of help

:in any further investigation of our suboptimal problem is

Lemma 7: If L°( .) NM minimize s

any L ()EA NM' the n x n matrix

T

L (t)[B'(t) V (t)-LO(t)] (t, to )o(t, to)dt = S =
t 0

Proof: We write the integral (4.38)

N-l
Si=

i=O

ti+l

t.
1

as a sum of integrals, viz

tr VL(to) then for

(4.38)

L'(t)[B'(t) Vo(t) -L (t)] t)o ) (t, to)dt--~~~ - - O -----0o

i = 0, i, ... , N-1; j=1) ... , M
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but on the interval (ti, ti+1],

M

L'(t) = 2 aii(t)L!
j=l

so that

L'. -1i

ti+l

| L ij(t)[B'(t)V (t)-L (t)] b(t, to),?'(t, to)dt
t.

1

Employing Theorem 10 we find that each integral in the above summation

equals zero, establishing the required result. 

As an immediate application of Lemma 7 we can obtain the fol-

lowing result which may also be of use in further investigations.

Lemma 8: If L°(.) -A NM minimizes [i(L), then for any

L(.)EANM with associated cost matrix VL(t),NML

T

[L(L)-L()°) trf [ (L-L°)'()(LL-L°) -(L L°)(B'VL-BV)]o(t, to)(t, to)dt
t0

(4.39)

Proof: Taking the trace of Eq. (C. 15) with

T

ji(L).(L ° ) =tr [(L-L°)'(L-L°)-2(L-L)'@'vL
t

L -L L =L°-1 -' -2

N-1

i=O

M

j=I

yields

-L°)] (t, t )(t, t )dt-O 0 

(4.40)
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The second term in the above expression may be rewritten as

T

trf (L-L )'(B'VL-L )o(t, t o)(t, to)dt
t

0

T

tr f (L-L)'[ (B'V -B' V)+(B'V -L)] 4) (t,t )_(t t )dt
t
0

(4.41)

Now since L and L are elements of A and since A is a-o NM NM

linear space, (L-L °)EA NM, and by Lemma 7

T

tr (L-L)'[B'V -L] (t, t o)_(t, to)dt = 0 (4.42)
t

Therefore, substituting Eqs.(4.42)and(4.41) into Eq. (4.40) yields

the desired result. 

In this chapter we developed and investigated the new concept

of a suboptimal linear regulator problem as defined in Section C. In

Section D we showed that under certain completeness assumptions, the

solution of the suboptimal linear regulator problem approached the

solution of the optimal linear regulator problem as M--oo. The mathe-

matical and engineering implications of this result were discussed. In

the final section we developed necessary conditions for L° ( )EA NM

to minimize L(L), and derived some simple properties of the sub-

optimal solution.
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In the following chapter we shall apply the results of Section V.E

to investigate a specific, yet important, special case. The case in

question will be that in which the gain matrix L(t) is constrained to

be constant over each interval (ti, ti+l], i.e., L(t) is piecewise

constant on [t ,T].
0



CHAPTER V

SUBOPTIMAL PIECEWISE CONSTANT GAIN MATRICES

A. INTRODUCTION

In general, the implementation of.a gain matrix of the class

A NM in a linear feedback loop precipitates the use of M, time-

synchronized tape channels. As we have seen, the signals which must

be recorded on these tapes correspond to the functions aij (t) as indi-

cated in Eq. (4.6). There is, however, one special case for which

no tape recorders are needed, and it is because of this property that

the case in question assumes major practical importance. The situ-

ation to which we are alluding, and which will be investigated in this

chapter, is that in which the gain matrices are constrained to be piece-

wise constant over the control interval [t t, T]

A piecewise constant constraint, such as the one envisioned

here, arises naturally in engineering practice. Suppose for example,

that the system to be controlled is time invariant and the termi-

nal time T is finite. Then, even in this case, the control which

minimizes J(Xo, to, T, u(.)), and which is given by

* ·
u (x, t) = -B'(t) K(t; T, F)x = -L (t)x

represents a linear time-varying feedback law. This fact presents

a slight delemma--an engineer might be unwilling to instrument time-

varying quantities in an otherwise stationary system. On the other

hand, it seems reasonable to assume that he would settle for piecewise

-92-
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constant control gains (chosen in such a manner as to keep the re-
sulting cost "close" to the optimal cost) in lieu of purely time varying
ones.

To incorporate a piecewise-constant constraint into the sub-
optimal framework introduced in Chapter IV we simply take M = 1 and

aij(t) = 1 for i = 0, .. .,N-1 (5.1)

Consequently, the set AlN1 is given by

AN1 = {L(.): L(t) = Lij for t(ti,ti+l] i = 0,1,... ,N-1} (5.2)

and the suboptimization problem is to choose the matrices {Lij}

which minimize [i(L) = trVL(to). For ease of notation we shall, in
this chapter, drop the double subscripts on A L.. and instead

write A N and L. respectively. The suboptimization problem we
shall subsequently investigate is repeated for convenience.

Piecewise-Constant Suboptimal Linear Regulator Problem

Let N > 1 be a fixed integer and let ti, i =1,.., N be a given

set of times such that

to < t tN-1 < tN T (5 3)

Determine the element L°(. )A N where

AN = {L(.): L(t)= L for t(ti,ti+l i = 0, 1, - .,N-1} (5.4)
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which minimizes

(L) = tr VL(to) (5.5)

Hence, L (.) is characterized by

L°(.) = arg min B(L) (5.6)
L(. )cAl N

and we let L°, i = 0, 1,...,N-1 be the set of constant matrices which

characterize Lo(.).t

B. PROPERTIES OF THE SUBOPTIMAL SOLUTION AS N-oo

Before presenting a theoretical expose of the piecewise constant

suboptimization problem, let us briefly examine the implications of

constraining L(.)EA N. Since there is no explicit time variation in

the structure of L(.), the necessity of having playback tapes in the

feedback loop is alleviated. The implementation of a piecewise con-

stant gain matrix therefore requires only r.n gain apmplifiers whose

gains must be readjusted at the times ti to correspond with the

elements of L.. For instance if gkf(t) is the gain of the ki-th

amplifier, where k and run through the integers 1-r and l1-n

respectively, then

gkf(t) = Lki) for t(ti, ti+] i = 0, 1, . . .N-1 (5 7gkl~~~~~~~~~~~~~~~( 7 ) i
tNote that if N = 1, L(.) is simply constant over [t ,T].
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The gain adjustments indicated by Eq. (5.7) can be easily ef-

fected by a small, special purpose digital.coInputer. The computer

must store numbers which correspond to the various gain increments

(or decrements) of the feedback amplifiers at times ti, i = 1, . . ., N-1.

To be more precise, we must store the gain increment matrices

6L. L. - L--1 -1 -1-1

for i = 1,..., N-1. The k -th element of 6Li is the amount by

which the gain of the ki-th amplifier is to be adjusted at time ti.

Therefore, the implementation of a gain matrix L(.)eA N re-

quires the storage of (r.n)(N-l) numbers in the memory banks of

an on-line digital computer. However, the storage capacity of a

computer is limited, notably that of a small, special purpose machine.

This places a high premium on storage space, especially if several

memory banks have been set aside for a purpose other than storing

the matrices L.. These storage factors will generally suggest an-1
a priori choice of N. The larger we wish N to be, the more we must

be willing to spend for increased storage requirements.

However, there is a trade-off to be sought here. As N in-

creases it is reasonable to expect that we can choose the times

tlt t .. ,tN_ 1 so that L°(.) becomes a better and better approxi-

mation to L( .) over the interval [to, TI . This is only natural

inasmuch as we are allowing ourselves a finer subdivision of the

control interval.
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Therefore, we wish to investigate the limiting behavior of

and [LN as N-co, where we write

= arg min
L(.)EAN

[ tr YL(to)]

trVL(t o L(.) = LN()

to indicate the dependence of these quantities upon N. We can then

show

Theorem 11: For each N, N= 1,2,... let t.
1

i = O,l,...,N

be a prescribed set of times such that

t <t < <t <tN= T
1 Nthat-as oo

and such that as N--o

I ti+l -ti - 0 for all i = 0, 1,...,N-

O *
lim IN.= tr K(t ) = (L)

N~~ orO

lim IILN(.) -L () 12 = 0

Proof: (i) We define the gain matrix LN( ) N-N N·Eh

1LN(t) =(t. t. 
1+1 1

ti+ 

t.
1

B'(T)K(T;T,F)dT, for t(ti, ti+l)

and o
"N

(5.8)

(5.9)

then

(i)

(ii)

(5.10)

by

(5.11)
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a cso that LN (t) for t(ti, ti+ 1 is simply the average value of L (t)

over the same interval. Now, since Iti+l ti -0 as N-co we hve

a
lir LN(t) : L (t) (5. 12)

N-oo

But on the other hand if we write

a
.(L L(.) LN()

then, since LN (.) minimizes (L) over AN,

(L )<N <N (5. 13)

a *By virtue of Eq. (5. 12), ±N -i(L ) as N--o, since (L) is continuous

in L(.). Therefore, taking the limit of 5.13 we obtain

o lim IN = g(L )
N-o

(ii) The proof of this result follows the same reasoning as in

the proof of Theorem 9 which may be found in Appendix G. II

There is a great deal of similarity between Theorem 11 and

Theorem 9. The latter theorem obtains the same conditions (i) and

(ii) for fixed N -as M-co. For the case in question, M= 1 with

N-co; and we may regard LN(-) as a convergent minimizing se-
19quence for ~(L).
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The results of Theorem 11 suggest a further analytical study

regarding the convergence properties of IN and LN(.) as N-oo.

In particular, a study of this sort is extremely useful from a practical

point of view, because as N increases the more we begin to tax the

storage requirements of our digital computer. We shall have more

to say on this and other unsolved problems of this nature in Chapter VI.

Having formulated the piecewise constant suboptimization problem

and having obtained some properties of its solution as a function of N

we now turn our attention to the problem of computing L(.) for a

fixed value of N. This is the object of the next section.

C. A COMPUTATIONAL SCHEME FOR DETERMINING L°(.)

The arguments advanced in the proof of Theorem 11 suggest,

that for a fixed value of N, the matrices

ti+ 1

L = (t ) L (t) dt (5.14)
i+ l 1 )

may serve as a good approximation to L for i = 0, 1, ... ,N-1. If

such is indeed the case it would seem that the calculation of the

matrices L is superfluous. While for large N, Theorem 11 leads-1

us to expect conclusions of this sort, there is no basis to expect such

results when the time intervals (ti ti+l] are of the same order of

magnitude as (to, T] . And it is this latter case which is of greatest

interest from a practical point of view. Since the matrices LoSincethe mtri ml
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always yield a more satisfactory system performance (in the sense
aof minimizing (L)), than do the matrices Li, the determination

of L becomes a matter of considerable interest.-1
The most important thing to realize in the above situation is that

the matrices L are computed off-line, before the control system is

actually placed into operation. Hence, the determination of L is done

at leisure, which presents yet another argument for the implementation
0 aof L. as opposed to L.. In this section we therefore develop a com-

-1 -1

putational algorithm for determining the matrices Li, and investigate

the convergence properties of the proposed scheme. In the following

section we shall illustrate its use by way of a numerical example.

We assume that the integer N is given and that the times

tlt2, ... ,t N are also given. Therefore, the necessary conditions

which must be satisfied if the sequence Li, i = 0 1, .. .,N- is to

minimize Bp(L) over the class AN are readily obtained from

Theorem 10 with M = 1, and aij(t) = 1. They are

ti+l

f [L - B'(t)V(t)] (t, to) _(t, t )dt = O; i=O, 1, ... ,N-1 (5.15)
t.

1

where V (t) is the cost matrix associated with L°(t) and c. (t, t )

is the transition matrix corresponding to L°(t) i.e.,

d o (t , = [0A(t)-_B(t) to(t, to); .o(t o, = (5.16)

Note that we can also write for any i = O, 1, . . ., N-1
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o(t, to) = o(t,ti))(t i to) for t(ti, t ] (5.17)

The constant matrix 4bo(ti to) depends only on L for j=0, 1,...,i-

and (bo(t, ti) depends only on Li viz

dt -o i-0 1-0ii+(5.18) 
so that

i-i

o(ti, to) = TT fo(tj+1, t) (5.19)
j=0

Expressions 5.17 through 5.19 can be quite useful in any

numerical investigations, especially when A(t) and B(t) are constant

matrices, for in this case

(A-BLi )(t-ti)
4)o(t, t) = e 1 (5.20)

Returning to Eq. (5.15) we see that it may be written in another

form by noting that since 4)o(t, to) is invertible for all t,

4 (t,t ))'(t,t ) is positive-definite. Hence

ti+1 ti+ 1

I =. B (t)' (tt, t I(t t )dt O(tO ( t )dt] (5.21)_~ _ _' - 5.Zl)
t. t.

1 1

It is virtually impossible to obtain an explicit analytic expression for

L.° and so the need arises for developing an iterative scheme to solve-1
nEq. (5. 21). iu achieve this end we let the sequence Li' i = 0, 1, ...,

N- be the n-th iterate to L i = 0, 1, ... ,N-1. The first iterate

{L } is arbitrarily chosen; we shall have more to say on this point-1
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in the sequel. In addition, we let

nwith the n-th iterate gain matrix L (.), with-1

V (t) be the cost matrix associated--

4, (t, t )-n 0 denoting the

transition matrix corresponding to Li (.). Therefore,

i- 1

nlt ' to) = n(t, ti) T
j=O

for tE(ti,ti+l]

where

d
dt -n tj) = [A(t)-B(t)L ]j (t, tj);

_n (tj, tj)

te(tj, tj+ 1]

= I

and

T

Vn(t) = b n(T, t)[ C'(T)C(T) + L (T)L (T)]) (T, t)dT
t

Given the set of matrices ({Ln}, the matrices Vn (t) and 4n(t, t)_n to
are uniquely determined for all t. Finally we define

1J = (L) (5.22)

IL(.) = L (.)

We want to develop a sequence of iterates {Ln( .)}={L 1 (.), L2(.),

such that as n-coo

~P(t+ tj) In(t, ti )(ti t)
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Ln(. )-L°( ( )
(5.23)

1p _-n = (L)
L(.) = L(.)

In such a case we will have obtained a solution to Eq. (5.21) which

yields a (local) minimum for (L). If we could. show, by some means,

that Eq. (5.21) has a unique solution then indeed, we would also obtain

a global minimum of (L).

The form of Eq. (5.21) suggests an iterative scheme based on

the method of successive approximations.t If L i=0, 1, N-1

is our n-th iterate, then the n+l-st iterate is obtained as

ti+l

_B'(t)Vn(t)n(t, tn(t, )dt [ J
t

n(t -t -)n(tn to)dt] -1-Pnt' o RnI 

i

for i = 0, 1, . . ., N-1 . This iterative scheme is conceptually very

simple. It is based on the fact that L is a fixed-point of Eq. (5.24).-1
However, as n-o we have not as yet been able to show that con-

vergence is obtained, although heuristically such a conclusion might

seem reasonable. The difficulty is that we cannot guarantee
n+ 1 n< .

tOften referred to as Picard's method.

ti+ 

1 fLn+ 1 =

t.
1

(5.24)
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We therefore change our tack and approach the problem from

a slightly different direction. Given the n-th iterate Ln}, we de-

fine for i = 0O 1, ,N-1,

ti+l ti+ 

L.=1 B'(t)Vn(t)(t, to)n(t, tdt [ (t, to)_n(t, t)dt]
t. t.

1 1

(5.25)
^n n -st iterate weso that L is associated with L and as our (n+l)-st iterate we

write

Ln+l Li + n[ C L Li ] (5. 26)

where e is a positive parameter between zero and one which is to

be chosen to insure that

n+ 1 n

n+ 1Hence Li may be regarded as a "better" approximation to L
ntthan was Ln-i

We shall investigate the convergence properties of the iterative

scheme suggested by Eqs. (5.25) and (5.26) as a function of the par-
n+l nameter en. We note that if E = 1, L - L. which is just then n -i - 1

method of successive approximations, embodied in Eq. (5.24). If

This approach is basically a "gradient" technique33 ' 34 for determi-
ning the minimum of the functional (L). We shall have more to say
concerning this similarity in the sequel.
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n+l n
En O then L. + L. and the above iterative scheme, if it con-n ~-1 -1
verges at all, will converge rather slowly. We may therefore regard

En as a convergence parameter; we would like to choose En as close

to unity as possible while still being able to assure convergence of

our iterations. The main result along this line is

nTheorem 12: Given any set of N matrices L i=O, 1,
n+ 1N-1. Let L. + be determined by Eq. (5.26). Then for-1

sufficiently small En

n+l< in (5.27)

n owith equality holding if and only if Li = L. for all i.

Proof: We use Eq. (C.15) to write

n n+1trV (to) - trVn+ (to) = AI -

N-1 ti+l
= tr (Ln-L nl n+ (l)' tot)_n+l' (t, t )dt}

--tr I -- - _n i _nI a- I 0
i=O t.

(5.28)
But to first-order in En, since

n n+l n n
- -E (L_ - L.)-i Li n( i L

we obtain

N-1 ti+l
n n+l 2n t n+ Fn -Fl = En tr{(Li -Li)' [ B'(t)Vn(t)-L- ]-n(to t-n(t' to)dt}

i=O t.
1



Introducing Eq. (5.25) for

n n+l
wi - a n

which, again,

N-i
Y tr {(Ln-_L )

-1

i.= O

to first order i

ti+ 1

'(ni n+l to)dt}-1 -L1 J ~ 0- 4no
t.

n en becomes, upon substituting

Eq. (5.26)

N-1
_n n

2n tr (i Li)
i=O

n+l
-L

ti+l

'(L. -L. )
-1 -1

t.
1

n(t , to)n(t, to)dt

But each matrix in the summation has a strictlypositive trace, and so

to first order in we haven

n n+1
F >F (5.27)

Equality may hold in Eq. (5.27) if and only if

This implies that Ln
-1

n nL.= L.-1 -1 for all i.

is a fixed-point of Eq. (5.2.5) and therefore

also a fixed-point of Eq. (5.24).

Stated in different terms,

Hence L = L for all i. II-1 -1

Theorem 12 may be recast as follows

nCorollary 1: Given any set of N matrices i'
If Ln L°

-i -i for all i, then there alwaysi= , 1, . . ., N- 1.

exists -a number e > 0 such that for L 1n -1 as defined by

Eq. (5. 26)

n+l
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nL.-1
yields

n
FL (5. 28a)
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In order to develop an iterative scheme for determining L

which is based on Theorem 12 and its corollary it is necessary to
nbe able to choose an En, given the n-th iteration Li, which will

n+ 1 nguarantee 11 < . We know that for sufficiently small we

can guarantee this situation. The only question is "how small must

c be for n < ±u ?1" In other words we would like to obtain an

bound M such that for e < M, + < 
( n

In order to answer this question we are faced with a difficult

mathematical problem. We must make an a priori choice of En

such that the right hand side of Eq. (5.28) is positive. One ap-

proach to the problem is to examine the second order terms in E

3of Eq. (5.28), assuming that C3 is negligible with respect to .

We first write

t

n+l(t to = 'n(t , + (t,T)B(T)[ L(T)-L n+l()] (T, t )dT
t

o

which to first order in En is

4n+l(t,to) = 4n(t,to) - EnSn( t, ) (5.29)

where, for t(ti, ti+l]',
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It (t, T)B(T)[ n - L-] <(T, t )dT
- -j --

t

+ f n(t, T) B(T)[ L
t.

1

and where we have written

-L ] n(T, to)dT

n n+lL. - L-i -3
nj -- En(L. - L j) for j=0, 1, .

If we now substitute Eq. (5.29) into Eq. (5.28) we obtain,

order in

to second

en'

n n+1 2
= E ·a - en n p

where

N-1

a = 2 tr

i=O

ti+ 1
^n n 'n n

(L -L i )'(L. -L)
t.

1

-n(t, to)n(t, to)dtPn- t o)-4)

N-1 ti
= -+ 2 tr (L -L)

i=O t.
1

.+1
n+i[ BV (t)-Ln Sn(t, t))] dt- -n n --- [ S t)0(t

S (t,t )
i-i

j=0 t

tj~]

j

i

(5.30)

and
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Both and a depend only on Li, i=0, 1, ... ,N-1 and there-

fore may be computed before choosing En . In order to choose n

n+ 1 n
which will assure +1< p. we therefore require, by Eq. (5.30),

O< E < t (5.31)

Hence, if is negligible compared with unity and if Eq. (5.31) isn+l nsatisfied, we can guarantee + < .n

The above argument is not entirely convincing, it gives us no
2 n+ 1feel for choosing en if Ec is comparable to unity. While 1n mayn n

be smaller than pn under these latter circumstances, an investigation

for this case is exceedingly involved and would entail a study of the

detailed form of Eq. (5.28).

One way out of this dilemma is to simply propose an ad hoc rule
n n+ 1for picking en which will assure pn < p . One such method is as

n+ 1 nfollows. We first pick E = 1 and check whether p. < n . If not,
n+ 1 nwe set En= 1/2 and again see if p < l . By successively dividing

n+l n
En by 2, we will eventually reach a value of En for which 1 <n+lF

as guaranteed by Theorem 12.

Motivated by the foregoing remarks, we propose the following

iterative scheme for determining the matrices L-i, i=O, 1, ...,N-1.

tA convenient choice of is e-- for which (5.30) is maximized.

Note also that if < , pn+ <n for all E.
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Iterative Scheme for Computing the Suboptimal Gain Matrices {L°}

1.1. Guess an initial iterate {Ll, i0, 1, ... ,N-l}
-1

2. Calculate l(t, to), V(t) and {L, i=0, 1, . .,N-}

2 1 ^. 13. Set . = L1 + - Ll] for i=0 1, .. N-1
2 1

4. Take e 1 =l and check to see if p. < 1

5. If ~ > , set 1=/2 and again check if p < 

2 1
6. If is still not less than , keep dividing c1 by 2

until p2 < 1

27. With {Li } chosen via step 3, calculate 4(t,to), V2(t)

and {L }.

8. Repeat steps 3 through 7 until pn+l is sufficiently close

to pn for some n.

The choice of the initial iterate {Li} at step 1 in the proposed

iterative scheme will naturally effect the rates of convergence of

Ln to L and of pn to p . Therefore, as an initial guess, we would

like to be able to choose L1 L. Motivated by the introductory re-
-1

marks of Section V. A, a suitable choice for L is

t.
1 a ti+Li L i (t -t B'(t)K(t; T, F)dt; i=, 1, . . .,N-

i+l -

Besides being a reasonable initial iteration, this choice enables us

to easily see the improvement in system performance which arise
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from using the gain matrix L(.) as opposed to La(.). The matrices

La can be calculated by any one of the iterative schemes suggested in

Section III. C. In the following section we shall make these ideas

clearer by way of a numerical example.

In the foregoing iterative scheme we note that if L is close to

Li (in norm) for all i, then the parameter E may be chosen close-1in
n+ nto one while still guaranteeing . < p . This is because the approxi-

mations of ( n_-~ +) which were made in Theorem 12 are valid as

long as lIcn(LI-L )LI is small compared with unity. Consequently,

if IJL n - Li 1 is small we may choose En 1 while still being able
n n+lto write the first order expansion to n. - n. as in Eq. (5.28a).

We have therefore shown that as our iterative technique converges in

the limit for large n, we can take values for En which approach one.

Finally, we wish to point attention to the similarity between

this iterative scheme to find the minimum the functional (L) and

the familiar gradient or steepest descent methods.t Both schemes

introduce a small, adjustable parameter E into the problem (in the

gradient scheme, is referred to as the "step size") and choose 

to assure a decrease in cost at each iteration. Therefore, eventual

convergence to a local minimum is attained. There are many vari-

ations of the gradient method which can be used to improve rates of

tSee Ref. 33 for a discussion of this method as well as for an extensive
list of references pertaining to this subject.
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convergence, suggesting that it may be possible to modify our iter-

ative scheme'to yield a more rapid convergence rate. Several modi-

fications are presently under investigation, yet this still remains a

subject which warrants a considerable amount of further research.

D. A NUMERICAL EXAMPLE

In order to ellucidate the iterative scheme proposed in the fore-

going section we shall determine the matrices L°i for a second-

order system. The system under consideration is time invariant and

is characterized by the matrices

A I ] , B =b = [ C= c' = [1 01

We shall take the initial time t = 0 and the terminal time T = 2
0

with F = 0. The solution of the Riccati equation, K(t; 2,0), cor-

responding to these matrices is shown in Fig. 5.1 for t < Z.t The

optimal gain matrix L (t) = b'K(t; 2, 0) is

L (t) = [kll(t) k2 (t)] for t[0,2]

and the optimal cost (L ) is

1 (L ) = tr K(O) = 2.5144

tThese results were obtained by using the discrete optimization tech-
nique of Section III. C.
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We shall examine the piecewise constant suboptimization problem

for two cases and compute, using our iterative scheme, the subopti-

mal gain matrices. The two cases are a) N=l with to = O, t = 2 and

b) N=2 with t = 0, t = 1, t 2 = 2. In both cases we shall begin

our iterations with the initial guess L. as we discussed earlier. All

calculations were done on a PDP-1 computer.

a) N = 1; t = 0, t = 2.
o ~~1

For this case we seek the constant matrix L1 and the subopti-
0mal cost . For our initial iteration we chose

1 a
L1 = [.4842 .44231 = L1

The results of applying our iterative scheme are tabulated in Table 5a.
n+lIt was found that for = 1 at each iteration, the cost p n was

n

always smaller than . Consequently it was never necessary to re-
n+l Anduce En and +l = L The iterative scheme converged to a sub-

optimal cost

0
p = 2.6283

(which is within 5 percent of the optimal cost) and to

L1 = [.8095 1.1668]

This result is displayed graphically in Fig. 5.2.

In this example it was found that (L) is relatively insensitive

to small changes in L(. ) in the vicinity of L(.) = L°(.), since n
o n 0had converged to before L converged to L It was also noted

-1 -1
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Ithat for a wide range of initial iterates, L1, the iterative scheme
ndisplayed the same convergence properties: for E 1, An mono-

o n 0tonically decreased to p. and L -L .
1 -1

b) N = 2; t = 0, t 1, t 2
o 1

In this case the suboptimal gain matrix L°(.) is constant over

each of the intervals (0, 1] and (1,2] so that we seek the matrices

L and L as well as the suboptimal cost . For an initial
-1 -2

iteration we chose

L = [.8043 .8013] =-1 -1

1 aL = [.1640 .0833] = La-2 -2

The numerical results obtained with our iterative scheme are shown

in Table 5b. As in case a), n monotonically decreased to p. with

en= 1 at each iteration (so that Ln + L. for i = 1,2). The sub-

optimal cost p. was found to be

0°= 2. 5490

which is smaller than that of case a), showing the improvement of

choosing N = 2 over N = 1, and is only 2 percent larger than the

optimal cost (L). The matrices L are

L = [.8723 1.0442]
1= [.80 .065

L' [ .1810 .0652]

and are displayed graphically in Fig. 5.3.
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n oThe results in Table 5b show that )i converges to p. in 2

iterations while L converges in 6 iterations to L. This again

shows the insensitivity in j(L) to small changes in L(.) about

L(.) = L°(.). As was also noticed in case a), choosing different

initial iterates still resulted in a rapid monotone convergence of n

to for cn = 1.

These results point to the feasibility of applying the proposed

iterative scheme to determine the piecewise constant suboptimal gain

matrices. The potential use of this technique for designing suboptimal

regulator systems is great, yet much remains to be done in its im-

provement, modification and analysis. Research along these lines

is currently being persued, and a computer program is being written

which will calculate the matrices L for an n-th order, time invariant

system .
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n

1

2

3

4

5

6

7

8

9

10

11

12

Table 5a.

(Ln)l 1

.4842

.5843

.6989

.7582

.7859

.7985

.8044

.8071

. 8084

.8090

.8093

.8095

(Ln)12

.4423

.9378
1. 1035

1. 1519

1.1646
1.1673
1. 1675

1.1673
1.1671
1.1670
1.1669
1.1668

n
p.

2.9475
2.6791
2.6377
2.6303
2.6288
2.6284
2. 6284

2.6283
2.6283
2.6283
2.6283
2.6283

Iterative Scheme Results for Case a)

N= 1, t = 0, t = 2,

(L 1 )1

.8043

.8497

.8662

.8708

.8720

.8723

(Ln) 12
L 1 )

.8013
1.0058

1. 0388

1.0438
1.0442
1.0442

Table 5b. Iterative Scheme Results for Case b)

N = 2, t = 0, t = 1 t 2 = 2, = 10 i ' n

e = 1n

n

1

2

3

4

5

6

n 11
(L2

.1640

.1725

.1788

.1806

.1809

.1810

n 12

.0833
.0634
.0640
.0650

.0652

.0652

n
1L

2.5673
2.5490
2.5490
2.5490
2.5490
2.5490
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Fig. 5.2 Optimal and Suboptimal Gain Matrices for Case a

N=I, t0=O, t=2

1.0

0.5

0

1.

O.



-118-

t

t
0 0.5 1.0 1.5 2.0

Fig. 5.3 Optimal and Suboptimal Gain Matrices for Case b

N=2, to=, tl=1, t2=2

1.0

0.5

CE

1.5

1.0

0.5

0



CHAPTER VI

TOPICS FOR FURTHER RESEARCH

Throughout this report we have mentioned, and in some cases

briefly discussed, subjects which warrant further investigation. The

majority of these topics are directly related to the results presented

in Chapters IV and V, and range from purely theoretical to entirely

numerical studies. In this chapter we shall enumerate these additional

research problems while categorizing them for the benefit of future

investigators.

A. THEORETICAL STUDIES

1. Sufficient Conditions for L () ANM to Minimize (L)NM

Theorem 10 gives only necessary conditions for L ( )e ANM to

minimize (L) = tr V L(t ). It is then appropriate to inquire whether

these conditions are also sufficient.

One approach to a sufficiency proof is by showing that Eq. (4. 32) has

a unique solution. If such is the case then, per force, this solution must

necessarily minimize 1j(L). t However, this method of attack can be

restrictive since there may exist several solutions of Eq. (4. 32). Under

these latter circumstances, the sufficiency of Theorem 10 is guaranteed

by merely showing that if L( ) satisfies Eq. (4. 32) then

_(L ) < Ai(L) for all L(. ) NM ,

with equality holding if and only if L(' ) satisfies Eq. (4. 32). A useful

tool in such an investigation is given by Lemma 8 in which we derived

an expression for (L) - (L).

tWith the underlying assumption that there exists an element of ANM
which minimizes (L).

-119-
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If, in general, Theorem 10 is not a sufficient as well as

necessary condition, we would then like to determine the additional

constraints (on the functions aij (t) or on the system 2) which must

be placed into the problem statement in order to guarantee the

sufficiency of Theorem 10.

2. Optimal Determination of the Times t , i = 0, 1, ... , N

Throughout this report we have assumed that the set of times

{t , i = 0, 1,..., N} are specified in advance of solving for L(' ).

This a priori choice of t has its disadvantages. It would be more

desirable if these times were left free to be chosen in such a manner

as to minimize 4(L). In other words the new sub-optimization problem

would be to choose the set of times t. and the element L ( )c ANM
1 -

which minimize (L). We assume that the functions aij(t) are pre-

specified.

One very important special case which merits such an investigation

is when the gain matrices are constrained to be piecewise constant as

in Chapter V. In addition to determining the optimal set of piecewise

constant gains, we then also seek the optimal set of times t. Hence

we regard (L) as a function of the N matrices L., i = 0, 1, .. .,N-1

and the N- 1 times ti. , i 1, ... , N- 1. This problem is particularly

important if the storage limitation of our computer dictates that we

can store only N matrices. Choosing the times t. , i = 1, ... ,N-1

in an optimal fashion is then equivalent to making the most beneficial

use of the existing storage facility.
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In any particular problem of this s.ort it is possible to make a

reasonable choice for the times t. by merely looking at the nature

of the time variation of L (t) = B'(t)K(t; T, F). Over portions of the

control interval [to, T] where the time variation of L*(t) is slight

(i. e | d L (t) I is small) we can allow the times t. to be more~~~~~~dt -~~~~~1

widely dispersed than over regions where L (t) varies with time to a

greater extent. In any case we would like to obtain necessary (and

perhaps sufficient) conditions for the set {ti} to minimize p(L).

3. Determining Rates of Convergence for LM()

In Section IV. C we introduced a set of functions { j} which were

complete on the interval [0, A], where = (T-t )/N, and we then

let

M

ANM {L( ): L(t) = (t-i )L. for t (ti, ti+a] i = 0, 1, . . .,N-l}

j = 1 L . jj=l
with the suboptimal gain matrix being defined as

LM(' ) = arg min. (L)
L(' ) AMN

We showed that L() converged to L () in a mean square sense

as --uo and that M -tr K(t ).

We would like to be able to determine (for a given set {4j} ) bounds

on the rates of convergence of these quantities. Such bounds will

obviously depend upon both the original optimization problem itself and

on the choice of the functions j(t). It is then reasonable to ask, given

the system Z and the integer N, for the set of functions {j} which
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maximize the speed of convergence. Under such circumstances we

could have L( ) and i being quite satisfactory approximations

to L () and tr K(t ), respectively, for relatively small M.

If, for a specific optimization problem we could find such a

set of functions, the results would indeed be fruitful. We would then

have a control law which is simple to implement, yet one which results

in near optimal system performance.

Experience with the Ritz method19 of the calculus of variations has

substantiated similar claims for numerous problems in the field of

physics. However, there has been no application of the techniques

of this direct method to the solution of optimal control problems.

B. NUMERO-THEORETIC INVESTIGATIONS

1. Computer Storage Versus System Performance

In Chapter V where the gain matrix L( ) was constrained to be

piecewise constant, we showed that LN( ) converged to L (') as

N -co. The implication of allowing N to be large is that we have a

correspondingly large amount of computer storage at our convenience.

This, unfortunately is rarely the case. Suppose, therefore, that initial

storage limitations dictate an a priori choice of N. With N fixed we

can then proceed to determine the choice of matrices L. , i = 0, 1, ... ,N-1--1
and the set of times tl, t2''''' tN-1 which minimize [(L). In this

manner we are using the alloted computer storage to its maximum

advantage. For a fixed N we therefore define
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LN( = arg min {min tr VL(to)} (6. 1)
t1'''tN-1 L()AN

and 0N = tr V L(t) (6. 2)-L L(.) =

Clearly, 0N+1 < N for all N and by Theorem 11 we have that

IN --'tr K(to) as well as LN( )L (*).

The question to which we now address ourselves is the following.

If we allot more memory facility to the task of storing the elements of

the matrices Li it then becomes possible for us to increase the integer

N. Correspondingly, the number N will be closer to its minimum

value of tr K (t ), and we also expect L(.) to be a finer approximation

to L ('). However, the increase in storage can only be justified by a

measurable decrease in O N. If the difference [LN - N+ is insignificant

then we have reached a point of diminishing returns insofar as our sub-

optimization problem is concerned. Therefore, the correlation between

N, the rate of decrease of p°N to tr K(t ), and the rate at which
0 *

_LN( ) converges to L (') become matters of paramount importance
in view of their relationship to the cost of additional storage registers.

2. Accuracy.of LN(.) Versus Computer Storage Limitations
oN L

The storage of L (), or equivalently the matrices L, i = 0, 1, N- 1,

in the memory banks of a digital computer requires that we specify the

numerical accuracy to which we wish to carry the elements of these

matrices. This is necessary so that a sufficient number of core registers

may be allocated to the task of storing each of the (r.n)N numbers.
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kI
(L° ) ;i = 0, 1,...,N-; k = 1,...,r; = 1,...,n

(6.3)

Since a number is stored in a digital manner (i. e. in base 2) this

implies that one core element is necessary to store each significant
ki

figure t of (L) . Therefore, if we wish to store the elements of

the suboptimal gain matrix to six significant figures, we require

6 (r. n)N core elements.

Let us now suppose that we decide to store these numbers to an

accuracy of only four significant figures. We then require only 4 (r. n)N

core elements. What this implies, therefore, is that we can increase

the number N by a factor of 3/2 while keeping the number of core

elements constant. On the one hand increasing N will result in a lower

value for N, but on the other hand this increase in performance is

likely to be offset by rounding off the elements of L° to two less

significant figures. However, if the control system is insensitive to

slight perturbations in LN( it is reasonable to expect that an improve-

ment in system performance can be made by simply storing numbers to

a lesser degree of accuracy. This suggests a study of the sensitivity

of AN to perturbations in L The object of this study would be to

determine, given a fixed storage capacity, the value of N and the

number of significant figures with which to store L N() so as to

minimize hp(L). (There are hardware factors to consider here also,

such as the accuracy of the Digital-Analog converter, etc. ).

tThe number of significant figures is often referred to as "word length".
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.3. Improvement of Iterative Schemes to Determine LN( ')

In Section V. D we developed and discussed an algorithm for the

determination of the matrices L , i = 0, 1,...,N- for the case when

the times to, tl, .. , tN were prespecified. The computational scheme

is basically a "gradient" technique. At each iteration we choose a

convergence parameter en t to assure a decrease in cost. Therefore,

we will eventually converge to LN( ), which is the element of AN

which is the element of AN which absolutely minimizes the cost

functional (L).

There has been a considerable amount of research done in the past,

dealing with gradient techniques. ' 34 These investigations treat

subjects ranging from gradient scheme modifications for more rapid

convergence to prescriptions for choosing the step size at each iteration.

In view of the wealth of knowledge which exists in this area, it is

feasible that one could apply these ideas to improve or modify the

basic gradient scheme of Section V. D.

There is another way to look at the piecewise-constant suboptimization

problem posed in Chapter V which may suggest a different computational

approach to the problem of finding LN(). The suboptimization problem

can be cast into a framework which suggests the application of the discrete

minimum principle. To do this we proceed as follows. We assume that

the times t are fixed and we let L( ) be an element of AN . Let

P(t, t ) be the transition matrix corresponding to L(- ). Then, as in

Eq. (5. 17), we may write, since L( ) is piecewise-constant,

t often referred to as the "step size".



for t(ti, ti+]
Let us denote _ (t i, to ) by i noting that = I, viz,

-o -

!(t i to ) = i for i = O, 1, .. .,N-1

so that in particular

-i+l = (ti+lti) i

We now write 4(L) as a sum of integrals, noting that L(t) is piecewise-

cons tant.

= tr VL(to)

N-1

i= 0

tN

tr
t

o

ti+l

t.
1

Substituting Eqs.

4(L)

N-1

i=0

(6.4) and (6. 5) into the above yields

ti+l

tr , '(t, ti) [C'(t)C(t)+_LLi](t,ti)dt -i}
t.
1

(6.8)

4(t, ti)1
depends solely on L.i , hence we define the positive semidefinite

matrix

Q(Li)
- -

ti+

(6.9)_' (t, ti) [ C'(t)C(t)+L L] (t, ti ) dt1 -~-1 
t.

1

and we obtain
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(6.4)

(6.5)

Hence

(6.6)

i(L) _ (t t ) [C' (t)C(t) + LLi] (t, t ) dt0 . . .. 0

(6.7)

4(t t = m)(t, t flmti t )

4~ (t, t )[ C (t)C (t)+ L L. ]4~(t, t ) dto L- 1 i 0
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N-1

It(L) = tr Q(Li)i (6. 10)

i = '

The minimization problem is now the following: "Given the cost functional

1(L) where i is generated by the difference equation

i+l i+l ti)i ; m I (6. 11)

Determine the sequence L , L L which minimizes (L)".--o -1'-"' whichminiizes l(L)"

As reformulated above the piecewise constant suboptimization problem

suggests the use of the discrete minimum principle. The "discrete

dynamical system" is Eq. (6. 1]), with .i being the system "state"

at time t.. The "control variable" at time t. is the matrix L.. To
1 1 -1

apply a minimum principle for the case of "state matrices" such as

above, we define the inner product < , > between two matrices by

< A, B > = tr AB' (6. 12)

which is a valid inner product over a matrix space. Under this

assumption, the application of the minimum principle is straightforward.

If we introduce a "costate matrix" the minimum principle will yield a

set of two matrix difference equations with split boundary conditions.

By developing iterative schemes for their solution (which is no easy

task), it is then possible to determine the matrices L, i = 0, 1,...,N-l

by means other than a pure gradient technique.

4. Development of Iterative Schemes for M > 2

In Section IV.E we derived necessary conditions for L( ·)E ANM to

minimize (L). These conditions are embodied in Theorem 10, via

Eq. (4. 32). We would like to obtain a means of solving Eq. (4. 32) for
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L (.) once the times {ti} and the functions {aij(t)}

In particular we wish to investigate the case for which

for M = 1 the analysis of Chapter V is pertinent.

One of the more important cases for which M > 1

characterized by M = 2 and

ai2(t) = t ti for t (ti, ti+l ] i
aLi2(t) =t-t i

are specified.

M > 1, since

is -that

(6. 13)

The importance and interest in deriving algorithms for this case arises

because a gain matrix belonging to the set AN2 is piecewise-linear

over any interval (ti, ti + l ] . A piecewise-linear function may be

implemented by simply performing real-time linear interpolation in

a feedback loop with a small, special purpose digital computer.

Therefore, an analysis of the problem for M = 2 is supported by

engineering feasibility, despite the increase in technical difficulty in

going from M = 1 to M = 2.

= 0, 1, ... , N- 1



CHAPTER VII

SUMMARY

In this chapter we summarize our approach to the development

and study of suboptimal linear regulator problems, and stress, in

a categorical fashion, the contributions of the thesis.

Our initial task was to formulate, in a precise manner, the

well-known and often-studied optimal linear regulator problem. We

discussed the solution to this optimal control problem in terms of the

solution K(t; T, F) to the matrix Riccati differential equation. We

showed that the optimal control may be constructed as a linear, time-

varying feedback law given by

u*(x, t) = -B'(t) K(t; T, F)x = -L (t)x (7.1)

In addition, we presented several well-known properties of the Riccati

equation solution, first for when the terminal time T is finite and

then for T = co. In the latter case, we gave conditions assuring the

stability of the optimal closed-loop system.

Having presented the reader with an understanding of the form

of the optimal solution, we turned, in Chapter III, to methods for

implementing the control law (7.1). We showed that due to the com-

putational instability of the Riccati equation solutions, one cannot

accurately compute K(t; T, F) in an on-line manner for t > t . This

fact forces us to implement the optimal control by prestoring the
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elements of L (t) on tape and playing the tape back upon command

in real time to generate the control law (7. 1). Therefore, the Riccati

equation solution is computed off-line, before the control system is

placed into operation. This lead to our study of numerical techniques

for the off-line computation of K(t; T, F). We presented three known

algorithms which are based upon approximating the nonlinear Riccati

differential equation by a nonlinear difference equation, and we dis-

cussed some of the advantages and disadvantages of each scheme.

We then developed an iterative scheme for determining K(t; T, F)

which was an extension (to the matrix case) of Kalaba's method of

successive approximations. By introducing the concept of a "cost

matrix, " and solving a sequence of linear differential equations, we

obtained a sequence of iterates which converged monotonically to

K(t;T, F).

In Chapter IV we discussed the engineering difficulties associ-

ated with storing the optimal feedback gain matrix L (t) on tape for

t: <t < T. Motivated by engineering feasibility, we then prescribed
O 

a time structure for the feedback gain matrix L(t) by requiring

L( .)c ANM. We discussed at length the implications of such a con-

straint from a practical point of view as well as from a mathematical

viewpoint. In Section IV. C we motivated the choice of a cost functional

p(L), and developed the new concept of a "suboptimal linear regulator

problem." We showed that under certain assumptions, the solution
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of this suboptimal problem converged to the solution of the optimal

linear regulator problem as M--oo. We finally derived necessary

conditions which the solution of the suboptimal problem must satisfy,

as well as some properties of the suboptimal solution itself.

In Chapter V we examined the important special case for which

the feedback gain matrix is constrained to be piecewise constant over

the control interval [t, T . We discussed the implications inherent

i.n .this constraint insofar as they relate to the storage limitations of

a digital computer which may be used to implement the suboptimal

feedback control law. We showed in Theorem 11, that if the storage

facility of the computer is increased (i.e., if N-oo), the suboptimal

piecewise-constant gain matrix L(t) approaches the optimal gain

matrix L (t). We then proceeded to apply the necessary conditions

for suboptirrality derived in Chapter IV, and for a fixed value of N,

we developed an iterative scheme for determining the suboptimal gain

matrix L(.). We illustrated this computational method by way of

a numerical example which demonstrated the algorithm's effectiveness

as a suboptimal design tool.

In the following chapter we discussed several problems for

further research which arise in the study of suboptimal linear regu-

lator problems. Most of these problems, if solved, would have a

direct practical application to the design of linear regulator systems.

Some topics are currently being investigated, yet much remains to

be done in exploring the properties of the suboptimal regulator problem.



CHAPTER VIII

CONCLUSIONS

The feasibility of taking practical engineering constraints into

consideration when designing optimal linear regulator systems has

been investigated. This study was approached by prespecifying the

structural form of time-varying feedback gains, while leaving

various free parameters to be chosen in an optimal fashion. In this

manner, a "suboptimal linear regulator problem" was defined and

necessary conditions for its solution were obtained by introducing the

concepts of a cost matrix and of a gradient matrix of a trace function.

For the special case when the feedback gains were constrained

to be piecewise constant over the control interval of interest, an

algorithm was developed for determining the required suboptimal

gains. Limited computer experience with this algorithm has demon-

strated its effectiveness as a useful tool in the suboptimal design of

regulator systems.
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APPENDIX A

THE EXISTENCE AND UNIQUENESS OF THE SOLUTION TO

THE RICCATI EQUATION 14

In this appendix we present a clear, detailed proof of the existence

and uniqueness theorem for the matrix Riccati differential equation

which arises in the solution of the optimal linear regulator problem

of Chapter II. Recall that this equation is

d K(t) = -K(t)A(t) - A'(t)K(t) - C'(t)C(t) + K (t)B(t)B'(t)K(t) (A. 1)

with the boundary condition K(T) = F.

We begin our investigation by examining the local properties of the

Riccati equation. For ease in analysis we shall consider, instead of

Eq., (A. 1), the equation

tK(t) = -K'(t)A(t) - A'(t)K(t) - C'(t)C(t) + K'(t)B(t)B'(t)K(t) (A. 2)

with the boundary condition K(T) = F. Note that there is no loss of

generality here, since Eq. (A. 2) possesses a unique solution if and

only if Eq. (A. 1) does and the solutions are identical in such an event

as K(t) will equal K'(t).

Let us denote by (X,X) the set of bounded linear mappings from

X into itself (i.e., the set of nxn matrices) with the norm of an element

PE (X,X) defined as the norm induced by the Euclidean norm onX-.

To be more specific, if P (X,X), then

Zi_ <Px, Px>
II 1 = sup <x, > = iP <Px, Px>

= max (P'P) = maximum eigenvalue of P'P (A. 3)
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Note that if P is symmetric, then

1 P 11 = IX max() I

= sup

llxl = 1
'<, Px> I

If we now return to the problem at hand and set

f (t, K) = -K'A(t) - A'(t)K- C'(t)C(t) + K'B(t)B'(t)K

it is easy to show that f(t, K) is a locally Lipschitzian mapping of

(-,o(, o) X (X,X) into C(X,X) which is integrable in t. In fact

we can show

Proposition: If K(XX) then 1

t (X,X) then

and K2 are arbitrary elements of

Ilf(t,K l ) -f(t,K ) < (2 A(t)|| + IB(t){ 1211 + K )IIlS K1

Proof: Since f(t,K) is symmetric, we have by Eq. (

lf(tK1 )-f(t, K 2)1 = < x, [ -(K1-K 2 )'A(t) - A'(t)(K 1 -K2 )

+ K B(t)B'(t)K1 - K_B(t)B'(t)K2] x > I

< lI (K -SK2 )'A(t)+A'(t)(K 1 -K2 ) 1 +

where we have used the identity

<x, (A'A- B'B)x> = < x, (A+B)'(A- B)x >

with A= B'(t)K 1,

sup
IIxl = 

B = B'(t)K 2 . However

I< I ( lK1+K2)B(t)B (t)(K Kz2) I

so that we finally obtain, upon substituting and using the triangle in-

equality, the required result
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(A. 4)

(A. 5)

- 2 ll

(A.6)

A. 4), that

I <x, (_K1 +K2 )'B(t)B'(t)(K 1-K2)xZ 
ilx 1

I<x, (K 1+K)'B(t)B'(t)(K 1 -K2 )x>

for all x
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f(t,K1) - f(t, K2)11 < (21A(t)1 + 1IB(t)Zl IIK1+K211 ) II1-K2ll 

where we have also used the fact that for induced matrix norms

| _AB < A|| * |Bll.

The above proposition implies that there exists an open interval

about T, say (rl, s ), in which Eq. (A. 2) has a unique solution K(t)

satisfying the condition K(T) = F (see Ref. 15). In particular, then,

K(t) is the unique solution of the Riccati equation in the interval

(rl, T], and by lemma 1 of Chapter II, K(t) is positive semi-definite

for t(r 1,T].

Let us now denote by S the set of points s e(-oo, T] such that

Eq. (A. 2) possesses a unique solution K(t) defined on the closed inter-

val [s, T] with K(T) = F. By the foregoing arguments we see that

S is non-empty; we wish to show that, in fact, S = (-co, T].

Let us assume to the contrary that S (-co, T] and let Cr -co be

the greatest lower bound (g. l.b. ) of S. The solution K(t) is then

defined on the interval (r, T]. If we could show that the mapping t-f (t,K(t))

were bounded on (ar, T], then by 10. 5.5 of Ref. 15, we would be able to

(uniquely) extend the solution K(t) to an interval (1' T] with a1 < .

Hence a could not be the g. l.b. of S and it would follow that S = (-oo, T],

so that the Riccati equation could not have a finite escape timet for t < T.

To show that f(t,K(t)) has finite norm over any interval (s, T], s S,

it is sufficient to show that K(t) is bounded on (s, T], s S. This is the

objective of the following lemma:

tThe existence of a finite escape time for the Riccati equation corresponds
to the existence of a "conjugate point" in the classical calculus of
variations (see Ref. 19).
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Lemma: There exists a positive semi-definite matrix.

H(t), bounded for all t (-oo, T], such that for all t (s, T],

II H(t)lj > ILK(t)I

Proof: In order to exhibit a suitable H(t), we note first that

K(t) is positive semi-definite. Furthermore, by virtue of the fact

that K(t) is associated with the optimal control, we have

0< < ,K(t)x > = J(x, t, T,u()) < J(x,t,T,u())
u=u u 0

If now, xcX and t (s, T], the solution of the system state differential

equation (2. 1), starting from x at time t and generated by the control

u( ) - O, is given by x(T) = }(T, t)x where Ip(T, t) is the transition

matrix corresponding to A(t), i. e.,

d - (T, t) = A(T) (T t); (t, t) = I

It then follows, by substituting y(T) = C(T)X(T) and U(T) into

Eq. (2.3) for J(x,t,T,u()), that

J(x,t,T,u( )) = < x,H(t) >
u- 0

where

T

H(t) = '(T, t)F.(T, t) + I '(T, t)C'(T)C(T).(T, t) dT (A. 7)
t

The nxn matrix H(t) is positive semi-definite and has finite norm

for all t (-oo, T] . Consequently,

0 < x,K(t)x > < <x, H(t)x> (A. 8)
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for all xX and t (s, T]. Therefore, by Eq. (A. 8) we conclude

that ^IK(t)I < tlH(t)11 as claimed. (Note that the proof would not

remain valid if K(t) were not positive semi-definite). Ii

In view of the above lemma and the remarks preceding it, we

have proven the following theorem:

Theorem: For all T and all positive semi-definite matrices

F, the equation

K(t) = -K(t) A(t) - A'(t)K(t) - C '(t)C(t) + K(t)B(t)B '(t)K(t)

has a unique, positive, semi-definite solution defined over the

entire interval (-oo, T] which satisfies K(T) = F.



APPENDIX B

PROOF OF THEOREM 6

The linear, time-invariant system is characterized by the

equations

x(t) = Ax(t)+ Bu(t)
r:

y(t) = Cx(t)

and we wish to prove

Theorem 6: If Z is completely controllable and completely

observable then

(a) the algebraic equation

0 = KA+ A'K + C'C - KB B'K (B. 1)

cannot possess a positive semi-definite solution, but may

possess a positive definite solution.

lim
T -oo

K(t; T, 0) is the unique positive definite

solution of Eq. (B. 1).

(c) The optimal closed-loop system

x(t) = (A-BB'K)x(t) (B.2)

is asymptotically stable, i.e. Re ki(A- BB'K) < 0

1V(x) = i< x, Kx >

is a suitable Lyapunov function.

and

(B. 3)
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(b) K =



-1 3 9 -

Proof: (a) Let K > 0 be a positive semi-definite solution

of Eq. (B. 1) then

x(t) = (A- BB'K1) x(t) (B.4)

is the equation of the closed-loop system for with u(t) = -B'K x(t).

Let us now consider the scalar function

V(x) = < x, K lx

which is non-negative since K1 > 0. The rate of change of V(x)

along trajectories of (B. 4) is given by

V(x) < X, (A',K + K1 A )x>

< x, (C'C+ K BB'K) x >

the last step following since K1 satisfies Eq. (B. 1). V(x) is

always negative along a trajectory of (B.4) unless x(t) 0 . To see

this we note that V(x)- 0 implies -B'K x(t)- 0 = u(t). Hence,

V (x) -0 implies

< x(t), C'Cx(t) > - O

or < C (t, T)X, C (t, T) X > - 0

for all initial states x at time T. However, by complete observa-

bility, C (t, T) x = 0 if and only if x = O, establishing the fact that

V(x)< 0 for all x#0.

But now, since K is only positive semi- definite, there

exists a vector such that V(I) = 0. Let (t; ,), t > T, denote

the trajectory of Eq. (B. 4) satisfying the initial condition (T;t',) = _ .

Then since V ( ) is negative along any solution of Eq. (B. 4), we

conclude that
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V( (t; T, )) < 0

which contradicts the fact K > 0.

(b) K = lim K(t; T, 0) is at least
T- oo

must satisfy Eq. (B. 1). Hence,

complete observability, the rest

K is positive definite. Let us n,

another matrix K > 0 which sz

system

for t> T

positive semi-definite and

under the assumption of

lt of part (a). guarantees that

ow suppose that there exists

tisfies Eq. (B. 1). Then the

x(t) = (A- BB'K )x(t)

is asymptotically stable (since the pair {A, C} is completely

observable) and

Vl(x) = 2 < x,Kx>

is a suitable Lyapunov function with

1 1V(x) = - < x, C'Cx> - <'x, KBB'Kx >

Therefore, Re X.(A- BB'K ) < 0

If we now let 6K= K- K 1 we find that 6K satisfies the

equation

0 = 6K [A- ] +[A-BBK1] 6K (B. 5)

But the matrix equation X A+ BX = 0 has a unique solution,
22namely X= 0, whenever ki(A) + X (B)/ 0 for all pairs i,j.

Now since both (A- BB'K) and (A- BB'K 1 ) have eigenvalues

with negative real parts, the required condition is satisfied and

so K1 = K, showing that Eq. (B. 1) has only one positive

definite solution as asserted.
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(c) This part follows immediately from Theorem 5, since

complete controllability and observability in the constant

case imply uniform c. c. and uniform c. o. respectively,

and in fact the constant or appearing in Definition 4 may

be made arbitrarily small. 



APPENDIX C

COST MATRICES FOR LINEAR REGULATOR PROBLEMS

In this appendix we define the notion of a "cost matrix" for a

linear regulator problem and derive several useful expressions for

the difference between two cost matrices.

We deal with the linear system

x(t) = A(t) x(t) + B(t) u(t)

y(t) = _C(t) x(t)

and the quadratic cost functional

T

J(x, t, T,u( )) = < x(T),Fx(T) > + 2 I [<y(T),(T) +<U(T),u ()>]d
t

(c. 1)

where T > t (we may have T = oo in which case we assume F= 0).

Suppose u(t) is constrained to be a linear feedback control law of

the form u(t) = -L(t) x(t) (C.2)

where the rxn matrix L(T) is defined for all T [t, T] . We then

propose

Definition: The cost matrix V(t) associated with L(t) is

T

V(t) = ' (T, t)F L(T, t) + I (, t)[ C'(T)C(T) + L(T) L(T _t)dT

t

(c.3)
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where L(T, t) is the transition matrix corresponding to

A(T)- B(T)L(T), i. e., L(T, t) satisfies

d L(T, t) [A(T) - B(T)L(T)] L(T, t); L(t, t)= I (C. 4)

Note that V(t) has the major property that

J(x, t, T, u(')) - 2< x,V (t)x> (C.5)
u = -L(t)x(t) 

and, in addition, since this is non-negative for all xE , the matrix

V(t) is positive semi-definite. Furthermore, by differentiating both

sides of Eq. C. 3 with respect to t, noting that

wd fL(T, t) = - [A(t) - B(t)L(t)] 'e L(T, t) (C.6)

we find that V(t) satisfies the linear differential equation

V (t) = - [A(t) - B(t)L(t)] 'V (t) - V(t)[ A(t) - B(t)L(t)

- C'(t)C(t) - L'(t)L(t) (C.7)

with the boundary condition

V(T) = F (C.8)

Suppose now that we have two control laws u 1 = -Ll(t)x(t) and

- 2 = -L 2(t)x(t) and we wish to determine their relative merit with

respect to the cost functional C. 1. For a given xE , the cost difference

between using u and _ is

J(x t, T, u()) - J(x, t, T,u 2( ))= 2<x, [V1(t)V(t)]x >

(C. 9)

where V l(t) and V 2 (t) are the cost matrices associated with

Ll(t) and L2(t) respectively. Therefore, studying the cost
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difference between control laws is tantamount to studying the difference

in their associated cost matrices. We shall now derive several useful

relationships for V l(t) - V (t). We use the notation Ai(t) = A(t) -

B(t)Li(t) for i = 1, 2 and we let i(T, t) denote the transition matrix

corresponding to Ai(t).

The matrix Vl(t) satisfies the differential equation

V l(t) = -AI (t)Vl(t)- Vl(t)Al(t)-C'(t)C(t)-L'l(t)Ll(t) (C. 10)

with V1(T) = F. Writing Al(t) = A2(t) - B(t)[_.Ll(t)-L2(t)] yields

Vl � (= -A I(t)Vl(t)-Vl(t )A(t)-C'(t)C(t)-LI(t)L2 (t)

+ [Ll(t)-L 2(t)] 'B(t)V1(t)t) + Vl(tB(t)B(t)[Ll(t)- L2(t)]

(C. 11)

But on the other hand V2 (t) satisfies

V2(t) = -_A(t)V2(t) - V2(t)A2(t) - C'(t)C(t) - L(t)L 2(t)
(C. 12)

with V2 (T) = F. Consequently, subtracting Eq. C. 12 from C. 11

yields, writing 6V(t) = V l(t) - V2(t),

SVV (=t) - 6V(t)A2(t) + L(t)L2 - L(t) - L 1(t)L(t)

+ Ll(t)- L2(t)] ' B'(t)V (t) + Vl(t)B(t) [Ll(t)-L 2 (t)]

(C. 13)

with 6V (T) = 0. We now add and subtract the term

(L1 -L 2 ) 'L 2 +L2 (L 1- L 2) = L2 +L_L 1 - 2L2L 2 from the right

hand side of Eq. C. 13 to obtain
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8V(t) = -AtVt -(t)(t - t) - [ t -Ll L?(Lt)] ' [Ll(t) - Lz(t)]

+ [ 1(t) -L 2 (t)] [_B'(t)_v(t) -L 2(t)] +[B'(t)Vl(t) -L 2 (t)] [_L (t)-L 2(t)]

(C. 14)

The solution of Eq. C. 14 with the boundary condition 6V (T) = 0 is

given by

6V (t)

T

t2 (
t

t)[(L1 -L ) ( L1 -L 2 ) - (L1 - L 2 )' (B ' V 1 L2)1 -1 1 -L2

-(B'V 1 - L2 )'(L 1 -L 2 )] 2 (T, t)dT

where, for ease of notation in the integrand, L1 - L1(T), etc.

(C. 15)

By interchanging subscripts in Eq. C. 15 we obtain an expression

for V2(t) - Vl(t). Multiplying this newly found expression by -1 yields

another formula for

6V (t)

t

SV (t) = V _l(t) - V2(t), namely

T

(-'V -- 1)' ( L 1- -L 2 )] 1 (T t) dT
and substituting

(B'V2 - L 1) = (B'V 2 - 2 )-(L 1 -L2)

into the second and third terms of the integrand results in

T

SV (t) = f ' (T, t) [

t
(-1 IL2 ) (L1 -L 2 ) - (L 1 Lz)'(B' 2 -L2 )

(C. 16)

(C. 17)

4" (T, t)[ -(L -L -L-L)(L -L )'2)(BV -_LL11 1 2 

-(BVV 2 -L2) I (L I--bdl - ) (T, t) dT
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There are various other expressions which one can obtain for

6V(t), either from Eqs. C. 15 - C. 17 or from the differential

equations satisfied by Vl(t) and V2(t). We list two more of these

below for reference

T

sV(t) I (f 't)[(L 1 -B'V 1 )'(L- B'V )-(L -B'V 1 )'(L2 B'V ) (T, t)dT- - ' - - -1 -~ - -i -- 1
t

(C. 18)

T

,V( ) f _(T, )[(L1_L2)'(L1 -V)(LL2-V2)'(L -L2)]2T1(T, t)dT
t

(C. 19)

Finally, we note that equations C. 15 - C. 19 are valid for all T,

including the case T = oo. However, in the latter case these expressions

become meaningless if L1 and L2 are such that both V(t) and

V2(t) are unbounded, an event which is impossible for finite T. There-

fore, care must be exercised when using the above formulae for T = o.

t Since in this case we have the indeterminate form (oo -oo).



APPENDIX D

PROOF OF THEOREM 8 AND COROLLARY

In this appendix we prove the

of successive approximations to

For convenience this theorem is

monotone convergence of the sequence

K(t; T, F) as proposed in Theorem 8.

repeated as

Theorem: Let

associated with

determined by

Vn+l(t), n = 0, 1,...,

Ln+ (t) where L n+1

be the cost matrix

is recursively

Ln+l(t) = B'(t)Vn(t)

and where L (t) is arbitrary, with associated cost

matrix V (t). Then

(a) K(t;T,F) < V n+(t)< V (t) for n= 0, ,...

(b) lim V (t) = V (t) exists
n --oo

(c) V(t) = K(t; T,F)

Proof: (a) To show that Vn+l(t) < Vn(t) we apply Eq.

our problem. Rewriting this equation with _L.(t) = Ln(t) ar

Ln+ (t) yields

(D. 1)

(C. 15) to

id _L(t) =

T

V (t)-V i(t) : fn+I(T,t)[(LrL -L )'(L L )-(L -L )'(B'V -L
nt -n Vn+lt = - n+' n n+ n -- n+ - -n -n+l1

t

(D.2)-(B 'V n-Ln+ )(L -n+01Tn )I! (-, t)dT- -n Ln+l n n+l

where n+l(t, to) is the transition matrix associated with

An+ (t) =A(t)-B(t)L n+(t) = A(t)-B(t)B'(t)Vn(t) for n = 0, 1, ...
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From Eq. (D.2) we obtain by substitution, since Ln+l(t) = B'(t)Vn(t),

that

T

V (t)-V (t) = I n+l(T, t)[ Ln(T)-Ln+ (T))] [n(T) -L+n+( '] tn+,t)dT

t

(D. 3)

Consequently, we see that

Vn(t) > Vn+(t)

and V (t) Vn+l (t) if and only if L (t) _ n+(t) Finally, the fact that- n+ - n -n+ 1 
K(t; T, F) < Vn+l(t) follows immediately from Lemma 6 with L(t) taken

to be B'(t)Vn(t) = Ln+ (t)

(b) To show that the sequence V (t) of positive-semi definite

matrices has a limit as n-oo, we choose an arbitrary x E . Then,

by part (a), <x, V (t)x > is non-increasing as n-oo and is uniformly

bounded below by < x, K(t; T, F)x >. Therefore

lim <x,V (t)x>'- n
n -oo

exists for all xE since a bounded monotone sequence always has a

limit. This implies that lim V (t) exists. To see this, first consider
n -oo

x = e (e. = i-th element of the standard set of basis vectors). Then

< x,V (t) x> = (V n)ii. Letting n-oo, since lim<x,V (t)x> exists,

this implies that

lim (V n)ii
n --,oo



-149-

exists for all i. Next, take x = e + e to show that the limit as

n -oo of the off diagonal terms of V (t) exist. Hence, we conclude

that lim V (t) exists as n -oo. Call this limit V (t), viz,

lim V (t) = V= (t) (D. 4)-nn -coon -oo

(c) Having proved the existence of V (t) for t < T, we wish to

show that V (t) satisfies the Riccati equation and that V (t) = K(t; T, F).

Since V +l(t) is the cost matrix associated with Ln+l(t), Vn+i(t)

satisfies the equation

Vn+(t) = Vn+l(t) [A(t)-B(t)Ln l(t)] -[A(t)-B(t)L+l(t)] IV+ (t)n+ -n.....n+I
-C'(t)C(t) - L (t) (__n+ 1 ( t)n+1

orn+ -n+l(t)An+l(t)-An+' (t)Vn+ (t)-C'(t)C(t)-V (t)B(t)B'(t)V (t)

(D. 5)

Integrating both sides of Eq. (D. 5) from T = t to T = T we obtain,

since V n+ (T) = F, that

T

V n+l(t)-F = f [vn+(T)A n+(T)+A' (T) (T)+C'(T)-C(T)+ (-)B(T)B'(T) (T)]dT
t

Taking the limit of both sides of this expression we have (since V n(T)

is uniformly bounded we can take the limit under the integral sign by the

bounded convergence theorem)
T

V o(t)-F = [v (T)A(T)+A'(T)-V (T)+C'(T)C(T)-VV (T)B(T)B'(T)V (T)]dT
t
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Hence, V (t), as an integral is continuous. Differentiating yields:

V (t) = -Voo(t)A(t)-A'(t)Voo(t) - C'(t) MC(t) + V(t)B(t)B(t)Vo(t)

with V (T) = F. Hence V (t) satisfies the Riccati equation and,

by uniqueness, we conclude

Voo(t) = K(t; T, F)

which completes the proof of the theorem. |

In the special case when is stationary and T = oo, the Riccati

equation solution is K(t) = K = constant and the above theorem may

be slightly extended to give a monotonic convergence scheme for

determining K. We prove this fact as a corollary; the method of

proof is very similar to that used by Wonham30 to obtain a comparable

result for the discrete-time regulator problem.

Corollary 1: Let the time-invariant system T be completely

controllable and completely observable. Let V , n = 0, 1, ... ,--n
be the (unique) positive definite solution of the linear algebraic

equation

0 = A' V +V--n-n

where, recursively,

L = B'V-n -- n-
A = A-BL-n - --n

and where L is chosen suc-o
has eigenvalues with negative

(a) K < V <V < ... 
- -n+l- -n-

(b) lim V = --n-n -oo

C'C+ L' L--n-n (D.6)

for n = 1,2, ...

h that the matrix A = A- BL-o - --o
real parts. Then,

for n = O, 1, ...
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Proof: (a) The cost matrix V (t),-o
given by

V (t)-o
oo A'(t-T)- 0

e

t

associated with

A (t-T)
(C'C+ L'L )e--o-o

Since Re k i (A )< 0,1- lIV(t)l < Co) and so V (t)--o satisfies the equation

= -A' V (t)- V (t) A-o0 -0 -o -o - C'C - L'L-- 0-0
But V (t) is a constant matrix independent of t. To show this we-o
simply make a change of variable in Eq. (D. 8) for Vo(t). Letting

= t - t + T, where
1

v (t)

Hence, V (t) = V--O -O

00

tl

tl is arbitrary, yields

e
AO (t -)-o 1 (C'C+L' L- o--o d = Vo(t 1)

must be the uniquet solution of the algebraic equation

= A' V + V A + C'C+ L'L--0-0 -0-0 - - -0--0

We now let L = B'V-1 -- o and _Vl(t) be its associated cost matrix.

by using Eq. (C. 15) with T = oo, we obtain

V -V I(t)
-Ai (T-t)

el
t

(L -L )'(L -L )e--o 1 -- 1
A 1 (T-t)

dT (D. 9)

so that V1(t) < V
-- 0O

Cons equently, Vl(t) is bounded for all t and by

the same reasoning used above for V we find that--o Vl(t) = V1 ; constant
and satisfies

Q = A'V + VA + C'C+ L L-1-1 -1-1 - -- 1-1 (D. 10)

4 Uniqueness is guaranteed since ki(A )+ki(Ao) / 0 for all pairs i,j.1-0 0

L-o is

V (t)-o

(D.7)

(D.8)

Then,

A' (t, -0
)e 

I
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Furthermore, since is completely observable,

only if Re ki(A )< 0i -

V1 is finite if and

for all i; hence V must be the unique solution-l
of Eq. (D. 10).

Recursively,

the cost matrix V-n

we have that if L - B'V-n - -n- for n = 1,2, ...

associated with L is the unique (positive--n

then

definite )t

solution of

= A'V +V A + C'C+ L'Ln-n -n--n - - -n-n

Finally, K < V-- ----n

V
for n-l

for all

< V for n= O, ,...+1n since- -n is associated with the optimal
n since K is associated with the optimal

control.

(b) lim
n -oo

V =V-n. -oo exists by the same method of proof used in

part b of the above theorem. To show that V = K we substitute

A = A- BB'V into Eq. (D. 11) to obtain-n - -- -n-1
O = A'V + V A+C'C-V BB'V -V BB'V +V BB'V- -n -n- --n- 1---- -n -n-- -n-1 -n--- -n- 1

The right hand side of this equation is uniformly bounded in n, so

that taking the limit as n -oo yields

= A'V +V A + C'C-V BB'V-- -00 -00-- -- -C00---- -00

Vo is positive definite and therefore by Theorem 6, V = K

concludes the proof. 

which

t Positive definiteness is assured if Z = completely observable.

and

(D. 11)



APPENDIX E

ON THE RELATIONSHIP BETWEEN NEWTON'S METHOD AND THE
METHOD OF SUCCESSIVE APPROXIMATIONS TO DETERMINE K(t; T, F)

In this section we shall present a non-rigorous discussion of the

application of Newton's method to the solution of the Riccati equation.

We shall show that for this problem, the iterative scheme of Newton's

method is precisely equivalent to the method of successive approximations

as discussed in Section III. D. For a detailed treatment of the application

of Newton's method in function spaces see Reference 18. For further

details of the relationships that exist between this method and Kalaba's

method of successive approximations see Reference 17. For a more

mathematically abstract discussion see Ref. 32.

Newton's method may be motivated as follows. Let f(. ) be a

continuously differentiable mapping of a Banach space D into another

Banach space R, i.e.,

f( ): D- R (E. 1)

Let f( ) have a zero in D, i.e., there exists an element xE D such

that f(x) = 0 R (E.2)

We now take any element x D. Under the assumption that the mapping

f(') is continuously differentiable in D, the element

f(x) = f(x ) - f(x) (E. 3)

which belongs to R, can be replaced by the approximation

fx (X -x) f(Xo) (E. 4)
0

where f (y) is the Frechet differential of f(- ), evaluated at x,

operating on y. It is a linear mapping from D into R and is defined
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by (a = scalar),

f' (y) =lim f(x+ay) - f(x) (E5)
X a

Equation (E. 4) provides a basis for assuming that the solution of the

equation f' (x -x) = f(x) (E. 6)

will be close to x. This last equation is linear in x so that its solution

is Xl = xo [ f, ] (f(xo)) (E.7)
O

assuming the existence of the inverse mapping [f' ] 1( ).
O

Continuing the above process, we obtain after starting from the

initial approximation x , the sequence {x }:

n+ 1 = Xn [fx ]-1 (f(xn)) n= 0,1,.. (E.8)
n

Each x is an approximate solution of the equation f(x) = 0 and in

general becomes more accurate with increasing n. The process of

forming the sequence {x } is known as "Newton's method".

Equation (E. 8) is an explicit equation for the (n+l)-st iterate

Xn+1 in terms of x . We can obtain an implicit relation for Xn+l by

operating on both sides of (E. 8) with f' (.). This results inxn
f' (n -xn+) = f(xn) (E. 9)

n

which is often easier to use than Eq. (E. 8) because of the difficulty in

obtaining the inverse mapping to f' ().xn
In order to apply Newton's method, as outlined above, to solve the

Riccati equation, we write the Riccati equation in the form

t f f(.) is a scalar valued nc)tion of a scalar argument Eq. (E. 8) can
qXn)

be written as xn+1 = x f which is Newton's method in its ordinary
fl n f'(x n )form.
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f(V) = V + A'(t)V+ VA(t) - VB(t)B'(t)V+ C'(t)C(t) (E. 10)

where we take the Banach space D as the space of nxn matrix valued

functions which are absolutely continuous on the interval [to, T]. We

seek a solution of f(V) = 0 satisfying V(T) = F. We know that

V = K(t; T, F) is in fact the solution and we shall apply Eq. (E.9) to

form a sequence of iterates V -K.
We first computen

We first compute

f'T-V-n
(V -V 1 )-n -n+l

Substituting (E. 10) into (E.

fV (Vn-n+ )-n

lim _ V + a(Vn-V n )] - f( n )li (E. 11 )a -O0a
11) yields

-n -n+l + (V - Vn+ )A(t) + A'(t)(Vn -Vn+ )

-(Vn-Vn+i)B(t)B'(t)V - V B(t)B'(t)(V -Vn+)

(E. 12)

Newton's method then sets

f- (Vn -Vn+ ) = f (V
-n

(E. 13)

from which we obtain

- Xn+1 + (V -V n+)A(t) + A'(t)(V -V )-(V -V (t)(t)-

- V B(t)B'(t) (V n-Vn+ 1)

- A'(t)V + V A(t) - V B(t)B'(t)V + C'(t)C(t) (E. 14)

Hence, the (n+l)-st iterate Vn+1 satisfies the linear differential equation

Vn+l(t) = -Vn+l(t)[A(t)-B(t)B'(t)Vn (t)] - [A(t)-B(t)B '(t)Vn(t)] 'Yn+l(t)

-Vn(t)B(t)Bt)(t)V t) (t) - C'(t)C(t) (E. 15)
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with the boundary condition Vn+i(T) which we are free to choose.

Note that the first approximation V (t) is arbitrarily chosen.

If we use the notation Ln+ (t) = B'(t)V (t) we see that (E. 15)

expresses the exact same iterative scheme as does Theorem 8, since

Vn+l(t) satisfying Eq. (E. 15) with Vn+ (T) = F is the cost matrix

associated with Ln+ (t).

Consequently, we have shown that the application of Newton's method

to recursively determine K(t; T, F) gives exactly the same rule for

forming the sequence of iterates {Vn (t)}, n = 1, 2,... as does

Theorem 8.



APPENDIX F

GRADIENT MATRICES OF TRACE FUNCTIONS

In this section we define what we mean by the gradient matrix of a

trace function and we describe a procedure by which the gradient matrix

may be obtained. Several examples are included which elucidate this

method. The results presented in this appendix are an extension of

those found in Reference 28, Section 8, to arbitrary trace functions.

Definition 1: Let X be an rxn matrix with elements

x.., i = 1, ... , r; j = 1, ... , n. Let f(.) be a scalar,

real-valued function of the x.., i. e.,
1J

f(X) = f(X11 ... Xin' x 2 1' ... X2n''') (F.

We then define the gradient matrix of f(X) with respect to
af(x)

X as the rxn matrix X whose ij-th element is given by

af(X) for i= l,...,r; j= l,.., (F
axij

13

.1)

'. 2)

As an example, suppose
2 3

Xll x + X2 - X XZZ +11 21. 2 1 11 22 12

that X is a 2 x2

5X 1' then

matrix and that

af(x)

ax

2Xll x21 - 22 1Z2

Z Z2X11 + 3 21 + 5

We are interested in obtaining the gradient matrix

matrix which depends on the matrix X. We therefore
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- X11 22

-X 1 X12

of the trace of a

define

f(X) =
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Definition 2: f( ) is a trace function of the matrix X if

f(X) is of the form

f(X) = tr[F(X)] (F.3)

where F(' ) is a continuously differentiable mapping from the

space of rxn matrices into the space of nxn matrices.

F(X) is a square matrix, so that its trace is well-defined. Typical

examples of such functions are

(1) F(X) = X'X
A+BX(2) F(X) = e- --

(3) F(X) = BX A

where in the above, B and A are nxr and nxn matrices respectively.

af(X)
We now wish to indicate a procedure for determining aX when

f(.) is a trace function. We shall not attempt to be mathematically

rigorous; for a more precise discussion of matrix calculus (see Refs.

28 and 29).
af(X) af(x)

We first note that the ij-th element of - is a which is
ax ax..

defined by
af(X) f(X + AXi )- f(X)
ax. e 5 ..

ij E -- o 1J

where AX.. is an rxn matrix all of whose elements are zero except

for its ij-th element which is given by x...

We now define the matrix differential AX to be the matrix whose

ij-th element is x.. (where the 6x. .'s are independent variations in
1j 1j
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x..'s for i = 1, . .. ,r,j 1, . .. ,n).

concerning trace functions

We then have the following result

Lemma: Let f(X) be a trace function. Then if we can write

f(X+ ECAX) - f(X) = 

as -- 0, where M(X) is an nxr matrix, we have

af(X)
ax = M(X) (F.6)

Proof: It is only necessary to show that Eq. (F. 5) implies that

is the ij-th element of M'(X). To see this we note that since

the elements of AX represent independent variations we can let

AX = AXij. Then M(X) X= M(X)AXij is an nxn matrix all of whoseelements are zero, except those in the j-th column. The j-th column
elements are zero, except those in the j-th column. The j-th column

of M(X)AXij is the i-th column of

The trace of M(X)AX.. is then
-1this matrix which is given by

this matrix which is given by

M(X) multiplied by x ...

the j-th element of the j-th row of

tr M(X)AXij = m ji(X)xij; = 1,...,n; i = 1,...,r

Therefore, by Eq. (F.4)

af(X)

axij
= mji(X)

31 

But mji(X)

definition of

is simply the ij-th element of
af(x)

the matrix a we have
aX

af(X)
ax

M'(X) and therefore by

M'(X)

as claimed. 

(F.5)

af(X)
ax..

13

t [ M(X Ax I
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With the above lemma as an aid we outline a procedure for

determining the gradient matrix of a trace function.

1. We are given the trace function f(X) = tr F(X). Form

f(X + e AX) - f(X) = tr [F(X) + AX-) - F(X)]

2. Expand F(X + e AX) for c--o as

F(X + c AX)

is a (continuous) linear mapping from the space of rxn

matrices into the space of nxn matrices.

3. Using the properties

tr(YZ) = tr(ZY)

tr (Y) = tr (Y')

write

tr [ F(X + cAX) - F(X)] = tr [ (AX)]

in the form

tr [ F(X + AX) - F(X)] = tr [M(X) X]

where M(X) is an nxr matrix (whose elements are continuous

in X).

4. By lemma,

af(x)
aX M'(X)

The only questionable step in the above procedure is Step 3.

or may not always be possible to manipulate tr(AX)

It may

tr M(X)AX. However, in all cases which have been investigated thus

where (aX)

(F.7)

(F. 8)

(F.9)

(F. 10)

into the form

= F(X) EX, (AX
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far, this has been possible. We now illustrate the use of the above

method for computing gradient matrices with a few examples.

Examples: In the following we assume that X is an rxn matrix,

C an arbitrary r xr matrix, B an arbitrary nxr matrix and A an

arbitrary nxn matrix. A, B and C are independent of X.

1. F(X) = AX'CX, so that

F(X + aX) = AX'CX + [A(AX)'CX + AX'C(X)]

+ Ec A(AX)'C(AX)

Therefore as -o we have

F(X+ eAX) F(X) + (AX)

= F(X) + E[A(AX)'CX+ AX'C(AX)]

But

tr (X) = tr [A(AX)'_CX + AX'C(AX)]

= tr [(AX)'CXA+ AX'C(AX)]

= tr [(A'X'C + AX 'C) (X)]

Therefore, by the lemma,

tr(AX'CX) = CXA+ C'XA'ax

2. Assume r = n so that X is a square matrix and let F(X) = AX -lB.

Hence

F(X+ eAX) = A(X+ eAX)B

A[I+ EX (AX)] lX-_B
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But for
[I + x (ax)][ + X (X)] -1 -1= I - cX (aX)

so that

-AX- ((X) X B

and

tr. (AX) = -tr[(X BAX-1)(AX)]

Cons equently,

tr(AX B) = -(X- BAX- )'

so that

F(X + e ax)

But from

A+BX+ e B AX= e- e _.

p 171,Ref. 22 we have that to first order in

this is

F(X+ eAX) = e- --BX+

1

0r/
O

Hence,

1

t(AX) =f
0

e(A+BX)(1-T)B(AX) e(A +BX)T dT

and so, since the trace operation commutes with integration,

we obtain

a
ax

(A+ BX)3. F(X)

C

e(A+ BX)(1 - ) B(Xe(A+BX )T 
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tr (AX)
1

tr f e(A+BX)T (A+BX)( 1-)dT B(X)

0

= tr e(A +BX)B (X)

Therefore,

8 t (A+BX)
ax = B'e(A+ BX)'

= le -

BX4. F(X) = Ae--. We shall not go through the derivation of the

gradient matrix but merely state the result which is

tr Ae B X = B 'e(BX)' [

I

0

e-( BX)T Ae (BX )T dT]'

It is of course possible to give many more examples of computing

gradient matrices. However, all we wish to do is to give a flavor for

the method outlined above. For further results see Ref. 28.

a
ax



APPENDIX G

PROOF OF THEOREM 9

In this appendix we wish to prove Theorem 9 of Chapter IV which

is repeated below for convenience. To spare the reader constant

referral to the notation of Chapter IV we again define for fixed M

and N

= {L( ): L(t) = .j(t-i A)Lij for t(ti,ti+]i = 0, 1,.. .,N-1}

(G. 1)

where the functions j(t) are complete in t2 [0,A] We also define,

as in Chapter IV,

0 ( ) = arg. min
L(') e A-NM

FM = o(L)
L(- )= LM(.)

where (L) = tr VL(to). We then prove

Theorem 9:

(i) lim jM = tr K(t ) =
M - oo

(ii) lim 11 L(- ) - L*( ) 2
M -oo

*(L
T

to

where L (t) = B'(t) K(t; T, F)

Using the fact that the {j} are complete,

of this theorem which we restate as a lemma.

we first prove condition (i)
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ANM

and

(G.2)

(G. 3)

M=



Lemma 1: = tr K(t )

Proof: The functional Ai(L) = tr VL(to) is continuous in L( ).
Hence, given any > 0 there exists a 6(c) such that

T

IL ( ) - L( )II

implies

We now let

= [ f IL (t) L 3(t)l Zdt] 12
t
0

I[(La) - i(LP )I 6
t

< 6

(G.4)

(G.5)

LM(')E ANM such that

IIM ( ) -_L( )I2 < 6

Such an LM exists for sufficiently large M since the elements of

L (' ) are of class t [t,
on each subinterval

T] and the sequence {j} is complete

We simply take M large enough so

max [
i

We now let
-M( 

as indicated by Eq.

t. i+A
1

t.
1

be that element of

(G. 2).

<- N
-N

ANM which minimizes

Then, with the aid of Eqs. (G. 4) and (G. 5)

we have

< 0<_ 1M < (L M ) < 4I(L ) + 

This fact immediately follows from either Eq. (C. 15) or (C. 17).
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lim
M -oo

0
ALM = (L)

that

I LM(t) - L (t) 2 dt] 1/2

tr K(to)

[til ti + A] .
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< tr K(to)+ -0

But since e is arbitrary it follows that

lim
M -oo

0
4M = tr K(t )-o

as claimed. l

Now that we have proved the convergence of the sequence of
o

b[M representing the minima of the functional tr VL(to)

the sets of functions ANM , it is natural to try to prove the convergence

of the sequence of functions LM ( ) for which these minima are

We first must prove

Lemma 2: Let M(t, t )

to LM(t ), i.e., M(t, t )--M -M 0

d
at M(t, t) =

be the transition matrix corresponding

satisfies

[ A(t)- B(t)LM(t)] M(t, to); M (to , to) -= IM-\r-Mtt)-
then for all t [to, T],

lim
M -co M ( t, to ) = [ (t,t)

-- 

where (t, t ) is the transition matrix corresponding to_ 0

(G. 7)

L (t).

Proof: We first show that [ LM( ) - L (' )] M(' to) 11 -O

as M -oo. We use Eq.

F L)
%4 - L(L )

(3.28) to write

T

= tr _ M(t, to) [_L (t)-L*(t)] '[_L( t)-L*(t)] !M(t, t )dt
t
0

(Cont. on next page)

or tr K(t )0

numbers

(G.6)

achieved.

on

< 0
I PM
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T

t
O

II [L(t) - L(t)] M(t, to)I 2 dt

-
IJM - i(L ) >(11[_LM()-L*( )] M(' to)Ill --0 as M -co

where we have the right hand side of this inequality tends to zero

with M -oo since
1M -- (j L*) by Lemma 1.

We now write

~M(t, t ) = [A(t)-B(t)L ((t )] 

Hence,

t

PM(t, to) - * (t, t) =_
t0

* (t, T)B(T)[ LM(T)-L (T)] M(T, t)dT1 tTB _ M( , toM dT

(G. 9)

Taking norms yields

(I) M(t, to )

t

-e (t t)ll f
t
0

II ~*(t T)B(T)11 II L ( -

where we have used the fact that for induced matrix norms IIAB I IIAjj l| B|-
Applying the Cauchy-Schwarz inequality to the right hand side yields

t
1 IM( t , to)- (t, t )11 < [ f II *

t0

(t, T)B(T)II dT] 1/2.[

t

f | (LoM-L )P (t, to)11 .dT /
M --IV[ 0 1~z/t

0

t
O

Hence,

(G. 8)

k f~b~4t, t [_o (t)-L* (t)] I- .jL (t)-L(t)] _(b (t, t0) dt

(t t ) -(t) _L ~t-0 (t) -L (] m ( t t 

.1- ()] if) ( t ) 1 dT
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The first integral on the right hand side is bounded, say,

Hence

*
|I ,M(t, to) - (t, t)ll< c

T

[ / I (LM - L ) M(T, to)11Z dT]
t

C 1I[L ( )-L ()] M(, t )11 2

But by our earlier argument, the norm appearing on the right hand side

tends to zero as M-c). Hence

lim
M - o IIIM(t, t (t, to) - (t, tll = 

as claimed. 

Having proven Lemma 2, which is the major step in the proof of

LM( )-L ( ), we can now go on to complete this proof.-

LM( ) - L(. )1 2 -O as M -o

Proof: Since M (t, t )-b

b ( t, to) (t, t ), we have that fo

C2 such that

(t, t) implies that xM(t, to) M(t, to)-

r all tE [t T] there exists a constant

mi n {M(t, to)M(t, t o )} > C2 > 0 (G. 11)

uniformly in M. We now again make use of Eq. (3.28) to write

T

) = f tr {[LM(t)-L*(t)] ' [LM(t)-L (t) ]_MI
t
0

by C1.

1/2

(G. 10)

Lemma 3:

0
[,M

*

(G. 12)

( t, t ) m~(t, t) dt
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We now apply the inequality

min(A)max (B) < X min(A) tr B < tr AB< max (A) tr B
which is valid if A and B are positive semi-definite, to Eq. (G. 12).

This results in

T

M min 0 - (t _>- (L) - I t-inL [M~ lt t,)] ||LM(t)-l Zdtt
o

But using Eq. (G. 11) yields
0 *) > Lo L' * 2M - (L*) > c 2 II (112

Hence the desired result is established since [M - (L ) -O. 

This completes the proof of Theorem 9. We have shown that

the intuitively expected results are in fact true. We showed that

LM(- ) converged to L () in a mean square sense, often written

as LM(. )L (). It may also be true that LM( t)-L*(t) for all

tE[to, T], (i. e., pointwise convergence), but this has not as yet been

proven.
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