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The Neural Associations of Nucleus Accumbens Septi in the Albino Rat.
Richard Dale Wilson
Submitted to the Department of Psychology on May 12, 1972

in partial fulfillment of the requirement for the
degree of Master of Science.

The term nucleus accumbens septi refers to that part of the mammalian
striatum which extends under the ventral tip of the lateral ventricle
and bulges into the septal region. The efferent connections and some
of the afferent connections of this striatal region in the rat were
analyzed, using various modifications of the Nauta technique.

After ablation of the hippocampus, but not after hemidecortication,
terminal degeneration was found in nucleus accumbens. After lesions
in nucleus accumbens degenerating fibers can be traced to their term-
ination in the substantia innominata, which on the basis of its cel-
lular structure and synaptology, has been interpreted as a ventral
part of the pallidum. There are no projections from accumbens to
globus pallidus, as usually defined, to the entopeduncular nucleus,
or to the substantia nigra. These results indicate that despite its
structural similarity to the caudoputamen, nucleus accumbens has dif-
ferent neural connections -- connections which establish it as a com-
ponent of the limbic system rather than the extrapyramidal motor
system in the usual sense.

On the basis of these and other studies a new formulation of the relation-
ships among accumbens, the caudoputamen, and the olfactory tubercle is
proposed. In this formulation the corpus striatum is divided into a
dorsal striatum and a ventral striatum. The dorsal striatum, or caudo-
putamen, is principally associated on the afferent side with neocortex
and on the efferent side with the globus pallidus and substantia nigra.
By contrast, the corresponding associations of the ventral striatum
(nucleus accumbens, olfactory tubercle, ventrolateral striatal area),
are with allocortex (hippocampus and piriform cortex) and the substantia
innominata.

It is suggested that the psychoactive properties of drugs which alter
dopamine metabolism may be the manifestation of a functional disturb-
ance in the dopaminergic pathway from the ventral tegmental region to
the ventral striatum.

Thesis Supervisor: Walle J. H. Nauta
Title: Professor of Neuroanatomy
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INTRODUCTION

Terminology.

During the first third of the twentieth century, the zenith of the

descriptive era of Comparative Neurology in America, there was a great

deal of conflict among the major laboratories concerning the subdivision

and homologization of cell groups both lateral and medial to the lateral

ventricle. However, nucleus accumbens, situated at the base of the lateral

ventricle, was a point of agreement among the major investigators of the

period. The term, nucleus accumbens, was first used by Ziehen (1904-

1908) to describe a cell group at the base of the most rostral part of

the lateral ventricle of the marsupial and monotreme forebrain. Koikegami

(1967) reports that a similar cell group had been described earlier, but

not named, by Meynert, by Zukerkandl, by Obersteiner, and by Ganser.

Arians Kappers and Theunissen (1908), in an often-quoted and vastly in-

fluential monograph on the phylogeny of the rhinencephalon and corpus,

striatum, applied the term nucleus accumbens septi ("nucleus leaning

against the septum") to a cell group which curls around the base of the

lateral ventricle of the vertebrate forebrain. Crosby (1917) and Hines

(1923) recognized a nucleus accumbens in amphibia and offered a description

of its cellular morphology which might well serve as a description of

the rat's accumbens.

J. B. Johnston (1913) initially rejected the term nucleus accumbens

septi (and many other terms which included the word septi) because he

thought it implied false homologies with the human septum pellucidum.
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In his 1913 paper, Johnston suggested a new system of terminology in

which accumbens was included in the nucleus lateralis parolfactorius.

(In mammals he seems to have meant the terms accumbens and nucleus

lateralis parolfactorius to be equivalent.) By 1923, his concept of the

striatal region had become greatly modified by his study of the embryo-

logical development of vertebrate brains (Johnston, 1923). e proposed

that the striatum of mammals is of dual embryological origin and that a

fundamental distinction can therefore be made between the caudate nucleus

and the other striatal structures -- the bed nucleus of the stria

terminalis, nucleus accumbens, and his ill-defined anterior olfactory

nucleus. Having abandoned his earlier terminology, he again referred

to accumbens as accumbens.

The recognition of accumbens in reptilian and amphibian forebrains,

which were thought to be dominated by the olfactory sense, was a principal

factor in the formulation of a then-unnamed concept according to which

Johnston linked accumbens to the olfactory system. Even the brains of

mammals were thoughtto receive "olfactory impulses" in all rostral basal

regions, including nucleus accumbens. Moreover, accumbens was seen to

be predominantly related to the medial forebrain bundle, which was con-

sidered to consist largely of fibers of the olfactory system.

Herrick (1926) was the first to formalize this concept with the

term olfacto-striatum. In a discussion of the corpus striatum of

mammals he defined his implications for the term:

Medially there is the olfacto-striatum (part of the caudate
nucleus)[in mammals, accumbens and the caudate have identical
cellular structure] which borders the lateral ventricle for
almost its entire length from far into the temporal lobe.
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It receives fibers directly or indirectly from the olfactory
bulb, and also fibers from the somatic sensory centers of the
thalamus. The efferent fibers go in part to globus pallidus
and thence to cerebral peduncle, and in part directly into the
medial forebrain bundle. This region probably serves for
the correlation of olfactory with tactual and other extero-
ceptive stimuli and maybe concerned chiefly with locomotor
and facial reflexes involved in feeding.

Various authors have included different cell groups in different brains

in their definitions of olfacto-striatum, but accumbens is invariably

included. Gurdjian (1928) equates the olfacto-striatum with accumbens

in his description of the striatum in the albino rat. After Gurdjian

there appears to have been very little further consideration of this

concept, and the fundamental duality of striatal origin and connections

has been largely ignored.

The term, accumbens, has come to refer to the ventromedial portion

of the corpus striatum which curves under the lateral ventricle and

bulges into the septum (Figure 1). The term, fundus striati, (base of

the striatum) refers to the region of continuity of the head of the

caudate and the putamen. Accumbens is not generally included as part

of the fundus striati.

The comparative embryological work of Kllen (1956) and the earlier

descriptions of Herrick indicate that the cells of the non-mammalian

accumbens are probably homologous to those of the mammalian accumbens,

but the histochemical and hodological studies necessary to firmly

establish the homology have not been done. Therefore, the term nucleus

accumbens septi will in this paper refer only to the mammalian brain,

specifically to the rat's, unless otherwise stated.
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Boundaries.

The boundaries of accumbens have been discussed in previous lit-

erature only in vague terms. On the basis of cell type and arrangement,

the medial and lateral boundaries are easy to establish, but the dorsal

and ventral boundaries are nearly impossible to delimit precisely.

On its medial side, accumbens is sharply bounded in its rostral

part by fibers of the parolfactory radiation. Farther caudally the

lateral and medial septal nuclei are easily distinguishable from accumbens:

the cells of the medial septal nucleus are larger, of different shape,

and much less densely packed; those of the lateral septal nucleus are

also slightly larger and less densely packed. In every mammalian species

the middle portion of this medial border is accentuated by the insula

magna of Calleja -- the largest of the insular conglomerates of granule

cells characteristic of the olfactory tubercle. (Figure 1)

Laterally accumbens is bounded by the large cells of the deep layers

of olfactory cortex.

The ventral boundary is much more difficult to draw because there

is no clear distinction between the cells of accumbens and the medium-

sized cells that compose the polymorph layer of the olfactory tubercle.

In fact, the relationship between accumbens and the tubercle appears

to be very similar to that existing between caudate nucleus and putamen.

Just as the internal capsule more or less coincidentally, and incompletely,

separates the latter two structures, so the fibers of the most rostral

portion of the medial forebrain bundle (the so-called olfactory radi-

ation) divide a single population of cells into a dorsal region termed
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Transverse section through the striatum of the rat, stained

for cell bodies by the Nissl method. Nucleus accumbens is

that part of the striatum which is ventral and medial to

the lateral ventricle. Cellular bridges from accumbens to

the olfactory tubercle are visible. (This photograph was

kindly supplied by Dr. Harvey Karten.)

Figure 1.
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nucleus accumbens, and a more ventral territory commonly considered

the deepest stratum of the olfactory tubercle. The division, however,

is not complete -- there remain numerous cellular bridges from accumbens

to the deep layers of the tubercle. Previous investigators (Fox, 1940;

Gurdjian, 1928) noted these bridges, but, quite curiously, they referred

to them as areas of "strio-tubercular fusion." That is, they interpreted

the bridges as areas of conjunction of two distinct cell groups rather

than as the remaining threads of connection of a homogeneous mass

cleaved by fibers of passage.

Accumbens is bounded dorsally, in medio-lateral succession, by

the lateral septal nucleus, the lateral ventricle, and the caudoputamen.

The boundaries with the lateral septal nucleus and the lateral ventricle

are quite clear. On the other hand, accumbens and the caudoputamen are

indistinguishable on histological or histochemical grounds. In sections

stained by the Nissl method, the entire striatal area is predominantly

characterized by small, palely staining neurons that are densely packed

and uniformly distributed. Golgi stains reveal that these neurons have

short, varicose axons which do not extend much beyond the dendritic

field of the neuron. Approximately 2% of the cells of the caudoputamen

are larger cells with axons that extend outside the nucleus. Although

such quantitative statements so far have not explicitly included

accumbens, a similar ratio of small to large cells appears to apply to

this region of the striatum. (Figure 2) Histochemically the striatum

appears equally homogeneous. The entire region has a high concentration

of dopamine-containing nerve terminals (Dahlstrom and Fuxe, 1969;

Ungerstedt, 1971).



12

Figure 2. Cell types in nucleus accumbens. As in the

caudoputamen, a few large neurons are embedded

in a field of densely-packed smaller neurons.

500X.
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Accumbens has, therefore, generally been considered to be a

ventromedial portion of the caudoputamen rather than a separate nucleus.

A convention of unknown origin specifies that the rostral and the ventro-

medial portion of the corpus striatum which is not traversed by the

fascicles of Wilson's pencil bundles, particularly the part medial to

ventricle, is call nucleus accumbens. Thus, the histological criterion

for the demarcation of nucleus accumbens and the caudoputamen is a

very tenuous one -- the presence or absence of perforating fiber

bundles.

In summary, nucleus accumbens is well delineated from the septal

nuclei but appears virtually identical in its histology and histo-

chemistry to the adjacent caudoputamen and dorsal olfactory tubercle.

In view of this similarity, it is surprising that the tubercle was con-

sidered an unrelated structure, but it is quite understandable that

nucleus accumbens was considered a subdivision of the caudoputamen.

It was only when the fiber connections of this region were examined

that a dichotomy began to appear between the caudoputamen and nucleus

accumbens.1

1Actually Kllen (1956) had already observed the dichotomy in his
studies of embryology. He discovered that nucleus accumbens, the
tubercle, and the bed nucleus of the stria terminalis derive from the
same embryonic migration zone, different from that which gives rise
to the caudoputamen.
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Afferent Connections.

The first demonstration of an afferent connection of accumbens came

in 1940 when Fox recognized fascicles of the stria terminalis extend-

ing toward a small region of the lateral septal nucleus and the caudal

parts of accumbens (Fox, 1940). Valverde, by the Golgi method (1965),

has verified this connection.

More powerful evidence for the duality of the striatum came from

studies of the fornix by Powell, Cowan, and Raisman (1966) with the

Nauta method. This study revealed that large areas of accumbens in

the rat receive projections from the hippocampus via the precommissural

fornix. More recently it has been shown that in the rabbit one can

draw a sharp line demarcating accumbens on the basis of differential

afference: the caudoputamen receives neocortical but not hippocampal

projections; accumbens receives hippocampal but not neocortical pro-

jections (Carman, Cowan and Powell, 1963).

The dopaminergic projections from substantia nigra to caudo-

putamen do not encroach upon nucleus accumbens (Hedreen, 1971). How-

ever, a parallel dopaminergic pathway has been identified that arises

in the ventral tegmental region of the mesencephalon and follows the

medial forebrain bundle forward to terminate in accumbens, the tubercle,

the bed nucleus of the stria terminalis, and nucleus centralis of the

amygdala (Dahlstrom and Fuxe, 1969; Ungerstedt, 1971). The terminal

degeneration which Guillery (1957) found in accumbens after lateral

hypothalamic lesions was probably due to the interruption of this path-

way. Additional fibers from the rostral intralaminar thalamic nuclei
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have been reported to terminate in accumbens (Scheibel and Scheibel,

1967). After lesions of the accumbens of the cat, Koikegami (1967)

identified retrograde cell changes in midline thalamic nuclei, the

thalamic anterior medial nucleus, and the ventral-anterior nucleus,

the hypothalamic paraventricular nucleus, and the septal region.

Siegel and Tassoni (1971) suggested that the septal nuclei may pro-

ject to accumbens in the cat.

In conclusion, the pattern of afferent connections of nucleus

accumbens shows certain parallels with those of the caudoputamen, but

differ from the latter in details of origin. A series of neuro-

anatomical experiments employing anterograde degeneration methods,

currently in progress in this laboratory, has been designed so as to

determine if the hippocampal and amygdaloid projections are comple-

mentary or overlapping in accumbens, and to establish the accumbens-

caudoputaminal boundary in the rat.

Efferent Connections.

Although the region of accumbens is quite free from the massive

cortex-related fiber bundles which penetrate the caudoputamen in the

rat, it contains many smaller fascicles which join the MFB below

the anterior commissure. These fascicles were interpreted by Gurdjian

as efferents from accumbens, and named tractus strio-hypothalamicus.

Guillery (1959) and Powell (1963) mentioned fibers from the region of

accumbens in the rat which terminated in the medial part of the medio-

dorsal nucleus of the thalamus. Leonard and Scott (1971) suggested
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that accumbens efferents in the rat distributed widely in the mid-

lateral hypothalamus. Koikegami (1967) traced efferent fibers from

accumbens to the subthalamic region, the adjacent ventral thalamus,

and the mesencephalic tegmentum.

In order to clarify the picture of the efference of the nucleus

accumbens, a series of neuroanatomical experiments was performed by

the aid of anterograde degeneration methods.
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METHODS

Lesions.

Electrolytic lesions were placed stereotaxically in the nucleus

accumbens septi of 50 male albino rats ranging in weight from 150 g.

to 550 g. Two stereotaxic approaches were employed in order to min-

imize the difficulties in interpreting degeneration caused by the

electrode track. A vertical approach minimally involves the septal

nuclei or efferent septal fibers. An angular approach from the contra-

lateral side minimizes damage to the caudoputamen and involvement of

cortical afferents and efferents. Some lesions were made using the

stereotaxic coordinates of Knig and Klippel (1967); with animals too

large for stereotaxic accuracy with this atlas, the lambda and bregma

points were used as references with coordinates derived through experi-

mentation.

The rats were anesthetized by intraperitoneal injections of Equithesin

(0.25 ml per 100 g body weight) and mounted in Stoelting stereotaxic

instrument. A hole was made in the skull at the proper coordinates

with a hand-held dental burr. The dura was incised, and the electrode

(an insect pin coated with Insulex except for a tip of 1 mm or less)

was lowered into the brain to the desired depth. Anodal DC current

(commonly 0.5 ma for 15 seconds) was applied through the electrode,

with an injection cannula inserted under the skin of the tail serving

as the cathode.

In a series of control animals, lesions were placed in the hippo-

campal rudiment, the neocortex of the frontal pole and medial wall of
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the hemisphere, or the lateral septal nucleus, following the same

operative procedures.

Aspiration lesions of the neocortex, hippocampus, and amygdaloid

complex were made under direct vision with the aid of a Zeiss operating

microscope. For the hippocampal lesions a large cortical exposure

was made, the dura reflected, and the overlying cortex removed. The

hippocampus was then removed until the dorsal surface of the thalamus

was visible. As much of the hippocampus as possible was removed, but

care was taken not to damage the stria terminalis. Nearly total hemi-

decortications were performed by aspirating the superficial layers

and fiber tracts. Lesions of the amygdaloid complex were made via a

lateral approach, with the lateral olfactory tract serving as a

landmark.

Histology.

After survival times ranging from 2 to 5 days the rats were again

anesthetized and then perfused transcardially or intra-aortally with

0.9% saline followed by at least 300 cc's of 10% formalin in 0.9%

saline. The brains were removed immediately following perfusion,

immersed in 10% formalin for at least 5 days, and subsequently placed

in a formol-sucrose solution (30% sucrose w/v in 10% formalin) for

3 days or more. The brains were then blocked and embedded in a gelatin-

albumin mixture; the blocks were hardened in formalin fumes for 24

hours, then immersed in 100% formalin for periods ranging from 3 days

to 1 month. The blocks were finally sectioned on a freezing microtome

at 26 micra, and the sections stored indefinitely in 5% formalin.
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Sections were stained using the Fink-Heimer (1967) methods for

degenerating axons and boutons, and a modified Nauta method (Nauta

and Ebbesson, 1970, page 150) for heavier impregnation of degenerating

axons. Variability in staining characteristics of each brain, particu-

larly pronounced when the Fink-Heimer method No. 2 was used, made

individual adjustments of the procedure necessary. All variations were

within the limits outlined in the descriptions of the techniques.

Ordinarily sections were stained at 130 intervals; occasionally closer

spacing of sections through a region of interest was necessary. For

precise topographic identification of the lesion and the sites of

degeneration, adjacent sections were stained with cresylecht violet.

General.

Representative brains were selected for illustration. The terminol-

ogy employed is generally that of Knig and Klippel.
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OBSERVATIONS

Afferent Connections.

Experimental results. After ablation of nearly the entire hippo-

campus (Case RHp-1, survival time 5 days), it is possible to trace

fibers of the precommissural fornix which turn rostrally to travel

along the interface of nucleus accumbens with the lateral septal

nucleus. The fibers diverge laterally from this bundle and terminate

in the rostral and medial parts of accumbens. These results are in

complete agreement with those of Raisman, Cowan, and Powell (1966).

In this case the terminal degeneration in accumbens was relatively

sparse and especially difficult to stain. This probably indicates

that a shorter survival time would be more appropriate for the demon-

stration of this pathway.

Comments. It is interesting to compare this pattern of terminal degen-

eration in the striatum with those resulting from lesions of the

piriform cortex and the entire amygdaloid complex. Such a comparison

is illustrated in schematic form in Figure 32. Case RHp-l is one of

massive lesion of the hippocampus with only slight involvement of the

stria terminalis. The pattern of terminal degeneration was previously

described. Case P6, kindly supplied by Dr. Lennart Heimer, is one of

large lesion of the piriform cortex with very little damage to the

nuclei of the amygdala. Nearly all of the rostrally directed degener-

ating fibers travel via the ventral amygdalofugal pathway. The slight

2Because the brains which are compared are not cut in exactly the
same plane of section, it has been impossible to do a precise comparison.
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Figure 3. A schematic representation of the pattern of terminal

degeneration in the ventral striatum after allocortical

lesions. The hippocampus projects to the rostral and

medial parts -- nucleus accumbens (closed circles). The

piriform cortex projects to the ventral and ventrolateral

parts -- the olfactory tubercle and the extreme ventro-

lateral striatum (open squares). A lesion of the entire

amygdaloid complex reproduces the pattern of piriform-

related degeneration and adds degeneration in the bed nucleus

of the stria terminalis (closed squares).
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damage to the subcortical amygdaloid complex is reflected in a few

degenerating fibers in the stria terminalis. There is dense terminal

degeneration in the entire olfactory tubercle, the ventrolateral parts

of the striatum, and the cellular bridges which connect these two regions.

Case A8, also made available by Dr. Heimer, is one of ablation of the

entire amygdaloid complex. Both the ventral amygdalofugal pathway and

the stria terminalis are heavily degenerated. The pattern of degen-

eration in Case P6 is reproduced exactly. The additional degeneration

in the rostro-medial cellular bridge and the caudal parts of the tubercle

and striatum (Fig.3b Ge) is probably the result of a more complete

lesion of piriform cortex than was obtained in Case P6. The bed nucleus

of the stria terminalis is filled with degeneration resulting from the

destruction of the amygdaloid nuclei (Heimer and Nauta, 1968; Leonard

and Scott, 1971).

Efferent Connections.

Experimental results. Nucleus accumbens seems to project exclusively

to the substantia innominata, a well defined cellular region

which is located ventral to the anterior commissure and the lentiform

nucleus. Nearly identical results were found in seven cases of lesion

of accumbens. Three representative lesions are illustrated in Figure

4. The following case is described in some detail.

Case RACC-24 (survival time 2 days), (Figure 6). An attempt to

produce a selective lesion of the accumbens by lowering the electrode

vertically through the lateral ventricle was unsuccessful, as the

electrode grazed the medial edge of the caudoputamen. However, by far
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the largest portion of the lesion was confined to nucleus accumbens.

There is massive terminal degeneration in the region of the sub-

stantia innominata, between the striatum and the nucleus of the diagonal

band of Broca. (A short discussion of what is known about the substantia

innominata is presented in the section of the Discussion entitled: The

Ventral Striatum and Dopaminergic Limbic Pathways.) As indicated in

Figure 6, the region of termination is distinct from both the striatum

and the nucleus of Broca. Fibers emerge from the lesion and sweep

ventrally to terminate just ventral to the caudal part of nucleus

accumbens and the bed nucleus of the stria terminalis (Figures 6C, 7).

The area of termination expands underneath the anterior commissure

(Figures 6D, E) but never includes the nucleus of Broca, the medial

preoptic region, or any part of the lentiform nucleus, as usually defined.

The dorsal boundary of the field of degeneration is extraordinarily

sharp and corresponds exactly to the ventral edge of accumbens or the

bed nucleus of the stria terminalis (Figure 8). The terminal degener-

ation is illustrated photographically in Figure 9.

In cases with lesions placed more rostrally (RACC-1, RACC-1S,

RAi) degenerating fibers emerge from the lesion and as they run caudally

toward the substantia innominata condense into the bundles Gurdjian

(1927) called tractus strio-hypothalamicus. No terminal degeneration

in this area results from the control lesions illustrated in Figure 5.

In addition, complete transection of the olfactory peduncle, behind

the anterior olfactory nuclei, leaves this region free of terminal

degeneration. Case RHR-4 revealed that fibers originating in the infra-

radiate cortex (Rose, 1929) pass through the zone of accumbens' term-

inations but do not terminate there themselves.
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Figure 4. Lesions of nucleus accumbens septi, each of which resulted

in accumbens-related terminal degeneration only in the

substantia innominata.
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Control lesions, none of which resulted in terminal

degeneration in the substantia innominata. The extent

of the lesions in Cases RD-1 and RD-2 is illustrated

compositely. Neither of these cortical lesions pro-

duced terminal degeneration in the ventral striatum.

Figure 5.
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Figure 6. Case RACC-24, a lesion of nucleus accumbens septi. Degener-

ating axons are represented by large dots, degenerating

terminals by fine dots. Areas of extreme gliosis and

cell loss are indicated by cross-hatching.
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Figure 7. Degenerating fibers moving through the bed

nucleus of the stria terminalis and terminating

in the substantia innominata. Fink-Heimer

method 1. 250X.
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a. b.

Figure 8. An illustration of the sharpness of the

boundary between the bed nucleus of the

stria terminalis and the substantia

innominata.

a. Nissl method, 25OX.

b. Fink-Heimer method 1, 250X.

- I.
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a.

a) Massive terminal degeneration in the

substantia innominata after a lesion of

nucleus accumbens. Fink-Heimer method 1, 100OX.

b) The contralateral substantia innominata, free

of degeneration.

Figure 9.
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Figure 10. A schematic representation of terminal degeneration in

the substantia innominata after lesions of nucleus

accumbens (closed circles), and the olfactory tubercle

(open circles).
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Four other components of degeneration are illustrated in Figure

6. The terminal degeneration in accumbens and the tubercle medial to

the lesion (Figures 6A, B) may result from either the interruption of

brainstem or thalamic afferents or the disruption of intra-accumbens

connections.

Degenerating fibers pass from the lesion in caudoputamen (Figure

6C) and run caudally to terminate in globus pallidus (Figure 6F), the

entopeduncular nucleus (Figure 6I), and the substantia nigra (Figure

6L). The size of this component of degeneration in other cases of

accumbens lesion is proportional to the degree to which the lesion

extends in the dorsolateral direction, i.e. into the caudoputamen.

Thus, the component is large in Case RACC-1 but completely absent

in Case RAi.

Degeneration in the fasciculus cinguli and cingulate cortex can

be attributed to the electrode track disrupting fibers en route from

the anterior thalamic nuclei to cingulate cortex (Domesick, 1970).

This component is minimal in Case RACC-1, but because the thalo-

cingulate fibers pass through the striatum before looping around the

genu of the corpus callosum, a small number of them were interrupted

by the lesion itself.

A very small number of fibers, apparently of cortical origin,

can be traced as they pass through the dorsal caudoputamen and into the

internal capsule. They disappear caudal to the entopeduncular nucleus,

but neither their exit from the internal capsule nor their site of

termination could be determined.
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Cases RHR-4 and RHR-2 (RHR-2 is not illustrated; it shows a lesion

of infraradiate cortex not involving the hippocampal rudiment)reveal

that fibers originating in the infraradiate cortex pass through accumbens

and must unavoidably be involved in all lesions of accumbens. These

fibers pass through accumbens and through the substantia innominata

without terminating. In the illustration of Case RACC-24 their presence

in substantia innominata is obscured by the extreme density of the

terminal degeneration. A few fibers are visible at the ventral boundary

of the field of degeneration (Figures 6D, E). Caudal to the zone of

accumbens projection these fibers of small diameter can be seen travel-

ing diffusely in the medial forebrain bundle, just ventral and medial

to the internal capsule. At the level of the mammillary bodies the

fibers run just dorsal to the pars compacta of the substantia nigra

(Figures 6K, L). The bundle dwindles rapidly in this region, but

neither the dispersion of its fibers nor its site of termination could

be determined.

Comments. In cases of superficial lesion of the olfactory tubercle,

Heimer (unpublished results) has found terminal degeneration principally

in the SI, adjacent to the zone projected upon by accumbens. The pro-

jections from accumbens and the tubercle appear to be contiguous, and

to outline a somewhat discrete, unitary region (Figure 10). Although

the center of this field of degeneration is just below the anterior

commissure, the tubercular projection extends far rostrally between

accumbens and the multiform layer of the tubercle and further caudally,

behind the anterior commissure. The parts of the SI which remain free

of degeneration in Figure 10 are probably projected upon by areas of

accumbens, the tubercle, and the ventro-lateral striatum which have not

been involved in lesions.
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DISCUSSION

Nucleus Accumbens and the Olfactory Tubercle.

The results of these studies of nucleus accumbens reveal a

pattern of connectivity strikingly similar to that of the adjacent

olfactory tubercle. This similarity, combined with a sharing of

histochemical and morphological characteristics, provides the foundation

for a new view of the basal forebrain region, in which accumbens and

parts of the tubercle are seen as a homogenous mass divided by the

fibers of the medial forebrain bundle.

In the rat, the corpus striatum and tubercle are to a large

extent separated by fibers of the deep olfactory radiation, but

their continuity is revealed at some points by columns of cells

which remain uninterrupted by the olfactory radiation. In Nissl-

stained sections the cells of these bridges are indistinguishable

from either the cells of the striatum or the medium-sized cells of

the multiform layer of the tubercle, suggesting that the bridges

are areas of continuity of a single cellular mass rather than areas

of conjunction of two distinct masses. (Figure 11) These cellular

bridges are present in a variety of other mammals.

The comparability of the cellular morphology is further revealed

by the Golgi method. The caudoputamen, nucleus accumbens, the strio-

tubercular bridges, and the multiform layer of the tubercle are all

characterized by a predominance of relatively small neurons with ex-

tremely spiny dendrites and very short, tortuous axons. The medium-

sized pyramidal cells of the tubercle have a similar size and morphology,

except for the orientation of their dendrites perpendicular to the pial surface.
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The brain of the dolphin (Tursitops truncatus) provides an illum-

inating natural illustration of the unity of this region. Most of the

fibers that comprise the rostral (pre-septal) part of the MFB of

terrestrial mammals are efferents from the paleocortex and olfactory

tubercle en route to the nuclei gemini of the hypothalamus and the

medio-dorsal nucleus of the thalamus; it is principally these fibers

which cleave accumbens from the tubercle. In the dolphin these fibers

must either be absent or follow a different route, because there is

complete cellular continuity of the striatum from the corpus callosum

to the pial surface at the base of the brain. The ventral strio-

tubercular region is entirely homogeneous except for the granular

islands of Calleja, which, as in every other mammal, are dispersed

near the surface of tubercle and on the medial edge of nucleus accumbens.

The anosmatic dolphin, without olfactory receptors, bulb, or

tracts, has an enormous tubercle (bulge) at the base of the anterior

forebrain, but the characteristic three layers -- plexiform, pyramidal,

and multiform -- that in other species cover the ventral surface of the

region are absent (Figure 12). The plexiform layer, or striatum zonale,

composed primarily of tubercle afferents from the bulb, is absent in

an animal without an olfactory system. Asa result, the tubercle of

the dolphin ("lobule desert" of Broca) is grey at the surface rather

than white. The cells of the pyramidal layer of a terrestrial mammalian

tubercle seem different from the cells of the multiform layer not in

type but rather in arrangement and orientation: their arrangement in

a tightly-packed layer and the orientation of their apical dendrites

into the plexiform layer are really the only distinguishing morphological
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Figure 12. A sagittal section through the lobule desert of the

dophin, illustrating the absence of the deep olfactory

radiation, pyramidal cell layer, and plexiform layer, and

the resulting extension of the striatum all the way to the

base of the brain. Fnd.Str., fundus striati (ventral

striatum); IsC, islands of Calleja; T, tubercular area.

(This photograph was kindly supplied by Dr. Myron Jacobs.)

IsC FndSt

E
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characteristics of these cells. One final difference between the lobule

desert and the olfactory tubercle is the lack in the dolphin of the large

cells of the multiform and pyramidal layers. Their absence suggests

that the tubercle may contain a quite heterogeneous population of cells.

Lacking the large cells as well as the perforating MFB and the layered

arrangement, the lobule desert of Broca seems to represent the striatal

matrix which, in terrestrial mammals, is variously modified into the

olfactory tubercle.

No boundary can be drawn between nucleus accumbens and the olfactory

tubercle on histochemical grounds either. Both contain high concentrations

of dopamine containing nerve terminals.

The efferent pathways from tubercle have two sets of targets -- one

in common with accumbens efferents, and one in common with the efferents

of the piriform cortex. In addition to the afore-mentioned projection

to the substantia innominata, the olfactory tubercle also gives rise

to less massive projections to the medio-dorsal nucleus of the thalamus

(MD), the nuclei gemini of the hypothalamus, the plexiform layer of the

olfactory peduncle, and hippocampal rudiment (Heimer, personal communi-

cation). According to Cajal (1911) the hypothalamic pathway from piri-

form cortex tubercle region is composed of collaterals of axons which

ascend via the stria medullaris and inferior thalamic peduncle to

MD. This fact, combined with the known olfactory nature of the hypo-

thalamic pathway (Scott and Leonard, 1971), suggests that the cells of

origin of the diencephalic (i.e. tuberculo-hypothalamic and tuberculo-

thalamic) pathways are the cells which receive direct input from the

olfactory bulb and are, therefore, the truly olfactory cells of the



45

tubercle. The observation that the time course of degenerative changes

differs for the diencephalic and innominata projections from the tuber-

cle (Heimer, 1972) suggests that the cells which project to the

substantia innominata may not be the olfactory cells but rather the

cells of the tubercle which resemble those of nucleus accumbens. One

is thus led to speculate that the olfactory elements of the tubercle

project to MD, nuclei gemini, the olfactory peduncle, and the hippo-

campal rudiment, and that the non-olfactory tubercle cells project to

the substantia innominata.

Although no lesions have been made in the extreme ventro-lateral

striatal region, it seems likely that cells which receive input from

piriform cortex would have efferents to the SI rather than to globus

pallidus. On the basis of an expanding body of experimental neuro-

anatomical data it is now possible to offer a new formulation of the

relationships among accumbens, the caudoputamen, and the olfactory

tubercle. In the light of these data, the striatum seems divisible

into a dorsal and a ventral part (Figure 13). The dorsal part, related

to neocortex and globus pallidus, is the caudoputamen. The ventral

part, related to allocortex and the SI is best described by the term

ventral striatum. This region can be subdivided into nucleus accumbens,

a ventrolateral striatal area, and the multiform region of the olfactory

tubercle. Just as neocortex projects topographically onto the dorsal

striatum,so allocortex projects topographically onto the ventral striatum:

hippocampus projects to the rostral and medial parts (accumbens), and

piriform cortex projects to the ventral and ventrolateral parts (tuber-

cle and extreme ventrolateral striatum).
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Figure 13. A schematic representation of the neural associations

of the mammalian striatum, with emphasis on the

dichotomy which exists within this structure. (C-P),

caudoputamen; (vent. str.), ventral striatum.
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The Ventral Striatum as a Part of the Limbic System.

Although studies of fiber connections can offer no more than a

hint of the precise neurophysiological role of accumbens, they can

at least establish the functional realm in which it should be considered.

To that end, a brief description of some of the structures to which the

ventral striatum is synaptically related may provide an implicit

characterization of nucleus accumbens and the other subdivisions of

the ventral striatum.

Hippocampus. The hippocampus has been implicated in various aspects

of viscero-endocrine regulation and many facets of the behavior of man

and experimental animals. The multifarious influences of this unique

paleocortical structure are exerted by means of the fornix system, a

massive fiber bundle which distributes principally in the septal region,

the anterior thalamic nuclei, and the mammillary body. The septal

nuclei, in turn, give rise to fibers which terminate widely in the

lateral hypothalamus. The efferent connections of the anterior thalamic

nuclei and mammillary body are links in the so-called Papez circuit,

which also includes the cingulate and parahippocampal cortices.

Piriform cortex. Because of its afference from the olfactory bulb,

the 3-layered cortex ventral to the rhinal sulcus has generally been

considered "olfactory" cortex; however, its presence in a well developed

form in anosmatic mammals (Jacobs et al., 1971) makes it extremely

unlikely that this cortex is only a link in olfactory pathways. The

most revealing indication of the nature of piriform cortex is probably

that it is the most massive single source of afference to the amygdaloid

nuclei (Valverde, 1965). It may therefore be assumed that the
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functional state of neurons of the amygdala is influenced to a large

extent by the piriform cortex.

Ventral tegmental region. The dopaminergic pathway from the midbrain

to the ventral striatum seems to arise from the ventral tegmental area

of Tsai (Ungerstedt, 1971). This ill-defined cell group, situated

between the interpeduncular nucleus and the substantia nigra, merges

almost imperceptively with the lateral hypothalamic region, and is a

principal target of post-mammillary fibers of the fornix system (Nauta

and Haymaker, 1969). The nucleus also receives caudally-directed

fibers from the MFB and rostrally-directed fibers from the mammillary

peduncle. The latter connection led Papez (1932) to name this cell

group the nucleus of the mammillary peduncle.

Substantia innominata. The region of termination of ventral striatal

efferents has been tentatively labelled substantia innominata because

it seems to correspond topographically to the substantia innominata

of the cat and monkey brains. However, in the absence of any comparative

studies of this region, no homologies should be inferred from this

terminology.

Recent unpublished observations by Heimer reveal that the histological

appearance of the substantia innominata is comparable in every major

respect to that of the overlying globus pallidus. The large fusi-

form cells are rather loosely arranged, and the neuropil in which they are

embedded is composed of a dense network of unmyelinated axons. The

long, radiating dendrites have very few spines and are encased by

a nearly continuous sheath of boutons. Aside from the fiber bundles

of the internal capsule which perforate the globus pallidus, there is



50

virtually no histological difference between the globus pallidus and

the entire substantia innominata. Thus, the substantia innominata

should be considered to be a ventral part of the pallidum, related

to the ventral striatum in the same way that the globus pallidus is

related to the dorsal striatum.

Nothing is known of the efferent connections or other afferent

connections of this region.

Certainly the major conclusion to be drawn from this study is that

there are fundamental anatomical and probably functional differences

between the caudoputamen and nucleus accumbens. Although it receives

fibers from the entire neocortical mantle, the caudoputamen has as its

principal efferent target the globus pallidus, a structure predomin-

antly concerned with movement (Nauta and Mehler, 1966; DeLong, 1971).

Dysfunctions of the caudoputamen or the cells to which it is synaptically

related are most distinctly manifested as disorders of movement such

as hypo- and hyperkinesias, tremor, and abnormal muscle tonus.

In contrast, the efferent connections of accumbens establish it

as a central structure of the limbic forebrain. As such, accumbens

is probably more involved in the affective facets of behavior than

in the control of movements. Some possible effects of dysfunctions

of accumbens will be discussed in a following section.

The most notable physiological demonstration of the limbic nature

of accumbens was given in a series of experiments by Rioch and Brenner

(1938), who found that local electrical stimulation of the caudate

nucleus in freely-moving decorticate cats produced no consistent

behavioral changes. On the other hand, stimulation in accumbens
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produced behavioral effects which are unique to this region but which

nevertheless suggest strong association with the limbico-hypothalamic

axis:

The second response consistently obtained was evoked by pro-
longed stimulation of the floor of the remaining portion of
the frontal horn of the ventricle, between the head of the
caudate and the septum, at or just in front of the anterior
commissure (b, Figure 3). After a latent period of 1 to 5
seconds, the pupils dilated moderately, following which
respiration became much more rapid, the depth and ratein-
creasing with the duration of the stimulus. The animal show-
ed no other signs which could be interpreted as pain, fear
or rage, but sat or stood rather tensely. When the stim-
ulation had continued for 5 to 10 seconds, there was a
sudden burst of activity in the form of violent springing
and running movements which continued for 1/2 minute or more
after the stimulation ceased and then subsided gradually.
At the end of the outburst the animal sat or stood on the
table as quietly as before, the respirations and pulse
rapidly returning to normal. The whole reaction could be
repeated by stimulating the same region (on either side)
again. In cat 1 there were frequent twitches and jerks
appearing irregularly in one or another of the legs,
which momentarily interrupted the running movements at the
height of the activity. Apart from these isolated twitches,
there was nothing resembling an epileptiform seizure or
convulsion. These results were comparable to those obtained
by Schaltenbrand and Cobb ('31) from their 'point 2' and
by Ranson and Magoun ('33), in cats under pentobarbital
sodium, from the lateral hypothalamic area. Taken as a
whole, however, this reaction was entirely distinct from
that of pseudo-affective rage which was elicited from
the posterior hypothalamus (p. 500).

The power of this illustration has not been surpassed, but the

proposed striatal dichotomy has been substantiated by several sub-

sequent studies. In contrast to sites in the overlying caudato-

putamen, nucleus accumbens has been identified as a potential site

of self-stimulation of the "rhinencephalic" type (low frequency of

stimulation, hypo-activity, lack of cortical desynchronization)

(Rolls, 1971). Bilateral lesions of accumbens cause changes in
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avoidance and feeding behavior which are more similar to the effects

of septal lesions than to the effects of caudoputaminal lesions (Lorens,

et al., 1970). Finally, stimulation in accumbens, and probably the

entire ventral striatum, thus should be considered among those regions

of the brain which, by virtue of their connections with the hypothalamus

and/or their apparent involvement in affective behavior and the mainten-

ance of visceral and endocrine homeostasis have come to be known as

the limbic system.

The Role of the Ventral Striatum in the Limbic System.

Although accumbens' membership in the limbic system appears quite

firmly established, the details of its role in that system are com-

pletely unknown. It is ironic, however, that accumbens' structural

similarity to the caudoputamen -- the factor which has obscured its

autonomy -- may eventually provide the key to its function.

The distinctive cellular morphology and synaptic organization

shared by the caudoputamen and ventral striatum (see below) suggests

that some unique form of input-transformation is being carried out

by both of these striatal components. It would seem conceivable that

the same role played by the caudoputamen in processing neocortical

outflow might be played by the ventral striatum in the processing of

allocortical efflux. Such a generalized "striatal transformation"

could be postulated as a conceptual parallel to the distinctive

transformation of many diverse inputs which is performed by the uniform

structure of the cerebellar cortex.
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Recalling the structural similarities between the globus pallidus

and the substantia innominata, one might further speculate that there

is also a generalized "pallidal transformation" characteristic of

cell regions receiving striatal afferents. It cannot be determined

whether or not this parallelism in the associations of neocortex and

allocortex extends one step further because the efferent connections

of the substantia innominata remain unknown.

Because the caudoputamen is ultrastructurally identical through-

out its extent, and because the dorsal part of the ventral striatum

is indistinguishable from the caudoputamen on the light microscopic

level (Nissl, Golgi) , it is probable that the ventral striatum has

basically the same cell types and synaptic organization. The major

characteristics of the caudoputamen, as enmphasized by Kemp and Powell

(1971) are: 1) 96% of the cells of the caudate are true interneurons,

with branching axons which do not extend out of the dendritic field of

the neuron (Figure 14). These classic Golgi-type II neurons have extreme-

ly spiny dendrites, and most afferent contacts on them are axo-spinous.

There are a number of other cell types in the caudate, but the only

cells which project out of the nucleus are large fusiform cells with

smooth, long (1 mm radius) dendrites (Figure 14). Kemp and Powell, using

the Golgi method, estimate that these efferent cells comprise approxi-

mately 1% of the total neuron population; Foix and Nicolesco (1923)

using the Nissl method, estimate 2%. 2) All of the afferents to the

3In preliminary Golgi-Cox observations only the interneurons with
very spiney dendrites and the large fusiform neurons (see below) have
been recognized so far.
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Figure 14. Neurons characteristic of the striatum. The type

illustrated in the upper right, with spiny dendrites

and a short, tortuous axon, predominates. Approximately

2% of the cells are of the type illustrated in the lower

left. Not drawn to scale. Golgi method. (This figure

reproduced from Kemp, 1968.)
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caudoputamen, whether from cortex, thalamus, or substantia nigra, con-

verge on the same cells, without any apparent preference for a particular

segment of the dendrite. 3) Axons tend to travel perpendicular to

dendrites, contacting many cells by synapses en passage. The impli-

cation of these structural characteristics is that the output of the

caudate, as a reflection of the activity of a large number of local inter-

neurons, must be a highly abstracted and compounded version of the input.

In view of the foregoing anatomical description, it is not sur-

prising that electrophysiological studies have revealed that the caudo-

putamen is characterized by an unusual mode of neural activity, namely,

a very low level of spike activity and highly complex postsynaptic

potentials (Hull, et al., 1970). These physiological characteristics,

combined with the anatomical indication that the cells of the striatum

have multiple local connections en passage, suggest that sub-threshold

activity may be of primary importance in the mode of interaction of

striatal neurons.

Unfortunately the conclusion we must come to is that the signifi-

cance of the synaptic events in the caudoputamen (and by inference, in

the ventral striatum) is at present completely unknown. Just as in the

case of the cerebellum, it seems that it is the long-known manifestations

of pathology, rather than anatomical and physiological details, which

must still provide the basis of our conceptions of the functions of the

caudate. Attempts to approach the question of the physiological role

of the caudate through the study of its dysfunctions is hindered by,

to quote Denny-Brown, "the very general nature of the types of pathology

that affect [the basal ganglia] and the kaleidoscopic variations in
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resulting symptomatology. .. ." Perhaps the most precise statement

which can be made is that the caudate is somehow involved in the co-

ordination of muscular activity.

Nucleus Accumbens and Dopaminergic Limbic Pathways.

A possible clue to the nature of dysfunctions of nucleus accumbens

(and perhaps the nature of the physiological role of accumbens) is pro-

vided by the common experience of clinicians that drugs which either

relieve or produce Parkinsonian motor symptoms also produce changes in

motivational and emotional states. Parkinsonian patients treated with

L-dopa often develop psychotic tendencies; conversely, schizophrenics

treated with phenothiazines, which are thought to block dopaminergic

synapses, often develop Parkinsonian motor disorders. Thus, the fol-

lowing hypothesis emerges: there are two dopamine (DA) pathways rising

from the midbrain, parallel but independent. Attempts to replenish DA

in the "motor dopamine pathway" (nigra to caudoputamen) result in

overloading the "limbic dopamine pathway" (ventral tegmentum to accumbens,

the tubercle, the bed nucleus of the stria terminalis, and the central

amygdaloid nucleus). Conversely, attempts to reduce dopaminergic trans-

mission at the terminals of the limbic pathway similarly affects the

motor dopaminergic pathway and thus may result in Parkinsonian dyskinesia.

Unfortunately, the field of Neuropsychopharmacology is filled with

transient "truths", and before one can accept an hypothesis which

attempts to relate behavior, chemistry, and anatomy in a precise way,

one must evaluate thoroughly all the evidence on which the concepts are

based. Accordingly, the following hypothesis is put forth and supported
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as strongly as possible, but with full realization that some of the

support is weak and that many details of evidence are likely to be

proven invalid. Nonetheless, the proposal seems essentially sound,

and the available pattern of evidence warrants consideration.

Outline of the hypothesis of the involvement of the ventral striatum

in affective behavior. The basic hypothesis is that either direct

or indirect interventions upon synaptic transmission mediated by DA

can modify neural activity in limbic dopaminergic pathways and can

thereby elicit significant changes in affective behavior. Two points

must be made with respoct to this hypothesis. First, changes in

affect -- whether exaggeration, as in the manic-depressive syndrome,

or "flattening" as in schizophrenia -- seem to be a hallmark of the major

psychoses. Although schizophrenia is not considered to be primarily

an "affective disorder," the etiology of the many manifestations of

schizophrenia is undoubtedly very complex, and it seems possible that

the pathognomonic symptom -- a "disorder of thought"-- might be a com-

pensatory reaction to a more fundamental derangement, viz. the loss of

appropriate affective responses to normal situations. Second, it should

be recognized that the tendency for modifications of dopaminergic trans-

mission to produce or abolish psychotic behavior does not necessarily

imply that the natural lesions in psychoses (if, indeed, there are such)

directly involve DA systems. However, this possibility connot be over-

looked. There are four points which must be established in order to

substantiate this hypothesis.
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1. DA is the neurotransmitter of the ventral tegmental DA-containing

neurons which project to accumbens, the tubercle, the bed nucleus of the

stria terminalis, and the central amygdaloid nucleus.

2. Psychoactive phenothiazines block synaptic transmission mediated

by DA. L-dopa increases the synthesis of DA and thereby the impulse

transmission to neurons normally receiving dopaminergic inputs.

3. The anti-schizophrenic effects of phenothiazines are produced

by a decrease in dopaminergic transmission to postsynaptic neurons (more,

specifically, by a receptor blockade at dopaminergic synapses), and not

by any other effect of the drug.

4. It is the limbic dopamine pathways rather than the nigrostriatal

or infundibular pathways which are principally involved in the modifi-

cation of affective behavior.

Examination of the hypothesis.

1. DA is the neurotransmitter of the ventral-tegmental DA-

containing neurons which project to accumbens, the olfactory

tubercle, the bed nucleus of the stria terminalis, and the

central amygdaloid nucleus. DA has now met most of the criteria

for recognition as a neurotransmitter. No experimental work has been

done specifically in accumbens or the other limbic DA targets, but in

view of the discrete localization of DA in the brain it does not seem

too presumptuous, on some points, to extrapolate from results obtained

in the caudate. a) DA is present in cell bodies in the ventral teg-

mental region and in axonal terminals in accumbens, the olfactory tuber-

cle, bed nucleus of the stria terminalis, and central amygdaloid nucleus.

(Ungerstedt, 1971; Dahlstrm and Fuxe, 1962). The axons of these
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pathways can be traced by both histochemical fluorescence (Ungerstedt,

1971) or anterograde axon-degeneration (Fink-Heimer) techniques (Hedreen,

1971). b) DA is released at synapses in the caudate during nigral

stimulation (Von Voigtl~nder and Moore, 1971). c) In cats decerebrated

at midpontine levels, iontophoretically-applied DA has precisely the

same effect on caudate neurons as nigral stimulation (Connor, 1970).

d) Chlorpromazine (CPZ, a phenothiazine) blocks the effect on caudate

neurons of both nigral stimulation and directly-applied DA(York, 1972).

2. Psychoactive phenothiazines block synaptic transmission medi-

ated by DA. L-dopa increases DA synthesis and thereby dopa-

minergic transmission to neurons receiving DA inputs. The

responsiveness of neurons of the caudate, as estimated by the neurons'

responses to iontophoretically-applied amino acids, is identically

altered by nigral stimulation and direct application of DA (Connor,

1970). The effects of both nigral stimulation and application of DA

can be reversibly blocked by CPZ administered iontophoretically (York,

1972). The dose-response relationship between CPZ and the DA antagonist

effect suggests a process of competitive inhibition, presumably at the

postsynaptic membrane.

X-ray crystallographic analysis of phenothiazines shows that their

effectiveness as anti-psychotic agents is affected by their three-

dimensional conformation, and that the most effective conformations

are those in which a portion of the molecule is able to adopt a structure

similar to that of DA (Horn and Snyder, 1971). These studies, likewise,

suggest a competitive action of phenothiazines.



60

The psychoactive phenothiazines increase striatal DA turnover.

The most probable explanation for this phenomenon is that the DA receptor

blockade causes a compensatory increase in DA release and a concommitant

increase in synthesis. The following observations on the results of

phenothiazine administration to rats support this explanation. Such ad-

ministration causes an increase in the rate of incorporation of H3-tyro-

sine in the corpus striatum; this effect is dependent on the integrity

of the nigrostriatal pathway (Nyback, 1972). Furthermore, under conditions

of MAO inhibition, phenothiazines cause an increase of DA synthesis beyond

normal (Carlsson and Lindquist, 1963), while the striatal content of 3-

methoxytyramine, the product of enzymatic extracellular degradation of

DA, likewise increases (Anden, Roos, Weidinius,1964 ). And finally,

phenothiazines accelerate the disappearance of H3-DA formed prior to

drug administration (Nyb~ck and Sedvall, 1970); this effect, also, has

been shown to be dependent on the integrity of the nigrostriatal path-

way (Nyb~ck, 1972).

Precedent for such a mechanism of increased synthesis of a neuro-

transmitter when that transmitter's action is blocked has been establish-

ed by observations in the peripheral nervous system. Treatment of an

animal with phenoxybenzamine (an a - blocking agent) blocks the peri-

pheral actions of norepinephrine (NE) and causes a reflex increase in

presynaptic input to, and catecholamine synthesis by, postganglionic

sympathetic neurons (Dairman and Udenfriend, 1970).

It should be noted that these studies of turnover show only that

more DA is being synthesized and degraded; it has not been proven that

more DA is being released. The argument for a compensatory increase
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in the firing rate of nigral neurons would be greatly strengthened by

the addition of two items of evidence: increased tyrosine hydroxylase

activity4 in the striatum, and increased electrical activity of the

nigral cells.

Chlorpromazine also influences the hypothalamic regulation of

growth hormone (Kolodny, et al., 1971) and prolactin. The observation

that CPZ and L-dopa act as mutual antagonists in their effects upon

these regulatory mechanism (Boyd, Lebovitz, Pfeifer, 1970) suggests

that CPZ affects not only the mesencephalic DA neurons projecting

forward to the striatum and to certain limbic structures, but also

the DA neurons of the median eminence.

Finally, the tendency of phenothiazines to induce Parkinsonian

motor disorder, which is thought to result from depletion of dopamine,

suggests that the phenothiazines are reducing the effectiveness of DA

synapses.

In summary, it is probable that phenothiazine tranquilizers mimic

the conformation of DA and thereby competitively block DA receptor

sites. This blockade causes a compensatory increase in activity of ·

the nigral neurons, which, in turn, leads to increased DA synthesis.

The effects of L-dopa on brain DA metabolism are not as well

studied as the effects of phenothiazines. L-dopa is taken up and con-

verted to DA by nearly every cell of the body, including cells of every

chemical nature in the brain (Romero, et al., 1972). Although there are

4In the peripheral system previously described, the enzymatic
activity of tyrosine hydroxylase has been shown to be increased by
greater neural activity and decreased by less neural activity (Thoenen
et al., 1969).
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profound effects on brain norepinephrine metabolism, these effects are

quite transient with respect to the duration of the increased level

of striatal DA (Chalmers, Romero, Cottman, Lytle, and Wurtman, 1972),

suggesting that the anti-Parkinsonian effect may be exerted through

nigrostriatal DA neurons. Dopa's site of action in altering hypothalamic

GRF (growth hormone releasing factor) and PIF (prolactin inhibiting

factor) release is unknown, but the minimal effects of L-dopa on hypo-

thalamic norepinephrine (Chalmers, et al., 1972) suggest that L-dopa

acts directly on the DA neurons of the median eminence. Thus, although

the effects of L-dopa on Parkinsonian disorder, hypothalamic functions,

and especially on behavior, may be mediated through non-dopaminergic

mechanisms, much circumstantial evidence suggests that at least the

first two effects are exerted directly through DA neurons. However,

aside from the clinical observations that Parkinsonian patients

improve and that pituitary secretions are altered, there is no proof

that neurons which normally receive dopaminergic inputs are subject

to greater dopaminergic stimulation after treatment with L-dopa.

3. The anti-schizophrenic effects of phenothiazines are produced

by a decrease in dopaminergic transmission to postsynaptic

neurons (more specifically, by a receptor blockade at dopa-

minergic synapses), and not by any other effect of the drug.

The most devastating criticism of this or any other hypothesis which

is based on pharmacological data concerns the specificity of drug

effects. It is here that the transient nature of neuropharmacological

beliefs is most evident; previously unknown effects of drugs are

rapidly being discovered, and hypotheses about biochemistry and behavior
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which are based only on pharmacology have a high probability of soon

being proven invalid. The best one can do is to formulate a theory

based on a convergence of different lines of circumstantial evidence.

The class of compounds call phenothiazines is characterized by

the basic ring structure illustrated in Figure 15. The specific

natures of the substituents on the rings separate the class into many

different compounds with powerful and widespread biological activities.

For example, members of the class have been reported to be strong chem-

ical reducing agents, to inhibit oxidative phosphorylation, to stabilize

biological membranes, to block a- adrenergic receptors and inhibit

catecholamine re-uptake in the periphery, and, finally, to produce the

previously discussed changes in brain DA metabolism. The only reported

effect which is produced by all of the psychoactive compounds and by

none of the non-psychoactive compounds is the alteration of DA turnover

rates. Because all other effects enumerated above are produced by non-

psychoactive compounds, they can be eliminated as the basis of the

psychotherapeutic action of some members of the class. In general, only

those phenothiazines that are psychoactive accelerate DA turnover, and

only those that accelerate DA turnover are psychoactive . Furthermore,

two distinctly different chemical classes of anti-schizophrenic drugs --

butyrophenones and diphenylbutylpiperidines also increase DA turnover.

Because of the known effects of NE on behavior (Cooper, et al., 1970)

it is important to note that the efficacy of phenothiazines does not

5The double dissociation is not quite complete. Trimeprazine ac-
celerates DA turnover but is not psychoactive, and thioridazine is
psychoactive but does not accelerate turnover.
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depend on alteration of NE metabolism: many of the psychoactive pheno-

thiazines do not alter NE metabolism at all. No definitive studies of

the effects of phenothiazines on serotonin turnover have been reported,

but it has been observed that CPZ does not change striatal 5-hydroxy-

indoleacetic acid (a serotonin metabolite) levels (Anden, et al., 1964).

The effect of phenothiazines on DA metabolism can be observed in

the human clinic. When Delay and Deniker (1952) introduced CPZ (trade

name thorazine) in 1952, they noted that it often produced Parkinsonian

disorders of movement. All of the related psychoactive phenothiazines

which have subsequently come into use likewise produce motor side effects.

In one study it was found that Parkinsonian side effects occur in from

3% to 36% of the patients treated with various phenothiazines. The

exact frequency depends on the specific drug (Cole and Clyde, 1961).

The effectiveness of phenothiazines as psychotherapeutic agents

correlates well with the ability of the particular side chain to adopt

a conformation similar to that of DA. A portion of the haloperidol

(a butyrophenone) molecule can probably also mimic the DA conformation

(Horn and Snyder, 1971). This observation reveals a possible basis for

the correlation between the efficacy of a drug as an antischizophrenic

agent and its efficacy as a modifier of DA metabolism: molecules with

3-D structures closer to that of DA are more effective in synaptic

blockade, thereby producing greater concommitant motor effects and in-

ducing greater compensatory activity and synthesis in DA neurons.

Several studies have shown that L-dopa treatment of Parkinsonian

disorder can precipitate schizophreniform changes in behavior. One

study reports the frequency as 7.7% (Celesia and Barr, 1970).
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Exacerbation of the schizophrenic state is often a side effect of L-dopa

treatment of schizophrenic Parkinsonian patients. One study reports

80% (Yaryura-Tobias, et al., 1970); another reports 40% (Bunney, et al.,

1970).

No direct evidence can be adduced to assess which effect of L-dopa

is important behaviorally. However, the previously reported circum-

stantial evidence which suggest that L-dopa has major effects on DA

neurons, combined with the existence of limbic dopaminergic pathways,

suggest a tentative explanation for the drug's psychotogenic action.

4. It is the limbic dopaminergic pathways rather than the nigro-

striatal or infundibular pathways which are principally involved

in the modification of affective behavior. A variety of changes

in affect can be produced by stimulation or lesions of the components

of the limbic system, including the hypothalamus and preoptic area.

Since these effects are relatively specific to the limbic system, and

no comparable changes of affect and mood have been consistently pro-

duced by stimulation or lesions of other parts of the brain, it would

not seem far-fetched to assume that affective disorders have their

primary functional localization in the limbic system. If changes in

the effectiveness of DA synaptic transmission can influence these

spheres of behavior, then one is led to assume that DA should be able

to influence neural activity in limbic structures. Despite its wide-

spread cortical afferents, the caudoputamen seems to be a structure

principally involved in somatic motor mechanisms. The infundibular

pathways seem to have the capability of influencing behavior only

indirectly, via hormonal mechanisms. The remaining dopaminergic
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pathways, however, arising in the ventral tegmental region, project

to cell groups in the prosencephalon which, by virtue of the connections,

must be considered components of the limbic system.

The bed nucleus of the stria terminalis is a major target of ef-

ferent fibers from the amygdala. Valverde (1965) illustrates some

efferent fibers from the bed nucleus which travel back through the

stria to distribute widely in the amygdala, and others which terminate

in the preoptic region. The activity of these cells undoubtedly affects

the functional state of the amydaloid complex.

Nucleus accumbens and the olfactory tubercle receive afferent fibers

from the hippocampus, piriform cortex, and -- in the case of the tubercle --

the olfactory bulb. The tubercle also has efferent connections to the

medio-dorsal nucleus of the thalamus and the nuclei gemini of the hypo-

thalamus.

Thus, any or all of these cell groups could potentially mediate

changes in patterns of neural activity in the limbic system, and it is

not stretching the imagination to speculate that a substantial alter-

ation of related dopaminergic pathways would produce just such a

result.
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